o
INTERNAL RESONANCE RAMAN SCATTERING OF CHARACTERISTIC ¥

TARGET K X RAYS IN THICK SILICON TARGETS

by

JAMES M. HALL

B.S., Southern Colorado State College, 1974

A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Physics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1977

Approved:

il Rl k

Major Professor



Document
LD
PN S
T Y
1977

22
ot

d, 2-

I hear and I forget . . . I do and I understand.

Chinese Proverb



TABLE OF CONTENTS

LIST OF TABIES . o & & o & o & % = o @ & & & #& w & s & & & o & ii
LIST OF FIGURES -f. T T T I e, & & |
ACKNOWLEDGME&TS e e b e w s e s s s s e s e e e s e e e iv
I INTRODUCTION AND EXPERIMENT . . o v v v & o 4 o o & o « 1
IT1. THEORETICAL DEVELOPMENT . .+ & ¢ o & & o o o o o s 2 s+ s & 16
ITI. THICK TARGET ANALYSIS « v v +v o & o o o & o o o 2 o « & & 39
Iv. DATA ANALYSTS AND CONCLUSION . . & v ¢ & v « o o o & o & 58
REFERERCES 4 o & 4 o @ ¢ & o & o s a s & s 5 & s a s s = 5 & & 66
APPERDIX A v 6 o o w = o « 5 @ @ o & o » &« 8 o # 5 s % % & & 72
APPENDIX B & & s & % % & % o & % o 4 % & & s & ' % 5 s % » o & 78

ABSTRACT



LIST OF TABLES

L, Relative X-Ray Production Efficiency . . . . . . . . . . 69
II. Experimentai Relative Intensity Ratios . . . « + « .+ « & 70
III. Experimental and Theoretical Resonances Raman

Scattering Cross Section Values . . . &+ « « ¢ o & o & 71

i1



Fig.
Fig.
Fig.
Fig.
Fig.
Fig,
Fig,
Fig.
Fig.

Fig.

10

LIST OF FIGURES

H+ + Si Spectrum by Jamison et al. . . . . . . .

Schematic of Resonance Raman Process . « . « .

Energy Systematics of Low Energy X-Ray Structure .

Schematic of Van de Graaff . . . . . . . . .
Light Scattering Diagram . . . « « .« « 4
Energy Profile for IRRS Process . . « . .
Target Geometries for Thick Target Analysis . .
Relative X-Ray Production Efficiency . . . . . .
H+ + Si X-Ray Production Cross Section . . . . .

o
H + Si Low Energy X-Ray Spectra . . + + . &

1ii

10

14

22

38

41

52

55

60



ACKNOWLEDGMENTS

I would like to thank my wife, Kathy, for her love,
patience, and suppﬁrt and for keeping her head while I was losing
mine, |

I would like to thank my parents for their love and
encouragement.

I wish to thank Keith Jamison for his help and encourage-
ment during the course of this experiment and Carl Schmiedekamp for
his many helpful comments and suggestions during the writing of this
thesis.

I am deeply indebted to Larry Weaver, James McGuire,
and Pat Richard for their help in guiding me through some of the
more detailed calculations involved in this work.

| I would like to thank Dea Richard for her expert typing
of difficult material and for her patience in putting up with my
numerous revisions.

I would also like to acknowledge the financial support
of the U, S. Energy Research and Development Administration under

Contract No. EY-76-5-02-2753.

James Hall
September 1977

iv



INTRODUCTION AND EXPERIMENT
(a.) Introduction
In a recent study of the low energy satellite structure of
silicon K x-ray spectra(l) a small discontinuity was observed between
the KL23L23 radiative Auger structure (RAE) and the first radiative

electron rearrangement (RER) peak. This structure has an energy equal

to the Ka X-ray energy minus the L binding energy and its spectral

1,2 2,3

shape resembles an inverted absorption edge. Figure 1 displays a Si K
X-ray spectrum obtained for 1.5 MeV H+ on a thick Si target. The small
edge-shaped peak labled RS at v 1640 eV is the structure of interest,
Similar structures have been observed in photon induced Si x-ray sbectra

(2)

(-]
by Aberg et al. and have been attributed to internal resonance Raman

scattering (IRRS) of characteristic Ke x rays off of the K-shell of a

3 In this process (Fig. 2) a Ko photon produced

neighboring Si atom.
within a thick solid target by external photon or ion bombardment scatters
off of a nearby ground state Si atom producing a virtual intermediate
state with a K-shell hole. The K-shell hole is then filled in the
transition to the final state by an L-shell electron emitting the out-

going photon, w Since the ejected (and now homeless) K electron must

£
undergo a "virtual free" to "free" transition in going to the final state

we must modify w_ in order to allow for energy conservation. Equating

f
the total energy (atom + photon field) of the initial and final states

we obtain:

hw

fiw g ﬁwf + ﬁwL + GK



Figure 1 Low energy Si K x-ray spectra by Jamiscn

(1)

et al. showing the RAE, resonance Raman,

and RER structures in relation to the normal

Ko and first satellite lines.
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Figure 2 Schematic of the resonance Raman process.
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and thus:
fw,. = fw - Hw - € (1.1)

where th represents the energy of an L-shell hole state and € is the
final energy of the ejected K electron. Since the ejected electron
and scattered photon are free to share available energy within the

bounds of Eqn. (1.1) we may rewrite Eqmn. (1.1} as:
Aw,. = Hw, - fw (1.2)

where the equality sign holds in the case for Ex = 0. This then gives
rise to an edge-shaped structure tailing off at low energies as observed.
Note that the parameters associated with the IRRS process should be
independent of the means of production (phogon or ion)} of the ini£131 Ka
photon.

The radiative Auger effect (RAE) was first observed in the
K x-ray spectra of Mg, Al, Si, and S by zberg and Utriainen(a) in 1969
and can roughly be described as a two-electron single-photon tramsition
in which an outer-shell electron nfzf jumps into a pre-existing inner-
shell hole n, L, (emitting the final photon wf) and another ocuter-shell
electron nf.ﬁf. is excited to a bound or continuum state ef. The
photons emitted in a radiative Auger transition have both a discrete

(when €% is a bound state) and continuous (when e£f is a continuum state)

distribution of energies given by:



*
hwf = I(niﬂi) - I(nflf) - I(nf.Lf,) - € (1.3)
where the I's represent the appropriate ionization energies and, in
*
particular, I(nf.lf.) represents the nf,lf, ionization energy in the

presence of an n vacancy. Again the ejected electron and final

£'f
photon may share the available energy within the bounds of Egqn. (1.3)

and thus we obtain:

o, € 1) - I(a L) - I(nf.if,)* (1.4)

where the equality holds for €, = 0. Thus the RAE process also exhibits

L

an edge-shaped structure tailing off at low energies (Fig. 1). 1In the
case of a KL23L23 radiative Auger transition Eqns. (1.3) and (1.4) may

be written as:

I(ls) - I(2p) - L(2p) - e

il = K
= 4 il *
i ¥, T g
and
*
ﬁmf 2 I(1s) ~ I(2p) - I(2p)
< o, (1.6)
s tha - e, .
where we do not distinguish between the LII and LIII subshells, Comparing

Eqns. (1.1) and (1.5) we see that proper definition of the appropriate

(1.5)



L2,3 ionization energy is an important consideration in separating the
radiative Auger and resonance Raman effects experimentally. Direct
observation of IRRS as a separate structure from the RAE then allows us
to differentiate between scattering type processes which are internal
to the atom (RAE) and those which are external to the atom (resonance
Raman).

Radiative electron rearrangement (RER) is a third type of
single-photon two—electron transition first described by Jamison EELiEL‘( >)
in 1975. 1In this process a K x-ray is emitted coincident with two s
electrons undergoing a rearrangement. One of the 2s electroms fills
the K-shell vacancy while the other is promoted to the 2p subshell.
This process thus requires that there be at least one 2p vacancy present
in the atom in addition to the ls vacancy. The lowest-energy RER is
the transition from a state with one 1ls and one 2p vacancy (KLl RER in
Fig. 1). Since the addition of each L-shell vacancy increases the
energy of the RER transition, an RER satellite sequence is expected and
observed (Fig. 1).

The energy systematics of the RAE, IRRS, and RER are shown
in Fig. 3. Silicon is seen to be the first element for which the IRRS
process is easily observed in the region between the KL23L23 RAE edge
and the first RER satellite. The sulfur IRRS point on Fig. 3 was taken

(4)

from photon induced spectra by Aberg and Utriainen. The IRRS process

has also been observed in photon induced Ca0 and TiO2 spectra by

(6)

Sawada et al. {not shown in Fig. 3).

Previous experimental work directed specifically at studying

(7)

the resonance Raman process has taken two basic approaches. Sparks



Figure 3 Energy systematics of the low energy Si K
Xx-ray structure. Peak positions are plotted
in terms of separation from the characteristic
Ka lire. Solid lines are theoretical separa-
tions based on Jamison et al.(l) (RER),

. (25)
Shirley (RAE), and Eqn. (1.2) using x-ray
; (26)
energies from Bearden (IRRS). Resonance
Raman scattering of both Ka and KaLl radiation
is shown. Experimental points are from Jamison
et al. 1) (rer,raE), fberg et al. ) (s 1RRS),

and this work (Si IRRS).
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(8)

and Bannett et al. have used monochromatic Cu Ka and Mo Ka x rays
incident on Ni, Cu, Zn, Ge, and Ta targets to study the scattering cross
section assoclated with the resonance Raman process while Eisenberger

(9)

et al. has used synchrotron radiation incident on Cu metal to investi-
gate the energy systematics of the process over an energy range extending
from the Cu K absorption edge to v 500 eV below it. Theoretical calcu-
lations of the scattering cross section for Cu Ko radiation incident

(10)

Ni, Cu, Zn, and Ge have been made by Bannett and Freund and more

(11) To this author's knowledge there has

recently by Tulkki and Kberg.
been no published work to date dealing specifically with the internal
resonance Raman process described in this work.

The purpose of this thesis is to investigate the IRRS process
in ion induced Si K x-ray spectra taken from thick targets and, if
possible, to obtain an estimate for the scattering cross section. The
following subsection will discuss the experimental procedure involved.

In Section II of this thesis we will attempt to develop the theoretical
scattering cross section for the resonance Raman process based on Fermi's
Golden Rule taken to second order. Section III deals with the experi-
mental extraction of an internal inelastic scattering cross section from
thick target x-ray yields. Section IV contains an analysis of the data
obtained in this experiment and a conclusion. There are two appendices.
Appendix A outlines the development of Section III in the case of photon
induced spectra. Appendix B gives a listing of the two computer codes

used to extract the scattering cross section from thick target x-ray

yields.

