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ABSTRACT 
 

The objective of the thesis is to provide a fully coupled thermo-hydro-mechanical (THM) 

tool, T2STR, which enables quantitative understanding and prediction of thermal as well 

as mechanical effects on flow in the porous media under multiphase conditions. This is 

achieved by incorporating a finite element based hydro-thermo-mechanical stress 

capability into the well-established IFDM (Integrated Finite Difference Method) based 

flow simulation code TOUGH2. TOUGH2 is a program for calculation of multi-phase, 

multi-component, non-isothermal flow in porous media. It implements several equation-

of-state modules to represent different fluid mixtures.  

The dual mesh technique is natural for combining both discretization methods and is used 

innovatively and effectively. A generalized approach is developed to accommodate the 

switching of variables implemented in TOUGH2 to adapt the phase changes. The forward 

coupling is achieved by using the thermal, hydrostatic, and poroelastic effects in the 

stress calculations. The backward coupling includes the effect of strain on the fluid flow. 

T2STR also allows the user to study the variation in porosity, permeability and capillary 

pressure as function of mean effective stress in the porous media. Multiple materials can 

be used to model the reservoir in T2STR, parallel to the implementation in TOUGH2. 

T2STR is implemented to carry out as a fully coupled, one way coupled (only 

deformation as function of hydro-thermal effects), or original TOUGH2 implementation. 

It provides the ability to switch on and off the thermal and/or poroelastic effects.  

T2STR is developed to model the fractured porous media using discrete fractures. The 

modeling of fractured porous media is limited to a staggered coupling approach. The 



 

fluid parameters like permeability, porosity are modified based on the stresses and/or 

aperture changes due to deformation.  

A set of verification problems, used to validate the code and display the capabilities of 

the code, are discussed. A graphical user interface is designed to pre process the 

necessary data. Macros are developed for excel and Tecplot to post-process the results for 

easy visualization.  
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1 INTRODUCTION 

1.1 Problem Statement 

Geologic media, like soils and rocks, contain pores and fractures that can be filled with 

fluid and are deformable. A porous medium containing multiphase fluid is called partially 

saturated, while a porous medium containing only a single-phase fluid is called saturated. 

Deformation of a porous medium or fractured rock can occur as a result of either a 

change in external load or change in the internal pore pressure. In general, a hydro-

mechanical coupling can occur through deformation of the porous material and the pore-

fluid interaction. The two basic couplings occurring are:  

(i) a solid-to-fluid coupling occurs when a change in the applied stress produces a 

change in the fluid pressure or fluid mass; 

(ii) a fluid-to-solid coupling occurs when a change in the fluid pressure produces a 

change in the volume of the porous medium.  

This thesis describes the development of a computer code (T2STR) that combines 

TOUGH2 and a newly developed finite element code to fulfill this requirement. The 

TOUGH2 code solves coupled problems of non-isothermal, multiphase, multi-component 

fluid flow problems in complex geological systems using the integrated finite difference 

method.  The developed finite element code is designed to extend the application to 

incorporate stress analysis and include poro-thermo-elastic effects in the analysis. The 

T2STR code is fully coupled for porous media applications to solve the equation system 

simultaneously without any phase lag. It is extended to fractured porous media using 

staggered approach for discrete fracture networks.  
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1.2 Field Cases 

Coupled thermal-hydro-mechanical (THM) processes under multiphase flow conditions 

are prevalent in a number of geo-scientific applications (Rutqvist and Stephansson, 2003, 

Rutqvist et al., 2002, Stephansson et al., 1996, Tsang, 1999). Some of the most important 

include nuclear waste disposal in geological media, construction of underground 

openings, deep underground extraction of hazardous waste, geothermal energy extraction, 

micro-earthquake induced by fluid injection, enhanced recovery from oil and gas 

extraction, and underground storage of natural gas.  

1.2.1 Enhanced Geothermal Systems (http://egs.egi.utah.edu/) 

In conventional geothermal-electricity generation, wells are drilled deep into fractured, 

high-temperature rock. Naturally occurring hot, pressurized water and steam are allowed 

to flow through the wells to the surface to turn steam turbines and produce electricity. 

Naturally occurring geothermal reservoirs are, however, limited in size, extent and 

duration. One mechanism of extending the resource is through the design and 

construction of Enhanced Geothermal Systems (EGS). 

   

Figure 1.1 Enhanced Geothermal System (http://egs.egi.utah.edu/). 
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A hot, tectonically stressed region in the subsurface is identified and targeted for the 

process called stimulation. In such a system, the rock cannot support fluid production at 

commercially viable rates. Wells are drilled and cold water is injected under high 

pressure. The increase in pore pressure and thermal stresses, allow the tectonically 

stressed rock to fail in friction or shear, thus opening, extending and connecting fractures 

and creating an artificial geothermal reservoir. By circulating water heat is extracted from 

the rock for use in producing geothermal electric power. 

1.2.2 Phlegrean Fields, Italy (Todesco et al., 2003) 

The Phlegrean Fields is an active and densely populated caldera structure. Due to period 

of intense magmatic degassing, there was severe subsidence causing structural damage 

and loss of human life. The relation between different rates at which deep fluids are 

injected into the shallow hydrothermal system leading to important changes in 

composition of the reservoir was evident from the studies conducted. The gas 

composition appeared to be controlled by the complex multi-phase and multi-component 

nature of this system.  

 

Figure 1.2 Phlegrean Fields, Italy (Todesco et al., 2003). 
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Coupled THM simulations were successfully used to understand the relation between the 

ground deformation and hydrothermal fluid circulation. The fast uplift phase followed by 

slower subsidence as observed in the field was matched in the simulation. It was also 

observed that maximum deformation was attained at the end of periods of intense 

degassing. Such an analysis would serve an effective step toward hazard assessment, 

especially in densely populated areas such as Phlegrean Fields.  

1.3 Literature Survey 

Various aspects are involved in the development of a numerical simulator for a coupled 

thermo-hydro-mechanical problem in porous media. The governing equations and their 

development, multiphase and multicomponent analysis, different coupling methods, 

different discretization techniques, and further application of all these to fractured porous 

media need careful consideration during the development of numerical code. We will 

look at the evolution of these aspects in the geomechanics literature. 

1.3.1 Poroelasticity 

Terzaghi (1943) introduced the first consolidation theory for 1-D systems, by introducing 

the principle of effective stresses. According to the law of the effective stress, total stress 

and pore pressure are related as: 

 pmσσ' −=   (1.1) 

Biot (1941) extended the Terzaghi’s concept of 1-D consolidation to a general theory of 

three-dimensional consolidation. Biot based his theory on a linear stress-strain 

constitutive relationship and a linear form of Darcy’s law. Biot and Willis (1957) 

characterized the compressibility of the real solid material and that of the solid skeleton. 
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The analytical theory of poroelasticity was further developed by the work of Pratt and 

Johnson, Geertsma, Verruijt, Rice and Cleary (Lewis and Schrefler, 1987).  

The earlier work in development of numerical modeling was done by Sandhu and Wilson 

(1969). Ghaboussi and Wilson (1973) introduced compressibility of fluid and 

Zienkiewicz et al. introduced the compressibility of the solid grains (Lewis and Schrefler, 

1987) in numerical modeling. Small et al. (1976) introduced plasticity in the 

consolidation analysis, using the Mohr-Coulomb model. Non-isothermal consolidation 

was studied by Bear and Corapcioglu (1982) and Aboustit et al. (1982). Lewis et al. 

(1976) considered the permeability changes during consolidation.  

1.3.2 Multiphase Analysis  

Traditionally, the theory of consolidation deals with single-phase problems. The 

consolidation of partly saturated soil masses was first proposed by Bishop. Narasimhan 

and Witherspoon (1976) utilized Bishop’s effective stress factor to develop a numerical 

model for three dimensional water flow and one dimensional consolidation of an 

unsaturated soil. Safai et al. and Chang and Duncan studied the consolidation of a 

saturated-unsaturated porous medium (Lewis and Schrefler, 1987). Lewis and Schrefler 

(1998) carried out multiphase analysis based on the single phase 1D thermal 

consolidation problem solved by Aboustit et al. (1982, 1985).  

1.3.3 Coupling Methods  

The formulations of modeling the problem of poroelasticity and multiphase flow have 

been categorized into three basic algorithms: One-way coupling, loose/iterative coupling, 

and full coupling. In one-way coupling, two separate sets of equations are solved 

independently and output from one simulator is passed as input to the other at certain 
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time intervals. The information is passed only in one direction. Under specific conditions, 

one-way coupling can be used effectively to obtain the correct solution (Wang, 2000). 

Also, one can gain valuable insight into the physical situation, especially for fluid flow 

dominated problems. The one-way coupling approach has been successfully used by 

Fedrich et al., Boade et al., Sulak et al., and Cook et al. (Chen et al., 2000). 

In iterative coupling, the two sets of equations are solved independently, but the 

information is passed in both directions between the two simulators. The iterative 

coupling has advantages like flexibility and modularity, relative ease of implementation, 

and better computational efficiency. The iterative coupling is basically equivalent to the 

modified Newton-Raphson version of the fully coupled method (Wan, 2002). When the 

iterative process converges, the iterative analysis yields the true solution of the coupled 

problem. Settari and Walters (1999) discussed the different methods of coupling and gave 

iterative coupling the advantage of flexibility and reliability over other methods (Wan 

2002). The iterative scheme has been used effectively by Settari and Mourtis (1998), 

Minkoff et al. (1999), Rutqvist et al. (2003), and Bodvarsson et al. (2003). Chin et al 

(2002) developed and implemented a parallel computing method in an iterative scheme 

and indicated a increase in speed of geo-mechanical computations by an order of 

magnitude.  

Gutierrez and Lewis (1998) emphasized the importance of fully coupled models over 

reservoir simulators using only pore compressibility parameter. Minkoff et al. (2003) 

explain the convergence issues in iterative schemes if the mechanical deformation is not 

linear-elastic. The main drawback to iteratively coupled approach is that the calculations 

may display a first order of convergence and may require large number of iterations for 
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difficult problems. Dean et al. (2003) compared these three techniques and concluded that 

no technique works best for all kinds of problems. They showed that for the problems 

involving geo-mechanical effects, the fully coupled approach gives faster convergence 

while preserving the second order convergence of nonlinear iterations. Wan (2002) 

compared the fully coupled and iteratively coupled models and prefers the fully coupled 

models for internal consistency and avoiding of phase lags. She also suggests a stabilized 

finite element implementation to avoid pressure oscillation situations in certain kind of 

problems. But as in most cases of fully coupled analysis found in the literature, she also 

considers simplified and small problems for the fully coupled analysis restricting it to the 

single phase problems. 

1.3.4 Discretization Methods 

Several numerical codes have been developed for this purpose. Most of these codes adopt 

a specialized simplified approach catering to the primary application for which they are 

developed. There are several underlying assumptions in the modeling phase as well as the 

development phase in the numerical codes developed for modeling and simulating the 

coupled THM processes. A need for single numerical code that handles the general 

coupled THM processes, including multiphase and multi-component fluid flow, has been 

expressed (Rutqvist and Tsang, 2003). Different models predicting the complex effects 

like of capillary pressure, relative permeability, complex rock and fluid properties and 

multiphase behavior have been developed. The selection of a suitable combination of 

these for a given application demands a single computer code that makes these models 

available as user selected options.  
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One of the early attempts was ROCMAS (Noorishad et al., 1996) which is a coupled 

THM formulation and finite element scheme for fractured rock. It is continuously 

developed and applied to many problems in rock mechanics and related fields. Some of 

the other codes developed based on finite element method are THAMES (Ohnishi and 

Kobayashi, 1996), FRACON (Nguyen, 1996), ABAQUS (Borgesson, 1996), FRACture 

(Kohl and Hopkirk, 1995). ABAQUS is a commercially available code to study these 

phenomena. Other commercial codes are FLAC (Israelsson, 1996) which is based on 

finite difference scheme and UDEC (Israelsson, 1996), a discrete element code. Lewis 

and Schrefler (1998) describe a finite element based formulation used for solving 

problems in geomechanics. An excellent overview of four of the existing finite element 

coupled codes is given by Rutqvist et al. (2001a). Chen and Teufel (1997), and Stone et 

al. (2000), extended Biot’s theory and developed their models using the finite difference 

method.  

Gray (1982) has compared the application of finite element and finite difference 

approaches. Diersch and Koditz (2002) have discussed the concerns over local 

conservation errors and local accuracy in both methods. Pyrah (1991) pointed out the 

deficiency of finite difference methods in plasticity calculations (Gray, 1982). The finite 

element technique has been widely used in mechanics, and the fluid flow modeling has 

been widely done using the finite volume approach. A practical approach to couple 

poroelasticity and multiphase flow would be to develop a hybrid finite element and finite 

volume scheme. The hybrid finite element and finite volume scheme has been iteratively 

coupled by Settari and Mourits (1998), Chin et al. (2002), Dean et al. (2003). The only 

attempt of fully coupled hybrid approach known to the author is Wan (2002). She 
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developed a combined formulation with stabilized finite element formulation to solve 

force balance and pressure equations and a control-volume finite difference method to 

solve the remaining component mass balance equations. But her approach is limited by 

lack of local mass conservation and she advocates use of the CVFE type (dual mesh type) 

grids. The CVFE type grid has been discussed by Eymard and Sonier (1994) and by 

Verma and Aziz (1997) but was restricted by applications to reservoir simulations and 

not applied to geomechanics.   

1.3.5 Fracture modeling 

The simplest way to incorporate fractures and fracture behavior is to assume that the 

fractured rock is a homogeneous, isotropic, and elastic medium having elastic properties 

that can be calculated from measured properties of intact rock and from ubiquitous 

fractures with known properties and abundance (Berryman, 96). Goodman (1976) 

developed an equivalent anisotropic medium concept to represent behavior of fractures in 

the rock masses. The rock joint model adopts the non-linear behavior of a discontinuous, 

homogeneous and anisotropic body of rock containing up to three orthogonal joint sets 

developed by Amadei et al. (1981).  

An isotropic, elastic, but inhomogeneous model can be used by assuming the domain is 

homogeneous except for a few fractures that can be represented in the computer model as 

interfaces where displacement is allowed, for example, FLAC (Rutqvist and Tsang, 

2003), ABAQUS (Borgesson, 1996), Geocrack2D(Swenson, 1997) allow such interfaces.  



 10

1.4 Outline of Thesis  

We will first derive the fully coupled conservation equations of mass and energy for the 

porous media. Then we will list the hydraulic, thermal, and mechanical constitutive 

equations. The variable permeability and porosity model will be discussed. 

Once we look at the current implementation in TOUGH2, the approach for inclusion of 

the stress effects i.e. implementation of the fully coupled equations will be discussed.  

The interface fracture behavior developed to model the fractured rock will be discussed 

later.  

