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ABSTRACT.  Three big bluestem ecotypes from central Kansas (Cedar Bluffs and 17 

Webster populations), eastern Kansas (Konza and Top of the World populations), and Illinois 18 

(12Mile and Fults populations), as well as the Kaw cultivar, were harvested from four 19 

reciprocal garden planting locations (Colby, Hays, and Manhattan, KS; and Carbondale, IL) 20 

and evaluated for their chemical (glucan, xylan, arabinan, lignin and ash) and elemental 21 

(carbon, oxygen, hydrogen, nitrogen and sulfur) compositions. The objective of this research 22 

was to study the effects of ecotype and planting location on the chemical and elemental 23 

compositions of big bluestem along the Great Plains precipitation gradient (~1200 to 400 mm 24 

mean annual precipitation). All the populations revealed a large variation in cellulose (31.8–25 

36.5%), hemicellulose (24.96–29.74%), lignin (14.4–18.0%), carbon (47.3–51.3%), and 26 

nitrogen (4.91–6.44%). Planting location had significant effects on both chemical and 27 

elemental compositions of big bluestem. Ecotype had significant effects on glucan, xylan, 28 

lignin, and ash contents as well as on carbon, oxygen, and hydrogen elemental fractions. In 29 

addition, the interaction between ecotype and planting location had significant effects on 30 

glucan, lignin, and hydrogen. Planting location had a greater effect on chemical and 31 

elemental compositions than the ecotype and interaction between location and ecotype. The 32 

total sugar content of the big bluestem (regardless of ecotype) increased as the Great Plains 33 

precipitation gradient increased from west to east. Annual precipitation, growing degree days 34 

and potential evapotranspiration in 2010 explained up to 97%, 88% and 80% of the variation 35 

in compositions respectively. 36 

Keywords: Big bluestem; chemical composition; elemental composition; ecotype; reciprocal 37 

common garden 38 

39 
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1. INTRODUCTION 40 

    With the rapid increase in worldwide consumption of nonrenewable fossil fuels, the 41 

production of renewable fuels from biomass is attracting more research attention. Renewable 42 

fuels derived from biomass could reduce our dependence on fossil fuel resources and reduce 43 

greenhouse gas emissions (Dien et al, 2006). First-generation biofuel, produced from starch-44 

based and sugar-based biomass, is limited because of competition with food crops and other 45 

land demands (Tilman et al., 2006). Thus, lignocellulosic biomass, including dedicated 46 

energy crops such as switchgrass, big bluestem, forest residues, and agricultural residues, 47 

could play an important role in biofuel production because of low production inputs and 48 

potentially low competition with food production. A recent analysis indicated that over 25 49 

million hectares of land classified by the USDA as rangeland/grassland within land capability 50 

class 3–6 soils (more marginal/less productive soils) could be utilized for bioenergy crop 51 

production
 
in select states in the central Great Plains (Kansas, Nebraska, Oklahoma, and 52 

South Dakota) (USDA, 2010).   53 

    Big bluestem (Andropogon gerardii) is a dominant warm-season (C4) perennial native 54 

grass that comprises as much as 80% of the plant biomass in prairies in the midwestern 55 

grasslands of North America (Gould and Shaw, 1983; Knapp et al., 1998). This research 56 

helps lay the foundation for the potential development of big bluestem as a bioenergy 57 

feedstock on these range/grasslands. Although big bluestem has been studied extensively for 58 

decades in terms of the effect of climate on grass growth; controls on community structure; 59 

ecological responses to grazing, burning, and mowing; and restoration effectiveness (He et al., 60 

1992; Epstein et al., 1998; Knapp et al., 2001; Silletti and Knapp, 2003; Fay et al., 2003; 61 

app:ds:attract%20attention
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Jackson et al., 2010),
 
the potential use of bluestem for bioenergy has not been evaluated 62 

adequately. Ecotypes of A. gerardii were originally described nearly 50 years ago (McMillan, 63 

1959), but variables related to biofuel potential across the precipitation gradient of tallgrass 64 

prairie have not been broadly characterized. This study will utilize the sharp precipitation 65 

gradient across the Great Plains (1200 to 400 mm mean annual precipitation [MAP]) and 66 

reciprocal garden research plots to investigate the biofuel potential of A. gerardii ecotypes 67 

and how such potential is affected by planting location across the Great Plains. 68 

    Big bluestem is adaptable in most native prairie ecosystems and can represent as much as 69 

three times the biomass as switchgrass in midwestern grasslands (Epstein et al., 1998). Big 70 

bluestem productivity is high due to efficient nutrition utilization; it produces twice the 71 

biomass per applied nitrogen compared with switchgrass and indiangrass (Johnson and 72 

Matchett, 2001),
 
establishes easily from seed, and spreads vigorously by vegetative growth of 73 

underground rhizomes with a robust root system (Perry and Baltensperger, 1977). In addition 74 

to economic considerations, bluestem prairie serves a range of purposes in the ecosystem 75 

because it provides wildlife habitat, cattle grazing, and hay and pasturelands (Fargione et al., 76 

2009). 77 

    Previous research has been carried out to evaluate big bluestem for conversion to ethanol. 78 

Weimer et al. (2007) studied big bluestem for ethanol production through consolidated 79 

bioprocessing. Jung and Vogel (1992) reported that big bluestem leaves contained more 80 

neutral detergent fiber and relatively higher levels of cellulose and lignin at the vegetative 81 

stage than switchgrass, resulting in a greater in vitro fermentability than switchgrass. Bowden 82 