11



(b.) Experiment

The experiment consisted of bombarding a thick Si target
with proton beams of 1.5 MeV and 2.0 MeV. A four-inch ARL curved
crystal vacuum spectrometer was positioned at 90° with respect to the
beam axis. The Si target was positioned at 45° with respect to both
the beam and spectrometer axis. Spectra were taken with the spectrometer
Rowland circle perpendicular to the beam axis (|| mode) as well as
coplanar with the beam axis (i mode). In the (L ) mode the spectrometer
1s sensitive to that component of the emitted radiation which is polarized
parallel (perpendicular) to the beam axis. The intensity of the first RER
peak was observed to decrease in going from the (i to L mode due to
polarization effects but no appreciable change in the Raman edge was
noted. Most of the data were taken in the | mode. The beam current was
integrated directly off of the thick target and at each angular setting
of the crystal the x-ray intensity was accumulated for a preset number
of microCoulombs of beam current. The spectrometer was fitted with
0.015 in. objeect (crystal) and image (proportional counter) slits. The
detector used was a flow mode proportional counter fitted with a 2-um
Makrofol window. The counter used a P10 gas flow (10% methane; 207 argon)
and was operated at a negative bias of 2150 V.

The proton beams were produced by the KSU single-stage
AK-N Van de Graaff accelerator. The general layout of the accelerator
and experiment station is shown in Fig. 4. Monoenergetic beams were
momentum analyzed by a switching magnet and energy controlled by a
fast-feedback slit control system. The-beams were then focussed by an

electrostatic quadrupole and collimated to 'a 2-mm spot before striking

12



Figure 4 Schematic of AK-N single-stage Van de Graaff

accelerator and experiment station.

13
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the target. Typical beam currents in the range of 3 to 6 pA were

used to scan the x-ray region containing the RAE, IRRS, and RER processes.
A reduced beam current of ~ 150 nA was used to scan the x-ray region

in the vicinity of the Ka peak and its first satellite in order to

. 1
obtain the ratio KaL /Ka The reduced beam current was necessary

1,2°
in order to prevent pulse pileup and pulse-height defects in the
proportional counter-preamplifier-amplifier system due to high count
rates. The data weré accumulated in a Nuclear Data 100 analyzer with
a multiscaling device allowing for a variable spectrometer step size
and variable integrated current per spectrometer step. The spectrometer
step size used in this experiment was 0.00067 R. The data were punched
on paper tape for later off-line analysis on a PDP-15 computer,

In order to insure that the low-intensity Raman edge was
not- produced by geometrical effects due to the analyzing crystal used
in the spectrometer, two different crystals were used to observe this
effect. Si x-ray spectra obtained with ammonium dihydrogen phosphate
(ADP) and ethylene diamine tartrate (EDdT) crystals seemed to give
identical results although the ADP spectra were lower im overall intensity.
Most of the spectra taken in this experiment were taken using the EDdT
crystal due to its higher refleétivity in the energy range of interest

(v 1600 to ~ 1660 eV). All spectra were obtained in first order (i.e.

nA = X = 2d sin 6 for Bragg's Law).

15



THEORETICAL DEVELOPMENT

In this section we will consider the scattering of light by

(12,13) In general the scattering process consists of the

an atom.
absorption of a primary photon of energy-hwi by an atom in a state |i>

followed by the emission of a secondary photon of energy hw_ leaving

f
the atom in some final state ]f>. When the initial and final states of
the atom are the same (]i> = |f>; elastic) the freguency of the photon
is not changed in the scattering process (in general only the direction
of propagation is changed). This is called Rayleigh scattering. If

the state of the atom changes during the scattering process (|i> # |f>;
inelastic) then the energy of the scattered photon will, in general,
differ from the energy of the incident photon. This sort of scattering
process is called Compton or Raman scattering (it should be noted that
in the x-ray region Raman scattering does not necessarily imply that the
final state 1s a discrete state as is usually the case in the optical
region.) Compton and Raman scattering differ essentially in the domains
of the parameters ﬁmi/I and Kr where I is an inner-shell binding energy,
r is a characteristic radius of the electronm orbits, and K is a net
momentum transfer., The scattering is called Compton scattering if

'ﬁwi >> I and Kr >> 1 (i.e. the electron is considered essentially free)
and Raman scattering if Hw, R I and Kr X 1. 1In the case of Raman
scattering of silicon Ko radiation off of the silicon K shell, we have

Hiw, = 1739 eV $ 1839 eV = I and Kr (max) ~ 0.03 £ 1 as required.

i k

We will attempt to calculate the differential cross section
for Raman scattering off of the XK shell of an atom by direct evaluation

using second order perturbation theory.

16



(12)

{a.) The Hamiltonian

The classical Hamiltonian for a system of charged, spinless
particles interacting with a radiation field in the non-relativistic

approximation is given by:

Mll—‘

_ B e
- HR + § ij (pj qu(rj)) + sk E /4ﬁ€ T, J) (2.1)

where HR is the Hamiltonian for a free radiation field:
B = J oa H (2.2)
o a o )

with k being the photon wave vector and ) being its polarization index

(1 or 2 in a linear polarization basis and + or - in a circular polari-
zation basis). The summation extends over all photon modes {k,A} which
exist in the field,

Equation (2.1) may be expanded into the following form:

2 1
= Hy + {g Pj/zmj +7 1 §°(qiqj/4ﬂ50r1j)}

A1

_--— Ale n— 2 2_
-1 (q;/2m) (pyrA(ry) + AT py) + ¥ (ay/2m)A" (x )

3 3

3 1

= H_R {§ . /2m + j;i E 3 (qiqj/ﬁweorij)}

-Zmﬂ%méfﬁj+2m?m9féf 2.3)
3 3

17



where we have used the commutation relation [p,f(x)] = -ihVf(x) and
the choice of the Coulomb gauge to require that [p,A(T)] = p+A(r) -
A(r)*p = -ihV-A(r) = 0. The total Hamiltonian for the system may now

be written as the sum of three parts:

where

) == N 2 2 -
Hpyr = § (qj/mj)Ach.) P +§ (a5/2m)4% (x ) (2.4)

and ER is given by Eqn. (2.2). The vector potential operator E(;j) is
given by:

_ $ 0 1Ea-5j —iEa'Ej

A(rj) = E (ﬁ/2eowaL ){aaeae + a e, e } (2.5)
where Ea_is a polarization basis wvector. The electron-photon interaction

Hamiltonian H is the sum of two operators, H

INT and H2, which may be

1

given as:

-ik -
¥ ow ko=
+ a, e, -§ pj e j} (2.6)

18



2
e 3 —
- ) (/2¢€ L YA/ Vb o))

oo’

o=t
n

i(ku+ka,)'rj

x

:Ej: {(Eu- Ea' )aaaa, e

+ (e -e *) a ei(kahka').rj
a ot/ %"

+ (e *'E Ya a e_i(ka_ka').rj
a o' "aal

-i(k +k . )-T.
-k - %+ + '
+ (eu 'ea,)auaa, e L J} . (2.7)

The operator HINT = Hl + H2 will be treated as a perturbation

while HR + H

A TOM will be used as the unperturbed Hamiltonian for the

systém. The operator HR + H

ATOM has the eigenfunctions

ATOM + PHOTONS> = [j>,. 0 lncven voip, oo (2.8)
where j represents any quantum numbers necessary to characterize the
state of the atom. The operator H will induce transitions between

INT

atomic states.

(b.) The Scattering Rate

Two photon processes can occur through second order transi-
tions involving H, as given by Eqn. (2.6) or through first order transi-

tions involving H2 as given by Eqn. (2.7). The transitions involving

19



Tt
aaaa, and auaa. are two-photon absorption and emission, while the
. y . + + s ;
transitions involving aaau, and a,a.r are associated with scattering

processes. First order scattering involving H, may be throught of as

2

a direct process (i.e, one in which the absorption and emission are
simultaneous processes). This is usually referred to as the Waller
term (Fig. 5). In order to discuss second order scattering involving

H, we must introduce the possibility of intermediate atomic states,

1

considering the scattering to be a two-stage process. In our case

there are two classes of such intermediate states differing in the order

in which the absorption of hmi and the emission of hwf take place (the
Kramers-Heisenberg terms in Fig. 5):

(1) ﬁwi is absorbed first, thus leaving no photons present
in the intermediate state. In the transition to the final state-ﬁwf is
emitted.

(ID) ﬁmf is emitted first, thus leaving two photons present
in the intermediate state. In the transition to therfinal state-’ﬁwi is

absorbed.

In both possible intermediate states the atom may be excited

in any state m.

| The general transition rate for inelastic photon scattering

including the possibility of an ejected electron in the final state is
given by Fermi's Golden Rule (neglecting any lifetime effects) taken

to second order:

20



Figure 5 Light scattering diagram. Solid line, atom;

dotted line, photons.
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<F|H1|M><M|H1|I> 5

E1 = By

2
aw =‘£E-|<F|H2]I> + %

x p_p de de_ dffe )d2 (B, - ETOTALi) (2.9)

f f £
where € is the energy of the ejected electron and the initial and final
states are defined by:

II>= [i se eIl »I1 see

> stox | a, " Mo, ” PHOTONS

n

P> = |£ l..om, -1)..i(n +1)... (2.10)

. ” PHOTONS
i f

> ATOM
In the following development we will require the electron-photon system
to conserve energy but not necessarily to conserve momentum (i.e. we
will assume that the recoiling nucleus is capable of taking off a large
amount of momentum without taking off much energy).