Then we will look at all the specific implementation details like formulation of the 

poroelastic equilibrium equations for solution by Newton-Raphson solution technique 

currently implemented in TOUGH2 and the derivations of the additional derivatives 

required for Jacobian formulation due to fully coupled set of equations. The formulation 

for the one-way as well as staggered coupling used for fractured rock implementation 

also will be discussed. 

Finally the details of the verification problems used to validate the code will be discussed 

with their results and comparison.  
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2 CONSERVATION EQUATIONS FOR POROUS MEDIA 

The conservation equations for the porous medium as a whole are derived using the 

continuum approach. These derivations are consistent with those of Lewis and Schrefler 

(1998), and Rutqvist et al.(2002a). We will first write the mass balance for the solid mass 

and use the evaluated terms in the fluid mass balance.  

In general, the reservoir deformation occurs very slow compared to the multiphase flow 

(Wan, 2002). Hence, the small strain theory assumption is common in geomechanical 

models. In this, the fluid velocity is significantly larger than the solid velocity.  

2.1 Conservation of Mass of Solid 

The mass balance for the solid phase of the porous medium in Eulerian form can be 

written as follows  

 ( )( ) ( )( ) 011
=−∇+

∂
−∂

• SS
S

t
vρφρφ  (2.1) 

Using chain rule we can write (2.1) as  

 ( ) ( ) ( )[ ] 0111 =∇−+∇−∇−+⎥⎦
⎤

⎢⎣
⎡

∂
∂

−
∂
∂

− ••• SSSSSSS
S

tt
ρφφρρφφρρφ vvv  (2.2) 

Solving for φ∇•Sv  , to be utilized in the fluid mass balance,  

 ( ) ( ) ( )
SS

S
S

S

S
S tt

ρ
ρ
φφφρ

ρ
φφ ∇

−
+∇−+

∂
∂

−
∂
∂−

=∇ ••• vvv 111   (2.3) 

Since generally ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

<<∇•
t
S

SS
ρρv  is true, we can neglect the term ( )

SS
S

ρ
ρ
φ

∇
−

•v1 , 

then we get 
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 ( ) ( ) S
S

S
S tt

vv •• ∇−+
∂
∂

−
∂
∂−

=∇ φφρ
ρ
φφ 11  (2.4) 

We know (APPENDIX B) that 

 
t
V

S ∂
∂

≈∇ •
εv  (2.5) 

Using (2.5), we can write equation (2.4) as 

 ( ) ( )
ttt
VS

S
S ∂

∂
−+

∂
∂

−
∂
∂−

=∇•
εφφρ

ρ
φφ 11v  (2.6) 

 

Figure 2.1 Causes of variation in solid density. 

Assuming the solid density to be function of pressure, temperature and volumetric strain, 

we can derive (Lewis and Schrefler, 1998)  

 ( )
( ) ( ) ( ) ⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

−−
∂
∂

−−
∂
∂−

−
=

∂
∂

tt
T

t
p

Kt
V

T
S

S

S

S

εααφαφα
φ

ρ
ρ

1
1

11  (2.7) 

where, α  is the Biot-Willis factor, Tα  is the thermal expansion coefficient, and the fluid  

pressure in the solid phase is given as  

 ψ
ψ

ψ SpSpSpp ggllS ∑=+=  (2.8) 
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2.2 Conservation of Mass of Fluid Phase 

The macroscopic balance equation for mass for the fluid flow in the differential element 

of the porous media shown in Figure 2.2 can be written as follows, 

 ( ) 0=−∇+∇+
∂
∂

••
κ
ψ

κ
ψ

κ
ψ

κ
ψ QM

t
JI  (2.9) 

where κ
ψM , κ

ψI , and κ
ψJ  respectively denote, the mass per unit volume of the porous 

medium and the advective and the diffusive/dispersive mass flux respectively, of a 

component κ  in a phase ψ . κ
ψQ  is the rate of production of component κ  per unit 

volume. 

 

Figure 2.2 Differential Soil Element (Bear, 1988). 

The total mass flux κ
ψq  (mass per unit area per unit time) is composed of the advective 

mass flux κ
ψI , representing the transport of mass by the bulk motion of the fluid and the 

diffusive (and/or dispersive) flux κ
ψJ , representing the transport of mass by molecular 

motion, i.e.,  
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 κ
ψ

κ
ψ

κ
ψ JIq +=  (2.10) 

then  (2.9) can be written as  

 ( ) 0=−∇+
∂
∂

•
κ
ψ

κ
ψ

κ
ψ QM

t
q  (2.11) 

For a unit volume of the porous medium, the mass of a component κ in a phase ψ  can be 

written as  

 κ
ψψ

κ
ψ ρφ SM =  (2.12) 

where φ  is porosity, ψS  is phase saturation, and κ
ψρ  denotes the density of respective 

component (mass of the component κ per unit volume of phase ψ ).  

The ratio of area of pores through which the phase ψ  flows to the total area (i.e. the areal 

porosity) is assumed to be on average equal to the volumetric porosity (Bear, 1988). 

Hence the specific (vol.) discharge (i.e. the volumetric flux per unit area per unit time) of 

the fluid is given as ψφ v , where ψv  denotes the velocity of the fluid with respect to a 

fixed reference system. For phase ψ , since the saturation is ψS , term ψψφ vS  gives the 

specific (vol.) discharge. Then the advective mass flux κ
ψI  of the component κ  in phase 

ψ  is given as  

 ( ) κ
ψψψ

κ
ψ ρφ vI S=  (2.13) 

The problem can be considered with an extra solid phase for the case of deformable 

porous media and the fluxes can be written relative to the solid, denoted by subscript r . 

The fluid velocity can be written as  
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 Sr vvv += ψψ  (2.14) 

where Sv  denotes the velocity of the solid. Then the advective mass flux κ
ψI  can be 

written as the advective mass flux of the solid and the advective flux with respect to the 

moving solid particles, κ
ψrI , as follows 

 κ
ψ

κ
ψ

κ
ψ Sr III +=  (2.15) 

where  

 ψ
κ
ψψ

κ
ψψ

κ
ψψ

κ
ψ ρφρφ SSrr SandS vIvI ==  (2.16) 

Combining the diffusive/dispersive and advective flux with respect to the moving solids, 

we can write the total mass flux of each component κ  within each fluid phase ψ  as  

 κ
ψ

κ
ψ

κ
ψ JIq += rr  (2.17) 

while the total flux can be written as  

 
κ
ψ

κ
ψ

κ
ψ

κ
ψ

κ
ψ

κ
ψ

Sr

Sr

Iq

JIIq

+=

++=
 (2.18) 

Now, the mass balance of the fluid component, (2.11) can be written as  

 
( ) ( )[ ] 0=∇+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+∇+

∂

∂
•• S

e
r SQ

t
S

vq κ
ψψ

κ
ψ

κ
ψ

κ
ψψ ρφ
ρφ

 (2.19) 

where eQκ
ψ  is an evaporation-condensation term for water mass exchange between the 

gas phase and the liquid phase. The external source term κ
ψQ  is dropped from the 

equations just for simplicity of equation and can be added at any stage and only the eQκ
ψ  

term is retained. 
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Expanding the term ( )SS vκ
ψψ ρφ•∇  we can write 
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κ
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 (2.20) 

Further breaking down the first term in the second bracket we can write 
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⎥
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⎡
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 (2.21) 

Neglecting the terms ( )κψ ψ
ρSS ∇•v  since ( ) ( )

t
S

SS ∂

∂
<<∇•

κ
ψψκ

ψψ
ρφ

ρφv , we get 
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κ
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κ
ψψ ρφφρ
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 (2.22) 

Using the expressions from (2.5) and (2.6), and simplifying, we can write the above 

equation in terms of solid density and volumetric strain as  
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r
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κ
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κ
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This can also be written as 

 
( ) ( ) κ

ψ
κ
ψ

κ
ψψ

κ
ψψ

κ
ψψ ερρ

ρ
φρ

ρ
φ r

eVS

S
Q

t
S
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S
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S

q•∇−=+
∂
∂

+
∂
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+
∂

∂ 1  (2.24) 

Substituting from (2.7) and re-inserting the source term, we can write the fluid mass 

balance equation as  
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The second set of terms represents the additional terms required to include the effects of 

deformable porous media. We will use the above equation for implementation in fully 

coupled model. 

If we neglect the term reflecting the rate change of the water mass caused by change in 

the grain volume from (2.23) we get  
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∂
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ψψ q  (2.26) 

2.3 Conservation of Energy (Internal Energy Balance) 

The general internal energy balance equation for a porous medium can be written as 

follows 

 ( ) ( ) v:σJv ∇−∇−−∇=
∂

∂
••

HU
t
U ρρ  (2.27) 

where the left hand side represents the rate of increase in internal energy per unit time. 

The right hand side, term by term, represents 

• Net rate of addition of internal energy by convective transport (per unit volume). 

• Rate of internal energy addition by heat conduction, per unit volume. 

• Rate of conversion of kinetic energy into internal energy.  
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2.3.1 Energy Balance using Enthalpy 

Using the following thermodynamic relation between internal energy,U  and enthalpy, h  

 
ρ
pUpVUh +=+=  (2.28) 

the energy balance can be written in terms of enthalpy as  

 ( ) ( ) ( ) ( ) v:σJvv ∇−∇−∇+−∇=⎥⎦
⎤

⎢⎣
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∂
∂

−
∂

∂
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Hph
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p

t
h ρρ  (2.29) 

In component form, the energy balance for a component κ of the fluid phase ψ  can be 

written as (Faust and Mercer, 1979)  

 

( ) ( ) ( ) ( )
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where the subscript C  denotes the conductive flux and subscript D  stands for the 

combined diffusive and dispersive (hydrodynamic dispersion) heat flux (thermal mixing).   

If we neglect the term related to the conversion of kinetic energy to internal energy, we 

can write the fluid balance in component form as 
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H
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SpSh
t

pS
t

hS

ψψ

ψψψψψψ
κ
ψ

ψψψ
κ
ψψ φφρ

φρφ

JJ

vv

••

••

∇−∇−

∇+−∇=
∂

∂
−

∂

∂

 (2.31) 

The energy balance equation for the solid can be written as  
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where Eu  represents the specific internal energy. The last term, the viscous dissipation 

term, for solids will be neglected.  

The energy transfer associated with solid velocity is negligible compared to the energy 

transfer by the fluid. Hence all the terms associated with the solid velocity, from the fluid 

as well solid energy balance, will be neglected. Then we can write the fluid and solid 

energy balance equations respectively as follows 
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ψ
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and 

 ( )( ) H
S

E
SS

t
u J•−∇=

∂
−∂ ρφ1  (2.34) 

2.3.2 Energy Balance Equation (without K.E. term) 

Taking into account (2.28) and readjusting the fluid energy balance equation (2.33), we 

can write the component form with internal energy on the left hand side and the enthalpy 

on the right hand side as 
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where EQψ  representing the inter-phase energy exchange terms. 

Using the identity in (2.17) we can write 
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and adding up the energy balance equations for three phases, the inter-phase exchange 

energy terms are cancelled , and we can arrive at the energy balance equation  
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ψ
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where (Bear and Buchlin, 1991) 
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JJJ
 (2.38) 

The λ s represent the thermal conductivities of the solid and fluids.  

Neglecting the term ( )ψψψφ rSp v•∇ , since we are ignoring viscous dissipation (Garg and 

Pritchett, 1977) assuming either single phase liquid or two phase condition in the 

reservoir, we can write  
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 (2.39) 

This is same as the TOUGH2 energy balance equation and hence no additional changes 

are required in the TOUGH2 related to it.  

2.4 Conservation of Momentum 

The law of conservation of momentum can be written as  

 ( ) ( ) Fσvvv ρρρ
+−−∇=

∂
∂

•
t

 (2.40) 

where the left hand side represents the rate of accumulation of momentum. The first term 

on the right hand side combines the rate of momentum gained by advection and diffusion, 
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where σ  is the stress tensor that represents the diffusive flux of the momentum. The 

second term on right hand side represents the supply of momentum by the body forces.  

Neglecting the inertial terms and the forces due to the interaction between the non-

wetting and wetting fluid, the momentum equation becomes a static equilibrium equation 

as follows (Bear and Bachmat, 1991) 

 Fσ ρ=∇ •  (2.41) 

which also is written as  

 0=+ iij,j bσ   (2.42) 

where ib  denotes the body forces. Considering only the gravitational forces as body 

forces, we can write 

 ( ) ( ){ }ggF Sm S ρφρφρρ ψψ −+== ∑ 1  (2.43) 

where zg ˆg−=  is the gravity acceleration (vector) directed downward.  
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3 CONSTITUTIVE EQUATIONS FOR POROUS MEDIA 

The hydraulic, thermal, and mechanical constitutive equations required to complete the 

formulation and are discussed below. 

3.1 Hydraulic 

3.1.1 Advective Flux (Darcy’s law) 

The advective mass flux of the component κ  of a fluid phase ψ  is given by the 

generalized Darcy law as follows  

 ( ) ( )g
kk

I ψψ
ψ

ψκ
ψψψ

ψ

ψκ
ψ

κ
ψ ρ

μ
ρρ

μ
ρ −∇−=∇+∇−= p

k
zgp

k rr
r  (3.1) 

where the ( )φkk =  is the hydraulic permeability tensor which is a function of porosity 

and is a property of the solid, while ψrk  is the relative permeability function of the fluid 

phases. The permeability of the porous medium as a whole can be defined as  

 ψψ rkkk =  (3.2) 

3.1.2 Diffusive Flux (Fick’s law) 

The diffusive flux can been computed using the Fick’s law,  

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∇−=∇−=

ψ

κ
ψ

ψ
κ
ψψψ ρ

ρ
ρρ mm vv DXDJ  (3.3) 

where vD  is the effective molecular diffusion coefficient in a porous media. 

The density and viscosity for fluid phases, which are functions of pressure and 

temperature, can be obtained from steam tables.  
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3.2 Thermal 

3.2.1 Heat Conduction (Fourier’s law) 

Heat conduction is governed by Fourier’s law and is given by 

 Tm
H
C ∇−= mJ λ  (3.4) 

where mλ  is the thermal conductivity over all phases and vector m  is T]0   0   0   1   1   1[ . 

3.3 Mechanical 

3.3.1 Strains 

The total strain tensor, ε , and the volumetric strain, Vε , assuming the small strain 

condition, are defined as,  

 ( )( )truuε  
2
1

∇+∇=  (3.5) 

and  

 u•∇=Vε  (3.6) 

where u  is the displacement vector.  

The thermal strain is given by 

 TTT Δ=Δ αmε  (3.7) 

where Tα  is the linear thermal expansion coefficient.  

