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Abstract 

Two experiments were conducted to evaluate the effects of exercise on feedlot cattle 

well-being, growth performance, and carcass characteristics (Experiments 1 and 2). Additionally, 

two experiments assessed the volatile compound profiles of beef in response to various 

postmortem processes (Experiments 3 and 4). Experiment 1 compared heifers (n=30) assigned to 

either a sedentary treatment or an exercise regimen 3 times/wk (20 min/d for the first 2 wk, 30 

min/d for the next 2 wk, and 40 min/d for the final wk). Exercised heifers showed decreased 

blood insulin, daily gains, final body weights, and lower numerical yield grades in conjunction 

with decreased a* and b* color values of longissimus muscle lean. Experiment 2 exposed steers 

(n=419) to 1 of 4 treatments; not exercised (CON), or exercised 3 times/wk by animal handlers 

for 20-30 min for the first 10 wk (EARLY), the last 7 wk (LATE), or for the entire 116 d 

finishing period (ALL). EARLY treatment cattle exhibited a decrease in blood insulin while 

EARLY and ALL treatment cattle produced carcasses with decreased marbling scores in 

comparison to CON cattle. Experiment 3 assessed the volatile compounds generated by raw and 

cooked beef gluteus medius steaks (n=30) subjected to blade tenderization and aging times 

ranging from 5 to 61 d. Raw steaks aged longer than 19 d produced greater concentrations of 

heptanal, octanal, and nonanal than raw steaks aged 5 d, but cooked steaks showed no change in 

these compounds in response to aging. Additionally, blade tenderization reduced the 

concentrations of lipid oxidation and Maillard reaction products in cooked steaks. Experiment 4 

investigated cross-sections, external, and internal locations of beef longissimus lumborum steaks 

(n=54) cooked to 63, 71, or 77 °C and aged for 5, 21, or 37 d. External locations generated 

aldehydes in greater amounts than internal locations while pyrazines are produced exclusively at 

external locations. Increases in degree of doneness increased all aldehydes, except nonanal, in 

steak cross-sections. Aldehydes, except hexanal and octanal, generated from external locations 

became similar to internal locations as aging times increased. Pyrazines from external locations 

were reduced by increased aging times. 
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Abstract 

Two experiments were conducted to evaluate the effects of exercise on feedlot cattle 

well-being, growth performance, and carcass characteristics (Experiments 1 and 2). Additionally, 

two experiments assessed the volatile compound profiles of beef in response to various 

postmortem processes (Experiments 3 and 4). Experiment 1 compared heifers (n=30) assigned to 

either a sedentary treatment or an exercise regimen 3 times/wk (20 min/d for the first 2 wk, 30 

min/d for the next 2 wk, and 40 min/d for the final wk). Exercised heifers showed decreased 

blood insulin, daily gains, final body weights, and lower numerical yield grades in conjunction 

with decreased a* and b* color values of longissimus muscle lean. Experiment 2 exposed steers 

(n=419) to 1 of 4 treatments; not exercised (CON), or exercised 3 times/wk by animal handlers 

for 20-30 min for the first 10 wk (EARLY), the last 7 wk (LATE), or for the entire 116 d 

finishing period (ALL). EARLY treatment cattle exhibited a decrease in blood insulin while 

EARLY and ALL treatment cattle produced carcasses with decreased marbling scores in 

comparison to CON cattle. Experiment 3 assessed the volatile compounds generated by raw and 

cooked beef gluteus medius steaks (n=30) subjected to blade tenderization and aging times 

ranging from 5 to 61 d. Raw steaks aged longer than 19 d produced greater concentrations of 

heptanal, octanal, and nonanal than raw steaks aged 5 d, but cooked steaks showed no change in 

these compounds in response to aging. Additionally, blade tenderization reduced the 

concentrations of lipid oxidation and Maillard reaction products in cooked steaks. Experiment 4 

investigated cross-sections, external, and internal locations of beef longissimus lumborum steaks 

(n=54) cooked to 63, 71, or 77 °C and aged for 5, 21, or 37 d. External locations generated 

aldehydes in greater amounts than internal locations while pyrazines are produced exclusively at 

external locations. Increases in degree of doneness increased all aldehydes, except nonanal, in 

steak cross-sections. Aldehydes, except hexanal and octanal, generated from external locations 

became similar to internal locations as aging times increased. Pyrazines from external locations 

were reduced by increased aging times. 
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Preface 

This dissertation is written in accordance with the style guidelines designated by Meat 

Science, the official scientific journal of the American Meat Science Association. This 

dissertation covers two distinct topics. Chapters 1-4 are focused on the influence of exercise in 

feedlot cattle. Chapter 1 is a review of literature that pertains to the areas of consumer 

perception of meat production, cattle health, cattle temperament, meat quality, and meat 

composition. Chapter 2 details a pilot study that evaluated routine exercise of feedlot heifers. 

Chapter 3 investigates routine exercise of feedlot steers in a commercial scenario. Chapter 4 

concludes the first section and discusses overall conclusions regarding the implementation of 

routine exercise in feedlot cattle. Chapters 5-8 are concentrated on the evaluation of aroma 

volatile compounds generated by raw and cooked beef. Chapter 5 is a review of literature that 

relates to the development of cooked beef aroma and alterations of flavor instigated by 

postmortem handling of beef. Chapter 6 investigates the volatile compounds produced by raw 

and cooked gluteus medius steaks that were subjected to multiple aging times and blade 

tenderization. Chapter 7 further evaluates cooked beef aroma volatiles from different areas of 

longissimus lumborum steaks cooked to different degrees of doneness and subjected to different 

aging times. Chapter 8 draws conclusions from the studies that evaluated aroma volatiles 

produced by beef.
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Chapter 1 - Review of literature: Exercise of feedlot cattle 

 1. Consumer perceptions of meat production 

Over the past 15 years consumers have increased their concern regarding the way food 

products are produced (Grunert, Bredahl, and Brunso, 2004). Grunert and others (2004) reported 

that consumers are interested in: 1) organic production, 2) animal welfare, and 3) products 

manufactured in a “natural” way. The USDA recognizes many verified processes like “Non-

Hormone Treated Cattle (NHTC)”, “Natural”, and “Organic” that are gaining traction as a 

marketing element. These processes are many times perceived to be animal-friendly even though 

they may not be directly related to animal welfare. Animal welfare is interpreted differently by 

different people and scientific research may not be an accurate gauge of how society views 

animal welfare issues. A majority of society assesses animal welfare using emotion and 

perception of rearing practices, but assessments of animal welfare in scientific literature are 

based on observed measures (Buller & Roe, 2012).  

Progressive livestock operations in the U.S. may develop alternative production practices 

that appeal to consumers from an animal welfare perspective in an effort to garner monetary 

incentives from the retail sector. Buller and Roe (2012) detailed that ‘naturality’ along with 

confinement and density are the most common aspects of animal welfare that could be advanced 

to attract certain consumers. ‘Naturality’ was most commonly associated with a term like ‘free-

range’ and confinement is readily linked with stocking densities. Lastly, an overriding theme 

related to animal welfare is the thought that it enhances the quality of a product or is somehow 

improving product taste and healthfulness or indicative of a local, independent producer. This 

study displays that consumers have instinctive beliefs in regards to the manner in which meat 

animals are produced. 

Food production and manufacturing processes can influence the way consumers make 

purchasing decisions and may even influence their opinions on regulatory issues regarding food 

animals. California and Arizona, among other states, have voted in favor of laws that ban the use 

of cages for housing egg-laying chickens as well as stalls and crates for housing sows and veal 

calves (Richards, Allender, & Fang, 2013). These laws on livestock production substantiate the 

public interests and attention to welfare of livestock. The increase in governmental regulation 
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also signals a need for farms and ranches to evaluate their practices and develop methods that are 

designed to enhance animal well-being. 

Understanding how consumers will react or accept production methods developed to 

improve animal well-being is of utmost importance. Frewer, Kole, Van De Kroon, and De 

Lauwere (2005) surveyed Dutch consumers on attitudes towards husbandry of swine and fish. 

Results demonstrated that consumers thought about animal welfare in two broad categories: 1) 

animal health, and 2) suitability of the environment in which animals live. Consumers also rated 

animal welfare orientated production as more important in pig production than fish production. 

Respondents were very adamant that food products produced with the use of animal friendly 

production systems be labeled as such. Farmers were labeled as more trustworthy and 

knowledgeable than government and supermarkets in matters associated with animal welfare. 

This study makes it readily apparent that consumers are concerned with animal production 

methods and request that those producers making distinct efforts to improve animal well-being 

have the opportunity to differentiate their products at the retail counter.  

Animal welfare is important to consumers, but it is necessary to assess if this translates to 

their purchasing habits. A study conducted by Olynk, Tonsor, and Wolf (2010) evaluated 

willingness of consumers to purchase pork chops and milk produced from verified processes. 

The authors conducted a survey using direct and indirect questioning to evaluate acceptance of 

four production processes: individual crates/stalls, pasture access, antibiotic use, and certified 

trucking/transport. Results from this study indicated that consumers were more willing to pay for 

products that were raised by processes verified by the USDA compared to processes verified by 

a private party, consumer group, or by producers. Their attitude toward USDA certification was 

quantified by their willingness to pay an additional $1.50-$2/lb for pork produced using USDA 

verified production methods compared to other verification types. Additionally, respondents 

were most willing to pay for products verifying that animals had access to pasture followed by 

verification of antibiotic use. Many meat purchasers show an interest in regard to methods used 

to produce the meat they purchase and, with proper oversight, certain production claims can 

entice consumers to pay a premium for these products.  

The creation and use of a verified production system that promotes animal welfare could 

provide additional revenue streams for beef producers. The industry must not lose sight of 

creating an ample supply of beef that is affordable for a majority of buyers that are not enticed by 
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different production claims. Additionally, it is crucial that palatability components of beef are 

not adversely impacted so that consumer acceptance of beef is maintained. 

 2. Insulin-resistance in feedlot cattle 

Glucose is necessary for the function of many tissues. Insulin levels increase after a meal 

is consumed to stimulate glucose transport, metabolism, and storage by muscle and adipocytes 

(Shepherd & Kahn, 1999). An overabundance of glucose can be toxic (Rosetti, Giaccari, & 

DeFronzo, 1990) and chronic hyperglycemia can induce insulin-resistance. The resulting 

impaired glucose transport is associated with type 2 diabetes mellitus in humans (Shepherd & 

Kahn, 1999). 

Cattle fed concentrate-based diets in feedlot settings have increased performance, 

efficiency, and ribeye area as well as increased quality grades compared to cattle fed forage-

based diets (Bennett et al., 1995). As a result, most beef in the U.S. is produced from cattle fed 

high-concentrate diets primarily composed of corn (Vasconcelos & Galyean, 2007), which is 

high in starch content. Ruminant animals that are fed high-starch diets produce greater amounts 

of propionate which is readily converted to glucose (Huntington, 1997). The high levels of 

glucose produced via ruminal fermentation of high-starch diets could create hyperglycemic 

conditions that lead to increased insulin-resistance. Limiting the intake of high-starch feedstuffs 

is not a viable option as they are integral to producing high quality beef in an efficient and 

economically feasible manner. Therefore, it is important to evaluate complimentary production 

approaches that may alleviate concerns with insulin-resistance to improve health of feedlot 

cattle.  

In humans, physical exercise has been labeled an important addition to treatment of both 

type 1 and type 2 diabetes mellitus (Goodyear & Kahn, 1998). A meta-analysis conducted by 

Boulé, Haddad, Kenny, Wells, and Sigal (2001) evaluated the effects of exercise on glycemic 

control to combat symptoms of type 2 diabetes mellitus. Studies that evaluated exercise 

interventions of at least 8 wk in duration and were devoid of drug cointerventions were included 

in the analysis. Exercised treatment groups had decreased levels of glycosylated hemoglobin in 

comparison to control groups. The observed levels of glycosylated hemoglobin were similar to 

those observed in treatment groups that combined diet and exercise. Contrarily, the body mass of 

subjects receiving exercise treatment were similar to body weights of the non-exercised control 
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groups. The reduction of glycosylated hemoglobin by exercise should reduce incidences of 

diabetic complications without altering body mass in humans and it is important to understand 

why this occurs. 

Exercise induced changes in insulin sensitivity are due to an increase of glucose uptake in 

the body. Goodyear and Kahn (1998) reviewed the impact of exercise on glucose uptake via the 

GLUT 4 transporter. A single session of exercise increases glucose uptake in skeletal muscles 

which is mediated by the GLUT 4 transporter. Additionally, chronic exercise has shown the 

capability to increase GLUT 4 expression in skeletal muscle and enhance the responsiveness of 

muscle glucose uptake to insulin. These effects have also been seen in other mammals as 

exercise increases insulin sensitivity (Da Silva et al., 2010) and improves glucose metabolism in 

obese rats (Nara, Takahashi, Kanda, Shimomura, & Kobayashi, 1997).  

Research evaluating the implementation of exercise to combat insulin-resistance in 

feedlot cattle is negligible; however, other animal models have been used. Exercise has shown 

potential to inhibit the development of type 2 diabetes mellitus in Psammomys obesus, rats that 

develop type 2 diabetes mellitus within 2 wk of exposure to high energy diets (Heled et al., 

2005). Psammomys obesus were used in a 2 x 2 factorial experiment and assigned to low or high 

energy diets and exercise or non-exercised treatments. All animals in the high energy, non-

exercised group became diabetic, but none of the animals in the high energy exercised group 

became diabetic. This study showed that exercise enhanced the expression of TNFα, its receptor 

R1 and the glucose transporter GLUT 1 in muscle tissue. This study outlines the potential for 

exercise to alleviate diabetic symptoms in animals produced in situations that promote the 

development of insulin-resistance. 

 Carter, McCutcheon, Valle, Meilahn, and Geor (2010) evaluated the effect of exercise 

training on overweight or obese, insulin-resistant geldings. Horses were either exercised at a high 

intensity for 4 wk, low intensity for 4 wk, or remained sedentary throughout the study. Although 

weight and fat mass were decreased, these researchers observed no change in the parameters of 

glucose and insulin dynamics in the exercised geldings. It is apparent that exercise may not 

improve animal health, in regards to diabetic symptoms, in similar manners across species and it 

is necessary to evaluate the species of interest to better understand their response to exercise. 

Feedlot cattle live a very sedentary lifestyle as their only daily activities are associated 

with eating and drinking. The unhealthy lifestyle of a sedentary animal fed a high-starch diet 
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could contribute to diabetic-like symptoms indicative of poor health. The capability of exercise 

to inhibit the development of type 2 diabetes mellitus in other species suggests that exercise has 

potential to improve the health of cattle fed high-starch diets. Exercise could possibly decrease 

insulin-resistance in feedlot cattle by increasing expression of GLUT 1 and GLUT 4 transporters, 

ultimately increasing their glucose uptake in skeletal muscle and reducing diabetic symptoms. 

 3. Cattle temperament and animal performance 

Livestock temperament is showing an increased importance as it can influence animal 

performance and carcass traits. Various methods have been used to assess cattle temperament 

and stress when processing cattle through a handling chute. Chute scores, that consider the 

animals’ calmness and excitability while being restrained in a chute, and the velocity at which 

the cattle exit a processing chute are often used to assess temperament (Burdick, Randel, Carroll, 

& Welsh, 2011). These types of temperament scoring systems have related directly to basal 

concentrations of glucocorticoids and catecholamines (Burdick et al., 2011). In most mammals, 

including humans and cattle, cortisol is the primary glucocorticoid released during stress 

(Burdick et al., 2011). Additionally, during stress in cattle, epinephrine is the primary 

catecholamine produced by the adrenal medulla in conjunction with limited amounts of 

norepinephrine (Burdick et al., 2011).  All of these factors can be used in classifying cattle into 

temperament groups as well as assessing the stress they incur during handling. 

Managing cattle to have docile temperaments could be beneficial to producers and 

packers as it pertains to animal performance and carcass quality. Reinhardt, Busby, and Corah 

(2009) used feedlot cattle produced in southwest Iowa from 2002 to 2006 to correlate the 

relationship between various performance and carcass traits with phenotypic traits, such as 

disposition. Steers and heifers were assigned disposition scores (1 = calm, slowly walks out of 

chute and down exit alley; 6 = extremely excitable, agitated, jumps when exiting chute, runs 

away from chute) during initial on-test weighing, at re-implanting, and during final sorting prior 

to shipment to the abattoir. Disposition influenced multiple traits. Cattle with higher disposition 

scores showed decreased initial body weight, average daily gain, and final body weight. 

Moreover, temperamental cattle produced carcasses that displayed decreased fat thickness, hot 

carcass weights, longissimus muscle areas, marbling scores, and USDA quality grades. 

Additionally, cattle with higher disposition scores exhibited a decreased percentage of carcasses 
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that graded USDA Prime and Upper 2/3 Choice, but increased the percentage of carcasses that 

graded USDA Select and Standard. Lastly, cattle with higher disposition scores produced a 

greater percentage of Yield grade 1 and 2 carcasses along with a reduced percentage of Yield 

grade 3 and 4 carcasses. Animal disposition, in regards to handling, is not only important for 

ease of animal handling, but can provide performance and beef quality improvements which 

offer monetary incentive to producers to rear docile animals. 

Animal temperament is usually assessed when humans are present, which is often only 

associated with times of processing and shipping. Many rearing systems have minimal amounts 

of human-animal interaction which could cause cattle to react disproportionally to stressful 

situations when humans are involved.  There is evidence that an animal’s fear of humans may 

change with improved and more frequent experiences with humans (Grandin, 1997; Jago, Krohn, 

& Matthews, 1999). In a 12-mo backgrounding scenario, Petherick, Doogan, Venus, Holroyd, & 

Olsson (2009) subjected steers to three human handling and yarding scenarios: Good 

handling/yarding, Poor handling/yarding, and Minimal handling/yarding. Steers were then lot-

fed for 78 d with no handling treatments imposed prior to being transported for commercial 

slaughter. At the end of backgrounding, all three treatments produced steers with similar body 

weights; however, plasma cortisol levels were lowest for Good treatment steers compared to the 

Poor and Minimal treatment groups at the end of lot-feeding. Steers subjected to minimal 

handling/yarding seemed to experience more stress than either the Good and Poor handling 

groups, likely due to the novelty of being handling and confined. This study verifies that 

increased exposure to proper handling can positively alter the disposition of cattle. 

Francisco, Cooke, Marques, Mills, and Bohnert (2012) evaluated the implementation of 

an acclimation system for steers entering a backgrounding program post-weaning. Steers were 

assessed for temperament score 35 d after weaning and then assigned to either an acclimation 

treatment that entailed processing through a handling facility twice weekly or a control treatment 

that remained undisturbed on pasture throughout the duration of the study. At feedlot receiving, 

the acclimated steers displayed decreased temperament scores and plasma cortisol suggesting 

they were calmer and incurring less stress; however, the acclimated steers exhibited lower 

average daily gains, gain-to-feed ratios, and tended to have lower dry matter intakes when 

compared to the control steers. To effectively improve cattle temperament it may be necessary to 
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explore various handling methods so that the improvements in temperament are not negated by 

decreases in performance. 

Stress can occur during transportation to slaughter. Cattle shipped 200 km to a 

commercial abattoir exhibited greater blood cortisol concentrations at exsanguination than cattle 

shipped a short distance and harvested in a research abattoir (Tume and Shaw, 1992). Moreover, 

in a study evaluating transport of temperamental and calm bulls, temperamental bulls showed 

greater blood glucose and cortisol than calm bulls up to 48 h after 4 h of transport (Hulbert et al., 

2011). Additionally, calm bulls showed a greater likelihood to resist microbial invasion 96 h 

after transportation when compared to temperamental bulls (Hulbert et al., 2011). Cattle are often 

shipped long distances to commercial slaughter facilities and cattle that are more docile should 

handle this stressful situation better than their temperamental counterparts. 

Temperament has shown to be of vital importance to the beef industry. Not only can calm 

cattle be more productive, but they can yield carcasses with improved quality measures. 

Additionally, calm cattle should be more tolerable to stressful situations which could be 

beneficial to animal health. 

 4. Exercise and meat color 

Fresh meat color is an important characteristic that consumers use to select meat cuts at 

the retail counter. Consumers perceive bright-pink to bright-red meat color as being desirable 

and any deviation from this is unacceptable (Kropf, 1980). There are many ante mortem and 

postmortem factors that contribute to the development of meat color. A vast majority of research 

on ante mortem factors and meat color has been directed towards nutrition. Research has detailed 

that diet can alter glycogen storage, chilling rate, or antioxidant accumulation, all of which can 

alter pH, oxygen consumption, and metmyoglobin reducing activity of a muscle which influence 

meat color (Mancini & Hunt, 2005). Animal stress and production methods have also received 

attention by scientific research to investigate their influence on meat color. Many authors 

assumed that livestock subjected to great amounts and frequency of physical activity, like that 

associated with grazing, should produce meat that is darker than normal (Muir, Smith, Wallace, 

Cruickshank, & Smith, 1998). Most available research regarding physical activity and beef color 

utilize scenarios where grazing is compared with grain-fed beef and observed results may be 
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confounded due to nutritional differences associated with the two systems (Dunne, Monahan, & 

Moloney, 2011). 

Lean color differences have been seen between pasture-fed and grain-fed cattle. Dunne, 

O’Mara, Monahan, French, and Moloney (2005) set out to determine if this difference was due to 

nutrition or the difference in daily exercise that the cattle endured. In this study, 18-mo old steers 

were housed indoors and exercise treatment cattle were exposed to walking exercise (4.41km/d 

for 6 d/wk), while non-exercised steers remained in their pen over the duration of the study. The 

exercise treatment did not affect muscle lightness (‘L’), redness (‘a’), and yellowness (‘b’) of the 

longissimus dorsi and the extensor carpi radialis, but decreased ‘a’ values of the 

semimembranosus. Also, there was no observed treatment effect on ultimate pH in all three 

muscles. Significant differences were seen between muscles for ‘L’, ‘a’, and ‘b’ values along 

with pH. A muscle × exercise interaction was seen for ‘a’ values showing that redness is 

influenced in a muscle-dependent manner with the semimembranosus being altered the most and 

longissimus dorsi the least. Additionally, treatment did not influence the total myoglobin 

concentration of all muscles sampled. The results of this research contrast the common notion 

that exercise changes meat color. 

Muscle tissues can adapt due to certain stimuli, such as prolonged physical activity. 

Vestergaard, Oksbjerg, and Henckel (2000) evaluated the impact of intensive (ad libitum feed 

and tie-stall housing) and extensive (restricted forage-based feeding and loose housing) 

production methods on meat color and muscle characteristics. Their research displayed that 

longissimus dorsi and semitendinosus muscles were darker in color and had higher pigmentation 

in the extensive production group compared with the intensive group. Additionally, the extensive 

treatment produced longissimus dorsi muscles with decreased redness and yellowness when 

compared with the intensive group, whereas, no difference was observed in the semitendinosus 

and supraspinatus. These results demonstrated changes in color which is commonly thought to 

occur in response to increased physical activity, but the results were compromised due to the 

diets used. 

Physical activity or exercise could present issues in regards to producing beef with 

acceptable color. Still, there is an unnecessary assumption that exercise will produce dark beef 

when the body of literature is not present to support the claim. There is a need to investigate this 
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matter in a way where evaluation of exercise or physical activity treatment is the primary focus 

and limited dietary factors are included in the research design. 

 5. Exercise and meat tenderness 

The eating experience associated with beef is one of the primary attributes that 

consumers rely on to make future meat purchases. Tenderness has been identified as one of the 

most important factors affecting consumer acceptance of cooked beef in the U.S. (Miller et al., 

1995) and consumers change their purchasing habits after they encounter beef that is 

unacceptably tough (Boleman et al., 1997). Negatively affecting meat tenderness to promote new 

production methods could adversely affect the salability of that specific product. 

The impact of physical activity on tenderness has received limited attention, especially in 

beef. Aalhus, Price, Shand, and Hawrysh (1991) evaluated meat characteristics from lambs that 

received treadmill exercise 5 d per wk throughout the finishing period. These authors showed 

that exercise increased tenderness as significant decreases in Warner-Bratzler shear force were 

observed in semimembranosus and vastus lateralis muscles from exercised lambs. Moreover, in 

a prior experiment where Aalhus and Price (1990) subjected lambs to resistance jumping 

exercise, a slight reduction in Warner-Bratzler shear force of the vastus lateralis was detected. 

The observed tenderness improvements detailed in these studies are indicative of muscles that 

are directly involved in movement, but support muscles that are of a greater monetary value must 

also be evaluated. 

Enfalt et al. (1993) observed results that were contradictory to those of Aalhus et al. 

(1991) when evaluating exercise in pigs. Pigs are generally raised indoors with very limited 

space, ultimately restricting their ability to engage in physical exercise. To combat this, Enfalt et 

al. (1993) designated pigs to either a control treatment or an exercise treatment that partook in 

moderate exercise 5 d per wk throughout the fattening period. This study revealed no differences 

in Warner-Bratzler shear force values of longissimus dorsi and biceps femoris muscles between 

control and exercised groups. The longissimus dorsi is not directly involved in exercise as it is a 

support muscle but it could provide evidence of how other support muscles should respond to 

exercise. 

Lopez-Bote et al. (2008) evaluated the effect of exercise on various meat quality traits in 

Iberian pigs. The exercised treatment was fed in a manner that required the pigs to travel 2 km 
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every day while the sedentary group was housed indoors. Rheological traits were assessed on the 

psoas major muscle at 0 and 8 d postmortem. Hardness was slightly reduced for the exercised 

group at both of the storage times. Sample chewiness was significantly reduced for the exercise 

treatment compared to the sedentary group on d 8 of storage suggesting that exercise samples 

were more tender. 

The muscle connective tissues, endomysium, perimysium and epimysium, make up a 

network of collagen and elastin fibers that are embedded in a matrix of proteoglycans (Lepetit, 

2008). The perimysium represents about 90% of total connective tissues in muscles 

(McCormick, 1999). The amount of connective tissue is highly variable between muscles and is 

generally present in greater amounts in muscles that are considered tough. Both raw muscle 

collagen and cooked meat collagen contents are highly correlated with tenderness (Dransfield et 

al., 2003). Exercise training is associated with increased prolyl-4-hydroxylase activity in skeletal 

muscle without an increase in collagen concentration (Kovanen & Suominen, 1989) which 

suggests that the rate of collagen turnover may be increased in exercised animals (Gosselin, 

Adams, Cotter, McCormick, & Thomas, 1998). Little research has evaluated the effect of 

exercise on skeletal muscle collagen in beef, but other livestock species have been evaluated. 

Petersen, Berge, Henckel and Soerensen (1997) evaluated multiple rearing systems and 

their impact on collagen characteristics in pigs. Crossbred pigs were delegated to one of the 

following rearing treatments: confined, trained, or free. The confined and trained pigs were 

housed individually and the trained pigs were exercised 5 times per wk on a treadmill for 10 min 

at the beginning of the study and progressing to 20 min by the end of the experiment.  The “free” 

treatment housed 8 pigs in a 36 m
2
 pen. Total collagen, heat stable collagen, and collagen 

solubility were analyzed from biceps femoris and longissimus dorsi samples collected 24 h 

postmortem. Trained and free-raised female pigs exhibited greater amounts of heat-stable 

collagen and decreased collagen solubility in the biceps femoris when compared to the confined 

treatment group. Biceps femoris samples from male pigs presented no differences between 

treatments for total collagen and heat-stable collagen, but trained pigs demonstrated greater 

collagen solubility than both confined and free-raised treatments. Additionally, no differences 

were seen between treatment groups for total collagen, heat-stable collagen, and collagen 

solubility in the longissimus dorsi. This study further shows that muscles with different functions 

may have different responses to exercise as the biceps femoris, which is involved in movement, 
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demonstrated changes that should decrease tenderness in female pigs while the longissimus 

dorsi, a support muscle, remained unchanged. 

An earlier study involving pigs and exercise was conducted by Hawrysh, Murray, and 

Bowland (1974). Control and exercised pigs were housed in similar individual pens. Pigs 

assigned to the exercise treatment were exercised on a treadmill 3 d per wk for 30 min at the 

beginning of the trial and up to 60 min at the end of the study. Collagen was assessed based on 

hydroxyproline analysis from psoas major and biceps femoris samples collected 3.5 d 

postmortem. Hydroxyproline was greater in the biceps femoris compared to the psoas major, but 

there were no discernible differences between the treatments for both the biceps femoris and 

psoas major muscles. The lack of change in the biceps femoris contrasts the findings of Petersen 

et al. (1997) and the varying results may be attributed to the duration of the exercise regimen 

employed. 

There are multiple factors that may be causing the observed tenderness and collagen 

differences, or lack thereof. First there is a lack of consistency to the terms “physical activity” 

and “exercise”. These are very open ended phrases that fail to distinguish the intensity or 

rigorousness of the activity endured by an animal. Physical activity is often associated with the 

act of grazing which is not necessarily an intense act, but is constantly occurring throughout the 

day. Another issue is that many studies fail to keep nutritional aspects the same; this is a readily 

apparent problem when evaluating the physical stress of grazing as the other treatment group 

may have a higher energy diet. Lastly, muscle location could be of serious importance when 

assessing tenderness and collagen composition as some muscles are used much more than others 

when the animal is subjected to exercise.  

 6. Exercise impact on fatty acid composition 

Fatty acids influence many regulatory processes including gene expression and synthesis 

of lipid or lipid-derived messengers (Nikolaidis & Mougios, 2004). The fatty acid profile found 

in skeletal muscle and fat depots in a carcass may be altered when the physical activity of an 

individual is altered for extended periods of time. To date, limited research has evaluated how 

exercise affects the fatty acid profile of skeletal muscle in major livestock species; however, this 

subject has been evaluated extensively in other species commonly used for research predicting 

human applications.  
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The use of fatty acids as substrates during physical activity in rabbits was evaluated by 

Szabo, Romvari, Febel, Bogner, and Szendro (2002). Pannon White rabbits were assigned to a 

control group or an exercised treatment that subjected the rabbits to treadmill exercised until 

exhaustion twice daily for a duration of 4 wk. Homogenized samples from the longissimus dorsi 

and vastus lateralis were assessed for fatty acid composition at the completion of the trial. The 

proportion of oleic acid (C18:1 n-9) was significantly increased by exercise in both the 

longissimus dorsi and vastus lateralis muscles. Additionally, exercise treatment produced a 

decrease in the proportion of stearic acid (C18:0) in the vastus lateralis. These results 

demonstrate that certain fatty acids may be influenced by the implementation of an exercise 

regimen. 

The influence of physical activity on the fatty acid composition of skeletal muscle has 

also been evaluated in rats. Quiles, Huertas, Manas, Battino, and Mataix (1999) investigated the 

implementation of physical activity on Wistar rats that were being supplemented with different 

dietary fats. Rats were either supplemented olive oil or sunflower oil and each dietary treatment 

was split into exercise and sedentary treatments. Rats assigned to exercise treatment underwent 

training on a treadmill for 40 min once a d, 5 d per wk for 8 wk. Fatty acid profiles were attained 

for skeletal muscle mitochondrial membranes collected from the vastus lateralis. Exercise 

treatment decreased total polyunsaturated fatty acids (PUFA) and total n-6 PUFA. Total n-3 

PUFA was decreased by exercise training as was 22:5n-3 in animals of both diets while 22:6n-3 

was decreased in the olive oil diet and increased in the sunflower oil diet. This study further 

shows that exercise influences fatty acid concentrations in a muscle related to movement. 

Different animal species provide differing results in regard to the influence exercise has 

on fatty acid concentrations in skeletal muscle. Additionally, the various exercise regimens used 

produced different results as more intense exercise seems to change fatty acid concentrations in a 

more drastic fashion. It is quite possible that exercise could alter the fatty acid profile of skeletal 

muscle in feedlot cattle.  

 7. Summary 

Animal welfare is continually receiving additional attention by producers and consumers 

alike. The high concentrate diets and sedentary lifestyles of cattle in confinement feeding 

operations could lead to poor animal health due to insulin-resistance. Exercise has demonstrated 



13 

 

the capability to reduce insulin-resistance in non-livestock species and could provide an avenue 

to improve the health of cattle produced in confinement. Animal performance, carcass 

characteristics, and meat quality measures must be evaluated to ensure high quality beef is 

produced efficiently if exercise is introduced in cattle production. 
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Chapter 2 - Effects of exercise on feedlot heifer performance, animal 

well-being, and carcass quality 

 Abstract 

Heifers (n=30) remained sedentary or were exercised 3 times/wk (20 min/d for the first 2 

wk, 30 min/d for the next 2 wk, and 40 min/d for the final 4 wk) to assess the influence of 

exercise on animal health, performance, and carcass characteristics. Sedentary heifers had greater 

blood cortisol than exercised heifers at d 28 and 60 (treatment × day interaction, P = 0.007). 

Exercise decreased (P = 0.009) blood insulin, while no other blood constituents were affected (P 

> 0.05) by exercise. Exercise decreased (P < 0.05) final live weight, ADG, 12
th

 rib fat, and 

USDA yield grade, as well as a* and b* values of exposed longissimus muscle. Exercise 

treatment did not affect (P > 0.05) gain:feed, DMI, HCW, marbling score, or LM area. 

Additionally, Warner-Bratzler shear force, total fatty acids, SFA, MUFA, PUFA, and CLA 

concentrations of four muscles were unaffected (P > 0.05) by exercise.  

Keywords: beef, exercise, performance, quality, welfare, yield. 
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 1. Introduction 

Cattle feeding in the U. S. has evolved into large, concentrated units whose primary focus 

is to produce large quantities of high quality beef for consumers at affordable prices. Current 

production facilities are designed to promote efficient growth and accelerate fat accumulation in 

cattle, but inadvertently limit the amount of physical activity in which cattle can partake. Cattle 

housed in feedlots incur rather limited amounts of interaction with humans throughout the 

finishing process which may result in cattle responding disproportionately to stressful situations 

associated with processing, shipping, and harvest. These issues can compromise animal well-

being, animal handler safety, and may cause undesirable changes to meat quality. 

Current production systems have come under increasing scrutiny from consumers.  

Consumers are placing more emphasis on how animals are raised, which is reflected in their 

purchasing decisions at the retail counter (Grunert, Bredahl, & Brunso, 2004). Animal welfare, 

health, and living environment of livestock are key concerns for consumers (Frewer, Kole, Van 

De Kroon, & De Lauwere, 2005). The increased willingness of consumers to pay more for 

products from livestock raised by verified processes has led to an increased availability of beef 

products marketed as “natural”, “organic”, “grass-fed”, and “certified humane” at the retail 

counter (Olynk, Tonsor, & Wolf, 2010). Beef producers could potentially benefit from altering 

their production methods by generating value through niche marketing in addition to improving 

performance of cattle by enhancing animal health and limiting animal stress. 

The combination of a sedentary lifestyle and high energy diet is common in beef cattle 

production and may compromise some health related traits. Hyperglycemia is a toxic condition 

in the body caused by an overabundance of glucose (Rosetti, Giaccari, & DeFronzo, 1990). 

Glucose transport, metabolism, and storage are facilitated by insulin, which is increased after a 

meal is consumed (Shepherd & Kahn, 1999). Chronic hyperglycemia can lead to insulin-

resistance, which prevents glucose transport and is a common symptom of type 2 diabetes 

mellitus in humans (Shepherd & Kahn, 1999). A majority of beef cattle finished in the U.S. are 

fed high starch diets that are primarily composed of corn (Vasconcelos & Galyean, 2007). 

Fermentation of high-starch feeds yields propionate in the rumen, which is further converted into 

glucose (Huntington, 1997). Insulin-resistance could occur in feedlot cattle, as the 

aforementioned lifestyle contributes to hyperglycemic conditions.  
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Physical exercise is commonly identified as a method to reduce insulin-resistance 

associated with type 2 diabetes mellitus in humans (Goodyear & Kahn, 1998). Additionally, 

exercise has the capability to inhibit the development of type 2 diabetes in the Psammomys 

obesus due to increased expression of TNFα and GLUT 1 glucose transporter in skeletal muscle 

(Heled et al., 2005). Additionally, the implementation of a routine exercise program for feedlot 

cattle would increase cattle’s exposure to handling by humans. Increased interaction between 

cattle and humans has been attributed to lowering blood cortisol, which is a primary indicator of 

animal stress (Boandl, Wohlt, & Carsia, 1989). Animals with lower blood cortisol levels could 

be expected to be more docile when handled and docile cattle have improved performance and 

carcass traits in comparison to temperamental cattle (Reinhardt, Busby, & Corah, 2009).  

Exercising beef cattle in a confinement setting has the potential to improve animal health 

and welfare but could have an impact on meat characteristics that influence consumer purchasing 

decisions. Fresh meat color is an important characteristic that consumers use to select meat cuts 

at the retail counter. Walking 4.41 km on a daily basis had no influence on instrumental color 

values of the longissimus dorsi in 18 mo old steers (Dunne, O’Mara, Monahan, French, and 

Moloney, 2005), but no research has reported how other types of exercise regimens can impact 

meat color in cattle. Additionally, tenderness is one of the most important factors affecting 

consumer acceptance of cooked beef in the United States (Miller et al., 1995) as the consumption 

of meat cuts that are unacceptably tough can alter purchasing decision of consumers (Boleman et 

al., 1997). Exercise of sheep decreased Warner-Bratzler shear force (WBSF) of the 

semimembranosus and vastus lateralis due to a dilution of collagen in relation to myofibrillar 

protein (Aalhus, Price, Shand, & Hawrysh, 1991), so meat from livestock receiving routine 

exercise may incur a tenderness improvement.  