(2008) demonstrated that big bluestem produced 39% and 16% more mass than Shawnee and 83 
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Cave-in-Rock switchgrass, respectively and big bluestem had larger yields and lower 84 

amounts of ash than switchgrass due to the higher nitrogen utilization efficiency. 85 

In this research, three big bluestem ecotypes (Central Kansas [CKS], Eastern Kansas 86 

[EKS], and Illinois [IL], with two populations comprising each ecotype) and the widely 87 

planted Kaw cultivar (KAW) were harvested from each of four reciprocal garden planting 88 

locations (Colby, Hays, and Manhattan, KS; and Carbondale IL). This reciprocal design 89 

allows us to study the effect of ecotype and planting location on chemical and elemental 90 

composition. Results from this research will provide basic data that will potentially enable 91 

more efficient plant breeding for bioenergy production by providing scientific knowledge 92 

about the role of the genetic and environmental factors that influence the development of big 93 

bluestem varieties for use as a bioenergy crop. The plants analyzed here also were part of a 94 

big bluestem ecotype experiment to examine the cline in phenotypic variation (biomass, 95 

phenology, canopy characteristics) across the Great Plains precipitation gradient (~1200 to 96 

400 mm mean annual precipitation) and the relative role of environment and ecotype in 97 

affecting the phenotype. 98 

 99 

2. MATERIALS AND METHODS 100 

2.1 Materials.  101 

    Three big bluestem ecotypes, CKS (Cedar Bluffs [CDB] and Webster [WEB] populations), 102 

EKS (Konza [KON] and Top of the World [TOW] populations), and IL (12Mile [12M] and 103 

Fults [FUL] populations), and the KAW cultivar, which is widely planted to restore marginal 104 

lands, were harvested from reciprocal garden plots in four planting locations (Colby, Hays, 105 
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and Manhattan, KS; and Carbondale, IL) in 2010. Among the four locations, the Colby 106 

planting site was used to test the threshold of drought tolerance and the possibility for 107 

planting in the drier locations of the Great Plains. Two populations from each ecotype were 108 

evaluated for their chemical and elemental compositions. Glucan, xylan, arabinan, lignin and 109 

ash made up a major chemical composition of biomass. Elemental compostion was reported 110 

as carbon, oxygen, hydrogen, nitrogen and sulfur. The big bluestem samples were ground into 111 

powder using a Retsch cutting mill (Haan, Germany) with a 1 mm sieve. All chemicals used 112 

for this research were purchased from Sigma Chemical Co. (St. Louis, MO). 113 

2.12 Seed Collection.  114 

    Seeds for the populations and ecotypes were collected by hand from pristine ungrazed 115 

prairie in the fall of 2008. Figure 1 and Table 1 show the GPS coordinates of seed collection 116 

sites (latitude and longitude) for the seeds that were later harvested from grown plants. For 117 

each ecotype region (central Kansas, eastern Kansas, and Illinois), four populations were 118 

collected within 50 miles of the reciprocal garden planting locations. Two populations per 119 

ecotype were analyzed in this paper. Populations were at least 10 miles distant from one 120 

another. In fall 2008, a subset of seeds from all populations was germinated and grown in 4 x 121 

4 in pots in the greenhouse using standard greenhouse potting mix (Metro-Mix 510; Sun Gro 122 

Horticulture, Vancouver, BC, Canada). For KAW, we obtained seed from the USDA Plant 123 

Materials Center, Manhattan, KS. We included KAW because it is widely used for restoration 124 

planting in Conservation Reserve Program lands throughout the Great Plains. 125 

2.13 Planting Locations.  126 

    These plants were later installed at the reciprocal garden sites (Colby, Hays, and Manhattan, 127 
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KS; and Carbondale, IL) in August 2009. Table 2 shows environmental conditions and short-128 

term and long-term weather patterns at the reciprocal garden planting sites. Mean annual 129 

precipitation showed a striking contrast across the four locations. To test the limits of the 130 

tolerance of big bluestem, the plants were installed in Colby. At each planting location, all 12 131 

populations (3 ecotypes x 4 populations per ecotype) were replicated in 10 blocks. For this 132 

study we used only two of the 4 populations per ecotype. Plants were assigned randomly to 133 

blocks, spaced 50 cm apart, and planted into shadecloth to control weeds. The KAW cultivar 134 

and sand bluestem (data not included here) were also included, making 14 plants per block. 135 

2.14 Plant Harvest.  136 

    The plants were part of a large bluestem ecotype variation experiment to examine the 137 

phenotypic variation across the Great Plains precipitation gradient
 
(Johnson et al., in 138 

preparation) and the role of environment and ecotype in affecting the phenotype. These plants 139 

were extensively characterized in terms of canopy area, height, and phenology in the summer 140 

of 2010
 
(Johnson et al., in preparation) and harvested by hand in October 2010. The harvested 141 

plant biomass (foliage, inflorescence, stalks) was dried at 60 °C for at least 1 week before 142 

being stored at room temperature.  143 

2.2 Analytical methods. 144 

2.2.1 Chemical Composition Analysis.  145 

    Moisture content of ground big bluestem samples was determined by drying about 2 g of 146 