The strain due to the poroelastic effect, pεΔ , caused by the uniform compression of the 

particles by the pore pressure is given by (Lewis and Schrefler, 1998) 



 24

 p
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⎞
⎜⎜
⎝

⎛ −
=Δ mε

3
1   (3.8) 

where sK  represents the bulk modulus of the solid phase and pΔ  represents the change 

in pore pressure. 

3.3.2 Terzaghi’s effective stress law 

The basic “unmodified” effective stress law for a partially saturated medium gives the 

total stress as (Lewis and Schrefler, 1998) 

 p' mσσ  −=  (3.9) 

where 'σ  represents the effective stress. 

When only effective stress law is mentioned it indicates the “unmodified” effective stress 

law (3.9). 

The effective stress causes all relevant deformation of the solid skeleton (excluding grain 

compressibility) and the constitutive equation relating the effective stress to strain, in 

incremental form, is  

 0')(' σεεεDσ +Δ−Δ−Δ= TP   (3.10) 

where: D  is the elastic material matrix, εΔ  is the total strain, PεΔ  is the volumetric 

strain caused by uniform compression of the solid particles of the skeleton by the change 

of pressure of the pore fluid, TεΔ  is the thermal strain, and 0
'σ  is the initial effective 

stress.  

The elastic material matrix D  is 
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Then, using the effective stress law (3.9), the total stress can be written as  
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Using the identities,  
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and 
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we can do the following simplification, 
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where α  is the Biot-Willis coefficient (Wang, 2000). 
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Now, the total stress can be written as 

 ( ) ( )( ) pTKp T mσmmεDΔσ −+Δ−Δ−+= 0'31 αα  (3.16) 

Substituting for ppp Δ+= 0 , we can represent the stress as  

 ( )( ) )(31 00 pp'TαKp T Δ+−+Δ−Δ−+= mσmmεΔDσ α  (3.17) 

which can be simplified as  

 00'3 pTKp T mσmmεΔDσ −+Δ−Δ−= αα  (3.18) 

3.3.3 Biot’s (Modified) effective stress law 

The “modified” effective stress law accounting for grain compression is given by 

 pmσσ α "−=  (3.19) 

where α  is the Biot-Willis factor and the effective stress in this case is given as  

 ( )Tεε Δ−Δ=Δ Dσ"  (3.20) 

The modified effective stress causes all relevant deformation of the solid skeleton and the 

constitutive equation relating the modified effective stress to strain, in incremental form, 

is  

 0""" σσσ +Δ=   (3.21) 

 0")(" σεεDσ +Δ−Δ= T   (3.22) 

where: D  is the elastic material matrix, εΔ  is the total strain, TεΔ  is the thermal strain, 

and 0
"σ  is the initial effective stress. 

Then, using the modified effective stress law (3.19), the total stress can be written as  
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Hence the total stress can be written as 

 ( )( ) pTK T mσmεDΔσ αα −+Δ−= 0"3  (3.24) 

Substituting for ppp Δ+= 0 , we can represent the stress as  

 ( ) )("3 00 ppTαK T Δ+−+Δ−= mσmεΔDσ α  (3.25) 

which can be written as  

 00"3 ppTK T mσmmεΔDσ ααα −+Δ−Δ−=  (3.26) 

This completes the set of constitutive equations. 
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4 CHANGES IN HYDRAULIC PROPERTIES FOR POROUS MEDIA 

The conservation equations take into account the effects of compressibility of solid 

matrix i.e. the deformable porous media on the fluid flow and the effects of pore pressure 

and thermal expansion on the effective stress. We also need to include the effect on the 

hydraulic properties like permeability and porosity as function of the effective stress. 

The hydraulic properties of the porous media, the porosity and the permeability are 

corrected using the empirical porosity-mean stress and permeability-porosity 

relationships given by Davies and Davies (1999), and also used by Rutqvist et al. (2002). 

4.1 Porous rock 

4.1.1 Porosity 

A relationship between porosity and mean effective stress is (Davies and Davies, 1999), 

 ( ) ( )'
0 exp Mrr aσφφφφ −+=  (4.1) 

where, 0φ  is porosity at zero stress, rφ  is the residual porosity at high stress, a  is the 

constant to be determined experimentally (a material property), and '
Mσ  is the mean 

effective stress. 

4.1.2 Permeability 

We use the permeability and porosity relation given by Rutqvist et al. (2002)  
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where 0k  is the permeability at zero stress and the exponent c  should be determined 

experimentally.  
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4.1.3 Capillary Pressure 

The capillary pressure is modified with permeability and porosity according to the 

Leverett function (Rutqvist et al., 2002) 

 
φ

φ
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k

pp cc
0

0

0=  (4.3) 

Thus porosity, permeability and capillary pressure are modified as function of the mean 

effective stress.  
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5 MODELING OF FRACTURES 

The fractures in T2STR are implemented as discrete fractures using joint elements. These 

joint elements exhibit the fracture interaction with continuum elements. The fracture 

behavior expresses the effects of surface traction due to joint contact stress (the non-

linear relationship between the joint opening and the joint stresses) and the forces due to 

pressure differential in the fluid pressure between the fracture and adjacent rock element.  

In T2STR, the mesh is restricted to a Cartesian mesh and hence the global and local 

coordinate system orientation is same for any element. In the TOUGH2 (fluid flow, 

IFDM) mesh the fracture is represented by two sets of rows. In the finite element mesh it 

would be represented by a single row of the joint elements. The idea of the mesh 

structure is represented in Figure 5.1. 

 

Figure 5.1 Mesh for fracture model (Purple color represents the fracture in both meshes).  

5.1 Calculation and Modification of Fracture properties 

The fracture porosities and permeabilities are as described below. 
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5.1.1 Permeability  

The fracture permeability is determined using the Cubic law, which is based on the 

derivation for flow through fracture surfaces assuming laminar flow between parallel 

plates, for the relation between the fracture apertures and permeability. The permeability 

in principal direction i , is calculated from the apertures in the other two principal 

directions kj  and  as follows (Rutqvist et al., 2002) 
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k +=  (5.1) 

As the aperture gets modified based on the displacement of the fracture walls, the 

permeability will automatically get modified.  

5.1.2 Porosity 

The initial porosity, 0φ  for the fracture is specified by the user. Then the fracture porosity 

will be modified as function of apertures as given below (Rutqvist et al., 2002) 
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where d  denotes the principal directions.  

The details of the behavior implementation will be discussed in the next chapter.  
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6 DISCRETIZATION  

The conservation equations derived in Chapter 2 need to be solved numerically. The 

equations of conservation of mass and energy for non-isothermal, multiphase, multi-

component fluid flow in complex geological systems are solved in TOUGH2 code. The 

aspect of deformable porous media is added through additional term and the conservation 

of momentum for the solid phase. The dual mesh concept will be used to implement the 

coupled set of equations. 

 

Figure 6.1 An example of dual meshes, a Delaunay mesh and a Voronoi mesh (Cosmi 

and Marino, 2000). 

6.1 Dual Mesh Concept 

The concept of a “dual mesh” is being used to implement coupled stress effects in 

TOUGH2. Dual meshes are alternate representations of the same geometry. An example 

is shown in Figure 6.1, which illustrates a Delaunay mesh and its dual, the Voronoi mesh.  

As can be seen in the overlapped representation, the Voronoi mesh is formed by 
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perpendicular bisection of the Delaunay mesh edges. This gives a volume around each 

node in the Delaunay mesh. The Delaunay mesh would be typical of a triangular finite 

element mesh, while the Voronoi mesh represents the integrated finite difference 

approach used in TOUGH2 for flow.  

To implement the coupled stress solution in TOUGH2, the Delaunay mesh will be used 

for the stress calculations. By using the dual mesh, all the variables, pressure, 

temperature, displacement, and saturation, will be placed at the same location in the finite 

element and the finite volume grids. This avoids the need of averaging techniques. The 

details of the dual mesh concept are elaborated in Cosmi and Marino (2000). Delaunay 

and Voronoi are not the only approaches to dual meshes. The simplest mesh with a dual 

is a rectangular mesh, whose dual is a shifted rectangle, Figure 6.2(a). The current 

implementation is restricted to the Cartesian dual. 

 

Figure 6.2 Duals for different meshes (Tonti, 2001). 
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Verma and Aziz (1997) have discussed in detail the application of dual mesh concept to 

the flow reservoir simulations. The dual mesh methods give locally mass conservative 

discretization, can handle the discontinuous coefficients the way the control volume 

methods can and have the flexibility of finite element methods (Wang, 2002). 

6.2 Mass and Energy Balance using IFDM (Pruess et al., 1999) 

The continuum equations (2.25) and (2.39) will be discretized in space using the Integral 

Finite Difference Method (IFDM) (Narasimhan and Witherspoon, 1976).  

6.2.1 Original TOUGH2 Methodology 

“Using the appropriate volume averages for volume-normalized extensive quantities and 

approximating the surface integral as a discrete sum of averages over surface segments 

nmA (between the volume elements nV  and mV ), the general balance equation, (2.11), can 

be converted to a set of first-order ordinary differential equations in time as 

  κκ
κ

nm
m

nmnm
n

n QqA
V

M
+= ∑1

dt
d  (6.1) 

where the nomenclature is as shown in Figure 6.3.” 

 

Figure 6.3 Space discretization and geometry data in the IFDM (Pruess et al., 1999). 
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“Time is discretized as a first-order finite difference, and a fully implicit scheme is 

adopted where the fluxes are expressed in the terms of the unknown thermodynamic 

parameters at time level ttt ii Δ+=+1 , leading to the following nonlinear algebraic 

equations. 
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where, R  is the residual.” The TOUGH2 code performs a complete simultaneous 

solution of these discretized mass and energy balance equations.  

6.2.2 IFDM representation of volumetric strain 

The source term due to volumetric strain in the mass conservation equation needs to be 

discretized using either FEM or IFDM. Jacobian calculations and residual evaluation 

would simplify if the representation is done using IFDM. A simple but effective 

representation can be done if the mesh is restricted to Cartesian mesh. Hence we will 

assume henceforth that the mesh is Cartesian and derive the expression for the volumetric 

strain.  

The volumetric strain is expressed as ratio of summation of displacements of the m  

confining areas, and the original volume,  

 ( )∑ −=
m

nnmnm
n

V uuA
Vn

ˆ1ε   (6.3) 

where displacement nmû  is the absolute displacement of area nmA . Hence ( )nnm uu −ˆ  

represents the relative displacement of the confining area nmA  with respect to the center 
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of the volume element nV .  The displacement nmû  of area nmA  is calculated by linear 

interpolation from the displacements nu  and mu  using the connection data. 
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Hence we can write the expression for volumetric strain as  
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where the quantity { }nmnm uuD −  is the relative displacement of the confining area nmA  

with respect to the center of the volume element, which we will denote by nmu . Hence we 

can write  

 ∑=
m

nmnm
n

V uA
Vn

1ε   (6.6) 

The concept is shown in Figure 6.4.  

It is important to check the direction of the connection to determine if the change in 

volume is positive (expansion) or the negative (contraction). If the direction of 

connection is in the negative direction of the axis then the above expression needs to be 

multiplied by -1 to obtain the correct effect on the volumetric strain.  
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Figure 6.4 IFDM representation of volumetric strain. 

6.2.3 Mass balance 

Using the similar approach (IFDM) as TOUGH2 we will discretize the mass conservation 

equation, (2.25) as follows. 
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where  
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where the basic Darcy flux for each phase is given as  
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Again discretizing time as the first order finite difference and adopting the fully implicit 

method we get 
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Rearranging and omitting the phase energy exchange term since we will be writing a 

combined equation for each component, we get 
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Hence the residual becomes  
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and we can see that the last bracket on right hand side represents the additional terms 

occurring due to deformable porous media.  
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6.2.4 Implementation Procedure  

To be consistent with the implementation, we can write it as  
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6.2.5 Mass balance [Incompressible Solid Phase] 

We will derive the residual formulation for incompressible solid phase since it will be 

used in some of the verification problems. Using the similar approach (IFDM) as 

TOUGH2 we will discretize the mass conservation equation, (2.26), as follows. 
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Following the similar procedure as above, the residual formulation becomes  
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6.2.6 Energy balance 

The energy balance equation (2.39) is unchanged and is given by 
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The IFDM representation remains the same as (6.1) i.e.   
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and the basic Darcy flux is given as  
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Hence, the general residual form for energy balance equation is as follows,  
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6.3 Momentum Conservation using Finite Element Formulation  

The conservation of momentum equation (2.40) is discretized using the Finite Element 

method. Since the momentum equation becomes the static equilibrium equations with the 

assumptions made, no time discretization is required.  

Based on the principal of virtual work, the weak formulation of (2.40) is given as (Bathe, 

1997) 

 0=−− ∫∫∫
S

ii
V

ii
V

ijij dSutdVubdV δδεδσ  (6.21) 

or 

 0TTT =−− ∫∫∫ dSdVdV
SVV

tubuσε δδδ  (6.22) 

6.3.1 Terzaghi’s Effective Stress Law 

Substituting the definition of stress using the effective stress law, (3.9), in the above 

equation gives  

 0TTTT =−−− ∫∫∫∫ dSdVdVpdV
SVVV

tubumεσ'ε δδδδ  (6.23) 

Using the standard finite element interpolations and same interpolation functions for 

displacement, pressure and temperature, we can write 

 auNu δδ =  (6.24) 

and  

 auBε δδ =  (6.25) 

results in 
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 0TTTTTTTT =−−− ∫∫∫∫ dSdVdVdV
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a
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a
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a tNubNupNmBuσ'Bu δδδδ  (6.26) 

We also note that  

 ∫∫∫ −=
VVV

dVdVdV pNmBσ'BσB TTT  (6.27) 

Also, recognizing the fact that the nodal displacements associated with the weighting 

function are constant with respect to integration and that (6.26) must hold true for all 

values of the weighting function constants, gives 

 dSdVdVdV
SVVV
∫∫∫∫ +=− tNbNpNmBσ'B TTTT  (6.28) 

The displacements are interpolated using shape functions as  

 auu uΔNuΔNuΔ +=  (6.29) 

and the strains by  

 auu uΔBuΔBΔε +=  (6.30) 

where the subscript u refers to the known essential boundary conditions.  

Using (3.16) in (6.28) we get 
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Equation (6.31) is used in implementation of the poroelastic behavior. For the sake of 

completeness, we will write the residual term in this finite element implementation, the 

details of which will be explained in the next section.  