Using H, as given by Eqn. (2.7) and considering the photon

2
field to contain the two general modes «, = {k,,A,} and o, = {k_,A_}

i i'74 f £f
(wvhere the helicity of the photons may be either + or - in either mode)

we obtain:

- - %
2. x% i(k,-k,) r,
<F|n,|1> = e‘ﬁ3 o s i>
2e ml” Yw.w i
o i’f
x /o (n, +1) . (2:11%
R

23



In our particular case of silicon Ko radiation scattered by a silicon

sample, we have fiw, = 1739 eV and 0 < 4w, < 1640 eV, Thus |(k, - k.):
i i f

f

;jIN&X " 0.03 and <FIH2!I> vanishes in the dipole approximation.
The summation in Eqn. (2.9) extends over all possible

intermediate states. We may express the two general classes of inter-

mediate states in the notation of Eqn. (2.10) as:

lm)ATOM I...(nmi - l)"'nuf"'>PHOTONS

2>

il fm)AIOM ’...na ...(nu + 1) (2.12)

>
5 £ PHOTONS

where |M1> (IM2>) corresponds to process I (II) in Fig. 5. Using Hl as

given by Eqn. (2.6) we obtain:

I I & 5 }1/2 Ai ]_ I _ iki'rjl
<M_|H [I> = = <m|e, °* P. & i>, (2.13)
251 T Yo, Ayo§ 4
o i
n. +1
e gl 1/2 Jtf
<M2|Hl|1> == 3
B e 4 Yo,
o] f
—-ik_ T,
x <m|EA*- ] p. e £ N>, (2.14)
£ 3 7
1/2 nA +1
gl f
<FIH1|M1> = f{ ( 3]
ZEOL JE;
-ik, T,
x <f|EA*- I5 e Ems (2.15)
£ ]



E. = E, + Hw

I i i

= Em
1
) = Em +'ﬁmi + ﬁmf . (2.17)
Thus

EI - EMl = Ei - Em + ﬁwi

EI - EM2 = Ei - Em - ﬁwf {(2.18)

The summation in Eqn. (2.9) may now be expressed in the dipole approxima-

tion as:

£]e,*x p e p,|i
< ._:_)t +Z pj|m><m|e z P£ i>

iz

x ¥ { i
m Ei - Em +-ﬁwi

A

<fle, -z 5j|m><m|a; SENEE
+ 1] L2 } (2.19)

Ei - Em - ﬁmf

25



For brevity in the following discussion we will make the substitutions

P=2= 5., e, = e and e, = e, . Equation (2.19) shows that the contri-
i h| i Ai f Af

bution of the second order term can be quite large if the incident
energy ﬁmi is close to some energy difference Em - Ei within the atom.
This occurs, for example, 1f-ﬁmi is near an atomic absorption edge as
is the case in resonance Raman scattering.

For our purposes we will assume the atom to be in a lS
ground state initially. Thus, in the case of silicon, we will neglect
electrons in the M shell since they do not participate in the scattering
process. We will also neglect all intermediate states except those

which correspond to a 1ls vacancy since-ﬁmi = i is close to the

Ysika
corresponding ionization energy (i.e. the first term in Eqn. (2.19) is
large). Finally we will neglect the possibility of flipping the spin

of the ejected electron since the Hamiltonian we have used is spin-

independent. Thus the atomic states to be considered are:

1
|1> = 7s; (B
|m> = (ls)-l EP lP' (E =E, + € + #w, )
* m .8 k
]f> = (f&p)_l £p lS, lP, lD; (Ef = Ei + € +-ﬁwL) (2.20)

where £ is taken to be the same in the intermediate and final states and
multiplet splitting has been ignored. If we neglect the second (non-
resonant) term in Eqn. (2.19) and consider the summation to be a sum

over mi states of the intermediate state we obtain:

26



n. (n, +1)
Z - Ei ( 1 ki lf
M m2 2e LBJ fwiwf

x (2.21)

where w = e€/fi, The matrix elements are given by:
<fIE*-1'>|m> = <f2 2.Im |or « Plmele!L'm'>
£ My, 1€f -k A

<m|E.'P|i>
i

£
£

. PIiL"m£> (2.22)

wvhere 21 refers to the atom and £2 refers to the ejected electron.

For the moment we will confine our attention to reducing the

expression:
M = <f|er -3 e, = P|i> 2,23)
IF = z' |ef P|m><m|ei Pli> . (2.
m
—* - -k —% -
Using e * P=1I Pq(ef'eq) where the eq are spherical unit vectors we

may expand the first expression in Eqn. (2.22) to yield:

27



<flef'P|m> = Em (
s |
]
mzml
1
(1 2 L) (21
4 m. - m)!
moMy TRy 1

x <f illtfllm £i>

where we have assumed that §K commutes with the 2

, 28 ,-m, +m -1 4m}

[(2L+1) (2L'+1)]1/2(E:-é;)

1 T

L, L) (9,1 1 nl)
- 1 - ]
A e T |

(2.24)

2,2% part of the wave

functions (i.e. the ejected electron is not affected in the transition

|lm> + |£>). 1If we substitute &, = £, = £/

R .

=L'

= 1, 2i =m! = 0 and

make use of the symmetry properties of the 3-j symbols Eqn. (2.24)

reduces to:

1/2 1 1 1
<f|gg Blum> = AL 7 (-)mL(E:-E*) ( . )
s @ \a o

x <f 1P|l m O>

(2.25)
The second expression in Eqn. (2.22) may be expanded to yield (L" =
m£ = 0):
o l-mi % 1 1 0
<m|e.*P|i> = ] (=) (ejre ) |\ o )
i q' i7q mq 0
x <m Ll Pl 1 0> (2.26)
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Combining Eqns. (2.25) and (2.26) we obtain:

1/2
M _ = 2L+1) <f 15 P 'mO><m 1" P41 0>

IF 1/37
1 = T
x o %(E;-EZ) (531
m qq’ ]
(1 i3 L) (1 1 o)
x
¢ q' -m/ \-m q' 0
1/2
= &;’i— <f 1'PlmO><m LY PN O>
s A S 7
‘() L ) (?éz-é:)(?e‘i-éz,) ( ) 2.27)
qq’ ' ' ¢ q' -m

thus establishing mi = q' as the only non-zero term in Z *** . Multiplying
1

Eqn. (2.27) by its complex conjugate gives: L
2 (2141) hT o 12 = 2

Mol == <€ 14Fim 0>]" [<m LR M1 0>

) B T e

x L - = - . - .
. (ef eq) (Ef eq_l.l) (ei_ eqr) (ei equ 1)
qrqﬂf
94
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|MIFI2 =£Ii;ﬂ |<€ 158 1m 0>|% |<m 17 B 1 0]
x J B & B, B
q'q"l f(mL_qf) f(mL_qu) iql iqni
1 1 L 1 1 L
X ( ) (2.28)
q! (mL_qu) _m'L an (mL_qln) _mL

where again we have used the symmetry properties of the 3-j symbols

to eliminate the summations over q and q''. We have also made substitu-
—

tions of the form Bi \ E (ei-eq.). If we assume the initial photons to

q .
have circular polarization with polarization vectors given by:

- _ -1 - 4+ .=
e + s (ex = iey) (2.29)

~ ~

and with ki =e, =e;, then it can be shown that the summation Z se
q'q""

contains only two non-vanishing terms:

2
1 1 L 1+
o= e * ( ) { i}
q'q"’ (mL-l) 1 (mL—l) -m 0 (-)i

, {1 1 L\? LROR
+ |8, l . (2.30)
(mL+1) -1 (mL+l) —mp ll (-)i
. 2 2 2
We must now compute the quantities le I ’ fo | , ’Bf ’ ;
1 0 -1

We will suppose an alignment of coordinate systems Oxyz (initial) and
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~

0, , , (final) such that k_ = e_, and the z, z', x, and x' axes all lie
X'y z f z
in the same plane. Then the transformation from unprimed to primed

coordinate systems is accomplished by a rotation about the y axis

~ ~

(eY = ey.). The rotation matrix is given by:
x y z
5 cos 6 0 -sin 6
y' 0 1 0 . (2.31)
z' sin © 0 cos 6

If we assume the scattered photons to have circular polarization of
the form (2.29) in the primed coordinate system then a simple trans-

formation gives:

L teost B E55 <slBBEY . (2.32)
% y z

Y2

Ef(t) -

+Ii

We then obtain:

]Bf |2 = %-(coszﬂ T 2cosf + 1) ,
1

[Bf |2 = %- sinze .
0

IBf |2 = %-(coszﬁ T 2cosb + 1) (2.33)
-1

where the upper (lower) sign is to be taken for (+)f ((-)f).
Since the incident beam of Ko x rays is assumed to have zero

~net polarization (i.e. equal numbers of (+ji and (—)i photons}, and the
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final polarization is not measured in this experiment we must average
over the two possible initial polarization states and sum over the two

possible final polarization states. Thus:

gl =3 {le, - @l 2

+ |+, > (=)
TOTAL i £

+e), > @2+ [~ O 2} (2.34)

where the [('.’.‘)i - (i’)f|2 terms simply represent |MIF|2 (Eqn. (2.28) with
! -(1) - (%)
the appropriate choice of e, and es .

Finally, combining the results of Eqn.s (2.33), (2.30),
{2.28), and (2.34) and summing over all allowed L and o values of the
final state, we obtain after some algebra:
2 - =
E |M =3|<f 1l Piln 0>|2 |<m 1l pit4 0>|2

L,m IF rorar, 9

2
=2|<€ 10/ P |m00 SE |<m 1 0] P_ |1 002" .
€2.35)
In each of the transitions indicated in Eqn. (2.35) only a single electron
has changed its orbital. 1In the case of <m 1 0| Pz |1+ 0 0> a 1s electron
makes the transition ls ~ ep while in <f 1 0] P |m 0 0> a 2p electron

makes the transition 2p + ls. Thus if we substitute Slater determinants

for the true atomic wave functions in Eqn. (2.35) it can be shown that:
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<m10| P [£00>=<mlo0 ) P, |1 0 0>

<ep| P, |1s> (2.36)

and likewise

<€10| P |n00>=c<is| p_ [2p> (2.37)
where the wave functions have been reduced to single electron wave
functions. Note that in Egqn. (2.37) the 1s wave function is calculated
in the presence of a 2p vacancy and, likewise, the 2p wave function is
calculated in the presence of a 1ls vacancy. For convenience we will
choose the continuum electron wave function in Eqn. (2.36) to be
normalized per unit energy interval.

The general transition rate (Eqn. (2.9)) may now be written
in terms of the single electron wave functions by combining the results

of Eqns. (2.37), (2.36), (2.35), and (2.21) to yield:

2 2
3 ¢ o2 g () (D<1s|p |2p>|7[<ep|p [1s>]

2 W, W 2
2m eoL if (mk + w - mi)

% B de d(ﬁmf) de G(ﬁmi—’hm

aﬁmﬂﬁmL) (2.38)
£ f

f

where we have integrated over dﬂs. The factor lmpE does not explicitly
appear in Eqn. (2.38) due to our choice of normalization for |Ep> (i.e.

this factor has now been included in the normalization constant for |€p>).
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If we substitute pw = L3m§ﬁﬁ(2wc)3 for the scattered photon density of
f

final states in Eqn. (2.38) we obtain:

2r . w, en, (n_+1) |<ls]p |2p>|2|<€p|p lls>|2
d3W _ o _f i f z z
if 2.2 w 3 2
mh i L (mk-!-m-—mi)
X G(mi e mL)ds dwf de (2.39)

f

2 .
where r0 = e2/4webmc is the classical electron radius. The transition

rate is proportional to the number of initial photons in the field, n,s

as expected and consists of two terms. The term which is proportional
to n, represents the rate of induced scattering while the term which is
independent of n. represents the rate of spontaneous scattering. For a

radiation field in thermal equalibrium Planck's law gives (nf)AVE =

(exp (hw _/kT) - l)-l. In our case hw, ~ 1640 eV which means that
f

f

%wf/kT >> 1 for temperatures lO6 °K. Thus (n v 0 and it is

f)AVE
sufficient to comnsider only the rate due to spontaneous scattering.