Producers and consumers alike will continue to place high priority to the issue of animal 

welfare. Improving animal health and reducing animal stress should be of high importance in 

addressing the issue of animal welfare. Routine exercise of feedlot cattle provides a potential 

avenue to improve cattle welfare and docility which could improve live animal efficiency and 

meat quality; however, there are possibilities that exercise may be detrimental to certain 

performance and carcass characteristics. The objectives of this study were to assess the impact of 

an exercise regimen on feedlot cattle with specific attention to animal welfare, animal 

performance, carcass composition, and meat quality.  
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 2. Materials and methods 

 2.1 Animal background 

The Kansas State University Institutional Animal Care and Use Committee approved the 

protocols used in this study. Crossbred heifers (n=30; 448 ± 27 kg initial body weight) were used 

in a randomized complete block experiment. Heifers were stratified by initial body weight (BW) 

and body condition into 15 strata prior to being randomly assigned, within strata, to Sedentary or 

Exercised treatment groups. Heifers were housed individually in pens (1.5 m × 6.5 m) and fed a 

finishing diet that consisted of 93% concentrate and 7% roughage. Daily feed allocations were 

recorded over the duration of the study and BW were measured on d 0, 28, and 60. 

 2.2 Exercise protocol 

Sedentary treatment cattle remained in their pens throughout the duration of the study 

except for data collection days. Exercised treatment cattle were exercised three times per wk. 

Exercised cattle were removed from their pens and forced to move by an animal handler on foot 

at a pace of 5 to 6 km/h (20 min/d for the first 2 wk, 30 min/d for the next 2 wk, and 40 min/d for 

the next 4 wk resulting in a total of 8 weeks of exercise). 

 2.3 Blood constituents 

Blood samples were collected via jugular vein puncture on d 28 and 60 to assess blood 

glucose and lactate while blood samples to assess insulin, IGF-1, and cortisol were collected on d 

0, 28, and 60. Blood used to evaluate blood plasma concentrations of glucose, lactate, insulin, 

IGF-1, and cortisol were placed in tubes containing an anticoagulant and centrifuged for 15 min 

at 2,000 × g at 13 ºC. Blood plasma glucose and lactate were measured using a glucose-lactate 

autoanalyzer (2300 Stat Plus, YSI Inc., Yellow Springs, OH). Commercial radioimmunoassay 

kits were used to analyze both serum cortisol (Cortisol Coat-A-Count, #TKIN, Siemens Medical 

Solutions Diagnostics, Los Angeles, CA) and insulin (Insulin Coat-a-Count, #TKCO1, Siemens 

Medical Solutions Diagnostics, Los Angeles, CA) concentrations while plasma IGF-1 was 

analyzed using a commercial ELISA kit (# AC-27F1, Immunodiagnostic Systems Inc., Fountain 

Hills, AZ). 
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 2.4 Carcass characteristics 

Heifers (n=16) remained in strata and were randomly selected to be slaughtered at the 

Kansas State University Meat Laboratory on d 62. Hot carcass weights (HCW) were recorded at 

the completion of slaughter. Percentage of dress yield was determined as HCW divided by final 

BW. Longissimus muscle (LM) area, kidney, pelvic, and heart fat percentage (KPH%), 

subcutaneous fat thickness over the 12th rib, USDA yield grade, and marbling score was 

evaluated 24 h postmortem. Ultimate pH was assessed in the longissimus thoracis dorsal to the 

12
th

 rib 24 h postmortem using a portable pH meter (HI 9025; Hanna Instruments, Wilmington, 

NC). Carcasses were fabricated and 2.54 cm thick steaks were taken from the longissimus 

lumborum, triceps brachii, semitendinosus, and semimembranosus muscles for Warner-Bratzler 

shear force (WBSF) assessment. Additionally, fresh samples were taken from each of the four 

previously stated muscles for analysis of fatty acid methyl esters. 

 2.5 Instrumental color  

The exposed longissimus thoracis between the 12
th

 and 13
th

 rib was assessed for 

objective lean color after 30 min of bloom time. International Commission on Illumination (CIE) 

instrumental color (L*, a*, and b*, Illuminant A) was measured with a HunterLab Miniscan XE 

Plus spectrophotometer (2.54-cm-diameter aperture, 10º standard observer; Hunter Associates 

Laboratory, INC., Reston, VA.). Three readings were taken for each carcass and values were 

averaged prior to statistical analysis. 

 2.6 Warner-Bratzler shear force 

Steaks were vacuum packaged in oxygen impermeable film (Prime Source Vacuum 

Pouches, Kansas City, MO; 76.2 μm, STP Barrier, Nylon/PE Vacuum Pouch; oxygen 

transmission rate 0.04 g/254 cm
2
/24 h at 0 ºC; water vapor transmission rate 0.2 cc/254 cm

2
/24 h 

at 0 ºC at 0% relative humidity) and aged for 14 d at 0-2 °C before being frozen at -20 °C. Steaks 

were thawed for approximately 12 h at 0-2 °C and cooked to 40 °C, turned, and cooked to a final 

internal temperature of 70 °C in a dual flow, forced-air convection gas oven (Blodgett, model 

DFC-102 CH3; G.S. Blodgett Co., Burlington, VT) preheated to 163 °C.  Steak temperatures 

were monitored with copper-constantan thermocouples (Omega® Engineering, Stamford, CT) 

inserted into the approximate geometric center of each steak and attached to a Doric temperature 
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recorder (model 205; Vas Engineering, San Francisco, CA).  The steaks were chilled overnight at 

0-2 °C before 8 round cores (1.27-cm diameter) were obtained from each steak parallel to the 

long axis of the muscle fibers using a 1.27-cm corer (G-R Manufacturing Co., Manhattan, KS).  

Each core was sheared once perpendicular to the direction of the muscle fibers using a Warner-

Bratzler V-shaped blunt blade (G-R Manufacturing Co., Manhattan, KS) attached to an Instron 

Universal Testing Machine (model 4201, Instron Corp., Canton, MA) with a 50-kg compression 

load cell and a crosshead speed of 250 mm/min.  Peak shear force values were recorded in kg 

and values from the 8 cores were averaged for statistical analysis. 

 2.7 Fatty acid composition 

Tissue samples were stored in a sterilized plastic container (Whirl Pack, Nasco, Modesta, 

CA) at -20 ºC. A modified gas chromatography procedure of Sukhija and Palmquist (1988) was 

used for analysis of long chain fatty acids.  Each sample was frozen in liquid nitrogen, pulverized 

using a tabletop blender (model 33BL79; Waring Products, New Hartford, CT), and analyzed for 

fatty acid methyl esters. Muscle (50 μg) samples were combined with 2 mL of methanolic-HCl 

and 3 mL of internal standard (2 mg/mL of methyl heptadecanoic acid (C17:0) in benzene) and 

heated in a water bath for 120 min at 70 °C for transmethylation.  After cooling, addition of 2 

mL of benzene and 3 mL of K2CO3 allowed methyl esters to be extracted and transferred to a 

vial for subsequent quantification of the methylated fatty acids by gas chromatography. Injection 

port and detector temperatures were set at 250 °C, with a helium flow rate of 1mL/min and a 

split ratio of 100:1. Oven temperature began at 140 °C and was increased at 2 °C/min to 200 °C 

and then increased at 4 °C /min to 245 °C where it was held for 17 min. Fatty acids from each of 

the muscle samples were expressed as a proportion of the total sample.   

 2.8 Statistical analysis 

Data were analyzed as a randomized complete block design with weight strata serving as 

the block. Statistical analysis was performed using the Proc Mixed procedure of SAS (SAS 

Institute, Inc., Cary, NC) with the fixed effect of exercise treatment and random effects of strata 

and exercise regime × strata. Time and time × exercise regimen were included as fixed effects 

for BW and blood parameters. Post-hoc mean separation was carried out using Fisher’s least 

significant difference. All data were analyzed at a 5% level of significance. 
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 3. Results and discussion 

 3.1 Animal performance 

A treatment × day interaction (P = 0.013) was observed for body weight (Figure 2.1). 

Body weights were similar (P > 0.05) between treatments on d 0 and 28, but exercised heifers 

had decreased (P < 0.05) body weights in comparison to their sedentary counterparts on d 60. 

Treatment means for other live animal performance measures are shown in Table 2.1. Heifers 

subjected to exercise had decreased average daily gains (ADG; P = 0.048), but similar dry matter 

intakes (DMI; P = 0.057) and gain:feed (G:F; P = 0.084) when compared to their sedentary 

counterparts. Daily walking exercise (4.41 km daily for six days per week for 8 weeks) of 18 mo 

old steers reduced final BW and ADG in comparison to non-exercised steers (Dunne et al., 

2005), which supports findings of the current study. Conversely, treadmill exercise produced 

similar live weights and daily gains in pigs (Enfalt et al., 1993). Research of exercise in livestock 

is rather limited, but exercise decreased body weights (Bell, Spencer, & Sheriff, 1997) and 

reduced DMI, ADG, and feed efficiency (Mirand et al., 2004) in rodent models.  

Exercise commonly is performed to achieve weight loss in humans, but the regulation of 

body weight is complex as it is simultaneously affected by genetic architecture, the environment, 

and their interactions (Kelly, Nehrenberg, Hua, Garland Jr., & Pomp, 2011). To effectively gain 

weight, energy intake must exceed energy expenditure (Donnelly & Smith, 2005). In the present 

study, cattle in different treatments displayed similar DMI, but produced different BW. Exercise 

could possibly suppress weight gain due to the increased energy requirements of the exercised 

cattle. Cattle in the current study were progressed through multiple exercise times to adapt to a 

40 min/d exercise regimen. Reducing the intensity or duration of the exercise regimen could 

possibly achieve a state where BW remains unaffected due to decreased energy expenditure. 

 3.4 Blood constituents 

There were no treatment × day interactions (P > 0.05) for both blood glucose or lactate 

(Table 2.2). Additionally, glucose and lactate were unaffected (P > 0.05) by exercise treatment 

(Table 2.2). Sheep had increased blood glucose and lactate during exercise (Apple, Minton, 

Parsons, Dikeman, & Leith, 1994), but blood glucose has been shown to decrease while lactate 

increases in exercised horses (Ferrante & Kronfeld, 1994). Glucose is a critical energy source for 
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working muscle (Apple et al., 1994) and it is logical that it may be affected during bouts of 

exercise; however, this may depend on when sampling for glucose occurs. The current study 

evaluated blood glucose at predetermined weigh periods and were not conducted immediately 

after exercise, which may explain the lack of differences between treatment groups for both 

constituents. Glucose increases as metabolizable energy intake is increased (Ellenberger et al., 

1989) but did not change in heifers over the duration of a finishing period (Yambayamba, Price, 

& Foxcroft, 1996). The DMI for both treatments were similar in the present study, so it is 

rational that blood glucose was also similar between treatments.  

Blood lactate is evaluated often in cattle as abnormal increases of blood lactate are 

indicative of acidosis (Owens, Secrist, Hill, & Gill, 1998). Lactate can be utilized by specific 

bacteria in the rumen and these bacteria are present in greater numbers when cattle are properly 

adapted to a high concentrate diet (Huber, Cooley, Goetsch, & Das, 1976). Lactate can enter the 

blood of ruminants by absorption from the rumen or metabolism of propionate in the rumen 

epithelium (Dziuk, 1984). The current study shows that exercise should not alter the ability of 

cattle to properly dispose of lactate.  

No treatment × day interaction (P = 0.062) was observed for blood insulin, but blood 

insulin decreased (P = 0.009) with exercise (Table 2.2). Previous research has demonstrated that 

blood insulin can increase (Schwaiger, Beauchemin, & Penner, 2013) or remain unchanged 

(Yambayamba et al., 1996) during finishing. The decreases in blood insulin levels observed in 

exercised cattle suggest that they may have decreased insulin in comparison to sedentary cattle. 

Insulin-resistance occurs when an individual endures chronic hyperglycemia, which is a major 

contributor to type 2 diabetes mellitus in humans (Shepherd & Kahn, 1999). Carter, 

McCutcheon, Valle, Meilahn, and Geor (2010) observed that exercise failed to decrease insulin-

resistance in obese horses; however, exercise effectively inhibits the development of insulin-

resistance in diabetes-prone rats (Heled et al., 2005).  

There was no treatment × day interaction (P = 0.368) or treatment effect (P = 0.344) on 

blood IGF-1 levels, but IGF- 1 decreased (P = 0.012) over time (Table 2.2). Previously, blood 

IGF-1 in beef heifers did not change throughout the finishing period (Yambayamba et al., 1996). 

Other research has shown that IGF-1 changes in direct proportion to dietary intake (Ellenberger 

et al., 1989). The role of IGF-1 is similar to insulin and has various effects during exercise 

(Giesel et al., 2009). The effect of exercise on IGF-1 has been evaluated in rats. Exercise evoked 
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greater increases in IGF-1 for rats that had no prior physical training compared to rats that had 

been trained (Giesel et al., 2009). A similar comparison could be made between the current study 

and the research of Giesel et al. (2009), except IGF-1 assessment was conducted during an 

instance of handling. This study shows that routine exercise does not alter the amount of IGF-1 

produced during instances of handling.  

A treatment × day interaction (P = 0.007) was observed for blood cortisol (Figure 2.2). 

Exercise cattle showed greater (P < 0.05) blood cortisol concentrations than sedentary cattle at d 

0 but sedentary cattle displayed greater (P < 0.05) blood cortisol concentrations at d 28 and 60. 

Low blood cortisol levels are generally associated with calm cattle (Hulbert et al., 2011; King et 

al., 2006). A possible method for conditioning animals to better cope with stress is to increase 

human-animal interactions (Grandin, 1997; Jago, Krohn, & Matthews, 1999), which could be 

achieved by using an animal handler to administer exercise. Contrary to the current study, 

increased animal handling was shown to be ineffective in reducing cortisol levels in a feeder calf 

backgrounding situation (Petherick, Doogan, Venus, Holroyd, & Olsson, 2009). Heifers in the 

current study were housed in individual pens and exercised cattle were exercised simultaneously 

in one large group before returning to their individual pens. The decreased cortisol levels of 

exercised cattle in the current study could be attributed to increased interaction between animals 

as group housed cattle have decreased blood cortisol in comparison to individually housed 

animals (Titto et al., 2010).  

 3.3 Carcass characteristics 

Carcass characteristics are summarized in Table 2.3. No differences were observed 

between exercise and sedentary treatments for HCW (P = 0.152) or percentage of dressed yield 

(P = 0.417). Conflicting results have been reported with regard to the influence of exercise on 

muscling characteristics in livestock. The current study found no differences (P = 0.169) 

between treatments for LM area. Carcass weight and dressed yield were unchanged but overall 

carcass conformation decreased when cattle were exposed to daily walking exercise (Dunne et 

al., 2005). Conversely, treadmill exercise of sheep failed to increase muscle mass of the vastus 

lateralis and semimembranosus (Aalhus & Price, 1991). The previously described exercise 

methods are associated with endurance exercise, but implementation of resistance jumping 

increased mass of the biceps brachii and brachialis in sheep (Aalhus & Price, 1990). Resistance 
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exercise may provide more musculature change than endurance exercise if the primary focus of 

implementing exercise is to increase muscle mass, but this could present logistical issues in 

species such as cattle. 

Exercised and sedentary heifers had similar (P = 0.849) KPH%, but exercised heifers 

produced leaner carcasses with less 12th rib fat (P = 0.006) and decreased USDA yield grades (P 

= 0.002) in comparison to sedentary heifers. Steers subjected to walking exercise elicited similar 

results to those observed in this study, as carcass fat scores were decreased (Dunne et al., 2005). 

Additionally, multiple rodent models display a propensity for exercise to result in decreased 

body fat (Bell et al., 1997; Mirand et al., 2004). Body fat can be reduced with exercise of 

sufficient intensity (Pacy, Webster, & Garrow, 1986), so the results observed in this study are 

expected. 

Marbling score was similar (P = 0.245) between treatments. Scientific literature is limited 

with respect to intramuscular fat deposition in response to exercise in livestock and other animal 

models. Intramuscular fat is deposited when excess energy is available to the animal (Robelin, 

1986). In the current study, exercise may have increased the energy requirements to a point 

where subcutaneous fat was not deposited to the same extent in exercised carcasses in 

comparison to carcasses from sedentary cattle; however, required energy did not influence 

deposition of marbling. The current study was conducted for 8 wk, which is significantly shorter 

than normal finishing periods. Differences in marbling score may be observed if the finishing 

period is lengthened. 

 3.4 Instrumental color 

Instrumental color least squares means are detailed in Table 2.4. Exercised heifers 

produced carcasses that had decreased a* (P = 0.007) and b* (P = 0.009) values at the exposed 

longissimus thoracis between the 12th and 13th ribs. Contrarily, L* values did not differ (P = 

0.467) between treatments. Steers exercised by walking produced longissimus dorsi muscles 

with color attributes similar to those from control steers; however, exercise decreased redness 

(‘a’ values) of the semimembranosus (Dunne et al., 2005). Animals with increased activity have 

greater amounts of myoglobin than their sedentary or inactive counterparts (Essen-Gustavsson, 

1996). The exercised animals in the current study exhibited decreased redness in the longissimus 

thoracis, which is contradictory to what should occur if myoglobin is increased. Exercise did not 
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change the amount of myoglobin present in the semimembranosus, a muscle that had decreased 

redness in response to exercise (Dunne et al., 2005). Consequently, muscle myoglobin content 

may not be responsible for the observed color change in the current study. Carcasses from 

exercised heifers displayed less subcutaneous fat at the 12
th

 rib. Decreased amounts of 

subcutaneous fat present on carcasses can make longissimus muscle appear darker and increase 

the presence of heat ring (May, Dolezal, Gill, Ray, & Buchanan, 1992), which could contribute 

to some of the observed differences between treatments for instrumental color values.  

Muscle pH has a great influence on meat color development as it affects structural and 

physiochemical properties which cause light scattering at the meat surface (MacDougall, 1982). 

Carcass ultimate pH (P = 0.669) did not differ between exercise and sedentary treatments in the 

present study (Table 2.4), which agrees with finding of Dunne et al. (2005) who also noted 

similar ultimate pH from exercised and control steer carcasses. Apple et al. (2006) subjected 

cattle to various exercise treatments immediately prior to slaughter in an attempt to alter 

postmortem pH and ultimately create dark cutting beef, which is characterized by a pH > 6.0. 

These authors observed no differences between control and exercised treatments for pH decline 

or tristimulus color values. The single bout of exercise employed by Apple et al. (2006) was used 

to simulate stress that cattle may incur prior to slaughter, which is different than the exercise 

used in the current study. Nonetheless, the lack of change in pH of the aforementioned research 

and the current study provide no evidence that ultimate pH of carcasses from exercised cattle 

should be affected. 

 3.5 Warner-Bratzler shear force 

Least squares means for instrumental tenderness are presented in Table 2.4. There was no 

treatment effect on WBSF of steaks derived from the longissimus dorsi (P = 0.135), triceps 

brachii (P = 0.859), semitendinosus (P = 0.243), or semimembranosus (P = 0.742). Prior 

research involving exercise of livestock has shown varying effects on meat tenderness. Treadmill 

exercise of sheep decreased WBSF of the semimembranosus and vastus lateralis (Aalhus et al., 

1991); however, resistance jumping exercise of sheep had no effect on WBSF of the vastus 

lateralis (Aalhus & Price, 1990). Decreases in WBSF noted by Aalhus et al. (1991) were 

attributed to dilution of collagen, as myofibrillar protein increased on a per gram of muscle basis 

while collagen decreased (Aalhus et al., 1991). Exercise can influence activity of enzymes that 
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are integral to collagen biosynthesis (Kovanen & Suominen, 1989) so evaluating the 

development of collagen crosslinks may deserve attention to further explain changes or lack 

thereof in muscles of exercised cattle. Additionally, the current study evaluated multiple muscles 

of varying function and involvement with the employed exercise activity. Evaluation of 

intensified or muscle specific exercise may be integral to achieve alterations in tenderness as 

seen in past research (Aalhus et al. 1991). 

 3.6 Fatty acids 

Individual SFA and MUFA are shown in Table 2.5. Carcasses from exercised cattle 

contained less (P < 0.05) margaric acid (17:0) in the longissimus lumborum in comparison to the 

sedentary treatment group, while all other SFA across all evaluated muscles remained unchanged 

(P > 0.05) by exercise treatment. Additionally, exercise treatment reduced (P < 0.05) nervonic 

acid (24:1) in the longissimus lumborum and vaccenic acid (18:1n-7c) in the triceps brachii. No 

distinguishable differences (P > 0.05) were present between treatments for total fatty acids, SFA, 

MUFA, PUFA, and CLA for all four muscles assessed (Table 2.6). Previous research has 

provided inconsistent results of the influence of exercise on fatty acid composition of skeletal 

muscles in other species (Nikolaidis & Mougios, 2004). Exercise in rabbits has been reported to 

increase oleic acid (C18:1 n-9) in the longissimus lumborum and vastus lateralis, but decrease 

stearic (C18:0) and arachidonic (C20:4 n-6) acids in the vastus lateralis (Szabo, Romvari, Febel, 

Bogner, & Szendro, 2002). Moreover, the exercise of rats has yielded lower percentages of 

arachidonic acid (C20:4 n-6) and polyunsaturated omega-3 fatty acids in the vastus lateralis 

(Quiles, Huertas, Manas, Battino, & Mataix, 1999). Multiple muscles were evaluated in the 

current study and none exhibited vast changes in fatty acid composition. A variety of muscles 

have been evaluated from other species to assess changes in fatty acid composition in response to 

exercise and results show that any changes are independent of muscle and fiber type (Nikolaidis 

& Mougios, 2004). Species, other than cattle, that showed changes in fatty acid profile were 

subjected to more intense exercise regimens. Increasing the intensity to levels necessary to 

achieve consistent changes in fatty acid profile may be illogical to implement in a beef feedlot 

setting. 
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 4. Conclusions 

 Routine exercise could potentially improve the health and reduce the stress response of 

feedlot cattle by decreasing blood insulin and cortisol concentrations. Exercise can hinder live 

animal performance, but these disadvantages are not transferred to carcass composition in terms 

of carcass weight, LM area, and marbling scores. Additionally, exercised cattle yield leaner 

carcasses with lower numerical yield grades than their sedentary counterparts. Exercise of 

feedlot cattle can decrease redness and yellowness of LM muscle; however, exercise should not 

compromise other quality attributes, such as tenderness. Routine exercise regimens resembling 

the one described in this study can alter some blood constituents, but exercise intensity must be 

carefully monitored so live animal performance traits and meat color are not adversely affected. 
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 Figure 2.1 Body weights of sedentary and exercised heifers. 

Body weights of sedentary heifers (n=15) and heifers (n=15) subjected to exercise (5 to 6 km/h 

for 20 min/d for the first 2 wk, 30 min/d for the next 2 wk, and 40 min/d for the remainder of 

the finishing period) 3 times per wk throughout the 8 wk finishing period. Error bars represent 

the mean ± SEM. *P < 0.05. Exercise treatment × day interaction P = 0.013. 

 

 * 
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Table 2.1 Growth performance of sedentary heifers and heifers subjected to exercise 3 times per 

wk throughout the finishing period. 

 Treatment
1 

  

 Sedentary Exercise SEM P-Value 

DMI, kg/d 10.03 8.97 0.362 0.057 

ADG, kg 1.12 0.78 0.113 0.048 

G:F 0.049 0.038 0.0043 0.084 
1
Sedentary = No exercise throughout the finishing period; Exercise = Heifers exercised at 5 to 6 

km/h 3 times per wk (20 min/d for the first 2 wk, 30 min/d for the next 2 wk, and 40 min/d for 

the remaining 4 wk of the finishing period). 
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Table 2.2 Blood constituents
1
 of sedentary heifers and heifers subjected to exercise 3 times per 

wk throughout the finishing period. 

 Treatment
2 

 P-Values
3 

 Sedentary Exercise SEM E     D E × D 

Glucose, mM    0.398 0.833 0.856 

  Day 28 5.0 5.5 0.54    

  Day 60 4.7 5.5 0.55    

Lactate, mM    0.771 0.653 0.932 

  Day 28 4.4 4.7 0.83    

  Day 60 3.8 4.3 0.86    

Insulin, ng/mL    0.009 0.812 0.062 

  Day 0 0.96 0.96
 

0.203    

  Day 28 1.76
 

0.42
 

0.203    

  Day 60 1.46
 

0.81
 

0.203    

IGF-1, ng/mL    0.791 < 0.001 0.154 

  Day 0 239.9
 

250.8 11.48    

  Day 28 264.6
 

233.8 11.48    

  Day 60 187.0
 

192.0 11.61    
1
Glucose, lactate, and IGF-1 analyzed using blood plasma. Insulin analyzed using blood serum. 

2
Sedentary = No exercise throughout the finishing period; Exercise = Heifers exercised at 5 to 6 

km/h 3 times per wk (20 min/d for the first 2 wk, 30 min/d for the next 2 wk, and 40 min/d for 

the remaining 4 wk of the finishing period). 
3
E = effect of exercise treatment; D = effect of days on feed; E × D = interaction between 

exercise treatment and days on feed. 
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Figure 2.2 Blood serum cortisol concentrations from sedentary and exercised heifers. 

Blood serum cortisol concentrations from sedentary heifers (n=15) and heifers (n=15) subjected 

to exercise (5 to 6 km/h for 20 min/d for the first 2 wk, 30 min/d for the next 2 wk, and 40 min/d 

for the remainder of the finishing period) 3 times per wk throughout 8 wk finishing period. Error 

bars represent the mean ± SEM. *P < 0.05. Exercise treatment × day interaction P = 0.007.   

* 

* 

* 
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Table 2.3 Carcass characteristics of sedentary heifers and heifers subjected to exercise 3 times 

per wk throughout the finishing period. 

 Treatment
1 

  

 Sedentary Exercise SEM P-Value 

HCW, kg 321 312 4.34 0.152 

Dress yield, % 64.1 64.8 0.563 0.417 

LM area, cm
2
 84.4 88.7 2.07 0.169 

KPH, % 2.1 2.1 0.12 0.849 

12th-rib fat, cm 1.45 1.09 0.0791 0.006 

USDA yield grade 2.9 2.2 0.12 0.002 

Marbling score
2 

401 374 15.9 0.245 
1
Sedentary = No exercise throughout the finishing period; Exercise = Heifers exercised at 5 to 6 

km/h 3 times per wk (20 min/d for the first 2 wk, 30 min/d for the next 2 wk, and 40 min/d for 

the remaining 4 wk of the finishing period). 
2
Marbling score 300 to 399 = Slight; 400 to 499 = Small. 
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Table 2.4 Meat quality traits from carcasses of sedentary heifers and heifers subjected to 

exercise 3 times per wk throughout the finishing period. 

 Treatment
1 

  

 Sedentary Exercise SEM P-Value 

Instrumental Color
2     

  L* 46.2 44.6 1.40 0.467 

  a* 33.9 31.5 0.450 0.007 

  b* 26.5 23.7 0.563 0.009 

Ultimate pH 5.56 5.51 0.114 0.669 

WBSF, kg     

  Longissimus lumborum 3.5 4.1 0.26 0.135 

  Triceps brachii 3.7 3.8 0.13 0.859 

  Semitendinosus 4.3 4.7 0.22 0.243 

  Semimembranosus 4.4 4.5 0.19 0.742 
1
Sedentary = No exercise throughout the finishing period; Exercise = Heifers exercised at 5 to 6 

km/h 3 times per wk (20 min/d for the first 2 wk, 30 min/d for the next 2 wk, and 40 min/d for 

the remaining 4 wk of the finishing period). 
2
Instrumental color evaluated on the exposed longissimus thoracis between the 12

th
 and 13

th
 ribs 

approximately 24 h postmortem. 
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Table 2.5 Proportions of saturated and monounsaturated fatty acids (mg/g) in raw muscle samples from carcasses of sedentary heifers 

and heifers subjected to exercise 3 times per wk throughout the finishing period. 

 Longissimus Lumborum  Triceps Brachii  Semitendinosus  Semimembranosus 

 Treatment
1 

  Treatment
1 

  Treatment
1 

  Treatment
1 

 

 Sedentary Exercise SEM  Sedentary Exercise SEM  Sedentary Exercise SEM  Sedentary Exercise SEM 

SFA
2                

  14:0 2.09 1.66 0.292  1.16 1.16 0.159  1.50 1.47 0.234  1.21 1.23 0.211 

  15:0 0.316 0.236 0.0354  0.185 0.173 0.0215  0.259 0.232 0.0366  0.199 0.200 0.0338 

  16:0 18.2 14.4 2.08  11.0 10.5 1.35  14.1 13.4 2.02  11.8 11.5 1.69 

  17:0 1.14
a 

0.801
b 

0.118  6.64 5.75 0.0842  0.845 0.736 0.119  0.702 0.671 0.114 

  18:0 10.0 7.88 1.03  5.82 5.61 0.593  6.57 6.53 0.905  6.16 6.36 0.819 

  20:0 0.070 0.064 0.0055  0.040 0.048 0.0045  0.051 0.049 0.0078  0.054 0.051 0.0080 

  21:0  0.189 0.143 0.0259  0.125 0.115 0.0202  0.187 0.165 0.0264  0.137 0.124 0.0183 

  22:0 0.030 0.027 0.0017  0.027 0.029 0.0020  0.031 0.029 0.0021  0.031 0.026 0.0024 

  24:0 0.042 0.033 0.0044  0.038 0.040 0.0025  0.035 0.033 0.0048  0.037 0.036 0.0024 

MUFA
2                

  14:1 0.489 0.414 0.0907  0.289 0.319 0.0490  0.436 0.449 0.0789  0.306 0.323 0.0659 

  16:1 2.28 1.91 0.317  1.54 1.59 0.229  2.11 2.12 0.333  1.59 1.62 0.276 

  17:1  0.612 0.442 0.0615  0.419 0.389 0.0499  0.549 0.487 0.0731  0.431 0.408 0.0659 

  18:1n-7c 1.31 1.09 0.128  0.995
a
 0.465

b
 0.152  1.06 1.17 0.160  0.557 0.729 0.202 

  18:1n-9c 25.1 19.5 2.92  15.8 15.1 2.00  19.7 19.2 2.86  17.0 16.3 2.41 

  18:1n-9t 1.58 1.26 0.180  0.831 0.822 0.0813  1.18 1.18 0.156  0.979 1.06 0.170 

  18:1n-11t 0.182 0.155 0.0199  0.090 0.102 0.0107  0.128 0.144 0.0177  0.108 0.130 0.0194 

  20:1 0.124 0.100 0.0153  0.080 0.081 0.011  0.106 0.103 0.0197  0.090 0.090 0.010 

  24:1 0.036
a 

0.028
b 

0.0023  0.030 0.028 0.0025  0.032 0.031 0.0031  0.028 0.030 0.0020 
1
Sedentary = No exercise throughout the finishing period; Exercise = Heifers exercised at 5 to 6 km/h 3 times per wk (20 min/d for the 

first 2 wk, 30 min/d for the next 2 wk, and 40 min/d for the remaining 4 wk of the finishing period). 
2
Fatty acids are represented as number of carbon atoms:number of carbon-carbon double bonds. 

a-b
Means with different superscripts within a certain muscle group and row differ (P < 0.05). 
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Table 2.6 Proportions of conjugated linoleic acids, total fatty acids (% of sample) and total fatty acid concentrations (mg/g) in raw 

muscle samples from carcasses of sedentary heifers and heifers subjected to exercise 3 times per wk throughout the finishing period. 

 Longissimus Lumborum  Triceps Brachii  Semitendinosus  Semimembranosus 

 Treatment
1   Treatment

1   Treatment
1   Treatment

1  
 Sedentary Exercise SEM  Sedentary Exercise SEM  Sedentary Exercise SEM  Sedentary Exercise SEM 

n-6 fatty acids
2                

  18:2n-6c 2.72 2.48 0.123  2.65 2.76 0.0886  2.50 2.65 0.108  2.73 2.92 0.113 

  18:3n-6c 0.072 0.062 0.0065  0.041 0.053 0.0079  0.076 0.057 0.011  0.052 0.046 0.0072 

  20:3n-6 0.195 0.184 0.0103  0.219 0.236 0.0107  0.208 0.223 0.0997  0.236 0.250 0.0953 

  20:4n-6 0.038 0.030 0.0052  0.030 0.031 0.0032  0.028 0.032 0.0046  0.035 0.043 0.0047 

n-3
                

  18:3n-3 0.142 0.118 0.0106  0.117 0.118 0.00788  0.140 0.127 0.0122  0.119 0.121 0.0103 

  20:5n-3 0.062
a
 0.031

b
 0.010  0.049 0.040 0.015  0.116

a
 0.064

b
 0.017  0.090 0.058 0.016 

  22:5n-3 0.125 0.124 0.00835  0.136 0.139 0.0211  0.131 0.134 0.00687  0.127
b
 0.147

a
 0.00656 

  22:6n-3 0.044 0.036 0.0045  0.046 0.048 0.0063  0.055
a
 0.042

b
 0.0039  0.039 0.045 0.0063 

CLA                
  18:2, cis-9, trans-11 0.024 0.029 0.0038  0.021 0.020 0.0039  0.031 0.025 0.0057  0.022 0.019 0.0032 

  18:2, trans-10, cis-12 0.006 0.010 0.003  0.006 0.007 0.002  0.015 0.013 0.0035  0.009 0.005 0.002 

  18:2, cis-9, cis-11 0.006 0.002 0.002  0.002 0.005 0.002  0.012 0.005 0.004  0.003 0.002 0.001 

  18:2, trans-9, trans-11 0.089 0.067 0.095  0.058 0.057 0.0081  0.091 0.081 0.011  0.065 0.063 0.011 

SFA
3 

32.2 25.3 3.54  19.1 18.3 2.20  23.7 22.7 3.32  20.4 20.3 2.87 

MUFA
4 

3.65 3.03 0.476  2.49 2.50 0.325  3.39 3.33 0.484  2.60 2.60 0.414 

PUFA
5 

31.8 25.2 3.37  21.1 20.0 2.28  25.5 25.1 3.31  22.2 22.0 2.82 

CLA
6 

0.123 0.108 0.0153  0.090 0.090 0.015  0.149 0.124 0.0192  0.101 0.090 0.013 

Total fatty acids, % 6.76 5.36 0.735  4.28 4.08 0.479  5.26 5.11 0.708  4.52 4.48 0.607 
1
Sedentary = No exercise throughout the finishing period; Exercise = Heifers exercised at 5 to 6 km/h 3 times per wk (20 min/d for the 

first 2 wk, 30 min/d for the next 2 wk, and 40 min/d for the remaining 4 wk of the finishing period). 
2
Fatty acids are represented as number of carbon atoms:number of carbon-carbon double bonds. 

3
SFA = sum of fatty acids that contain no double bonds. 

4
MUFA = sum of fatty acids that contain 1 double bond. 

5
PUFA = sum of fatty acids that contain 2 or more double bonds. 

6
CLA = sum of conjugated linoleic acids. 

a-b
Means with different superscripts within a certain muscle group and row differ (P < 0.05).
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Chapter 3 - The effects of routine exercise on feedlot steer well-

being, performance, and carcass characteristics. 

 Abstract 

This research evaluated the effects of routine exercise of feedlot steers on various live 

animal and meat traits. Steers (n=419) were assigned to 1 of 4 treatments: not exercised during 

the finishing period or exercised 20-30 min, 3 times/wk by animal handlers for the first 10 wk; 

for the last 7 wk; or for the entire 17-wk finishing period. Live animal performance traits were 

similar (P > 0.05) between treatments. No treatment × day interactions were observed (P > 0.05) 

for blood constituents and temperament score. Cattle that began exercise at the beginning of the 

study had decreased (P = 0.022) USDA marbling scores in contrast to non-exercised animals. 

Additionally, there were no differences (P > 0.05) between treatments for instrumental color, 

WBSF, total fatty acids, and collagen content of beef longissimus lumborum muscle. Routine 

exercise as implemented in this study has minimal impact on live animal and meat 

characteristics.  

Keywords: animal welfare, beef, exercise, meat quality, performance, stress  
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 1. Introduction 

Cattle feeding operations in the United States are designed to maximize growth and 

accelerate fat accumulation to efficiently produce high quality beef. Beef producers in the U.S. 

have optimized efficiency by placing cattle in concentrated animal feeding operations. These 

operations minimize the space needed to produce beef which inherently limits the physical 

activity of cattle. Additionally, feedlot cattle encounter limited amounts of human-animal 

interaction aside from processing upon entry to the feedlot and before shipping cattle for 

slaughter, which may result in the cattle overreacting to potentially stressful situations involving 

animal handlers.  

Recent trends indicate that consumers are becoming more conscious of how and where 

their food is produced. In terms of meat production, the general public has shown specific 

interest in animal welfare and production practices used in the livestock industry. Consumers feel 

that sensory characteristics, healthiness, convenience and process characteristics (how animals 

were raised) are of high importance when making their purchasing decisions at the retail counter 

(Grunert, Bredahl, & Brunso, 2004). Buyers have also shown a willingness to pay more for 

certain products that were raised by verified processes which has led to an increased availability 

of “natural”, “organic”, and “grass-fed” beef products in the market-place (Olynk, Tonsor, & 

Wolf, 2010). Incorporation of practices to improve cattle well-being may provide niche 

marketing opportunities; however, these practices must be examined to determine how they 

affect live animal efficiency as well as carcass traits.  

Rearing cattle in large feedlots may present adverse effects to animal health due to their 

sedentary lifestyle and high energy diet. Glucose is necessary for the function of many tissues, 

but an overabundance of glucose in the body can be toxic and is known as hyperglycemia 

(Rosetti, Giaccari, & DeFronzo, 1990). Insulin levels increase after a meal is consumed to 

stimulate glucose transport, metabolism, and storage by muscle and hepatocytes (Shepherd & 

Kahn, 1999). Chronic hyperglycemia can impair the function of insulin in the body creating 

insulin-resistance, which prevents glucose transport and is attributed to type 2 diabetes mellitus 

in humans (Shepherd & Kahn, 1999). Most beef in the U.S. is produced from cattle fed high-

concentrate diets primarily composed of corn (Vasconcelos & Galyean, 2007) which is high in 

starch content. Ruminant animals that are fed on high-starch diets produce greater amounts of 
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propionate which is readily converted to glucose (Huntington, 1997). It is quite possible that 

cattle produced in these settings could be developing insulin-resistance due to hyperglycemic 

conditions. 