 

( )

dSdVdVdVdV

dVdVKdV

SV
a

V
u

V
u

V

VV
T

V

∫∫∫∫∫

∫∫∫

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

tNbNuΔBDBuΔBDBσ'B

pΔNmBTΔNmBpΔNmBR 0

TTTT
0

T

TTT

  

3 αα

  

  (6.32) 

6.3.2 Biot’s (Modified) Effective Stress Law 

Substituting the definition of stress using the modified effective stress law, (3.19), in the 

equation (6.22) we get  

 0" TTTT =−−− ∫∫∫∫ dSdVdVpdV
SVVV

tubumεσε δδαδδ  (6.33) 

Using the standard finite element interpolations and same interpolation functions for 

displacement, pressure and temperature, we can write 

 auNu δδ =  (6.34) 

and  

 auBε δδ =  (6.35) 

which results in 

 0" TTTTTTTT =−−− ∫∫∫∫ dSdVdVdV
S

a
V

a
V

a
V

a tNubNupNmBuσBu δδαδδ  (6.36) 

We also note that 

 ∫∫∫ −=
VVV

dVdVdV pNmBσBσB αTTT "  (6.37) 
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Also, recognizing the fact that the nodal displacements associated with the weighting 

function are constant with respect to integration and that  (6.36) must hold true for all 

values of the weighting function constants, gives 

 dSdVdV
SVV
∫∫∫ += tNbNσB TTT  (6.38) 

The displacements are interpolated using shape functions as  

 auu uΔNuΔNuΔ +=  (6.39) 

and the strains by  

 auu uΔBuΔBΔε +=  (6.40) 

where the subscript u refers to the known essential boundary conditions.  

Using (3.24) in (6.38) we get 
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Using the interpolations, we can write 
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Rearranging, we get 
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Equation (6.43) is used in the implementation of the poroelastic behavior. Using the 

alternative form of (3.24), i.e. expressing current pressure as sum of incremental pressure 

and initial pressure, we can write the above equation as  
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For the sake of completeness we will write the residual term in this finite element 

implementation, the details of which will be explained in the next section.  
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6.3.3 Implementation details 

A conscious effort has been made to keep the coupling, between the TOUGH2 and the 

Stress, as clean as possible. The aim has been to keep the changes in TOUGH2 to 

minimum. Also, the code implementation allow to carry out only the TOUGH2 (fluid 

flow-heat transfer) simulation, without incorporating stress as well as switching on/off 

the poroelastic and thermo-elastic effects. 
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6.3.3.1 The Volume Element 
An 8-noded linear serendipity Brick element has been used for the finite element 

analysis. The shape function for this element are given as,  

 ( )( )( )iiiiN ζζηηξξ +++= 111
8
1  (6.46) 

where ζηξ  and , ,  represent the natural coordinates with the range (-1,1) in its natural 

coordinate space for the 8 nodes. Figure 6.5 shows the node numbering convention for 

the 8-noded Brick element.  

 

Figure 6.5 Node numbering for mesh of 8-noded Brick Element. 

6.3.3.2 Numerical Integration Scheme 
The volume integrals for each element in the finite element formulation are carried out 

using Gauss Quadrature as  
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The implemented integrator uses the combined gauss weights kjiGP WWWW = , related to 

respective gauss point and hence can be written as 
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In the T2STR code, the higher order 8 Gauss point integration is implemented.  

6.4 Fracture Behavior (Finite Element Implementation) 

The finite element formulation for the fracture behavior is derived as follows. The 

fracture element is a volume element with the surface tractions and pressures acting on 

the faces of the fracture. Consider a single element with the node numbering as shown in 

Figure 6.6.   

  

Figure 6.6 Node numbering and representative forces in fracture behavior. 

The force balance for the element due to surface traction et  from the contact, the fluid 

pressure ep , and external forces extF  is given as 

 0=− ∫
V

ext dVσBF T  (6.49) 

where σ  is used for representing the stresses due to combined effect of contact stresses 

and fluid pressure as follows 
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 ee ptσ +=  (6.50) 

The pressure forces due ep  to are given by  

 pNmBF Te
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dV  (6.51) 

The forces due to surface traction et  at the joint are expressed using contact stresses tcσ  

as  

 ( )∫=
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Te

t  (6.52) 

The residual for the element with fracture behavior can be written as  
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where tcσ  is the contact stress vector corresponding to the current aperture vector a . 
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7 SOLUTION TECHNIQUE 

All the discretized equations are solved by the Newton-Raphson iteration technique 

already implemented in TOUGH2 to handle nonlinearity.  

7.1 Original TOUGH2 implementation 

Expanding the residuals (in equation (6.2)) at 1+p  iteration step in a Taylor series and 

retaining only the first order terms and setting the expansion equal to zero, we obtain 
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=−
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 (7.1) 

Most of the terms 
m

n

x
R
∂
∂  in the Jacobian matrix are evaluated numerically in TOUGH2 

code for the selected primary variables. The solution is achieved when the residual R  

becomes small.   

7.2 One way coupling  

The initial formulation was implemented for one way coupling. The formulation was 

derived to solve the FEM equations using the same solver in TOUGH2. The 

implementation was based on unmodified effective stress law. 

7.2.1 Formulation for Newton-Raphson solution (Unmodified stress law) 

To solve the finite element equations using the same solver in TOUGH2 the formulation 

is implemented as follows. The residual for the Newton-Raphson method for a finite 

element formulation in its functional form is given as  

 ( ) 0f * =Δ au  (7.2) 
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where,  
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Here * is used to denote the solution. Assume that in the iterative solution we have 

evaluated )1( −Δ+ Δ i
a

tt u  ; then a Taylor series Expansion gives 

 ( ) ( ) ( ) ( ) L+Δ−Δ⎥
⎦

⎤
⎢
⎣

⎡
Δ

+Δ=Δ −Δ+

−ΔΔ+

−Δ+ )1(*

)1(

)1(* fff i
a

tt
a

iutta

i
a

tt
a uu

ud
duu

a

 (7.4) 

Substituting (7.4) in (7.3) and neglecting higher order terms, we get 
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Assuming that the externally applied loads are independent of the deformation, the 

increment in the displacement can be calculated as  

 
( )( ) ( )

)1(
intext

)1()()1( f

−Δ+Δ+

−Δ+−Δ+

−=

Δ−=Δ

itttt

i
a

tti
a

itt ugu

FF

K δ
 (7.6) 

where )1( −Δ+ itt K  is the current tangent stiffness matrix given as  
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Now, rearranging the (6.28) we can write  
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Here the first two terms represent the external body forces and the third term represents 

the internal forces (or the nodal point forces corresponding to the elemental stresses).  

Using the (7.8) in (7.6) we can write  
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The updated displacement solution is  
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with the initial conditions at the start of each iteration as KK ttt =Δ+ )0( ; FF ttt =Δ+ )0(  and 

a
t

a
tt uu Δ=ΔΔ+ )0( . 

The required integrations are evaluated by summing the contribution of each element.  

Using the definition of stress (3.16) we can write (7.9) as  
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 (7.11) 

This completes the residual formulation of finite element implementation.  
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7.3 Fully coupled formulation 

The fully coupled formulation was derived using modified effective stress law. The 

Newton-Raphson formulation was derived for implementation using the TOUGH2 set of 

solvers. Also, the FEM equations are re-written using the TOUGH2 primary variables in 

addition to the displacements.  

The Newton-Raphson formulation for the FEM equations can be obtained by defining the 

residual R  as follows 

 ( )Tpufg ΔΔΔ−= ,,R  (7.12) 

where g  represents forces independent of unknown variables, i.e. pressure, temperature, 

and displacements, and f  represents the internal forces and the hydrostatic forces. We 

can define the residual using (6.38) as  
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or expanding the modified effective stress terms  
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where first parenthesis represents the independent terms g  and second one represents the 

variable dependent terms f . The subscript a  for the unknown displacements, ‘u ’s, is 

dropped for brevity henceforth. Considering the implementation, the 0p  and 0σ"  terms 
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are included in f  even if they are not dependent terms. Thus function f  can be 

evaluated from the total stress.   

Hence the solution of the FEM equations can be obtained if we make the residual zero. 

i.e., using the same denomination as above,  

 ( )**,*,
0

Tpufg ΔΔΔ−=
=R

 (7.15) 

where * denotes the values of the variables when correct solution is obtained.  

The residual at iteration i  of time step tt Δ+  we can write 

 ( )ittttitt Tpufg ΔΔΔ−= Δ+Δ+Δ+ ,,R  (7.16) 

Using a first order approximation of a three variable Taylor series, we can write the f  at 

iteration i  as  
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To obtain the solution at iteration i  we want to make residual itt RΔ+  zero, hence  
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which we can write as  
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Now we have  

 

( )

∫∫

∫∫∫

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

VV

V
T

V
a

V

dVdV

dVKdVdVf

0
TT

TTT

"

3

σBpNmB

TΔNmBpΔNmBuΔBDB

0α

αα

 (7.20) 

Hence we can write the residual equation as 
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Defining matrices Tpe QQK  and ,,  as,  
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and  
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we can write 
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  (7.25) 
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Hence the Newton-Raphson formulation to be implemented can be written as  
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or 
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7.4 Fully coupled formulation for TOUGH2 primary variables 

TOUGH2 uses phase pressure and the temperature as primary variables for single phase 

and gas phase pressure and gas phase saturation as primary variables for two-phase 

problems. The formulation for the momentum equation will have to be expressed in 

TOUGH2 variables to generate coherent coupled equations.  



 56

7.4.1 Single phase formulation 

The single phase variable is temperature for TOUGH2 as well as for the momentum 

equation. But the pressure in the momentum equation is solid pressure and the 

corresponding primary variable in TOUGH2 is the phase pressure. For the single phase 

condition the solid phase pressure is actually the fluid phase pressure. Hence the 

formulation derived can be used as it is and can be stated as   
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7.4.2 Two phase formulation 

The primary variables in TOUGH2 for two phase situations are gas phase pressure and 

gas phase saturation. The momentum equations will need to be reformulated to express 

using those variables.  

7.4.2.1 Solid phase pressure 
The solid phase pressure can be written as  

 ψ
ψ

ψ SpSpSpp ggllS ∑=+=  (7.29) 

which can be written as (Pruess et al., 1999) 

 ( )( ) 01 ≤+−+= ccgggg pppSSpp  (7.30) 
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where cp  is the capillary pressure and we will drop the subscript and use p to denote the 

solid phase pressure. The above expression can be simplified to  

 ( ) 01 ≤−+= ccgg ppSpp  (7.31) 

We can write the change in solid pressure as  

 ( )( )cgg pSpp −Δ+Δ=Δ 1  (7.32) 

Considering that the capillary pressure is function of gas phase saturation, we can write  
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In vector form, it can be written as 

 [ ] g
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g
+=  (7.34) 

where p
Sg

C  is the diagonal (square) matrix of size equal to number of nodes, given as  
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and denominated as phase-coefficient matrix for pressure-saturation.  
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7.4.2.2 Temperature 
The temperature for the two phase problem is expressed as function of gas phase pressure 

and saturation in two phase problems in TOUGH2, i.e. 

 ( )gg SpTT ,=  (7.36) 

The change in temperature is calculated as  
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In vector form  
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The phase coefficient matrices for temperature-pressure and for temperature-saturation 

are given as  
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respectively. 
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7.4.2.3 Newton-Raphson formulation for two-phase condition 
Substituting (7.34) and (7.38) in (7.14) we get  
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Rearranging 
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Again, here first parenthesis represents g  and second represents f  such that 

 ( )gg Spufg ΔΔΔ−= ,,R  (7.43) 

Now we can write f  as  
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The final Newton-Raphson formulation can be written as  
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where the coefficient matrices are as follows, 

 ∫=
V

dVBDBKe
T  (7.46) 
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and 
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Since the phase-coefficient matrices are constant with respect to the element properties, 

we can rewrite the coefficient matrices as  
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Using the notations applied in single phase for the coefficient matrices it can be written 

as  

 p
T
pTp QCQQ

gg
−−=  (7.51) 

and 
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Sp

T
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CQCQQ −−=  (7.52) 

As can be seen easily, the single phase formulation can be formulated as a special case of 

the above two equations. In single phase, the independent variables are pressure and 

temperature hence the phase-coefficient matrices, T
pg

C  and ( )p
T

p
S CC

g
 now ,  will be zero. 

In single phase the variables are pressure and temperature, hence the coefficient T
Sg

C  will 

be the phase coefficient matrix between temperatures and hence unity, leading to the 

single phase relations. 

7.5  Generalized fully coupled formulation for TOUGH2 Variables  

The general formulation, applicable for single phase or two phase condition, can be 

written as  
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where 1V  and 2V  represent the primary variables corresponding to the phase condition 

and matrices 
1VQ  and 

2VQ  are as given in equations (7.51) and (7.52) respectively.   

7.6 Other Changes required for implementation in TOUGH2 for Fully Coupled 

formulation 

To solve both these systems as a coupled system we need to find the derivatives of 

residuals in (6.12) with respect to the displacements ( )FSJ , derivatives of the extra terms 

in  (6.12) with respect to the TOUGH2 primary variables ( )+
FFJ , and derivatives of 

residuals in (6.45) with respect to the flow primary variables i.e. pressure and temperature 

( )SFJ . It can be represented as:  
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where the unknowns have been divided into the primary variables for the flow solution 

Fp  and the displacements for the stress solution Su .  

The Jacobian terms SFJ  and SSJ  can be easily obtained from (7.53).   

The residuals of flow equation with respect to flow variables is represented by ( )FFJ , 

which is already implemented in TOUGH2. They will need modifications to incorporate 
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the addition due to variable permeability and porosity as function of effective stress. 

Also, the derivatives of the extra terms in flow equations with respect to the TOUGH2 

primary variables will have to be added to FFJ .  

The FSJ  represent the partial derivative of flow equations with respect to the 

displacements and will have to be evaluated newly. 

We will discuss all these derivatives required for Jacobian in the next chapter.  

7.7 Staggered Coupling for Fractured media 

Currently, the implementation involving fractures is carried out only in staggered 

manner. The staggered approach first solves the fluid flow problem i.e. TOUGH2 

simulation is carried out. The TOUGH2 variables pressure, temperature, and/or saturation 

are provided to the finite element model. The finite element model calculates the 

displacements and stresses and these are then used for aperture and/or permeability-

porosity modification in fracture and rock materials on the fluid flow side. The modified 

data is used for the next TOUGH2 run and the cycle continues.  

7.7.1 Fluid flow equations 

Due to the staggered approach, the fluid flow formulation of TOUGH2 remains 

untouched and the individual time step calculations of the simulation are exactly like 

original TOUGH2 run.   

7.7.2 Newton-Raphson formulation (Modified stress law) for Porous Media  

The porous media calculations are now done using single variable formulation similar to 

the one way coupling, since the pressure and temperature are not varying during the 

solution of the finite element model.  Hence, the Newton-Raphson formulation can be 
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derived similarly to the one described in one way coupling. The Newton-Raphson 

equations to be solved are as follows 
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where the coefficient matrix, as before, is as follows, 

 ∫=
V

dVBDBKe
T  (7.56) 

7.7.3 Newton-Raphson formulation for Fracture Behavior 

To derive the Newton-Raphson formulation for finite elements with fracture behavior, 

consider the residual, given earlier,  
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where tcσ  is the contact stress vector corresponding to the current aperture vector a .  