We may relate the scattering rate given by Eqn. (2.39) to the
K absorption cross sectioﬁ per atom by observing that for an arbitrary
initial photon energy ﬁm'i we have:

2
2me 2
dck(m'i) = —§—~————-|<e'p|pz|1s>| 6Cﬁm'i~ﬁmk-e')de' (2.40)

F ]
m ow iC

where again ls'p> has been normalized per unit energy interval. Upon

integration over de' we obtain:
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2
g, (W',) = ~§2£E——— [<E'p|pzlls>|2 (2.41)

L}
m€cw'y
where now g'= ﬁw'i —‘ﬁwk. If we substitutE‘ﬁw'i ='ﬁmk + € in Eqn. (2.41)
we have €' = ¢ and thus:
BWZGh 2
ok(mki-w) = —E—-“———‘I<EP|P |15>|
m (mk+w) &

; 2
where we have introduced the fine structure constant o = e /4ﬂé%hc.

The scattering rate in Equn. (2.39) may now be written as:

2 2
3 r we cmy (wk+w)0k(mk+w)[<ls|p212p>[
dWie="73 3 5.3 )
4t7ch il (w, +0 - w,)
k i
x 6(wi - W T -mL)ds dmf_dﬂm . (2.43)

f

Integrating Eqn. (2.43) over de and,dﬂw we obtain:
£

179%)

cni (w
L P

ka+m

mah~ i L (wku_mf)

x |<is|p,|2p>|* @, . (2.44)

Finally, dividing Eqn. (2.44) by the incident photon flux ¢ = cni/L3 and
multiplying by 2 to account for the two possible spin states of the
ejected electron we obtain an expression for the energy differential

cross section per atom associated with the resonant Raman scattering

process:
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2
dopg(wy) =3 dWye

2
4+ -
=2r0 -u_!g(mkuwimf o o o
Wuﬁz mi e )2 kVka 41 °f
ko £
2
X |<ls|pz|2p>| do. (2.45)

Note that this expression includes only the resonant part of the

1)

scattering cross section. Recent work by J. Tulkki and T. Rberg
has shown that inclusion of the second (non-resonant) term in Eqn. (2.19)
results in the addition of a small anisotropic contribution to the

2
scattering cross section d URS/de dw Numerically, they estimate

f
that this contribution does not change dza

£

S/de dw_. by more than about

£ f

10%. Thus, for our purposes, we will choose to neglect the contribution

R

of the non-resonant term. The total resonant contribution to the cross

section 1s obtained by integrating Eqn. (2.45) over we which varies

from 0 to we = Wy
The differential cross section as given by Eqn. (2.45) is

still general to the extent that w, remains unspecified. The only

i

restriction on mi is that it be such that the resonance condition can

be met (i.e. the first term in Eqn. (2.19) is dominant) and yet lifetime

effects for the K hole state can be neglected (i.e. (mi - mk)2 >>

szfﬁﬁz where Fk is the line width associated with the K hole state).

Additionally, should be 2 10 in order to justify our assumption

zTarget
of a filled L shell.

The energy profile of doRS/dEf for silicon Ka radiation on

solid silicon is shown in Fig. 6 for the energy range 1540 =< Ef S 1640 eV.

36



Figure 6 Energy profile for resonance Raman process

(based on Egqn. (2.45)).
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THICK TARGET ANALYSIS

In this section we will consider the resonant Raman
scattering of characteristic Ko photons within a thick solid target.
The photons are produced as a result of K ionizatlon produced by ion
bombardment. The incident ions will be treated as a parallel beam of
arbifrary cross section. The intensity of the beam i1s described by the
number Io of monoenergetic ions, energy E, per unit time which pass
through a unit area normal to the beam direction. The incident beam
makes an angle o with the normal to the target surface as shown in

14)

Fig. 7. Neglecting losses due to straggling( and small angle

15
scattering,( ) the rate of ions impinging on a differential element of
surface area dA' located parallel to the surface is approximately

independent of depth up to the ion range and is given by:
I0 dA'cosa (3.1)

The rate of Ka photon production within a volume element dV' = (dA'cosa)ds’

dA' dt' at a target depth t' (point A on Fig. (7)) is given by:
] 1 :
Io dav noKX(E(s » ‘ | (3.2)

where n is the atomic density of the target, o, is the K x-ray production

KX
cross section (equal to the K-shell fluorescence yield times the K ioni-
zation cross section UI), 8" = t'"/cosa is the linear penetration depth

of the ion beam, and E(s') is the ion energy at depth s'.
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Figure 7 Target geometries used in thick target analysis

of Section IIT.
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The intensity of these Ko photons on the surface of an

imaginary sphere of radius r centered at dV' may be written as:

_uzr
e

L I ' '
I' = Io dv ncKX(s ) 5 (3.3)
4ur

where uz = uz(EKu) is the linear absorption coefficient for Ka radiation,
Using this we may calculate the rate at which photons from dV' enter the
spherical volume element dV (point B on Fig. 7 ) and are scattered into

an energy interval (Ef, E_+ dEf) through the resonant Raman process:

f
I' dV n dGRS(EKa;Ef) . . C(3.4)

Here chS(EKu;Ef) (see Section II, Eqn. (2.45)) refers to a differential

segment of o__ responsible for scattering incident radiation (Ei = EKa)

RS
into the interval (Ef, Ef + dEf). Finally, the rate at which Raman

scattered photons from dV reach the detector is given by:

-u3t/coss
I' dV n dURS e (dﬂslﬁw)
' -u,r-u.t/cosp
=1 %% e o (8') dopg(dn /am) e 23 (3.5)
r

where dﬂs is the solid angle subtended at dV by the detector (or
spectrometer image slit) and Mg = u3(Ef) is the linear absorption co-
efficient for the scattered radiation. Based on the theoretical develop-

ment of Section II we have assumed that the scattered radiation is

emitted isotropically from dv.
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Integration of Eqn. (3.5) over the sample volume (with
origin at dV') gives the total detectable Raman yield (Ef component)
due to Ko radiation from dV'. For a distant detector (or spectrometer
image slit) we will assume that the solid angle factor d9614ﬂ is approxi-
mately constant (to within n~ 1%) and that it may be moved outside of
the integral to yield:
av' 2

Io A UKX(S') chs (d98/4ﬂ)

',
R(dV ,Ef)

-uzr—u3t/cosB
J e sinf do d¢ dr . (3.6)

v

A factor K is defined to be

- av' 2

K = I0 5= D chS(dQB/4w)
and it is noted that t = t' - r cosb so that Eqn. (3.6) can be written
as:

—u3t'/c058 u3rcosalcosB~u2r
. = 1
R(dV ,Ef) K GKX(S ) e e
(r) (8)
X sin6 d6 dr (3.7)

where we have integrated over d¢. For convenience the region of inte-
gration over r and 6 may be divided into two parts: (1) a sphere of

radius t' centered at dV' and (2) the remaining sample volume outside
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of the sphere. Then we obtain:

Mg t'/cosB £
R(dV';E_) = K UKX(S') e J
o

1
rcosB!cosB—uzr

e

x d(cosB)dr +

t
T
u3rcosB/cosB—u r
f e d(cos8)dr /.
1

£3.8)

The infinite limit appearing in the r integral of the second term implies
a sample which is assumed to be semi-infinite for purposes of Ka photon

absorption.

Eqn. (3.8) can be integrated over the range of the ion beam
to obtain the total detectable Raman yield (Ef component) due to Kua
radiation from a column of differential cross section dA'cosa along the
beam path. The volume element dV' contained in the constant K may be

expanded into the form dV' = dA' dt' = dA'cosa ds'. Thus we have:

dA’ 2 Range ' -u3t'/COSB
R(a,B,Ef) = I - n doRS(dQB/An)cosa I UKX(S ) e
o

p3rcosB/cosB-u T
e d(cosB)dr

 ——

u3rcosefc058—p2r
e d(cosB8)dr } ds!

+
¢1-.__‘8
= S——— |t
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(Range)coso

-pu.t'/cosB
dA' 2 i 3
Io 5 1 dGRS (d98/4n) J UKX(t /cosa) e
o
]
£ 1 u3rc056/cosB—u2r
x j J e d(cosb)dr
o -1
tl‘
- u3rcose/cosﬁ—u r
+ j e d(cos6)dr ; dt' . {3.9)
t' -1

This expression may be evaluated numerically., The details will be dealt
with in the next section.

The next step involves the determination of the Kua x-ray
vield from the differential column discussed above. The detectable Ka
rhoton yield from the volume element dV' is given by:

-uzt'/coss
Io dv noKX(s )(dQB/4n) e i (3.10)

The total detectable yield from the column may now be found by integra-

tion along the beam path:

Range —uzt'/cosﬂ
F(a,B) = I dA' coso n(dQBIAW) J ch(s') e ds'
)
(Range)cosa -uzt'/cosB
. 1 1 L]
IO dA n(dQBIAW) GKX(t [fcosa) e dat'
o

{3.11)
This‘expression must also be evaluated‘numerically due to the lack of a
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simple algebraic form for UKX(t'/cosa).

The ratio of R(u,B;Ef) to F(a,B) now provides a measure of

the relative yield of Raman scattered (Ef component) to Ka radiation

for a given o and B due to a single differential column along the beam

path:
R(a,R;E.) (1 aa’ n2dc (de_/4m)) I_(u,B:E.)
Bl Yo 3 RSB R P g
F(a,B) 1
y (Io dA n(d98/4ﬂ)) IF(a,B)
n do I_(a,B;E.)
- 2R5 R (3.12)
IF(G,B)
where
(Range)cosa
-u,t'/cosB
IR(a,B;Ef) = J on(t‘/cosu) e
o
1
‘t L u3rcose/cosB~p r
X ] I I e d(cosf)dr
o -1
t'
© T
u3rcoselcosB—u T
+ I e d(cosf)dr 5 dt' (3.13)
t' -1
and
(Range)cosa
—uit'/cosB
dt' . (3.14)

I.(a,B) = j GKX(t'/cosa) e

0
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Since all differential columms along the beam path are assumed to be
identical in this model, Eqn. (3.12) also represents the total measured
relative yield of Raman scattered (Ef component) to Ka radiation.