Consumers’ concerns for animal welfare are centered on animal health and living 

environment (Frewer, Kole, Van De Kroon, & De Lauwere, 2005).  Reconstructing current cattle 

production systems would be rather costly, however, there is potential to incorporate practices 

that can enhance the well-being of livestock produced in current feedlot systems. Exercise is a 

vital component to a healthy lifestyle and reduces type 2 diabetes mellitus in humans (Goodyear 

& Kahn, 1998). A pilot study conducted at Kansas State University investigated this hypothesis 

and showed that moderate exercise reduced blood insulin levels in feedlot heifers (Chapter 2, p. 

39), which suggests that exercised cattle may have improved insulin sensitivity. The 

implementation of exercise using animal handlers would increase the amount of human-animal 

interaction that feedlot cattle encounter which decreases blood cortisol (Boandl, Wohlt, & 

Carsia, 1989). Increased handling may decrease the stress inherent with handling and loading of 

cattle prior to slaughter (Grandin, 1997). Additionally, performance and carcass traits can be 

improved if handling can improve cattle docility (Reinhardt, Busby, & Corah, 2009).  

Moderate exercise could alter meat quality components that are crucial in consumer 

purchasing decisions and product acceptability. Fresh meat color is the most important 

characteristic that consumers use to select meat cuts at the retail counter. Consumers perceive 

bright-pink to bright-red meat color as being desirable and any deviation from this is 

unacceptable (Kropf, 1980). Additionally, tenderness is one of the most important factors 

affecting consumer acceptance of cooked beef in the United States (Miller et al., 1995). The 

consumption of meat cuts that are unacceptably tough can drastically impact the future 

purchasing decisions of consumers (Boleman et al., 1997). The value of an alternative production 

system would be diminished if it yielded products of unacceptable quality. The exercise of 

feedlot heifers showed no influence on the tenderness of four muscles but negatively influenced 

meat color (Chapter 2, p. 42).  

Exercise could lead to a change in physical and structural composition of an animal. 

Compositional changes could influence the development of quality traits and influence the 

nutritional profile of a product. Collagen is highly correlated with meat tenderness (Dransfield et 

al., 2003) and the amount and types of collagen in a muscle can be very influential on the degree 
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of tenderness that is perceived by a consumer. Research evaluating the effects of exercise on 

collagen composition in livestock has produced mixed results. Exercise has shown decreases in 

collagen amount in vastus lateralis from exercised sheep (Aalhus, Price, Shand, & Hawrysh, 

1991) whereas exercise did not alter collagen content in the longissimus dorsi of swine (Petersen, 

Berge, Henckel, and Soerensen, 1997). Endurance exercise may require that animals utilize 

stored adipose tissue as an energy source. Evidence, from species other than cattle, indicate that 

chronic exercise can alter portions of the fatty acid profile in skeletal muscle (Szabo, Romvari, 

Febel, Bogner, & Szendro, 2002; Quiles, Huertas, Manas, Battino, & Mataix, 1999) suggesting 

that exercise could potentially yield beef with an altered fatty acid profile. It is still unclear if 

exercise influences the composition of collagen and fatty acids in skeletal muscle of exercised 

beef cattle. 

The combination of animal welfare and effective labeling of animal products can help 

increase the demand for perceived animal welfare-friendly products (Napolitano, Girolami, & 

Braghieri, 2010). To date there has been limited research investigating the application of exercise 

regimens of cattle in a commercial feedlot setting. Therefore, the objective of this study was to 

examine the effects of a feedlot steer exercise regimen on animal live performance, behavior, 

physiology, meat quality, and meat composition.  

 2. Materials and methods 

 2.1 Animal background 

The Kansas State University Institutional Animal Care and Use Committee approved the 

protocols (#3014) used in this study. Steers (n = 420; 377 ± 25 kg initial body weight) were 

transported to Kansas State University’s Beef Cattle Research Center (BCRC) where they were 

stratified by weight and randomly assigned within strata to one of four treatments: 1) no exercise 

for the 116-d finishing period (CON); 2) exercised three times per wk for the first 10 wk of the 

116-d finishing period (EARLY); 3) exercised three times per wk for the final 7 wk of the 116-d 

finishing period (LATE); and 4) exercised three times per wk throughout the 116-d finishing 

period (ALL). There were 28 pens used (7 pens per treatment and 15 animals per pen). One steer 

did not complete the study for reasons unrelated to the treatment. As a result, 1 pen contained 

only 14 steers at the end of the study. Steers were placed on a 21-d step-up diet prior to the 

application of exercise treatments, where they were fed a diet that consisted of 93% concentrate 
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and 7% roughage. Steers were housed in dirt-surfaced pens (9.9 × 24 m) throughout the study. 

Body weights (BW) were obtained on d 0, 72, and 116. Daily feed additions were recorded over 

the duration of the study. 

 2.2 Exercise protocol 

Exercise was administered to exercise treatment groups between the times of 5:00 am and 

7:00 am. Animal handlers exercised the cattle by moving them at a trotting pace (4.8 – 6.4 km/h) 

for 20 to 30 min on a 0.79 km long path surrounding a portion of the BCRC. Exercise time began 

at the moment the cattle exited their pen and concluded at the moment they reentered their pen. 

Animal handlers utilized noise paddles when necessary to accelerate the pace of the cattle’s trot. 

Cattle were not subjected to exercise on days where the National Weather Service (Silver Spring, 

MD) predicted a heat index above 43 ºC or recorded that the nightly low temperature did not go 

below 26 ºC to avoid heat stress. Exercise was not conducted on days when severe storms or 

lightning were present in the vicinity of the BCRC to ensure the safety of the steers and animal 

handlers. 

 2.4 Temperament 

Temperament scores were obtained on d 0, 72, and 116. Temperament scores were 

determined while cattle were held in a handling chute (Model HSC-10; Daniels Manufacturing 

Company, Ainsworth, NE) and assigned a score by the same person each day of evaluation using 

the following rubric: 1) calm and no movement, 2) restless shifting, 3) squirming and occasional 

shaking of handling chute, 4) continuous vigorous movement and shaking of handling chute. 

 2.5 Blood constituents 

Three steers from each pen (n=84) were randomly selected to monitor blood constituents 

throughout the study. Blood samples were collected on d 0, 72, and 116 via jugular vein puncture 

a minimum of 24 h after the most recent bout of exercise. An additional blood sample was taken 

at the harvest facility immediately after exsanguination. Blood used to assess concentrations of 

glucose, lactate, insulin, cortisol, epinephrine, and norepinephrine were placed in tubes 

containing an anticoagulant and centrifuged for 15 min at 2,000 × g at 13 ºC. Blood plasma 

glucose and lactate were measured using a glucose-lactate autoanalyzer (2300 Stat Plus; YSI 

Inc., Yellow Springs, OH). Commercial radioimmunoassay kits were used to analyze both blood 
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serum insulin (Insulin Coat-a-Count, #TKCO1; Siemens Medical Solutions Diagnostics, Los 

Angeles, CA) and serum cortisol (Cortisol Coat-A-Count, #TKIN; Siemens Medical Solutions 

Diagnostics, Los Angeles, CA) concentrations. 

Plasma epinephrine and norepinephrine were isolated using activated alumina and 0.1 M 

HClO4 and quantified in duplicate using HPLC as described by Holladay and Edens (1987). A 

plasma sample of 0.5 ml was combined with 250 ng of the internal standard; 3,4-

dihydroxybenzylamine hydrobromide (DHBA). Catecholamine:DHBA peak height ratios for 

samples and standards were determined and sample catecholamine concentrations were 

calculated using the regression equation generated from each catecholamine standard. Duplicate 

samples with CV greater than 5% were re-analyzed until variation was within the acceptable 

limits.  

 2.6 Carcass data collection 

Steers were slaughtered on d 117 at a commercial abattoir located 451 km away from the 

BCRC. Hot carcass weights (HCW) were recorded on the day of slaughter and percentage of 

dressed yield was determined as HCW divided by final BW. Additionally, livers were assessed 

for incidence and severity of abscesses on the day of slaughter. Abscesses were evaluated and 

scored based on the Elanco scoring system: 0 = no abscesses, A- = 1 or 2 small abscesses or 

abscess scars, A 0 = 2 to 4 small, well-organized abscesses, and A + = 1 or more large or active 

abscesses with or without adhesions (Brink, Lowry, Stock, & Parrott, 1990). Longissimus muscle 

(LM) area, subcutaneous fat at the 12th rib, kidney, pelvic, and heart fat percentage (KPH%), 

USDA yield grade, and USDA marbling score were determined after a 30-h chill.  

 2.7 Meat sample collection and portioning 

Approximately 48 h postmortem, 84 strip loins (IMPS 180) were randomly selected from 

the right side of the carcasses so that each live pen was represented by three loins. The strip loins 

were then transported to the Kansas State University Meat Laboratory where they were portioned 

to perform multiple analyses. Strip loins were removed from their oxygen impermeable vacuum 

package and the longissimus lumborum (LL) was trimmed free of fat. The anterior end of each 

LL muscle was removed for collagen and fatty acid analysis. A 2.54 cm thick steak was taken 

from the anterior portion of the remaining muscle to measure Warner-Bratzler shear force and 
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the remaining portion was used to determine International Commission on Illumination (CIE) L* 

(lightness), a* (redness), and b* (yellowness) color values for lean color assessment. 

 2.8 Instrumental color 

The portions of the LL used for lean color assessment were vacuum packaged in oxygen 

impermeable film (Prime Source Vacuum Pouches, Kansas City, MO; 76.2 μm, STP Barrier, 

Nylon/PE Vacuum Pouch; oxygen transmission rate 0.04 g/254 cm
2
/24 h at 0 ºC; water vapor 

transmission rate 0.2 cc/254 cm
2
/24 h at 0 ºC at 0% relative humidity) and stored at 0-2 ºC until 

14 d postmortem. On d 14, the sections were removed from their packaging and two 2.54 cm 

steaks were removed from the anterior end with the second steak that had not been exposed to 

oxygen being used for lean color analysis. The steaks were placed on a styrofoam tray (2S; 

Cryovac Sealed Air, Duncan, SC) with a moisture absorbent pad (Dri-Loc Pad; Sealed Air 

Corporation, Elmwood Park, NJ) and wrapped in oxygen permeable polyvinyl chloride film 

(Prime Source, oxygen transmission rate 0.6 g/254 cm
2
/24 h at 0 ºC; water vapor transmission 

rate 0.6 cc/254 cm
2
/24 h at 0 ºC and 0% relative humidity). After packaging, the steaks were 

allowed 30 min to bloom before color measurements were taken. Instrumental color of the lean 

surface (CIE L*, a*, and b*, Illuminant A) was measured with a HunterLab Miniscan XE Plus 

spectrophotometer (2.54-cm-diameter aperture, 10º standard observer; Hunter Associates 

Laboratory, INC., Reston, Va., U.S.A.). Three readings were taken for each steak and values 

were averaged prior to statistical analysis. 

 2.9 Warner-Bratzler shear force 

Steaks were vacuum packaged in oxygen impermeable film (Prime Source Vacuum 

Pouches, Kansas City, MO; 76.2 μm, STP Barrier, Nylon/PE Vacuum Pouch; oxygen 

transmission rate 0.04 g/254 cm
2
/24 h at 0 ºC; water vapor transmission rate 0.2 cc/254 cm

2
/24 h 

at 0 ºC at 0% relative humidity) and aged for 14 d at 0-2 °C before being frozen at -20 °C. Steaks 

were thawed for approximately 12 h at 0-2 °C and cooked to 40 °C, turned, and cooked to a final 

internal temperature of 70 °C in a dual flow, forced-air convection gas oven (Blodgett, model 

DFC-102 CH3; G.S. Blodgett Co., Burlington, VT) preheated to 163 °C.  Steak temperatures 

were monitored with copper-constantan thermocouples (Omega® Engineering, Stamford, CT) 

inserted into the approximate geometric center of each steak and attached to a Doric temperature 

recorder (model 205; Vas Engineering, San Francisco, CA).  The steaks were chilled overnight at 
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0-2 °C before 8 round cores (1.27-cm diameter) were obtained from each steak parallel to the 

long axis of the muscle fibers using a 1.27-cm corer (G-R Manufacturing Co., Manhattan, KS).  

Each core was sheared once perpendicular to the direction of the muscle fibers using a Warner-

Bratzler V-shaped blunt blade (G-R Manufacturing Co., Manhattan, KS) attached to an Instron 

Universal Testing Machine (model 4201, Instron Corp., Canton, MA) with a 50-kg compression 

load cell and a crosshead speed of 250 mm/min. Peak shear force values were recorded in kg and 

the values from the cores were averaged for statistical analysis. 

 2.10 Collagen extraction 

Samples used for collagen assays were stored at -80 ºC in a sterilized plastic container 

(Whirl Pack, Nasco, Modesta, CA) and thawed at 0-2 ºC prior to assessment. A modified version 

of Hwang, Mizuta, Yokoyama, and Yoshinaka (2007) was used to purify collagen from the LL 

samples. Samples (5 g) were homogenized (Power Gen 1000; Fisher Scientific, Waltham, MA) 

in 5 mL of 0.1 M NaOH. After rocking for 24 h at 4 ºC, samples were centrifuged (Model 5810 

R; Eppendorf North America, Hauppauge, NY) at 12,000 × g for 45 min at 4 ºC and the 

supernatant was removed. The remaining pellet was then dried and mixed with 5 mL of 0.5 M 

acetic acid before rocking overnight at 4 ºC. The samples were again centrifuged at 12,000 × g 

for 45 min at 4 ºC and the supernatant was removed. The pellet was dried and weighed prior to 

enzymatic extraction (0.05 mL/mg tissue) in a pepsin solution (1 mg/mL in 0.5 M acetic acid) for 

24 h. The samples were again centrifuged at 12,000 × g for 45 min at 4 ºC.  

 2.11 SDS-PAGE analysis 

Protein from the pepsin/acetic acid supernatant was resuspended in 2 M Tris Base and 

sample protein concentrations were quantified using a BCA protein assay kit (Pierce, Rockford, 

IL). Protein (5 μg) was loaded into 7.5% separating polyacrylamide gels with 3.5% stacking gels 

and separated at 25 mA. Gels were stained with SYPRO Ruby protein gel stain (Lonza, 

Rockland, ME). Proteins were fixed in the gel using 40% methanol/10% acetic acid (v/v) for 20 

min. The gel was then incubated in the SYPRO Ruby protein gel stain solution overnight and 

then washed twice in 10% methanol/7% acetic acid (v/v) solution for 30 min. Gels were then 

visualized by excitation at 300 nm using a UV transilluminator and photographed using a 

GelDoc-It 415 Imaging System (UVP LLC, Upland, CA) with a 605 nm ethidium bromide 

emission filter. Band intensities were quantified using VisionWorks LS Image Acquisition and 
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Analysis Software (UVP LLC, Upland, CA) and values for EARLY, LATE, and ALL treatments 

were normalized to the average of 100% of CON samples on each gel. Values are reported 

relative to 100% CON.  

 2.12 Fatty acid composition 

Fatty acid samples were stored in a sterilized bag (Whirl Pack, Nasco, Modesta, CA) at    

-20 ºC. A modified gas chromatography procedure of Sukhija and Palmquist (1988) was used for 

fatty acid analysis of LL samples. Each LL sample was frozen in liquid nitrogen, pulverized 

using a tabletop blender (model 33BL79; Waring Products, New Hartford, CT), and analyzed for 

fatty acids. Muscle (50μg) samples were combined with 2 mL of methanolic-HCl and 3 mL of 

internal standard (2 mg/mL of methyl Heptadecanoic acid (C17:0) in benzene) and heated in a 

water bath for 120 min at 70 °C for transmethylation.  After cooling, the addition of 2 mL of 

benzene and 3 mL of K2CO3 allowed the methyl esters to be extracted and transferred to a vial 

for subsequent quantification of the methylated fatty acids by gas chromatography for fatty acid 

analysis. Injection port and detector temperatures were set at 250 °C, with a helium flow rate of 

1mL/min and a split ratio of 100:1. Oven temperature began at 140 °C and was increased at 2 

°C/min to 200 °C and then increased at 4 °C /min to 245 °C where it was held for 17 min. Fatty 

acids from each of the LL samples were expressed as a proportion of the total sample.   

 2.13 Statistical analysis 

Data were analyzed as a randomized complete block design with weight strata serving as 

the block. Statistical analysis was performed using the Proc Mixed procedure of SAS (SAS 

Institute, Inc., Cary, NC). Exercise treatment was a fixed effect and strata served as a random 

effect. Time and time × exercise treatment were included as fixed effects for BW, temperament, 

and blood constituents. Treatment means were computed with the LSMEANS option. Post-hoc 

mean separation was carried out using Fisher’s least significant difference. All treatment means 

were considered significantly different at the 5% level of significance. 

 3. Results and discussion 

Exercise groups did not attain the maximum possible days of exercise due to weather-

related cancellations. Cattle were exercised a total of 26, 18, and 44 d for the EARLY, LATE, 

and ALL treatments, respectively. All cattle did not exert the same willingness to exercise as 
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some would begin running without being provoked, while others were very resistant to begin 

moving. 

 3.1 Live animal performance 

Body weight displayed a treatment × day interaction (P = 0.015; Table 3.1). All 

treatments were similar (P > 0.05) on d 0 and increased (P < 0.05) at d 72 and 116. LATE and 

CON cattle were heavier (P < 0.05) than EARLY cattle on d 72, while LATE cattle were also 

heavier (P < 0.05) than ALL cattle. At d 116, CON cattle were heavier (P < 0.05) than both 

LATE and ALL cattle. Main effect treatment means for feedlot growth performance traits are 

presented in Table 3.2. Cattle from all treatments showed similar average daily gains (ADG; P = 

0.178), dry matter intakes (DMI; P = 0.100), and gain:feed ratios (G:F; P = 0.116). Results of 

prior research contradict those seen in the current study. Heifers exposed to exercise for 60 d 

(Chapter 2, pp. 37-38) and 18 mo old steers subjected to daily waking exercise (Dunne, O’Mara, 

Monahan, French, & Moloney, 2005) both showed lighter live weights and decreased ADG in 

comparison to their sedentary counterparts. Conversely, DMI and G:F was similar between 

exercised and sedentary heifers (Chapter 2, p. 38), which agrees with the current study. The 

exercise treatments implemented in the current study could be considered less intense than the 

previously mentioned research, as it was either for a shorter time period (Chapter 2, p. 22) or 

covered a shorter distance (Dunne et al., 2005) which may explain the lack of differences seen 

between treatment groups. It is quite possible that the exercise employed in the current study was 

not of sufficient intensity to evoke enough change in required energy for maintenance to 

interrupt weight gain and feed efficiency. 

Exercise of cattle has received little attention in scientific literature; however, other 

animal models evaluating exercise have been researched frequently. Rats with access to activity 

wheels displayed lighter body weights than those without access to activity wheels (Bell, 

Spencer, & Sherriff, 1997). Moreover, exercised (1 h/d, 6 d/wk) rats exhibited decreased DMI, 

ADG, and feed efficiency when compared to their sedentary counterparts (Mirand et al., 2004).  

Exercise is a subjective term as it is defined in numerous ways throughout the scientific 

literature. The current study defined exercise as moving animals for 20-30 min at a trotting pace, 

while others have exercised for longer periods of time, longer distances, and at several 

intensities. It is important to take these differences into consideration when evaluating an 
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exercise regimen as the various definitions of exercise could produce different live animal 

performance measures. 

 3.2 Temperament  

Animals that have frequent contact with people are generally less stressed due to restraint 

and handling than those that are rarely in contact with people (Grandin, 1997). In the current 

study, no treatment × day interaction (P = 0.213) was observed for temperament scores (Table 

3.3). Individually, both treatment and day had no effect on temperament scores (P > 0.05). The 

lack of change over the duration of the current study contradicts prior findings that showed cattle 

subjected to a handling acclimation scenario twice per wk had lower temperament scores than 

non-acclimated cattle (Francisco, Cooke, Marques, Mills, Bohnert, 2012). The increase in 

human-animal interaction that exercised steers received in this study did not alter the cattle’s 

demeanor during blood and weight collection times. 

 3.3 Blood constituents 

No treatment × day interactions were observed (P > 0.05) for any of the blood 

constituents assessed in this study (Table 3.4). Blood glucose and lactate were not influenced (P 

> 0.05) by exercise treatments, but glucose increased (P < 0.001) and lactate decreased (P = 

0.005) as time progressed. Glucose is a significant fuel for working muscle and exercised sheep 

exhibited an increase in both blood glucose and lactate in contrast to their non-exercised 

counterparts (Apple, Minton, Parsons, Dikeman, & Leith, 1994). Additionally, blood glucose 

levels were decreased and blood lactate levels were increased due to a session of exercise in 

horses (Ferrante & Kronfeld, 1994). Evaluation of blood characteristics by Apple et al. (1994) as 

well as Ferrante and Kronfeld (1994) were done during or immediately after exercise while the 

current study evaluated blood constituents after cattle had an opportunity to recover from a 

session of exercise. The changes of blood glucose and lactate, which were time related, are most 

likely a consequence of feeding and adaptation to feeding. The cattle in this study were fed a 

high concentrate diet which readily produces glucose via fermentation in the rumen (Huntington, 

1997). The current study agrees with the findings of Ellenberger et al. (1989) who showed that 

glucose increased in response to greater intake of metabolizable energy.  

A vast portion of research investigating blood lactate in feedlot cattle is focused on the 

early portion of the feeding period as abnormally high levels of blood lactate are associated with 
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acidosis (Owens, Secrist, Hill, & Gill, 1998). In advanced cases of acidosis, lactate can enter the 

blood of ruminants due to absorption from the rumen or metabolism of propionate in the rumen 

epithelium (Dziuk, 1984). The decreases of blood lactate in this study agrees with the findings of 

Schwaiger, Beauchemin, and Penner (2013) who observed a decrease of blood lactate during 

recovery after an acidosis challenge. Decreased blood lactate during finishing, as seen in this 

study, is most likely attributed to an increase of lactate-utilizing bacteria in the rumen which is 

indicative of a proper adaptation to the diet at the onset of the finishing phase (Huber, Cooley, 

Goetsch, & Das, 1976). 

 Only blood serum insulin was affected by treatment (P = 0.022) as EARLY treatment 

cattle had reduced (P < 0.05) blood insulin in comparison to CON and ALL cattle. Insulin 

increased (P < 0.001) dramatically over the feeding period. Prior research showed that exercise 

effectively decreased blood insulin in finishing heifers (Chapter 2, p. 39). Moreover, insulin has 

been shown to increase (Schwaiger et al., 2013) or remain unchanged during finishing 

(Yambayamba, Price, & Foxcroft, 1996). Insulin is a key component of glucose disposal in 

muscle. When insulin sensitivity is reduced, more insulin is released in the body to facilitate 

glucose disposal, which is why elevated blood insulin is a primary symptom of type 2 diabetes 

mellitus in humans (Heled et al., 2005). The dramatic increase in insulin over time may signify 

that steers in the current study became more insulin-resistant as time progressed. Throughout the 

study, the LATE and ALL treatment cattle had blood insulin levels similar (P > 0.05) to CON 

cattle, which agree with the lack of change in blood insulin of obese horses subjected to low and 

high intensity exercise (Carter, McCutcheon, Valle, Meilahn, & Raymond, 2010).  

None of the stress-related blood constituents evaluated in this study were affected (P > 

0.05) by treatment. Blood cortisol was affected (P < 0.001) by day as it was lowest at d 72. 

Additionally, epinephrine and norepinephrine increased (P < 0.001) after d 0. Generally, calmer 

and less excitable cattle have lower blood cortisol levels than excitable cattle when they are 

handled (Hulbert et al., 2011; King et al., 2006). Furthermore, epinephrine and norepinephrine 

have been associated with animals exposed to stressful situations (Burdick, Randel, Carroll, & 

Welsh, 2011). The lack of differences between treatments for temperament scores in this study 

align with the lack of treatment differences for cortisol, epinephrine, and norepinephrine, which 

suggests that human-animal interactions associated with the employed exercise regimens did not 

change cattle temperament. The current research agrees with findings of Petherick, Doogan, 
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Venus, Holroyd, and Olsson (2009) who demonstrated that various intensities and methods of 

handling produced no differences in blood cortisol of feeder calves during backgrounding. 

Previously, Titto et al. (2010) showed that blood cortisol concentrations of steers housed in 

group pens decreased over a 112 d finishing period which contrasts results of the current study 

showing blood cortisol was the same at the beginning and end of the study. It is quite apparent 

that the human-animal interaction associated with the exercise treatments used in the current 

study was unable to condition animals to better cope with stress incurred during handling. 

Assessment of blood constituents taken during exsanguination are presented in Table 3.5. 

There was no apparent influence of treatment (P > 0.05) on any of the blood constituents 

assessed in this study. Stress prior to slaughter can cause not only discomfort for the animal, but 

can contribute to various carcass defects, such as dark-cutting beef (Warren, Mandell, & 

Bateman, 2010). Cattle often have to be transported long distances prior to slaughter and 

cortisol’s association with transportation has been investigated frequently. A 4 h transport 

resulted in an increase in cortisol concentrations of cattle (Murata, Takahashi, & Matsumoto, 

1987) and cattle transported 200 km had heightened cortisol levels in comparison to cattle 

slaughtered in a research abattoir where no extensive transportation was needed (Tume & Shaw, 

1992). Prior research has also evaluated how cattle of differing temperaments handle the stress 

associated with transportation. Hulbert et al. (2011) investigated how bulls of different 

temperaments coped with the stress of transportation and showed no difference between calm 

and temperamental bulls up to 24 h after transport. The lack of differences observed in the 

current study suggests that exercise did not alter how cattle cope with transportation-related 

stress prior to slaughter.  

 3.5 Carcass characteristics 

Exercise is commonly known to change body composition. Exercised did not alter (P > 

0.05) HCW and percentage of dressed yield (Table 3.6). Additionally, the occurrence of liver 

abscesses, LM area, 12
th

 rib fat, KPH%, and USDA yield grade were similar (P > 0.05) across 

treatments (Table 3.5). The only measurement of muscularity evaluated in this study was LM 

area. Dunne and others (2005) noted decreased conformation scores in carcasses from exercised 

steers which contrasts the lack of change in the current study. The LM is not heavily involved in 

animal movement so it is expected that it is minimally affected; however, muscles of various 
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function from lamb carcasses of treadmill exercised sheep also displayed a lack of change in 

mass (Aalhus & Price, 1991). Musculature could be influenced differently when resistance 

training is employed instead of endurance training, which was used in the current study. Sheep 

subjected to resistance jumping yielded larger biceps brachii and brachialis in comparison to 

non-exercised sheep (Aalhus & Price, 1990) demonstrating the relationship between muscle 

function and exercise type. The current study only evaluated the LM which may not portray the 

true musculature change that occurred due to exercise. 

Exercise of sufficient intensity is generally regarded to reduce body fat (Pacy, Webster, 

& Garrow, 1986), so it is expected that carcass fat should be reduced from animals subjected to 

routine exercise. The results of the current study disagree with prior research that showed 

reductions in 12
th

 rib fat (Chapter 2, p. 41) and fat score (Dunne et al., 2005) in carcasses from 

exercised cattle. Multiple rodent models have further verified that exercise can result in a 

reduction of body fat (Bell et al., 1997; Mirand et al., 2004) so the lack of change in carcass fat 

detected in the current study could be due to insufficient exercise intensity that failed to change 

the energy requirements of the cattle.  

Feed restriction decreases energy intake that induces a temporary reduction of fatness, 

which is not totally restored during the recovery period (Robelin, 1986). It is possible that 

exercise early in the finishing phase creates a similar effect because exercised animals require 

more energy for maintenance (Donnelly & Smith, 2005). Exercised animals may have less 

excess energy available to deposit as fat, specifically marbling. If suppressed early on, adipose 

tissues will undergo hypertrophy at a reduced rate during the remainder of finishing (Robelin, 

1986). This scenario may explain why carcasses from EARLY and ALL treatment cattle 

produced decreased (P = 0.022) marbling scores in comparison to CON carcasses which 

maintained similar (P < 0.05) marbling scores to the LATE exercise treatment. Heifers exercised 

up to 40 min per d maintained similar marbling scores in comparison to sedentary heifers 

(Chapter 2, p. 41); however, these heifers were only exercised for an 8 wk period whereas the 

present study subjected exercise for as long as 17 wk. 

 3.6 Instrumental color 

Treatment had no effect (P > 0.05) on the instrumentally-measured CIE L*, a*, and b* 

values as well as saturation index and hue angle of LL steaks (Table 3.7). Steers walked 4.41 km 
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on a daily basis produced no change in ‘L’, ‘a’, and ‘b’ values of the longissimus dorsi (Dunne et 

al., 2005) which aligns with the present study; however, implementation of routine exercise in 

feedlot heifers produced carcasses with decreased a* and b* values from the longissimus 

thoracis in comparison to their sedentary counterparts (Chapter 2, p. 42). Physical activity 

associated with grazing is thought to produce darker meat (Muir, Smith, Wallace, Cruickshank, 

& Smith, 1998), but the lack of change observed in L* values in the present study and others 

(Chapter 2, p. 42; Dunne et al., 2005) refute this idea. Attention may need to be directed towards 

changes in redness (a*, ‘a’ values) which have been observed in the longissimus thoracis 

(Chapter 2, p. 42) and semimembranosus muscles (Dunne et al., 2005) from carcasses of 

exercised cattle. Active animals contain more myoglobin in comparison to their inactive 

counterparts, but differences between muscles are also present (Essen-Gustavsson, 1996). 

Muscles more heavily associated with locomotion need to be evaluated to properly assess the 

role that exercise contributes in the development of meat color. 

 3.7 Warner-Bratzler shear force 

No differences (P = 0.860) in LL WBSF were detected between treatment groups as 

WBSF were 4.46, 4.71, 4.62, and 4.55 kg for CON, EARLY, LATE, and ALL respectively. The 

reported WBSF values in this research would be considered to be “intermediate” or “tough” in 

terms of tenderness according to confidence intervals reported by Shackelford, Morgan, Savell, 

and Cross (1991). Previous research demonstrated that exercise does not alter WBSF of the 

longissimus lumborum, triceps brachii, semitendinosus, and semimembranosus muscles in 

feedlot heifers (Chapter 2, p. 42), which agrees with the current study; however, research in 

sheep demonstrated decreases in WBSF of the semimembranosus and vastus lateralis muscles in 

carcasses of exercised lambs (Aalhus et al., 1991). The reduction in shear force of the vastus 

lateralis was attributed to a dilution of collagen as collagen decreased and myofibrillar protein 

increased on a per gram of muscle basis (Aalhus et al., 1991).  

Meat tenderness is affected by multiple factors including proteolysis, connective tissue, 

and muscle contractile state (Belew, Brooks, McKenna, & Savell, 2003) which can vary between 

muscles depending on their function. The LL has limited involvement in animal movement in 

comparison to muscles located in the chuck and round so it’s logical that the LL would 

demonstrate minimal change in response to exercise. Once more, variations of exercise intensity 
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exist between the previously mentioned research and the present study. The current study 

contained less intense exercise than the 90 min bouts of exercise that Aalhus and others (1991) 

subjected to sheep 5 times/wk which yielded tenderness improvements. It appears that muscle 

function and exercise intensity are likely factors contributing to the lack of tenderness change 

observed in this study. 

 3.8 Type I collagen crosslink states 

Separated collagen type I crosslink states of LL muscle are detailed in Table 3.8. 

Collagen analysis indicated no treatment effect (P > 0.05) for Beta 11, Beta 12 and Gamma 

collagen type I crosslink states. These findings coincide with the results of Petersen et al. (1997) 

who showed that treadmill training of pigs had no effect on the amount of total and heat-soluble 

collagen as well as the solubility of collagen in the longissimus dorsi. Prolyl-4-hydroxylase (PH) 

and galactosylhydroxylysylyl glucosyltransferase (GGT) both participate in the post-translational 

modifications of the collagen biosynthesis (Kivirikko & Myllyla, 1982). Exercise appears to 

affect PH and GGT activity differently in young and old rats. As animals age, both PH and GGT 

activity is decreased greatly (Kovanen & Suominen, 1989). Exercise had no influence on PH and 

GGT activity in rats as old as 4-mo, but exercise increased both PH and GGT activity in rats 

older than 4-mo (Kovanen & Suominen, 1989) suggesting that exercise may influence collagen 

biosynthesis in an age-dependent manner. Additional research revealed that exercise exhibited no 

effect on collagen concentration of young (3 mo old) and old (23 mo old) rats. Additionally, 

exercise did not change the proportion of the non-reducible collagen cross-link 

hydroxylsylpyridinoline (HP) in young rats, but greatly reduced the amount of HP in old rats 

(Gosselin, Adams, Cotter, McCormick, & Thomas, 1998). Cattle finished in feedlot systems 

reach market weights at a relatively young age so exercise may not influence their collagen 

composition; however, exercise use in finishing systems that take longer to finish animals, such 

as grass-feeding, may see alterations in certain collagen cross-links due to increased collagen 

biosynthesis.  

 3.9 Fatty acid composition 

Proportions of individual saturated and monounsaturated fatty acids are displayed in 

Table 3.9 and proportions of conjugated linoleic acids (CLA), polyunsaturated fatty acids, and 

total fatty acid are available in Table 3.10. Treatment had no effect on concentrations of 
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individual fatty acids aside from the CLA 18:2, trans-10, cis-12 which was decreased (P = 0.011) 

in all exercise treatments when compared to the control treatment. Total fatty acid percentages 

were similar (P = 0.663) between treatments. Additionally, there were no distinguishable 

differences between treatments for total saturated fatty acids (P = 0.671), total monounsaturated 

fatty acids (P = 0.679), total polyunsaturated fatty acids (P = 0.269), and total CLA (P = 0.151). 

Prior research shows exercise of cattle has a minimal effect on the fatty acid profile of multiple 

muscles (Chapter 2, pp. 43-44). Exercise has been evaluated in multiple species aside from 

cattle, but results are inconsistent when evaluating the effect of exercise on fatty acid 

composition (Nikolaidis & Mougios, 2004). The findings of the current study contrast those of 

Szabo et al. (2002) who showed that exercise in rabbits produced an increase of oleic acid 

(C18:1 n-9) in the longissimus dorsi and vastus lateralis but decreased stearic (C18:0) and 

arachidonic (C20:4 n-6) acids in the vastus lateralis. Moreover, Quiles et al. (1999) showed that 

exercise of rats yielded lower percentages of arachidonic acid (C20:4 n-6) and polyunsaturated 

omega-3 fatty acids in the vastus lateralis. Both of the prior studies utilized exercise regimens 

that were more frequent, longer in duration, and higher in intensity than the current study. Also, 

numerous muscles from multiple animal sources have been evaluated to investigate the influence 

of exercise on fatty acid profiles, but results appear to show that these alterations are independent 

of muscle fiber type (Nikolaidis & Mougios, 2004). Exercise regimens of great intensity may 

need evaluation to determine the capabilities of exercise to change the fatty acid profile, but 

intensities greater than that of the current study may be difficult to administer in a feedlot 

scenario.   

 4. Conclusions 

Feedlot cattle could be subjected to routine exercise to combat the lack of physical 

activity they incur on a daily basis. The EARLY exercise treatment evaluated in this study 

demonstrated a potential to decrease blood insulin, but additional findings suggest no other 

health improvement or stress reductions can be produced using the discussed exercise regimens. 

The exercise regimens used in this study provided no performance or carcass yield advantages. 

Additionally, EARLY and ALL treatment cattle had decreased marbling scores in comparison to 

CON cattle. If exercise is implemented, additional investigation is needed to evaluate how long 

cattle should be on feed prior to the initiation of exercise to ensure that marbling is not reduced. 
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Due to the lack of significant research in this subject area, further research needs to be conducted 

to evaluate varying intensities of exercise regimens and their effect on a wider range of beef 

carcass composition and beef quality traits from muscles located in the chuck and round. 
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Table 3.1 Body weights of feedlot steers subjected to routine exercise treatments. 

  Treatment
1 

  P-Values
2
 

 

CON EARLY LATE ALL SEM E D E × D 

Body weight      0.226 < 0.001 0.013 

  Day 0 376
f 

376
f 

378
f 

376
f 

3.36    

  Day 72 548
cd 

540
e 

549
c 

542
de 

3.36    

  Day 116 620
a 

618
ab 

613
b 

611
b 

3.36    
1
CON = no exercise for the 116-d finishing period; EARLY = exercised three times per wk for 

the first 10 wk of the 116-d finishing period; LATE = exercised three times per wk for the final 7 

wk of the 116-d finishing period; ALL = exercised three times per wk throughout the 116-day 

finishing period. Exercise was conducted by animal handlers who moved the cattle at a pace of 

4.8-6.4 km/h for 20-30 min. 
2
E = effect of exercise treatment; D = effect of days on feed; E × D = interaction between 

exercise treatment and days on feed. 
a-f

Means with different superscripts differ (P < 0.05). 
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Table 3.2 Growth performance traits of steers subjected to routine exercise treatments. 

  Treatment
1 

   

 

CON EARLY LATE ALL SEM P-Value 

ADG, kg 2.10 2.09 2.03 2.03 0.0657 0.178 

DMI, kg 10.58 10.28 10.43 10.27 0.2876 0.101 

G:F 0.196 0.201 0.191 0.194 0.00319 0.116 
1
CON = no exercise for the 116-d finishing period; EARLY = exercised three times per wk for 

the first 10 wk of the 116-d finishing period; LATE = exercised three times per wk for the final 7 

wk of the 116-d finishing period; ALL = exercised three times per wk throughout the 116-day 

finishing period. Exercise was conducted by animal handlers who moved the cattle at a pace of 

4.8-6.4 km/h for 20-30 min. 
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Table 3.3 Temperament scores
1 

of steers subjected to routine exercise treatments. 