each sample in a forced-air oven at 105 °C for 4 h (Sluiter et al., 2008). Extractives and 147 

chemical composition of the big bluestem were determined by following NREL laboratory 148 

analytical procedures (Sluiter et al., 2008; Sluiter et al., 2005). Structural carbohydrates in 149 
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biomass were reported as percentages of glucan and xylan. Lignin, the major non-150 

carbohydrate component, is the sum of acid-insoluble and acid-soluble lignin. Glucose, 151 

xylose, mannose, and arabinose in acid-hydrolyzed samples were determined by analyzing 152 

the supernatant from acid-hydrolysis using an HPLC (Shimadzu, Kyoto, Japan) equipped 153 

with an RCM monosaccharide column (300 × 7.8 mm; Phenomenex, Torrance, CA) and a 154 

refractive index detector (RID10A, Shimadzu, Kyoto, Japan). The mobile phase was 0.6 mL 155 

min
-1

 of double-distilled water, and the oven temperature was 80 °C. The supernatants of 156 

acid-hydrolyzed samples were neutralized with CaCO3 to pH 6 before being filtered through 157 

0.2 μm hydrophilic PTFE syringe filters (Millipore, Billerica, MA). The monosaccharide was 158 

analyzed by using an HPLC with a Rezex RPM-monosaccharide column (300 × 7.8 mm; 159 

Phenomenex, CA) and a refractive index detector (RID-10A, Shimadzu, MD). The column 160 

was eluted with double-distilled water at a flow rate of 0.6 mL/min. The temperature of the 161 

chromatograph column was maintained at 80 °C. 162 

2.2.2 Elemental Analysis.  163 

    The elemental composition of the big bluestem samples was measured with CHNS/O 164 

Elemental Analyzer (PerkinElmer 2400 Series II, PerkinElmer Inc., Waltham, MA). About 2 165 

to 3 mg (accurate to 0.001mg) of the ground sample with fine uniform particle size was 166 

weighed into tin capsules using a PerkinElmer AD-6 Autobalance (PerkinElmer Inc., 167 

Waltham, MA). The ground sample was packed with foil, introduced into the combustion 168 

chamber through a funnel, and burned under a pure oxygen atmosphere. The gases (CO2, N2, 169 

SO2, and H2O) from combustion were separated in a quartz column containing copper wires 170 
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detected by a thermoconductometer detector. Elemental compositions are reported as a 171 

percentage of initial dry weight (w/w, db). 172 

2.2.3 Statistical Analysis.  173 

    Chemical and elemental compositions of big bluestem samples are reported as the average 174 

of duplicates. Analysis of variance (ANOVA) and Tukey’s studentized range (HSD) test were 175 

analyzed using SAS (SAS Institute, Inc., Cary, NC). In general, fully balanced ANOVA tests 176 

were performed following the general linear models (GLM) procedure. 177 

 178 

3. RESULTS AND DISCUSSION 179 

    Both ecotype and planting location had significant effects on chemical and elemental 180 

compositions of the big bluestem (P < 0.05), except the effect of ecotype on xylan + arabinan, 181 

nitrogen, and sulfur contents. The chemical composition of the seven big bluestem 182 

populations and 3 ecotypes from four planting locations varied significantly when specific 183 

constituents were considered (Table 3). For all of the big bluestem samples, the average and 184 

range of the chemical composition across planting locations and ecotypes are 34.5% ±2.4 185 

from 29.6–39.5% for glucan, 23.6% ±2.0 from 19.2–26.8% for xylan, 3.5% ±0.7 from 2.1–186 

4.8% for arabinan, 16.8% ±1.8 from 12.0–19.3% for lignin, and 4.3% ±0.7 from 3.1–5.6% 187 

for ash. The range of the chemical constituents in glucan, xylan, and ash contents (Table 3) 188 

are similar to those reported by previous research (Jefferson et al., 2004; Wiselogel et al., 189 

1996; Titgemeyer et al., 1996); however, big bluestem had lower lignin content compared 190 

with other lignincellulosic biomass (Table 4) such as sorghum biomass (Zhao et al., 2009), 191 

corn stover (Zhao et al., 2009; Zeng et al., 2007; Lloyd and Wyman, 2005; Zhu et al., 2007), 192 
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and wheat straw (Zhu et al., 2007; Sun and Chen, 2008; Saha et al., 2005). This may make 193 

pretreatment and enzymatic hydrolysis of structural polysaccharides in the bioconversion 194 

processes easier for big bluestem.  195 

    The elemental composition analysis is important for calculating biomass heat content, 196 

performing mass and heat balances in the bioconversion process, and predicting potential 197 

pollution problems during biomass thermal processes. Table 5 shows the elemental carbon 198 

(C), hydrogen (H), oxygen (O), sulfur (S), and nitrogen (N) contents in the big bluestem 199 

samples. For all of the big bluestem samples, the average and range of the elemental 200 

composition across planting locations and ecotypes are 49.1% ±1.4 (range of 47.1–51.4%) for 201 

C, 5.9% ±0.3 (range of 4.9–6.5%) for H, 43.3% ±1.6 (range of 40.7–46.1%) for O, 0.84% 202 

±0.2 (range of 0.61–1.27%) for N, and 0.92% ±0.1 (range of 0.78–0.98% for S. Results 203 

showed that big bluestems had a desirable molar ratio of H/C, with average of 1.44 and a 204 

range of 1.23–1.52, which can result in less smoke and water-vapor formation and thereby 205 

reduced energy loss during gasification processes (Bridgeman et al., 2008). The comparison 206 

of elemental composition of big bluestem with other lignocellulosic biomass is shown in 207 