The Newton-Raphson formulation for single variable is given as  
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where the residual at iteration i  of time step tt Δ+  is written as 
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 ( )ittttitt ufg Δ−= Δ+Δ+Δ+ R  (7.59) 

The Newton-Raphson formulation for the joint element then can be written as  
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To evaluate the Jacobian, let us first look at the contact stresses. The contact stresses are 

function of current apertures and in vector form, we can write the Jacobian term as  
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where the vector a  of current apertures is defined as  
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Since we are neglecting the shear effects due to contact, we can write  
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where the normal stiffness in direction d  defined as  
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The expression for normal stiffness is obtained for Gangi’s model which gives the 

contact stress dσ  for given value of aperture da  as  
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We can write the aperture vector a  as  
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If we define the surface displacement vector su  as follows 
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then we can write  
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Thus the Jacobian can be written as 
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Differentiating the aperture vector with respect to the surface displacement vector we get 
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Then we can write  
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where we have defined the new stiffness matrix T . Now we can write the Jacobian as  
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The surface displacements su  are calculated from the nodal displacements as follows 
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which in vector form is written as  

 uNuS Δ= C  (7.74) 

The complete matrix CN  is given as  
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Also, noting that  
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we can write the expression for Jacobian as  
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Define the elemental stiffness ( )ΔuK e  for the joint element as  
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Then the Newton-Raphson formulation for the volume element with fracture behavior 

can be represented as  
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8 EVALUATION OF JACOBIAN TERMS 

8.1 Conservation of Mass  

8.1.1 General Method for derivatives 

Consider any term in the IFDM equations of conservations of mass and energy. It can be 

represented as follows 

 ( ) ( ) ( ) ( ) ( )CufSTfpfkfuSTpkI gg 4321 ,,,,,,, φφ =  (8.1) 

where I  represent terms occurring in both single phase and two phase problems. 

TOUGH2 uses temperature as the second primary variable for single phase problems and 

saturation for the two-phase problems. C  represents the terms which are constant with 

respect to variable of differentiation. The functions 1f  represent the terms with porosity 

and permeability which will be loosely coupled using the data from last time step and 

hence their derivatives will not be included in the forthcoming analysis.  

8.1.2 Derivative with respect to displacements ( )FSJ  

Let us consider the derivative of the terms with respect to the displacement as follows 
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The partials with respect to displacement represent the solid to fluid coupling. They are 

evaluated while the pore pressure remains constant, (also the other TOUGH2 primary 

variable). Hence the poroelastic constants used in calculation of these terms, if any, are 

evaluated at the drained condition. 
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8.1.3 Derivative of additional terms with respect to TOUGH2 variables ( )FFJ  

Now we will consider the derivatives with respect to TOUGH2 primary variables. We 

will represent the TOUGH2 primary variables gSTP  and  ,, as iX  where i = 1...3. While 

evaluating these partials we are assuming that other primary variables are constant i.e. if 

we are finding partial with respect to pressure then temperature, and displacement will be 

held constant. So in these partials, the derivative with respect to displacement will be 

zero. 
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These terms represent the fluid-to-solid coupling which is the effect of the changes in 

fluid pressure or fluid mass on the strain in the solids (Wang, 2000). The poroelastic 

constants used, if any, while finding the partials of displacement with respect to the 

TOUGH2 primary variables are evaluated at the constant stress condition.  

We also have to keep in mind that we are evaluating partial derivatives with respect to the 

primary variables. Hence in the partial with respect to iX  only one of 
iX

f
∂
∂ 2  or 

iX
f

∂
∂ 3  will 

exist and the other term will be zero. 

8.2 Conservation of Energy  

For the terms in energy balance equation, there are no additional terms. Hence we need to 

calculate only the derivatives of those terms with respect to the displacement. We also 

need to take into account the additional terms arising due to the derivatives with respect 
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to the porosity and permeability in the partials with respect to TOUGH2 primary 

variables. Let us denote the terms in the residual formation of the energy balance 

equation as  

 ( ) ( ) ( ) ( )CSTfpfkfSTpkI ggE ,,,,,, 321 φφ =  (8.4) 

8.2.1 Derivatives with respect to displacements ( )FSJ  

The derivative with respect to displacement required for the Jacobian can be expressed as  
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Since there are no additional terms in the energy equation and the effect of displacement 

through variable porosity and permeability is neglected, with TOUGH2 primary variables 

held constant, the derivative becomes zero. The effect of variable porosity and 

permeability is second order effect through change in displacement of the solid. It is 

neglected with the assumption that the small error in the calculations of the Jacobian term 

will be compensated by iterative solution procedure to obtain the correct result. 

8.2.2 Derivatives with respect to TOUGH2 variables ( )FFJ   

The additional terms arising due to variable porosity and permeability do not exist and 

hence we can see that there is no change in this derivative 
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One of the above two terms will be zero and the non-zero term is the one which is 

calculated by TOUGH2 currently. 
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8.3 Conservation of Momentum 

The Jacobian formulation for the conservation of momentum equation was given in 

(7.53) as  
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Some of the terms required in the coefficient matrices, in particular for two phase 

condition, are obtained by numerical derivatives as explained before.   

8.4 Derivative common to multiple terms 

We will look at the individual derivatives which occur in multiple terms and/or are 

constants throughout the time-step.  

Consider the IFDM representation of volumetric strain as (assuming only Cartesian 

mesh)   
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Then we can write 
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and 
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The following relations have not been used in the context of current modifications related 

to variable porosity and permeability in the implementations. They are listed to relate the 

physical quantities. 

The relation between the mean modified effective stress and volumetric strain for the 

drained condition (Wang, 2000) is 

 "1
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and for the undrained condition (Wang, 2000) is 
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Hence we can evaluate, 
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Using the expression for the modified effective stress we can see that 
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8.5 Conservation of Mass (Re-look) 

Now, we can re-evaluate the partial derivatives of the terms in conservation of mass 

equations using these derivatives. The partial with respect to displacement is given as  
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and with respect to TOUGH2 primary variables as  
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where the term denoted by T2 is already existing TOUGH2 term. 

8.6 Conservation of Energy (Re-look) 

The modified partial derivatives in energy balance with respect to displacement is 
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 (8.19) 

and with respect to TOUGH2 primary variable as 
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8.7 Conservation of Momentum (Re-look) 

The partials with respect to the TOUGH2 primary variables added are as shown in (7.53). 

8.8 Non-diagonal blocks (Connection Terms) 

In conservation of mass and energy equation there will be non-diagonal terms arising due 

to the connection elements. The partials of the all the above terms with respect to primary 

the variables of the connection cells also need to be evaluated. These can be evaluated in 

the similar manner described above using the connection data.  
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9 VERIFICATION PROBLEM 1 (TERZAGHI’S PROBLEM) 

This chapter describes the use of Terzaghi’s classical consolidation test, Figure 9.1 In this 

test, a constant stress is applied suddenly on the surface of a fluid-saturated sample. The 

piston applying the load is permeable, such that the top boundary is drained. Following 

an initial step displacement, the sample consolidates gradually as fluid flows out of the 

top drain. The simulation will be compared to the solution given by Detournay and 

Cheng (1993). 

 

Figure 9.1 Schematic of uniaxially constrained soil consolidation (Wang, 2000). 

9.1 Mathematical Model for flow problem 

We will derive the mathematical model for the flow in Terzaghi’s 1D consolidation test 

following Terzaghi et al. (1996). 

9.1.1 Conservation of Mass 

Consider the differential soil element in Figure 2.2. The discharge velocity in the z -

direction is denoted by zv  and is defined as the quantity of water that percolates per unit 

time across a unit area of a section oriented normal to the flow. At the center of element 
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the rate of flow in the z -direction is dydxqz . The net mass of water flowing per unit 

time into the element of soil element is given by ( ) dzdydx
z
qzw

∂
∂

−
ρ . 

( )
2
z

z
qq z

z
∂

∂
∂

+
ρρ

( )
2
z

z
qq z

z
∂

∂
∂

−
ρρ

dx

dy

dz

 

Figure 9.2 Differential Soil Element (Terzaghi’s Problem). 

Conservation of mass equation states that the net mass inflow of water per unit time is 

equal to the change per unit time of the mass of water in the element. The volume of 

water in the element, under fully saturated condition is equal to the pore volume. The 

pore volume is given as  

 wp VVdzdydxV === φφ  (9.1) 

where φ  is the porosity of the soil and wV  represents the volume of water (assuming that 

all pores are connected). 

Then, the equation of conservation of mass can be written as 

 ( ) ( )w
zw dzdydx

t
dzdydx

z
q ρφρ

∂
∂

=
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∂
−  (9.2) 
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In many practical problems ( ) ( )w
w

z tz
q ρφρ

∂
∂

<<
∂

∂  (Bear, 1988), i.e. spatial derivative in 

ρ  are much smaller than the local temporal ones, hence the terms involving the spatial 

derivative are neglected. 

We will look at the some of the parameters to relate the solution obtained from the 

reference to the poroelastic formulation used in this work.  

9.1.2 Darcy’s Law and Permeability  

Water flow in the soil is in response to a gradient in total or hydraulic head h  defined as 

 
w

pzh
γ

+=  (9.3) 

which represents the potential energy per unit weight of fluid. The gradient of hydraulic 

head will represent force per unit weight. 

9.1.2.1 Darcy’s Law 
Darcy (1856) experimentally deduced the following relationship for the discharge 

velocity zq , 

 
dz
dhK

A
Qqz −==  (9.4) 

where, Q  is the total volume of the fluid percolating in unit time, K  is a constant 

(coefficient of permeability or hydraulic conductivity) depending on the properties of the 

fluid and the porous medium. The minus sign indicates that the flow is in the opposite 

direction of increasing h . 

9.1.2.2 Coefficient of permeability 
The coefficient of permeability K , as customarily defined in soil mechanics, is a property 

not only of the soil but also of the fluid.  To separate the influence of the porous medium 
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from that of the liquid, the following relation was suggested by Nutting and popularized 

by Wyckoff (Bear, 1988). It can be deduced from the analytic derivations of Darcy’s law 

or from dimensional analysis (Bear, 1988). 

 
μ
γkK =  (9.5) 

where, μ , the viscosity and γ , the specific weight are the fluid properties and k  is the 

“intrinsic permeability” of the porous medium.  

Darcy’s law, in differential form, then is expressed as follows (Scheidegger, 1960) 
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9.1.2.3 Darcy’s law in terms of excess pressure 
If the fluid is static in the initial reference state, it is useful to decompose the total 

pressure into the sum of hydrostatic pressure and an excess pressure (Wang, 2000).  
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 (9.7) 

where zz −0  is the height of the overlaying hydrostatic column. Then the total 

hydrostatic head is obtained by adding the elevation head to the pressure head. 
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Assuming the height of the static water column is independent of time, we can say that 

the excess pressure is the same as Darcy’s head within an additive constant. Using (9.8) 

Darcy’s law can be written as  
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 (9.9) 

where p  now denotes the excess pressure and the superscript ex  is dropped because the 

variable p in the constitutive equations is the excess pressure relative to a hydrostatic 

reference state. 

9.1.3 Conservation of Mass using Darcy’s law 

The conservation of mass, Eq (9.2), now can be written as  
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Using the chain rule 
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which can be written as  
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Introducing the bulk modulus of water (fluid), fK , and dividing both sides by V , we get 
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where,  



 81

 
pK

f

ff ∂

∂
=

ρ
ρ
11  (9.14) 

The variation of fluid volume per unit volume of porous material is termed as variation of 

fluid content and denoted byς . Then we can write the fluid mass balance as  
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Also, α  is the Biot-Willis factor which is the ratio of the fluid volume gained (or lost) in 

a material element to the volume change of that element (when the pore pressure is 

allowed to return to its initial state), i.e. 

 Vεας =  (9.16) 

Hence, we can write fluid mass balance as  
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9.2 Mathematical Model for displacement problem 

We will derive the mathematical model for the deformation in Terzaghi’s 1D 

consolidation test following Detournay and Cheng (1993). 

9.2.1 Effective Stress Law 

The “modified” effective stress law accounting for grain compression is given by 

 p mσσ α " −=  (9.18) 

where α  is the Biot-Willis factor and the effective stress in this case is given as  

 ( )Tεε Δ−Δ=Δ Dσ"  (9.19) 
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The modified effective stress causes all relevant deformation of the solid skeleton and the 

constitutive equation relating the modified effective stress to strain, in incremental form, 

is  

 0""" σσσ +Δ=   (9.20) 

 0")(" σεεDσ +Δ−Δ= T   (9.21) 

where: D  is the elastic material matrix, εΔ  is the total strain, TεΔ  is the thermal strain, 

and 0
"σ  is the initial effective stress. 

9.2.2 Force Equilibrium Equation 

The body forces are neglected in the solution for Terzaghi’s problem. Since we are 

representing the case of uniaxial strain, the mechanical equilibrium equations reduce to a 

single equation expressed in terms of the total vertical stress zσ  as follows 

 0=
∂
∂

z
zσ

 (9.22) 

9.2.3 Constitutive Equations 

The constitutive equations for the uniaxial strain are obtained by using the constraints  
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ε

 (9.23) 

The stress-strain relationship for an isotropic material with poroelastic effect and 

neglecting the thermal effects is given as (Lewis and Schrefler, 1998) 

 ( )( )"""1
kjii E

σσνσε +−=  (9.24) 

where kji ≠≠  and they take values zyx and ,, .  
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The condition yx εε =  yields "" yx σσ = . Solving the equations (9.23) with (9.24) gives 

the expressions for "xσ , "yσ  and xσ , yσ   in terms of "zσ   and zσ  respectively 
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The third constitutive equation relating the stress and strain fields in the z -direction 

yields  

 ( )( )
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211  (9.26) 

Hence, we can write the stress in the z -direction as  
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where VK  represents the drained uniaxial bulk modulus.  

The displacement in the z -direction is given by 
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Substituting the expression for zσ  in (9.22), we get 
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or  
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where  
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=  (9.31) 

is Geertsma’s uniaxial expansion coefficient.  

The problem is considered at isothermal conditions and hence does not include thermal 

strains.  

