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Abstract

In this paper we give a new generalization of the Khovanov homology. The construction

begins with a Frobenius-algebra-like object in a category of graded vector-spaces with an

anyonic braiding, with most of the relations weaken to hold only up to phase. The con-

struction of Khovanov can be adapted to give a new link homology theory from such data.

Both Khovanov’s original theory and the odd Khovanov homology of Oszvath, Rassmusen

and Szabo arise from special cases of the construction in which the braiding is a symmetry.
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Chapter 1

A Brief Introduction to Knots and
Khovanov Homology

In this chapter, we will look at basic definitions and facts on knots and links and Khovanov

homology. For more introduction we are referred to [Adams2], [Bar-Natan3], [Bar-Natan1],

[Kauffman4], [Kauffman and Lins5], [Lauda and Pfeiffer6], [Rolfsen7], and [Yetter8].

1.1 Knots

What is a mathematical knot? First, let us make a knot with a piece of string. Weave a

strand of string around and through itself, and merge the ends to form a single continuous

strand. This is a mathematical knot. In mathematics, study of knots began in the 19th

century. The main approach to knots started in the early 20th century by J. W. Alexander

and others from the aspects of invariants from homology theory and the knot group, such

as the Alexander polynomial. The discovery of the Jones, HOMFLY-PT, and Kauffman

polynomials opened a new era in knot theory finding new knot and 3-manifold invariants.

From that time new and surprising connections have been found between topology, algebra,

and physics. In the late 20th century, scientists became interested in studying physical knots

in order to understand knotting phenomena in DNA and other polymers. Knot theory can

be used to detect chirality in a molecule (Simon9, 1986). Knot theory may be crucial in the

construction of quantum computers, through the model of topological quantum computation
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(Collins10, 2006).

Let us recall the precise definition of knots and links:

Definition 1.1.1. A (classical) knot is an embedding of S1 into S3 (or R3).

A (classical) link is an embedding of
n∐
i=1

S1 into S3 (or R3), for some n ∈ N.

Note : in order to consider an “empty link”, we allow n = 0.

So a mathematical knot is a simple closed loop, which is different from physical knot -

what we can see daily in our shoes. And a link is a finite set of non-intersecting knots. In

mathematics, knot theory is primarily studied using a notion of equivalence, which captures

our intuition about manipulating a loop of string without cutting it gives the same loop of

string in a different configuration, which is called ambient isotopy:

Definition 1.1.2. Two knots or links K1, K2 are ambient isotopic or simply equivalent if

there is an isotopy H : S3× I→ S3 (or similarly for R3 instead of S3) which carries one to

the other.

More precisely, H is a PL map, satisfying H(−, 0) = IdS3 ; H(−, t) is a PL-homeomorphism

for each t ; and

H(K1(x), 1) = K2(x)

(using Ki to denote the mapping, with implied domain.)

Here, “isotopy” means the deformation of the string of a knot, and “ambient” refers to

the fact that the three dimensional space is deformed along with the knot. So in an ambient

isotopy, we can not shrink a part of knot to a point. For the simple intuitive manipulations of

a knot diagram that we correspond to knot equivalence, we use the Reidemeister moves.

There is a famous theorem of Reidemeister which says that two knots are equivalent

if and only if any diagram of one can be transformed into a diagram of the other by a

sequence of Reidemeister moves. But we need invariants to demonstrate non-equivalence

or give evidence for their equivalence of knots because it is difficult to show a sequence of

2



Figure 1.1: The three Reidemeister moves R1, R2 and R3.

Reidemeister moves even for simple knots that we know are equivalent to each other and

not being able to give such a sequence does not prove none exists. There are many such

knot invariants, such as the Alexander polynomial, and Jones polynomial. The Alexander

polynomial is a knot invariant which gives a polynomial with integer coefficients to each

knot type. Jones polynomial is a polynomial link invariant which is particularly appealing

due to the simplicity of its combinatorial construction from the Kauffman bracket. But

in the late 1990s, from the Kauffman bracket, Mikhail Khovanov developed another link

invariant which is categorified version of the Jones polynomial. It is called the Khovanov

homology.

1.2 Khovanov Homology

The story starts with the Kauffman bracket (bracket polynomial) [Louis H. Kauffman11,

1987]. The (Kauffman) bracket polynomial of an oriented link diagram L with w(L) the

writhe of L, is defined by the following formula

fL(A) = (−A3)−w(L) 〈L 〉
/
〈© 〉

with the following properties;

〈 ∅ 〉 = 1 ;

〈 ©L 〉 = (−A2 − A−2) 〈 L 〉 ;

〈 〉 = A 〈 〉+ A−1 〈 〉 ;

3



〈 〉 = A 〈 〉+ A−1 〈 〉 .

In fact, the Kauffman bracket is a polynomial invariant of framed links because it is not

invariant under the first Reidemeister move. But its ”normalized” version gives the famous

knot invariant which is called the Jones polynomial. The Jones polynomial is a polynomial

link invariant whose construction is very similar to the construction of the Khovanov ho-

mology. In the definition of the Kauffman bracket, if we set q = −A−2, then we can get

the following with normalization term, (−1)n− qn+−2n− which yields the unnormalized Jones

polynomial,

Ĵ(L) = (−1)n− qn+−2n− 〈L 〉.

with the following properties ;

〈 ∅ 〉 = 1; 〈 ©L 〉 = (q+q−1)〈 L 〉; 〈 〉 = 〈 〉−q 〈 〉; 〈 〉 = 〈 〉−q 〈 〉.

And the Jones polynomial is

J(L) := Ĵ(L)
/

(q + q−1).

Here 〈L 〉 is the Kauffman bracket of L and (n+, n−) are the number of positive and negative

crossings in the oriented link diagram L, respectively.

Khovanov homology replaces the Kauffman bracket 〈L 〉 of a link projection L by the

Khovanov bracket [[L ]] , that is a chain complex of graded vector spaces whose graded

Euler characteristic is 〈L〉. Like Jones polynomial, the definition of the Khovanov bracket

can be summarized by the following axioms;

[[ ∅ ]] = 0→ Z→ 0 ;

[[ ©L ]] = V ⊗ [[ L ]] ;

[[ ]] = Tot
(

0→ [[ ]]
d→ [[ ]] {1} → 0

)
;
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[[ ]] = Tot
(

0→ [[ ]]
d→ [[ ]] {1} → 0

)
.

Here, as the Jones polynomial associates a polynomial, (q+q−1), with each disjoint loop,

the Khovanov homology associates a graded vector space, V = Span {v+, v−} with degree

+1 and −1 respcetively. Then its graded dimension is q + q−1. The operator {1} is the

“degree shift by 1” operation, which is the appropriate replacement of “multiplication by

q”, Tot denotes the total complex of a double complex which forms a complex by taking

direct sums along diagonals, and the differential d, is defined below.

As the (unnormalized) Jones polynomial is a minor renormalization of the Kauffman

bracket, the Khovanov invariant H(L) is the homology of a similar renormalization

[[ L ]] [−n−]{n+ − 2n−}

of the Khovanov bracket. And the Khovanov invariant is indeed a link invariant and its

graded Euler characteristic is Ĵ(L).

For Khovanov homology, we need several definitions.

Definition 1.2.1 (Bar-Natan3). Let W =
⊕

mWm be a graded vector space bounded below

with homogeneous components {Wm}. The graded dimension of W is the Laurent series

qdimW :=
∑

m q
m dimWm.

In practice, we will consider only graded vector spaces with finite dimensional underlying

vector space, so the graded dimensions will always be a Laurent polynomial.

Definition 1.2.2 (Bar-Natan3). Let ·{l} be the “degree shift” operation on graded vector

spaces. That is, if W =
⊕

mWm is a graded vector space, we set W{l}m := Wm−l, so that

qdimW{l} = ql qdimW .

Definition 1.2.3 (Bar-Natan3). Likewise, let ·[s] be the “height shift” operation on chain

complexes. That is, if C̄ is a chain complex . . .→ C̄r dr→ C̄r+1 . . . of (possibly graded) vector

spaces (we call r the “height” of a piece C̄r of that complex), and if C = C̄[s], then Cr = C̄r−s

(with all differentials shifted accordingly).
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Then with these definitions, let us start to make Khovanov homology with the following

Figure 1.2. This part is exactly from [Bar-Natan3], [Bar-Natan1]. First we can make a

commutative cube from a knot or link.

:

111

00*

0*0

*00

*01

0*1

*10

1*0

*11

1*1

10*

01*

11*

1− 2− 3−

000

001

010

100

011

101

110

-3 -2 -1 0

Figure 1.2: The main picture (the left-handed trefoil knot). – (picture from [Bar-Natan]1)

• A knot On the upper left of the figure we see the left-handed trefoil knot L with its

n = 3 crossings labeled 1, 2 and 3. It is inside of double brackets ( [[ · ]] ) to denote the

formal Khovanov Bracket.

• Crossings

On the figure of L we need to define the signs of its crossings ; (+) for overcrossings

( ) and (−) for undercrossings ( ). Let n+ and n− be the numbers of (+)

crossings and (−) crossings in K, respectively. So for the left-handed trefoil knot,

(n+, n−) = (0, 3).
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up
pe

r

low
er

a crossing its 0 smoothing its 1 smoothing

level (0)

le
ve

l (
1)

Figure 1.3: A crossing is an interchange involving two highways. The 0–smoothing is
when you enter on the lower level (level 0) and turn right at the crossing. The 1–smoothing
is when you enter on the upper level (level 1) and turn right at the crossing. – (picture from
[Bar-Natan]1)

• Cube
001

010

100 110

101

011

111000

00*

0*0

0*1

*01

01*

*10

10*

1*0

*11

1*1

*00 11*

−3 −2 −1 0

The main part of the figure is the n–dimensional cube whose vertices are all the n–

letter strings with 0’s and 1’s. The edges of the cube are marked in the natural manner

by n–letter strings of 0’s, 1’s and precisely one ? (the ? denotes the coordinate which

changes from 0 to 1 along a given edge). The cube is skewed along its main diagonal,

from 00 · · · 0 to 11 · · · 1. More precisely, each vertex of the cube has a “height”, the

sum of its coordinates, a number between 0 and n. The cube is displayed in such a

way so that vertices of height k project down to the point k − n− on a line marked

below the cube. We indicate these projections with dashed arrows and tilted them a

bit to remind us of the −n− shift. The above picture is shown for the case of n = 3.