  Treatment
2 

  P-Values
3
 

 

CON EARLY LATE ALL SEM E D E × D 

Temperament score      0.236 0.244 0.213 

  Day 0 1.9 1.9 2.0 2.0 0.17    

  Day 72 1.4 2.0 2.0 1.8 0.17    

  Day 116 1.8 1.6 1.8 1.9 0.17    
1
Where 1 = calm and no movement, 2 = restless shifting, 3 = squirming and occasional shaking 

of handling chute, 4 = continuous vigorous movement and shaking of handling chute. 
2
CON = no exercise for the 116-d finishing period; EARLY = exercised three times per wk for 

the first 10 wk of the 116-d finishing period; LATE = exercised three times per wk for the final 7 

wk of the 116-d finishing period; ALL = exercised three times per wk throughout the 116-day 

finishing period. Exercise was conducted by animal handlers who moved the cattle at a pace of 

4.8-6.4 km/h for 20-30 min. 
3
E = effect of exercise treatment; D = effect of days on feed; E × D = interaction between 

exercise treatment and days on feed. 
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Table 3.4 Blood constituents
1
 during feedlot finishing from steers subjected to routine exercise 

treatments. 

 Treatment
2 

 P-Values
3 

 CON EARLY LATE ALL SEM E D E × D 

Glucose, mM      0.751 <0.001 0.372 

  Day 0 3.1 3.0 2.8 2.9 0.14    

  Day 72 2.9 3.0 3.5 3.3 0.14    

  Day 116 3.7 3.9 4.0 3.8 0.14    

Lactate, mM      0.145 0.005 0.812 

  Day 0 4.2 4.5 4.8 4.6 0.29    

  Day 72 3.1 4.7 4.2 4.3 0.29    

  Day 116 2.9 3.7 3.3 3.9 0.30    

Insulin, ng/mL      0.022 <0.001 0.237 

  Day 0 0.19
 

0.11
 

0.17
 

0.15
 

0.060    

  Day 72 0.82
 

0.44
 

0.60
 

0.69
 

0.060    

  Day 116 1.33
 

0.85
 

1.02
 

1.40 0.060    

Cortisol, ng/mL      0.911 <0.001 0.317 

  Day 0 35.3 37.2 43.4
 

40.3
 

1.48    

  Day 72 24.8 24.6 19.4
 

20.7
 

1.48    

  Day 116 32.9 33.4 35.7
 

34.6 1.51    

Epinephrine, pg/mL      0.553 <0.001 0.788 

  Day 0 67.7
 

77.3
 

72.7
 

73.7 2.70    

  Day 72 101.8
 

107.8
 

100.5
 

109.0 2.70    

  Day 116 94.7
 

92.8
 

91.8
 

98.9 2.72    

Norepinephrine, 

pg/mL 

     0.184 <0.001 0.296 

  Day 0 42.4
 

43.6
 

42.1
 

37.8
 

2.36    

  Day 72 71.1
 

63.9
 

72.7
 

71.0
 

2.37    

  Day 116 68.5
 

63.5
 

80.1
 

66.0
 

2.38    
1
Glucose, lactate, epinephrine, and norepinephrine analyzed using blood plasma. Insulin and 

cortisol analyzed using blood serum. 
2
CON = no exercise for the 116-d finishing period; EARLY = exercised three times per wk for 

the first 10 wk of the 116-d finishing period; LATE = exercised three times per wk for the final 7 

wk of the 116-d finishing period; ALL = exercised three times per wk throughout the 116-day 

finishing period. Exercise was conducted by animal handlers who moved the cattle at a pace of 

4.8-6.4 km/h for 20-30 min. 
3
E = effect of exercise treatment; D = effect of days on feed; E × D = interaction between 

exercise treatment and days on feed. 



72 

 

 

Table 3.5 Blood constituents
1
 at exsanguination

2
 from feedlot steers subjected to routine 

exercise treatments. 

 Treatment
3 

   

 CON EARLY LATE ALL SEM P-Value 

Glucose, mM 10.1 9.2 10.8 9.2 1.4 0.721 

Lactate, mM 14.5 12.0 13.4 12.5 0.964 0.161 

Insulin, ng/mL 0.49 0.55 0.47 0.47 0.090 0.910 

Cortisol, ng/mL 34.8 27.9 35.7 29.5 6.26 0.759 

Epinephrine, pg/mL 170.4 190.4 179.6 188.6 1.848 0.859 

Norepinephrine, pg/mL 186.5 182.5 180.6 190.5 4.536 0.384 
1
Glucose, lactate, epinephrine, and norepinephrine analyzed using blood plasma. Insulin and 

cortisol analyzed using blood serum. 
2
Blood samples collected from blood flow initiated at exsanguination. 

4
CON = no exercise for the 116-d finishing period; EARLY = exercised three times per wk for 

the first 10 wk of the 116-d finishing period; LATE = exercised three times per wk for the final 7 

wk of the 116-d finishing period; ALL = exercised three times per wk throughout the 116-day 

finishing period. Exercise was conducted by animal handlers who moved the cattle at a pace of 

4.8-6.4 km/h for 20-30 min.
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Table 3.6 Carcass characteristics from steers subjected to routine exercise treatments. 

  Treatment
1
    

 

CON EARLY LATE ALL SEM P-Value 

Hot carcass weight, kg 388 395 396 390 5.94 0.706 

Dressed yield, % 60.9 61.2 60.3 61.2 0.88 0.611 

Liver abscess, % 8.7 11. 5 14.3 14.5 3.4 0.381 

  A+
2 

1.0 1.0 0 3.9 1.2 0.101 

  A
3 

1.9 1.0 4.8 2.9 1.6 0.353 

  A-
4 

3.8 9.5 9.5 6.7 2.8 0.327 

LM area, cm
2
 97.8 102.2 101.8 95.4 2.43 0.188 

12th-rib fat, cm 1.18 1.27 1.19 1.27 0.0862 0.826 

KPH, % 2.1 2.3 2.3 2.3 0.093 0.225 

USDA yield grade 2.5 2.4 2.4 2.7 0.18 0.526 

USDA marbling score
5
 471

a 
400

c 
461

ab 
419

bc 
19.4 0.022 

1
CON = no exercise for the 116-d finishing period; EARLY = exercised three times per wk for 

the first 10 wk of the 116-d finishing period; LATE = exercised three times per wk for the final 7 

wk of the 116-d finishing period; ALL = exercised three times per wk throughout the 116-day 

finishing period. Exercise was conducted by animal handlers who moved the cattle at a pace of 

4.8-6.4 km/h for 20-30 min. 
2
A+ = 1 or more large, or multiple small, active abscesses, with or without adhesions. 

3
A = 2 to 4 small, well-organized abscesses. 

4
A- = 1 or 2 small abscesses or scars. 

5
Marbling score 400 to 499 = Small. 

abc
Means with different superscripts within the same row differ (P < 0.05). 



74 

 

Table 3.7 Instrumental color values of oxygenated longissimus lumborum steaks from carcasses 

of steers subjected to routine exercise treatments after 14 d of refrigerated storage in anaerobic 

packaging. 

 Treatment
1 

    

 CON EARLY LATE ALL SEM P-Value 

L* (lightness) 44.3 44.6 44.0 44.5 1.20 0.985 

a* (redness) 32.7 32.3 33.0 33.4 0.527 0.563 

b* (yellowness) 25.4 24.9 25.7 26.1 0.548 0.436 

Hue angle
2 

37.8 37.4 37.8 38.0 0.236 0.316 

Saturation index
3
 41.4 40.8 41.8 42.4 0.746 0.497 

1
CON = no exercise for the 116-d finishing period; EARLY = exercised three times per wk for 

the first 10 wk of the 116-d finishing period; LATE = exercised three times per wk for the final 7 

wk of the 116-d finishing period; ALL = exercised three times per wk throughout the 116-day 

finishing period. Exercise was conducted by animal handlers who moved the cattle at a pace of 

4.8-6.4 km/h for 20-30 min. 
2
Hue angle: (b*/a*)

tan-1
.  

3
Saturation index: (a*

2
 + b*

2
)
1/2

. 
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Table 3.8 Type 1 collagen crosslinks of beef longissimus lumborum from carcasses of steers 

subjected to routine exercise treatments
1
. 

 Treatment
2 

    

 CON EARLY LATE ALL SEM P-Value 

Type 1 collagen crosslink state       

  Beta 11  0.994 0.929 1.011 0.952 0.0931 0.856 

  Beta 12  0.986 0.973 1.002 0.950 0.0750 0.935 

  Gamma  1.011 1.053 1.108 1.043 0.0868 0.835 
1
Values calculated as a ratio of band density to average band density of CON within each SDS-

PAGE gel. 
2
CON = no exercise for the 116-d finishing period; EARLY = exercised three times per wk for 

the first 10 wk of the 116-d finishing period; LATE = exercised three times per wk for the final 7 

wk of the 116-d finishing period; ALL = exercised three times per wk throughout the 116-day 

finishing period. Exercise was conducted by animal handlers who moved the cattle at a pace of 

4.8-6.4 km/h for 20-30 min. 



76 

 

Table 3.9 Proportions of saturated and monounsaturated fatty acids (mg/g) in raw longissimus 

lumborum steaks from steers subjected to routine exercise treatments. 

 Treatment
1   

 CON EARLY LATE ALL SEM P-Value 

Saturated fatty acids
2       

  14:0 1.23 1.03 1.17 1.26 0.110 0.481 

  15:0 0.243 0.219 0.238 0.250 0.0236 0.818 

  16:0 11.6 9.77 11.0 11.1 0.993 0.628 

  17:0 0.877 0.767 0.797 0.818 0.108 0.905 

  18:0 6.33 5.43 5.71 6.27 0.634 0.703 

  20:0 0.056 0.051 0.051 0.055 0.0063 0.897 

  21:0  0.127 0.105 0.989 0.111 0.0103 0.295 

  22:0 0.030 0.030 0.036 0.037 0.0038 0.415 

  24:0 0.028 0.029 0.034 0.029 0.0021 0.204 

Monounsaturated fatty acids       

  14:1 0.363 0.281 0.351 0.338 0.0281 0.183 

  16:1 1.65 1.34 1.56 1.61 0.135 0.377 

  17:1  0.501 0.428 0.465 0.453 0.0570 0.835 

  18:1n-7 0.979 0.853 0.919 0.926 0.0750 0.700 

  18:1n-9c 17.5 14.7 16.1 16.3 1.62 0.686 

  18:1n-9t 0.886 0.869 0.826 0.858 0.0925 0.972 

  18:1n-11 0.119 0.112 0.105 0.095 0.011 0.333 

  20:1 0.112 0.094 0.091 0.098 0.010 0.424 

  24:1 0.019 0.023 0.014 0.020 0.0030 0.293 
1
CON = no exercise for the 116-d finishing period; EARLY = exercised three times per wk for 

the first 10 wk of the 116-d finishing period; LATE = exercised three times per wk for the final 7 

wk of the 116-d finishing period; ALL = exercised three times per wk throughout the 116-day 

finishing period. Exercise was conducted by animal handlers who moved the cattle at a pace of 

4.8-6.4 km/h for 20-30 min. 
2
Fatty acids are represented as number of carbon atoms:number of carbon-carbon double bonds. 
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Table 3.10 Proportions of conjugated linoleic acids, total fatty acids (% of sample) and total 

fatty acid concentrations (mg/g) in raw longissimus lumborum steaks from steers subjected to 

routine exercise treatments. 

 Treatment
1   

 CON EARLY LATE ALL SEM P-Value 

n-6 fatty acids
2       

  18:2n-6c 1.89 1.81 1.75 1.85 0.0649 0.527 

  18:3n-6c 0.102 0.063 0.062 0.095 0.024 0.512 

  20:3n-6 0.130 0.116 0.129 0.125 0.00475 0.170 

  20:4n-6 0.017
b 

0.016
b
 0.019

ab 
0.022

a 
0.0014 0.035 

n-3
       

  18:3n-3 0.015 0.013 0.013 0.014 0.00069 0.103 

  20:5n-3 0.010 0.008 0.009 0.009 0.001 0.239 

  22:5n-3 0.066 0.063 0.065 0.068 0.0039 0.797 

  22:6n-3 0.036 0.031 0.035 0.033 0.0025 0.497 

Conjugated linoleic acids
       

  18:2, cis-9, trans-11 0.022 0.018 0.016 0.019 0.0025 0.355 

  18:2, trans-10, cis-12 0.018
a
 0.011

b 
0.013

b 
0.015

b 
0.0017 0.011 

  18:2, cis-9,cis-11 0.010 0.005 0.004 0.005 0.002 0.087 

  18:2, trans-9, trans-11 0.061 0.053 0.048 0.053 0.0057 0.456 

SFA
3 

20.6 17.5 19.2 20.0 1.86 0.671 

MUFA
4 

22.2 18.8 20.5 20.9 1.97 0.679 

PUFA
5 

2.71 2.50 2.48 2.62 0.0903 0.269 

CLA
6 

0.111 0.087 0.081 0.093 0.0095 0.151 

Total fatty acids (%) 4.55 3.88 4.22 4.35 0.385 0.663 
1
CON = no exercise for the 116-d finishing period; EARLY = exercised three times per wk for 

the first 10 wk of the 116-d finishing period; LATE = exercised three times per wk for the final 7 

wk of the 116-d finishing period; ALL = exercised three times per wk throughout the 116-day 

finishing period. Exercise was conducted by animal handlers who moved the cattle at a pace of 

4.8-6.4 km/h for 20-30 min. 
2
Fatty acids are represented as number of carbon atoms:number of carbon-carbon double bonds. 

3
SFA = sum of fatty acids that contain no double bonds.

 

4
MUFA = sum of fatty acids that contain 1 double bond. 

5
PUFA = sum of fatty acids that contain 2 or more double bonds. 

6
CLA = sum of conjugated linoleic acids. 

ab
Means with different superscripts within the same row are significantly different (P < 0.05). 
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Chapter 4 - General conclusions and implications: Exercise of 

feedlot cattle 

Consumers are becoming more concerned with the health and welfare of meat producing 

animals. Feedlot cattle live a sedentary lifestyle while being fed a high concentrate diet which 

could prompt the development of diabetic-like symptoms due to hyperglycemia. The first study 

evaluated routine exercise of heifers in a pilot study and the second study implemented exercise 

in a commercial scenario using multiple pens of cattle. A primary objective of this research was 

to evaluate the influence that routine exercise would have on animal health. Blood insulin 

seemed to be the lone blood constituent that was affected by exercise although it was only 

influenced by 2 of the 4 exercise treatments used in these studies. A reduction in blood insulin 

could signify that those particular animals have enhanced insulin sensitivity in comparison to 

their sedentary counterparts. Exercise did not show any influence on other health related blood 

parameters that were assessed in either study. 

Feedlot cattle have minimal interactions with humans on a daily basis. The lack of 

interaction with humans may result in cattle reacting disproportionately to stressful situations 

associated with processing and shipping. The increase of human-animal interaction through 

increased handling is thought to improve animal temperament and reduce the anxiety animals 

incur when subjected to stressful situations. Heifers that were individually stalled and exercised 

as a group had decreased blood cortisol levels at the midpoint of the pilot study, but cattle housed 

in group pens and exercised as a pen showed no difference in blood cortisol. The different 

results, in regard to cortisol, between studies suggest that the observed decrease in cortisol during 

the pilot study may not be due to exercise, but due to an increased amount of social interaction 

between animals. All other measurements of stress-related blood constituents were similar 

between treatment groups. Additionally, temperament scores assigned when cattle were held in a 

handling chute did not differ between treatments. It is fairly apparent the increase in handling 

associated with routine exercise has limited potential to improve cattle temperament. 

Body weight and average daily gains were decreased by exercise in the pilot study but 

not in the commercial study; however, both studies showed similar feed consumption across 

treatments. The pilot study employed an exercise regimen that was twice as long during the last 

half of the study than what was used throughout the commercial study. The results of these 
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studies suggest that the exercise regimen in the pilot study was of great enough intensity to 

influence body weight while the exercise regimens in the commercial study were not. 

Differences in intensity could also explain the contrasting results observed in carcass cutability 

measures. The pilot study showed that exercise decreased 12
th

 rib fat suggesting that exercised 

cattle maintained less excess energy available to store as fat in comparison to sedentary cattle. 

Conversely, 12
th

 rib fat thickness was unaffected in the commercial study signifying that exercise 

treatments were not of great enough intensity to disrupt the energy balance necessary for 

subcutaneous fat deposition.  

Marbling differences observed in the commercial study seem to be related with the time 

at which exercise is introduced during the finishing period. This was displayed as cattle that were 

exercised during the final seven wk of finishing had greater marbling scores than cattle exercised 

the first 10 wk. Cattle that are exercised earlier in the finishing period may suppress the amount 

of excess energy available for storage as intramuscular fat. The suppression of adipocyte growth 

early in the finishing period may translate to slower growth of those fat cells when exercise is 

stopped and more energy is available for storage as fat. It may be necessary to delay exercise in a 

manner similar to common implant strategies to maximize marbling development.   

These studies showed that exercise did not influence tenderness in multiple muscles 

which contrasts prior research that shows exercise of sheep can improve tenderness. Another 

quality parameter that is vital to consumer purchasing decisions is meat color. Carcasses from 

exercised heifers in the pilot study had longissimus muscles with decreased redness and 

yellowness, while no instrumental color values were altered by exercise treatments in the larger 

commercial study. The contrasts between the pilot and commercial studies could be attributed to 

exercise intensity. 

It appears that exercise, depending on regimen, has the potential for use in a feedlot 

setting as a means to reduce blood insulin of cattle to promote animal health. There seems to be 

little evidence that suggests that exercise could be implemented to improve performance or 

carcass quality as growth, marbling, and meat color can be negatively influenced by certain 

exercise regimens. If a marketing opportunity was present where exercising feedlot cattle could 

provide a premium for producers, additional research would be warranted to identify what 

exercise intensity and initiation time should be used to produce the greatest benefits for animal 

welfare, performance, and meat quality. 



80 

 

Chapter 5 - Review of literature: Beef aroma volatiles 

 1. Introduction 

 1.1 Flavor’s role in beef palatability 

Providing consumers with consistent and desirable beef products is paramount to the 

success of the beef industry. Consumer preferences and demands may change overtime, but 

palatability will continue to serve as a main driver to consumer acceptance of beef.  Beef 

palatability is a multifaceted entity that combines various traits such as flavor, tenderness, and 

juiciness which all contribute to the beef eating experience. Numerous studies evaluating beef 

palatability and the correlation of these three traits with overall like of beef have been conducted.  

Historically, tenderness has been identified as the main driver of beef palatability. 

Tenderness was more highly correlated than flavor and juiciness with consumers’ overall like 

ratings of muscles from the beef chuck (complexus, infraspinatus, serratus ventralis, 

supraspinatus and triceps brachii) and rib (longissimus thoracis) (Kukowski, Maddock, & Wulf, 

2004). Nevertheless, flavor was labeled the most important factor affecting consumers’ meat 

buying habits when there are no differences in product tenderness (Sitz, Calkins, Feuz, 

Umberger, & Eskridge, 2005). Additionally, consumer panelists’ flavor ratings were more highly 

correlated than their juiciness ratings to overall acceptability ratings of USDA Select to High 

Choice beef strip loin steaks when Warner-Bratzler shear forces were similar across all samples 

(Killinger, Calkins, Umberger, Feuz, & Eskridge, 2004). Flavor and tenderness are routinely 

identified as the most important components affecting beef palatability and have been shown to 

contribute equally to consumer overall like ratings of beef steaks in some studies (Lorenzen et 

al., 1999; Neely et al., 1998). More recently, research has suggested that flavor may be more 

integral to product acceptability than tenderness. In a study evaluating the effect of fat level on 

sensory traits of beef strip steaks, consumer overall liking was most highly correlated with flavor 

like rankings in comparison to tenderness and juiciness ratings (O’Quinn et al., 2012).  These 

studies all suggest that flavor, juiciness, and tenderness interact with each other and that care 

must be taken to properly monitor each of these traits. 

Currently, there are numerous marketing and labeling schemes that provide consumers 

with a wide range of information to make their purchasing decisions when buying beef. 
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Consumers are now presented products with natural and organic claims as well as nutritional 

value statistics on product labels at the retail counter. When asked to place a score on purchasing 

motivators (tenderness, juiciness, flavor, price, product consistency, ease of preparation, 

nutritional value, natural, and organic) of beef steaks and roasts, consumers still placed the most 

emphasis on product flavor, tenderness, and juiciness as their primary motivators when buying 

beef (Reicks et al., 2011). The importance of flavor to consumers can also be seen by the 

willingness of a consumer to pay more for a product that has a flavor profile that they prefer. 

One such instance is the vastly different flavor profile that grain-fed and grass-fed beef produce. 

Consumers that preferred the flavor of grain-fed beef over grass-fed beef showed a willingness to 

pay up to $2.00/0.45 kg more for that product (Sitz et al., 2005). Even though consumers are 

presented with numerous trends and marketing claims, palatability still drives their purchasing 

decisions and certain flavors can entice them to select specific products that are positively 

associated with past eating experiences. 

Beef flavor is very complex as it contains numerous odors and flavor notes that combine 

to create one flavor. Properly describing flavors associated with beef becomes more complicated 

due to various cookery methods combined with live animal genetics, gender, age, and diet 

amongst other variables. In an effort to develop a comprehensive and effective lexicon to 

describe beef flavors, Adhikari and others (2011) used highly trained sensory panelists to 

evaluate different beef cuts of different quality grades cooked to multiple end-point cooking 

temperatures using various cooking methods. All samples (n=176) that were evaluated contained 

the following flavor notes: beef identity, brown/roasted, bloody/serumy, fat-like, metallic, sour 

aromatics, overall sweet flavor, and all five tastes. Additionally, liver-like, green-hay, green, 

chemical, burned, rancid, spoiled, warmed-over, animal hair, cocoa, leather, dairy, sour dairy, 

and cooked milk flavor notes and aromas were detected and had an important role in select 

sample groups. This lexicon shows the overwhelming complexity of beef flavor and the amount 

of individual flavors that may be present and contribute to the overall flavor of beef.  

Beef palatability is a very important topic and must continually be evaluated to ensure 

that acceptable products are provided to consumers. Flavor seems to play a very important role in 

palatability. Flavor itself is complex and demands further investigation to fully understand how it 

should be analyzed.  
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 1.2 Aroma’s role in flavor 

Flavor is complex, but is highly important in defining the sensorial acceptance of food as 

it is the food quality which entices humans to eat (Carden & Baird, 2000). The Society of Flavor 

Chemistry defines flavor as “a substance which may be a single chemical entity, or a blend of 

chemicals of natural or synthetic origin whose primary purpose is to provide all or part of the 

particular flavor effect to any food or other product taken in the mouth.” (Carden & Baird, 2000). 

Flavor is mainly comprised of the two sensations of taste and smell, although the sensations of 

astringency, mouthfeel, and juiciness may play a role (Farmer, 1994). 

Receptors in the mouth can distinguish the five main tastes (sweet, salty, sour, bitter, and 

umami). Foods contain water-soluble compounds that produce taste sensations recognized by the 

tongue which are due to the presence of inorganic salts (salty), hypoxanthine (bitter), sugars 

(sweet), and organic acids (sour) (Moody, 1983). The aromatic portion of flavor is significantly 

more diverse than taste as the human nose can identify hundreds or even thousands of different 

odors (Farmer, 1994). The volatile compounds responsible for aroma stimulate the nasal 

epithelium after they enter the nose (by smelling) or through the posterior nares at the back of the 

nose and throat while food is being chewed (Farmer, 1994). Aroma is such an important fraction 

to flavor that anosmics (people who lack the ability to smell) complain their food no longer tastes 

good even though simple tests affirm their capabilities to accurately detect sweet, sour, salty, and 

bitter tastes (Carden & Baird, 2000). 

Aroma sensations can be attributed to thousands of low-molecular-weight compounds. 

Aromatic and aliphatic compounds generally contain a heteroatom (O, N, S) which creates a 

precise electronic configuration that can be recognized by the nasal receptors (Farmer, 1994). 

The compounds responsible for aromas are most often a result of reactions that occur during 

cooking and processing (Carden & Baird, 2000) and it is of great importance to recognize how 

they are formed in beef. 

 2. Aroma volatile formation 

 2.1 Meat aroma precursors 

 Raw beef has little flavor and a blood-like taste, but it contains numerous volatile 

precursors that are developed during cooking and contribute to the complex and bold flavors 
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associated with beef (Shahidi, 1989). Free amino acids, peptides, reducing sugars, vitamins, 

nucleotides and fatty acids are all present in meat and are converted into volatile compounds that 

develop during cooking (Madruga, Elmore, Oruna-Concha, Balagiannis, & Mottram, 2010).  

Hornstein and Crowe (1960) researched the water-extractable flavor precursors in raw 

beef and pork. Beef and pork lean portions with fat completely removed were extracted with cold 

water and then heated to assess aroma. The aromas from the lean portions of each species were 

indistinguishable from the other. Conversely, fat portions of each species were evaluated in a 

similar manner to the lean portions and showed a stark contrast of aromas that were indicative of 

each of the species. This study ultimately concluded that flavor precursors of meat are low 

molecular weight compounds and that species flavor and aroma are mostly dependent upon the 

fat portion of the sample. 

Macy, Naumann, and Bailey (1964a) further evaluated the water-soluble flavor 

precursors associated with beef, pork, and lamb. The amino acid profiles were relatively similar 

between all species as cysteine, histidine, hydroxyproline, isoleucine, carnosine, glutamine, 

glycerophosphoethanolamine, phosphoethanolamine, and urea were identified in lean samples of 

each species. Moreover, ribose, fructose, and glucose were the primary carbohydrates that were 

identified in the samples. Additional quantitative analysis of non-amino acid nitrogen 

compounds revealed the presence of ionosine, creatinine, and hypoxanthine. Macy, Naumann, 

and Bailey (1964b) then investigated the effects of heating on all of the previously mentioned 

compounds. Heating produced a dramatic decrease in the amounts of taurine, anserine-carnosine, 

and alanine. Moreover, cysteine, glutamic acid, glycine, lysine, serine, methionine, leucine, 

isoleucine, and methyl histidine were also degraded during heating. Ribose was recognized as 

the most heat labile sugar while fructose was the most stable. Overall amounts of carbohydrates 

were decreased by 72% in beef, 55% in lamb, and 64% in pork. It is readily apparent that the 

heating of amino acids and sugars that are contained in meat causes a significant change in the 

makeup of meat and lead to products that may contribute to cooked meat flavor. 

Numerous studies have demonstrated that carbohydrates and amino acids are depleted 

during heating and that cysteine and ribose exhibited the greatest decrease (Mottram, 1998). The 

decrease of these two precursors directly correlates with thermal reactions responsible for a vast 

amount of flavor and aroma components that are crucial to meat flavor.  
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 2.2 The Maillard reaction  

Thermal processing is essential to the formation of volatiles that are responsible for a 

variety of aromas and flavors associated with meat. One of the primary reactions occurring 

during cooking is the Maillard reaction which is named after the French chemist Louis-Camille 

Maillard who observed the formation of brown pigments when heating a mixture of glucose and 

lysine (Maillard, 1912). The Maillard reaction is used to describe the complex series of chemical 

reactions between carbonyl and amino components derived from biological systems (Mottram, 

1994) and is more commonly described as non-enzymatic browning (Fay & Brevard, 2005). This 

reaction normally occurs on the meat surface where the meat product becomes dehydrated (van 

den Ouweland, Peer, & Tjan, 1978).   

The outline and descriptions of the Maillard reaction are detailed in the most depth by 

Hodge (1953). A comprehensive outline of the reaction is present in Figure 5.1. The initial stage 

involves sugar-amine condensation and an Amadori rearrangement. First, an addition reaction 

occurs between the amino group of an amino acid and the carbonyl group of an aldose sugar to 

form an N-substituted glycosylamine and water. The following step eliminates water and the N-

glycosylamine undergoes an Amadori rearrangement to form an N-substituted 1-amino-1-deoxy-

2-ketose. The Amadori products do not contribute directly to flavor but are important precursors 

to flavor compounds (Mottram, 1994).  

The intermediate stage is composed of three reactions: 1) sugar dehydration, 2) sugar 

fragmentation, and 3) amino acid degradation (Hodge, 1953).  The dehydration of Amadori 

products is dependent on the conditions of the reaction system. In acidic systems, furfurals are 

commonly produced after a 1,2 enolization. At a higher pH the favored reaction is a 2,3 

enolization that precedes the formation of hydroxyl ketones, dicarbonyl compounds, and other 

reductones. The resultant sugars are fragmented which lead to multiple different products that 

have different potentials for browning.  

Amino acids are broken down during Strecker degradation which is one of the most vital 

happenings during the Maillard reaction (Hodge, 1953). This degradation occurs when α-amino 

acids undergo oxidative deamination and decarboxylation in the presence of a dicarbonyl 

compound. The resultant products are aldehydes containing one less carbon atom and an α-

aminoketone. The α-aminoketones formed during this process are intermediates that lead to the 

formation of many aroma-producing volatiles indicative of cooked meat such as furans, 
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pyrazines, pyrroles, oxazoles, thiazoles and other heterocyclic compounds (Fay & Brevard, 

2005).  

The final stage of the Maillard reaction yields high-molecular weight melanoidin 

polymers that create the characteristic brown color associated with the reaction (Hodge, 1953). 

The first portion of the final stage is the condensation of cyclic subunits. Pyrroles and pyrrole 

derivatives are examples of the types of compounds that are condensed to form aldols, N-free 

polymers, aldimines, and ketimines. These products are then polymerized to form the brown 

nitrogenous polymers and copolymers known as melanoidins. These reactions lead to a variety of 

aromatic compounds which have become characteristic of flavors associated with the cooking of 

beef. 

 2.3 Lipid oxidation 

Lipids are vital components to meat flavor development. Lipids are precursors to both 

desirable and undesirable odors and a solvent for many lipophilic odor compounds (Farmer, 

1996). Additionally, the presence of lipids affects the rate of flavor release in the mouth and their 

texture contributes to the mouthfeel and juiciness of a product which impacts flavor perception 

(Farmer, 1996). Lipid degradation during the cooking of meat contributes several hundred 

volatile compounds including aliphatic hydrocarbons, aldehydes, ketones, alcohols, carboxylic 

acids and esters (Mottram, 1998). Lipid-derived volatiles are the result of oxidation reactions of 

unsaturated fatty acids. Long term storage allows oxidation to produce off-flavors and can be 

attributed to the development of rancidity (Ladikos & Lougovois, 1990). The same oxidation 

reactions can occur during cooking, however, they occur more rapidly and form different 

compounds that produce desirable flavors (Calkins & Hodgen, 2007).  

The process of lipid oxidation is generally described in three major steps: 1) initiation, 2) 

propagation, and 3) termination (Figure 5.2). A hydrogen atom (H) is removed from a methylene 

carbon in a fatty acid (RH) by binding to oxygen (O2) during the initiation step. The propagation 

step entails that the fatty acyl radical (R•) reacts with O2 to form a peroxyl radical (ROO•) which 

will then oxidize other unsaturated fatty acids and will initiate a chain reaction. The termination 

step occurs when there is no available oxygen for the fatty acyl radical to bind (Gray, 1978). 

Lipid oxidation forms hydroperoxides as its primary product. Hydroperoxides do not contribute 

to aroma, but they decompose into hydrocarbons, alcohols, ketones, and aldehydes which are 
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very influential in the aroma of meat (Shahidi, 1989). Lipid-derived volatiles have a high odor 

threshold and are much more influential in aroma development than the volatiles derived from 

water-soluble precursors (Mottram, 1998). Aldehydes are a major secondary product of lipid 

oxidation and malonaldehyde is one such aldehyde that is an oxidation product of 

polyunsaturated fatty acids that is often used to assess the degree of lipid oxidation in meat 

products (Shahidi, 1989). Even though malonaldehyde is a major lipid oxidation product, it has 

little effect on aroma (Shahidi, 1989). Aldehydes other than malonaldehyde, such as hexanal, can 

have a significant impact on meat aroma. Hexanal is formed from the breakdown of ω6 fatty 

acids and can contribute positively to beef flavor, but may produce undesirable flavors at higher 

concentrations (Melton, 1983). Lipids are readily broken down before, during, and after cooking 

so the products of lipid oxidation inherently play a vital role in beef aroma. 

 2.4 Interactions between lipid oxidation and the Maillard reaction 

Lipid oxidation and the Maillard reaction are both important contributors to the presence 

of meat aroma and flavor volatile compounds. Both of these reactions are occurring 

simultaneously during the cooking of meat, so it is likely that primary and secondary products, as 

well as intermediates, of the two reactions may impact the other. One such example of lipid and 

Maillard products reacting is the formation of butyl and pentyl pyrazines. Butyl and pentyl 

pyrazines form when aldehydes, such as hexanal and pentanal, react with dihydropyrazines, 

which are formed from the condensation of two aminoketones (Mottram, 1998). Mottram and 

Whitfield (1995) added phospholipid to a cysteine and ribose mixture and heated it to investigate 

the impact that phospholipid has on the production of Maillard volatiles. Their results showed 

that the addition of a phospholipid, in this case phosphatidylcholine, had minimal impact on the 

amounts of Maillard/lipid interaction products, including 2-pentylthiophene, 2-hexylthiophene, 

2-pentylthiapyran, and 2-pentylpryidine. This result contrasted the previous work of Farmer and 

Mottram (1990) that saw significant differences between volatile production in a similar scenario 

except the reactions were carried out in an aqueous system. Lipid oxidation and Maillard 

reaction products will interact during cooking and it appears that the type of cookery method 

used (wet or dry) can also be influential in the resultant volatile products created during cooking. 
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 2.5 Phospholipids in meat flavor 

Phospholipids are vital components of cells and contain a much higher proportion of 

unsaturated fatty acids than the triglycerides associated with the major fat depots. The 

differences in composition between these lipid sources could lead to differing aromas and flavors 

when heated. Mottram and Edwards (1983) discovered that if all triglyceride was extracted from 

a beef sample and the remaining portion was cooked that only minor changes occurred in the 

volatile compounds produced and the aroma still contained its “meat-like” characteristics. Upon 

the removal of both phospholipid and triglyceride, the resultant cooked meat sample had an 

aroma characterized by toasted and biscuit-like notes. Moreover, volatiles from samples devoid 

of triglyceride were similar to the unextracted control and the major components were aliphatic 

alcohols and aldehydes. When both triglycerides and phospholipids were removed, the volatile 

profile changed dramatically with aldehyde content greatly reduced and aliphatic alcohols 

present in only trace amounts. Additionally, the samples lacking triglycerides and phospholipids 

showed increased amounts of benzaldehyde and pyrazines. This study suggests that meaty 

aromas associated with meat can be attributed to structural phospholipids while the roasted 

aromas and the corresponding volatiles are decreased by the presence of lipid. 

Farmer and Mottram (1990) further investigated the importance of triglycerides and 

phospholipids on production of aroma and aroma volatiles by incorporating them in a Maillard 

reaction between cysteine and ribose. Cysteine and ribose were heated in the presence of beef 

triglyceride, beef phospholipid, L-α-phosphatidylcholine (PC), or L-α-phosphatidylethanolamine 

(PE). The reaction mixture that contained beef triglyceride had a strong sulphurous aroma with 

some meaty notes and had a similar intensity to a mixture containing no phospholipid. All three 

phospholipid mixtures contained more intense meaty notes than what was observed with the beef 

triglyceride. The mixture containing beef phospholipid contained a distinctly meaty aroma, the 

PC mixture contained predominantly sulfurous aroma, and the PE mixture resembled the beef 

phospholipid mixture as it presented a very distinct meaty aroma. Mixtures with inclusions of 

phospholipids also produced greater amounts of lipid-derived volatile compounds including 2-

pentylpyridine, 2-alkylthiophenes, alkenylthiophenes, a pentylthiapyran, and alkanethiols. The 

meaty aromas associated with beef appear attributable to phospholipids that are integrated into 

muscle structure rather than triglycerides stored in the major fat depots of a carcass. 
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 3. Flavor notes contributed by aroma volatiles 

The previously described reactions yield a multitude of volatile compounds. Many of 

these compounds contribute to flavor notes that are very important to the flavor of meat while 

others may play less of a role. It is important to identify specific volatiles and classes of 

compounds that contribute to certain flavor notes experienced when consuming beef. 

There are numerous flavor notes present in meat flavor and each of these flavor notes are 

products of certain classes of compounds and possibly a singular compound. The most 

recognizable aromas are fatty, species-related, roasted, boiled-meat, and the “meaty” aroma 

characteristic of all meat products (Mottram, 1998). Table 5.1 compiled by Calkins and Hodgen 

(2007) outlines numerous volatiles that have been detected in meat and aromas that have been 

associated with them. 

Sulfurous compounds are an important part of meaty aroma. Many of the sulfur 

compounds have low odor thresholds with sulfurous, onion-like, and meat aromas (Fors, 1983). 

Additionally, simulated meat flavorings used in processed savory food products have used furans 

and thiophenes with a thiol group in the 3-position, as well as related disulfides, that possess 

strong meat-like aromas (Mottram, 1998). The precursors for these compounds are most likely 

pentose sugars and cysteine. Mottram and Madruga (1994) evaluated one of the main sources of 

pentoses in meat which is inosine-5′-monophosphate (IMP) and its effect on the production of 

meat aroma volatiles during heating. The heated meat systems produced several thiols as well as 

di- and trisulfides containing 2-methyl-3-furyl and/or 2-furylmethyl groups. Many of the 

reported volatiles were in very low amounts and some were only present when IMP was added to 

the system. Additionally, all observed compounds were present in greater amounts with IMP 

added to the system. Beef contains IMP so it can be expected that sulfurous compounds play an 

integral role in beef flavor. 