Table 6. Big bluestem contains relatively higher carbon content than other grasses and crop 208 

residues, which potentially translates into a relatively higher heat content for big bluestem. 209 

The results show that big bluestem could potentially serve as suitable energy grass in the 210 

Midwest with similar or better chemical and elemental compositions compared with other 211 

biomass crops and grasses. 212 

3.1 Effects of Planting Location on Chemical Composition.  213 

    Figure 2 shows the effects of planting location on the chemical composition of big 214 
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bluestem. Big bluestem populations planted in Illinois generally had higher cellulose (glucan) 215 

contents, with an average of 36.5% compared with the average of populations planted in 216 

Colby, KS (31.8%); Hays KS (33.8%); and Manhattan, KS (36.0%). The average cellulose 217 

content of big bluestem planted in Illinois was 4.7% higher than those from Colby in western 218 

Kansas, indicating that the same big bluestem populations would yield ≈15% more cellulose 219 

if planted in Illinois instead of western Kansas. Table 7 shows the linear regression results 220 

between composition and environmental factors associated with the planting locations. The 221 

2010 annual precipitation explained 37–97% of the variation in biomass composition based 222 

on coefficients of determination (R
2
). In addition to the sharp difference in precipitation from 223 

the westernmost planting location (Colby) to the easternmost planting location (Illinois), the 224 

difference in potential evapotranspiration between east and west is also responsible for 225 

composition differences. The 2010 growing degree days explained 17–88% of the variation in 226 

chemical concentrations. The potential evapotranspiration explained 55–80% of the variation 227 

in biomass composition (Table 7). The higher precipitation gradient in Illinois is almost one 228 

and a half times higher than Colby, which provides a better environment for biomass 229 

accumulation. A similar tendency was also observed for hemicellulose (xylan and arabinan). 230 

The highest and the lowest hemicellulose contents in the four planting locations, respectively, 231 

are Illinois with an average of 29.7% and Colby with an average of 25.0% (Figure 2). The 232 

difference in hemicellulose content was about 19% among the four locations. The total 233 

structural polysaccharides content of big bluestem planted in Illinois was about 15% higher 234 

than that planted in Colby; however, this increase was associated with higher lignin content. 235 

The average lignin contents of all planting locations exhibited a decreasing trend with the 236 



12 
 

ecotype from east to west. In fact, 2010 growing degree days and 2010 precipitation 237 

explained 88% and 74% of the variation in lignin concentrations, respectively (Table 7). Big 238 

bluestem in Colby had average of 14.4% lignin, which is significantly lower than samples 239 

planted in Illinois, with average of 18.0% (Fig. 2). Taking into account the adverse effects of 240 

lignin in hydrolysis, further research is needed to determine the sugar yield and fermentation 241 

efficiency of all samples to determine the overall location effects. The range of ash contents 242 

among 28 samples was quite different in four locations. Ash contents of big bluestem from 243 

Illinois (with an average of 4.8%; data not shown) were higher than those populations in the 244 

other three planting locations in Kansas. Results suggest that big bluestem planted in Kansas 245 

with lower ash content would be best suited for the thermoconversion of biomass to biofuel 246 

(Monti et al., 2008). 247 

3.2 Effects of Ecotype on Chemical Composition.  248 

    The composition results also showed a significant variation among the different ecotypes at 249 

P < 0.001 and F values from 3.36 to 28.5, except xylan+arabinan, with P = 0.935 and F = 250 

0.14 (Table 8). Based on F value, ecotype had more significant effects on glucan and lignin, 251 

with F values of 28.5 and 16.2, respectively. Hays ecotype and KAW had significantly higher 252 

glucan contents than East KS and Illinois ecotypes. KAW had the highest glucan content 253 

among all the ecotypes (Figure 3). This could be explained by the fact that the KAW cultivar, 254 

as the native released cultivar, was selected and bred for carbohydrate accumulation. Of these 255 

28 samples, the highest carbohydrates content was found in KAW at the Illinois location, 256 

which indicates combined effects of ecotype and planting location. Although xylan content 257 

differs significantly among the different ecotypes, the average values of xylan of the different 258 
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ecotypes are similar (Figure 3), indicating no clear effect of ecotype on the average xylan 259 

contents within the ecotypes from west to east. This result is probably because glucan and 260 

xylan contents were not solely affected by ecotype. The highest and lowest lignin contents of 261 

big bluestem were Central KS ecotype and Illinois ecotype, respectively. Results suggest that 262 

the Central KS ecotype showed higher lignin content (17.5%) than the Illinois ecotype 263 

(15.7%) because of adaptation to drought necessitated by a dry growing environment. The 264 

high lignin content may result in relatively lower efficiency of degradation in bioconversion.  265 