• Vertices

0 01

Each vertex of the cube is for a smoothing of L — a planar diagram obtained by

resolving every crossing in the given diagram of L into either a “0–smoothing”

( ) or into a “1–smoothing” ( ) (see Figure 1.3). Because our L has 3 crossings,
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it has 23 = 8 smoothings. They are assigned to each vertices of the 3–dimensional

cube {0, 1}3.

• Edges

Here we can apply (1+1) – dimensional Topological Quantum Field Theory. On each

vertex we have a union of 1-manifolds that are assigned to a vector spaces by TQFT,

and each edge of the cube is labeled by a cobordism between them – the smoothing

on the top of that edge and the smoothing on its bottom. Then we can replace them

by the 2 - dimensional saddle-like cobordism ; . They are displayed in Figure 1.2.

Here, denotes the saddle cobordism with top and bottom . And

there is a famous theorem by Lowell Abrams12, which says that there is a 1-to-1

corespondience between 2 - dimensional TQFTs and Frobenius algebras. So we can

use a Frobenius algebra to define maps corresponding to the edges.

• Signs

−

+
−

1 dy

dx

dz
−

dx^dy

−
dx^dz

dy^dz

dx^dy^dz
^dy

^dx

^dz

+

+

+

+
+

+

+

In the original paper of [Khovanov13], he used the canonical way to construct a anti-

commutative cube. We discuss it in the appendix A.1. On the other hand, Bar-Natan3

created it in different way. Let us see the picture in the cube part above.

001

010

100 110

101

011

111000

00*

0*0

0*1

*01

01*

*10

10*

1*0

*11

1*1

*00 11*

−3 −2 −1 0
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Here, each edge is denoted by three digit number, ξ, which consist of ∗, 0, 1. The

height |ξ| of an edge ξ is defined to be the height of its starting object. Later the

vertical collapse of the cube will give us a chain complex, and the differential is

dr :=
∑
|ξ|=r

(−1)ξ ξ.

Here, we need the signs (−1)ξ, for d to satisfy d ◦ d = 0. It is enough the all square

faces of the cube would be anti-commutative. For it, we construct commutative cube,

and then sprinkle signs to make the faces anti-commutative. Thus, we can use

(−1)ξ := (−1)
∑
i<j ξi

, where j is the location of the ∗ in ξ.

• Tangles

:

10

0* *1

*0 1*

1+ 2+

0 1 2

00

01

11

Now we can construct a commutative cube from an arbitrary link diagram with more

crossings similar to the one in Figure 1.2. In practice, we can make a commutative

cube for any tangle.

So we could build up the commutative cube from a knot L. Now let us consider how

to construct the complex C(L) of a commutative cube. In this time we will use another

example (right trefoil knot). Building a commutative cube is just from the previous work.

For more detail, we refer to [Bar-Natan3] and [Bar-Natan1].
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1

3

2

V {1}

100

◦
d1?0

//

◦

d10?

!!

⊕

V ⊗2{2}

110

d11?

""

⊕

V ⊗2

000

d?00

>>

d0?0
//

d00?

""

��

V {1}

010

d?10

==

◦

d01?
##

⊕

V ⊗2{2}

101

◦
d1?1

//

⊕

V ⊗3{3}

111

��

V {1}

001

d?01

;;

d0?1
//

��

V ⊗2{2}

011

d?11

;;

��[[ ]]0 d0 //
[[ ]]1 d1 //

[[ ]]2 d2 //
[[ ]]3

∑
|ξ|=0

(−1)ξdξ

��

∑
|ξ|=1

(−1)ξdξ

��

∑
|ξ|=2

(−1)ξdξ

��

=
[[ ]] ·[−n−]{n+−2n−}−−−−−−−−−−−−−→

(with (n+, n−) = (3, 0))
C( ). (1.2.1)

Then the chain groups [[L ]]r are direct sums of the vector spaces that appear in the

vertices of the cube along the columns above each one of the [[L ]]r spaces.

Let Hr(L) denote the rth cohomology of the complex C(L). It is a graded vector space

depending on the link projection L. Let Kh(L) denote the graded Poincaré polynomial of

the complex C(L) in the variable t; that is,

Kh(L) :=
∑
r

tr qdimHr(L).

Then we have the following theorem.
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Theorem 1 (Khovanov13). The graded dimensions of the homology groups Hr(L) are link

invariants, and hence Kh(L), a polynomial in the variables t and q, is a link invariant that

specializes to the unnormalized Jones polynomial at t = −1.

So, for any planar diagram of an oriented knot K or link L, Khovanov link homology

theory give a chain complex [[L ]] of graded vector spaces whose graded Euler characteristic

agrees with the Jones polynomial of the link. This construction can be thought as a categori-

fication of the unnormalized Jones polynomial, replacing a polynomial in one indeterminate

q by a chain complex of graded vector spaces. In general the homology groups contain

more information about the link than the Jones polynomial. Bar-Natan3, and Wehrli14 had

proven that there are knots and links that have the same Jones polynomial, but which can

be distinguished by their Khovanov homology.
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Chapter 2

TQFTs and Frobenius algebras

In this chapter we discuss topological quantum field theories (TQFTs), and Frobenius

algebras. For more information, refer to [Kock15], [Khovanov13], [Lauda and Pfeiffer6],

[MacLane16], and [Yetter8].

2.1 Topological Quantum Field Theories (TQFTs)

Topological quantum field theories (TQFTs) were introduced by Atiyah17, and their relation

to Frobenius systems were described by Abrams12.

Let R be a commutative unital ring. A (n+1)–dimensional TQFT is a monoidal functor

from the category of (n + 1)–dimensional cobordisms to the category of R-modules. First,

let us define the category of (n+ 1)–dimensional cobordisms.

Definition 2.1.1. The category of (n + 1)–dimensional cobordisms, (n+ 1)–Cobord has

as objects smooth compact oriented n-manifolds, and arrows from X to Y are named by

diagrams of the form

X∗ q Y ∼ // ∂Z � � // Z.

Two such maps X∗ q Y ∼
ϕ
// ∂Z � � // Z , and X∗ q Y ∼

ψ
// ∂W � � // W are the

12



same arrows if there exists an orientation preserving diffeomorphism ξ : Z → W such that

∂Z

∂ξ∼

��

X∗ q Y

ϕ

∼

88

∼
ψ

&&

∂W

Then (n+ 1)–Cobord is a symmetric monoidal category with disjoint union as the

monoidal product, and the empty n-manifold as the monoidal identity. Moreover every

object X has a dual X∗, the same manifold with its orientation reversed, and the unit and

counit are given by
XX*

,
XX *

,

giving the followings.

= , = .

Definition 2.1.2. A (n+ 1)–dimensional TQFT is a monoidal functor Z

from ((n+ 1)–Cobord,
∐
, φ, Id, Id, Id, tw) to (R–mod, ⊗, R, α, ρ, λ, σ).

Note. Z(X∗) = Z(X)∗ is not an extra condition because a monoidal functors preserve

duals.

Example : (0 + 1)− TQFT .

(0 + 1)− Cobord has as objects compact 0–manifold; that is, signed finite sets of

points, and as arrows cobordism between them. Then (0 + 1)–Cobord is monoidally

equivalent to a category FlatOTang, whose objects are sequences of +’s and −’s, and

arrows are “flat oriented tangle diagrams” modulo “flat Reidemeister moves”. This

category was described by Kelly and Laplaza18 as a free symmetric compact closed

category. For more detail, we can see [Yetter8].
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Example : (1 + 1)− TQFT .

(1 + 1)− Cobord has as objects compact oriented 1–manifold; that is, disjoint union

of oriented circles, and as arrows cobordism between them.

Note : up to diffeomorphism, any surface with 2 families of circles (one at top and one

at bottom) as boundary can be obtained by gluing together copies of the 2–manifolds

with ∂ indicated below:

, , , , and ;

that is, (1 + 1)–Cobord is generated under composition and monoidal product by only

these five cobordisms.

2.2 Frobenius Algebra

In representation theory and module theory, a Frobenius algebra is a finite dimensional unital

associative algebra with a special kind of bilinear form, which gives the algebra particularly

nice duality properties.

Definition 2.2.1. A finite dimensional, unital, associative algebra A defined over a field

K is called a Frobenius algebra if A is equipped with a nondegenerate bilinear form

σ : A× A→ K that satisfies the following equation

σ(a · b, c) = σ(a, b · c).

This bilinear form is called the Frobenius form of the algebra.
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In category theory, a Frobenius object is a generalization of a Frobenius algebra to

an arbitrary monoidal category. A Frobenius object (A, µ, η, δ, ε) in a monoidal category

(C,⊗, I) consist of an object A of C together with four morphisms

µ : A⊗ A→ A , η : I → A , δ : A→ A⊗ A , and ε : A→ I

such that

• (A, µ, η) is a monoid in C.

• (A, δ, ε) is a comonoid in C.

• the followings diagrams commute.

A⊗ A δ⊗A
//

µ

��

A⊗ A⊗ A
A⊗µ
��

A
δ

// A⊗ A

A⊗ A A⊗δ
//

µ

��

A⊗ A⊗ A
µ⊗A
��

A
δ

// A⊗ A

And as we have seen before, (1 + 1)− TQFT is a monoidal functor

F : (n+ 1)− Cobord→ R−mod.

Then there is well-known correspondence described by Abrams12 between (1 + 1)− TQFT

and Frobenius algebra. A (commutative) Frobenius system is a 4-tuple (R,A, ε,∆), where

R, A, ε, and ∆ are the following objects and morphisms.

• A is a commutative unital R-algebra such that the natural R-module map ι : R → A,

given by ι(1) = 1, is injective. ε : A → R is a map of R-modules and ∆ is a

coassociative, cocommutative map ∆ : A→ A⊗ A of A-bimodules such that

(ε⊗ Id) ◦∆ = Id.

So given a commutative Frobenius algebra, we can define a (1 + 1) − TQFT , F by

assigning R to the empty 1-manifold, A to the circle, A ⊗R A to the disjoint union of two

circles, and so on. And for the generating morphisms of (n+1)–Cobord, we define F by

15



F
( )

= ε

F
( )

= ι

F

( )
= m

F

( )
= ∆

F

( )
= IdA

Then algebraically (1 + 1)− TQFT can be described in terms of (commutative) Frobenius

algebra.