Farmer and Patterson (1991) evaluated volatile compounds produced from cooked beef 

heart, semimembranosus, and psoas major muscles and identified five structurally related late-

eluting disulphides present from heart muscle. Bis(2-methyl-3-furyl) disulfide and 2-furfuryl-2-

methyl-3-furyl disulfide were present in the greatest quantities, which is significant as the heart 

has a relatively strong flavor. Only one of the five identified disulphides, bis(2-methyl-3-furyl) 

disulphide, was present in significant amounts in the semimembranosus and psoas major 

samples, although it was in lower quantities in comparison to the heart. The remaining four 
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disulphides were found in trace amounts in either the semimembranosus or psoas major. 

Additionally, after conducting gas chromatography-odor assessments, the authors determined 

that bis(2-methyl-3-furyl) disulfide and 2-furfuryl-2-methyl-3-furyl disulphide elicited a meaty, 

roasted, burnt aroma while bis(2-furfuryl) disulfide lacked meaty notes but still had a roasted and 

burnt aroma. This study also displays how sulfurous compounds are associated with strong 

meaty flavors.  

Lipid degradation products are very important to meat aroma as fatty flavor is generated 

from the lipid portion of meat.  Fatty acids such as linoleic and arachidonic acid start to oxidize 

to 9-hydroperoxide and 11-hydroperoxide, respectively, which can form 2,4-decadienal, 2-

nonenal, 1-octen-3-one, 2,4-nonadioenal, and 2-octenal with 2-nonenal and 2,4-decadienal 

providing similar intensities of meaty aromas as those provided by sulfur compounds (Calkins & 

Hodgen, 2007). Aldehydes, ketones and lactones, which are major secondary products of lipid 

oxidation, will contribute to the fatty aromas in cooked meats (Mottram, 1998). Additionally, 

aldehydes and ketones can create burnt, sweet, fatty, metallic, and rancid aromas (Shahidi, 

1989).  

Hexanal can have a significant impact on meat aroma as it is the most prominent volatile 

compound in cooked meat (Calkins & Hodgen, 2007). Hexanal is formed from the breakdown of 

ω6 fatty acids and can contribute to unpleasant, rancid, strong green, and unripe fruit notes 

(Calkins & Hodgen 2007, Madruga et al., 2010) Additionally, hexanal is directly proportional to 

thiobarbituric acid reactive substances (TBARS) which is a measure of lipid oxidation and is 

often negatively associated with flavor (Shahidi & Pegg, 1994; Ullrich & Grosch, 1987). Lipid 

degradation products produce many desirable flavors in beef, especially fatty flavor notes, but 

they can also be associated with off-flavors and rancidity that could be detrimental to beef flavor. 

Lipids are generally regarded as the primary source of species flavors. Different livestock 

species have varying levels of unsaturated fatty acids in the triglycerides and this gives rise to 

differing amounts of unsaturated aldehydes that may be influential into identifying species flavor 

(Noleau & Toulemonde, 1987). Lamb is unique in the quantity of methyl-branched saturated 

fatty acids it contains, which is vastly different from other species, and this is directly associated 

with the characteristic flavor of mutton which the Chinese describe as “soo” flavor (Wong, 

Nixon, & Johnson, 1975). Beef-like aroma has been attributed to 12-methyltridecanal which was 
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observed in stewed beef at much higher levels than lamb, veal, deer, pork, chicken, and turkey 

(Guth & Grosch, 1993, 1995). 

Roasted flavors appear to be associated with heterocyclic compounds formed in the later 

stages of the Maillard reaction (Mottram, 1998). Pyrazines, thiazoles, and oxazoles are 

compounds that are prevalent in cooked meat. These classes of compounds show dramatic 

increases when heat treatment is intensified, and pyrazines are the dominant class of volatiles 

associated with well-done grilled meat (Mottram, 1985). Oxygenated furans and pyrans 

contribute caramel-like odors, as do pyrroles. Oxazoles and oxazolines have been found in meat 

and contribute woody, musty, and green flavors (Mottram, 1994).  

It is readily apparent why beef flavor is such a complex trait due to the multitudes of 

compounds contributing to its formation. The various classes of compounds that combine to 

produce beef aroma are derived from different types of meat components which can vary in 

availability between breeds, animals, and even muscles. These factors are further complicated by 

the various practices employed by meat processors, retailers, and consumers. 

 4. Instrumental analysis of volatile aroma compounds 

 4.1 Headspace sampling techniques 

Separation of flavor compounds is commonly conducted using gas chromatography 

(GC), but there are various ways to prepare and collect analytes that are injected into a GC. 

Multiple sample preparation methods, including porous polymer trapping and distillation-

extraction, were compared by Jennings and Filsoof (1977) and they concluded that no isolation 

technique produced results that duplicated an original neat sample. Solvent extraction and 

distillation can be used to isolate compounds from food; however, headspace analysis is 

frequently preferred to take advantage of the volatility of aroma compounds which leave a food 

matrix and travel through the air to be perceived (Wampler, 2002). Headspace analysis is often 

divided into two categories: static headspace and dynamic headspace/purge and trap. The 

fundamental principal of both techniques is that volatile analytes from a solid or liquid material 

are sampled by evaluating the atmosphere around the sample, leaving the actual sample material 

behind (Wampler, 2002).  
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Static headspace sampling is the most readily automated and validated of all headspace 

sampling techniques (Snow, 2002). Wampler (2002) described the basic mechanics of static 

headspace sampling. A food sample is placed into a headspace vial, sealed and warmed to 

enhance vaporization of volatiles and then allowed to stand for a period of time to establish 

equilibrium. A syringe is then used to withdraw an aliquot of the headspace gas to inject into a 

GC injection port. Static headspace-GC has been used for the analysis of natural aromas and 

odors in several industries, but its main limitation is limited sensitivity (Snow, 2002). 

Dynamic headspace involves moving the analytes away from the sample matrix by use of 

a carrier gas that constantly sweeps the atmosphere around the sample away to a trap that is later 

extracted and injected into a GC (Wampler, 2002). “Dynamic headspace” is generally used to 

describe sampling of a solid material while “purge and trap” is used to describe analysis by 

bubbling a carrier gas through a liquid (Wampler, 2002). Dynamic headspace or purge and trap 

procedures increase the size of the sample headspace beyond that of a vial and do not allow the 

establishment of an equilibration state (Wampler, 2002). Dynamic headspace methods are 

preferred for low concentrations of volatile organic compounds in aqueous matrices and have 

been implemented in a wide array of industry scenarios including the analysis of food and 

aromas (Snow, 2002). 

 4.2 Solid-phase microextraction  

Isolation of volatile compounds using steam distillation, solvent extraction, trapping 

volatiles on adsorbents, or combinations of these methods are time consuming and may introduce 

impurities (Harmon, 2002). Solid-phase microextraction (SPME), which was first described by 

Berlardi and Pawliszyn (1989), is a quick extraction method that uses a fused-silica fiber which 

is coated on the outside with an appropriate stationary phase (Kataoka, Lord, & Pawliszyn, 

2000). The SPME fibers are coated with polymers ranging from the nonpolar 

polydimethylsiloxane (PDMS) to the more polar Carbowax or can be coated with a combination 

of numerous polymers (Harmon, 2002). During sampling, the fiber is immersed in the sample 

(usually the gas phase above the sample) where it absorbs analytes present in the sample. The 

fiber is removed from the sample and anlaytes are thermally desorbed in the injector of a GC 

(Holt, 2001). Elmore, Papantoniou, and Mottram (2001) compared the use of SPME to 

headspace entrainment on Tenax to evaluate aroma volatiles of cooked beef. This study showed 
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that Tenax extracted greater amounts of most volatiles, but SPME extracted greater amounts of 

polar volatiles, such as hydroxyfuranones and hydroxyketones. Additionally, SPME extracts 

contained multiple Maillard reaction intermediates that were not observed when Tenax was used. 

The quick use and ability to preferentially extract polar volatiles make SPME a viable option for 

analyzing a large number of samples for volatile aroma compounds. 

 5. Postmortem factors influencing flavor development  

There are hundreds of volatile compounds that contribute to beef flavor and aroma. Many 

of these compounds can be altered through storage and cooking (Calkins & Hodgen, 2007). The 

vast number of volatiles that impact flavor make evaluating meat flavor extremely difficult. 

Many volatiles have been attributed to the presence of specific aromas, so it is important to 

evaluate how certain practices manipulate their presence in beef.  

 5.1 Aging 

Beef is commonly subjected to “wet aging” which is a process that entails anaerobically 

packaged cuts being stored at refrigerated temperatures for an extended period of time. 

Practically all beef in the U.S. is anaerobically packaged at the packer level (Smith et al., 2008), 

so most U.S. beef undergoes wet aging to some extent. Postmortem aging improves tenderness 

of beef through the naturally occurring proteolytic degradation of cytoskeletal proteins 

(Koohmaraie, 1996). Use of aging will inherently alter the flavor profile of beef which can be 

both beneficial and detrimental to its palatability. To effectively utilize aging, it is necessary to 

examine the length needed to provide acceptable flavor and tenderness. 

Different muscles from a beef carcass serve different purposes and therefore have 

different properties. It is quite possible that different primal cuts may require different aging 

regimens to create an acceptable and consistent product. To evaluate this issue, Gruber and 

others (2006) investigated the impact of multiple postmortem aging times on 17 different beef 

muscles. They showed that across two different USDA quality grades, 16 of the 17 evaluated 

muscles showed steady decreases in Warner-Bratzler shear force (WBSF) up to 28 d of aging. 

This study also showed that aging times need to be tailored to specific muscles as some muscles 

required longer aging times to achieve a significant decrease in WBSF. These results suggest that 

subprimals including muscles like the gluteus medius may require longer aging periods than are 
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necessary with other muscles such as the longissimus dorsi. Additional research has shown that 

aging up to 40 d can still improve tenderness in beef (King et al., 2009). These authors also 

showed total proteolysis was increased by aging (40, 46, and 60% for 12, 26, and 40 d aging, 

respectively) in gluteus medius steaks. Since proteolysis is increased with longer aging periods it 

should be expected that tenderness can be increased in longer aging periods as well, which could 

entice purveyors and retailers to age product longer than normal. 

With the proven tenderness benefits that aging provides it is still necessary to evaluate 

how it influences other factors in palatability, mainly flavor. Jeremiah and Gibson (2003) 

evaluated four different aging times (7, 14, 21, and 28 d) and their effects on various sensory 

properties of beef loins and ribs. Beef flavor intensity, flavor desirability, and overall palatability 

exhibited an increase as aging time increased with the most satisfactory scores assigned to the 

longest aging period (28 d). Longer aging times were also associated with increased intensity of 

“browned” and “livery” aromas along with a decreased incidence of “bloody” flavor. Moreover, 

salty and bitter flavors were more intense for beef aged longer periods of time. The observed 

improvement in mechanical tenderness measurements of longer aged beef was affirmed by 

sensory panel through higher initial tenderness and overall tenderness scores. Although longer 

aging times caused some off-flavors, such as livery, they also contributed to other flavors that are 

considered to be desirable. 

Processors, distributors, and retailers across the industry are very inconsistent in the way 

they manage anaerobically packaged beef. On average, anaerobically packaged beef is held in 

refrigerated storage for 20.5 d to ensure tenderness, but storage times can range from 1 d to as 

long as 358 d before product reaches the retail counter (Guelker et al., 2013). The inconsistency 

of product handling and storage of beef could yield a great deal of inconsistency in product 

palatability. Juarez et al. (2010) evaluated the effects of subjecting beef to a wide range of aging 

times. Six different subprimals were evaluated in the study and were aged up to 56 d for 

instrumental tenderness and as long as 42 d for sensory characteristics. Beef strip loins showed 

decreased shear forces from 0 to 56 d of aging. Blade-eye, eye of round, and chuck tenders 

showed their lowest shear forces at 35 d of aging. Strip loins, outside rounds, inside rounds, and 

eye of rounds exhibited the highest flavor intensities at 0 and 14 d of age and flavor intensities 

decreased to their lowest levels on d 42. Off-flavors for all muscles assessed were lowest on d 0 

and increased to their highest levels during the longest aging periods (28 or 42 d). It is yet to be 
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seen that if the observed differences of flavor and off-flavor intensities are due to a decrease in 

desirable flavor compounds, an increase in off-flavor compounds, or if off-flavors are masking 

the desirable beef flavors. 

Positive and negative trends in flavor development have been observed in product 

subjected to aging times as long as 28 d. Although beef flavor may intensify in some cuts, the 

development of off-flavors could be detrimental to product palatability. Yancey, Dikeman, 

Hachmeister, Chambers IV, and Milliken (2005) showed that aging beef top sirloin steaks up to 

21 and 35 d increased metallic, rancid, and sour flavors when compared to aging periods of 7 and 

14 d. Extended aging periods of greater than 28 d can still provide tenderness improvement but 

they may also create unwanted and objectionable off-flavors.  

Knowing that aging impacts flavor, it is important to see how aging influences aroma 

volatiles of beef.  Beef semimembranosus muscles were aged for 0 h, 4 h, 2 d, 4 d, 7 d, and 14 d 

before being ground and cooked to medium doneness in patty form (Spanier, Flores, McMillin, 

& Bidner, 1997). The patties were then assessed by a sensory panel and were subjected to 

analysis for aroma volatiles. This study showed aging decreased beefy, brothy, browned-

caramel, and sweet flavors and increased bitter and sour flavors. Additionally, there were no 

correlations between hexanal and total volatiles with any of the flavor traits assessed by sensory 

panel. This study showed a relatively short aging period and contrasted other studies which 

showed flavor improvement up to 28 d. No data were given for volatiles at each individual aging 

time. 

Ma, Hamid, Bekhit, Robertson, and Law (2012) evaluated the impact of aging beef up to 

21 days in addition to researching the impact of pre-rigor injection of proteases on cooked beef 

volatiles. Hot-boned semimembranosus muscles from 5-yr old cows were injected with a variety 

of proteases and cooked volatiles were assessed after 1 and 21 d of postmortem aging. Out of 56 

volatiles that were detected, the control group, that did not receive injection, only had three 

volatile compounds that showed significant changes between 1 and 21 d of aging. Furfural and 2-

nonanone increased from 1 to 21 d of aging while tetradecane decreased over the aging period. 

This study showed that volatile compounds produced during cooking may not endure significant 

change prior to 21 d of aging. 

Aging is commonplace in the beef industry due to its tremendous impact on tenderness. 

Additionally, aging most definitely influences beef flavor. Beef aged for longer time periods 
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seems to have increased occurrences of off-flavors but has exhibited different results on flavor 

intensity and beefy flavor attributes. It is still unclear how aging times greater than 21 days 

influences the aroma volatile profile of beef. 

 5.2 Aging effects on volatile precursors 

Beef is normally subjected to postmortem aging to enhance product palatability. 

Koutsidis and others (2008) researched the impact that postmortem aging of up to 21 d had on 

the precursors responsible for meat aroma and flavor in beef longissimus lumborum. Glycogen 

showed no significant change over the aging period. Glucose, fructose, mannose, and ribose 

showed a linear increase throughout the study while mannose-6-phosphate, fructose-6-

phosphate, and glucose-6-phosphate all decreased as aging time increased. Ionisine 5′-

monophosphate (IMP) was degraded linearly over the aging period as was its accumulation 

products ribose, ionisine, and hypoxanthine. Free amino acids increased during aging especially 

between d 7 and 14. Methionine showed a sevenfold increase, but phenylalanine, lysine, leucine, 

and isoleucine also showed significant increases during aging. Additionally, 21 d of aging 

yielded nearly a 3-fold increase in the amount of free cysteine available. The increased pool of 

free amino acids accompanying the observed increases in ribose, methionine, and cysteine as 

aging time was lengthened suggests that long aged meat could produce greater amounts of 

volatiles formed via the Maillard reaction. 

 5.3 Blade tenderization 

Specific muscles and production practices can produce beef that is inherently tough to a 

point where postmortem aging fails to provide adequate tenderization. One of the most common 

processing methods used to alleviate this issue is blade tenderization. Blade tenderization can 

provide ample tenderness improvement by disrupting the structures of muscle and connective 

tissues (Bowker, 2007). King and others (2009) showed that blade tenderization could decrease 

slice shear force by nearly 4 kg in longissimus lumborum steaks and over 6 kg in gluteus medius 

steaks. Brooks and others (2010) demonstrated the effects of blade tenderization on beef strip 

loins from cattle fed zilpaterol hydrochloride on consumer sensory scores. Although blade 

tenderization increased tenderness scores, it decreased juiciness and had no influence on flavor 

when compared to the non-tenderized control. Overall, blade tenderization had a higher 
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percentage of samples that were considered to be acceptable by consumer panelists in 

comparison to control steaks.  

Some research suggests that blade tenderization can alter the flavor intensity of beef. 

Bidner, Montgomery, Bagley, and McMillin (1985) contrasted the effects of blade tenderization, 

electrical stimulation, and aging on palatability. At 72 h postmortem, strip loins were assigned to 

21 d of wet aging, blade tenderization, or a control treatment. Blade tenderization exhibited 

lower sensory panel flavor intensity scores than control and the 21 d aged treatment groups. The 

influence of blade tenderization may differ between muscles. Seideman, Smith, Carpenter, & 

Marshall (1977) evaluated blade tenderization on the palatability of beef psoas major and 

semimembranosus steaks. Psoas major steaks that were blade tenderized once demonstrated 

increased flavor desirability and overall palatability scores. Conversely, semimembranosus 

steaks tenderized 0, 1, 2, or 3 times showed similar flavor desirability scores, but overall 

palatability increased with number of times tenderized.  

Most research has suggested that blade tenderization does not influence the flavor of 

beef. (George-Evins, Unruh, Waylan, and Marsden, (2004) investigated the cumulative effect of 

postmortem aging, blade tenderization, and endpoint cooking temperature on the tenderness and 

sensory attributes of top sirloins. Sirloins were aged for 7, 14, or 21 d and then blade tenderized 

0, 1, or 2 times. A single round of blade tenderization did not decrease WBSF when compared to 

non-tenderized sirloins but two rounds of blade tenderization elicited a significant decrease in 

WBSF of sirloin steaks. Sensory panel results showed that any amount of blade tenderization 

improved myofibrillar and overall tenderness, but there were no effects of blade tenderization on 

sensory panel flavor scores. The effects of blade tenderization on palatability of beef strip loin 

and top sirloin steaks at 4 and 18 d of postmortem aging were investigated by Savell, McKeith, 

Murphey, Smith, & Carpenter (1982). Blade tenderization displayed no influence on flavor of 

both strip loin and top sirloin steaks at 4 and 18 d of aging. Overall palatability of strip loins 

steaks was also unaffected by blade tenderization, however, blade tenderization increased overall 

palatability of top sirloins steaks which is most likely due to changes in tenderness. Additional 

research has displayed a lack of change in flavor of beef longissimus (Medeiros, Field, 

Menkhaus, Riley, & Russell, 1989; Glover, Forrest, Johnson, Bramblett, & Judge, 1977) and 

semimembranosus muscles (Medeiros et al., 1989, Glover et al., 1977). These studies suggest 
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that flavor is not altered by blade tenderization; instead the increased palatability of blade 

tenderized steaks is based solely on tenderness. 

Blade tenderization is commonly used to improve tenderness from cuts like the top 

sirloin butt (George-Evins et al., 2004). Blade tenderization has shown mixed results in terms of 

its effects on beef flavor even though most research suggests it does not influence flavor. Limited 

insight into the cumulative effects of blade tenderization and aging on flavor is available. 

Moreover, there has been minimal research on the impact blade tenderization has on the aroma 

volatile profiles of raw and cooked beef. 

 5.4 Degree of doneness 

The endpoint temperature of cooked beef is known as the degree of doneness. Consumers 

have a distinct control over what degree of doneness their steak is cooked to. People have diverse 

preferences; therefore, one steak could have vastly different eating qualities depending on the 

consumer. The most commonly known degrees of doneness used in the U.S. are rare, medium 

rare, medium, medium well and well done (Reicks et al., 2011) which correlate with 60, 63, 71, 

74, and 77 °C respectively (AMSA, 1995). It has been well-documented that end-point cooking 

temperature has a distinct impact on palatability as it alters tenderness and flavor (Parrish, Olson, 

Miner, & Rust, 1973). Altering tenderness and flavor could prove to be detrimental to product 

acceptability as both are equally responsible for the variation of overall product likeability in 

beef (Neely et al., 1999). Prior research has shown that beef cooked to well done (77 °C) has 

higher shear forces than beef cooked to medium (71 °C) in both steaks (Lorenzen, Davuluri, 

Adhikari, & Grün, 2005) and ground patties (Berry, 1994). Likewise, as degree of doneness 

increases the juiciness, as perceived by consumers, decreases (Lorenzen et al., 1999). During 

cooking, numerous chemical reactions, including protein denaturation, occur that likely influence 

the aforementioned palatability traits. 

 The extent of cooking impacts the perceived flavor of beef. The longer beef is cooked, 

the longer that the reactions responsible for flavor development can occur. Resultant flavors from 

meat cooked to differing degrees of doneness may be associated with positive and negative 

flavor perceptions. Lorenzen et al. (2005) evaluated multiple sensory characteristics as well as 

volatile compounds associated with six different endpoint temperatures. Beef longissimus steaks 

were cooked to 55, 60, 63, 71, 77, and 82 ºC before sensory panel and volatile analysis. Beef 
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flavor as determined by sensory panelists was similar between cooking temperatures. 

Additionally, as endpoint temperatures were increased, the prevalence of roasted and burnt 

flavors increased while the occurrence of bloody and fatty flavors decreased. It is logical that 

roasted and burnt flavors should increase as higher degrees of doneness are achieved, but the 

lack of bloody and fatty flavors could be attributed to a masking effect due to more potent 

roasted and burnt flavor notes. Consumer panelists showed no preference for liking of flavor 

between cooking temperatures. Steaks cooked to 55, 60, and 63 ºC had no specific volatiles 

associated with them. Steaks cooked to 71 ºC were characterized by 2-nonanone, 2-octanone, 2-

hexanone, 3-methyl-1-butanol, and 3-methythiophene. Steaks cooked to 77 and 82 ºC were both 

associated with 3-penten-2-one, hexanal, and nonanal while the steaks cooked to 82 ºC were also 

strongly associated with 2-pentanone.  It is readily apparent that degree of doneness influences 

beef flavor and that aroma may be a vital aspect of the observed changes. 

Consumers are not alike in that they have different preferences to what is deemed 

acceptable and palatable when eating beef. Schmidt and others (2010) evaluated how consumer 

preferences aligned with beef cooked to different degrees of doneness. Consumers who stated 

that they preferred rare or medium rare steaks placed higher likeability ratings to rare and 

medium rare steaks in comparison to higher degrees of doneness. Conversely, consumers who 

stated that they preferred medium steaks showed no difference in acceptability of medium rare, 

medium, and medium well steaks, but preferred rare steaks over those cooked well done. 

Additionally, consumers preferring medium well steaks showed a preference for medium rare 

and medium USDA select steaks compared to well-done steaks, but likeability scores of USDA 

choice steaks did not favor one degree of doneness over another. Overall this study showed that 

if consumers say they prefer rare or medium rare steaks they prefer that their steak is cooked rare 

or medium rare, while those who say they prefer well done steaks prefer well done steaks over 

rare or medium rare steaks. Lastly, those who say they prefer medium or medium well steaks do 

not necessarily prefer steaks cooked to those specified degrees of doneness. 

 6. Summary 

Flavor has a great influence on palatability of beef and aroma plays an integral role in the 

development of flavor. There are vast numbers of aroma volatiles produced in cooked beef that 

present various aromas that contribute to the complex flavor of beef. Wet aging and blade 
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tenderization are two practices utilized by the meat industry to improve beef palatability. Both of 

these applications involve disruption of the muscle structure which can possibly influence flavor 

and other palatability traits. Additionally, beef is cooked to varying degrees of doneness to fulfill 

the preferences of consumers and the wide range of endpoint cooking temperatures used can 

contribute to vastly different eating experiences. The aforementioned practices could all 

influence the aroma volatile profiles of beef that could greatly influence flavor and palatability. 
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Figure 5.1 The Maillard reaction (Fay & Brevard, 2005). 
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Initiation 

RH + O2 → R• + •OH 

Propagation 

R• + O2 → ROO• 

ROO• + RH → ROOH + R• 

Termination 

R• + R• → RR 

R• + ROO• → ROOR 

ROO• + ROO• → ROOR + O2 

Figure 5.2 Mechanism for lipid oxidation (Gray, 1978). 
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Table 5.1 Compounds identified in beef and characteristic flavors and/or aromas associated with 

those compounds.
1
 

Compound name Characteristic flavors/aromas 

Benzaldehyde Volatile almond oil, bitter almond, burning aromatic taste 

Benzene Pleasant, distinct 

sec-Butanamine Seafood, green, onion 

Butenal Malty, green, roast 

n-Caprioc acid Goaty 

3-Carene Sweet and pungent odor but more agreeable than turpentine, orange 

peel, lemon, resin 
Cyclobutanol Roasted 

2,2,6-Trimethylcyclohexanone Mint, acetone 

2,4-Decadienal Deep fat flavor, chicken flavor at 10 ppm, citrus/orange/grapefruit 

flavor at lower dilutions 
Decanal Powerful, waxy, aldehydic, orange, citrus peel 

2-Decenal Tallow, orange 

1,3-Bis(1,1-dimethylethyl) benzene Cooked beef 

N,N’-Dimethyl 1,2-ethanediamine Ammonia 

5-Ethylcyclopent-1-enecarboxaldehyde Fragrant, perfume 

2-Pentylfuran Green bean, butter 

2,4-Heptadienal Nut, fat 

Heptanal Oily, fatty, rancid, unpleasant, penetrating, fruity odor in liquid 

1-Heptanol Fragrant, woody, oily, green, fatty, winey, sap, herb 

2-Heptanone Fruity, spicy, cinnamon, penetrating fruity odor in liquid 

6-Methyl 2-heptanone Cloves, menthol, eugenol 

2-Heptenal Soapy, fatty, almond, fishy, unpleasant 

Hexanal Fatty-green, grassy, strong green, tallow, fat, unripe fruit when dilute 

Hexane Faint peculiar odor 

Hexanol Woody, cut grass, chemical-winey, fatty, fruity, weak metallic 

2-Ethyl 1-hexanol Resin, flower, green 

2-Hexen-1-ol Green, sharp, leafy, fruity, unripe banana 

3-Methylbutanal Pungent apple-like odor, malt 

2,4-Nonadienal Fat, was, green, watermelon, geranium, pungent 

Nonanal Floral, citrus, fatty, grassy, waxy, green 

2-Nonanone Hot milk, soap, gree, fruity, floral 

2-Nonenal Cardboardy, orris, fat, cucumber 

Octanal Harsh, fatty, orange peel, soapy, lemon, green, honey 

1-Octanol Penetrating aromatic odor, fatty, waxy, citrus, oily, walnut, moss, 

chemical, metal, burnt 
2-Methyl 3-Octanone Herb, butter, resin, gasoline 

2-Octenal Green, nut, fat 

1-Octen-3-ol Mushrooms, compound excreted by many insects 

2-Octen-1-ol Green citrus 

3-Octen-2-one Nut, crushed bug, earthy, spicy, herbal, sweet, mushroom, hay, 

blueberry 
Pentanal Almond, malt, pungent, acrid 

Pentane Very slight warmed-over flavor, oxidized 

1-Pentanol Mild odor, fusel oil, fruit, balsamic 

5-Amino 1-pentanol Mild 

α-Pinene Piney, fruity, citrus, turpentine 

Piperazine Salty 

Propanol Alcoholic 

Tetradecane Alkand 

Tridecane Alkane 

2-Tridecenal Sweet, stong, spicy 
1
Adapted from Calkins and Hodgen (2007). 
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Chapter 6 - The effects of extended postmortem aging and blade 

tenderization on the volatile compound profile of raw and cooked 

beef gluteus medius steaks. 

 Abstract 

The aim of this study was to evaluate impact of 5, 19, 33, 47, or 61 d of postmortem 

aging and blade tenderization (BT) on aroma volatile compound generation from raw and cooked 

beef gluteus medius steaks. Aging time × BT treatment interactions (P < 0.05) were observed for 

4-methylphenol from raw and cooked steaks. Heptanal, octanal, and nonanal concentrations were 

greater (P < 0.05) from raw steaks aged longer than 19 d in comparison to steaks aged 5 d, but 

exhibited no response (P > 0.05) to aging in cooked steaks. These results suggest aging-induced 

lipid oxidation may be best assessed using raw steaks. The only Maillard reaction product from 

cooked steaks that was affected (P = 0.006) by aging was 3-ethyl-2,5-dimethylpyrazine. 

Numerous Maillard reaction and lipid oxidation products from cooked steaks were decreased (P 

< 0.05) by use of BT, implying that BT may alter beef aroma. 

Keywords: aging, aroma, beef, blade tenderization, GC/MS, SPME  
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 1. Introduction 

Beef flavor is complex and heavily influences the acceptability of beef. Flavor is mainly 

comprised of the two sensations of taste and smell (Farmer, 1994). The tongue can recognize 

water-soluble compounds responsible for the basic tastes (sweet, salty, sour, bitter, and umami) 

(Moody, 1983). The aroma portion of flavor is more diverse than the taste portion as the human 

nose can identify thousands of different odors (Farmer, 1994). Beef aroma is influenced by the 

presence of hundreds of different volatile compounds that form during cooking (Calkins & 

Hodgen, 2007). 

Raw meat has little aroma and a blood-like taste (Stetzer, Cadwallader, Singh, Mckeith, 

& Brewer, 2008), but it contains numerous precursors, such as amino acids, peptides, reducing 

sugars, vitamins, nucleotides and fatty acids, that can generate aromas through the Maillard 

reaction and lipid oxidation during cooking (Madruga, Elmore, Oruna-Concha, Balagiannis, & 

Mottram, 2010). Hodge (1953) provides a thorough explanation of the Maillard reaction, which 

is characterized by non-enzymatic browning induced by reactions between amino acids and 

reducing sugars in the presence of heat. A diverse array of volatile compounds is generated 

during the Maillard reaction and includes aldehydes, sulfur compounds, furans, pyridines, 

pyrazines, and thiazoles among other classes of compounds that have strong aromatic properties 

(Mottram, 1994). Off-flavor development and formation of rancidity occur during fresh meat 

storage as a result of lipid oxidation (Ladikos & Lougovois, 1990). Cooking can initiate 

oxidation reactions similar to those that contribute to rancidity; however, they occur more rapidly 

and form different compounds that produce desirable flavors (Ladikos & Lougovois, 1990). 

Hydroperoxides are the primary products of lipid oxidation and do not contribute to aroma, but 

once these compounds decompose, they form hydrocarbons, alcohols, ketones, and aldehydes 

which strongly influence aroma (Shahidi, 1989).  

Commonly, beef is subjected to postmortem aging under anaerobic conditions through a 

process called “wet aging.” Aging can increase product tenderness due to proteolytic degradation 

of cytoskeletal proteins (Koohmaraie, 1996) and aging periods up to 28 d improve beef 

palatability (Brewer & Novakofski, 2008; Jeremiah & Gibson, 2003). Storage times of 

anaerobically packaged beef in the U.S. are very inconsistent. On average, anaerobically 

packaged beef is held in refrigerated storage for 20.5 d, but storage times can range from 1 d to 
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as long as 358 d before product reaches the retail counter (Guelker et al., 2013). A wide range of 

storage times could increase the variability of beef palatability traits within the beef supply 

which could compromise consumer confidence in beef.  

Wet aging for periods longer than 30 d is common when handling product that is 

inherently tough or when product is exported. Beef aged as long as 28 d exhibits tenderness 

improvement, but not all muscles demonstrate the same response to aging, as some require 

longer aging periods to achieve maximum tenderness (Gruber et al., 2006). Additionally, 

proteolysis, which improves tenderness, can still increase in the gluteus medius when aging times 

are extended to 40 d postmortem (King et al., 2009).  

Although extended aging times can improve tenderness, they may adversely influence 

beef flavor. Beef aged up to 35 d has an increased perception of sour and rancid flavors in 

addition to increased off-flavor intensity when compared to beef aged for a shorter time period 

(Yancey, Dikeman, Hachmeister, Chambers IV, & Milliken, 2005). Moreover, flavor intensity 

decreases while off-flavor intensity increases when aging times are extended to 42 d in beef strip 

loins and cuts from the round (Juarez et al., 2010). The natural proteolysis responsible for 

increased tenderness also increases the pool of available aroma precursors which could alter the 

quantity of volatiles formed via the Maillard reaction during cooking and ultimately impact beef 

aroma (Koutsidis et al., 2008).  

Beef top sirloin butts commonly undergo blade tenderization to improve tenderness 

(George-Evins, Unruh, Waylan, & Marsden, 2004). Blade tenderization decreases Warner-

Bratzler shear force and increases perceived tenderness in top sirloin butts as assessed by sensory 

panel (George-Evins et al., 2004). Most research has determined that blade tenderization does 

not influence beef flavor (George-Evins et al., 2004; Savell, McKeith, Murphey, Smith, & 

Carpenter, 1982; Medeiros, Field, Menkhaus, Riley, & Russell, 1989), but other studies have 

shown that blade tenderization decreases flavor intensity scores of beef top sirloin steaks 

(Jeremiah, Gibson, & Cunningham, 1999) and beef strip loin steaks (Bidner, Montgomery, 

Bagley, & McMillin, 1985). Physical disruption of meat structure, as seen in blade tenderization, 

used to increase tenderness may alter the form of aroma precursors and ultimately cause an 

alteration to the volatile profile of raw and cooked beef.  

Aroma volatile production has been frequently evaluated in beef that has undergone 

postmortem aging as long as 21 d, but research investigating the impact of longer aging periods 
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on the presence of aroma volatiles has been limited. Additionally, the amount of research 

evaluating the effects of blade tenderization on aroma volatile formation is negligible. Beef top 

sirloin butts, which contain the gluteus medius, are frequently blade tenderized and/or aged 

longer than 21 d postmortem to improve tenderness. Aging and blade tenderization can improve 

tenderness, but the effects of these processes on aroma compound formation are essentially 

unknown. Therefore, the objectives of this study were to evaluate the changes in the aroma 

volatile profiles from raw and cooked gluteus medius steaks caused by extended postmortem 

aging and the application of blade tenderization.  

 2. Materials and methods 

 2.1 Experimental design 

Five top sirloin butts (IMPS 184) were purchased from three commercial beef processing 

facilities (n=15) and were transported to the Kansas State University Meat Laboratory 

(Manhattan, KS). The five top sirloin butts from each source were randomly assigned to 5, 19, 

33, 47, or 61 d of postmortem aging. The top sirloins butts were stored in their original anaerobic 

packages at 2 ºC throughout the duration of each aging period. Upon the completion of their 

respective aging treatment, top sirloin butts were removed from their packaging and the gluteus 

medius (GM) was removed and trimmed free of fat. The GM was cut down the center, parallel 

with the muscle fibers, to yield two approximately equal sized pieces which were randomly 

assigned to either no tenderization (NT) or blade tenderization (BT) treatment. The BT-treated 

GM pieces were processed through a blade tenderizer (Ross model T7001 tenderizer, Midland, 

VA) twice, being turned over between cycles. Each GM piece yielded one 2.54-cm thick steak (n 

= 30) that was removed by cutting perpendicular to the muscle fibers. Steaks were vacuum 

packaged (Prime Source Vacuum Pouches; 76.2 μm, STP Barrier, Nylon/PE Vacuum Pouch; 

oxygen transmission rate 0.04 g/254 cm
2
/24 h at 0 ºC; water vapor transmission rate 0.2 cc/254 

cm
2
/24 h at 0 ºC at 0% relative humidity) and stored at 20 ºC until analyses were conducted. 

 2.2 Aroma volatile extraction 

Steaks were thawed for approximately 24 h at 0-2 ºC prior to sample preparation for 

volatile analysis. Two samples (0.5 g) were attained by cutting a thin strip across the center of 

the steak and then removing the center portion of the strip so the sample spanned from cooked 
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surface to cooked surface. Samples were minced with a knife while the remaining steak portion 

was re-packaged in a vacuum sealed bag (Prime Source Vacuum Pouches; 76.2 μm, STP Barrier, 

Nylon/PE Vacuum Pouch; oxygen transmission rate 0.04 g/254 cm
2
/24 h at 0 ºC; water vapor 

transmission rate 0.2 cc/254 cm
2
/24 h at 0 ºC at 0% relative humidity) and stored at 0-2 ºC until 

needed for volatile analysis of cooked steaks. Minced samples were placed in a 10 mL screw cap 

vial (Supelco, Bellefonte, PA) fitted with a polytetrafluoroethylene/silicone septum (Supelco, 

Bellefonte, PA). Each sample had 10 μL of internal standard (1 ppm 1, 3 dichlorobenzene) added 

to the vial prior to equilibration. Samples were analyzed using headspace-solid phase 

microextraction (HS-SPME) as described by Koppel, Adhikari, and Di Donfrancessco (2013) 

using the following modifications. Sample vials were equilibrated at 45 ºC and agitated at 250 

rpm for 15 min using an autosampler (Pal system, model CombiPal; CTC Analytics, Zwingen, 

Switzerland). A 50/30 μm divinylbenzene/carboxen/polydimethyl-siloxane fiber (Supelco, 

Bellefonte, PA) was then exposed to the sample headspace for 30 min at 45 ºC. The analytes 

were desorbed from the fiber coating to the injection port of a gas chromatograph (GC) at 270 ºC 

for 3 min in splitless mode. The fiber was baked at 270 ºC for 20 min between samples to 

eliminate residual analytes. 

Steaks used for cooked volatile analysis were cooked to an internal temperature of 60 ºC 

using a George Foreman Grill (Model GRP12, Miramar, FL).  The grill was powered on and 

allowed to heat for 10 min and then the raw steak was placed on the grill and the top was closed. 

Steak temperatures were monitored using a traceable expanded-range thermometer (Fisher 

Scientific, Pittsburgh, PA) that was inserted into the approximate geometric center of the steak. 