3.3 Effects of Interactions between Location and Ecotype on Chemical Composition. 266 

    Variations in the glucan, xylan, xylan+arabinan, lignin, and ash contents among the 28 267 

samples were analyzed by two-way ANOVA for examining the genetic and environmental 268 

effects on chemical composition of the big bluestem. In general, ANOVA analysis revealed 269 

that ecotype and location had significant effects on chemical composition including glucan, 270 

xylan, lignin, and ash contents as well as xylan + arabinan content (Table 8). Location had 271 

larger F values (7.2–73.6) than ecotype (0.14–28.5) and interactions (1.12–3.59), showing 272 

that location effects were always highly significant with larger F values, at times approaching 273 

two orders of magnitude larger; however, significant interactions between location and 274 

ecotype have been found only for glucan, with P < 0.002 and an F value of 3.59, and lignin, 275 

with P = 0.018 and an F value of 2.64, indicating that the glucan and lignin contents of big 276 

bluestem were significantly affected by the combined effects of ecotype and growing 277 

locations. 278 

3.4 Effects of Ecotype and Planting Location on Elemental Composition.  279 

    Table 5 shows the carbon, hydrogen, nitrogen, oxygen, and sulfur fractions and H/C ratio of 280 
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the big bluestem samples. The range of elemental fractions is 47.1–51.4% for carbon, 4.93–281 

6.45% for hydrogen, 40.7–46.1% for oxygen, 0.61–1.27% for nitrogen and 0.78–0.98% for 282 

sulfur. The variations of the elements are 10.1% for carbon, 30.8% for hydrogen, 13.2% for 283 

oxygen, 108% for nitrogen, and 25.6% for sulfur. The average ratio of H/C is 1.44 with 284 

variation of 23.6%. Two-way ANOVA analysis shows through larger F values that location 285 

had more effects than ecotype and ecotype-location interaction on elemental composition of 286 

big bluestem (Table 8). Location had significant effects on all of the elemental fractions, with 287 

F values from 12.0 to 80.8 and P < 0.001. Ecotype had significant effects on carbon, oxygen, 288 

and hydrogen with F values from 2.94–11.50 and P values from 0.001–0.044. Ecotype-289 

location interaction had a significant effect only on carbon content. The linear regression 290 

results between composition and environmental factors showed that precipitation explained 291 

37–79% of variation in elemental fractions based on coefficients of determination (R
2
) from 292 

0.37–0.79 in growing year 2010 (Table 7). Growing degree days and the potential 293 

evapotranspiration also explained a large variation in the elemental composition of the big 294 

bluestem samples. 295 

    Because the carbon content is the most important factor related to its bioconversion yield 296 

and heat content, the histogram showed a parabolic trend with ecotype from west to east, 297 

indicating that the middle-location ecotype (EKS ecotype) had the lowest carbon content of 298 

the three ecotypes (Figure 4). In general, the carbon content of the big bluestem (average of 299 

50.8%) planted in Illinois is higher than its counterparts planted in the Kansas locations 300 

(average of 49.2% for Manhattan, 47.7% for Hay, and 47.8% for Colby). Decreased 301 

longitude of planting location resulted in increased carbon content, which was similar to the 302 
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trend of environmental effect on chemical composition. Also noteworthy is that the big 303 

bluestem in Colby had significantly lower nitrogen content (average of 0.65%) compared 304 

with other locations (average of 0.9%) (Figure 5). Low nitrogen fraction in biomass could be 305 

an advantage for the combustion process with low NOx emission (Obernberger and Thek, 306 

2004). However, planting location had no clear effect on hydrogen and sulfur (Figure 6).  307 

 308 

4. Conclusions 309 

Planting location had significant effects on both chemical and elemental compositions of 310 

big bluestem. Ecotype had significant effects on glucan, xylan, lignin, and ash contents, and 311 

C, O, and H elemental fractions, whereas planting location significantly affected all measured 312 

variables. The ecotype-location interaction had significant effects on glucan, lignin, and 313 

hydrogen contents. In general, big bluestem planted in Illinois had higher cellulose, 314 

hemicellulose, and lignin contents than the populations planted in the Kansas locations. 315 

Besides environmental effects, the Illinois ecotype had the lowest lignin contents for all four 316 

locations. Carbon content increased with eastward movement. Carbon content of the big 317 

bluestem planted in Illinois was higher than those planted in the Kansas locations. Up to 97%, 318 

88% and 80% of the variation in compositions can be explained by annual precipitation, 319 

growing degree days and potential evapotranspiration in 2010 respectively. The results show 320 

that big bluestem could potentially serve as suitable energy grass in the Midwest with similar 321 

or better chemical and elemental compositions compared with other biomass crops and 322 

grasses.  323 

 324 
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 Table 1: Collection sites for A.gerardii populations 427 

Ecotype 
Population collection 

site 
County 

Latitude 

(N) 

Longitude 

(W) 

Elevation 

(m) 

CKS, Hays 

Webster Reservoir  

(WEB) 
Rooks 39

o
 24’ 99

o
 32' 606 

Cedar Bluffs 

Reservoir (CDB) 
Trego 38

o
 45’ 99

o
 46' 688 

EKS, 

Manhattan 

Konza Prairie  

(KON) 
Riley/Geary 39

o
 05’ 96

o
 36' 366 

Top of the World 

Park 

(TOW) 

Riley 39
o
 13’ 96

o
 37' 379 

IL, 

Carbondale 

Twelve Mile 

(12M) 

Effingham, 

Fayette, and 

Marion 

38°46' 88°50' NA 

Fults 

(FUL) 
Monroe 37°58’ 89°48' 215 

 428 

429 
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Table 2. The location of the reciprocal garden in the four planting sites 430 