2.3 Graded Vector Spaces

A graded vector space is a vector space equipped with the extra structure of grading, which

is a decomposition of the vector space as a direct sum of vector subspaces indexed by a ring

(usually Z, or Z/n for some n).

Definition 2.3.1. An R-grading on a vector space W is a choice of decomposition into a

direct sum of subspaces, Wm, such that W =
⊕
m∈R

Wm. An R-graded vector space is a

vector space equipped with an R-grading.

In this paper, we will use the basis, v+, v−, for the vector space V to assign a grading.

Let us give them their degree a, b , respectively. So if we set Wa := Span {v+}, and Wb :=

Span {v−}, then

V = Wa ⊕Wb.

If we let W2a := Span {v+v+}, Wa+b := Span {v+v−, v−v+}, and W2b := Span {v−v−}, then

V ⊗2 = W2a ⊕Wa+b ⊕W2b.
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Definition 2.3.2 (Bar-Natan3). Let W =
⊕

mWm be a graded vector space bounded below

with homogeneous components {Wm}. The graded dimension of W is the Laurent series

qdimW :=
∑

m q
m dimWm.

Thus we see that

qdim V = qa qdim Wa + qb qdim Wb = (qa + qb),

and

qdim (V ⊗ V ) = q2a qdim W2a + qa+b qdim Wa+b + q2b qdim W2b = (qa + qb)2.

Definition 2.3.3 (Bar-Natan3). Let ·{l} be the “degree shift” operation on graded vector

spaces. That is, if W =
⊕

mWm is a graded vector space, we set W{l}m := Wm−l, so that

qdimW{l} = ql qdimW .

Lemma 2.3.4. The graded dimension of a direct sum V ⊕ W is the sum of the graded

dimensions of V and W ,

qdim (V ⊕W ) = qdimV + qdimW

Lemma 2.3.5. The graded dimension of a tensor product V ⊗W is the product of the graded

dimensions of V and W ,

qdim (V ⊗W ) = (qdimV ) (qdimW )
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Chapter 3

Anyonic Khovanov Homology

The goal of this paper is to construct an anyoic braided version of Khovanov homology using

constructions after the manner of Bar-Natan [BN]1, Scott Morrison [SM]19 for Khovanov

Homology, and Beliakova and Wagner [BW]20 for Odd Khovanov Homology21. First we will

define anyonic braided cobordisms analogously to Beliakova and Wagner’s odd cobordisms

and using them, we will define a cube and a complex in AnyBraidCob, then we will prove

the invariance up to chain homotopies, so that invariant homology groups can be computed.

3.1 Anyonic Braiding

In the chapter 2, we saw the relation between Khovanov homology and TQFT . Here,

because the circles in the (1+1)-dimensional TQFT are interacting embedded in a (2+1)-

dimensional background, it is natural to work in a braided setting. In physical terms,

fractional statistics are possible, corresponding to the anyonic braiding.

Proposition 3.1.1. For any ξ ∈ C∗, the family of linear maps given on homogeneous

elements by

σ(a⊗ b) = ξ|a||b| b⊗ a

defines a braiding on Gr-VS, the category of Z-graded complex vector spaces.

If |ξ| = 1 due to relation to the (2+1)-dimensional physics (cf. the fractional quantum Hall

effect), such a braiding is called an “anyonic braiding”.
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Then using this definition, we can construct the basic morphisms needed to construct

our generalized Khovanov homology. Because our construction covers both the original

Khovanov homology (with c = 0) and Odd Khovanov homology as special cases, the paper

[BW]20 of Beliakova and Wagner is a good starting point, and we follow their mode of

exposition.

Definition 3.1.2. Let V be the graded vector space with two basis elements v+, v− whose

degrees are a, b respectively, so that qdimV = qa + qb.

Then we can define the following:

m =


v+v+ → v+

v+v− → v−
v−v+ → v−
v−v− → 0

∆ =

{
v+ → v−v+ + ϕv+v−
v− → v−v−

e : 1→ v+

ε =

{
v+ → 0
v− → 1

These maps have degrees −a, b, a, and −b respectively.

If ξ = ϕ = 1, a = 1, b = −1, then we can obtain the original Khovanov homology in the

case where Khovanov’s c = 0. But for different values, we can get quite a different story.

For fixed ξ, let us check counital coassociativity and unital associativity.

(∆⊗ 1) ∆(v+) = (∆⊗ 1) (v−v+ + ϕv+v−) = v−v−v+ + ϕ (v−v+v− + ϕv+v−v−)

(∆⊗ 1) ∆(v−) = (∆⊗ 1) (v−v−) = v−v−v−

(1⊗∆) ∆(v+) = (1⊗∆) (v−v++ϕv+v−) = ξb
2
v−v−v++ϕ ξb

2
v−v+v−+ϕ ξab v+v−v−

(1⊗∆) ∆(v−) = (1⊗∆) (v−v−) = ξb
2
v−v−v−

(ε⊗ 1) ∆(v+) = (ε⊗ 1) (v−v+ + ϕv+v−) = v+

(ε⊗ 1) ∆(v−) = (ε⊗ 1) (v−v−) = v−

19



(1⊗ ε) ∆(v+) = (1⊗ ε) (v−v+ + ϕv+v−) = ϕ ξ−ab v+

(1⊗ ε) ∆(v−) = (1⊗ ε) (v−v−) = ξ−b
2
v−

Note extra powers of ξ arise in these calculation due to the need to braid the operations

past arguments. This braiding of operations past arguments is analogous to the extra signs

that appear in the classical theory of graded algebras due to the Koszul sign rule when

operations of odd degree are considered. We adopt the convention that an operation always

passes in front of arguments. So, ξab = ϕ ξb
2

must hold if ∆, ε give the structure of a

counital coassociative coalgebra.

On the other hand,

m ( (m⊗ 1) (v+v+v+) ) = m(v+v+) = v+

m ( (m⊗ 1) (v+v+v−) ) = m(v+v−) = v−

m ( (m⊗ 1) (v+v−v+) ) = m(v−v+) = v−

m ( (m⊗ 1) (v+v−v−) ) = m(v−v−) = 0

m ( (m⊗ 1) (v−v+v+) ) = m(v−v+) = v−

m ( (m⊗ 1) (v−v+v−) ) = m(v−v−) = 0

m ( (m⊗ 1) (v−v−v+) ) = m(0) = 0

m ( (m⊗ 1) (v−v−v−) ) = m(0) = 0

m ( (1⊗m) (v+v+v+) ) = ξ−a
2
m(v+v+) = ξ−a

2
v+

m ( (1⊗m) (v+v+v−) ) = ξ−a
2
m(v+v−) = ξ−a

2
v−

m ( (1⊗m) (v+v−v+) ) = ξ−a
2
m(v+v−) = ξ−a

2
v−

m ( (1⊗m) (v+v−v−) ) = ξ−a
2
m(0) = 0

m ( (1⊗m) (v−v+v+) ) = ξ−abm(v−v+) = ξ−ab v−

m ( (1⊗m) (v−v+v−) ) = ξ−abm(v−v−) = 0

m ( (1⊗m) (v−v−v+) ) = ξ−abm(v−v−) = 0

m ( (1⊗m) (v−v−v−) ) = ξ−abm(0) = 0

m ( (e⊗ 1) (v+) ) = m(v+v+) = v+

m ( (e⊗ 1) (v−) ) = m(v+v−) = v−
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m ( (1⊗ e) (v+) ) = ξa
2
m(v+v+) = ξa

2
v+

m ( (1⊗ e) (v−) ) = ξabm(v−v+) = ξab v−

So, ξab = ξa
2

must hold for m, e to give the structure of a unital associative algebra.

We let

ω := ξa
2

= ξab = ϕ ξb
2

.

Now let us check the Frobenius condition.

From the right Frobenius condition,

(m⊗ 1) ( (1⊗∆) (v+v+) ) = ξab v−v+ + ϕ ξab v+v−

(m⊗ 1) ( (1⊗∆) (v+v−) ) = ξab v−v−

(m⊗ 1) ( (1⊗∆) (v−v+) ) = ϕ ξb
2
v−v−

(m⊗ 1) ( (1⊗∆) (v−v−) ) = 0

and the left Frobenius condition,

(∆⊗ 1) ( (1⊗m) (v+v+) ) = ξ−ab v−v+ + ϕ ξ−a
2
v+v−

(∆⊗ 1) ( (1⊗m) (v+v−) ) = ξ−ab v−v−

(∆⊗ 1) ( (1⊗m) (v−v+) ) = ξ−ab v−v−

(∆⊗ 1) ( (1⊗m) (v−v−) ) = 0

we can see the Frobenius condition holds once the correct factor of ω is included. The

following definition is then analogous to Beliakova and Wagner’s OddCob in [BW]20 :

Definition 3.1.3. AnyBraidCob is defined as follows:

• The objects are finite ordered set of circles

• The morphisms are generated by

:


v+v+ → v+

v+v− → v−
v−v+ → v−
v−v− → 0
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:

{
v+ → v−v+ + ϕv+v−
v− → v−v−

:


v+v+ → ξ−a

2
v+v+

v+v− → ξ−ab v−v+

v−v+ → ξ−ab v+v−
v−v− → ξ−b

2
v−v−

: 1→ v+

:

{
v+ → 0
v− → 1

subject to the following sets of relations:

(1) Commutativity relation :

=

(2) Associativity and coassociativity relations :

= =
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(3) Frobenius relations :

= =

(4) Unit and counit relations :

= =

(5) Braiding relations :

= =

(6) Unit-braiding and counit-braiding relations :

= =

(7) Merge-braiding and split-braiding relations :

= =
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(8) Commutation relations :

=

=

=

=

=

=
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=

=

3.2 Ordering Convention

In this section we will give an ordering to our knot diagram which is used to make our

cube. As we have seen in the section 3.1, the anyonic braiding is from physics, the frac-

tional quantum Hall effect. Everything is physically instantiated in the plane. As in the

definition 3.1.3, if we have an operation, it physically has to interact with them, physically

go past things. Then it creates extra phase. This means that when we construct a cube

from a knot diagram, according to the ordering we can get different phases. Here we define

how to give an order to our knot diagram. Let us start with a knot. Here, we are using a

right trefoil knot.

First, we need to choose a base point (starting point). It can be any point on the knot

diagram.
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In this case, red point refers to our base point. Then to give an order, we need to chase

around overcrossing. We can find the first overcrossing here,

And the second and third overcrossing here,

,

Finally we can give an order as follows.

