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INTRODUCTION

In recent years, engineers have become more and more concerned with

optimization. One of the reasons for this concern is that intensive compe-

tition in the industries in general and in the chemical process industries in

particular makes it more necessary than ever that equipment and systems be

designed and operated at peak performance. Even marginal savings can be

extremely vital in this competitive environment (1).

A simple optimization problem corresponds to the findings of the extreme

value of a function in calculus (2). This can be accomplished by differentia-

tion. As the problem becomes more involved, partial differentiation and the

calculus of variation (3) may have to be used. More often than not, optimal

problems in engineering and industry cannot be solved by direct applications

of these conventional mathematical methods. A variety of approaches more

sophisticated than the conventional methods has been proposed to solve com-

plex problems. Among them are Dynamic Programming (h) and the Maximum Prin-

ciple (5).

Using the method of dynamic programming, Aris has solved a number of

problems dealing with chemical reactor design (6); Aris and co-workers have

solved a cross-current extraction problem (7); Kudd has investigated a

reliability problem in chemical system design (8) and the optimal use of

limited resources (9). Other applications of dynamic programming to chemical

engineering problems can be found in the works of Roberts (10,11), Dranoff

et al. (12), and Mitten et al. (13). Katz's algorithm of the discrete maxi-

mum principle has been successfully applied to several chemical processes in

the works of Ahn et al. (lU) and Wang (15).



In this report a brief review of these two approaches and their applica-

tions to several chemical reactor systems is presented.

DYNAMIC PROGRAMMING

The basic notion of the principle of optimality from which dynamic pro-

gramming algorithm is derived is introduced by considering a simple example.

The problem is formulated according to the dynamic programming algorithm. Two

techniques frequently used to reduce complexities of problems — the use of

the Lagrange Multiplier and the ratio of the state variables — are then in-

troduced by again using examples.

Basic Problem—Minimum Length of Directed Network

In Figure 1, the circles represent the nodes, and the numbers on the

lines which connect nodes denote the distances between the nodes. Suppose that

the problem is to find the shortest path from node 1 to node 6 with an addi-

tional restriction that the passages of a particle should be allowed along any

path only in the directions of increasing nodal index (16). Common sense tells

us that we can enumerate all possible paths between node 1 and node 6, and then

pick the shortest one. For convenience the number in the parentheses is used

to denote the node number.

path (D—^—OO— (6) - 13

path (1)_(2)_(S)_(6) = 7

path (1)_(2)_(U )—{$)—(6) - 13

path (1 )_(2 )— (3 )_($)—(6) = 8

path (1)_(2)_(3)_(10—(6) - 10

path (1)_(2)_(3)_(U)_(5)_(6) = 10
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path (l)_(3)_(li)_(6) - 10

path (1)_(3)_00—(5)—(6) - 10

path (1)_(3)_(5)_(6) - 8

The shortest path is the second one listed, i.e., (l) (2) (£)_(6) whose

total length is 7.

But enumeration of all the possibilities would be prohibitive in a

problem of large size, employing dynamic programming treatment, we work

backwards as follows:

from (5) to (6) = 2

from (It) to (6) - 5 either by way of (k) to (6) directly or (h)—($)—(6).

To go from (3) to (6) there are two choices, either by way of (k) or (5). If

we proceed by way of (h), the distance from (3) to (6) is the sum of (3) to

(It) and (h) to (6), that is, 2 + 5 = 7. This is true for both paths:

(3)—(I;)—(6) or (3 )—(!*)_(5)—(6). If we proceed by way of (5), we have:

(3)—(5)—(6) - 5. Thus, the shortest path from (3) to (6) is:

(3)—(5)—(6) » 5. By the same argument there are three alternatives lead-

ing from (2) to (6), namely, (2)—(U)_(6) = 12, (2)_(3)_(S)_(6) = 7

and (2)_(5)_(6) - 6. It follows that the shortest path from (2) to (6)