For later convenience in numerical handling Eqn. (3.12) may
be modified such that all distances are in mg/cm2 and all linear absorp-
tion coefficients (cmfl) are changed to mass absorption coefficients
(cmzfmg). By making the substitutions r(cm) = r(mg/cmz)/p, t'(em) =
t'(mg/cmz)/p, and u(cm—l) = u(cmzfmg)p where p is the target mass

density in mg/cm3 we obtain:

" 1 i 3.15
I (a,85E,) + =5 I (a,B85E,) ( )
P
I_(a,8) + < I_(x,8) (3.16)
FY? p F? : *
Thus we have:
R(G’B; Ef) Lo - IR(Q’B;Ef)
F(a,B) 2p RS IF(G,B)
N I_(a,B;E,)
24 B 3 (3.17)

= e——— 0‘ ——
2Am RS IF(u,B)

where NA is Avogadro's number and A.m is the target atomic mass. Finally,
we may define a relative x-ray production efficiency £ for the Ef

component of Raman scattered radiation versus Ko radiation:
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N, IR(G,B;EE)

We then have:
R(e,B3E.) do_ (E, ;E)
£/ RS Ko’ f .
F(G,B) = GKx(Eo) E(G’BSEODEf) . (3'19)

If the analytical shape and background of the Raman edge are known, it

is possible to extract an estimate of the total integrated intensity

R(a,B) associated with the resonant Raman process. Eqn. (3.19) may then

be used to estimate the total cross section GRS(Ei = EKa) for scattering

into all angles and all allowed energies (0 £ E_. = EK - EL {Binding)).
£ 2,3

Care must be taken in the evaluation of E(a,B;EO,Ef). The integral

IR(u,B;Ef) must effectively be integrated over E Given a reasonably

£
extensive table of mass absorption coefficients (Ref. (16) for example)
this is not too difficult,

As a simple cross check of the above derivation (independent
of the assumptions made therein) we may evaluate the gross x-ray yields
in terms of "escape efficiencies" for the Raman scattered and characteris-

tic radiation. The measurable characteristic x-ray yield will be given

by:
F(MEAS) = Ex F(TOTAL) (3.20)

where €x £ 0.5 is the escape efficiency of the characteristic target K

x rays. Likewilse:
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R(MEAS;EF) = g R(TOTAL;Ef) (3:21)

where €r 2 0.5 is the escape efficiency of the Raman scattered radiation.

R(TOTAL;Ef) is given by:

do

RS
) o

ABS

R(TOTAL;E_) = (1 - ¢ F(TOTAL) (3.22)

X

where (1 - EX) represents the fraction of the total characteristic radiation

which is absorbed in the solid and chS/o'ABS is the fraction of the

absorbed radiation which scatters into (Ef,E + dEf) via the resonant

£

Raman process. Thus we have:

do

ROMEASSE) = ep(1 - €y) = RS r(ToTAL)
ABS
£ do
- 25-(1 - &) = RS pomas) . (3.23)
X ABS

Taking the ratio of R(MEAS;Ef) to F(MEAS) we obtain:

R(MEAS;Ef) _ €r dURS
———— =g Q-3
F(MEAS) X ABS
do_.(E, ;E_)
= £(E,) ORS(EK§ £ (3.24)
KX o
where
Ex GKX(EO)
E(E) =— (1 - &) 4 (3.25)
° €x X" 0,ps By
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E

Using Ry 1, e, v 0.5, and @ (E, ) = 1.615 x lOab, we obtain E(E =
€ Ko o

" X ABS
1.0 MeV) = 10.12 x 10'3, E(Ey = 1.5 MeV) = 15.76 x 10'3, and E£(E) =
2.0 MeV) = 19.57 x 10--3 in reasonable agreement (dashed lines in Fig. (8))

with the detailed calculation.

Numerical Considerations:
(a) Integration Technique (See also Appendix B)

The integrals IR(G,B;Ef) and IF(a,B) given in Eqns. (3.13)
and (3.14) respectively were evaluated using a standard Gauss-Legendre

)

17
quadrature formula for an arbitrary interval:(

I~

wy f(yi) + R (3.26)

b
b-a
ff@My=7f
i=1
a

where

v = (=2 b+a

2/1-x, 2 (P! ()17}

E
]

2n+l 4

(20+1)[(2n)!]

and X, is the ith zero of Pn(x). The appropriate wvalues of Xy and W,
are tabulated in Ref. (18). The integral IF(a,B) was calculated using a
single 12-point formula while the triple integrals in IR(u,B;Ef) were
evaluated using three nested 8-point formulas. The 8-point formulas

were chosen as a convenient compromise between cost and accuracy. The
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Figure 8 Relative x-ray production efficiency in the
immediate vicinity of the Raman edge and
appropriate for our particular experimental

geometry (o = 8 = 45°).
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remainder term Rn was not actually calculated due to the high order of
the functional derivative required. Instead, convergence tests using a
24-point formula for IF(a,B) and nested (24,16,12)-point formulas for
IR(u,B;Ef) were performed. In all cases tested the resulting error in
the relative x-ray production efficiency E(a,B;EO,Ef) (See Table I)

was found to be less than 0.4%. The infinite limit which appears in the
expression for IR(u,B;Ef) was reduced to B for computational purposes
where L Ty is such that the Raman rate within dV due to Ka radiation
from dV' (Eqn. (2.7)) is attenuated by a factor of 1000. The resulting

cutoff error in E(a,B;EO,Ef) was found to be less than 0.02%.

(b) X-Ray Production Cross Section; ch(E(s))

Silicon K x-ray production cross sections, GKX(S), as a
function of ion penetration depth were obtained by combining the K x-ray
production cross section vs. ion energy, GKX(E), with the corresponding
ion energy vs. depth, E(s), calculations. PWBABC cross sections for
protons on silicon were obtained from the program XCODE listed in Ref.
(19). The calculations are based on theories which assume that the ioni-
zation is produced by direct Coulomb excitation of the target electrons
by the incident projectile. These calculations assume that the projectile
acts as a bare nuclear charge and thus should be reliable for incident
protons. The silicon K-shell fluorescence yield used was 0.0412 as

(20)

calculated by McGuire. Ion energy as a function of target penetration

depth was obtained by the simple iterative process outlined below:
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Figure 9 H+ + Si x-ray production cross section as a

function of ion penetration depth.
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E(0) = E_

- . dE, -
E(8s) = E_ - (8s) (7)) = By
E
o
dE o
E(2As) = El - (as) (EEO E2
E
1
dE _
E(3As) = E2 - (As) QE;) E3
E
2
dE
where As is such that (As) GE;) << Ei « In general we have:
Ey
E(nds) = E_, - (as) (D) = E (3.28)
n-1 ds E n °

n-1

The energy loss vs. E,-%E(E), was calculated based on data given in

Ref. (21). For computational purposes the calculated o, (s) data were

KX
fit to a fifth order polynomial in ion penetration depth, s.

(c) Mass Attenuation Coefficients; uz(EKu), u3(Ef)
The mass attenuation coefficients u2 and u3 as a function

of photon wavelength are given in general by:
p=airx Z (3.29)

where Z is the nuclear charge of the medium and a, b, and c are constants

over a given range of A. Writing both u, and Ha in this form we may

2

obtain an expression for Hj in terms of known quantities:
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E
Koy P
=u (= . (3.30)
Ka 2 Ef

For A (K edge) < X < A(Ll edge) Ref., (16) gives b = 2,74, Using the values

cm o s = i
My 0.346289 Eg; (£2%), EKa = 1739.78 eV, and Ef 1640.58 eV we obtain

5 = 0.406724 ;T; (+2%). Note that for E. we have used the maximm

scattered photon energy, EKa - E(L2 3(Binding)). The variation in
3

H

Hq over the approximately 6 eV visible width of the Raman edge is less
than 1% of the value stated above. Thus, setting Ef = Ef(MAX) in the
numerical calculation of E(a,B;ED,Ef) in the vicinity of the edge should

not be a large source of error.
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DATA ANATYSIS AND CONCLUSION

(a.) Data Analysis

The motivation for doing this experiment was to investigate
the internal resonance Raman scattering phenomenon in ion-induced x-ray
spectra. This was accomplished by studying the K x-ray spectra of
thick Si targets produced by proton impact. Fig. 10 shows the results
of 5i bombarded with 1.5 and 2.0 MeV proton beams. The structure between
1630 and 1640 eV is attributed to the IRRS process with the ejected
electron having very nearly zero energy and the photon having approxi-

mately the Si Ko energy minus the L ionization energy. The peak at

(1)

243
as the first line in the RER satellite

1650 eV has been identified
sequence (KL1 RER). The RER intensity is seen to decrease in going

from 1.5 to 2.0 MeV since we are well beyond matched velocity for L-shell
ionization (v 0.18 MeV). The RAE edge is easily seen between 1600 and
1620 eV. Considerable structure whose origin is not fully understood is
seen in this region.

In the introduction to this thesis and in Section II we
established the spectral shape of the resonance Raman process to be that
of an inverted absorption edge tailing off at low energies., From Fig. 10
we can see that only a small portion (v 6 eV) of the total width of this
edge structure is actually visible amid the diverse background of our
spectra. Thus, unless the analytical shape and background of the Raman
edge are known, it becomes impossible to directly measure the total cross
section URS(Ei = EKﬂ) associated with the resonance Raman process from

our data. However, it is possible to difectly measure a partial

scattering cross section associated with scattering into an energy
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Figure 10

Low energy Si K x-ray spectra induced by proton
bombardment. The spectra shown are each the

sum of several independent spectra. The sum was
then compressed 5 channels to 1 channel to obtain
the plots shown. In each spectra there are
approximately 10000 counts above background in

the visible portion of the Raman edge.
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interval ~ 1634 < Ef % Ef(max) = 1640.58 eV and from that partial cross

section to estimate the total cross section © E, = EKa) for scattering

RS( i
into all angles and all allowed energies (0 = Ef =< Ef(max)).
The partial scattering cross section in the immediate

vicinity of the Raman edge may be calculated using the results of Section

ITI (Eqn. (3.19)) if the relative intensity RS/Kao R(a,B;Ef)/F(u,B)

1,2

is known. One method for determining this relative intensity is the

following:

1 1
RS _ RS » KL RER _ Kal 4.1)

Ka; 2 xulrer koLl K

1,2

where KaL1 is the intensity of the first Ko satellite line. This
approach has both advantages and disadvantages associlated with it
relative to direct measurement of RS/Kal’z. Combining three separate
relative intensity measurements results in a more complicated statistical

error in RS/Ka and yet, on the other hand, a direct measurement involves

1,2
a detailed knowledge of the properties of the spectrometer analyzing
crystal (surface reflection, absorption edges, etc.) over a wide range
of energies. Additionally, a direct measurement involves a careful
normalization between the IRRS and characteristic radiation portions of
the spectra where the beam current was much different. In view of these

difficulties we have chosen to use the method of Eqn. (4.1).