1

2

3

On the other hand, for a left trefoil knot, we can get the following.

2

3

1

Remark 3.2.1. The invariants of based pointed knots are the same as the invariants of

knots.

If we have two knots with base points, then we choose an isotopy to move the base point

to the point of infinity in each case by rotating three sphere. So we can put that base point

each to the point of infinity. If they are isotopic, they are isotopic with the base point

staying at the point of infinity. So choosing of base point does not affect to the invariants

of knots. We are not doing anything the changes in the structure of knot. It has still same

invariance.
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But, that is not the case in the case of links. In the case of links, if we choose base

points on them, we can not avoid possibility of doing Reidemeister moves over base points.

Thus in the case of links our construction gives an invariant of string links with ordered

components.

Conjecture 1. The invariant does not depend on the order of the components.

Conjecture 2. The invariant is an invariant of the link obtained by closing the string link.

3.3 Construction of the complex

In this section we closely follow the construction of Khovanov homology recalled in the

section 1.2.

We start with Figure 3.1 at a completely descriptive level.

• A knot : On the above left of the figure we see the right-handed trefoil knot K with its

n = 3 crossings labeled by 1, 2 and 3. This labels are from our ordering. It is enclosed

by double brackets ([[ · ]]) for the formal Khovanov Bracket of the right-handed

trefoil.

• Crossings : It is exactly same as Khovanov homology. We define as (+) crossing,

and as (−) crossing. So for the left-handed trefoil knot, (n+, n−) = (0, 3).

• Vertices : As in Khovanov homology, we can make eight vertices, labeled from 000 to

111.

• Edges : Here we can see all the edges consist of m and ∆.

• Cube : With vertices and edges, we can construct a cube for Khovanov homology.

• Signs : Again, it is the same as Khovanov one.

• Commutativity : As we have seen above everything is the same as the Khovanov

homology except the commutativity. Commutativity of the cube is followed from the
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2

3

1

V ⊗2{1}

100

◦ m //

◦
m

!!

⊕

V {2}

110

∆

!!

⊕

V ⊗3

000

m

==

ωm //

m

##

��

V ⊗2{1}

010

m

==

◦
m

##

⊕

V {2}

101

◦ ∆ //

⊕

V ⊗2{3}

111

��

V ⊗2{1}

001

m

;;

m //

��

V {2}

011

∆

;;

��[[ ]]0 d0 //
[[ ]]1 d1 //

[[ ]]2 d2 //
[[ ]]3

=
[[ ]]

−→ C( ). (3.3.1)

Figure 3.1: The main picture for the new generalization of Khovanov Homology (Left
Trefoil Knot).

relations in the new category defined in the definition 3.1.3. In the Figure 3.1, to make

commutative cube, we need extra phase, ω, arising from ordering and associativity

relation in the definition 3.1.3. On the other hand, we can construct a cube for the

Right Trefoil Knot as in the Figure 3.2. The failure of the comultiplication to be

cocommutative even up to phase results in a non-commutative cube.
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1

2

3

V {1}

100

◦ ∇ //

◦
∇

!!

⊕

V ⊗2{2}

110

∇

""

⊕

V ⊗2

000

m

==

m //

m

""

��

V {1}

010

∆

==

◦
∇

##

⊕

V ⊗2{2}

101

◦
(ϕ/ω)∆

//

⊕

V ⊗3{3}

111

��

V {1}

001

∆

;;

∆ //

��

V ⊗2{2}

011

∆

;;

��[[ ]]0 d0 //
[[ ]]1 d1 //

[[ ]]2 d2 //
[[ ]]3

=
[[ ]]

−→ C( ). (3.3.2)

Figure 3.2: The main picture for the new generalization of Khovanov Homology (Right
Trefoil Knot).

3.4 Homology from Arbitrary Sequence of Maps

In the section 3.3, we saw how to make a cube from a knot. Sometimes we may have a

commutative cube, sometimes not. If we have a commutative cube, then we can compute

the homology. But, if we do not have a commutative cube, then how can we compute the

homology? The following results show us that one can compute a sort of homology from an

arbitrary sequence of linear maps (or more generally of maps in any abelian category).
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Let Seq (A) := A···→ ·→ ·→ ··· be the category of all diagrams indexed by (N,≥) or (Z,≥)

in an abelian category A, and Chain (A) be the full subcategory of chain complexes.

Theorem 3.4.1. Chain (A) is a retract of Seq (A) with retraction functor give on objects by

· · · // Xn−1
fn−1

// Xn
fn
// Xn+1

// · · ·

↓

· · · // Xn−1/fn−2 (fn−3 (Xn−3) )
dn−1
// Xn/fn−1 (fn−2 (Xn−2) )

dn // Xn+1/fn (fn−1 (Xn−1) ) // · · ·

with dn (x+ fn−1 (fn−2 (Xn−2) ) ) := fn (x) + fn (fn−1 (Xn−1) ),

and on arrows by

· · · // Xn−1
fn−1

//

pn−1

��

Xn
fn

//

pn

��

Xn+1
//

pn+1

��

· · ·

· · · // Yn−1 gn−1

// Yn gn
// Yn+1

// · · ·

7−→
{
p̄n : Xn/fn−1 (fn−2 (Xn−2) )→ Yn/gn−1 (gn−2 (Yn−2) )

}
, where p̄n (x+ fn−1 (fn−2 (Xn−2) ) ) := pn (x) + gn−1 (gn−2 (Yn−2) ).

Proof. I. dn is well-defined : If x′ + fn−1 (fn−2 (Xn−2) ) = x + fn−1 (fn−2 (Xn−2) ), then

there exists a ν ∈ fn−1 (fn−2 (Xn−2) ) such that x′ = x+ ν.

But fn(ν) = fn (fn−1 (fn−2 (ν̄) ) ), for some ν̄ ∈ Xn−2. Thus fn(ν) ∈ fn (fn−1 (Xn−1) ),

and so

fn (x′) + fn (fn−1 (Xn−1) ) = fn (x) + fn (ν) + fn (fn−1 (Xn−1) )

= fn (x) + fn (fn−1 (Xn−1) ).

II. dn (dn−1) = 0 : We get
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dn (dn−1 (x+ fn−2 (fn−3 (Xn−3) ) ) ) = dn (fn−1 (x) + fn−1 (fn−2 (Xn−2) ) )

= fn (fn−1 (x) ) + fn (fn−1 (Xn−1) )

= 0 in Xn+1/fn (fn−1 (Xn−1) ).

Note : If · · · // Xn−1
fn−1

// Xn
fn
// Xn+1

// · · · was a chain complex, then the image

under the purported functor is isomorphic to

· · · // Xn−1/0
fn−1

// Xn/0
fn
// Xn+1/0 // · · · .

III. Given a map of sequences, {pn : Xn → Yn},{
p̄n : Xn/fn−1 (fn−2 (Xn−2) )→ gn−1 (gn−2 (Yn−2) )

}
is a well-defined chain map.

III-a. p̄n is well-defined : If x+fn−1 (fn−2 (Xn−2) ) = x′+fn−1 (fn−2 (Xn−2) ), then

x′ = x+ fn−1 (fn−2 (ν) ), for some ν ∈ Xn−2. So

pn (x′) = pn (x) + pn (fn−1 (fn−2 (ν) ) ) = pn (x) + gn−1 (gn−2 (pn−2 (ν) ) ),

since {pn} was a map of sequences. Thus,

p̄n (x′ + fn−1 (fn−2 (Xn−2) ) ) = pn (x′) + gn−1 (gn−2 (Yn−2) )

= pn (x) + gn−1 (gn−2 (pn−2 (ν) ) ) + gn−1 (gn−2 (Yn−2) )

= pn (x) + gn−1 (gn−2 (Yn−2) )

= p̄n (x+ fn−1 (fn−2 (Xn−2) ) ).

III-b. {p̄n}∞n=−∞ is a chain map : Let us consider an representatives

x+ fn−1 (fn−2 (Xn−2) ) ) � d //

_
pn

��

fn (x) + fn (fn−1 (Xn−1) )
_

p̄n
��

pn (x) + gn−1 (gn−2 (Yn−2) ) �
d
// pn+1 (fn (x) ) + gn (gn−1 (Yn−1) )
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Here, since {pn} was a map of sequences,

pn+1 (fn (x) ) + gn (gn−1 (Yn−1) ) = gn (pn (x) ) + gn (gn−1 (Yn−1) ).

So the required diagram commutes.

Definition 3.4.2. If { pn : Xn → Yn } is a map of sequences from

· · · // Xn−1
fn−1

// Xn
fn
// Xn+1

// · · · to · · · // Yn−1
gn−1

// Yn
gn
// Yn+1

// · · · ,

a pseudo-contraction is a sequence of maps {hn : Xn → Yn} such that, for any n,

pn = hn+1 (fn) + gn−1 (hn).

Depicting it as if it were a contracting homotopy :

· · · // Xn−1
fn−1

//

pn−1

��

Xn
fn

//

pn

��

hn
ww

Xn+1

hn+1

ww

pn+1

��

// · · ·

· · · // Yn−1 gn−1

// Yn gn
// Yn+1

// · · ·

Figure 3.3: Pseudo-contracting homotopy

Theorem 3.4.3. The retraction C : Seq (A)→ Chain (A) described in the previous theorem

is equipped with a map carrying pseudo-contractions to contracting homotopies given by {hn}

a pseudo-contraction of pn : (Xn, fn)→ (Yn, gn) maps to

h̄n (x+ fn−1 (fn−2 (Xn−2) ) ) := hn (x) + gn−2 (gn−3 (Yn−3) ).

Here, this is the obvious formula. The puzzle is why it is well-defined.

Proof. The key is that by the hypothesis that {hn} is a pseudo-contraction, we have

hn (fn−1) = pn−1 − gn−2 (hn−1).

Now let us suppose that

x′ + fn−1 (fn−2 (Xn−2) ) = x+ fn−1 (fn−2 (Xn−2) ).
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Then there exists ν ∈ Xn−2 such that x′ = x+ fn−1 (fn−2 (ν) ). So

hn (x′) = hn (x) + hn (fn−1 (fn−2 (ν) ) )

= hn (x) + pn−1 (fn−2 (ν) )− gn−2 (hn−1 (fn−2 (ν) ) )

= hn (x) + gn−2 (pn−2 (ν) )− gn−2 (hn−1 (fn−2 (ν) ) )

= hn (x) + gn−2 (pn−2 (ν) )− gn−2 (pn−2 (ν)− gn−3 (hn−2 (ν) ) )

= hn (x)− gn−2 (gn−3 (hn−2 (ν) ) ).