(2)_(5)_(6) = 6. Starting from (1), we can go either by way of (2) or (3)

to reach (6). The distance from (1) to (3) is 3 and the shortest distance from

(3) to (6) is (3)_(5)_(6) - J. As soon as the particle reaches (3), it

must follow the shortest path from (3) leading to (6) in order to make the

overall path the shortest. Therefore, the shortest path from (1) to (6) by

»ay of (3) is: (1)_(3)_(5)_(6) . 8 and from (1) to (6) by way of (2) is

(1)_(2)_(5)_(6) - 7. The choice of the shortest path from (1) to (6)

will naturally be (1)_(2)_(5)_ (6) - 7.



The main difference in the two methods is that in the first, the process

of enumerating all the paths, we do not have any idea which path will eventu-

ally be the answer. We are only exhausting all the possible cases. However,

the second method allows us to leave out all the impossible cases. For example,

(2)—(S)—(6) - 6 is always the shortest path between (2) and (6) and, there-

fore, every time we proceed by way of (2), we discard all other paths branch-

ing out from (2).

What is illustrated above represents a very simple version of Bellman's

Principle of Optimality (ii) which states that "An optimal policy has the

property that whatever the initial state and initial decision::, are the remain-

ing decisions must constitute an optimal polity with regard to the state re-

sulting from the first decision." Dynamic programming is the algorithm based

on this principle. The advantage of this approach is to reduce a problem

with large dimensions to a problem of solving simultaneous equations each

with small dimensions. Then the use of a high speed computer becomes partic-

ularly suitable.

Before describing in detail the formal algorithm of dynamic programming,

a basic terminology should be presented (9,1$).

1. State, x: The condition of the entry to be transformed in the process;

for instance, the concentration of the reacting substances in the

reactor, or the position of the node at which the particle is currently

situated.

2. Decision, or control variable, 9: A decision or control variable is

defined as a way of manipulation made to transform the entries from one

state to another; for exanple, the temperature or pressure in a reactor,

or the decision of the path to follow in the net-work problem.



3. Transformation, T: The transformation operator describes the way in

which a given decision or control action transforms the entries from one

state to another, for example; the kinetic equations or material balance

equations and others.

h. Interval profit, P: The interval profit is the profit or any physical

quantity resulting from the transformation of the entries in the interval

time or space between two decisions. It is a function of the state and

the decision made. An example, is the increase in concentration of a

desired product in one backmix chemical reactor of a multistage process.

Another example is the distance between two nodes in the interval.

5. Stage, n: This represents the typical unit of a process or the typical

time periods, or any real or abstract notion of intervals in which cer-

transformations take place.

6. Objective function, 0: This is summation of the interval profits, it is

the net profit of the entire process j for example, the total distance

of the paths from node 1 to 6. Another example is the change in the

concentration of the desired product between the first and last stages

of a multistage process.

The optimal sequence of decisions is defined as that sequence of

decisions which maximizes the objective function.

7. Constraints: These are the limitations imposed on the decisions;

examples are, only the path in the direction of increasing nodal index

is permitted in the network problem or the limitations on the tempera-

ture that may be imposed in designing a reactor, or the limitations of

relative cost of the product.



According to the dynamic programming algorithm the net-work problem may-

be reformulated as follows (16):

Let £j_ be the shortest path from node i to 6. Pj» is the distance from

node i to j, and the constraints demand that j>i and ?^ ""^when node i and

are not connected. Also, it can be noted that the distance from node 6

to itself is zero.

°6 " (1)

In general

f
t -g(Pjj*fd

)
-

(2 )

To find the optimal objective function, in this case the shortest distance,
+
0* t.f we employ the equation (2) repeatedly,

fj-Mta (P
Sj+

f
j
).Min(P56+ f

6
). 2 + 0- 2

This is to say that, if the system were in state 5, an optimal continuation

would be to proceed to node 6, with a corresponding increase in length of

2 units. This continuation is designated by Jc 6.