Two samples (0.5 g) were taken to represent a cross-section from the center of each cooked 

steak. Samples were held for no longer than 45 min before being prepared and analyzed as 

previously described.   

 2.3 Volatile identification and quantification 

Volatile separation, identification, and quantification were conducted on a GC (Varian 

GC CP3800; Varian Inc., Walnut Creek, CA) combined with a Varian mass spectrometer (MS) 

detector (Saturn 2000). An RTX-5MS (Crossbond 5% diphenyl/95% dimethyl polysiloxane) 

column (Restek U.S., Bellefonte, PA; 30 m × 0.25mm × 0.25 μm film thickness) was used to 
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separate the volatiles. The column was initially heated at 40 ºC for 4 min and temperature 

increased by 5 ºC per min to 260 ºC, where it was held for 7 min. 

Volatile compounds were identified using mass spectra as well as linear retention indices 

(NIST/EPA/NIH Mass Spectral Library, Version, 2.0, 2005). The retention times for a C7-C40 

saturated alkane mix (Supelco Analytical, Bellefonte, PA) were used in determining 

experimental linear retention indices for the volatile compounds that were identified.  

 2.4 Statistical analysis 

Data were analyzed as a split-plot design with processing facility serving as the whole-

plot and aging time being the whole-plot treatment. Each top sirloin served as the split plot with 

BT treatments functioning as the split-plot treatment. Treatment differences were determined 

using the Proc Mixed procedures of SAS (SAS Institute, Inc., Cary, NC). Post-hoc mean 

separation was carried out using Fisher’s least significant differences and all data were analyzed 

at a 5% level of significance. Due to the numerous volatile compounds assessed, principal 

component analysis (PCA) of raw and cooked steaks was also conducted using Unscrambler® 

(Version 10.2; Camo Software, Oslo, Norway) to reduce dimensionality of the data set. 

 3. Results and discussion  

A summary of all significant main and interaction affects that aging and BT had on the 

presence and concentration of aroma volatiles from raw and cooked GM steaks are presented in 

Table 6.1. 

 3.1 Effects of aging and blade tenderization on volatiles from raw GM steaks 

A total of 1 alcohol, 4 aldehydes, 4 carboxylic acid methylesters, 1 furan, 1 hydrocarbon, 

2 ketones, 2 phenols, and 1 pyrazine were present in quantifiable amounts in raw steak samples. 

The lone compound to display an aging × tenderization interaction (P = 0.018) was 4-

methylphenol (Figure 6.1). The concentration of 4-methylphenol was similar (P > 0.05) between 

BT and NT steaks that were aged 5, 33, and 47 d. The NT steaks that were aged 19 and 61 d 

displayed greater (P < 0.05) concentrations of 4-methylphenol than BT steaks. The concentration 

of 4-methylphenol produced by NT steaks aged 5 d was less (P < 0.05) than NT steaks aged 19, 

47, and 61 d but similar (P > 0.05) to NT steaks aged 33 d. The NT steaks aged 19, 33, 47, and 

61 d maintained similar (P > 0.05) concentrations of 4-methylphenol. The BT steaks from all 
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aging treatments displayed similar (P > 0.05) concentrations of 4-methylphenol. 4-Methylphenol 

has previously demonstrated a relationship with animal odor in cooked lamb (Young, Berdague, 

Viallon, Rousset-Akrim, & Theriez, 1997) but has received limited attention in other research 

evaluating beef aroma volatiles. 

The effects of aging time on volatile compound concentrations from raw GM steaks are 

displayed in Table 6.2. The only compounds that displayed a response to aging were the 

aldehydes heptanal (P = 0.047), octanal (P = 0.002), and nonanal (P = 0.019). Concentrations of 

heptanal, octanal, and nonanal from steaks aged 5 d were similar (P > 0.05) to steaks aged 19 d 

but less (P < 0.05) than steaks aged 33, 47, and 61 d. Additionally, steaks aged 19 d produced 

reduced (P < 0.05) concentrations of heptanal, octanal, and nonanal than steaks aged 61 d, while 

steaks aged 19, 33, and 47 d produced similar (P > 0.05) concentrations of all three compounds. 

Moreover, heptanal, octanal, and nonanal were found in similar (P > 0.05) concentrations in 

steaks aged 33, 47, and 61 d. The aroma of heptanal has been characterized as oily, rancid, and 

unpleasant (Calkins & Hodgen, 2007; Madruga et al., 2010), while soapy, lemon, and green have 

been used to characterize the aroma and flavors that are experienced when octanal is present 

(Calkins & Hodgen, 2007). Aromas and flavors associated with nonanal have been described as 

soapy and tallowy (Stetzer et al., 2008) as well as floral, citrus, and grassy (Calkins & Hodgen, 

2007). Aldehydes form by free radical initiated lipid autoxidation reactions (Mottram, 1998). As 

aging time increases, it is expected that lipid oxidation will increase (Yancey et al., 2006) which 

should result in a greater accumulation of the aforementioned aldehydes and could lead to the 

formation of rancid off-flavors (Mottram, 1998).  

All compounds, aside from 4-methylphenol, heptanal, octanal, and nonanal, identified in 

quantifiable amounts from raw samples remained similar (P > 0.05) across aging treatments. 

Hexanal was among the compounds that showed no change (P = 0.066) in response to the aging 

treatments. Hexanal is one of the most prevalent volatile compounds commonly generated by 

beef. Hexanal is known to be directly proportional to thiobarbituric acid reactive substances 

(TBARS), which is a measure of lipid oxidation (Shahidi & Pegg, 1994; Ullrich & Grosch, 

1987). The lack of change in hexanal due to aging time contrasts prior research which 

demonstrates hexanal increases when aging time is increased in ground beef patties (Ismail, Lee, 

Ko, & Ahn, 2009); however, the current study used steaks which should exhibit less oxidation as 
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there is a decreased surface area that interacts with oxygen and no free radicals that are produced 

during grinding. 

The impact of BT treatment on the generation of volatile compounds from raw GM 

steaks is depicted in Table 6.3. The implementation of BT decreased the concentrations of 2-

pentylfuran (P = 0.006) and methyl butanoate (P = 0.014), while all other volatile compounds 

detected in raw steaks remained unaffected (P > 0.05) by BT treatment. The most likely route of 

formation of 2-pentylfuran is through the 9-hydroperoxide of linoleic acid (Mottram, 1991) 

while butanoate can be formed by lipid oxidation (Stetzer et al., 2008). The physical disruption 

of muscle structure suggests that BT would increase the amounts of free radicals available to 

initiate lipid oxidation; however, the BT treatment used in the current study was applied prior to 

cutting steaks at the completion of the designated aging time. It is quite possible that BT could 

initiate a greater amount of lipid oxidation in raw steaks if the BT treatment was applied prior to 

the designated aging time. 

 3.2 Principal component analysis (PCA) of volatile compounds generated by raw 

steaks 

Figure 6.2 outlines PCA conducted on volatile compounds from raw GM steaks subjected 

to BT or NT at five aging times. This PCA describes 65% and 16% of the total variation 

associated with principal components (PC) 1 and 2, respectively. Heptanal, octanal, nonanal, 2,3-

octanedione, and 1-octen-3-ol exhibited great positive scores along PC 1 while 3-hydroxy-2-

butanone displayed the greatest negative scores along PC 1. The scores of the previously 

mentioned compounds suggests they contributed greatly to the variability associated with PC1 

and minimally to the variation of PC 2, where they all displayed scores close to 0. Both BT and 

NT steaks aged 5 d as well as BT steaks aged 19 d showed the greatest negative scores along PC 

1 and were the most closely associated with 3-hydroxy-2-butanone. The 47 BT, 33 BT, and 61 

NT samples were separated from 5 BT, 5 NT, and 19 BT along PC 1 as they exhibited positive 

scores implying they contained greater concentrations of heptanal, octanal, nonanal, 2,3-

octanedione, and 1-octen-3-ol.  
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 3.3 Effects of aging and blade tenderization on volatiles from cooked GM steaks 

A total of 1 alcohol, 5 aldehydes, 4 carboxylic acid methylesters, 1 furan, 1 hydrocarbon, 

2 ketones, 2 phenols, and 2 pyrazines were produced in quantifiable amounts from cooked 

steaks. The only compound that displayed an aging × tenderization treatment interaction (P = 

0.027) was 4-methylphenol (Figure 6.3). The 4-methylphenol concentrations from NT steaks 

were greater (P < 0.05) than concentrations from BT steaks at 19 and 61 d of age. The NT steaks 

generated 4-methylphenol at 5 d of aging in lesser (P < 0.05) concentrations than 19, 33, and 61 

d but produced concentrations similar (P = 0.410) to those observed with steaks aged 47 d. 

Steaks that were BT maintained similar (P > 0.05) concentrations of 4-methylphenol across all 

aging treatments.  

All detected aldehydes showed no change (P > 0.05) due to aging time (Table 6.4) which 

contrasts what was observed when raw samples were evaluated as heptanal, octanal, and nonanal 

were increased at longer aging periods. Aldehydes can be generated via autoxidation of 

unsaturated fatty acids during long-term storage and lead to rancid off-flavors if they are present 

in excessive amounts (Mottram, 1998). In cooked meat, lipid oxidation reactions occur quickly 

and lead to the production of volatile compounds associated with desirable flavors (Calkins & 

Hodgen, 2007). Saturated and unsaturated aldehydes with 6-10 carbons are major volatile 

components of all cooked meats and play an important role in meat flavor (Mottram, 1998). 

Aldehydes, especially hexanal, are often used to assess lipid oxidation in meat products as they 

are major products of lipid oxidation and have shown a strong correlation with TBARS (St. 

Angelo et al., 1987); however, hexanal and TBARS from cooked beef have previously shown a 

lack of correlation with each other (Spanier, Flores, McMillin, & Bidner, 1997). Aldehydes 

observed in the current study presented differences between aging treatments in raw samples; 

however, these differences may be equilibrated in cooked samples as those aldehydes can enter 

Maillard reaction pathways and are generally produced in greater and more variable quantities 

during the thermal degradation of lipid (Mottram, 1998). 

Only methyl hexanoate (P = 0.029) and 3-ethyl-2,5-dimethylpyrazine (P = 0.006) were 

influenced by aging treatments (Table 6.4). Methyl hexanoate was present in greater (P < 0.05) 

concentrations in steaks aged 33 d in comparison to steaks aged 5 and 61 d. Additionally, steaks 

aged 19 and 47 d generated methyl hexanoate in concentrations that were similar (P > 0.05) to 

steaks from all other aging treatments. Methyl hexanoate has been identified in fruits and has 
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been associated with pineapple, sweet, and fruity aromas (Spanier et al., 1998). Hexanoate has a 

“sweaty” odor (Spanier, Vercellotti, & James, 1992) and has been shown to double in 

concentration as beef is aged from 7 d to 14 d (Stetzer et al., 2008). 

3-Ethyl-2,5-dimethylpyrazine was the only Maillard reaction product that was altered by 

aging as it was present in greater (P < 0.05) concentrations from steaks aged 33 and 61 d in 

comparison to steaks aged 5, 19, and 47 d. The Maillard reaction occurs when reducing sugars 

and amino acids react during heating (Mottram, 1994). Meat contains numerous Maillard 

reaction precursors. Free sugars and amino acids are known to increase when beef is aged as 

long as 21 d, which suggests that the production of Maillard reaction compounds should increase 

as aging time is increased (Koutsidis et al., 2008). Numerous Maillard reaction products and 

intermediates, such as benzaldehyde, 3-hydroxy-2-butanone, and 2,5-dimethylpyrazine, were 

unaffected (P > 0.05) by changes in aging time which contrasts the thought that increased 

availability of volatile precursors results in an increase in Maillard reaction products. 

Aging beef as long as 28 d can be used to improve beef palatability through tenderness 

improvement (Gruber et al., 2006). In the current beef supply, some anaerobically packaged 

subprimals are exposed to shorter or much longer aging times than the average 20.5 d (Guelker 

et al., 2013). Multiple studies show a decrease in beef flavor intensity and increase in off-flavor 

intensity as beef is aged for longer time periods (Juarez et al., 2010; Yancey et al., 2005). The 

current study provides little explanation to why a decrease in beef flavor intensity can occur 

during aging as none of the volatiles detected in this study demonstrated a decrease as aging time 

increased. Bitter, sour, and livery are a few off-flavors that reportedly increased when aging 

times are increased (Spanier, Flores, McMillin, & Bidner, 1997; Yancey et al., 2005). The 

current study only displayed two volatile compounds that were affected by aging time. 3-Ethyl-

2,5-dimethylpyrazine should contribute to the perception of nutty aromas, while hexanoic acid 

methylester could contribute some negative flavors as it has been associated with fruity and 

sweaty odors (Spanier et al. 1992; Spanier et al., 1998). Bitter and sour are commonly known as 

basic tastes and livery off-flavor has been associated with increases of free iron (Yancey et al., 

2006). It is quite possible that the development of off-flavors during aging are more associated 

with taste rather than aroma as neither 3-ethyl-2,5-dimethylpyrazine nor hexanoic acid 

methylester have been associated with bitter, sour, or livery flavors.  
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Main effects of blade tenderization treatment on cooked steak volatile compound 

concentrations are found in Table 6.5. Hexanal, which is formed from the breakdown of ω6 fatty 

acids and can present fatty, green, and unripe-fruit aromas (Calkins & Hodgen, 2007; Madruga et 

al., 2010), was decreased (P = 0.037) by BT as was heptanal (P = 0.021) which is associated 

with oily, rancid, and unpleasant aromas (Calkins & Hodgen, 2007; Madruga et al., 2010). 

Additionally, the Maillard reaction product benzaldehyde, which is associated with almond oil-

like and bitter almond flavors in beef, was reduced (P = 0.038) by BT. Moreover, both octanal 

and nonanal were decreased (P < 0.05) by the implementation of BT. Octanal has been related to 

soapy, lemon, and green aromas (Calkins & Hodgen, 2007), while nonanal is associated with 

soapy and tallowy aromas (Stetzer et al., 2008). Many aldehydes identified in this study can be 

produced during the thermal degradation of fatty acids during cooking or through Strecker 

degradation during the Maillard reaction (Mottram, 1998).  

The lone furan, 2-pentylfuran, was reduced (P = 0.042) by the use of BT. The aroma and 

flavor of 2-pentylfuran has been described as green, earthy, and beany (Stetzer et al., 2008). 

Moreover, both 2,5-dimethylpyrazine and 3-ethyl-2,5-dimethylpyrazine, which are Maillard 

reaction products, were both present in decreased (P < 0.05) concentrations in BT steaks. Cocoa 

and roasted nut have been used to describe aromas and flavors attributed to the presence of 2,5-

dimethylpyrazine (Madruga et al., 2010). 

Most research evaluating the influence of BT on flavor have reported no differences in 

regard to flavor intensity (George-Evins et al., 2004; Savell et al., 1982), but other research have 

demonstrated decreased flavor intensities from BT beef top sirloin steaks and ribeye steaks 

(Jeremiah et al., 1999) as well as BT beef striploin steaks (Bidner et al., 1985). The results of the 

current study suggest that flavor should be decreased by BT as many thermally generated 

compounds were reduced by the incorporation of BT. All cooked steaks assessed in this study 

were cooked to a specific internal temperature (60 °C). The structure and composition of muscle 

tissue serves as an insulatory barrier that restricts heat from entering the center of a steak 

(Hallstrom, Skjoldebrand, & Tragardh, 1988). Blade tenderization achieves tenderness 

improvement through physical disruption of muscle structure (Bowker et al., 2007). The muscle 

structure of a BT steak is much different than NT steaks and the alteration of muscle structure 

could reduce the cooking time needed to meet a specified degree of doneness as has been 

previously reported (Savell, Smith, & Carpenter, 1977; Schwartz & Mandigo, 1974). If cooking 
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time is reduced by BT, there is a reduced amount of time for both lipid oxidation and Maillard 

reactions to occur which may explain the observed decreases of aldehydes and pyrazines in the 

current study. 

Another potential mechanism that may explain the suppressed volatile production 

associated with BT steaks could be the presence of free water. The Maillard reaction is 

dependent on water activity and occurs more readily when moisture levels are reduced (Jaeger, 

Janositz, & Knorr, 2010). The disruptions of muscle structure due to BT can cause an increase of 

purge during storage (Davis, Smith, & Carpenter, 1977) and disruption of myofibrillar protein 

can increase the amount of free water present in a muscle (Huff-Lonergan & Lonergan, 2005). 

The increased amounts of free water that may be present in BT steaks could potentially interact 

with the cooked meat surface and ultimately suppress the amount of Maillard reaction products 

generated during cooking.  

 3.4 Principal component analysis (PCA) of volatile compounds generated by cooked 

steaks 

The PCA conducted on cooked steak volatiles is displayed in Figure 6.4. This PCA 

described 57% of the total variation for PC 1 and 32% of the total variation for PC 2. Many 

compounds routinely associated with cooked beef, such as aldehydes, showed high positive 

scores along PC 1, suggesting they contributed greatly to the variability associated with PC 1. 

Aside from the samples aged 47 d, BT samples had decreased values along PC1 in comparison to 

NT samples. The greater values along PC 1 exhibited by NT samples agree with the findings 

detailed in Table 6.5 that showed greater concentrations of aldehydes and pyrazines for NT 

samples in comparison to BT samples. Both NT and BT samples from 33 d of aging showed the 

greatest values with respect to PC 2 which suggests they are more associated with the observed 

carboxylic acid methylesters. Table 6.4 illustrated no differences (P > 0.05) between aging times 

for most compounds; however, methyl hexanoate concentrations were greater (P < 0.05) at 33 d 

of aging in comparison to 5 and 61 d of aging, which agrees with the PCA displayed in Figure 

6.4. 
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 4. Conclusions 

Raw GM steaks aged as long as 61 d exhibited increased concentrations of heptanal, 

octanal, and nonanal which are associated with lipid oxidation; however, these changes were not 

seen in cooked GM steaks. The results of this study suggest that if the primary objective of 

volatile analysis is to assess lipid oxidation, it is best to assess raw beef as lipid oxidation 

products can be altered by thermal degradation or involvement in the Maillard reaction during 

cooking. The effects of aging time on cooked GM steaks was minimal as only two compounds, 

methyl hexanoate and 3-ethyl-2,5-dimethylpyrazine, were changed in response to aging which 

suggests that aging should have minimal influence on cooked beef aroma. Maillard reaction 

products were found in relatively low quantities with the sampling method used in this study 

which could explain the minimal changes observed due to aging treatment. Identifying specific 

areas, such as the cooked meat surface, may clarify the influence aging has on compounds 

associated with cooking. The implementation of BT had a significant influence on volatile 

compound production. The use of BT decreased the presence of multiple lipid oxidation and 

Maillard reaction products generated by cooked GM steaks. The inhibition of volatile production 

due to BT could affect flavor development in BT products and this matter warrants further 

investigation to understand the role that heat transfer and free water availability have in volatile 

production. 
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Table 6.1 Summary of treatment effects on volatile compound concentrations from raw and cooked beef gluteus medius steaks. 

 Linear
 

Raw  Cooked 

 Retention 

Index 

Aging 

Time 

Tenderization 

Treatment 
Aging × 

Tenderization 

 Aging 

Time 

Tenderization 

Treatment 
Aging × 

Tenderization 

Alcohols         

  1-Octen-3-ol 981 NS NS NS  NS NS NS 

Aldehydes         

  Hexanal 800 NS NS NS  NS * NS 

  Heptanal 902 ** NS NS  NS * NS 

  Benzaldehyde 974 ND ND ND  NS * NS 

  Octanal 1004 ** NS NS  NS * NS 

  Nonanal 1106 * NS NS  NS * NS 

Carboxylic acid methylesters         

  Methyl butanoate 726 NS * NS  NS NS NS 

  Methyl pentanoate 825 NS NS NS  NS NS NS 

  Methyl hexanoate 923 NS NS NS  * NS NS 

  Methyl octanoate 1122 NS NS NS  NS NS NS 

Furans         

  2-Pentylfuran 992 NS * NS  NS * NS 

Hydrocarbons         

  Toluene 774 NS NS NS  NS NS NS 

Ketones         

  3-Hydroxy-2-butanone  NS NS NS  NS NS NS 

  2,3-Octanedione 983 NS NS NS  NS NS NS 

Phenols         

  Phenol 978 NS NS NS  NS NS NS 

  4-Methylphenol 1075 NS ** *  NS * * 

Pyrazines         

  2,5-Dimethylpyrazine 917 ND ND ND  NS * NS 

  3-Ethyl-2,5-dimethylpyrazine 1082 NS NS NS  * * NS 

* Treatment means differ (P < 0.05).  

**Treatment means differ (P < 0.005). 

NS: No difference detected between treatment means (P > 0.05). 

ND: Not detected in quantifiable amount and least squares mean not computed for treatment group. 
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Figure 6.1 Concentrations of 4-methylphenol from raw gluteus medius steaks as affected by aging time and blade tenderization 

treatment.  

Top sirloin butts were aged in anaerobic packaging at 2 °C for 5, 19, 33, 47, or 61 d. Gluteus medius pieces yielding blade tenderized 

steaks were processed twice through a blade tenderizer. Error bars represent the mean ± SEM. *P < 0.05. Aging time × tenderization 

treatment interaction P = 0.019.  

 

* 
* 
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Table 6.2 Effects of postmortem aging on volatile compound concentrations (μg/g) from raw gluteus medius steaks. 

 Aging Time (d)   

 5 19 33 47 61 SEM P-Value 

Alcohols        

  1-Octen-3-ol 0.015 0.023 0.057 0.051 0.062 0.015 0.113 

Aldehydes        

  Hexanal 0.044 0.067 0.141 0.175 0.156 0.042 0.066 

  Heptanal 0.007
c
 0.013

bc
 0.020

ab
 0.020

ab
 0.025

a
 0.003 0.005 

  Octanal 0.008
c
 0.014

bc
 0.024

ab
 0.024

ab
 0.032

a
 0.004 0.002 

  Nonanal 0.045
c
 0.076

bc
 0.108

ab
 0.116

ab
 0.155

a
 0.021 0.019 

Carboxylic acid methylesters        

  Methyl butanoate 0.179 0.211 0.207 0.196 0.193 0.0530 0.989 

  Methyl pentanoate 0.027 0.034 0.038 0.040 0.031 0.0076 0.785 

  Methyl hexanoate 0.390 0.434 0.567 0.517 0.451 0.0871 0.643 

  Methyl octanoate 0.115 0.106 0.187 0.175 0.137 0.0474 0.552 

Furans        

  2-Pentylfuran 0.001 0.002 0.006 0.002 0.007 0.002 0.076 

Hydrocarbons        

  Toluene 0.077 0.087 0.085 0.086 0.078 0.0091 0.883 

Ketones        

  3-Hydroxy-2-butanone 0.072 0.048 0.041 0.025 0.038 0.021 0.587 

  2,3-Octanedione 0.008 0.012 0.028 0.025 0.027 0.009 0.238 

Phenols        

  Phenol 0.006 0.008 0.007 0.007 0.005 0.002 0.875 

Pyrazines        

  3-Ethyl-2,5-dimethylpyrazine 0.004 0.002 0.006 0.002 0.002 0.003 0.743 
abc

Means with different superscripts within the same row differ (P < 0.05). 
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Table 6.3 Effects of blade tenderization on volatile compound concentrations (μg/g) from raw gluteus medius steaks. 

 Non-Tenderized Blade Tenderized SEM P-Value 

Alcohols     

  1-Octen-3-ol 0.045 0.039 0.011 0.637 

Aldehydes     

  Hexanal 0.126 0.108 0.0334 0.522 

  Heptanal 0.020 0.015 0.0025 0.069 

  Octanal 0.024 0.017 0.0024 0.058 

  Nonanal 0.114 0.086 0.014 0.166 

Carboxylic acid methylesters     

  Methyl butanoate 0.215 0.180 0.0323 0.014 

  Methyl pentanoate 0.037 0.031 0.0038 0.072 

  Methyl hexanoate 0.499 0.445 0.0426 0.155 

  Methyl octanoate 0.144 0.144 0.0330 0.998 

Furans     

  2-Pentylfuran 0.005 0.002 0.0008 0.006 

Hydrocarbons     

  Toluene 0.085 0.081 0.0052 0.559 

Ketones     

  3-Hydroxy-2-butanone 0.041 0.048 0.011 0.467 

  2,3-Octanedione 0.022 0.018 0.0065 0.423 

Phenols     

  Phenol 0.008 0.005 0.001 0.057 

Pyrazines     

  3-Ethyl-2,5-dimethylpyrazine 0.002 0.004 0.002 0.437 
ab

Means with different superscripts within the same row differ (P < 0.05). 
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Figure 6.2 Bi-plots of principal component 1 and principal component 2 for volatile compounds from raw beef gluteus medius steaks. 

Top sirloin butts were aged in anaerobic packaging at 2 °C until the completion of the assigned aging time. Gluteus medius pieces 

yielding blade tenderized steaks were processed twice through a blade tenderizer. Legend – 5: 5 d postmortem aging, 19: 19 d 

postmortem aging, 33: 33 d postmortem aging, 47: 47 d postmortem aging, 61: 61 d postmortem aging. NT: non-tenderized, BT: blade 

tenderized.  OCTE: 1-octen-3-ol, HEXL: hexanal, HEPT: heptanal, BENZ: benzaldehyde, OCTL: octanal, NONL: nonanal, BAME: 

methyl butanoate, PAME: methyl pentanoate, HAME: methyl hexanoate, OAME: methyl octanoate, PNFU: 2-pentylfuran, TOLU: 

toluene, HYBU: 3-hydroxy-2-butanone, OCTI: 2,3-octanedione, PHEN: phenol, MPHE: 4-methylphenol, and EDPZ: 3-ethyl-2,5-

dimethylpyrazine.  
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Figure 6.3 Concentrations of 4-methylphenol from gluteus medius steaks cooked to 60 °C as affected by aging time and blade 

tenderization treatment.  

Top sirloin butts were aged in anaerobic packaging at 2 °C for 5, 19, 33, 47, or 61 d. Gluteus medius pieces yielding blade tenderized 

steaks were processed twice through a blade tenderizer. Error bars represent the mean ± SEM. *P < 0.05. Aging time × tenderization 

treatment interaction P = 0.027.  

* * 
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Table 6.4 Effects of postmortem aging on volatile compound concentrations (μg/g) from cooked gluteus medius steaks. 

 Aging Time (d)   

 5 19 33 47 61 SEM P-Value 

Alcohols        

  1-Octen-3-ol 0.011 0.020 0.019 0.025 0.024 0.0060 0.522 

Aldehydes        

  Hexanal 0.158 0.220 0.156 0.217 0.160 0.0524 0.842 

  Heptanal 0.044 0.059 0.050 0.051 0.057 0.013 0.902 

  Benzaldehyde 0.012 0.010 0.015 0.015 0.021 0.0038 0.373 

  Octanal 0.070 0.107 0.109 0.105 0.140 0.026 0.500 

  Nonanal 0.124 0.242 0.182 0.179 0.241 0.0635 0.661 

Carboxylic acid methylesters        

  Methyl butanoate 0.070 0.134 0.184 0.133 0.076 0.040 0.136 

  Methyl pentanoate 0.009 0.021 0.029 0.020 0.018 0.008 0.421 

  Methyl hexanoate 0.104
b
 0.209

ab
 0.339

a
 0.217

ab
 0.093

b
 0.065 0.029 

  Methyl octanoate 0.013 0.040 0.054 0.034 0.011 0.015 0.217 

Furans        

  2-Pentylfuran 0.001 0.003 0.004 0.004 0.006 0.002 0.505 

Hydrocarbons        

  Toluene 0.074 0.162 0.109 0.095 0.101 0.033 0.444 

Ketones        

  3-Hydroxy-2-butanone 0.059 0.073 0.069 0.037 0.076 0.019 0.260 

  2,3-Octanedione 0.005 0.010 0.009 0.012 0.006 0.004 0.591 

Phenols        

  Phenol 0.010 0.007 0.011 0.009 0.012 0.002 0.427 

Pyrazines        

  2,5-Dimethylpyrazine 0.020 0.023 0.048 0.029 0.048 0.0091 0.149 

  3-Ethyl-2,5-dimethylpyrazine 0.006
b
 0.013

b
 0.024

a
 0.015

b
 0.025

a
 0.004 0.006 

ab
Means with different superscripts within the same row differ (P < 0.05). 
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Table 6.5 Effects of blade tenderization on volatile compound concentrations (μg/g) from cooked gluteus medius steaks. 

 Non-Tenderized Blade Tenderized SEM P-Value 

Alcohols     

  1-Octen-3-ol 0.024 0.016 0.0040 0.129 

Aldehydes    

  Hexanal 0.213
 

0.147
 

0.0285 0.037 

  Heptanal 0.065
 

0.039
 

0.0073 0.021 

  Benzaldehyde 0.017
 

0.012
 

0.0020 0.038 

  Octanal 0.136
 

0.076
 

0.015 0.007 

  Nonanal 0.256
 

0.131
 

0.0402 0.041 

Carboxylic acid methylesters   

  Methyl butanoate 0.125 0.115 0.0314 0.661 

  Methyl pentanoate 0.023 0.016 0.0052 0.161 

  Methyl hexanoate 0.204 0.180 0.0504 0.622 

  Methyl octanoate 0.036 0.025 0.010 0.427 

Furans     

  2-Pentylfuran 0.005
 

0.002
 

0.001 0.042 

Hydrocarbons    

  Toluene 0.130 0.086 0.021 0.155 

Ketones     

  3-Hydroxy-2-butanone 0.061 0.065 0.016 0.727 

  2,3-Octanedione 0.010 0.006 0.003 0.100 

Phenols     

  Phenol 0.010 0.010 0.0012 0.660 

Pyrazines     

  2,5-Dimethylpyrazine 0.043
 

0.024
 

0.0051 0.005 

  3-Ethyl-2,5-dimethylpyrazine 0.021 0.012
 

0.0023 0.012 
ab

Means with different superscripts within the same row differ (P < 0.05). 
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Figure 6.4 Bi-plots of principal component 1 and principal component 2 for volatile compounds from beef gluteus medius steaks 

cooked to an internal temperature of 60 ºC. 

Top sirloin butts were aged in anaerobic packaging at 2 °C until the completion of the assigned aging time. Gluteus medius pieces 

yielding blade tenderized steaks were processed twice through a blade tenderizer. 

Legend – 5: 5 d postmortem aging, 19: 19 d postmortem aging, 33: 33 d postmortem aging, 47: 47 d postmortem aging, 61: 61 d 

postmortem aging. NT: non-tenderized, BT: blade tenderized. OCTE: 1-octen-3-ol, HEXL: hexanal, HEPT: heptanal, OCTL: octanal, 

NONL: nonanal, BAME: methyl butanoate, PAME: methyl pentanoate, HAME: methyl hexanoate, OAME: methyl octanoate, PNFU: 

2-pentylfuran, TOLU: toluene, HYBU: 3-hydroxy-2 -butanone, OCTI: 2,3-octanedione, ,PHEN: phenol, MPHE: 4-methylphenol, 

DIPZ: 2,5-dimethylpyrazine, and EDPZ: 3-ethyl-2,5-dimethylpyrazine.
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Chapter 7 - The effects of degree of doneness, postmortem aging, 

and sampling location on the volatile compound profile of beef 

longissimus lumborum steaks. 

 Abstract 

Cooked steak cross-sections and external and internal steak locations were evaluated to 

determine effects of degrees of doneness (63, 71, or 77 °C) and aging times (5, 21, or 37 d) on 

volatile compounds generated by beef longissimus lumborum steaks. External locations produced 

aldehydes in greater amounts (P < 0.001) than internal locations, while pyrazines and 4-

pyridinamine were produced exclusively at external locations. Increased degrees of doneness 

increased (P < 0.05) aldehydes, except nonanal, from cooked steak cross-sections. At external 

locations, only trimethylpyrazine was affected (P = 0.038) by degree of doneness. Aldehydes, 

except hexanal, and pyrazines from cross-sections remained similar (P > 0.05) as aging times 

increased. Aldehydes, aside from hexanal and octanal, generated from external locations were 

similar (P < 0.05) to internal locations at 37 d of aging. Pyrazines from external locations were 

reduced (P < 0.05) by increased aging times. 

Keywords: aging, aroma, beef, degree of doneness, GC/MS, SPME 

  



139 

 

 1. Introduction 

Flavor is complex, but is of great importance when defining the sensorial acceptance of 

food. Flavor is comprised of the two sensations of taste and smell, although the sensations of 

astringency, mouthfeel, and juiciness may play a role (Farmer, 1994). Water-soluble compounds 

produce the basic tastes (sweet, salty, sour, bitter, and umami) that are recognized by the tongue 

(Moody, 1983). The aromatic portion of flavor is significantly more diverse than taste as the 

human nose can identify hundreds or even thousands of different odors (Farmer, 1994).  

Aroma is a major contributor to the flavor of cooked beef. Beef flavor itself is complex; 

however, it is further complicated by the wide variety of handling and cooking procedures that 

are used prior to consumption. Beef aroma is influenced by the presence of hundreds of different 

volatile compounds (Calkins & Hodgen, 2007). If altered, aromatic volatile compounds may be 

present in differing quantities and proportions which could alter consumers’ perception of some 

flavors, leading to altered eating experiences. 

Raw meat has little aroma and a blood-like taste (Stetzer, Cadwallader, Singh, Mckeith, 

& Brewer, 2008) but it contains numerous precursors, such as amino acids, peptides, reducing 

sugars, vitamins, nucleotides and fatty acids, that can generate aromas during cooking (Madruga, 

Elmore, Oruna-Concha, Balagiannis, & Mottram, 2010). The primary pathways for flavor 

development during cooking are the Maillard reaction and lipid oxidation. The Maillard reaction 

is detailed at length by Hodge (1953) and is characterized as non-enzymatic browning that is 

derived through reactions between amino compounds and reducing sugars in the presence of 

heat. The Maillard reaction produces aldehydes, sulfur compounds, furans, pyridines, pyrazines, 

and thiazoles amongst other classes of compounds that have strong aromatic properties 

(Mottram, 1994). Lipid oxidation that occurs during storage of fresh meat can lead to formation 

of off-flavors and rancidity (Ladikos & Lougovois, 1990). Thermally initiated lipid oxidation 

reactions occur during cooking; however, they occur more rapidly than oxidation reactions that 

occur during storage and form different compounds which produce desirable flavors (Calkins & 

Hodgen, 2007). The primary products of lipid oxidation are hydroperoxides which do not 

contribute to aroma, but once these compounds decompose, they form hydrocarbons, alcohols, 

ketones, and aldehydes which strongly influence aroma (Shahidi, 1989).  
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Consumers have different preferences in regard to the endpoint cooking temperatures, 

which are known as degrees of doneness, used to prepare their beef products. The most common 

degrees of doneness used in the U.S. are rare, medium rare, medium, medium well, and well 

done (Reicks et al., 2011), which correlate with endpoint cooking temperatures of 60, 63, 71, 74, 

and 77 °C, respectively (AMSA, 1995). Consumer preference for a specific degree of doneness 

is not based solely on palatability, as consumers who said they preferred medium or medium 

well steaks did not necessarily prefer the sensory characteristics of steaks cooked to those 

specified degrees of doneness (Schmidt et al., 2010).  Steaks from an individual subprimal could 

have different sensory properties based solely on the degree of doneness used to prepare it. Beef 

steaks cooked to high degrees of doneness are associated with roasted and burnt flavors, while 

steaks cooked to low degrees of doneness are associated with bloody and fatty flavors in 

(Lorenzen, Davuluri, Adhikari, & Grün, 2005). These results should be expected as there is a 

longer time for reactions to occur when steaks are prepared to higher degrees of doneness. It is 

yet to be seen if there are volatile compounds associated with bloody and fatty flavors that are 

decreased during cooking or if these flavors are simply masked by the potency of other aromas.  

Beef subprimals are commonly stored in anaerobic packaging at refrigerated 

temperatures for an extended period of time during a process called “wet aging.” Practically all 

beef in the U.S. is packaged anaerobically at the packer level (Smith et al., 2008), so most U.S. 

beef undergoes wet aging to some extent. During aging, naturally occurring proteolytic 

degradation of cytoskeletal proteins increases product tenderness (Koohmaraie, 1996). The 

degradation of muscle structure during aging also increases the pool of available aroma 

precursors which could alter the quantity of volatiles formed via the Maillard reaction during 

cooking (Koutsidis et al., 2008).  

On average, anaerobically packaged beef is held in refrigerated storage for 20.5 d, but 

storage times can range from 1 d to as long as 358 d before product reaches the retail counter 

(Guelker et al., 2013). The wide range of storage times could contribute to a beef supply with 

highly variable palatability characteristics which could compromise consumer confidence in 

beef. Wet aging beef for periods longer than 30 d is common when product is exported, but 

aging for 30 d or longer can contribute to the development of off-flavors in beef. Research has 

shown that beef aged up to 35 d has an increased perception of sour and rancid flavors when 

compared to beef aged for shorter time periods (Yancey, Dikeman, Hachmeister, Chambers IV, 
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& Milliken, 2005). Additionally, these authors reported that off-flavor intensity was higher in 

beef with longer aging time periods. Moreover, flavor intensity has been shown to decrease 

while off-flavor intensity increases when aging times of beef strip loins and cuts from the round 

are extended to 42 d (Juarez et al., 2010).  

Both endpoint cooking temperature and aging have the capability to impact beef flavor. 

Currently, most aroma and flavor volatile compound research has been concentrated on beef 

products aged for less than 30 d and minimal research has focused on volatile compounds 

associated with different degrees of doneness. A majority of volatile compounds detected in meat 

can be related to the Maillard reaction, which occurs on the external surface where meat becomes 

dehydrated (van den Ouweland, Peer, & Tjan, 1978). Little is known about the specific volatile 

profiles of the center and external portions of a cooked steak which could provide insight in to 

the primary reactions responsible for flavor changes due to cooking or aging. Therefore, the aim 

of this research was three-fold. First, determine how degree of doneness influences volatile 

compounds formed during cooking of beef longissimus lumborum (LL) steaks. Second, observe 

the impact of multiple aging times on the volatile compound profile of cooked beef LL steaks. 