1
The ratios RS/KLlRER and Kol /Ko are measured in this

1,2
experiment while KLlRER/KaLl has been measured previously by Jamison
et al.( 1) The measured values of the ratios involved are tabulated

in Table II. Due to the low intensity and uncertain background in the
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IRRS region the intensity of the Raman edge was taken as the integrated
intensity below the edge (v 6 eV) minus a trapezoidal background. The
RER intensity was taken as the area of a Gaussian peak sitting on a back-
ground. The background was taken as a constant plus a Lorentzian tail
due to the characteristic radiation. A x2 (best least-squares) fit
was made to each of the RER peaks allowing the RER parameters and back-
ground parameters to vary simultaneously. The intensities of the Ka
and first satellite (KuLl) line were taken as the integrated intensities
of each of the well resolved peaks.

Based on our most reliable data (Fig. 10) we obtain values
for the relative intemnsity RS/Ku of 1.20 x 10-5 + 3.23 x 10_'6 at

1,2
Eo( incident proton energy) = 1.5 MeV and 1.42 x 10_5 + 4,00 % 10-6 at
Eo = 2,0 MeV. A slight rise in the relative intensity in going from
1.5 to 2.0 MeV is expected since the relative x-ray production efficiency
E (Fig. 8 ) also increases slightly over this range. However, within the

quoted uncertainty for RS/Ku this rise is not entirely obvious. The

1,2
values of E(a,B;ED,Ef) in the immediate vicinity of the Raman edge (and

aprpopriate for our particular experimental geometry (o = B = 45°)) are
2

tabulated in Table I. Taking £(1.5 MeV) = 1.8416 x 10 “, £(2.0 MeV)

2

2.4614 x 1077, 0, (1.5 MeV) = 5,09 x 10727 o, Oy (2.0 MeV) =

]

6.32 x 10_22 cm2 we may use Eqn. (3.19) to obtain Ac (Eo = 1.5 MeV)

RS
(4.23 % 1.14)r % and Ao, (E_ = 2.0 MeV) = (4.65 + 1.31)r 2 for the

o] RS o o]
partial scattering cross section. The cross section appears to be
independent of the incident projectile energy within experimental un-
certainty as expected.

A theoretical value for the resonance contribution to the

partial scattering cross section can be obtained by integrating Eqn. (2.45)
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over the region of interest (1634 = Ec £ 1640.58 eV). This yields a
value of AGRS(theoretical) = 3.73 roz in reasonable agreement with our
experiment. The total resonant contribution to the Raman scattering
cross section is obtained by integrating Eqn. (2.45) over the entire
range of Ef (0 = Ef < 1640.58 V). This gives URS(theoretical) =

50.81 roz. In both calculations we have used Hartree-Fock single-
electron wave functions in the numerical calculation of the matrix
element <lslpz]2p>. The 1ls wave function was calculated in the
presence of a 2p vacancy and the 2p wave function was calculated in the
presence of a ls vacancy. Values for the K absorption cross section

UK(m ” + wg = mf) were taken from the theoretical calculations of

K
Scofield.(zz)

The theoretical partial scattering cross section as calcu-
lated amounts to 7.34% of the total theoretical cross section. Thus
it is possible to estimate the total scattering cross section from our
data based on the assumption that we are able to measure approximately
the same percentage of the total cross section. This gives an estimate
for the total cross section of o, (Exp.) = (60.48 _11_80)1-02 where we
have based our calculation on the average of AURS(EO = 1,5 MeV) and
AURS(EO = 2.0 MeV). Note that our theoretical calculations include only
the rescnant contribution to the total scattering cross section whereas
our experimental measurements can be expected to include both resonant
and non-resonant contributions. The numerical change in the scattering
cross section caused by inclusion of the non-resonant contribution is

1)

difficult to predict but is expected to be small. Cross section

values are tabulated in Table III.
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{b.) Conclusion and Comments

We have presented an experimental study of the internal
resonance Raman scattering process in ion Induced Si K x-ray spectra
obtained from thick targets. We have identified the IRRS structure in
our spectra based on both its predicted spectral shape and edge energy.
We were able to measure a partial scattering cross section associated
with this process which was in reasonable agreement with theoretical
calculations. From this partial cross section we were able to estimate
a value for the total scattering cross section into all angles and all
allowed energies.

We have restricted our experiment to incident proton beams
in order to minimize unwanted background in the TRRS region. The use
of proton beams alsc has the effect of minimizing the amount of L-shell
ionization in the target. This increases the normal Ko yield and hence
also the IRRS intensity. We have also restricted our study of the
IRRS process to a single target element, Si. This was done in view
of the difficulty of obtaining pure solid targets capable of withstanding
high beam currents in the immediate range above Z = 14. Additionally,
0. Keski—Rahkonen(23) has estimated that the cross section drops off
with increasing Z although we have not investigated the Z dependence of
the cross section in this work. Finally, we have not investigated the
predicted dependence of the relative x-ray production efficiency £
(shown in Fig. 8 ) on the experimental geometry in the case of a # B.
Based on the experimental uncertainties in our determination of RS/I-Q:Jv.l’2

at o = B = 45° it is unlikely that any angular dependence could be

Justifiably observed without much better statistics,
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Certainly analyzing ion induced x-ray spectra should not
be thought of as an optimal (or even desirable) method for investigating
the IRRS process. Photon induced spectra and, to an even greater extent,
gspectra induced by synchroton radiation are capable of providing both
higher count rates and lower background in the IRRS region. Synchroton
radiation offers the added advantage of being able to "tune" the energy
of the incident radiation over a wide range of energies in order to study
the energy systematics of the IRRS process. The significance of the
observation of the IRRS process in ion induced x-ray spectra then seems
finally to rest upon two points: (1) it establishes, as has been noted
here and in other work,(a) a distinct, observable difference between
scattering-type processes which are internal to the atom (RAE) and those
which are external to the atom (IRRS) and, (2Z) it establishes the fact
that inelastic photon scattering processes are observable phenomena in

thick target x-ray spectra.
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TABLE I

RELATIVE X-RAY PRODUCTION EFFICIENCY, E(a,Eo)a
(Based on Eqn. (3.18))

a(Degrees) E(u;Eo=l.00 MeV) E(a;Eo=l.50 MeV) E(a;EO=2.OO MeV)
(x10%) (x10%) (x10%)
b (.008%)° b
5 7.450 (.005%) 14.010 "5 %c 19.021 (.012%)
10 8.285 15.303 20.578
15 8.890 16.214 21.701
20 9.356 16.898 22.562
25 9.716 17.424 23.224
30 9.986 17.827 23.746
35 10.177 18.123 24.143
40 10.297 18.319 24.430
45 10.348 (.009%)° 18.416 56?3;§33 24.614 (.0152)°
50 10.335 18.412 24.687
55 10.257 18.298 24.636
60 10.109 18.060 24.435
65 9.888 17.676 26.043
70 9.582 17.113 23.395
75 9.177 16.318 22.390
80 8.643 15.198 20. 844
85 7.016 (.0122)° 13.554 56?;§§§2 18.353 (.011%)°
a)

In this case o and B have been experimentally constrained such that o + B =
90°. Thus o is equivalent to the target take-off angle measured relative
to the target surface (see Fig. (7)). The efficiency £ has been calculated
in the immediate vicinity of the Raman edge (i.e. Ef = Ef (MAX) = 1640.58 eV
has been used).

b)

c)

Estimated cutoff error in calculation.

Estimated cenvergence error in calculation
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TABLE II

EXPERIMENTAL RELATIVE INTENSITY RATIOS®

(EO(MeV)/Crystal) Relative Intensity
(1.5/ADP) RS/KLIRER = 0.0340 + 0.011 (32%)
RS/Ka, , = 8.54 1078 + 3.55 x 107® @2y
]
(1.5/EDdT) RS/KLYRER = 0.0477 + 0.003% (7%)
ki rRER/KaLY = 0.0016 * 0.0004 (25%)°
KaLllKal , = 0.157 £ 0.011 (7%)
H]
RS/Ko, , = 1.20 x 1070 £ 13.23 x 10°° (272)
3
(2.0/EDAT) RS/KLIRER = 0.0684 * 0.0056 (8%)
KLIRER/KeL! = 0.0016 + 0.0004 (25%)°
KaLl/Kal , = 0.130 £ 0.013 (10%)
]
RS/Ka) , = 1.42 x 1070 + 4.00 x 1078 (28%)
s
a)

b)

Jamison et al.

All intensities were measured with

70
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TABLE III

IRRS CROSS SECTIONS IN ro2

a b

(EO(MeV)/Crystal) AGRS(EXP.) URS(EXP.)
(1.5/ADP) 3.01 + 1.25 41,0 + 17.1
[3.52 + 1,46]° [48.0 * 19.9]
(1.5/EDAT) 4,23 + 1.14 57.7 + 15.5
[4.94 + 1.33] [67.3 + 18.1]
(2.0/EDAT) 4.65 + 1.31 63.4 + 17.9
[5.85 + 1.65] [79.7 + 22.5]

d d

AVE.S = 4.44 + 0.87 AVE.® = 60.5 + 11.8

(THEORETICAL)® 3.78 50.81

a)

Partial cross section for scattering into 1634 £ E_ = Emeax) = 1640.58.

f

b)

Estimate of total scattering cross section based on AGRS(EXP.) in the

manner of Section IV.

C)Values in brackets are based on the simplified thick target analysis

resulting in Eqn. (3.24).

d)Average of 1.5 and 2.0 MeV EDdT data.

e)Based on Eqn. (2.45) integrated over the appropriate range of Ef.
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APPENDIX A

A useful analogy to the development of R(G,B;Ef)/F(G,B)
given in Section III is that of photon induced internal Raman scattering.
A development of the photon induced case similar to that given here has
been made previously by 0. Keski-Rahkonon (Ref. (23)). In this case
characteristic Ka photons are produced within a thick solid target as
a result of K ionization produced by external photon (rather than ion)
bombardment. The essential steps in the development given in Section III
remain unchanged. The incident radiation will be treated as a parallel,
monochromatic beam of intensity Io’ energy Eo’ and arbitrary cross
section. A thin layer of thickness dt' located parallel to the target

surface at a depth t' is exposed to an incident photon rate given by:

-u.s' -u.t'/cosa

IO dA'cosa e o I0 dA'cosn e (A.1)

where My = ul(Eo) is the total linear absorption coefficient for the mono-
chromatic primary radiation. The total number of photoabsorptions per
unit time within the volume element dV' = (dA'cosa)ds' = dA'dt' under
consideration is:

-ult'/cosu
Io dV'uPE e (A.2)

where Mpg is the photoelectric component of My responsible for producing
K-shell vacancies. Thus, the rate of Ka photon production within the

volume element dV' is given by:
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-ult'/cosa
I0 dV'wKXuPE e (A.3)

where Wy is the K-shell fluorescence yield.