9.3 Mathematical Model for Fluid (re-evaluated) 

Differentiating the expression for the stress in z  direction, equation (9.27), with respect 

to time, we get 
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The fluid mass balance equation (9.17) can be rewritten using the expression for the 

strain in z  direction as  
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This can be written as  
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which is in the form of the diffusion equation  
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9.4 Mathematical Model for Incompressible Fluid and Solid 

Differentiating the expression for the stress in z  direction, equation with respect to time, 

and assuming an incompressible solid ( 1=α ), we get 
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The fluid mass balance equation (9.17) can be rewritten using the expression for the 

strain in z  direction and assuming incompressible fluid ( ∞=fK ) as  
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This can be written as  
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which is in the form of the diffusion equation  
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9.5 Analytical Solution 

The solution details for the pressure and displacements are followed from Detournay and 

Cheng (1993). A constant stress 0σ−  is applied suddenly on the surface 0=z  of a fluid 

saturated sample of length L . The consolidation test is assumed to satisfy the uniaxial 

strain condition. As the load is applied, the load produces an instantaneous undrained 

response, upzp ≡+ )0,( , throughout the sample column. The sample consolidates 

gradually as fluid flows out from the top boundary.  
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9.5.1 Parameter Definitions 

The different parameters and constants used in the analytical solution are explained here 

(Detournay and Cheng, 1993, Wang, 2000) to be able to relate the analytical solution to 

the formulation used in this work. These parameters are defined here for invariable 

porosity i.e. the compressibility of pores φK  is neglected while deriving the parameter 

formulae where concerned and the analytical solution.  

9.5.1.1 Shear modulus 
The shear modulus G  is given in terms of Young’s modulus E  and Poisson’s ratio ν  as 

follows 

 ( )ν+=
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EG  (9.42) 

9.5.1.2 Undrained bulk modulus   
The undrained bulk modulus uK  defined as follows 
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9.5.1.3 Undrained Poisson’s ratio 
The undrained Poisson’s ration is given as  
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9.5.1.4 Skempton’s coefficient 
The Skempton’s coefficient B  defined as the ratio of the induced pore pressure to the 

change in applied stress for undrained conditions, is given as  
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9.5.1.5 Biot Modulus and Storage Coefficient 
M  called as Biot modulus and is the inverse of the storage coefficient. 
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The constant S called as storage coefficient defined under the conditions of uniaxial 

strain and constant normal stress in the direction of strain, is related to M  as 
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Note that under the case when νν =u , MS 1= . 

9.5.1.6 Poroelastic stress coefficient 
The poroelastic stress coefficient η  can be expressed in terms of the fundamental 

constants as  

 ( )
( )ν

ναη
−
−

=
12

21  (9.48) 

9.5.2 Initial and Boundary conditions 

The experimental conditions translate into following initial and boundary conditions.  
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9.5.3 Pore Pressure 

The initial pore pressure is the undrained response, 
SG

pu 0ση
= . The initial and boundary 

conditions are the same as for a classical heat-conduction problem (Wang, 2000). The 
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solution is given in terms of dimensionless coordinate L
z=χ  and dimensionless time 

24L
tc=τ  as follows 
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such that ( ) 00,1 =+χF  and ( ) 1,1 =∞χF . 

9.5.4 Displacement  

A finite column length means that the initial instantaneous displacement, on application 

of load, is finite. The total displacement at any time is the sum of the instantaneous 

undrained response and the time dependent response during the pore pressure diffusion 

phase. The initial displacement is obtained as 
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The additional displacement during drainage is given as  
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Note again that  ( ) 00,2 =+χF  and ( ) χχ −=∞ 1,2F . 
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9.6 Simulations  

To simulate the uniaxial strain problem, a long column of size 50m x 1m x 1m is created 

with the grid of size 78 x 3 x 3 in TOUGH2. The dual mesh in G3D represents a single 

long column. To keep the domain size as close as possible, the top and bottom most 

layers as well as the side layers in TOUGH2 were kept thin. Gravity was neglected for 

the simulation. TOUGH2 needs to have some finite value for the atmospheric pressure. 

The analytical solution developed is based on zero atmospheric pressure. To have an 

effective atmospheric pressure to be zero, at the start of the simulation, the correct initial 

stress was used to compensate for non-zero initial pressure.   

9.7 Results and Comparison (Set 1 [α = 1]) 

The simulation run assumed the matrix to be incompressible. The simulation parameters 

are listed in Table 9.1. The pressures and the additional displacements at three different 

times are compared in the following sections.  

9.7.1 Pressure 

The plot of the comparison of the analytically obtained pore pressure and the simulated 

result are as shown in Figure 9.3. The plots are shown at three different times, close to the 

start, intermediate and at steady state. Initially, the pressure in the fluid is zero.  When the 

load is applied, the pressure instantly increases by a value (1.4058E6 Pa) which is the 

portion of the load carried by the fluid.  Then, as time increases, the fluid is drained and 

the pressure is reduced.  At long times, the pressure will approach zero and all the load is 

carried by the porous media and not the fluid.  As can be seen, the comparison between 

the analytic and calculated pressures is very good. 
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Table 9.1 Simulation Parameters (Terzaghi’s Problem Set 1). 

Parameter Value 

Rock Density 2600 kg/m^3 

Porosity 0.2 

Permeability (x, y, z) 1e-14 

Heat Conductivity 2 W/m C 

Specific Heat 1000 J/kg C 

Poisson’s ratio 0.2 

Young’s Modulus 1.44e10 Pa 

Biot-Willis Factor 1.0 

Gravity 0 

Initial Stress -2.00e6 Pa 
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Figure 9.3 Comparison of pressures in column for times following the step load (Set 1). 
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9.7.2 Displacements 

The additional displacement during drainage is shown in Figure 9.4.  As can be seen, 

initially the drainage displacement is only near the top.  However, as more fluid is 

drained, this displacement becomes larger.  Again, the comparison between the analytic 

and calculated displacements is very good. 

-3.0E-03

-2.5E-03

-2.0E-03

-1.5E-03

-1.0E-03

-5.0E-04

0.0E+00

0 10 20 30 40 50
Depth (m)

D
is

pl
ac

em
en

t (
m

)

T2STR (25) Analytical (25)
T2STR (250) Analytical (250)
T2STR (2200) Analytical (2200)
T2STR (5000) Analytical (5000)

 

Figure 9.4 Comparison of drainage displacements (Set 1). 

9.8 Results and Comparison (Set 2 [α = 0.778]) 

This simulation assumes the matrix and fluid, both to be compressible. The simulation 

parameters are listed in Table 9.2. As seen in the parameters, the initial external load 

applied is not same as in the case of 1=α . The external load for the analysis is assumed 

as 1e6. To cancel the effect of non-zero initial pressure in the reservoir, the external load 
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need to be increased with the factor of pα . Hence the external applied load is 1.778e6 

Pa and not 2e6 Pa as in the case of 1=α . Similar to the earlier set, the pressures and the 

additional displacements at three different times are compared in the following sections.  

9.8.1 Pressure 

The plot of the comparison of the analytically obtained pore pressure and the simulated is 

shown in Figure 9.5. The plots are shown at three different times, close to the start, 

intermediate and at steady state. Initially, the pressure in the fluid is zero.  When the load 

is applied, the pressure instantly reaches value of 1.334E6 Pa. This is the portion of the 

load carried by the fluid.  Then, as time increases, the fluid is drained and the pressure is 

reduced.  At long times, the pressure will approach zero and all the load is carried by the 

porous media and not the fluid.   

Table 9.2 Simulation Parameters (Terzaghi’s Problem - Set 2). 

Parameter Value 

Rock Density 2600 kg/m^3 

Porosity 0.20 

Permeability (x, y, z) 1e-14 

Heat Conductivity 2 W/m C 

Specific Heat 1000 J/kg C 

Poisson’s ratio 0.2 

Young’s Modulus 1.44e10 Pa 

Biot-Willis Factor 0.778 

Gravity 0 

Initial Stress -1.778e6Pa 
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Figure 9.5 Comparison of pressured in column for times following the step load (Set 2). 
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Figure 9.6 Comparison of drainage displacements (Set 2). 
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9.8.2 Displacements 

The additional displacement during drainage is shown in Figure 9.6. As can be seen, 

initially the drainage displacement is only near the top.  However, as more fluid is 

drained, this displacement becomes larger.  Again, the comparison between the analytic 

and calculated displacements is very good. 

9.9 Results and Comparison (Set 3 [α = 1, Kf =∞ ] ) 

The simulation parameters and model is same as in Set 1 but the fluid is made 

incompressible by invoking the incompressibility option (modification in COWAT).  The 

analytical solution is obtained using the coefficient derived in (9.41). 

9.9.1 Pressure 

The plot of the comparison of the analytically obtained pore pressure and the simulated is 

shown in Figure 9.7. When the load is applied, the pressure instantly reaches a value 

(2.0E6 Pa) that is equal to the applied load. Since the fluid as well as solid is 

incompressible the fluid, the applied load has to be carried by the fluid initially.  Then, as 

time increases, the fluid is drained and the pressure is reduced to the initial pressure and 

load is carried by the porous media.  The comparison is very good. 

9.9.2 Displacements 

The additional displacement during drainage is shown in Figure 9.8. As can be seen, 

initially the drainage displacement is only near the top. However, as more fluid is 

drained, this displacement becomes larger.  Again, the comparison between the analytic 

and calculated displacements is very good. 
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Figure 9.7 Comparison of pressured in column for times following the step load (Set 3). 
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Figure 9.8 Comparison of drainage displacements (Set 3). 
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9.10 Conclusion 

The full coupling established is verified using the uniaxial strain problem of Terzaghi’s 

classical 1D consolidation test. The fluid compressibility as well as the solid 

compressibility are taken into account while doing the analysis. The fully coupled T2STR 

code and the analytically obtained results are found to be in good agreement and validate 

the code. 
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10 VERIFICATION PROBLEM 2 (GIBSON’S 2D PROBLEM) 

This chapter discusses a two dimensional plain strain consolidation problem studied by 

Gibson et al. (1970) is used for verification purpose. Gibson et al. (1970) provided the 

exact analytical solution to the problem. The solution is expressed using the 

dimensionless parameters and obtained using two displacement functions. 

We consider a finite strip loaded over the center as shown in Figure 10.1. Due to 

symmetry only half of the reservoir is modeled.  

 

 

Figure 10.1 Schematic of plain strain consolidation on a smooth impervious boundary. 

10.1 Mathematical Model for flow problem 

The fluid flow equation, neglecting the diffusive flux, is written as  
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 The plain strain problem is solved by Gibson et al. (1970) by neglecting gravity, without 

any source, under isothermal and single phase conditions, with invariant porosity and 

assuming incompressible solid and incompressible fluid. The fluid flow equation, then 

reduces to 

 
t

pk V

∂
∂

=∇
ε

μ
2  (10.2) 

10.2 Mathematical Model for displacement problem 

 The plain strain problem is characterized so that the displacement components are 

independent of x . The static equilibrium equation, in absence of body forces and 

considering the plain strain conditions, can be written as follows  

 },{,0 zyji
x j

ji ==
∂

∂σ
 (10.3) 

where the stresses are given as  

 ( )0pp +−= mεΔDσ  (10.4) 

under isothermal conditions and without any initial stresses, assuming incompressible 

solid.  
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10.3 Analytical Solution 

The solution details are followed from Gibson et al. (1970). A constant stress 0σ−  is 

applied suddenly on the surface 0=z  over the width b ( b2  for the entire model) of a 

fluid saturated sample of height h . The consolidation test is assumed to satisfy the plain 

strain condition.  

10.3.1 Initial and Boundary conditions 

The experimental conditions translate into following initial and boundary conditions.  

 ( ) 0,,0 0 >≤∀−= tbxtzz σσ  (10.5) 

In addition to the applied load on the surface, the other boundary conditions are an 

impermeable surface at the bottom of the reservoir, and a permeable boundary at the top.  
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The displacements at the symmetry line are set to zero due to symmetry condition. Under 

plain strain conditions, the strain in x  direction is zero and the surface at the bottom of 

the reservoir is assumed to be rigid. 
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 101

10.3.2 Displacement  

The solution is obtained using two displacement functions Ε  and Ψ , each being function 

of two space variables and time and satisfying the following equations (Gibson et al., 

1970) 

 ( ) 0, 224 =Ψ∇∂Ε∂∇=Ε∇ tc  (10.8) 

where c , the coefficient of consolidation is given as 

 
w

Gc
γ

ηκ2
=  (10.9) 

Also, the coefficient used for plotting `c  is given as  

 
w

Gcc
γ
κ

η
2` ==  (10.10) 

The permeability coefficient κ is calculated using the permeability relation  

 
μ
γκ wk

=  (10.11) 

where wγ  denotes the specific weight of water, k  the permeability of the medium and μ  

denotes the fluid viscosity.  

The solution at the corner ( 0,0 == zy ) is given for different conditions. The final 

settlement is given by  

 ( ) ( ) '122
0

0 G
hw

−
=∞

η
ση  (10.12) 

where η  is an auxiliary elastic constant given by 

 ( )ν
νη
21

1
−
−

=  (10.13) 



 102

The  “immediate” settlement is given by  

 ( )
G

hw
4

0 0
0

σ
=  (10.14) 

The time evolution of the surface displacement for different bh  ratios and for different 

values of Poisson’s ratio is given in the paper.  

10.4 Simulations  

To simulate the plain strain problem, a domain of size 2m x 150m x 10m is created with 

the grid of size 2 x 125 x 23 in TOUGH2. The load is applied over 10m. Gravity effects 

were neglected for the simulation to be consistent with the assumption in the solution 

obtained by Gibson et al. (1970).   

TOUGH2 needs to have some finite value for the atmospheric pressure. The analytical 

solution developed is based on the assumption of zero atmospheric pressure. To have an 

effective atmospheric pressure to be zero, the correct initial stress was used to cancel the 

effect of non-zero initial pressure at the start of the simulation.   

Also, TOUGH2 includes the fluid compressibility by default. An option was introduced 

in the Record “T2STR” where the fluid can be simulated as incompressible with user-

defined value of fluid compressibility.  

10.5 Results and Comparison (Set 1 [h/b = 1,ν = 0 ]) 

The simulation parameters are listed in Table 10.1. Figure 10.2 and Figure 10.3 show the 

comparative results of the fully coupled code with the analytical solution provided by 

Gibson et al. (1970).  
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The results compare very well except for a small deviation at the start of the simulation. 

The deviation can be attributed to coarser mesh and comparatively smaller time step. 

Table 10.1 Simulation Parameters (Gibson’s Problem - Set 1). 

Parameter Value 

Rock Density 2600 kg/m^3 

Porosity 0.1 

Permeability (x, y, z) 1e-14 

Poisson’s ratio 0.0 

Young’s Modulus 1.8e9 Pa 

Biot-Willis Factor 1.0 

Gravity 0 

Initial Stress (+y & z s/c) -1.00e6 Pa 
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Figure 10.2 Comparison of Corner Node displacement (dimensionless) for 0=ν . 
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Figure 10.3 Comparison of  U ( ) ( )[ ]00 wwww −− ∞  at corner node for 0=ν . 

10.6 Results and Comparison (Set 2 [h/b = 1,ν = 0.2 ])  

The Poisson’s effect due to non-zero ν  can be seen in reduced final settlement.  