Third, determine how volatile compound profiles of beef differ when taking samples from 

external and internal layers.  

 2. Materials and methods 

 2.1 Experimental design 

USDA Low Choice beef strip loins (IMPS 180) (n=9) were procured from a commercial 

beef processing facility and transported to the Kansas State University Meat Laboratory 

(Manhattan, KS) where they were stored at 2 ºC. Loins were removed from their industrial 

packaging at 5 d postmortem. Each loin served as a block and the portion of the loin containing 

the gluteus medius was not used so the only muscle assessed was the LL. Each loin was split into 

thirds which were randomly assigned to postmortem aging treatments of 5, 21, and 37 d for use 

in two experiments.  
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 2.2 Experiment 1 - Effects of degree of doneness on volatile compound concentrations 

assessed using cooked steak cross-sections or layered sections 

Strip loin sections assigned to 5 d of aging were used in Experiment 1. Each section had 

the anterior portion removed for proximate analysis and the remaining section was cut into three 

2.54 cm thick steaks. The three steaks from each loin were randomly assigned to three degrees of 

doneness (medium rare: 63 ºC; medium: 71 ºC; and well done: 77 ºC), vacuum packaged (Prime 

Source Vacuum Pouches; 76.2 μm, STP Barrier, Nylon/PE Vacuum Pouch; oxygen transmission 

rate 0.04 g/254 cm
2
/24 h at 0 ºC; water vapor transmission rate 0.2 cc/254 cm

2
/24 h at 0 ºC at 0% 

relative humidity), and frozen at -40 ºC until volatile analysis was conducted. 

 2.2.1 Aroma volatile analysis 

Steaks were thawed for approximately 24 h at 0-2 ºC prior to sample preparation for 

volatile analysis. Prior to cooking, each steak was split in half. One half of the steak used to 

determine the volatile profile using cross-sections and the second half used to analyze volatile 

profiles at external and internal locations. Steaks were cooked using a George Foreman Grill 

(Model GRP12; Miramar, FL) which was powered on and allowed to heat for 10 min after which 

the raw steak was placed on the grill and the top was closed. Steaks were cooked to their 

assigned internal endpoint temperature which was monitored using a traceable expanded-range 

thermometer (Fisher Scientific, Pittsburgh, PA) placed in to the approximate geometric center of 

the steak. Cross-sections were attained by cutting a thin strip across the center of the steak and 

then removing the center portion of the strip so the sample spanned from cooked surface to 

cooked surface. External locations were obtained by removing the edges of the steak and then 

slicing off the outer 6.35 mm of the steak that was in direct contact with the upper cooking 

surface of the grill to produce a sample representative of the external surface. A subsequent 6.35 

mm thick slice from the remaining portion was taken to yield a sample representative of the 

internal section. Samples from cross-sections, external, and internal locations were then minced 

using a knife and 0.5 g were weighed from each and placed into their own 10 mL screw cap vial 

(Supelco, Bellefonte, PA) fitted with a polytetrafluoroethylene/silicone septum (Supelco, 

Bellefonte, PA). 

 Each sample had 10 μL of an internal standard (0.1 ppm 1, 3 dichlorobenzene) added 

prior to equilibration. Samples were analyzed using headspace-solid phase microextraction (HS-
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SPME) as described by Koppel, Adhikari, and Di Donfrancessco (2013) using the following 

modifications. Sample vials were equilibrated at 45 ºC and agitated at 250 rpm for 15 min using 

an autosampler (Pal system, model CombiPal; CTC Analytics, Zwingen, Switzerland). A 50/30 

μm divinylbenzene/carboxen/polydimethyl-siloxane fiber (Supelco, Bellefonte, PA) was then 

exposed to the sample headspace for 30 min at 45 ºC. The analytes were desorbed from the fiber 

coating to the injection port of a gas chromatograph (GC) at 270 ºC for 3 min in splitless mode. 

The SPME fiber was baked at 270 ºC for 20 min between samples to eliminate residual volatiles. 

 2.2.2 Volatile identification and quantification 

Volatile separation, identification, and quantification were conducted on a GC (Varian 

GC CP3800; Varian Inc., Walnut Creek, CA) combined with a mass spectrometer (MS) detector 

(Saturn 2000; Varian Inc., Walnut Creek, CA). An RTX-5 MS (Crossbond 5% diphenyl/95% 

dimethyl polysiloxane) column (Restek U.S., Bellefonte, PA; 30 m × 0.25mm × 0.25 μm film 

thickness) was used to separate the volatiles. The column was initially heated at 40 ºC for 4 min 

and temperature increased by 5 ºC per min to 260 ºC where it was held for 7 min. 

Volatile compounds were identified using mass spectra as well as linear retention indices 

(NIST/EPA/NIH Mass Spectral Library, Version, 2.0, 2005). The retention times for a C7-C40 

saturated alkane mix (Supelco Analytical, Bellefonte, PA) were used in determining 

experimental linear retention indices for the volatile compounds that were identified. Volatile 

compound concentrations were calculated as a proportion of the peak area of the target volatile 

to the area of the peak of the internal standard. 

 2.3 Experiment 2 - Effects of postmortem aging on volatile compound concentrations 

assessed using cooked steak cross-sections or layered sections 

Steaks assigned to medium degree of doneness from Experiment 1 and sections aged 21 

and 37 d were included in Experiment 2. Sections assigned to 21 d and 37 d of aging were 

vacuum packaged (Prime Source Vacuum Pouches; 76.2 μm, STP Barrier, Nylon/PE Vacuum 

Pouch; oxygen transmission rate 0.04 g/254 cm
2
/24 h at 0 ºC; water vapor transmission rate 0.2 

cc/254 cm
2
/24 h at 0 ºC at 0% relative humidity) and held at 2 ºC until completion of their 

designated aging time. Upon the completion of the aging period, sections had their anterior 

portion removed for proximate analysis and a 2.54 cm thick steak was removed for volatile 
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analysis. Steaks were vacuum packaged (Prime Source Vacuum Pouches; 76.2 μm, STP Barrier, 

Nylon/PE Vacuum Pouch; oxygen transmission rate 0.04 g/254 cm
2
/24 h at 0 ºC; water vapor 

transmission rate 0.2 cc/254 cm
2
/24 h at 0 ºC at 0% relative humidity) and frozen at -40 ºC until 

volatile analysis was conducted. Steaks were prepared, cooked, and analyzed using the same 

methods described in Experiment 1 except that all steaks were cooked to an internal temperature 

of 71 ºC.   

 2.4 Proximate analysis 

Raw LL samples were frozen in liquid nitrogen and pulverized in a table-top blender 

(Waring, Model #51BL32; Torrington, CT) and stored in a sterilized bag (Whirl Pack, Nasco, 

Modesta, CA) at -80 ºC until analyzed for protein (AOAC, 1994), moisture, and fat (AOAC, 

2003).  

 2.5 Statistical analysis 

All data collected in this study was analyzed using the Proc Mixed procedure of SAS 

(SAS Institute, Inc., Cary, NC) and each experiment was analyzed separately. Data collected 

from cross-section samples were analyzed as a randomized complete block design where degree 

of doneness or aging treatment served as a fixed effect and block was included as a random 

effect. Data collected from external and internal locations were analyzed as a split-plot design 

with the whole strip loin serving as the whole-plot and degree of doneness or aging being the 

whole-plot treatment. Each steak served as the split-plot with location functioning as the split-

plot treatment. Compounds identified from external locations but not internal locations were 

assessed in a manner similar to cross-sections. All treatment means were computed with the 

LSMEANS option. Post-hoc mean separation was carried out using Fisher’s least significant 

difference and all data were analyzed at a 5% level of significance. Due to the numerous volatile 

compounds assessed, principal component analysis (PCA) of cooked steaks was also conducted 

to reduce dimensionality of the data set using Unscrambler® (Version 10.2; Camo Software, 

Oslo, Norway).  
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 3. Results and discussion 

 3.1 Experiment 1 

A summary of all observed significant main and interaction effects that degree of 

doneness and location had on the presence and concentration of aroma volatile compounds in 

Experiment 1 are presented in Table 7.1. 

 3.1.1 Effects of degree of doneness on cooked steak cross-sections  

Least squares means of volatile compound concentrations from cross-sections of steaks 

cooked at different degrees of doneness are presented in Table 7.2. A total of 6 aldehydes, 3 

carboxylic acid methylesters (CAM), 2 hydrocarbons, 4 ketones, 3 pyrazines, and 1 pyridinamine 

were detected from steak cross-sections.  

Well done steaks had a greater (P < 0.05) amount of pentanal, hexanal, and benzaldehyde 

when compared to medium rare and medium steaks. In agreement with the present study, prior 

research has identified hexanal as a compound that is highly related to well done and very well 

done LL steaks (Lorenzen, et al., 2005). The result of the current study should be expected as 

pentanal and hexanal are lipid oxidation products and the increased end-point temperature should 

allow a longer period for thermally induced lipid oxidation reactions to occur. Likewise, the 

increase in benzaldehyde, a product of the Maillard reaction, could also be attributed to longer 

cooking times allowing Maillard browning reactions to occur for a longer period of time. 

Pentanal can contribute almond or malty aromas while hexanal is associated with fatty and green 

aromas (Calkins & Hodgen, 2007). Benzaldehyde has been attributed to roasted pepper and nutty 

aroma in goat meat (Madruga et al., 2010) as well as almond oil-like and bitter almond flavor in 

beef (Calkins & Hodgen, 2007). Heptanal and octanal, also products of lipid oxidation, were 

produced in greater (P < 0.05) concentrations by well done steaks in comparison to medium rare 

steaks. The aroma of heptanal has been characterized as oily, rancid, and unpleasant (Calkins & 

Hodgen, 2007; Madruga et al., 2010), while octanal has been associated with soapy, lemon, and 

green flavors (Calkins & Hodgen, 2007). 

All 3 CAM reported in this study showed similar responses due to changes in degree of 

doneness.  Methyl butanoate (P = 0.047), methyl pentanoate (P = 0.006), and methyl hexanoate 

(P = 0.010) showed a distinct decrease when degree of doneness was increased above medium 
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rare. Methyl butanoate and methyl hexanoate can contribute pineapple, sweet, and fruity aromas 

in fruit (Spanier et al., 1998). The aroma of methyl pentanoate has been described as candy-like 

or resembling aromas indicative of alcohols, ketones, and aldehydes (Spanier et al., 1998). 

Butanoate and hexanoate have been identified in cooked beef and have aromas described as 

rancid and sweaty (Stetzer et al., 2008). The aforementioned compounds are products of lipid 

oxidation (Stetzer et al., 2008) and are most likely being further degraded by thermally initiated 

lipid oxidation reactions. 

Toluene concentration was greater (P = 0.014) for well done steaks than both medium 

rare and medium steaks. Toluene has been associated with thermal degradation aromas that 

produce roast beef flavor (Min, Ina, Peterson, & Chang, 1977). Moreover, 2-butanone was 

generated in the greatest (P < 0.05) concentrations by well done steaks. Both hydrocarbons and 

ketones are generated by lipid oxidation (Mottram, 1998) and should be generated in greater 

amounts from steaks cooked to advanced degrees of doneness. 

 All identified pyrazines and the lone pyridinamine exhibited no change (P > 0.05) in 

response to changes in degree of doneness. These compounds are all direct products of the 

Maillard reaction and should be expected to increase as degree of doneness increases. Previous 

research has shown that pyrazines are highly associated with roasted and burnt flavors found in 

well done and very well done steaks (Lorenzen et al., 2005) which is contrary to results produced 

using cross-sections in this study. Steak cross-sections provide a small surface area of the cooked 

surface. The pyrazines and 4-pyridinamine were quantified in relatively low concentrations from 

cross-sections as they should form primarily on the cooked surface.  

 3.1.2 Effects of degree of doneness on layered sections of cooked steaks 

External and internal locations generated different volatile profiles. The external samples 

contained 6 aldehydes, 3 CAM, 1 furan, 2 hydrocarbons, 4 ketones, 1 pyridinamine, and 3 

pyrazines. Contrarily, the internal locations presented a volatile profile that contained 

quantifiable amounts of 6 aldehydes, 3 CAM, 2 hydrocarbons, and 4 ketones. 

A degree of doneness × location interaction was observed (P < 0.05) for methyl 

pentanoate and methyl hexanoate (Figure 7.1). External locations produced lesser (P < 0.05) 

concentrations of methyl pentanoate than internal locations when steaks were cooked to medium 

rare. External locations did not generate methyl pentanoate when steaks were cooked to medium 
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and well done, while methyl pentanoate from internal locations was found in the greatest (P < 

0.05) amount from medium rare steaks and the least (P < 0.05) from well done steaks. External 

and internal locations produced similar (P > 0.05) concentrations of methyl hexanoate from 

medium rare steaks, but external locations generated greater (P < 0.05) amounts of this 

compound than internal locations at both medium and well done degrees of doneness. External 

locations produced similar (P > 0.05) amounts of methyl hexanoate across all degrees of 

doneness, while medium rare steaks generated the greatest (P < 0.05) amount of methyl 

hexanoate at internal locations. 

Main effects of degree of doneness on volatile compounds generated by both external and 

internal locations are detailed in Table 7.3. Benzaldehyde was generated in the least (P < 0.05) 

amount by steaks cooked to medium rare and remained at similar (P > 0.05) concentrations 

between medium and well done steaks while concentrations of other detected aldehydes 

remained similar (P > 0.05) across all degrees of doneness. Benzaldehyde is not present in raw 

meat while all other aldehydes detected in this study are known to be present in both raw and 

cooked meat (Chapter 6, p. 127). Benzaldehyde is a known Maillard reaction product so it is 

plausible that it would display a much greater change than lipid oxidation products due to 

increases of endpoint cooking temperatures.  

Other compounds influenced by degree of doneness were butanoic acid methylester and 

2-butanone. Methyl butanoate was generated in greater (P < 0.05) concentrations by steaks 

cooked to medium rare in comparison to steaks cooked to well done. Additionally, methyl 

butanoate generated from steaks cooked to medium were similar (P > 0.05) to both medium rare 

and well done steaks. The only ketone that displayed a response to different degrees of doneness 

was 2-butanone, which was generated in greater (P < 0.05) concentrations by medium steaks in 

comparison to medium rare steaks. When the degree of doneness of a beef steak is increased, 

there are also structural changes that occur such as collagen sollubilization and fibrillar protein 

changes (Parrish, Olson, Miner, & Rust, 1973). A change of the lipid portion due to thermally 

initiated lipid oxidation should be expected when there is an increase in degree of doneness. As 

the time and temperature increases during cooking, increased amounts of fatty acids should be 

degraded and form lipid oxidation products such as carboxylic acids and ketones. 

No matter the degree of doneness, 2-pentylfuran, 2,5-dimethylpyrazine, 

trimethylpyrazine, 3-ethyl-2,5-dimethylpyrazine, and 4-pyridinamine were only detected at 
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external locations and their responses to varying degrees of doneness are detailed in Table 7.4. 

These five compounds can be formed during the Maillard reaction (van Boekel, 2006). Direct 

products of the Maillard reaction should be expected to be generated exclusively on the cooked 

surface of beef as that portion of the cut becomes dehydrated and presents a water activity that is 

more favorable for the Maillard reaction to occur (van den Ouweland et al., 1978). 

Trimethylpyrazine was the only compound found exclusively from external locations that was 

affected by degree of doneness as it was generated in greater (P < 0.05) concentrations by 

medium steaks in comparison to medium rare steaks. The lack of change (P > 0.05) in other 

pyrazines and 4-pyridinamine in response to changes in degree of doneness contradicts prior 

research showing that these types of compounds are more highly associated with flavors found in 

well done and very well done steaks (Lorenzen et al., 2005). The heat present at the products 

surface can directly affect the yield of pyrazines. Koehler and Odell (1970) demonstrated that 

pyrazine formation begins at 100 °C and when temperatures rise above 150 °C pyrazine 

formation becomes highly variable. Additionally, maximum pyrazine formation occurs at 

approximately 120 °C (Shibamoto & Bernhard, 1976). The cooking surface should progressively 

increase in temperature when medium and well-done degrees of doneness are being attained 

which may produce variable amounts of pyrazines explaining why no differences were observed 

for most of the pyrazines observed in this study. 

Volatile concentrations produced by external and internal locations are detailed in Table 

7.5. Every detected aldehyde was generated in greater (P < 0.001) concentrations by external 

locations in comparison to internal portions. Saturated and unsaturated aldehydes are major 

volatile components of all cooked meats (Mottram, 1998). External portions of beef have 

previously shown to produce greater amounts of the aldehydes malonaldehyde and hexanal in 

comparison to internal portions due to their proximity to oxygen (Spanier, Vercellotti, & James, 

1992). External locations should produce aldehydes by lipid oxidation at an increased rate due to 

the proximity to oxygen and the cooking heat source. Additionally, aldehydes can be produced 

through Strecker degradation during the Maillard reaction which occurs primarily on the cooked 

meat surface (van Boekel, 2006). 

Methyl butanoate was detected in greater (P = 0.033) concentrations from external 

locations in comparison to internal locations. Cross-section samples demonstrated a decrease of 

methyl butanoate when degree of doneness was increased suggesting it is thermally degraded. 
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Knowing that methyl butanoate is thermally degraded, it would be expected that it is present in 

lesser amounts in external samples where the heat source is much greater, which contradicts 

what was observed in this study. Butanoate has been labeled as a lipid oxidation product (Stetzer 

et al., 2008) and it is possible that thermal degradation of other carboxylic acids on the cooked 

surface is yielding methyl butanoate, which would explain its greater presence at external 

locations. 

External locations generated greater (P < 0.001) concentrations of toluene than internal 

locations. Toluene, a hydrocarbon, has been associated with thermal degradation aromas that 

produce roast beef flavor (Min et al., 1977). Hydrocarbons can be produced by lipid oxidation 

reactions (Mottram, 1998) and toluene has been shown to increase due to irradiation treatment 

which is known to increase lipid oxidation (Ismail, Lee, Ko, & Ahn, 2009). All ketones 

identified in this study were present in greater (P < 0.001) concentrations at external locations 

when compared to internal portions. Ketones are known products of lipid oxidation (Mottram, 

1998). The proximity to both oxygen and the source of heat during cooking implies that the 

external steak surface should generate a greater amount of lipid oxidation products in 

comparison to the internal portion of a cooked steak. 

 3.1.3 Principal component analysis (PCA) of experiment 1 

The PCA of cross-sections and layered sections of steaks cooked to various endpoint 

temperatures is presented in Figure 7.2.  This PCA described 59% of the total variation for 

principal component (PC) 1 and 7% of the total variation of PC 2. Aside from 2-pentanone, 

volatile compounds commonly associated with Maillard and lipid oxidation reactions showed 

high positive values in regard to PC 1, suggesting they had a great influence on the variation seen 

within PC 1. External locations cooked to well done and medium were the most highly 

associated with Maillard and lipid oxidation products which agrees with the findings 

demonstrated in Table 7.5. Internal and cross-section samples showed little association with lipid 

and Maillard reaction products in comparison to external samples. Internal locations and cross-

sections were similar in regard to PC 1 but were different in regard to PC 2 with cross-sections 

having much lower values and being more associated with methyl butanoate, while internal 

locations were more closely associated with methyl pentanoate. External locations of steaks 

cooked to medium rare were more related to internal locations of medium steaks than external 
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locations of medium and well done steaks which showed negative values in regard to PC 2 and 

were aligned more closely with the identified pyrazines and 4-pyridinamine. 

 3.2 Experiment 2 

A summary of all observed significant main and interaction effects that aging and 

location had on the presence and concentration of aroma volatile compounds in Experiment 2 are 

presented in Table 7.6. 

 3.2.1 Effect of postmortem aging on cooked steak cross-sections 

Least squares means of volatile compound concentrations from cross-sections of cooked 

steaks subjected to various postmortem aging times are presented in Table 7.7. A total of 6 

aldehydes, 3 CAM, 1 furan, 2 hydrocarbons, 4 ketones, 3 pyrazines, and 1 pyridinamine were 

detected in cross-section samples. 

Hexanal was the lone aldehyde that was changed by aging time as it decreased (P = 0.05) 

when aging time was extended to 37 d. Hexanal is known to be directly proportional to 

thiobarbituric acid reactive substances (TBARS), which is a measure of lipid oxidation (Shahidi 

& Pegg, 1994; Ullrich & Grosch, 1987). The concentration of lipid oxidation products observed 

in the current study contrast previous research demonstrating that lipid oxidation increases when 

storage time increases (Yancey et al., 2006); but other research has shown that hexanal and 

TBARS from cooked beef have no correlation with each other (Spanier, Flores, McMillin, & 

Bidner, 1997). Prior research showed that hexanal demonstrated no change in cooked gluteus 

medius steaks subjected to various aging times (Chapter 6, pp. 127). The lack of hexanal in 

longer aged steaks could be a result of hexanal being degraded and forming other compounds or 

it is plausible that hexanal is participating in the Maillard reaction (Mottram, 1998).  

The lone furan identified in this study, 2-pentylfuran, was not detected in steaks aged 5 or 

21 d, but was detected in steaks aged 37 d. Furans are known to be Maillard reaction products 

(van Boekel, 2006) and the most likely route of formation of 2-pentylfuran is through the 9-

hydroperoxide of linoleic acid (Mottram, 1991). The aroma of 2-pentylfuran has been described 

as green, earthy, and beany (Stetzer et al., 2008) but it has also been associated with buttery 

notes (Calkins & Hodgen, 2007).  

The only ketone affected by aging was 3-hydroxy-2-butanone, which decreased (P = 

0.046) as aging time increased. The current study contrasts prior research that demonstrated no 
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change in 3-hydroxy-2-butanone when top sirloins were exposed to increasing aging times 

(Chapter 6, p. 127). Additionally, 3-hydroxy-2-butanone has been correlated with livery off-

flavor (Stetzer et al., 2008), while other research has described its aroma as pungent and grassy 

(Mottram 1998; Shahidi, 1989) as well as buttery, fatty, and sweaty (Madruga et al., 2010). 3-

Hydroxy-2-butanone is an intermediate product of the Maillard reaction (Mottram, 1997) and 

other Maillard products, such as the detected pyrazines and 4-pyridinamine, all remained similar 

(P > 0.05) across all aging times. The use of steak cross-sections insists that the Maillard reaction 

is not increased when aging times are increased. 

 3.2.2 Effect of postmortem aging on layered sections of cooked steaks 

External locations contained 6 aldehydes, 3 CAM, 1 furan, 2 hydrocarbons, 4 ketones, 3 

pyrazines, and 1 pyridinamine. Internal locations presented a volatile profile that contained 6 

aldehydes, 3 CAM, 1 furan, 2 hydrocarbons, and 4 ketones. Aging time × location interaction 

means are displayed in Table 7.8. 

Pentanal displayed an aging time × location interaction (P = 0.002) as external locations 

from steaks aged 5 and 21 d produced greater amounts (P < 0.05) of pentanal than internal 

locations, but steaks aged 37 d produced similar (P > 0.05) concentrations of pentanal at both 

external and internal locations. Additionally, external locations produced decreased (P < 0.05) 

levels of pentanal as aging time increased while internal locations generated pentanal at similar 

(P > 0.05) concentrations across all aging times. Likewise, heptanal also demonstrated an aging 

time × location interaction (P < 0.001). External locations produced heptanal in greater (P < 

0.05) concentrations than internal locations at 5 and 21 d of aging, while external and internal 

locations generated similar (P > 0.05) heptanal concentrations at 37 d of aging. Heptanal 

concentrations from external locations decreased (P < 0.05) as aging time was increased. Internal 

locations produced greater (P < 0.05) amounts of heptanal at 5 d of aging in comparison to 37 d, 

while heptanal concentrations from internal locations at 21 d of aging were similar (P > 0.05) to 

both 5 and 37 d. 

An aging time × location interaction (P = 0.011) was present for benzaldehyde. 

Benzaldehyde was generated in greater (P < 0.05) concentrations by external locations in 

comparison to internal locations at 5 and 21 d of aging, but the different sampling locations 

produced benzaldehyde in similar (P > 0.05) concentrations at 37 d of aging. Benzaldehyde from 
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external locations was greatest (P < 0.05) at 5 and 21 d of aging while internal locations 

produced benzaldehyde in similar (P > 0.05) amounts for every aging treatment. 

Nonanal, which is associated with fatty and grassy aromas (Calkins & Hodgen, 2007), 

demonstrated an aging time × location interaction (P = 0.001). Nonanal was generated by 

external locations in greater (P < 0.05) concentrations than internal locations at 5 d of aging; 

however, external and internal locations produced similar (P > 0.05) nonanal concentrations at 

21 and 37 d of aging. Nonanal concentrations from external locations decreased (P < 0.05) as 

aging time was increased. At internal locations, nonanal concentrations were similar (P > 0.05) 

at 5 and 21 d of aging but decreased (P < 0.05) when aging was extended to 37 d. 

Methyl hexanoate was the only CAM that exhibited an aging time × location interaction 

(P = 0.028). External locations generated methyl hexanoate in similar (P > 0.05) concentrations 

across all aging treatments and in greater amounts than internal locations at 5 d of aging. 

Concentrations of methyl hexanoate from internal locations were greater (P < 0.05) at d 37 in 

comparison to 5 d of aging. Additionally, an aging time × location interaction (P = 0.005) was 

observed for 2-pentylfuran. External locations produced greater (P < 0.05) amounts of 2-

pentylfuran than internal locations at 5 and 21 d of aging, but similar (P > 0.05) concentrations 

were produced by the different locations within the 37 d aging treatment. The concentrations of 

2-pentylfuran from external locations decreased (P < 0.05) at 37 d of aging while internal 

locations did not produce 2-pentylfuran in detectable quantities at 5 d of aging and were similar 

(P > 0.05) between 21 and 37 d of aging. 

Aging time × location interactions were demonstrated for the ketones 2-butanone (P = 

0.004) and 2,3-octanedione (P = 0.010). External locations generated both 2-butanone and 2,3-

octanedione in greater (P < 0.05) concentrations than internal locations at 5 and 21 d of aging, 

but concentrations were similar (P > 0.05) between locations at 37 d of aging. 2-Butanone from 

external locations decreased (P < 0.05) as aging time was increased while internal locations 

produced similar (P > 0.05) concentrations of 2-butanone across all aging times. External 

locations showed a decrease (P < 0.05) of 2,3-octanedione at 21 d of age, but internal locations 

showed no alteration (P > 0.05) of 2,3-octanedione concentrations as aging time increased. 

Most of the volatile compounds that displayed an aging time × location interaction are 

associated with lipid oxidation as aldehydes, ketones, and 2-pentylfuran can be produced by lipid 

oxidation. Aside from methyl hexanoate, external locations generated volatile compounds in 
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concentrations that were similar to that produced by internal locations as aging time was 

increased. A majority of lipid oxidation reactions that take place during cooking most likely 

occur on the product surface where there is an increased amount of heat and close proximity to 

oxygen.  

Main effects of aging time on volatile compounds assessed from external and internal 

locations are displayed in Table 7.9. Hexanal decreased (P < 0.001) as aging time was increased 

while octanal was greater (P < 0.05) at 5 d of aging in comparison to 37 d of aging. Conversely, 

pentanoic acid methylester increased (P = 0.048) as aging time was increased while an aging 

time of 5 d produced the greatest (P = 0.003) amounts of 3-hydroxy-2-butanone. 

All pyrazines and one pyridinamine observed in this study were located exclusively from 

external locations and aging effects on generation of these compounds are outlined in Table 7.10. 

Aging times of 5 and 21 d generated 2,5-dimethylpyrazine in similar (P > 0.05) concentrations, 

but both aging times produced 2,5-dimethylpyrazine in greater (P < 0.05) concentrations than 

what was produced at 37 d of aging. Trimethylpyrazine was produced in greater (P < 0.05) 

concentrations at 5 d of aging than at 21 and 37 d, while aging treatments of 5 and 21 d produced 

greater (P < 0.05) concentrations of 3-ethyl-2,5-dimethylpyrazine than 37 d of aging. 4-

Pyridinamine was produced in greater (P < 0.05) concentrations from steaks aged 21 and 37 d in 

comparison to steaks aged 5 d. The aforementioned heterocyclic compounds are direct products 

of the Maillard reaction and are often associated with nutty and roasted aromas that are 

indicative of cooked meat (Mottram, 1998). 

The primary variables that affect the extent of the Maillard reaction are the available 

reactants, pH, water activity, and the combination of temperature and time at which the reaction 

is allowed to occur (Jaeger, Janositz, & Knorr, 2010). In beef, the pool of free sugars and amino 

acids available to undergo the Maillard reaction increases as aging time increases, which 

suggests that Maillard browning should be increased in longer aged beef (Koutsidis et al., 2008). 

Aside from 4-pyridinamine, the current study saw a decrease of Maillard products as aging time 

was increased which disagrees with the theory of Koutsidis et al. (2008). The Maillard reaction is 

also highly influenced by the pH of a food system as melanoidin production via the Maillard 

reaction increases as pH increases (Martins & Van Boekel, 2005). The pH of beef has little 

variation once a beef carcass reaches an ultimate pH (Polak, Andrensek, Zlender, & Gasperlin, 
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2009). It is rather unlikely that the availability of Maillard precursors and pH are the root cause 

of the decrease in Maillard products observed in this study.  

Maillard browning products are increased as water activity and moisture levels of the 

food source are reduced (Jaeger et al., 2010) which explains why Maillard products are primarily 

produced on the external surface where meat becomes dehydrated during cooking (van den 

Ouweland et al., 1978). Water-holding capacity of meat decreases over time due to the 

denaturation of myofibrillar proteins which increases the amount of immobilized and free water 

present in a cut of meat (Huff-Lonergan & Lonergan, 2005). Meat that has a reduced water-

holding capacity appears exudative or moist on the surface as is seen with pale, soft, and 

exudative pork. Increased amounts of exudate on a meat product surface are most-likely 

attributed to the migration of free water to the product surface. Knowing that the Maillard 

reaction requires a reduced water activity to occur, an increase of free water at the external meat 

surface could potentially interrupt the degree of Maillard browning that occurs during the 

cooking of beef. 

Steaks used to assess aging effects in this study were all cooked to an internal 

temperature of 71 °C, which is defined as “medium” degree of doneness (AMSA, 1995). The 

time needed to achieve a specified endpoint temperature could be a variable contributing to the 

differences of various volatile compounds observed in this study. The structure and composition 

of muscle tissue serves as an insulatory barrier that restricts heat from entering the center of a 

steak (Hallstrom, et al., 1988). As product is aged, the cytoskeletal proteins that comprise muscle 

structure are degraded (Koohmaraie, 1996). The disruption of muscle structure could possibly 

allow heat to transfer more freely through a steak during cooking, which could ultimately 

decrease the amount of time needed to cook a steak to a specified degree of doneness. Jeremiah 

and Gibson (2003) observed a 5 min/kg reduction in cooking time for beef aged 1 wk in contrast 

to beef that was not aged. If beef with longer aging periods is less resistant to heat, it could 

require a shorter period of time to cook and ultimately reduce the available time for the Maillard 

browning and lipid oxidation reactions to occur. Shortening the time available for both the 

Maillard and lipid oxidation reactions may explain why the current study exhibited numerous 

compounds that were reduced as aging time increased. 

Numerous studies have reported that increased aging times of beef subprimals generated 

decreased beef flavor intensity and increased the presence of off-flavors (Juarez et al., 2010; 
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Yancey et al., 2006). The current study demonstrated a decrease in numerous compounds at 

external locations as aging time was increased. Decreases of flavor intensity may be explained 

by the decreased concentrations of volatiles generated during cooking, especially on the product 

surface. Conversely, there were no compounds that increased which could be associated with 

off-flavors seen in previous research. Bitter and sour are common off-flavors that are present 

when aging time is increased (Spanier et al., 1997; Yancey et al., 2005). Both bitter and sour are 

basic tastes, so it is plausible that aroma volatiles have a minimal contribution to their presence. 

Mean volatile compound concentrations from external and internal locations are 

presented in Table 7.11. The lipid oxidation products hexanal and octanal were both generated in 

greater (P < 0.001) concentrations from external samples in contrast to internal samples. 

Pentanoic acid methylester was the only compound that was produced in the greatest (P = 0.011) 

concentrations by internal samples. Additionally, toluene was generated in the greatest (P < 

0.001) amounts from external samples. Most compounds detailed in this study have their 

production accelerated by heat or are directly generated by heating so it is expected that the 

external portion of cooked steaks should produce greater amounts of the detected volatiles 

presented in this study. Pentanoic acid methylester displayed a reduction as degree of doneness 

increased in Experiment 1 suggesting that it is thermally degraded, which provides some 

explanation to why it would be generated in greater (P < 0.011) concentrations at the internal 

locations in comparison to external locations. 

 3.2.3 Principal component analysis of experiment 2 

Figure 7.3 outlines PCA conducted on volatile compound production from multiple 

locations of cooked steaks subjected to 5, 21, or 37 d of postmortem aging. This PCA describes 

55% and 8% of the total variation associated with PC 1 and PC 2, respectively. The majority of 

Maillard and lipid oxidation products showed high positive values in regard to PC 1. External 

locations from steaks aged 5 d demonstrated the greatest association with the majority of 

compounds identified in this study. As aging time increased, external locations became less 

associated with lipid oxidation and Maillard reaction compounds and became more similar to 

internal locations, which agrees with the findings detailed in Table 7.8. The cross-sections were 

separated along PC 2 with samples from 21 d of aging being the most highly associated with 
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nonanal while steaks from 5 and 37 d of aging were relatively similar to that of internal 

locations. 

 3.7 Proximate analysis 

Means from proximate analyses are displayed in Table 7.12. Protein percentage did not 

change as aging times were lengthened (P = 0.805). Fat percentage increased from 5 d to 21 d of 

aging (P < 0.05) while moisture percentage decreased (P < 0.05) from 5 d to 21 d of aging. The 

implementation of aging has previously been associated with increased moisture loss in the form 

of purge (Geesink, Bekhit, & Bikerstaffe, 2000; Moore & Young, 1991). Raw beef has a very 

high water activity and reductions of moisture should promote the development of Maillard 

products. Moisture lost as purge in beef is very proteinaceous in nature (Savage, Warriss, & 

Jolley, 1990) and may contribute to the suppressed formation of Maillard volatiles observed in 

longer aged beef from this study. 

 4. Conclusions 

The external surfaces of cooked steaks generate a greater amount of lipid oxidation and 

Maillard reaction products than internal portions. Additionally, pyrazines and pyridinamines are 

produced exclusively by the external surface of cooked steaks. All aldehydes, except nonanal, 

from steak cross-sections demonstrated increases when degree of doneness was increased, but 

these differences were not observed at external and internal locations. The effects of postmortem 

aging times, as long as 37 d, on steak cross-sections were minimal; however, multiple thermally 

produced compounds were reduced at external locations as aging times were increased. The 

reduction of browning and lipid oxidation reactions at the cooked meat surface, induced by 

extended postmortem aging, could result in decreased flavor intensities of long-aged beef 

products. Retailers and processors that market long-aged beef may need to consider further-

processing techniques, such as product marination and injection, to alleviate potential flavor 

changes due to the lack of browning and oxidation reactions occurring at the cooked product 

surface. 
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Table 7.1 Effects of degree of doneness on volatile compound concentrations from cross-

sections and layered sections of cooked longissimus lumborum steaks. 

 Cross-Section
1  Layered Sections

2  External Section
3 

 D
4  D L D × L  D 

Aldehydes        

  Pentanal **  NS *** NS  - 

  Hexanal *  NS *** NS  - 

  Heptanal **  NS *** NS  - 

  Benzaldehyde ***  * *** NS  - 

  Octanal **  NS *** NS  - 

  Nonanal NS  NS *** NS  - 

Carboxylic acid methylesters        

  Methyl butanoate *  ** * NS  - 

  Methyl pentanoate *  ** *** *  - 

  Methyl hexanoate *  * ** *  - 

Furans        

  2-Pentylfuran ND  - - -  NS 

Hydrocarbons        

  Toluene *  NS *** NS  - 

  3-Dodecene NS  NS NS NS  - 

Ketones        

  2-Butanone *  * *** NS  - 

  2-Pentanone NS  NS *** NS  - 

  3-Hydroxy-2-butanone NS  NS ** NS  - 

  2,3-Octanedione NS  NS *** NS  - 

Pyrazines        

  2,5-Dimethylpyrazine NS  - - -  NS 

  Trimethylpyrazine NS  - - -  * 

  3-Ethyl-2,5-dimethylpyrazine NS  - - -  NS 

Pyridinamines        

  4-Pyridinamine NS  - - -  NS 
*Treatment means differ (P < 0.05). 

** Treatment means differ (P < 0.005). 

***Treatment means differ (P < 0.0001). 

NS: Treatment means are similar (P > 0.05). 

ND: Compound not detected in any treatment. 
1
Cross-section: Samples prepared from a cross-section (contact surface to contact surface) in the middle of the steak.

 

2
Layered sections: Compounds assessed at two locations (external and internal). External: samples prepared from 

outer 6.35 mm of steak; Internal: samples prepared from portion 6.35 – 12.7 mm from outside surface of steak. 
3
External section: Compounds not detected from internal locations so statistical analysis conducted on external 

locations only. 
4
D = effect of degree of doneness; L = effect of sample location; D × L = interaction between degree of doneness 

and sample location. 
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Table 7.2 Effects of degree of doneness on volatile compound concentrations (μg/g) from cross-

sections
1
 of cooked longissimus lumborum steaks. 