From which it follows that

hn (x′) + gn−2 (gn−3 (Yn−3) ) = hn (x) + gn−2 (gn−3 (Yn−3) ).

Finally we check that the h̄n’s actually form a contracting homotopy for the p̄n’s. That is,

p̄n = h̄n+1 dn + δn h̄n,

where d and δ are the differentials on C (X•) and C (Y •), respectively. It is from the

followings.

p̄n (x+ fn−1 (fn−2 (Xn−2) ) ) = pn (x) + gn−1 (gn−2 (Yn−2) )

= hn+1 (fn (x) ) + gn−1 (hn (x) ) + gn−1 (gn−2 (Yn−2) ),

since h is a pseudo-contraction. On the other hand,

h̄n+1 (dn (x+ fn−1 (fn−2 (Xn−2) ) ) ) = h̄n+1 (fn (x) + fn (fn−1 (Xn−1) ) )

= hn+1 (fn (x) ) + gn−1 (gn−2 (Yn−2) ) .

δn (h̄n (x+ fn−1 (fn−2 (Xn−2) ) ) = δn (hn (x) + gn−2 (gn−3 (Yn−3) )

= gn−1 (hn (x) ) + gn−1 (gn−2 (Yn−2) ) .
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Lemma 3.4.4. The retraction functor preserves the cone construction.

Proof. We can depict it as follow :

· · · // Xn−1
fn−1

//

pn−1

��

Xn
fn

//

pn

��

Xn+1

pn+1

��

// · · ·

· · · // Yn−1 gn−1

// Yn gn
// Yn+1

// · · ·

Now we define the cone, Γ(pn), to be the following sequence

Γ(pn) : · · · // Xn ⊕ Yn−1
// Xn+1 ⊕ Yn // · · ·

with maps :

ϕΓ(p•) =

(
−fn 0
pn gn−1

)
Then

ϕΓ(p•)n+1 ◦ ϕΓ(p•)n

((
Xn

Yn−1

))
=

(
−fn+1 0
pn+1 gn

) (
−fn 0
pn gn−1

) (
Xn

Yn−1

)

=

(
fn+1 (fn) 0

−pn+1 (fn) + gn (pn) gn (gn−1)

) (
Xn

Yn−1

)

=

(
fn+1 (fn) 0

0 gn (gn−1)

) (
Xn

Yn−1

)
,

since {pn} is a map of sequences. The chain complex associated to the sequence {ϕΓ(p•) }n

thus has chain groups

Xn/fn−1 (fn−2 (Xn−2) )⊕ Yn−1/gn−2 (gn−3 (Yn−3) ),

with differentials (
−δn 0
p̄n δn

)
,

that is, it is the cone on the induced map

p̄n : Xn/fn−1 (fn−2 (Xn−2) )→ gn−1 (gn−2 (Yn−2) )
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Chapter 4

Invariance

4.1 Proof of invariance

Bar-Natan’s generalized Khovanov homology using an arbitrary Frobenius algebra [BN]1

is not a tangle invariant any more, but will in general depend on the underlying diagram.

To be invariant under the Reidemeister moves, extra relations of the sort Bar-Natan called

S, T, and 4Tu must be satisfied. In this section we will prove the invariance theorems of our

generalized Khovanov homology. Remarkably, the transformations of cubes corresponding

to Reidemeister moves always take place in portions of the cube which commute. So the

proofs are not changed by the need to pass through the retraction functor.

The S relation, , stands for a sphere and says that whenever a cobordism contains

a connected component which is a closed sphere, it is set equal to zero.

The T relation, , stands for a torus and means that whenever a cobordism con-

tains a connected component which is a closed torus, that component may be dropped

and replaced by a numerical factor of 1 + ϕ.

The 4Tu relations, X

1 2

43

+ Y + Z +W = 0 ,
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we can start from some given cobordism C and assume its intersection with a cer-

tain ball is the union of four disks D1 through D4 (these disks may well be on different

connected components of C). Let Cij denote the result of removing Di and Dj from

C and replacing them by a tube that has the same boundary. A “four tube” relation,

4Tu, asserts that X C12+Y C34+Z C13+W C24 = 0. For some coefficients X, Y, Z, and

W , 4Tu relations are used for the proof of homotopy equivalences (FG− I = hd+dh)

in the first and the second Reidemeister moves. As shown in [KP]22, any relation of

this form with any coefficients satisfying FG − I = hd + dh suffices to construct an

algebraic homotopy. Here different choices of coefficient will correspond to the choices

of the map G, and the h’s in the condition for a homotopy inverse.

Now we will prove the invariance theorems of our construction under the three Reide-

meister moves in the Figure 1.1.

Here our proof is based on [BN]1.

Theorem 4.1.1. [Invariance under Reidemeister Move R1]

The chain complex
[[ ]]

is homotopy equivalent to the chain complex
[[ ]]

on the

underlying ungraded vector space.

0 //

F 0

��

0

0

��

G0

OO

d //

0

OO

h
oo

Figure 4.1: Invariance under R1

Proof. We have to show that the formal complex
[[ ]]

=

(
0 // // 0

)
is homo-

topy equivalent to the formal complex
[[ ]]

=

(
0 // d // // 0

)
. Here, we
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have only one closure. So we can get the following Figure 4.2, in which d = (in both

complexes we have underlined the 0th term).

0 //

F 0

��

0

0

��

G0

OO

d //

0

OO

h
oo

Figure 4.2: Invariance under R1 with closure

And we can set up (homotopically inverse) morphisms F :
[[ ]]

→
[[ ]]

and G :[[ ]]
→
[[ ]]

. The morphism F is defined by F 0 = − (in words: a vertical

curtain union a torus with a downward-facing disk removed, minus a simple saddle) and

F 6=0 = 0. The morphism G is defined by G0 = 1
ϕ

, and G6=0 = 0.

• Commutativity : In the Figure 4.2, the only non-trivial commutativity to verify is

dF 0 = 0, which follows from ◦ = ◦ , and where the latter identity

holds because both of its sides are the same.

• G ◦ F = I : This follows from the T relation.

• F ◦G is homotopic to the identity on
[[ ]]

: Define the homopoty map h = :[[ ]]1

= → =
[[ ]]0

. Clearly, F 1G1 − I + dh = −I + dh = 0. Now we need

to see F 0G0. Let us consider the cobordism,

2 1

3
4

with the four distinguished disks, C1, C2, C3, and C4 marked by 1, 2, 3, and 4 re-

spectively. The 4Tu relation, ϕ−1C12 − ϕ−1C13 + C34 − C24 = 0 holds. Here
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ϕ−1C12−ϕ−1C13 is exactly the same as F 0G0, C24 is the identity morphisms I, and C34

is hd. Of course in our map, we can see dh = 0. Thus our assertion F 0G0− I+hd = 0

holds. So FG ∼ I and we have proven that
[[ ]]

∼
[[ ]]

.

Lemma 4.1.2. [4Tu relation for R1]

In the proof of the invariance under Reidemeister Move R1,

ϕ−1C12 − ϕ−1C13 + C34 − C24 = 0 holds.

Proof. Our cobordism is

2 1

3
4

.

Then,

• C12 , :


v+v+ 7→ 0
v+v− 7→ 0
v−v+ 7→ v+ 7→ v+v+ 7→ v−v+v+ + ϕv+v−v+ 7→ (1 + ϕ) v−v+

v−v− 7→ v− 7→ v+v− 7→ v−v+v− + ϕv+v−v− 7→ (1 + ϕ) v−v−

• C13 , :


v+v+ 7→ 0
v+v− 7→ 0
v−v+ 7→ v+ 7→ v−v+ + ϕv+v−
v−v− 7→ v− 7→ v−v−

• C34 , :


v+v+ 7→ v+ 7→ v+v+

v+v− 7→ v− 7→ v+v−
v−v+ 7→ v− 7→ v+v−
v−v− 7→ 0
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• C24 , :


v+v+ 7→ v+v+

v+v− 7→ v+v−
v−v+ 7→ v−v+

v−v− 7→ v−v−

So ϕ−1C12 − ϕ−1C13 + C34 − C24 = 0 holds.

Theorem 4.1.3. [Invariance under Reidemeister Move R2]

The chain complex
[[ ]]

is homotopy equivalent to the chain complex
[[ ]]

on the

underlying ungraded vector space.

0

W

G

N

E
d

F

S

h

0

I

0

0
:

:

−1 0 1

0

0

Figure 4.3: Invariance under the Reidemeister move R2.

Proof. This proof appears in whole in Figure 4.3. In that figure, the top row is the formal

complex
[[ ]]

and the bottom row is the formal complex
[[ ]]

. Also, all southward

arrows are the components of a morphism F :
[[ ]]

→
[[ ]]

, the eastward arrows

are (components of) differentials, the northward arrows are the components of a morphism

G :
[[ ]]

→
[[ ]]

, and the westward arrows are the non-zero components of a homotopy
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h proving that FG ∼ I. Here, we know that F−1, G−1, F 0, G0 are all zero. So we need to

check at the zeroth level. Then we can set the followings.

• d∗0 = , d0∗ =

• d1∗ = − , d∗1 =

• h0 = a , h1 = b , where a and b are negative.

• F 0 = , G0 = c , where c is negative.

• F =



α

β


, G =

 γ δ



Now we can prove the second Reidemeister move in the showing the followings.

• dF = 0 : (only uses isotopies with α = 1, β = −ω−1).

• Gd = 0 : (only uses isotopies with γ = 1, δ = −1).

• GF = I : Because F 6=0 = 0, G 6=0 = 0, we just need to check G0F 0 = I. But

it is directly from the relation S .

• FG− I = hd+ dh : Similarly, we will show that F 0G0 is homotopic to I.

From our setting, we have

F 0 = h1 ◦ d1∗

G0 = d∗0 ◦ h0
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And we want to show that F 0 ◦G0− I = h1 ◦d∗1 +d0∗ ◦h0 (see Figure 4.4).

//
d∗1 //

I
��

FG
��

h0

ww

h1

ww

d0∗
// //

Figure 4.4: F 0G0 ∼ I

As in the proof of invariance under Reidemeister Move R1, we can get it

from 4Tu relation. Consider the cobordism,

2
3

4
1

with the four distinguished disks, C1, C2, C3, and C4 marked by 1, 2, 3, and 4

respectively. Then C12, C13, C24, and C34 can be represented by followings.