Table 10.2 Simulation Parameters (Gibson’s Problem - Set 2). 

Parameter Value 

Rock Density 2600 kg/m^3 

Porosity 0.10 

Permeability (x, y, z) 1e-14 m^2 

Poisson’s ratio 0.2 

Young’s Modulus 1.8e9 Pa 

Biot-Willis Factor 1.0 

Gravity 0 

Initial Stress (+y & z s/c) -1 e6Pa 
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Figure 10.4 Comparison of Corner Node displacement (dimensionless) for 2.0=ν . 

The dimensionless displacements compare very well as seen in Figure 10.4. The 

difference at the initial stages of the simulation can be attributed to the coarser mesh and 

comparatively smaller time steps.  

10.7 Conclusion 

The full coupling established between in T2STR is verified using the 2D plain strain 

problem solved analytically using displacement functions by Gibson et al. (1970). The 

fully coupled T2STR code and the analytically obtained results are found to be in 

excellent agreement and validate the correctness of code. 
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11 VERIFICATION PROBLEM 3 (1D THM PROBLEM, LEWIS-SCHREFLER) 

Aboustit et al. (1982, 1985) have given the coupled finite element formulation of quasi-

static, linear thermoelastic consolidation assuming infinitesimal strain. Lewis and 

Schrefler (1998) have solved the same problem studying the isothermal consolidation, 

thermo-elastic deformation, and non-isothermal consolidation as well. Gatmiri and 

DeLage (1997) also have studied the problem using a new concept of thermal void ratio 

state surface. An analysis, similar to that of Lewis and Schrefler (1998), is carried out 

using T2STR. 

 

Figure 11.1 One dimensional model of thermo-elastic consolidation problem. 

The problem consists of a column subjected to surface load 0F  and a constant surface 

temperature T , differing by TΔ from the reservoir initial temperature of 0T . The fluid 
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and solid are considered incompressible and the thermal expansion of fluid is neglected. 

In the heat transfer problem the convective heat transfer is also neglected by Lewis & 

Schrefler (1998). The variation in viscosity with temperature and pressure is neglected in 

the problem, as well. The top surface is permeable and the sides and bottom are 

supported on rollers. The analysis is done in three steps, initially only the isothermal 

consolidation is compared, then only surface temperature is applied and the deformation 

due to only thermal effects are studied and finally a couple thermo-hydro-mechanical 

problem i.e. non-isothermal consolidation problem is solved.  

11.1 Governing Equations 

Considering the above assumptions, the equation of conversation of mass reduces to  
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where the terms due to solid and fluid compressibility are neglected and no external 

source is present.  

In the case of non-isothermal analysis, the conservation of energy equation is given as  

 
( )( ) ( ) H

Cr

E
SS

E

h
t

uuS
Jq •• ∇−−∇=

∂
−+∂

∑∑
ψ

κ
ψ

ψ
κ
ψψ ρφρφ 1

 (11.2) 
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The λ s represent the thermal conductivities of the solid and fluids. Neglecting the 

convective heat transfer term and considering heat transfer only in one dimension, the 

energy equation becomes 
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where the thermal conductivities have been assumed constant with respect to time.  

TOUGH2 calculates the internal energy term of fluid using the enthalpy relation  
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and Lewis et al. express the internal energy using the specific heat capacity  as  
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or using the average heat capacity can be written as  
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In the implementation using T2STR, to match the average heat capacity and avoid its 

variation with temperature and pressure, the fluid internal energy term is zeroed and 

equivalent constant value is added to obtain the correct average heat capacity. 
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11.2 Simulation 

The parameters required for the simulation were obtained from the relevant references. 

The values and/or units of some of the parameters are inconsistent in all of the references. 

Hence the parameter value selection (from the different sets) was done using the 

simulation results. The parameters used were as listed in Table 11.1. 

Table 11.1 Simulation Parameters (Thermo-elastic consolidation). 

Parameter Value 

Size 2m x 2m x 7m 

Mesh 3 x 3 x 49 

Young’s Modulus, E  5.886e7 Pa 

Poisson’s ratio, ν  0.4 

Permeability, k  7.3e-13 m2 

Avg. Thermal Conductivity, λ  836.8 W/mC 

Avg. heat capacity, ( )acρ  40 kCal/ m3C 

Specific Heat (derived from heat cap.), c  104.67 J/ kg C 

Thermal Expansion Coefficient, Tα  0.3e-6 1/C 

Biot-Willis Coefficient, α  1.0 

Density of rock, Sρ  2200 kg /m3 

Density of water, wρ  1000 kg/m3 

External Load, 0F  1e4 Pa 

Initial reservoir pressure, 0p  1e5 Pa 

Initial reservoir temperature, 0T  5 C 

Applied surface temperature, ST  55 C 
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While determining the simulation parameters, the already established hydro-mechanical 

coupling was taken as reference and comparing the results for it, some parameter values 

were confirmed. 

11.3 Results and Comparison 

The results were compared with the plots given by Lewis et al. (1998) and are shown in 

Figure 11.2. 
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Figure 11.2 Comparison of displacements at the top. 

The slight variations in the plots can be attributed to the adjusted parameter values to 

obtain similar effect, assumptions regarding constant parameters (values not available) 

and differences in the implementation. Considering that, the results compare very well. 

This verifies the accuracy of the coupled thermo-hydro-mechanical T2STR code. 
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12 VERIFICATION PROBLEM 4 (WELL TEST ANALYSIS) 

The following verification problem is well test analysis compared with analytical 

solution.  The analytic solution for an infinite reservoir derived by Horner (1967) is given 

below. The analytic solutions used to check the implementation in T2STR.  

12.1 Analytic Solution  

The governing equation of flow by Horner (1967) is given as 
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The analytic solution for the case of a well at the center of an infinite circular reservoir is 

then given as: 
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where, Ei  is the exponential integral function, tc  is the total compressibility. 

12.2 Simulation 

A T2STR model, with parameters specified in Table 12.1, was used to simulate the 

infinite reservoir model. The reservoir boundary was assumed to be at 700 m and hence 

the far-field effects are negligible prompting the comparison with the infinite reservoir 

model. A quarter model of the reservoir was modeled using the symmetry conditions. 

The corner well cells were of the size, 0.025m, obtained approximately equivalent to 

same cross sectional area using the well radius of 0.035m. The height of TOUGH2 model 

was 13.65 m. The flow rate condition was specified at the well cells.  
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Table 12.1 Simulation Parameters (Well test analysis). 

Parameters Values 

Initial reservoir pressure, 0p  530 KPa 

Constant Flow rate, 1q  3.5e-2 kg/s 

Viscosity, μ  0.00105 Ns/m2 

Formation thickness(withdrawal height), h  13.65 m 

Porosity, φ  0.05 

Well radius, wr  0.035 m 

Radius of the boundary, br  700 m 

Young’s Modulus, E  1e9 Pa 

Poisson’s ratio, ν  0.1 

Biot-Willis Coefficient, α  0.7091 
 

The total compressibility, tc , is the combined compressibility of the solid and fluid and 

the value used in the analytic solution is 4.83e-10 1/Pa. The fluid compressibility is 

calculated by TOUGH2 as function of pressure and temperature. Since the temperature is 

constant, the variation in fluid compressibility is going to be negligible and we can 

assume it to be constant. The solid compressibility in T2STR is decided through the Biot-

Willis coefficient α . The reservoir model in the analysis is subjected to boundary 

conditions of roller support on all sides. Hence the volumetric strain is going to be zero. 

The governing equation of fluid flow without the source term, then becomes  

 
( ) ( ) 0=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂−
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∇+

∂

∂
•

t
p

Kt S
w

ψ
ψ

ψ φαρ
ρ

φ q  (12.3) 



 113

Using Darcy’s Law and comparing the coefficients of the term with pressure variation 

with time, we can find the relation between compressibilities as follows 

 ( )
Sf

t KK
c φαφ −

+=  (12.4) 

Using the relation (3.14) we can obtain the Biot-Willis coefficient by solving for 

compressibility.  

12.3 Results and Conclusion 

The comparison of the analytical solution and the simulation results using T2STR are 

shown in Figure 12.1. As seen the pressures at the well compare very well. The negligible 

variation can be attributed to the varying viscosity (the variation is also negligible) in 

T2STR with pressure and assumption of constant viscosity in the analytical model. 
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Figure 12.1 Comparison of pressures at the well during withdrawal test.  
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The well test analysis confirms the accuracy of implementation of the effects of the solid 

grain compressibility in the fluid flow equation.  
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13 DEMONSTRATION PROBLEM 1 (1D THM PROBLEM, TWO-PHASE) 

The same 1D thermo-elastic consolidation problem was solved with two phase condition. 

Lewis and Schrefler (1998) have done it for lower temperature and taking into account 

the air as a third phase.  

 

Figure 13.1 One dimensional thermo-elastic consolidation problem (Two-phase). 

Currently T2STR can simulate using EOS1 module (water) of TOUGH2. Hence the 

problem was done only for two phase analysis. But the temperature was kept high enough 

to see the phase change effects prominently in the simulation. 

The problem consists of a column subjected to surface load 0F  and a constant surface 

temperature T , differing by TΔ  from the reservoir initial temperature of 0T . The fluid is 

considered compressible but the solid is incompressible. The variation in viscosity with 

temperature and pressure is not neglected in this problem. The top surface is permeable 
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and the sides and bottom are supported on rollers. The analysis is done as a thermo-

hydro-mechanical problem i.e. non-isothermal consolidation problem is solved.  

13.1 Governing Equations 

The governing equations are same as stated in single phase problem since it is general 

formulation. In the implementation using T2STR, no changes were made in TOUGH2 

code and hence the analysis carried out is general. 

13.2 Simulation 

The parameters required for the simulation was mostly similar to the single-phase 

consolidation problem. The initial conditions were changed to demonstrate the 

implementation for a two phase problem. The parameters used were as listed in Table 

13.1. 

13.3 Results and Comparison 

There is no analytical solution available for this problem and hence the results are shown 

and are discussed with the physical understanding of the problem.  

The variation in pressure, temperature and saturation is seen in Figure 13.2, Figure 13.3, 

and Figure 13.4 at time 10, 1e4 and 1e7 seconds respectively. The displacement plots 

under different simulation runs are also shown in Figure 13.5.  
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Table 13.1 Simulation Parameters (Two Phase). 

Parameter Value 

Size 2m x 2m x 7m 

Mesh 3 x 3 x 49 

Young’s Modulus, E  5.886e7 Pa 

Poisson’s ratio, ν  0.4 

Permeability, k  7.3e-13 m2 

Avg. Thermal Conductivity, λ  836.8 W/mC 

Specific Heat (derived from heat cap.), c  100 J/ kg C 

Thermal Expansion Coefficient, Tα  0.31e-6 1/C 

Biot-Willis Coefficient, α  1.0 

Density of rock, Sρ  2200 kg /m3 

Density of water, wρ  1000 kg/m3 

External Load, 0F  1e4 Pa 

Initial reservoir pressure, 0p  1e5 Pa 

Initial gas saturation, gS   0.08 

Applied surface temperature, ST  150 C 

Initial reservoir temperature, 0T  
(corresponding to given 0p and gS ) 

99.6 C 

 

As is evident, since there is small amount of gas, initially the load is taken by the solid 

and hence we see the downward displacement corresponding to the load. This 

displacement can be easily calculated using the simple elasticity calculations and is 

verified. In the case of a single phase isothermal problem, the load would shift to the 

liquid and the pressure would increase. But since there is highly compressible gas 

existing in the reservoir, we should not expect significant rise in pressure. However, this 
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problem includes heating at the top of the reservoir. This causes vaporization and 

increased pressure in the heated cells. Due to the relatively low permeability of the 

reservoir, the drainage is not rapid.  

As the pressure increases in the reservoir with increase in temperature, the reservoir 

expands and we see positive displacement at the surface. As seen from the displacement 

plots, Figure 13.5, major part of the expansion of the reservoir is due to the increase in 

pressure and the thermal expansion contributes to a smaller part. In the later times, the 

reservoir is full of gas and it starts draining through the surface. Thus we can see the 

pressure dropping rapidly.  

Eventually pressure reaches the atmospheric pressure value of 1e5 Pa with temperature of 

150C and the column is fully saturated with gas. Due to the drop in pressure the surface 

falls down and the final displacement of the surface is, as expected, equal to the resultant 

of the displacements due to the thermal expansion of the column and due to the external 

load applied.  

 

Figure 13.2 Comparison of pressures and deformation of the column (Two Phase). 
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Figure 13.3 Comparison of temperature and deformation of the column (Two Phase). 

 

Figure 13.4 Comparison of saturation of gas in the column (Two Phase). 

In the displacement plots, Figure 13.5, the simulations other than the complete THM is 

carried out using one way coupling. This helps to see the individual effects of pressure 

and temperature on the column.  
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Figure 13.5 Comparison of displacements for analysis of two phase problem. 

The “Hydro-Mech” plot indicates the one way coupling simulation under isothermal 

conditions. Hence it shows the deformation mainly due to the externally applied load 

only, since there is negligible pressure change in the column as the small quantity of the 

compressible gas is already present in the column.  

The “Thermo-Mech” displacement plot shows the combined effect of the externally 

applied load and the thermal effects. This was achieved by turning off the poroelastic 

effects using the respective flag in the T2STR record in the TOUGH2 input file.  

The “Hydro-Mech (T)” indicates the simulation, where in, TOUGH2 run was done using 

non-isothermal conditions, thus capturing the pressure variation due to the phase changes 

and increase in pressure due to undrained condition as explained above. But the thermal 

effects on displacement were neglected by setting the flag in T2STR record of the 

TOUGH2 input file to zero. Hence in “Hydro-Mech (T)” displacement plot, we see the 
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final deformation exactly equal to the initial deformation, which is solely due to 

externally applied load.   
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Figure 13.6 Pressure and Temperature comparisons between 1500 to 3000 secs. 

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

02468
Depth (m)

Pr
es

su
re

 (P
a)

7.0E+04

9.0E+04

1.1E+05

1.3E+05

1.5E+05

1.7E+05

1.9E+05

2.1E+05

2.3E+05

2.5E+05

G
as

 S
at

ur
at

io
n

t=1500
t=2000
t=2500
t=2800
t=3000

 

Figure 13.7 Pressure and Gas Saturation comparisons between 1500 to 3000 secs. 
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In the “THM” simulation, there is a clear jump in the displacements between time 2500 

sec to 3000 sec and later at time 1.4e6 seconds. Consider Figure 13.6, Figure 13.7, and 

Figure 13.8, which show the comparison of pressure, temperature and saturation between 

different time steps. Note that in Figure 13.8, the saturation legend is between 0.1 and 0.0 

and not 1.0 and 0.0. 