Environment conditions Reciprocal Garden Planting Site 

Colby, KS 

Northwest 

Kansas 

Agricultural 

Research 

Center 

Hays, KS 

Agricultural 

Research 

Center–Hays 

Manhattan, 

KS 

USDA Plant 

Materials 

Center 

Carbondale, 

Illinois 

Southern 

Illinois 

University 

Agronomy 

Center 

Annual precipitation, 2010 

(cm)  

44.57 50.11 67.82 66.95 

Mean annual precipitation 

since 1961 (cm) 

50.47 58.22 87.15 116.73 

Precipitation of driest year, 

cm (year) 

28.37 

(1967) 

36.27 

(1988) 

39.16 

(1966) 

66.95 

(2010) 

Growing degree days 

average since 1961 
3167 3799 4156 4087 

Growing degree days, 2010 
3461 4193 4105 4474 

Potential 

evapotranspiration (cm) 
144 139 127 99 

Aridity index (PET
a
-PPT

b
) 

97 81 41 -18 

Soil type Silt-loam Roxbury silt-

loam 

Sandy-loam Stoy silt-loam 

a 
PET: Potential evapotranspiration. 431 

b
 PPT: Precipitation. 432 

433 
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Table 3. Chemical composition of big bluestem by population and planting site. 434 

Population-location 

Chemical composition (%, db) 

Glucan Xylan Arabinan 
Xylan+ 

Arabinan 
Lignin Ash 

CDB (CKS)-Colby 32.5±0.1 21.4±0.1 3.73±0.01 25.1±0.1 14.8±0.4 3.97±0.32 

WEB (CKS)-Colby 32.8±0.1 22.3±0.2 3.20±0.01 25.5±0.1 15.2±0.1 3.91±0.14 

KON (EKS)-Colby 29.6±0.1 20.7±0.11 3.77±0.02 24.5±0.1 13.3±0.2 5.33±0.90 

TOW (EKS)-Colby 30.8±0.2 20.7±0.2 4.10±0.01 24.78±0.2 13.9±0.1 4.97±0.94 

12M(ILL)-Colby 29.6±0.2 19.2±0.1 3.84±0.06 23.01±0.2 12.0±0.1 5.06±0.25 

FUL (ILL)-Colby 32.6±0.2 22.0±0.2 3.97±0.10 26.0±0.01 14.9±0.1 3.18±0.06 

KAW (CULTIVAR)-Colby 34.9±0.1 23.7±0.3 2.12±0.01 25.8±0.3 16.3±0.1 3.89±0.55 

CDB (CKS)-Hays 36.1±0.1 22.2±0.6 3.15±0.70 25.4±1.3 18.6±0.2 3.79±0.03 

WEB (CKS)-Hays 35.2±0.5 23.2±0.3 2.66±0.42 25.9±0.7 17.7±0.1 3.41±0.36 

KON (EKS)-Hays 33.3±0.2 21.9±0.2 3.02±0.29 24.9±0.1 17.4±0.1 4.25±0.26 

TOW (EKS)-Hays 32.7±0.2 21.3±0.5 3.48±0.41 24.8±0.9 17.2±0.1 5.60±0.24 

12M (ILL)-Hays 31.8±0.5 22.6±0.5 3.97±0.06 26.6±0.5 14.2±0.3 3.12±0.24 

FUL (ILL)-Hays 32.8±0.4 21.7±0.7 3.02±0.43 24.8±1.1 16.8±0.1 3.62±0.31 

KAW (CULTIVAR)-Hays 34. 9±0.1 22.5±0.1 2.54±0.23 25.1±0.4 16.9±0.2 3.60±0.23 

CDB (CKS)-Manhattan 36.7±0.6 23.9±0.3 3.28±0.21 27.2±0.1 18.7±0.2 4.66±0.40 

WEB (CKS)-Manhattan 34.6±0.4 25.3±0.3 3.10±0.01 28.4±0.3 18.8±0.1 3.92±0.26 

KON (EKS)-Manhattan 35.9±0.4 25.1±0.5 3.33±0.50 28.4±0.1 17.6±0.4 4.52±0.55 

TOW (EKS)-Manhattan 35.1±0.3 25.5±0.8 3.02±0.16 28.5±0.7 18.2±0.6 4.77±0.30 

12M (ILL)-Manhattan 34.0±0.2 23.4±0.2 3.87±0.17 27.3±0.4 15.2±0.2 4.93±0.49 

FUL (ILL)-Manhattan 37.1±0.2 26.6±0.1 2.90±0.32 29.5±0.4 17.3±0.3 3.18±0.19 

KAW (CULTIVAR)– 

Manhattan 
38.3±0.6 24.7±0.4 2.28±0.03 27.0±0.4 17.6±0.1 4.51±0.01 

CDB (CKS)-Carbondale 35.6±0.1 24.6±0.4 3.86±0.11 28.5±0.3 17.7±0.2 4.83±0.18 

WEB (CKS)-Carbondale 36.3±0.4 26.1±0.2 4.73±0.05 30.8±0.2 18.2±0.1 4.29±0.02 

KON (EKS)-Carbondale 36.2±0.2 25.4±0.1 4.74±0.15 30.1±0.2 17.6±0.2 5.58±0.34 

TOW (EKS)-Carbondale 36.2±0.1 25.8±0.3 4.75±0.03 30.5±0.3 18.5±0.5 4.90±0.03 

12M (ILL)-Carbondale 35.1±0.4 24.3±1.2 3.78±0.41 28.1±1.6 16.7±0.1 4.82±0.16 

FUL (ILL)-Carbondale 36.6±0.5 26.4±0.2 4.25±0.04 30.7±0.2 18.2±0.2 4.64±0.10 

KAW (CULTIVAR)- 

Carbondale 
39.5±0.4 26.8±0.1 2.70±0.14 29.5±0.1 19.4±0.2 4.30±0.04 

Average 34.5 ±2.4 23.6 ±2.0 3.5 ±0.7 27.0 ±2.1 16.9 ±1.8 4.3±0.7 

435 
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Table 4. Comparison of the chemical composition of different types of biomass
a
 436 