The total detectable Raman yield due to Ko radiation from

dv' is:
! —ult'/cosa
1. = —_—
R(dV ,Ef) = I0 I wKXpPEndoRS(dQB/4ﬁ)e
-uzr—uat/cosB
x J e sinédedédr . (A.4)
v
A factor K is defined to be
_ 4av'

K = Io 2 wKXuPEndGRS(dQBIAW)

and it is again noted that t = t' - r cosf so that upon integration

over dé¢ Eqn. (A.4) can be written as:

- L}
(ul/cosa + u3/cosB)t

R(dV‘;Ef) =Ke
T
t' 1 u3rcoselcosB - u,r
x J J e d(cos8)dr
0 -1
tl
© T
u3rcose/c058 = H,T
+ J e d(cos8)dr ’ . (A.5)

t'

The development up to here has been conceptually the same as that leading

13



up to Egn. (3.8) in the ion induced case.

However, in this case the

exponential dependence of Ka photon production on target depth allows

us to perform the required integrations analytically rather than

numerically., Thus:

R(dV';Ef) =Ke
u.t'/cosp
cosB 3
x (TB—-) (211 + 12e - 13)
where
gt “H,T
_ e ;
Il = J - 51nh(u3r/c058)dr
o
o —uzr
& e
I2 = J = dr
tl
© e—u3r/cosB = W
13 = J = dr .
tl
Eqn. (A.6) can be integrated over s' = (0,®) to obtain

the total detectable Raman yield (Ef component) due to Ka radiation

from a column of differential cross section dA'cosa along the beam

i 1
(ullcosa + u3/cosB)t

path. With the definitions

>
1

~
|

= u3/co

we have:

= ul/cosa + u3/cosB

sB + My
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R(a,B3E.) = I -—l-cosa w,  u__ndo__(dQ /4H)EEEE
AR - o 2 KX"PE RS B Hq
Ty uat'/cosB
x J e (211 + Ize - IB)ds'
0
dA’ cosB
I0 7 mKXuPEndGRS(dﬂslﬁw) m
T -t u3t'/cosB
_ '
X J e (21l f I2 e I3)dt
)
dA' cosB
Io 7 mKXuPEnchS(dQBIAﬂ) ™ (214+I5 16) (A.8)
where
oo t'
-xt’ “HoT
= ..e_ 1
I& = [ e J = sinh(uSr/cosB)dr dt
0 o
-ult'/cosa e_u2r
I, = J e f = dr dt'
5 T
0 !
Y A b
16 = Ie f = ar At (A.9)
o t!
Interchanging the order of integration and referring to Ref. (24), we
obtain:
1 ‘uz + ulfcosa + 2u3/cosB
I, =35 1n u. + u, /cosa
| 2t Hy
1 = Coso 1n ‘HZ & ullcosa
5 My l My
W, + U, fcosa + 2u,./cosB
16=%1n., g - 7 33 l : (A.10)
( L) H4/cos ;
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Thus we have:

4 = Qél cosP
R(u,B,Ef) = Io > mKXuPEnchS(dQBIAH) s
1 ‘ u2 ¥ HB/COSB) cosa ‘ u2 * ullcosa l
“1E 1R W, + u. /cosa ( + u 1n 4
| ¥+ Hy f 1 l ks |

The detectable Ka photon yield from the volume element dV'
is given by:

-(ullcosa + u2/cosB)t'
(dQB/4W) e i (A.12)

1
Io dav WrxHpE
The total detectable Ka yield from the differential column discussed
above is found by integrating Eqn. (A.12) along the beam path:

—(ulfcosu + u2/cosB)t'
ds'

F(a,B) I0 dA'coso w uPE(dﬂsléﬂ) J e

KX
0

=(p. /cosa + p./cosR)t’
1 2 dt!

(dns/aﬁ) J e

o}

1
I, dA" weyWpp

= Io dA' wKXuPE(dQB/4ﬂ)I//(ul/cosa + uzfcosB) . (A.13)

The ratio of R(u,B;Ef) to F(a,B) is now given by:
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R(a,B;E)  ndope oca
F(DL:B) - 113 2

(ul/cosa + uzfcosB)

1 ‘ uy + u3/c0561
* [ ul/cosa + u3/cosB ln I My + ul/cosa[

u, + u,/cosa
5 EOBE . { 2 _ 1 ” (A.14)
Hy

Changing all linear absorption coefficients (cm_l) to mass absorption
coefficients Cszlmg) introduces a factor of 1/p into Eqn. (A.l4).

Thus we obtain:

R(a,B:E,) 1 R(a,B;Ef)
F(a,8)  p F(a,B)
NA cosf
- doRS(EKa;Ef) ZAm s (ulfcosa + uzlcosB)
+
[t} = {25205
ullcosa + uzlcosB My + pl/cosu
L. + u./cosa
o EOER, 4 42 J : (A.15)
L | )

Given and u3, Eqn. (A.15) may be used to experimentally determine

l’ ]J23
URS(Ei = EKG) under the same conditions outlined in Section III.

77



APPENDIX B

This appendix consists of a listing of the two computer
codes used to evaluate the integrals IR(a,B;Ef) and IF(a,B) of

Section IIT.
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ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE



MAIN PFOGFAM FOP CALCULATING RAMAN SCATTERING INTEGRAL

ITMPLICIT QEAL*8{A-H,0-7)
DIMENSION X1 (30}, W1(30), YL{30), “AF1(30)
DIMENSTIDHN X2{30),y W2(20), Y2(32)y WFZ2(30)
DIMENSION X3(30)y 43030}, Y3(30), A4F3(30)
C
Ceve=  DATA AQUISITION AND QUTPUT OF INITIAL DATA
C
READ{S,5) M1
N1HALF=YL/?
RELC(54,8) (X1(MNL-J+1),Wl{N1-J#%1), J=1,N1HALF}
DD 25 J=1,H1HALF
X1(J)=-X1{NM1-J+1)
Wl{J}=wWl(N1=-J+1)
25 CONTINUZ
EEADIS,5) N2
NZHALF =NZ2/2
REAG(548) (X2(MN2-J#r1)W2(N2-J+1),y J=1,N2HALF)
DD 26 J=1,N2HALF
X2{J)==-X2(N2-J+1)
W2{J)=W2(N2~-J+1)
26 CONTINU=
READ{(5,5) N3
N3HALF=N3/2
READIS 438) [ X3{N2-J+1) 4W3{N3=-J+1)sy J=1,N3HALF)
£3 27 J=1,N3HALF
X3{J)1==-X3{N3-J+1)
W3{J)=W3(N2=-J+1)
217 CONTIMNUE
READ(5,28) COy C1l, C2, L3, L&, C5
READ(5,29) RANGF, RMAX, EJ
READ(5,10) AC2, AC3
WRITE(H,22) N1, N2, N2
WRITE=(6,21) ACZ, AC3
WRITE(6,22) RANGZ, RMAX
WRITE{&6,31) EO
WRITEL(G,23)
C
Codmreiess doonbon: & INTEFGRATION RIOUTINE b 2 e
C
390 READ{S5,11) 2LPH, BET, NSTOP
ALPHA=D,017453=AL0H
BETA=0.017453=RET
DCALPH=DCOS(ALPHA)
DCRETA=0COS(BETA)
UL3=RANSGE=-DLCALPH
DO 399 I=1,M3
FSuUM21=0,49
Y3LAST=0.0
Y3{I)=(UL3/2.)=X3{1)+{UL3/2,)
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GM3I=4T 3 Y2(1)/DCRETA

DPT=Y3(I)/CCALPH
CPROSS=CO+[CI+(C2+(C3+(CH+CS5:DPTI#DPT )=DPT)
1=DPT):DPT

DO 310 JJ=1,1

SUM21=0.D

DN 210 J=1,42

Y201 =0(Y3(JJ)=YILAST)/2.V*X2(J)+((Y¥Y3(JJ)
1+Y3LAST)I/?.)

GH42=AC2>Y2(J)

SUML1=0.0

DO 110 K=1,N1

GML1=AC3=Y2(J)=X1{<)/DCRETA
GAMMA=GM3-GMI+GM2

DEsANM=0,.D

IF(GAMMA JLE. 27.0) DGFGAMM=DEXP(-GAMMA)

C

Ry e R INTEGRAMD Jedesr wrazd R R gt et e

c #
FUNCT=CFOSS: DEGAMM

C *

€ #0332 4 3 ofe o o st oo e e v ol g o e 2% e ool oo ot ol e oot e ode oo e oo e o ok v ek ek

C
WELIK)=W1(K)*FUNCT
SUMIL=SJM11+WFL1(K)

110 CONTIMUZ
WF2(J)=W2(J)*»SUML1

: SUMZL=SUM21+WF2{J)

210 CCNTINUE
FSUM2L1=FSUMP1+{(Y3(JJ)-Y3LAST)/2.)%5U421
Y3LAST=Y3(JJ)

310 CORTINUE
FSIV22=0.D
BASE=Y3(1)

JI=25N3-1

Cx#%x RMAX SHIULD BE .Gf. UL3

DEC=(RMEX-RASE)/DFLOAT(JY)

DO 315 Li=1,4J

ULTM=DEC+RASE

SUM2Z22=0.0

DO 229 J=1,N2

Y2(J) ={{ULIM=-RASE)/2.)=X2({ N} +((ULIM+BASF}/2,.)
GM2=AC2*Y2(J)

UL1z2=yY3(1)/v2(J)

SUM12=0.0

DD 1293 K=1,%1
YLIK)=({ULL241.0)/2.)«X1(K)+({UL12-1.D0}/2.)
GM1=AC3=Y2(J}~YL{X)/DCBETA
GAMMA=GM3-GML+GM2

DEGAMM=0.0

IF(GAMMA LLE. 37.0) DEGAMM=DEXP(-GAMMA)

C
Ces v kryvdomntky 2e INTEGRAND LR 28 SV S W RS PR
C i
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&

FUNCT=CPOSS*DEGAMM

e

C&:;;.'f:ki‘: ¥ ok Yo e oy v seoofe o W dode o ol oiodk ool spalrreafe s wook e e W e Ao e X Mo ve g 5 Aok

C

120

220

315

300

c

WELIK) =41 (K)=FUNCT
SUMI2=SJM]12+WF1(K)

CONTINUE
FSUML2=((UL12+1.)7/2,)=SUM12
WF21J1=A2(J)%FSUM12
SUM22=SUM22+WF2 (J)}

CONTIMUE
FSUM22=FSIM22+((ULIM-BASE)}/2.) %5422
BASE=ULIM

CONTIMUF
FSUYT=FSUM21+FSUM2?2
WE3(I)=W3(T)>=50uMT
SUM3R=SUM3+WF3{T)

CONTINUF
FSUM3=(UL3/2.)*5UM3

Cx#&xx®  OQUTPUT TF INTEGRATION VALUES — #sasdsoxss

C

5
8

19 -

11

2.
21
22
23
24
28
23

31

900

WRITF(6424) ALPH, BET, FSUM3

IF{NSTOP .ENQe 0) GO TO 30

WRITE(6,900)