C12 = , C13 = , C24 = , C34 =

In this case, we have two different 4Tu relations according to the closure.

First, for closure, we need to set

a = −1, b = −ω−1, c = −1.

Then

F 0 ◦G0 = −C12,

d0∗ ◦ h0 = −C13,

h1 ◦ d∗1 = −ω−1C24,
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I = C34

And we get

C12 − C13 − ω−1C24 + C34 = 0.

On the other hand, for the other closure, , we need to set

a = −ωϕ−1, b = −ω−1, c = −ϕ−1.

Then

F 0 ◦G0 = −ϕ−1C12,

d0∗ ◦ h0 = −ωϕ−1C13,

h1 ◦ d∗1 = −ω−1C24,

I = C34

And

ϕ−1C12 − ωϕ−1C13 − ω−1C24 + C34 = 0 hold.

Of course both of them give us FG− I = hd+ dh. So FG ∼ I and we have

proven that
[[ ]]

∼
[[ ]]

.

Lemma 4.1.4. [4Tu relation for R2]

In the proof of the invariance under Reidemeister Move R2,

C12 − C13 − ω−1C24 + C34 = 0, and

ϕ−1C12 − ωϕ−1C13 − ω−1C24 + C34 = 0 hold.

Proof. Our cobordism is

2
3

4
1 .
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Here, C12, C13, C24, and C34 can be represented by followings.

C12 = , C13 = , C24 = , C34 =

Then

C12 :



v+v+v+ 7→ 0
v+v+v− 7→ 0
v+v−v+ 7→ v+v+v+ + ϕv+v+v−
v+v−v− 7→ v−v+v−
v−v+v+ 7→ 0
v−v+v− 7→ 0
v−v−v+ 7→ ϕv−v+v−
v−v−v− 7→ 0

C13 :



v+v+v+ 7→ 0
v+v+v− 7→ 0
v+v−v+ 7→ v+v−v+ + ϕv+v+v−
v+v−v− 7→ v+v−v−
v−v+v+ 7→ 0
v−v+v− 7→ 0
v−v−v+ 7→ v−v−v+ + ϕv−v+v−
v−v−v− 7→ v−v−v−

C24 :



v+v+v+ 7→ ω v+v+v+

v+v+v− 7→ ω v+v+v−
v+v−v+ 7→ ω v−v+v+

v+v−v− 7→ ω v−v+v−
v−v+v+ 7→ ω v−v+v+

v−v+v− 7→ ω v−v+v−
v−v−v+ 7→ 0
v−v−v− 7→ 0

C34 :



v+v+v+ 7→ v+v+v+

v+v+v− 7→ v+v+v−
v+v−v+ 7→ v+v−v+

v+v−v− 7→ v+v−v−
v−v+v+ 7→ v−v+v+

v−v+v− 7→ v−v+v−
v−v−v+ 7→ v−v−v+

v−v−v− 7→ v−v−v−
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So we get

C12 − C13 − ω−1C24 + C34 = 0.

For the other closure, , ,

C12 :


v+v+ 7→ 0
v+v− 7→ (1 + ϕ) v−v+

v−v+ 7→ 0
v−v− 7→ 0

C13 :


v+v+ 7→ 0
v+v− 7→ ω−1 (v−v+ + ϕv+v−)
v−v+ 7→ 0
v−v− 7→ ω−1ϕv−v−

C24 :


v+v+ 7→ ω v+v+

v+v− 7→ ω v−v+

v−v+ 7→ ω v−v+

v−v− 7→ 0

C34 :


v+v+ 7→ v+v+

v+v− 7→ v+v−
v−v+ 7→ v−v+

v−v− 7→ v−v−

So it gives

ϕ−1C12 − ωϕ−1C13 − ω−1C24 + C34 = 0.

Remark 4.1.1. In the proof of the first, and the second Reidemeister moves, we use 4Tu

relations for the homotopy equivalence. We can see all of them are different each other in

each case.

ϕ−1C12 − ϕ−1C13 − C24 + C34 = 0.

C12 − C13 − ω−1C24 + C34 = 0.

ϕ−1C12 − ωϕ−1C13 − ω−1C24 + C34 = 0.

But all of these different 4Tu relations give us the same assertion FG−I = hd+dh, holding

our relations in ω.
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Remark 4.1.2 (Bar-Natan1). The morphism G :
[[ ]]

→
[[ ]]

in the above proof is a

little more than a homotopy equivalence. Let us see the following definition.

a

h h

F
F

G
G

G
G

Ω

Ω b

Figure 4.5: strong deformation retract – (picture from [Bar-Natan]1)

Now we will see several definitions and lemmas which are for the proof of invariance

under the third Reidemeister move. All the difinitions and lemmas are from [BN]1.

Definition 4.1.5 (Bar-Natan1). A morphism of complexes G : Ωa → Ωb is said to be a

strong deformation retract if there is a morphism F : Ωb → Ωa and homotopy maps h

from Ωa to itself so that GF = I, I − FG = dh+ hd and hF = 0. In this case we say that

F is the inclusion in a strong deformation retract. Note that a strong deformation

retract is in particular a homotopy equivalence. The geometric origin of this notion is the

standard notion of a strong deformation retract in homotopy theory as you can see above.

Definition 4.1.6 (Bar-Natan1). Let Ψ : (Ωr
0, d0) → (Ωr

1, d1) be a morphism of complexes.

The cone Γ(Ψ) of Ψ is the complex with chain spaces Γr(Ψ) = Ωr+1
0 ⊕ Ωr

1 and with differ-

entials d̃r =

(
−dr+1

0 0
Ψr+1 dr1

)
. (see Figure 4.6).

Ωr
0

−dr0 //

Ψr

��

Ωr+1
0

−dr+1
0 //

Ψr+1

��
⊕

Ωr+2
0

Ψr+2

��
⊕

Ωr
1 dr1

// Ωr+1
1

dr+1
1

// Ωr+2
1

Figure 4.6: Cone
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To prove the invariance under the R3 move, we need the following two lemmas, as well.

Lemma 4.1.7 (Bar-Natan1). For
[[ ]]

,
[[ ]]

, where
[[ ]]

is the saddle morphism[[ ]]
:
[[ ]]

→
[[ ]]

and
[[ ]]

:
[[ ]]

→
[[ ]]

, the following equivalences are true:

(a)
[[ ]]

= Γ(
[[ ]]

)[−1]

(b)
[[ ]]

= Γ(
[[ ]]

)

where ·[s] is the operator that shifts complexes s units to the left: Ω[s]r := Ωr+s.

Proof of Lemma 4.1.7. We see the Lemma A.2.1 in Appendix A

Lemma 4.1.8 (Bar-Natan1). The cone construction is invariant up to homotopy under

compositions with the inclusions in strong deformation retracts. That is,

Ω0a

Ψ

��

G0 // Ω0b
F0

oo

Ω1a

F1 // Ω1b
G1

oo

Consider the complexes (Ωr
0a, d

r
0a) and (Ωr

0b, d
r
0b). Suppose that G0 : Ω0a → Ω0b be a strong

deformation retract with corresponding inclusion, F0. Similarly for the comples, (Ωr
1a, d

r
1a)

and (Ωr
1b, d

r
1b), suppose that G1 : Ω1a → Ω1b is a strong deformation retract with inclusion,

F1. Let Ψ be a chain homotopy from Ω0a to Ω1a. Then

(a) the cones Γ(Ψ) and Γ(ΨF0) are homotopy equivalent.

(b) the cones Γ(Ψ) and Γ(F1Ψ) are homotopy equivalent.

And also, it is true that the cones Γ(Ψ) and Γ(F1Ψ) are homotopy equivalent when F1 :

Ω1a → Ω1b is the strong deformation retract with the corresponding inclusion, G1. But we

don’t need this here.

Proof of Lemma 4.1.8. We see the Lemma A.2.2 in Appendix A

Now, we are ready to prove the third Reidemeister moves.
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Theorem 4.1.9. [Invariance under Reidemeister Move R3]

The chain complex
[[ ]]

is homotopy equivalent to the chain complex
[[ ]]

.

Proof. The proof is exactly same as one in [Bar-Natan1]. According to [Bar-Natan]1, this is

both the easiest and hardest move. It is easy because it is just from the R2 move and some

‘soft’ algebra (just like the Kauffman bracket, whose invariance under R3 is for free from

its invariance under R2). And it is hard because it consists of the most crossings and so the

most complicated complexes. We note that Lemma 4.1.7 can also be readed in a “skein the-

oretic” sense, where each of and (or and ) represents just a small area

inside a bigger tangle. Thus, let us apply Lemma 4.1.7 to the bottom crossing in the tangle

. Then
[[ ]]

is the cone, Γ(Ψ) of the morphism Ψ =
[[ ]]

:
[[ ]]

→
[[ ]]

.

In particular, Ψ is the set of four morphisms.

Ψ

Here, we have five different closures for the
[[ ]]

. And we can check all Ψs make com-

mutative cubes in each case. Thus we can apply the Lemma 4.1.8.
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I
−

I

I

I

I
I

r
=

1
r
=

2
r
=

3
r
=

0

:r

:r

r
=

3
r
=

2
r
=

1
r
=

0

Figure 4.7: Invariance under R3 in more detail than is strictly necessary. Notice the
minus signs and consider all missing arrows between the top layer and the bottom layer as
0. – (picture from [Bar-Natan]1)
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(a)

(b)
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(c)

(d)
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(e)

In the proof of R2, G :
[[ ]]

→
[[ ]]

is a strong deformation retract with corre-

sponding inclusion, F :
[[ ]]

→
[[ ]]

. So by the Lemma 4.1.8, we have Γ(Ψ) = Γ(ΨF ).

Aside from the map on the zeroth complex all height chain maps of F can be approx-

imated as zero maps. So the all height chain maps but the zeroth height map of ΨF are

taken to be zero. The zeroth chain map of ΨF is ΨL = Ψ ◦ (F 0 ⊕ I). Thus we have[[ ]]
= Γ

( [[ ]]
ΨL //

[[ ]] )
' Γ

( [[ ]]
F //

[[ ]]
Ψ //

[[ ]] )
Similarly, for Υ =

[[ ]]
:
[[ ]]

→
[[ ]]

, we have G :
[[ ]]

→
[[ ]]

is a

strong deformation retract with corresponding inclusion, F :
[[ ]]

→
[[ ]]

. So we get

Γ(Υ) = Γ(ΥF ) by the Lemma 4.1.8.