Type of biomass 
Chemical composition (%, db) 

Glucan Xylan+Arabinan Lignin Ash 

Big bluestem-this study 34.5 27.0 16.8 4.3 

Corn stover 38 26 19 6 

Soybean 33 14 - 6 

Wheat straw 38 29 15 6 

Rye straw 31 25 - 6 

Barley straw 42 28 - 11 

Switchgrass 37 29 19 6 

Indiangrass 39 29 - 8 

Little bluestem 35 31 - 7 

Prairie cordgrass 41 33 - 6 

Miscanthus 43 24 19 2 

Intermediate wheatgrass 35 29 - 6 

Reed canarygrass 24 36 - 8 

Smooth bromegrass 32 36 - 8 

Timothy 28 30 - 6 

Tall fescue 25 25 14 11 

Alfalfa 27 12 - 9 

Forage sorghum 34 17 16 5 

Sweet sorghum 23 14 11 5 

Pearl millet 25 35 - 9 

Sudangrass 33 27 - 12 

a
 Data source: Lee et al., 2007 (Lee et al, 2007) 437 
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Table 5.  Elemental composition of big bluestem and ratio of hydrogen to oxygen (H/C) 

as affected by population and planting site. 

Population-location 
Elemental composition (%) 

H/C
a
 

C H O N S  

CDB (CKS)-Colby 48.6±0.1 5.56±0.05 44.3±0.1 0.64±0.01 0.85±0.01 1.37 

WEB (CKS)-Colby 47.2±0.1 5.75±0.06 45.5±0.1 0.69±0.01 0.88±0.04 1.47 

KON (EKS)-Colby 47.4±0.1 5.57±0.01 45.6±0.1 0.69±0.01 0.83±0.04 1.41 

TOW (EKS)-Colby 47.9±0.1 5.62±0.01 45.1±0.1 0.61±0.01 0.83±0.03 1.40 

12M (ILL)-Colby 47.6±0.1 4.93±0.03 46.1±0.1 0.57±0.01 0.78±0.02 1.23 

FUL (ILL)-Colby 48.5±0.1 5.66±0.03 44.2±0.1 0.72±0.01 0.89±0.01 1.40 

KAW (CULTIVAR)-Colby 49.8±0.1 5.36±0.01 43.4±0.1 0.52±0.01 0.83±0.02 1.28 

CDB (CKS)-Hays 47.8±0.1 6.01±0.02 44.3±0.1 1.02±0.02 0.97±0.02 1.51 

WEB (CKS)-Hays 47.5±0.1 5.75±0.04 44.9±0.1 0.92±0.01 0.88±0.01 1.45 

KON (EKS)-Hays 47.4±0.0 5.88±0.02 44.7±0.1 1.12±0.02 0.93±0.01 1.49 

TOW (EKS)-Hays 47.7±0.1 5.88±0.02 44.5±0.1 1.00±0.01 0.93±0.01 1.47 

12M (ILL)-Hays 47.1±0.1 5.76±0.02 45.6±0.1 0.69±0.02 0.87±0.02 1.46 

FUL (ILL)-Hays 48.8±0.1 6.11±0.01 43.1±0.1 1.07±0.03 0.98±0.01 1.50 

KAW (CULTIVAR)-Hays 49.0±0.1 6.13±0.04 43.2±0.1 0.73±0.03 0.98±0.01 1.49 

CDB (CKS)-Manhattan 49.3±0.1 6.03±0.03 42.7±0.1 1.15±0.07 0.92±0.01 1.47 

WEB (CKS)-Manhattan 49.8±0.1 5.95±0.01 42.6±0.1 0.77±0.04 0.93±0.01 1.43 

KON (EKS)-Manhattan 47.9±0.1 5.86±0.01 44.4±0.1 0.86±0.01 0.93±0.03 1.46 

TOW (EKS)-Manhattan 49.47±0.1 5.97±0.02 43.0±0.1 0.73±0.02 0.93±0.02 1.45 

12M (ILL)-Manhattan 49.3±0.1 5.94±0.03 42.6±0.1 1.14±0.03 0.96±0.01 1.43 

FUL (ILL)-Manhattan 50.0±0.1 6.23±0.01 42.1±0.1 0.66±0.01 0.96±0.01 1.49 

KAW (CULTIVAR)- 

Manhattan 49.6±0.1 5.90±0.02 42.8±0.1 0.75±0.01 0.94±0.04 
1.43 

CDB (CKS)-Carbondale 50.7±0.1 6.30±0.02 41.1±0.1 0.93±0.01 0.97±0.02 1.49 

WEB (CKS)-Carbondale 50.8±0.1 6.45±0.01 41.1±0.1 0.76±0.02 0.97±0.02 1.52 

KON (EKS)-Carbondale 50.1±0.1 6.16±0.01 41.5±0.1 1.27±0.03 0.95±0.01 1.47 

TOW (EKS)-Carbondale 51.4±0.1 6.11±0.01 40.8±0.1 0.84±0.01 0.94±0.02 1.42 

12M (ILL)-Carbondale 50.5±0.1 5.85±0.01 41.8±0.1 0.88±0.04 0.94±0.03 1.38 

FUL (ILL)-Carbondale 51.3±0.1 6.03±0.01 40.8±0.1 0.95±0.01 0.94±0.01 1.41 

KAW (CULTIVAR)- 

Carbondale 51.3±0.1 6.15±0.01 40.7±0.1 0.87±0.01 0.96±0.01 
1.43 

Average 49.1±1.4 5.9 ±0.3 43.3 ±1.6 0.84 ±0.2 0.92 ±0.1 1.44±0.1 

a
 H/C=

12/%

1/%

C

H
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Table 6. Comparison of the elemental composition of different types of biomass