FORMAT(IS)

FORMAT(4N20.14)

FORMAT (2D12.7)

FORMAT(2DL1.5,15)

FORMAT(/T1INL = *,I3/% N2 = ',13/' N3 = ',13///7)
FORMAT (/' MAC2 = 1,G14.7/' MAC3 = ',Gl4.7)
FORMATA(/' PANGE = ',G13.6/" (MaAX = ' ,G14.7)
FARMAT (' ALOHA ', 13X,"BETA *,12X, YINTEGRAL *//)
FORMAT(2(F6424+9X)4D14,.5)

FORMAT(&6F12.5)

FOFMAT(2D312.7,F5.2)

FORMAT( /' PARAMZITERS APPROPRIATE FDR INCIDENT

L ENERGY = ',F5,2,TMFVI1///)

FOEMAT (*LEND JUTPUT OF DATA *'///)
RETURY
EMD
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DATA INPUT FNE RAMAN SCATTERING PROGRAM

carn

1

CARD 2 ——-

CARD 3 ---

{NOTE —---

CARD

CARD
CARD

CARD

8

9

-

18 --

COL UMM

/1-5/

/1-20/

/21-40/

/41-50/
/61-83/

f1-20/
/21-4%0/7

141-52/
/61-893/

ENTRY AND FORMAT

MDe T MESH POINTS FIOR R INTEGRALS
(8 IN THIS CASE) (1I5)

FOURTH PCSITIVE ZERD OF LEGENIRE
POLYNOMIAL (P8 IN THIS CAS®)
(D23.14)

WEIGHT ING FACTOR FOR FOURTH POINT
(D20.1%)

THIRD PDOSITIVE ZERD (N22.1%)
WFIGHATING FACTOR FOX THIRD POINT
(D290.14)

SECOND POSITIVE ZERO (D20.1%)
WEIGHTING FACTOR FOR SECOND POINT
(N29.14) -

FIRST PTSITIVE ZERJ (D22.1%)
WEIGHT ING FACTOR FJE FIRST POINT
(D20.14%)

MEGATIVE ZF20DS ARE GENERATED 8Y MAIN

PIGRAM, 7ERNOS AND WEZIGHTING FACTORS
MAY RTZ NBTAINFD FROM ABRAMOWITZ AND
STESUMN, PAGE 316)
/1-5/ NO. OF MESH POINTS FOR COS(THETA)
INTEGRALS (3 IN THIS CASE) {1I%)
{SAME AS CTARD 2)
{SAME AS CARD 3)
/1-5/7 NJe 2OF MESH POINTS FOR T* INTESRAL
(8 IN THIS CASE) (1I5)
(SAMZ AS CARD 2)
{SAME AS CARD 3)

K X-RAY PRODUCTIOLCN CROSS SECTION
FIT PARAMETERS

fi-127

/13-24/
/25-36/7

€O (F12.5)
c1 "
Cz "
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COLUMN

/371-43/
/4°-53/
/161-72/

CARD 11 --
f1-127
/13-24/

/25-25/

CARD 12 --
F1=12/

/13-24/

CARD 13 --
£1~1LF
/12-22/
/23-27/

ENTRY AND FORMAT
C2 (Fl2.5)

C& "

Cs "

RANGE IN MG/CM==2 (DL2.7)
MAXTMUM ALLOWED VALUE OF R IN
MG/CM¥=2 (D12.7)

INCIDENT T9M ENERGY IN MEV (F5.2)

MASS ABSORPTION CN=FF, AT K ALPHA
ENERGY (D12.7)
MASS ABSOFPTION CIOEFF. AT RAMAN

SCATTERFD ENERGY (D12.7)

ALPHA IN DEGREES (Dll.5)
BETA IN DEGREES (Dll.6)
BLANK IF ADDITICNAL (ALPHA,

ANGLE
ANSLE
LEAVE

BETA) CARDS ARE TJ BE ENTERED.
ENTER 1 TO INDICATE LAST (ALPHA,
BETA) CARD.
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MAIN PROGRAY FOR CALCULATING THICK TARGET INTEGRAL

IMPLICIT REAL*B(A-H,0N-2Z)
DIMENSTON X2(20), W3(30), Y3({30), WF3(30)

o 0% DATA AQUISITICN AND OQUTPUT OF IHITTIAL DATA

FEAD(5,5) N3
N3HALF=N3/2
READ(548) (X3(N3-J+1),¥3(N3-J+1), J=1,NIHALF)
DO 27 J=1,N3HALF
X3(J)==X3(N3=-J+1)
W3(J)=W3(N3-J+1)
27 CONTINUE
READ(5,28) 0, Cly C2y C3, C4, C5
READ(5429) RANGE, ED
READ(5410) AC2
WRITE(6,20) N2
WRITE (6y21) AC2
WRITE{6422) PANGF
WPITE(6,31) ©0
WRITE(6,23)

T
Crmeaikssus  INTEGRATINN ROUTINE  s&&kggwsssfkdnzs
6.

3)-  READ(5,11) ALPH, RET, NSTOP

ALPHA=0.0174537ALPH
BETA=J.017453=BET
DCALPH=2COS (AL PHA)
DCBFTA=DCNS(BZTA)
UL3=RANGE*DCALPH
b 305 I=1,N3
Y3(T)=(JL3/72,)=X3(1)+(UL3/2.)
305 CNNTINUE
SUM3=0.0
DO 300 I=1,N3
DPT=Y3(1)/DCALPH
CROSS=CO+(CL1+(C2+(C3+(C4+CS5=DPT)=DPT}=DPT)
L*¥DPT)=DPT
GAMMA=AC2*Y3(1)/NCBETA
DEGAMM=D,0
IF(GAMMA LE. 37.0) DEGAMM=DEXP(-GAMMA)

md gk RdEroky ek TNTEGRAMND Sk kst R m g gk
=

OO0

FUNCT=CROSS-DEGAMM
C L 3
(C #2302 ol g e L e 37 o ot e o stz e oje e oo ofe g ok e e ok oot sie o ool sioode Sieslo e o Je e sk v ke
o

WFA(I)=W3(T)*FUNCT

SUMI=SUM3+WF3(])
339 COMNTIMUE
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10
11
29
21
22
23
24
28
29
31

FSUM3=(UL3/2.)=SUM3
: DUTPUT AOF THRTEZGRATICN VALUES BhraE R s

WRITE(6,24) ALPH, BFT, FSUM3

IF{NSTOP .FNe J) GO TO 20

WRITF({6,900)

FORMAT(T5)

FORMAT (4D23.1%)

FORMAT(D12.7)

FNRAMAT{2D11.6,15)

FRPMAT(/YIN = ', 13///)

FORMAT (/' MAC2 = ',6G1l4.7)

FORMAT(/' RANGE = ',G12.6)

FORMAT (' ALPHA ',10X,'8BETA *,12X,"INTEGRAL *//)
FOPMAT (2{F6.2+9X)4D14.5)

FOPMAT(6F12.5])

FORMAT(D12.7+55.2)

FORMAT{/' PARAMETERS APPRAPRIATE FOR INCIDENT

1 EMFRGY = ' ,F5.24'MEV'///)

9o

FORMAT (' LEND DUTPUT OF DATA '///)
RETURN
END
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DATA INPUT FOR THICK TARGET PROGRAM

C OL UMN ENTRY AND FORMAT
CARD 1 =---
/1-5/ NC. OF MESH POINTS FOR T' INTEGRAL
(12 IN THIS CASE) (I5)
CARD 2 ---
/1-20/ SIXTH POSITIVE ZERO OF LEGENDKE
POLYNOMIAL (P12 IN THIS CASE)
(D2D.14)
/721=-40/ WEIGHTIMNG FACTCOR FOR SIXTH POINT
(D20.14)
/41-60/7 FIFTH POSITIVE ZERD (D20.1%)
/61-80/7/ WEIGHTING FACTCR FOR FIFTH POINT
{D20.14)
CARD 3 ——-
/1-20/ FOURTH PUSITIVE ZERD (D20.14)
/721-40/ WEIGHTING FACTOR FOR FQURTH PRINT
/41-60/7 THIRD POSITIVE ZERQ (D20.14)
/61-80/ WEIGHTING FACTOR FOR THIRD POINT
{(D23.14)
CARD 4 —-——-
/1-20/ SECOND PCSITIVE ZERD (D2J.14}
/721-423/ WEIGHTING FACTOR FOR SECOND PCINT
[D20.14)
/41-60/ FIRST POSITIVE ZERD (D20.14)
/761-83/ WEIGHTING FACTCR FOR FIRST POINT
{D20.14)
(NOTE ==~ NEGATIVE ZFR0S ARE GENERATED 3Y MAIN
PROGRAM,. ZF20S AND WEIGHTING FACTURS
MAY B: OBTAINED FROM ABRAMDAITZ AND
STEGUN, PAGE 213)
CARD 5 =--- K X-RAY PRODUCTICN CROSS SECTION
FIT PARAMSTERS
/1-127 CO (Fl2.5)
/13-24/7 C1 "
/25-36/7 (2 n
/37-48/ (3 “
/49-60/ C4% "
/61-72/ C5 "
CARD 6 ---
/1-12/ RANGE IN MG/CM=%2 (D12.7)
/713-17/ INCIDENT ION ENERGY IN MEV (F5.2)
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COLUMN
CARD 7 =---

el
CARD 8 ---

/1-117/

/12-22/

[23=217/

ENTRY AND FORMAT

MASS ABSORPTION COEFFe AT K ALPHA
ENERGY (D12.7)

AMGLE ALPHA 1IN DEGRFES (D11.6)
ANGLE BETA IN DEGREES {Dl1ll.6)
LEAVE BLANK IF ADDITIONAL (ALPHA,
BETA) CARDS ARE TO BE ENTERED.,
ENTER 1 TO IMDICATE LAST (ALPHA,
BETA} CARD.
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ABSTRACT

A four-inch curved crystal spectrometer has been used to
investigate the internal resonance Raman scattering process in Si
K x-ray spectra induced by proton bombardment of thick targets.
The IRRS process involves the scattering of characteristic target
Koo radiation off of the K-shell of a neighboring target atom. The
scattered photons exhibit an edge shaped continuum at ~ 1640 eV in
S1 which tails off at low energies. A thick target analysis is used
to obtain a partial scattering cross section for scattering into an

energy range ~ 1634 S E_ 2 Ef(MAX) = 1640.58 eV which is in reasonable

f
agreement with theoretical calculations based on Fermi's Golden Rule.
Based on the partial cross section we are able to estimate the total
scattering cross section for scattering into all angles and all

allowed energies (0 £ E_ = Ef(MAX)).

f