 Degree of Doneness
2 

  

 MR MD WD   SEM P-Value 

Aldehydes      

  Pentanal  0.019
b
  0.019

b
  0.030

a
 0.0022 0.002 

  Hexanal  0.059
b
  0.074

b
  0.180

a
 0.032 0.016 

  Heptanal  0.012
b
  0.016

ab
  0.021

a
 0.0024 0.004 

  Benzaldehyde  0.006
b
  0.007

b
  0.011

a
 0.0008 <0.001 

  Octanal  0.021
b
  0.029

ab
  0.038

a
 0.0035 0.003 

  Nonanal  0.076  0.093  0.072 0.018 0.299 

Carboxylic acid methylesters      

  Methyl butanoate  0.064
a
  0.031

b
  0.034

b
 0.011 0.047 

  Methyl pentanoate  0.008
a
  0.002

b
  0.001

b
 0.001 0.006 

  Methyl hexanoate  0.054
a
  0.021

b
  0.013

b
 0.0089 0.010 

Hydrocarbons      

  Toluene  0.037
b
  0.037

b
  0.046

a
 0.0057 0.014 

  3-Dodecene  0.014  0.014  0.017 0.0012 0.074 

Ketones       

  2-Butanone  0.045
b
  0.045

b
  0.064

a
 0.0078 0.021 

  2-Pentanone  0.020  0.019  0.047 0.016 0.380 

  3-Hydroxy-2-butanone  0.028  0.025  0.028 0.0063 0.662 

  2,3-Octanedione  0.002  0.001  0.005 0.002 0.221 

Pyrazines       

  2,5-Dimethylpyrazine  0.013  0.015  0.074 0.030 0.287 

  Trimethylpyrazine  0.030  0.033  0.047 0.0060 0.113 

  3-Ethyl-2,5-dimethylpyrazine  0.004  0.005  0.008 0.003 0.220 

Pyridinamines      

  4-Pyridinamine  0.001  0.001  0.002 0.0008 0.538 
1
Cross-section: Samples prepared from a cross-section (contact surface to contact surface) in the middle of the steak.

 

2
Steaks cooked to different internal temperatures as follows: Medium rare (MR): 63 ºC, medium (MD): 71 ºC, well 

done (WD): 77 ºC. 
ab

Means with different superscripts within the same row differ (P < 0.05). 
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Figure 7.1 Volatile compound concentrations from external and internal locations of longissimus 

lumborum steaks cooked to different degrees of doneness. 

Steaks cooked to different internal temperatures as follows: Medium rare: 63 ºC, medium : 71 

ºC, well done: 77 ºC. External samples prepared from outer 6.35 mm of steak. Internal samples 

prepared from portion 6.35 – 12.7 mm from outside surface of steak. * P < 0.05. A) 

Concentrations of methyl pentanoate. Degree of doneness × location interaction P = 0.047. B) 

Concentrations of methyl hexanoate. Degree of doneness × location interaction P = 0.023.    

* 

* 

 * 

 * 
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Table 7.3 Effects of degree of doneness on volatile compound concentrations (μg/g) from 

external
1
 and internal

2
 locations of cooked longissimus lumborum steaks. 

 Degree of Doneness
3   

 MR MD WD SEM P-Value 

Aldehydes     

  Pentanal 0.031 0.045 0.038 0.0059 0.183 

  Hexanal 0.438 0.658 0.442 0.117 0.256 

  Heptanal 0.040 0.059 0.047 0.0086 0.121 

  Benzaldehyde 0.010
b 

0.020
a 

0.019
a 

0.0029 0.009 

  Octanal 0.052 0.095 0.090 0.020 0.079 

  Nonanal 0.100 0.124 0.108 0.0172 0.226 

Carboxylic acid methylesters    

  Methyl butanoate 0.041
a 

0.034
ab 

0.026
b 

0.0038 0.003 

Hydrocarbons     

  Toluene 0.045 0.055 0.049 0.0068 0.234 

  3-Dodecene 0.015 0.018 0.016 0.0016 0.207 

Ketones      

  2-Butanone 0.051
b
 0.071

a 
0.066

ab 
0.0098 0.034 

  2-Pentanone 0.018 0.024 0.022 0.0020 0.084 

  3-Hydroxy-2-butanone 0.028 0.032 0.031 0.0076 0.815 

  2,3-Octanedione 0.032 0.048 0.027 0.011 0.310 
1
External: samples prepared from outer 6.35 mm of steak.  

2
Internal: samples prepared from portion 6.35 – 12.7 mm from outside surface of steak. 

3
Steaks cooked to different internal temperatures as follows: Medium rare (MR): 63 ºC, medium (MD): 71 ºC, well 

done (WD): 77 ºC. 
ab

Means with different superscripts within the same row differ (P < 0.05). 
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Table 7.4 Effects of degree of doneness on concentrations (μg/g) of volatile compounds detected 

from external
1
 locations but not from internal

2
 locations of longissimus lumborum steaks. 

 Degree of Doneness
3 

  

 MR MD WD SEM P-Value 

Furans      

  2-Pentylfuran 0.010 0.014 0.013 0.0028 0.228 

Pyrazines      

  2,5-Dimethylpyrazine 0.045 0.139
 

0.093
 

0.026 0.053 

  Trimethylpyrazine 0.098
b
 0.227

a
 0.175

ab
 0.039 0.038 

  3-Ethyl-2,5-dimethylpyrazine 0.023 0.045 0.040 0.0077 0.096 

Pyridinamines     

  4-Pyridinamine 0.009 0.032 0.021 0.006 0.051 
1
External: samples prepared from outer 6.35 mm of steak.  

2
Internal: samples prepared from portion 6.35 – 12.7 mm from outside surface of steak. 

3
Steaks cooked to different internal temperatures as follows: Medium rare (MR): 63 ºC, medium (MD): 71 ºC, well 

done (WD): 77 ºC. 
ab

Means with different superscripts within the same row differ (P < 0.05). 
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Table 7.5 Effects of location on volatile compound concentrations (μg/g) from external
1
 and 

internal
2
 locations of longissimus lumborum steaks cooked to varying degrees of doneness

3
. 

 External
 

Internal
 

SEM P-Value 

Aldehydes    

  Pentanal 0.055
 

0.021 0.0051 <0.001 

  Hexanal 0.801
 

0.224
 

0.0991 <0.001 

  Heptanal 0.075
 

0.022
 

0.0077 <0.001 

  Benzaldehyde 0.028
 

0.005
 

0.003 <0.001 

  Octanal 0.133
 

0.025
 

0.018 <0.001 

  Nonanal 0.144
 

0.077
 

0.016 <0.001 

Carboxylic acid methylesters   

  Methyl butanoate 0.037
 

0.030
 

0.0034 0.033 

Hydrocarbons    

  Toluene 0.064
 

0.036
 

0.0063 <0.001 

  3-Dodecene 0.017 0.016 0.0014 0.432 

Ketones     

  2-Butanone 0.083
 

0.043
 

0.0093 <0.001 

  2-Pentanone 0.026
 

0.017
 

0.0016 <0.001 

  3-Hydroxy-2-butanone 0.040
 

0.020
 

0.0072 <0.001 

  2,3-Octanedione 0.064
 

0.007
 

0.009 <0.001 
1
External: samples prepared from outer 6.35 mm of steak.  

2
Internal: samples prepared from portion 6.35 – 12.7 mm from outside surface of steak. 

3
Steaks cooked to different internal temperatures as follows: Medium rare: 63 ºC, medium: 71 ºC, well done: 77 ºC. 

ab
Means with different superscripts within the same row differ (P < 0.05).
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Figure 7.2 Bi-plots of principal component 1 and principal component 2 for the volatile compounds from different locations of beef 

longissimus lumborum steaks cooked to different internal endpoint temperatures.  

Legend – CR: samples prepared form a cross-section (contact surface to contact surface) in the middle of the steak. EX: samples 

prepared from outer 6.35 mm of steak. IN: samples prepared from portion 6.35 – 12.7 mm from outside surface of steak. MR: steaks 

cooked to an internal endpoint temperature of 63 ºC, MD: steaks cooked to an internal endpoint temperature of 71 ºC, WD: steaks 

cooked to an internal endpoint temperature of 77 ºC. PENT: pentanal, HEXL: hexanal, HEPT: heptanal, BENZ: benzaldehyde, OCTL: 

octanal, NONL: nonanal, BAME: methyl butanoate, PAME: methyl pentanoate, HAME: methyl hexanoate, PNFU: 2-pentylfuran, 

3DOD: 3-dodecene, TOLU: toluene, 2BUT: 2-butanone, 2PEN: 2-pentanone, HYBU: 3-hydroxy-2-butanone, OCTN: 2,3 

octanedione, DIPZ: 2,5-dimethylpyrazine, TRPZ: trimethylpyrazine, EDPZ: 3-ethyl-2,5-dimethylpyrazine, and 4PYR: 4-

pyridinamine.



170 

 

Table 7.6 Effects of 5, 21, and 37 d of postmortem aging on volatile compound concentrations 

from cross-sections and layered sections of cooked longissimus lumborum steaks. 

 Cross-Section
1  Layered Sections

2  External Sections 
3 

 A
4  A L A × L  A 

Aldehydes        

  Pentanal NS 

 

 *** *** **  - 

  Hexanal *  *** *** NS  - 

  Heptanal NS  *** *** **  - 

  Benzaldehyde NS  *** *** *  - 

  Octanal NS  ** *** NS  - 

  Nonanal NS  *** *** **  - 

Carboxylic acid methylesters        

  Methyl butanoate NS  NS NS NS  - 

  Methyl pentanoate NS  * * NS  - 

  Methyl hexanoate NS  NS NS *  - 

Furans        

  2-Pentylfuran **  * *** **  - 

Hydrocarbons        

  Toluene NS  *** *** NS  - 

  3-Dodecene NS  *** NS NS  - 

Ketones        

  2-Butanone NS  *** *** **  - 

  2-Pentanone NS  NS NS NS  - 

  3-Hydroxy-2-butanone *  ** NS NS  - 

  2,3-Octanedione NS  NS *** *  - 

Pyrazines        

  2,5-Dimethylpyrazine NS  - - -  * 

  Trimethylpyrazine NS  - - -  ** 

  3-Ethyl-2,5-dimethylpyrazine NS  - - -  ** 

Pyridinamines        

  4-Pyridinamine NS  - - -  * 
*Treatment means differ (P < 0.05). 

** Treatment means differ (P < 0.005). 

***Treatment means differ (P < 0.0001). 

NS: Treatment means do not differ (P > 0.05) 
1
Cross-section: Samples prepared form a cross-section (contact surface to contact surface) in the middle of the steak.

 

2
Layered sections: Compounds assessed at two locations (external and internal). External: samples prepared from 

outer 6.35 mm of steak; Internal: samples prepared from portion 6.35 – 12.7 mm from outside surface of steak. 
3
External sections: Compounds not detected from internal locations so statistical analysis conducted on external 

locations. 
4
A = effect of aging treatment; L = effect of sample location; A × L = interaction between aging treatment and 

sample location. 
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Table 7.7 Effects of postmortem aging time on volatile concentrations (μg/g) from cross-

sections
1
 of longissimus lumborum steaks cooked to 71 ºC. 

  Aging Time
2 

(d)   

  

5 21 37 SEM P-Value 

Aldehydes      

  Pentanal 0.019
 

0.037
 

0.011
 

0.011 0.244 

  Hexanal 0.074
a 

0.070
a 

0.034
b 

0.013 0.050 

  Heptanal 0.016
 

0.027
 

0.004
 

0.008 0.130 

  Benzaldehyde 0.007
 

0.011
 

0.006
 

0.002 0.192 

  Octanal 0.029
 

0.057
 

0.020
 

0.016 0.237 

  Nonanal 0.093
 

0.251
 

0.009
 

0.09 0.214 

Carboxylic acid methylesters 
  

   

  Methyl butanoate 0.031
 

0.039
 

0.020 0.0098 0.404 

  Methyl pentanoate 0.002
 

0.004
 

0.003
 

0.002 0.571 

  Methyl hexanoate 0.021
 

0.033
 

0.023
 

0.0084 0.568 

Furans      

  2-Pentylfuran 0.000
b 

0.000
b 

0.001
a 

0.0003 0.003 

Hydrocarbons      

  Toluene 0.037 0.021
 

0.027
 

0.0054 0.112 

  3-Dodecene 0.014
 

0.017
 

0.003
 

0.005 0.105 

Ketones      

  2-Butanone 0.045 0.049 0.023
 

0.0083 0.074 

  2-Pentanone 0.019
 

0.023
 

0.010
 

0.0056 0.223 

  3-Hydroxy-2-butanone 0.025
a 

0.016
ab 

0.010
b 

0.0044 0.046 

  2,3-Octanedione 0.001
 

0.002
 

0.002
 

0.0009 0.658 

Pyrazines      

  2,5-Dimethylpyrazine 0.015
 

0.027
 

0.018
 

0.0047 0.174 

  Trimethylpyrazine 0.033
 

0.056
 

0.020
 

0.012 0.133 

  3-Ethyl-2,5-dimethylpyrazine 0.005
 

0.020
 

0.015
 

0.006 0.249 

Pyridinamines 
   

  

  4-Pyridinamine 0.001
 

0.003
 

0.004
 

0.001 0.091 
1
Cross-section: Samples prepared form a cross-section (contact surface to contact surface) in the middle of the steak. 

2
Loin sections aged in anaerobic packaging at 2 °C until the designated aging time. 

abc
Means with different superscripts within the same row differ (P < 0.05). 
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Table 7.8 Volatile concentrations (μg/g) from external
1
 and internal

2
 locations of longissimus lumborum steaks subjected to various 

postmortem aging treatments cooked to 71 °C. 

 Aging Time
3
 (d)   

 5  21  37  P-Values
4
 

 External Internal  External Internal  External Internal SEM A L A × L 

Aldehydes             

  Pentanal 0.065
a
 0.025

bc 
 0.035

b 
0.015

c 
 0.017

c 
0.016

c 
0.0059 0.001 <0.001 0.002 

  Heptanal 0.089
a 

0.029
bc 

 0.042
b 

0.017
cd 

 0.017
cd 

0.006
d 

0.006 <0.001 <0.001 <0.001 

  Benzaldehyde 0.034
a 

0.005
c 

 0.028
a 

0.003
c 

 0.013
bc 

0.001
c 

0.003 <0.001 0.001 0.011 

  Nonanal 0.167
a 

0.080
b 

 0.107
b 

0.082
b 

 0.022
c 

0.016
c 

0.013 <0.001 <0.001 0.001 

Carboxylic acid methylesters             

  Methyl hexanoate 0.045
a 

0.013
b 

 0.032
ab 

0.013
b 

 0.031
ab 

0.047
a 

0.0091 0.172 0.116 0.028 

Furans             

  2-Pentylfuran 0.014
a 

0.000
d 

 0.012
a 

0.002
c 

 0.005
c 

0.001
c 

0.002 0.030 <0.001 0.005 

Ketones             

  2-Butanone 0.095
a 

0.048
bc 

 0.052
b 

0.030
c 

 0.030
c 

0.027
c 

0.0082 < 0.001 < 0.001 0.004 

  2,3-Octanedione 0.086
a 

0.010
bc 

 0.038
b 

0.007
c 

 0.017
bc 

0.005
c 

0.01 0.006 <0.001 0.010 
1
External samples prepared from outer 6.35 mm of steak.  

2
Internal samples prepared from portion 6.35 – 12.7 mm from outside surface of steak. 

3
Loin sections aged in anaerobic packaging at 2 °C until the designated aging time. 

4
A = effect of aging treatment; L = effect of sample location; A × L = interaction between aging treatment and sample location. 

abc
Means with different superscripts within the same row differ (P < 0.05). 
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Table 7.9 Effects of postmortem aging on volatile concentrations (μg/g) from external
1
 and 

internal
2
 locations of longissimus lumborum steaks cooked to 71 ºC. 

  Aging Time
3
 (d)   

 5 21 37 SEM P-Value 

Aldehydes     

  Hexanal 0.658
a 

0.377
b 

0.135
c 

0.0862 <0.001 

  Octanal 0.095
a
 0.061

ab
 0.026

b
 0.013 0.003 

Carboxylic acid methylesters    

  Methyl butanoate 0.034 0.022 0.030 0.0049 0.230 

  Methyl pentanoate 0.001
c 

0.002
b 

0.005
a 

0.001 0.048 

Hydrocarbons     

  Toluene 0.055
a 

0.023
b 

0.034
b 

0.0049 <0.001 

  3-Dodecene 0.018
a 

0.007
b 

0.005
b 

0.002 <0.001 

Ketones      

  2-Pentanone 0.024
 

0.014
 

0.015
 

0.0033 0.074 

  3-Hydroxy-2-butanone 0.032
a
 0.016

b 
0.013

b 
0.0050 0.003 

1
External: samples prepared from outer 6.35 mm of steak.  

2
Internal: samples prepared from portion 6.35 – 12.7 mm from outside surface of steak. 

3
Loin sections aged in anaerobic packaging at 2 °C until the designated aging time. 

abc
Means with different superscripts within the same row differ (P < 0.05). 
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Table 7.10 Effects of postmortem aging on volatile concentrations (μg/g) of compounds detected 

from external
1
 locations but not from internal

2
 locations of longissimus lumborum steaks cooked 

to 71 ºC. 

 Aging Time
3
 (d)   

 5 21 37 SEM P-Value 

Pyrazines      

  2,5-Dimethylpyrazine 0.139
a 

0.109
a 

0.044
b 

0.026 0.021 

  Trimethylpyrazine 0.227
a
 0.136

b 
0.051

b 
0.033 0.002 

  3-Ethyl-2,5-dimethylpyrazine 0.045
a 

0.040
a 

0.015
b 

0.0084 0.005 

Pyridinamines     

  4-Pyridinamine 0.003
b 

0.021
a 

0.018
a 

0.008 0.038 
1
External: samples prepared from outer 6.35 mm of steak.  

2
Internal: samples prepared from portion 6.35 – 12.7 mm from outside surface of steak. 

3
Loin sections aged in anaerobic packaging at 2 °C until the designated aging time. 

ab
Means with different superscripts within the same row differ (P < 0.05). 
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Table 7.11 Effects of location on volatile concentrations (μg/g) from external
1
 and internal

2
 

locations of longissimus lumborum steaks subjected to different postmortem aging treatments
3
 

and cooked to 71 ºC. 

 External
 

Internal
 

SEM P-Value 

Aldehydes    

  Hexanal 0.604
 

0.177
 

0.0727 <0.001 

  Octanal 0.103
 

0.019
 

0.011 <0.001 

Carboxylic acid methylesters   

  Methyl butanoate 0.028 0.030 0.0040 0.746 

  Methyl pentanoate 0.001
 

0.004
 

0.0008 0.011 

Hydrocarbons    

  Toluene 0.047
 

0.028
 

0.0035 <0.001 

  3-Dodecene 0.010 0.009 0.001 0.582 

Ketones     

  2-Pentanone 0.018 0.017 0.0027 0.678 

  3-Hydroxy-2-butanone 0.023 0.017 0.0045 0.060 
1
External: samples prepared from outer 6.35 mm of steak.  

2
Internal: samples prepared from portion 6.35 – 12.7 mm from outside surface of steak. 

3
Loin sections aged in anaerobic packaging at 2 °C for 5, 21, or 37 d. 

ab
Means with different superscripts within the same row differ (P < 0.05). 

 



176 

 

 



177 

 

Figure 7.3 Bi-plots of principal component 1 and principal component 2 for the volatile compounds from different locations of beef 

longissimus lumborum steaks subjected to different aging times and cooked to an internal endpoint temperature of 71 ºC.  

Strip loins were aged in anaerobic packaging at 2 °C until their designated aging time was achieved. Legend – CR: samples prepared 

form a cross-section (contact surface to contact surface) in the middle of the steak. EX: samples prepared from outer 6.35 mm of 

steak. IN: samples prepared from portion 6.35 – 12.7 mm from outside surface of steak. 5: 5 d of postmortem aging, 21: 21 d of 

postmortem aging, 35: 35 d of postmortem aging. PENT: pentanal, HEXL: hexanal, HEPT: heptanal, BENZ: benzaldehyde, OCTL: 

octanal, NONL: nonanal, BAME: methyl butanoate, PAME: methyl pentanoate, HAME: methyl hexanoate, PNFU: 2-pentylfuran, 

3DOD: 3-dodecene, TOLU: toluene, 2BUT: 2-butanone, 2PEN: 2-pentanone, HYBU: 3-hydroxy-2-butanone, OCTN: 2,3 

octanedione,  DIPZ: 2,5-dimethylpyrazine, TRPZ: trimethylpyrazine, EDPZ: 3-ethyl-2,5-dimethylpyrazine, and 4PYR: 4-

pyridinamine. 



178 

 

Table 7.12 Proximate analysis of longissimus lumborum steaks subjected to different 

postmortem aging treatments. 

  

Aging Time
1
 (d)   

  

5 21 37 SEM P-Value 

Protein, % 16.4
 

16.3
 

15.8
 

0.651 0.805 

Fat, % 3.49
b 

4.72
a 

4.48
a 

0.194 <0.001 

Moisture, % 72.1
a 

70.7
b 

70.5
b 

0.206 <0.001 
1
Loin sections aged in anaerobic packaging at 2 °C until the designated aging time. 

ab
Means with different superscripts within the same row differ (P < 0.05). 
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Chapter 8 - General conclusions and implications: Beef aroma 

volatiles 

Aroma is a crucial contributor to the flavor and overall acceptance of beef. These studies 

investigated volatile aroma compounds that have been attributed to specific aromas and some 

that have received minimal attention in prior research. Aging, blade tenderization, and degree of 

doneness are variables that can affect the palatability of beef, but are not employed uniformly 

across the beef industry. The objectives of this research were to evaluate the effects of aging, 

blade tenderization, and degree of doneness on the volatile compound profile of beef and to 

investigate aroma volatile formation at different locations within a steak. 

Postmortem aging and blade tenderization are common industry practices used to 

improve beef tenderness. Muscle structure degradation during aging and muscle structure 

disruption incurred during blade tenderization can improve tenderness, but both processes 

produce free radicals capable of initiating lipid oxidation. Aging increased lipid oxidation of raw 

gluteus medius (GM) steaks as increased amounts of aldehydes associated with lipid oxidation 

were produced when aging times were increased. The disruption of muscle structure associated 

with blade tenderization did not increase aldehydes associated with lipid oxidation in raw beef. 

Blade tenderization was applied at the completion of aging, so it is likely that free radicals 

produced by blade tenderization were unable to induce lipid oxidation to the extent achieved by 

free radicals produced during aging. 

Raw beef has a relatively bland flavor but it contains volatile precursors that generate 

numerous compounds during cooking through lipid oxidation and the Maillard reaction. By 

evaluating external and internal samples of cooked LL steaks, it is readily apparent that 

compounds produced during cooking are primarily generated on the external steak surface where 

oxygen and the heat source have direct contact with the product. External locations of cooked LL 

steaks displayed greater amounts of lipid oxidation and Maillard browning products in 

comparison to internal locations. The meat surface becomes dehydrated during heating, which is 

beneficial for the production of Maillard browning products, and the proximity to heat and 

oxygen should catalyze lipid oxidation to progress at an increased rate. 

Aging of fresh beef has been shown to increase the pool of aroma precursors available to 

undergo various reactions during cooking. The evaluation of cross-sections of both cooked GM 
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and LL steaks demonstrated that aging had an influence on a limited number of compounds. 

Conversely, the concentration of multiple lipid oxidation and Maillard reaction products from the 

external surface of cooked LL steaks became more similar to that of the internal steak portions as 

aging times increased. The structure of meat creates an insulatory barrier that impedes heat 

transfer, but as aging increases, the muscle structure is degraded which may allow less restriction 

of heat to the interior of a steak and could supply an increase of free water in the product. 

Decreased inhibition of heat transfer through a steak during cooking could mean that cooking 

times are reduced, which reduces the time that Maillard and lipid oxidation reactions are allowed 

to occur. Additionally, the increased availability of free water could interact with the product 

surface and create a water activity that reduces the amount of Maillard browning that can occur. 

Similar effects of heat transfer and free water may be present in tenderized GM steaks as lipid 

oxidation and Maillard products were drastically reduced in tenderized steaks. 

Consumers have different preferences in regard to how their beef is prepared. My 

research evaluated how cooking LL steaks to medium rare, medium, and well done degrees of 

doneness influences the volatile compounds generated during cooking. When evaluating steak 

cross-sections, aldehydes are increased and carboxylic acid methylesters are decreased as degree 

of doneness is increased. Interestingly, trimethylpyrazine is the only compound found primarily 

at external locations that increased when degree of doneness was increased. Increased endpoint 

cooking temperatures allow the Maillard and lipid oxidation reactions to occur for a longer 

period of time than low endpoint cooking temperatures, which suggests that numerous 

compounds should increase in concentration when degree of doneness is increased. The lack of 

change at external locations due to degree of doneness implies that most compounds produced at 

external locations are generated early during the cooking process. 

Volatile compounds can be affected by many processes used in the beef industry. 

Currently, cross-section samples are the most common sampling method used to evaluate 

volatile compounds produced by cooked beef. This research shows that evaluating external and 

internal steak portions may provide a better understanding of how volatile compounds respond to 

various processes. The current research provides the first evaluation of aroma volatile 

compounds produced by beef that is aged longer than 21 d and blade tenderized. The cumulative 

results from these studies can provide some explanation to observed flavor changes cited in prior 

research but cannot identify specific compounds contributing to off-flavors associated with 
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extended aging times. Additionally, this research may lead to future work that focuses on flavor 

formation at different locations within a steak in response to different cooking, packaging, and 

processing methods. 
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Appendix A - Supplementary data
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Table 8.1 Mean volatile compound concentrations (μg/g) from raw gluteus medius steaks subjected to aging and tenderization
1
 

treatments. 

 Aging Time (d)  

 5  19  33  47  61  

 

NT BT  NT BT  NT BT  NT BT  NT BT SEM 

Alcohols 

  

 

  

 

  

 

  

 

     1-Octen-3-ol 0.016 0.014  0.027 0.018  0.059 0.056  0.049 0.054  0.072 0.053 0.020 

Aldehydes 

  

 

  

 

  

 

  

 

     Hexanal 0.051 0.039  0.084 0.049  0.158 0.124  0.231 0.120  0.103 0.208 0.051 

  Heptanal 0.009 0.006  0.017 0.009  0.024 0.016  0.024 0.017  0.026 0.025 0.005 

  Octanal 0.010 0.006  0.019 0.009  0.028 0.020  0.026 0.022  0.036 0.028 0.005 

  Nonanal 0.046 0.044  0.102 0.050  0.123 0.094  0.109 0.124  0.189 0.121 0.030 

Carboxylic acid methylesters 

  

 

  

 

  

 

  

 

     Methyl butanoate 0.183 0.174  0.227 0.196  0.234 0.180  0.206 0.186  0.224 0.162 0.0546 

  Methyl pentanoate 0.029 0.025  0.036 0.031  0.044 0.032  0.041 0.039  0.036 0.027 0.0084 

  Methyl hexanoate 0.380 0.401  0.484 0.383  0.605 0.528  0.535 0.500  0.489 0.414 0.0953 

  Methyl octanoate 0.119 0.111  0.115 0.097  0.178 0.195  0.159 0.191  0.149 0.126 0.0529 

Furans 

  

 

  

 

  

 

  

 

     2-Pentylfuran 0.002 0.001  0.004 0.000  0.009 0.004  0.002 0.002  0.009 0.004 0.002 

Hydrocarbons 

  

 

  

 

  

 

  

 

     Toluene 0.084 0.071  0.082 0.093  0.093 0.077  0.085 0.087  0.080 0.076 0.012 

Ketones 

  

 

  

 

  

 

  

 

     3-Hydroxy-2-butanone 0.066 0.079  0.033 0.063  0.054 0.028  0.021 0.028  0.031 0.044 0.023 

  2,3-Octanedione 0.008 0.007  0.014 0.009  0.033 0.023  0.029 0.020  0.027 0.028 0.01 

Phenols 

  

 

  

 

  

 

  

 

     Phenol 0.007 0.005  0.007 0.009  0.009 0.004  0.009 0.006  0.008 0.002 0.003 

  4-Methylphenol 0.059
b 

0.069
b  0.101

a 
0.057

b  0.081
ab 

0.076
ab  0.101

a 
0.085

ab  0.109
a 

0.058
b 

0.011 

Pyrazines 

  

 

  

 

  

 

  

 

     3-Ethyl-2,5-dimethylpyrazine 0.005 0.004  0.000 0.004  0.003 0.009  0.004 0.000  0.000 0.005 0.004 
1
NT: non-tenderized; BT: blade tenderized. 

ab
Means with different superscripts within the same row differ (P < 0.05). 
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Table 8.2 Mean volatile compound concentrations (μg/g) from cooked
1
 gluteus medius steaks subjected to aging and tenderization

2
 

treatments on 

 Aging Time (d)  

 5  19  33  47  61  

 

NT BT  NT BT  NT BT  NT BT  NT BT SEM 

Alcohols 

  

 

  

 

  

 

  

 

     1-Octen-3-ol 0.016 0.007  0.024 0.016  0.028 0.010  0.019 0.031  0.033 0.015 0.008 

Aldehydes 

  

 

  

 

  

 

  

 

     Hexanal 0.204 0.112  0.273 0.147  0.214 0.097  0.163 0.271  0.211 0.109 0.062 

  Heptanal 0.058 0.029  0.074 0.045  0.074 0.026  0.037 0.065  0.081 0.033 0.016 

  Benzaldehyde 0.010 0.013  0.014 0.007  0.020 0.010  0.016 0.015  0.026 0.016 0.004 

  Octanal 0.085 0.055  0.140 0.075  0.161 0.056  0.086 0.125  0.210 0.069 0.033 

  Nonanal 0.166 0.081  0.330 0.155  0.282 0.082  0.125 0.233  0.375 0.106 0.090 

Carboxylic acid methylesters 

  

 

  

 

  

 

  

 

     Methyl butanoate 0.089 0.052  0.127 0.142  0.223 0.145  0.112 0.153  0.071 0.080 0.047 

  Methyl pentanoate 0.012 0.007  0.019 0.023  0.037 0.021  0.016 0.024  0.029 0.006 0.009 

  Methyl hexanoate 0.138 0.070  0.193 0.225  0.441 0.237  0.169 0.264  0.080 0.106 0.085 

  Methyl octanoate 0.021 0.005  0.039 0.041  0.079 0.029  0.026 0.043  0.013 0.009 0.021 

Furans 

  

 

  

 

  

 

  

 

     2-Pentylfuran 0.000 0.002  0.006 0.000  0.007 0.000  0.003 0.005  0.009 0.002 0.002 

Hydrocarbons 

  

 

  

 

  

 

  

 

     Toluene 0.080 0.069  0.226 0.098  0.136 0.081  0.086 0.105  0.123 0.079 0.047 

Ketones 

  

 

  

 

  

 

  

 

     3-Hydroxy-2-butanone 0.046 0.072  0.059 0.087  0.067 0.071  0.047 0.028  0.086 0.067 0.023 

  2,3-Octanedione 0.007 0.003  0.013 0.006  0.015 0.003  0.007 0.016  0.009 0.003 0.005 

Phenols 

  

 

  

 

  

 

  

 

     Phenol 0.010 0.011  0.007 0.008  0.014 0.008  0.007 0.011  0.014 0.010 0.003 

  4-Methylphenol 0.048
c 

0.062
bc  0.098

a 
0.057

bc  0.084
ab 

0.063
bc  0.076

abc 
0.092

ab  0.100
a 

0.060
bc 

0.012 

Pyrazines 

  

 

  

 

  

 

  

 

     2,5 Dimethylpyrazine 0.018 0.023  0.025 0.020  0.065 0.030  0.038
 

0.020  0.067 0.028 0.011 

  3-Ethyl-2,5-dimethylpyrazine 0.003 0.009  0.016 0.011  0.029 0.019  0.025 0.005  0.033 0.018 0.005 
1
Steaks cooked to an internal temperature of 60 °C. 

2
NT: non-tenderized; BT: blade tenderized.

  

abc
Means with different superscripts within the same row differ (P < 0.05). 
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Table 8.3 Mean volatile concentrations (μg/g) from external
1
 and internal

2
 locations of 

longissimus lumborum steaks cooked to various degrees of doneness. 

 Degree of Doneness
3   

 Medium Rare  Medium  Well Done   

 

External Internal  External Internal  External Internal  SEM 

Aldehydes 

  

 

  

 

  

 

   Pentanal 0.046 0.016  0.065 0.025  0.054 0.022  0.0078 

  Hexanal 0.706 0.170  0.984 0.332  0.714 0.169  0.153 

  Heptanal 0.064 0.015  0.089 0.029  0.071 0.023  0.011 

  Benzaldehyde 0.017 0.003  0.034 0.005  0.032 0.006  0.004 

  Octanal 0.089 0.015  0.159 0.032  0.152 0.027  0.024 

  Nonanal 0.126 0.074  0.167 0.080  0.139 0.077  0.020 

Carboxylic acid methylesters 

  

 

  

 

  

 

   Methyl butanoate 0.043 0.040  0.039 0.029  0.030 0.022  0.0046 

  Methyl pentanoate 0.002
b 

0.006
a  0.000

c 
0.003

b  0.000
c 

0.001
c  0.0007 

  Methyl hexanoate 0.047
a 

0.051
a  0.045

a 
0.013

bc  0.033
ab 

0.000
c  0.0089 

Furans 

  

 

  

 

  

 

   2-Pentylfuran 0.010 0.000  0.014 0.000  0.013 0.000  0.002 

Hydrocarbons 

  

 

  

 

  

 

   Toluene 0.060 0.030  0.069 0.041  0.062 0.037  0.0077 

  3-Dodecene 0.015 0.015  0.020 0.017  0.016 0.015  0.0021 

Ketones 

  

 

  

 

  

 

   2-Butanone 0.068 0.035  0.095 0.048  0.086 0.047  0.011 

  2-Pentanone 0.022 0.013  0.029 0.018  0.027 0.018  0.0026 

  3-Hydroxy-2-butanone 0.039 0.017  0.038 0.025  0.042 0.019  0.0088 

  2,3-Octanedione 0.056 0.008  0.086 0.010  0.049 0.004  0.02 

Pyrazines 

  

 

  

 

  

 

   2,5-Dimethylpyrazine 0.045 0.000  0.139 0.000  0.093 0.000  0.02 

  Trimethylpyrazine 0.098 0.000  0.227 0.000  0.175 0.000  0.03 

  3-Ethyl-2,5-dimethylpyrazine 0.023 0.000  0.045 0.000  0.040 0.000  0.005 

Pyridinamines           

  4-Pyridinamine 0.009 0.000  0.032 0.000  0.021 0.000  0.005 
1
External: samples prepared from outer 6.35 mm of steak.  

2
Internal: samples prepared from portion 6.35 – 12.7 mm from outside surface of steak. 

3
Steaks cooked to different internal temperatures as follows: Medium rare: 63 ºC, medium: 71 ºC, well done: 77 ºC. 

abc
Means with different superscripts within the same row differ (P < 0.05). 
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Table 8.4 Mean volatile concentrations (μg/g) from external
1
 and internal

2
 locations of 

longissimus lumborum steaks subjected to different postmortem aging times. 

 Aging Time (d)  

 5  21  37  

 

External Internal  External Internal  External Internal SEM 

Aldehydes 

  

 

  

 

     Pentanal 0.065
a 

0.025
bc  0.035

b 
0.015c  0.017

c 
0.016

c 
0.0059 

  Hexanal 0.984 0.332  0.620 0.134  0.207 0.064 0.11 

  Heptanal 0.089
a 

0.029
bc

  0.042
b 

0.017
cd  0.017

cd
 0.006

d
 0.006 

  Benzaldehyde 0.034
a 

0.005
c  0.028

a 
0.003

c  0.013
bc 

0.001
c 

0.003 

  Octanal 0.159 0.032  0.102 0.020  0.047 0.005 0.02 

  Nonanal 0.167
a 

0.080
b  0.107

b 
0.082

b  0.022
c 

0.016
c 

0.013 

Carboxylic acid methylesters 

  

 

  

 

     Methyl butanoate 0.039 0.029  0.024 0.021  0.021 0.040 0.0070 

  Methyl pentanoate 0.000 0.003  0.001 0.003  0.002 0.007 0.001 

  Methyl hexanoate 0.045
a 

0.013
b  0.032

ab 
0.013

b  0.031
ab 

0.047
a 

0.0091 

Furans 

  

 

  

 

     2-Pentylfuran 0.014
a 

0.000
d  0.012

a 
0.002

c  0.005
c 

0.001
c 

0.002 

Hydrocarbons 

  

 

  

 

     Toluene 0.069 0.041  0.034 0.012  0.038 0.031 0.0060 

  3-Dodecene 0.020 0.017  0.008 0.005  0.003 0.006 0.002 

Ketones 

  

 

  

 

     2-Butanone 0.095
a 

0.048
bc  0.052

b 
0.030

c  0.030
c 

0.027
c 

0.0082 

  2-Pentanone 0.029 0.018  0.016 0.011  0.009 0.020 0.005 

  3-Hydroxy-2-butanone 0.038 0.025  0.020 0.012  0.012 0.014 0.0057 

  2,3-Octanedione 0.086
a 

0.010
bc  0.038

b 
0.007

c  0.017
bc 

0.005
c 

0.01 

Pyrazines 

  

 

  

 

     2,5-Dimethylpyrazine 0.139 0.000  0.109 0.000  0.044 0.000 0.02 

  Trimethylpyrazine 0.227 0.000  0.136 0.000  0.051 0.000 0.02 

  3-Ethyl-2,5-dimethylpyrazine 0.045 0.000  0.040 0.000  0.015 0.000 0.005 

Pyridinamines 

  

 

  

 

     4-Pyridinamine 0.032 0.000  0.029 0.000  0.011 0.000 0.005 
1
External: samples prepared from outer 6.35 mm of steak.  

2
Internal: samples prepared from portion 6.35 – 12.7 mm from outside surface of steak. 

abcd
Means with different superscripts within the same row differ (P < 0.05). 

 

 