Aside from the map on the zeroth complex all height chain maps of F can be approx-

imated as zero maps. So the all height chain maps but the zeroth height map of ΥF are

taken to be zero. The zeroth chain map of ΥF is ΨR = Υ ◦ (F 0 ⊕ I). Thus we have
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[[ ]]
= Γ

( [[ ]]
ΨR //

[[ ]] )
' Γ

( [[ ]]
F //

[[ ]]
Υ //

[[ ]] )
Here, we are taking the cone of the same morphism in each case : (see Figure 4.8).

ΨL : ΨR :

Figure 4.8: The two sides of the Reidemeister move R3 . – (picture from [Bar-Natan]1)

Hence, FΨL = FΨR up to isotopies.

As we have seen above, we always have commutative cube in the proof of invariance

under three Reidemeister moves.

Remark 4.1.3. The proof of invariance still works after passing through the retraction

functor.

4.2 Degree shift

We have seen the underlying ungraded vector space of our anyonic Khovanov homology

is invariant under three Reidemeister moves. And we can compute their homology values

in vector spaces. But our underlying spaces are actually graded vector spaces. So we

need to consider their degrees so that we can compute their graded homology groups like

the Khovanov homology. Here we will use a new notation and relation for the anyonic

Khovanov homology. We will add this degree shift to our setting to be an invariant under

the second Reidemeister move, and then either the first Reidemeister move or it framed
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analog. Then invariance under the third Reidemeister moves is for free. First we will define

our new notation.

Let us start with a knot. Then we can build a cube from a knot. At that time each

vertex is a 1-manifold decorated with a degree and a grading. Then we can replace each

vertex by S(n+, n−, σ, c), which denotes the degree shift which will be required for the graded

vector space to be invariant under Reidemeister moves. Here n+ and n− be the numbers

of (+) crossings and (−) crossings in the knot K, respectively. And let σ is the number

of 1 resolutions, and c is the number of components in the state. Then our S(n+, n−, σ, c)

contains all the information of the vertex in the cube, except the locations of the crossing

resolutions. In the proof of the second Reidemeister move, we use the Figure 4.9.

00

Figure 4.9: R2 maps.

As in the proof of Theorem 4.1.3, we get two different complexes according to the closure.

So if we compute S(n+, n−, σ, c) in Figure 4.10, and Figure 4.11, then we get Figure 4.12,

and Figure 4.13. Here S(1, 1, 0, 2) means that this object has no 1 resolutions and contains

two components in the knot with one (+) crossing, and one (−) crossing, which is .

Then from the Figure 4.12, Figure 4.13, and Definition 3.1.2, we get the following equa-
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00

Figure 4.10: R2 maps with a closure.

00

Figure 4.11: R2 maps with a closure.

tions.

S
(
~v + (0, 0, 1,−1)

)
− S

(
~v
)

= a.

S
(
~v + (0, 0, 1, 1)

)
− S

(
~v
)

= −b.

S
(
~v + (1, 1, 1, 0)

)
− S

(
~v
)

= 0.

Any degree shift satisfying these will give invariance under R2.

Now Consider R1. To make an invariant of framed links, we will show
[[ ]]

=
[[ ]]

{f},

and
[[ ]]

=
[[ ]]

{−f}.
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00 S(0,0,0,2)

S(1,1,0,1)

S(1,1,1,2)

S(1,1,1,2)

S(1,1,2,1)

Figure 4.12: R2 maps with a closure and S(n+, n−, σ, c).

00 S(0,0,0,1)

S(1,1,0,2)

S(1,1,1,1)

S(1,1,1,3)

S(1,1,2,2)

Figure 4.13: R2 maps with a closure and S(n+, n−, σ, c).

Consider
[[ ]]

and
[[ ]]

. From the Figure 4.1, we can get the following maps.

After taking a closure, if we apply our S(n+, n−, σ, c), we can get Figure 4.15.

On the other hand, from
[[ ]]

and
[[ ]]

, we have Figure 4.16.

And similarly, after taking a closure and S(n+, n−, σ, c), we have Figure 4.17

Then from this, we get the following equations.

S
(
~v + (0, 1, 1, 1)

)
− S

(
~v
)

= −a− f.

S
(
~v + (1, 0, 0, 1)

)
− S

(
~v
)

= f − b.
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00

0 0

Figure 4.14: R1 maps.

00

0 0

S(1,0,0,2) S(1,0,1,1)

S(0,0,0,1)

Figure 4.15: R1 maps with a closure and S(n+, n−, σ, c).

So we have the following five equations.

S
(
~v + (0, 0, 1,−1)

)
− S

(
~v
)

= a

S
(
~v + (0, 0, 1, 1)

)
− S

(
~v
)

= −b

S
(
~v + (1, 1, 1, 0)

)
− S

(
~v
)

= 0

S
(
~v + (0, 1, 1, 1)

)
− S

(
~v
)

= −a− f

S
(
~v + (1, 0, 0, 1)

)
− S

(
~v
)

= f − b.
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00

0 0

Figure 4.16: R1 maps.

00

0 0

S(0,1,0,1) S(0,1,1,2)

S(0,0,0,1)

Figure 4.17: R1 maps with a closure and S(n+, n−, σ, c).

, which is

A =


0 0 1 −1 a
0 0 1 1 −b
1 1 1 0 0
0 1 1 1 −a− f
1 0 0 1 f − b
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Then the solution is

A =



1 0 0 0 a−b+2f
2

0 1 0 0 −a+ b− f

0 0 1 0 a−b
2

0 0 0 1 −a−b
2

0 0 0 0 0


Thus we define the degree shift from the previous equations as follow.

S(n+, n−, σ, c) :=
⌊n+ − 2n− + σ − c

2

⌋
a+

⌊−n+ + 2n− − σ − c
2

⌋
b+ (n+ − n−)f.

Here f = 0 gives us an invariant for links, and any other f gives us an invariant for framed

links.

Remark 4.2.1. The height shift is exactly the same as the one in the Khovanov homology.

As a final example we calculate the anyonic homology of the Hopf link.

Example 4.2.2. Let us consider the Hopf Link with n+ = 2.

Figure 4.18: Hopf link.

From which we obtain

S(2, 0, 1, 1)

∆
((

S(2, 0, 0, 2)

m

66

m

((

S(2, 0, 2, 2)

S(2, 0, 1, 1)

∆

66
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And the chain complex

L0 : 0 // V ⊗2{−2b+ 2f} // V {a− 2b+ f}
⊕

V {a− 2b+ f} // V ⊗2{a− 3b+ 2f} // 0

Then, we can get

• H0
([[
L0

]])
= V {−b+ 2f}.

• H1
([[
L0

]])
= {0}.

• H2
([[
L0

]])
= V {2a− 3b+ 2f}.

In this case, if we set a = 1 , b = −1 , and f = 0 , the we can get the same result as

Khovanov homology.

We discuss the anyonic Khovanov Homology. In the work, the construction takes advan-

tage of the fact that the “states” in Khovanov’s construction are not just unions of circles,

but unions of circles in the plane, and so the cobordisms in the Bar-Natan’s approach can be

regarded as embedded in R2× I. Because the circles are interacting in (2 + 1)– dimensions,

it is natural to work in a braided setting. In physical terms, fractional statistics are pos-

sible, corresponding to the anyonic braiding. The anyonic braiding structure gives basic

morphisms needed to construct new generalized Khovanov homology. In addition, because

the operations of the Frobenius structure have degrees as in Bar-Natan, additional phases

arise when braiding operations past arguments. And as in Bar-Natan, invariance under the

second Reidemeister move requires the graded module assigned to a circle have underlying

module of rank 2.

In practice, we constructed the key relation giving the new generalized Khovanov ho-

mology, and it gives the curious requirement that if the phase in the braiding is an n-th root

of unity, the degree of the unit and the difference of degrees between the unit and the other

generator must be complimentary zero-divisors (mod n). Once degrees other than 1 and

−1 (or 1 and 0 (mod 2) as in odd Khovanov homology) are involved, a bit more work is in-

volved in finding the appropriate degree shifts. In doing this one was lead to the observation,
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trivial in retrospect, but possibly important for the categorification of Reshetikhin-Turaev

3-manifold invariants, that link homology theories can be made into invariants of framed

links by representing framed links in the blackboard framing and including a degree shift

by the writhe of the diagram.

60



Bibliography

[1] D. Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geometry

and Topology, 9 (2005), 1443-1499, arXiv:math/0410495v2 [math.GT].

[2] C. Adams, The Knot Book: An elementary introduction to the mathematical

theory of knots, American Mathematical Society, 2004.

[3] D. Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Alge-

braic and Geometric Topology, 2 (2002) 337-370, arXiv:math/0201043v3 [math.QA].

[4] L. Kauffman, On knots, Annals of Math. Studies, 115, Princeton University Press,

1987.

[5] L. Kauffman and S. Lins, Temperley-Lieb Recoupling Theory and Invariants

of 3-Manifolds, Princeton University Press, 1994.

[6] H. P. Aaron D. Lauda, Open-closed strings: Two-dimensional extended

TQFTs and Frobenius algebras, Topology Appl. 155 No. 7 (2008) 623-

666, arXiv:math/0510664v3 [math.AT].

[7] D. Rolfsen, Knots and Links,

Publish or Perish, Mathematics Lecture Series 7, Wilmington 1976.

[8] D. Yetter, Functorial knot theory: categories of tangles, coherence, cate-

gorical deformations, and topological invariants, World Scientific Pub Co Inc,

2001.

[9] J. Simon, Topological chirality of certain molecules, Topology 25 (2): 229235,

1986, doi:10.1016/0040-9383(86)90041-8.

61

http://arxiv.org/pdf/math/0410495v2
http://arxiv.org/pdf/math/0201043v3
http://arxiv.org/pdf/math/0510664v3
http://www.sciencedirect.com/science/article/pii/0040938386900418


[10] G. Collins, Computing with Quantum Knots, Scientific American, (April 2006).

[11] L. Kauffman, State models and the Jones polynomial, Topology 26, no. 3, 395-

407, 1987.

[12] L. Abrams, Two-dimensional topological quantum field theories and Frobe-

nius algebras, J. Knot Theory Ramifications, 5 (5): 569-587, 1996.