As the phase change from liquid to gas due to heating from the top of the column 

happens, the phase change travels from the top of the reservoir to the bottom. Since we 

have not included gravity in the analysis, presence of gas below the liquid phase can be 

explained in line with the initial conditions. Also the movement of the fluid phases is 

controlled by the extent of the heating due to conduction from the top to the bottom in the 

reservoir. The transitional phase-line, i.e. the depth at which the phase change is 

occurring at the instance in time, moves down as the heating progresses. As the 

transitional phase-line moves, the location of the maximum pressure in the column moves 

with it. The top of the column is fixed at lower pressure and the bottom of the reservoir is 

at lower pressure due to gaseous phase and absence of gravitational load. With the fluid 

movement to equilibrate the pressure in the column inducing the increase in pressure in 

the bottom of the transitional phase-line, the phase change from gas to fluid occurs. Due 

to phase change then, there is sudden change in the pressure resulting in the sudden jump 

in displacement.  

In the later part of the simulation, due to heating there is complete phase change from 

liquid to gas, which also is accompanied by the drainage from the top resulting in sudden 

pressure drop inducing the compaction of the column. 
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Figure 13.8 Saturation comparison between 1500 and 3000 seconds. 

The simulation results are consistent with the physical understanding of the problem and 

show the ability of T2STR code to simulate two-phase problems. It also shows how the 

different options of the code allow us to gain deeper understanding into the physical 

phenomena and study the individual effects into the coupled process. 
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14 VERIFICATION PROBLEM 6 (FRACTURE BEHAVIOR) 

To verify the fracture element implementation two different problems were solved testing 

the two aspects, pressure forces and contact stresses, of the fracture behavior.   

14.1 Verification Problem A (Contact Stresses) 

This problem verifies the correct implementation of the effects of contact stresses in the 

fracture behavior. The pressure forces between the rock and the fracture are in 

equilibrium. The insitu stresses are set to zero. The initial aperture of the fracture is 

induces contact stresses according to Gangi’s model and are responsible for the 

deformation which will establish equilibrium condition. 

14.1.1 Simulation 

A 2 x 2 x 4 TOUGH2 mesh was used to generate a three element (1m x 1m x 1m) finite 

element model as shown in Figure 5.1. In TOUGH2, the inner two layers in Z -direction 

represent the fracture, constituting the center (finite) element as the element with fracture 

behavior. The problem parameters are listed in Table 14.1. The displacement obtained 

from the simulation is 5.5398e-6 m.  

14.1.2 Analytical Solution 

The analytical solution is obtained by solving the problem shown in the schematic in 

Figure 14.1.  Due to the symmetry, as seen in Figure 14.1 (a), we can solve the problem 

in  Figure 14.1 (b) with the aperture modified using twice the displacement of the node.  
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Figure 14.1 Schematic representation to obtain analytical solution. 

Table 14.1 Simulation Parameters (Fracture). 

Parameter Value 

Young’s Modulus, E  8.512e10 Pa 

Poisson’s ratio, ν  0.0 

Fracture- Initial Aperture, ia  8.62e-5 m 

Fracture- Zero Stress Aperture, 0a  1.85e-4 m 

Fracture- Closing contact stress, cσ  5e7 Pa 

Fracture- Gangi’s model index, m  0.16 
 

Writing the force balance, we get 
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Considering the problem parameters i.e. zero Poisson’s ratio, the non-linear equation to 

be solved for the displacement becomes   
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Solving the non-linear equation in MATLAB using “fsolve”, we obtain the displacement 

to be 5.5398e-6 m.  

The results match exactly and hence the contact stress implementation is verified.  

14.2 Verification Problem B (Pressure Forces) 

The same problem is solved without any contact stresses and adding source to the 

fracture element in TOUGH2.  

The pressure in the fracture element increases exerting the force on the rock elements. 

The pressure variation in the rock element is linear due to the linear volume element, 

varying between initial pressure in the rock and the increased pressure in the fracture. 

Thus the pressure difference exerting the force on the rock is equivalent to half of the 

actual pressure rise in the fracture element. The simulated results and analytical 

calculations give the exact same result of 1.0468e-5 m for the displacement of the 

fracture walls or the rock elements. This verifies the pressure force implementation.  

It can be seen from both the verification problems that the fracture behavior 

implementation is correct and is verified. 

14.3 Demonstration examples  

Two problems demonstrating the fracture implementation are described here.  

The first problem is an axisymmetric 3D problem with a single planar fracture. Cold 

water is injected into the fracture and the thermal effects on the fracture aperture are 
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emphasized. The fracture opening is shown in the Figure 14.2 in middle of the simulation 

run.  

 

Figure 14.2 3D fracture implementation demonstration problem with planar fracture. 

The second problem demonstrates the ability to handle multiple fracture networks. A set 

of fractures in both directions are introduced in the domain for this 2D problem. Cold 

water is injected and the effect of thermal stresses on the aperture and flow is visualized. 

The multiple material assignments are shown in Figure 14.3. The deformed meshes with 

thermal contours at different times are also shown in Figure 14.4.  
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Figure 14.3 Material assignment for multiple fracture problem. 

 

Figure 14.4 Deformed mesh with pressure contours at 10secs and temperature contours at 

5e5 secs. 
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15 DEMONSTRATION PROBLEM 2 (5 SPOT EXAMPLE – ONE WAY) 

The following problem considers a large field with wells arranged in a “five-spot” 

geometric pattern as shown in Figure 15.1. This is an example problem 4 in TOUGH2 

user’s manual (Pruess et al., 1999). Only half of the domain is modeled due to symmetry.  

 

Figure 15.1 Five-spot geothermal well pattern model. 

The problem is solved using one way coupling and only porous media assumption. The 

boundary conditions for the displacement problem are roller support on all the sides and 

bottom of the reservoir, and the top surface is free.  

15.1 Simulation 

A 21 x 11 x 6 TOUGH2 mesh was used to generate a finite element model for the five-

spot problem. The problem parameters are listed in Table 15.1. The simulation was 

carried in two stages. Initially, a steady state run was carried out to obtain the equilibrium 

condition and then a transient run to model the five-spot problem. 
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Table 15.1 Simulation Parameters (Five-Spot Example). 

Parameter Value 

Young’s Modulus, E  1.44e10 Pa 

Poisson’s ratio, ν  0.2 

Permeability, k  6.0e-15 m2 

Thermal Conductivity, λ  2.1 W/m C 

Specific Heat, c  1000 J/ kg C 

Thermal Expansion Coefficient, Tα  7.5e-7 1/C 

Biot-Willis Coefficient, α  1.0 

Density of rock, Sρ  2650 kg /m3 

Initial reservoir temperature, 0p  300 C 

Initial gas saturation, gS   0.01 

Injection rate (full well basis) 30 kg/s 

Injection enthalpy 500 kJ/ kg 

Production rate (full well basis) 30 kg/s 
 

15.2 Results and conclusion 

During this initial run, the liquid phase in the reservoir settles down due to gravity as seen 

in Figure 15.2 and hence the pressure will increase in the lower part of the reservoir. Due 

to this pressure increase the reservoir expands as shown in Figure 15.3.  

Then the transient one way simulation is carried out with the injection and production 

rates as specified in the parameter table.  
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Figure 15.2 Gas phase saturation at the end of steady state simulation run. 

 

Figure 15.3 Pressure and deformation at equilibrium condition.  
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Figure 15.4 Gas phase saturation at the end of 36.5 years. 

 

Figure 15.5 Stress in Z direction and deformation of the reservoir after 36.5 years.  

The injection is done at lower temperature than the reservoir temperature. The profiles of 

gas phase saturations and stresses in Z direction at the end of 36.5 years are shown in 
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Figure 15.4 and Figure 15.5 respectively. Due to cooling, the rock near the injection well 

contracts and a trench like formation is seen in the cooled region. But near the injection 

well there is an expansion due to increase pressure due to injection. Also, we can see the 

increased gas phase saturation near the production well areas due to the lowered pressure 

due to production.  

The simulation shows the ability of T2STR to model field case problems. It also shows 

the restart capability of T2STR allowing the user to obtain the equilibrium condition and 

then carry out the transient simulation. This also would enable user to carry out the 

history matching simulation and use the end result for a predictive model.  
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16 CONCLUSIONS AND RECOMMENDATIONS 

This work developed a fully coupled geomechanics and fluid flow simulator, T2STR, for 

multiphase flow in porous media combining two different discretization techniques viz. 

finite element method to solve the momentum equation and integrated finite difference 

method (IFDM) to solve the mass balance and energy balance equations. The simulator is 

also capable of simulating the coupled THM processes in fractured porous media in a 

staggered manner.  

16.1 Summary and Conclusions 

• A general set of fully coupled equations is derived for multiphase, multi-component 

fluid flow, heat transfer and deformation in porous media.  

• A novel, simple but effective approach is developed to combine any cell based 

method and node based method. A cell based representation for volumetric strain, 

“the volumetric strain is approximated as summation of displacements of confining 

areas”, is proposed and used effectively to communicate with the node based method. 

• A generalized formulation is obtained to tackle the switching variable implementation 

used in multiphase flow analysis for the finite element code.  A set of phase 

coefficient matrices is defined which automatically compensate for switching of 

variables to evaluate accurate Jacobian matrices in either condition. 

• A discrete fracture behavior is implemented to model fractures using a re-derived 

fracture joint model exhibiting the fluid pressure and contact stress effects. Hence, 

T2STR can simulate discrete fracture networks (DFN) in the reservoir model. 
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• The fractured porous media formulation is implemented using staggered approach in 

which the flow simulator calculations are finished and the results are used for the 

deformation calculations. The effect of deformation on fluid flow is then 

implemented through varying permeability and porosity as function of deformation.  

• Several options are made available in T2STR for user to study one way, staggered or 

fully coupled approach.  Also, T2STR is capable to switch on/off the thermal or 

poroelastic effects. This provides ability to study individual effects and gain deeper 

understanding into the physics of the problem. 

• A set of verification problems is used to validate the code. The data is provided with 

the results to allow exact duplication of the problems.  

• The T2STR is limited to EOS1 module of TOUGH2 i.e. only water components can 

be modeled.  

16.2 Recommendations 

• Extend the current work to other EOS modules in TOUGH2. 

• Extend the model for Brick20 volume element to be consistent with fluid flow model. 

• Implement a fully coupled THM model for fractured porous media. 

• Study the convergence and stability issues related to the geomechanics problem in 

comparison to other fully coupled approaches as well as in comparison to one way 

and iteratively coupled approaches.  

• Realistic field scale problems should be used to test the stability and full capability of 

T2STR code. 
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APPENDIX A MATERIAL DERIVATIVE 

The material derivative of a variable G  with respect to a particle is the (temporal) rate of 

change of that variable for the considered particle. It is denoted and expressed as (Bear 

and Bachmat, 1991) 
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where ξ  is the initial position vector. Is also can be interpreted as the rate of change of 

variable G  of a fixed particle to an observer situated on that particle.  It can be expressed 

in terms of the spatial or Eulerian description as follows 
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where v  denotes the instantaneous velocity of the particle at the given point. The first 

term represents the local rate of change of G at the specified point and second term 

represents the convective rate of change of the quantity G. The convective rate of change 

is due to the variation of  G  along the path of the particle. 
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APPENDIX B  SOLID VELOCITY AND VOLUMETRIC STRAIN 

Consider the Lagrangian derivative of the volume of a differential element as follows 
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As the volume dV  is being displaced and deformed, the material derivative of the length 

idx  is related to the velocities at the end points ii dxx +  and ix , by 
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Hence using the definition of volumetric strain Vε , 
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Now using the definition of material derivative  
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APPENDIX C PRE-PROCESSOR AND POST-PROCESSORS 

C.1 Java based GUI for Pre-processor 
In T2STR, a dual mesh concept is used for coupling the poroelasticity with the flow 

simulation. The finite element mesh is derived from the TOUGH2 finite difference mesh. 

TOUGH2 creates a MESH file which stores all the information related to its mesh. A 

translator, a GUI using JAVA, was created to generate the finite element mesh, the dual 

of the finite difference mesh, by reading the respective TOUGH2 MESH file. This 

translator generates the Tough2Geo.g3d file which holds the finite element mesh and the 

constants related to the stress analysis. Figure shows the example menu of the Java based 

GUI pre-processor. 

 

Figure: C.1 Example GUI of the Java based pre-processor. 
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The pre-processor also allows the specification of the displacement and load boundary 

conditions at the surfaces of the analysis domain. Boundary conditions at other locations 

in the domain can be inserted manually into the Tough2Geo.g3d file. 

It also allows the user to select the number of materials, rock and/or fractures, depending 

on the material assignments in the MESH file. The user can also specify the rock and 

fracture properties for multiple materials and related modification lines are generated 

which can be cut-pasted in the TOUGH2 input file.  

The T2STR record required to be added at the end of the TOUGH2 input file is generated 

based on the information provided by the user. INSITU file to specify the insitu stresses 

is generated according to the user input.  

C.2 Post-processor 
The results in T2STR are written in output files so that they are compatible with PetraSim 

as well as Tecplot and Excel. A set of macros are written to post-process the data. These 

will be publicly available with the information on how to run these macros to generate 

specific kind of visualization for the results of the T2STR simulation. 
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APPENDIX D JACOBIAN ANALYSIS 

D.1 Conservation of Mass (Term by term) 

D.1.1 Derivative with respect to displacements 
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which can be written as 
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D.1.2 Derivative with respect to TOUGH2 primary variables 

We will represent the partials already calculated in TOUGH2 by “T2 term”. For new 

terms, we will use  
ND

T2

 to indicate derivatives calculated using the incremental values. 
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Even if the porosity is not varying and the displacements are assumed to constant while 

varying the TOUGH2 primary variables, the term κθn  could vary hence  
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D.1.3 Non-diagonal derivatives 

The non-diagonal terms will arise from connection relations. 

D.1.3.1 Derivative with respect to displacements 
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D.1.3.2 Derivative with respect to primary variables 

The original terms’ partials do not change from currently implemented values and there 

are no cross-terms in the newly added terms to the mass equation, there are no additions 

in the non-diagonal terms. 

D.2 Conservation of Energy (Term by term) 

D.2.1 Derivative with respect to displacements 
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D.2.2 Derivative with respect to TOUGH2 primary variables 

Since there are no new terms in the Energy equation, there is no change in any terms in 

energy equations. The current TOUGH2 terms will be all. 
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D.2.3 Non-diagonal derivatives 

There will not be any additional non-diagonal Jacobian terms in the energy equation. 

D.2.3.1 Derivative with respect to displacements 

There are no displacement effects in the old term if we assume constant porosity and 

permeability during individual time step.  

D.2.3.2 Derivative with respect to primary variables 

The non-diagonal terms in Jacobian due to original equation are already implemented. 

There are no cross effect terms in the newly added terms and hence there are no non-

diagonal additions due to them.  

This concludes the analysis and evaluation of Jacobian terms. 
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