a 

Type of biomass 
Elemental composition (%) 

H/C 
b
 

C H O N S  

Big bluestem—this study 49.1 5.9 43.3 0.84 0.92 1.44 

Bagasse (sugarcane) 44.8 5.3 39.6 0.38 0.01 1.42 

Barley straw 45.7 6.1 38.3 0.4 0.1 1.60 

Cotton stalk 13.6 5.8 43.9 - - 5.12 

Corn stover 43.7 5.6 43.3 0.61 0.01 1.54 

Pine (bark) 52.3 5.8 38.8 0.2 - 1.33 

Popular (hybrids) 48.5 5.9 43.7 0.47 0.01 1.46 

Redwood 53.5 5.9 40.3 0.1 - 1.32 

Rice straw 41.8 4.6 36.6 0.7 0.08 1.32 

Switchgrass 47.5 5.8 42.4 0.74 0.08 1.47 

Wheat straw 43.2 5.0 39.4 0.61 0.11 1.39 

a
 Data source: Jammel et al., 2010 

b
 H/C=

12/%

1/%

C

H
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Table 7. Effects of environmental conditions on chemical composition and elemental 

fractions of big bluestem analyzed by linear regression models. 

Composition 

(% db) 

PPT
a
 

2010 

(cm) 

PPT
a
 since 

1961 (cm) 

GDD
b
 

avg. 

(cm) 

GDD
b
 

2010 

(cm) 

PET
c
 

(cm) 

Aridity 

index 

Glucan 0.94 0.84 0.93 0.8 0.72 0.81 

Xylan 0.97 0.93 0.78 0.66 0.8 0.88 

Xylan+ 

Arabinan 
0.88 0.99 0.63 0.67 0.91 0.96 

Lignin 0.74 0.63 0.96 0.88 0.55 0.63 

Ash 0.37 0.65 0.08 0.17 0.67 0.64 

Carbon 0.7 0.96 0.42 0.57 0.95 0.96 

Hydrogen 0.69 0.69 0.9 0.96 0.64 0.69 

Oxygen 0.79 0.99 0.61 0.76 0.98 0.99 

Nitrogen 0.37 0.34 0.74 0.82 0.32 0.36 

Sulfur 0.61 0.52 0.91 0.87 0.46 0.52 

       a
 PPT: Precipitation 

        
b
 GOD: Growing degree days 

        
c
 PET: Potential evapotranspiration 
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Table 8. Effects of ecotype (E), location (L), and interaction between ecotype and 

planting location on the chemical and elemental composition of big bluestem. 

 

Composition 

/elements (%) 

Source of 

variation 

 

Location Ecotype L×E 

Glucan F 73.56 28.51 3.59 

P <0.001 <0.001 0.002 

     

Xylan F 58.98 3.36 1.811 

P <0.001 0.028 0.096 

     

Xylan+ Arabinan F 63.70 0.14 1.12 

P <0.001 0.935 0.369 

     

Lignin F 48.98 16.23 2.61 

P <0.001 <0.001 0.018 

     

Ash F 7.23 9.62 1.39 

P <0.001 <0.001 0.224 

     

Carbon F 80.77 11.50 1.69 

P <0.001 <0.001 0.123 

     

Oxygen F 86.66 5.98 1.67 

P <0.001 0.002 0.129 

     

Hydrogen F 45.27 2.94 3.24 

P <0.001 0.044 0.005 

     

Nitrogen F 12.02 2.60 1.13 

P <0.001 0.065 0.359 

     

Sulfur F 29.52 0.46 1.15 

P <0.001 0.706 0.347 
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Figure captions 

Fig. 1. Reciprocal gardens across the precipitation gradient. Yellow dot is Colby satellite 

site. Seeds were collected from native prairie with 50 miles of each planting site. The 

isoclines represent the precipitation gradient in terms of mean annual precipitation 

(modified from Burke) across the central grasslands of the United States.  

Fig. 2. Effects of planting location on chemical composition of big bluestem.  

Fig. 3. Effects of ecotype on chemical composition of big bluestem. 

Fig. 4. Effects of planting location on carbon content of big bluestem. 

Fig. 5. Effects of planting location on nitrogen content of big bluestem. 

Fig. 6. Effect of ecotype on carbon, oxygen contents hydrogen, nitrogen, and sulfur.  
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