[13] M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101

(2000), no. 3, 359-426, 1999, arXiv:math/9908171v2 [math.QA].

[14] S. M. Wehrli, Khovanov Homology and Conway Mutation,

2003, arXiv:math/0301312v1 [math.GT].

[15] J. Kock, Frobenius algebras and 2D topological quantum field theories, Cam-

bridge University Press, 2003.

[16] S. MacLane, Categories for the Working Mathematician, 2nd Edition, No. 5 in

Graduate Texts in Mathematics, Springer-Verlag, New York, 1998.

[17] M. Atiyah, Topological quantum field theories, Publications Mathématiques de
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Appendix A

More Details

A.1 Commutative/Skew-commutative Cube

In this section, we see the canonical ways to construct an anti-commutative cube from

commutative cube. We follow Khovanov’s work13. Ler I be a finite set. Denote by |I| the

cardinality of I and by r(I) the set of all pairs (L, a) where L is a subset of I and a an

element of I that does not belong to L. Sometimes we use the following notations.

(a) denote a one-element set {a} by a,

(b) denote a finite set {a, b, · · · , d} by ab · · · d,

(c) denote the disjoint union L1 t L2 of two sets by L1 L2 .

In the same manner, we denote by L a the disjoint union of a set L and a one-element set

{a}, similarly, L a b means L t {a} t {b}, etc.

Definition A.1.1. Let I be a finite set and B a category. An I− cube V over B is a

collection of objects V (L) ∈ Ob (B) for each subset L of I, and morphisms

ξVa (L) : V (L) −→ V (L a)

for each (L, a) ∈ r (L). Here, ξV• are called the structure maps of V .
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A cube is commutative if for each triple (L, a, b), where L is a subset of I and a, b (a 6= b)

are two elements of I that do not lie in L, there is an equality of morphisms

ξVb (L a) ξVa (L) = ξVa (L b) ξVb (L),

, that is, the following diagram commutes.

V (L)
ξVa (L)

//

ξVb (L)
��

V (L a)

ξVb (L a)
��

V (L b)
ξVa (L b)

// V (L a b)

A cube is anti-commutative or skew-commutative if for each triple (L, a, b), where L is

a subset of I and a, b (a 6= b) are two elements of I that do not lie in L, there is an equality

of morphisms

ξVb (L a) ξVa (L) + ξVa (L b) ξVb (L) = 0.

Then, given two I− cubes V and W over R − mod, the abelian category of graded R-

modules, their tensor product, V ⊗W , is defined to be a commutative I− cube (if V and

W are both commutative or both anti-commutative) or a anti-commutative I− cube (if one

of V,W is commutative and the other is anti-commutative), given by

(V ⊗W ) (L) = V (L) ⊗ W (L), L ⊂ I,

ξV⊗Wa (L) = ξVa (L) ⊗ ξWa (L), (L, a) ∈ r(I),

where the tensor products are taken over R.

For a finite set L, let o(L) be the set of complete orderings of elements of L. For

s, t ∈ o(L), let p(s, t) be the parity function, given by

p(s, t) =


0 if t can be obtained by from s via an even number of transpositions

of two neighboring elements in the ordering,

1 otherwise .
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To a finite set L associate a graded R-module E(L) defined as the quotient of the graded

R-module, freely generated by elements s for all s ∈ o(L), by relations

s = (−1)p(s,t) t for all pairs s, t ∈ o(L).

Module E(L) is a free graded R-module of rank 1. For a /∈ L, there is a canonical isomor-

phism of graded R-modules E(L) −→ E(L a), induced by the map o(L) −→ o(L a) that

takes s ∈ o(L) to sa ∈ o(L a). In addition, for a, b (a 6= b), the following diagram would be

anti-commutes.

E (L) //

��

E (L a)

��

E (L b) // E (L a b)

Denote by EI the anti-commutative I− cube with

EI (L) = E (L) for L ∈ I

, and the structure map EI (L) −→ EI (L a) being canonical isomorphism

E (L) −→ E (L a).

For more detail, we refer to [Khovanov13].

A.2 Proof of Lemmas

Lemma A.2.1. For
[[ ]]

,
[[ ]]

, where
[[ ]]

is the saddle morphism
[[ ]]

:
[[ ]]

→[[ ]]
and

[[ ]]
:
[[ ]]

→
[[ ]]

, the following equivalences are true :

(a)
[[ ]]

= Γ(
[[ ]]

)

(b)
[[ ]]

= Γ(
[[ ]]

)[−1]

where ·[s] is the operator that shifts complexes s units to the left: Ω[s]r := Ωr+s.

66



Proof of Lemma A.2.1. (a) We know the complex
[[ ]]

is 0 → → 0, and the com-

plex
[[ ]]

is 0→ → 0. So we have :

0 //

��

//

��

0

��

0 // // 0

Then the cone Γ(
[[ ]]

) is

0→ ⊕ 0→ 0⊕ → 0 ,

with boundary map

d =

(
0 0[[ ]]

0

)
Thus Γ(

[[ ]]
) is equivalent to the complex 0→ → → 0.

On the other hand, the chain complex
[[ ]]

is 0 → → → 0, where the

height of is 0. Thus
[[ ]]

= Γ(
[[ ]]

).

(b) Now we have :

0 //

��

//

��

0

��

0 // // 0

Then the cone Γ(
[[ ]]

)[−1] is

0→ ⊕ 0→ 0⊕ → 0 ,

with boundary map

d =

(
0 0[[ ]]

0

)
So Γ(

[[ ]]
)[−1] is equivalent to the complex 0 → → → 0, where the

complex of height −1 is , and its boundary map is
[[ ]]

.

On the other hand, the chain complex
[[ ]]

is 0 → → → 0, where the

height of is −1, because of height shift. Thus
[[ ]]

= Γ(
[[ ]]

)[−1].
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Lemma A.2.2. The cone construction is invariant up to homotopy under compositions with

the inclusions in strong deformation retracts. That is,

Ω0a

Ψ

��

G0 // Ω0b
F0

oo

Ω1a

F1 // Ω1b
G1

oo

Consider the complexes (Ωr
0a, d

r
0a) and (Ωr

0b, d
r
0b). Suppose that G0 : Ω0a → Ω0b be a strong

deformation retract with corresponding inclusion, F0. Similarly for the comples, (Ωr
1a, d

r
1a)

and (Ωr
1b, d

r
1b), suppose that G1 : Ω1a → Ω1b is a strong deformation retract with inclusion,

F1. Let Ψ be a chain homotopy from Ω0a to Ω1a. Then

(a) the cones Γ(Ψ) and Γ(ΨF0) are homotopy equivalent.

(b) the cones Γ(Ψ) and Γ(F1Ψ) are homotopy equivalent.

And also, it is true that the cones Γ(Ψ) and Γ(F1Ψ) are homotopy equivalent when F1 :

Ω1a → Ω1b is the strong deformation retract with the corresponding inclusion, G1. But we

don’t need this here.

Proof of Lemma A.2.2. The cone Γ(Ψ) has complexes, Cr =

 Ωr
0a

Ωr−1
1a

, Cr+1 =

 Ωr+1
0a

Ωr
1a

,

and boundary map,

d̃ =

 −d 0

ΨF0 d

 .

(a) Let h?0 : Ω?
0a → Ω?−1

0a be a homotopy with I − F0G0 = dh0 + h0d and h0F0 = 0. Then

the cone Γ(ΨF0) has complexes, C ′r =

 Ωr
0b

Ωr−1
1a

, C ′r+1 =

 Ωr+1
0b

Ωr
1a

, and boundary

map,

d̃ =

 −dr0b 0

ΨrF r
0 dr−1

1a

 .

So we can define the chain maps G̃r
0 : Cr → C ′r, and F̃ r

0 : C ′r → Cr with
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G̃r
0 =

 −Gr
0 0

Ψrhr0 I

 , and F̃ r
0 =

 −F r
0 0

0 I

 .

We take the homotopy map h̃r+1
0 : Cr+1 → Cr to be

h̃r0 =

 −hr0 0

0 0

 .

Then the diagram in Figure A.1 defines morphisms Γ(ΨF0)
F̃0 // Γ(Ψ)
G̃0

oo and a homo-

topy h̃?0 : Γ(Ψ)? → Γ(Ψ)?−1.

Γ(ΨF0) :

(
Ωr+1

0b

Ωr
1a

) d̃=

 −d 0
ΨF0 d


//

F̃ r0 :=

−F0 0
0 I


��

(
Ωr+2

0b

Ωr+1
1a

)

F̃ r+1
0

��

Γ(Ψ) :

(
Ωr+1

0a

Ωr
1a

) d̃=

−d 0
Ψ d


//

G̃r0:=

−G0 0
Ψh0 I


OO

(
Ωr+2

0a

Ωr+1
1a

)
h̃0:=

−h0 0
0 0


oo

G̃r+1
0

OO

Figure A.1: Main diagram for Γ(Ψ) and Γ(ΨF0)

• G̃r
0F̃

r
0 =

 −Gr
0 0

Ψrhr0 0

  −F r
0 0

0 I

 =

 Gr
0F

r
0 0

−Ψrhr0F
r
0 I

 .

But Gr
0F

r
0 = I, and −Ψrhr0F

r
0 = 0, since hr0F

r
0 = 0. So

G̃r
0F̃

r
0 =

(
I 0
0 I

)
, which is the identity on Γ(ΨrF0).

• F̃ r
0 G̃

r
0 =

 −F r
0 0

0 I

  −Gr
0 0

Ψrhr0 I

 =

 F r
0G

r
0 0

−Ψrhr0 I

 . So I − F̃ r
0 G̃

r
0 is

I − F̃ r
0 G̃

r
0 =

 I − F r
0G

r
0 0

Ψrhr0 0

 .
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Because we have I − F r
0G

r
0 = dh0 + h0d,

I − F̃ r
0 G̃

r
0 =

 dh0 + h0d 0

Ψrhr0 0

 .

On the other hand,

d̃r−1h̃r0 =

 dr−1
0a hr0 0

Ψrhr0 0

 ,

and

h̃r+1
0 d̃r =

 hr+1
0 dr0a 0

0 0

 .

Thus

d̃r−1h̃r0 + h̃r+1
0 d̃r =

 dr−1
0a hr0 + hr+1

0 dr0a 0

Ψrhr0 0

 = I − F̃ r
0 G̃

r
0.

(b) It is similar to the part (a).
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