This shows that both paths are equal in distance and, therefore, J
= 5 or 6.

h

The star, *, indicates optimum conditions in general. For instance, 8* is

the optimal decision and 0* is the optimum profit, i.e. the objective func-

tion.



/p + f

8 -Jj2;ji);«-(i:!) =6 V s

25 5,

,1 + 6,

'1
2-f = Min ( +f ) -Min C, .") - 7, J

Thus the objective function or profit is 7.
' The track of path will be

i
±

= 2, j
2

= 5, j 6, i.e., (1)—(2)—(5)—(6). It is a well organised

algorithm, producing the same result as previously obtained.

The example cited above has the property of being discrete which is

indispensable in the dynamic programming algorithm. Although the problems

encountered in engineering are often of a continuous nature, the discrete

interval can often be made small enough to approach the continuous nature

of the problem. This can be accomplished with the use of modern high speed

computers.

The Exploitation Problem

The problem of exploiting a natural resource which is available for a

total of N years will be considered next (9). The state x is defined as
n

the amount of the resource remaining for processing with n years remaining.

Suppose that at each year a decision 8 concerning the method of processing

for the next year is made and thus, altogether'N decisions are made. The

condition of the resource remaining for further exploitation and the profit

made during exploitation are dependent upon the decision made at the present

stage. For example, an oil reservoir may be initially water flooded to in-

crease the rate of oil removal and the profit rate; but this early flooding

may disturb the reservoir and in the long run reduce the total amount of

oil that can be removed.



Representing the sequence of years in the order shown in Figure 2, the

interval profit P is the profit made during the n-th period and is a function

of the state of the resource at the beginning of the n-th stage and the deci-

sion made at that stage, i.e., P P (x _;8 ), As previously mentioned, the

condition of the resource remaining for further exploitation depends on the

decision made and also on the previous ststa. The relationship between them

may be denoted by T, the transformation operator. T may be a complicated math-

ematical equation or just common sense; it may be expressed by

x T(x :6 ). The objective function is the summation of the interval
n n+1 n

profits

The value of the objective function depends on the initial state, x. , of the

resource and a sequence of N decisions, 8 , 8M .,...,9 . The problem is to

make a series of decisions which will maximize the objective function. Such

decisions are called the optimal policies denoted by 0», Ojj_i>.>.» 8.. Thus

o*C«
ta
>* o

(Xin;
e
; ; o^,..., e*)5 f

H(^) . jtalj, p(v e
n)j (3)

f (x . ) is the total profit obtained over the time period n to if an

optimal policy is used starting at stage n. Clearly, if we find ourselves

at a state x at a certain time or a stage n, the best we can possibly do

is to follow the optimal policy from the state x to the end and thus ob-

tain a profit, f (x ,}, over that time period. Applying the principle of

optimality the dynamic programming algorithm may be written as

£ (x . ) - Max { P (x x. ; 8 ) + f , (x ) I (M
n n+1 e l n n+1' n n-1 n

|

w '
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x = T(x ; 6 ) (<)n n+1 ' r, wn n+1' n

If M different decisions are possible each year, the optimal policy and ob-

jective function, equation (3), may be reached by the repeated and simultane-

ous use of equations (1*) and (5). The procedure starting from the last stage

is illustrated as follows:

8
i

First, for a selected value of x , the values of P (x ; ) are computed for

M possible 8^ which maximizes P-^Xgj 0^) is the optimal decision 8* corre-

sponding to the particular x selected. The corresponding x can be cal-

culated by equation (7). Then the same calculation is repeated for all

possible x
2

. Eventually the so-called dynamic programming table may be con-

structed as shown in Table 1A. Proceeding to the second stage, equations (U)

and (5) are written as

f
2
(x

3
)-Max|p

2
(x

3
; e

2
)
+ f

i(
x
2

) /
( 6 )

x
2

- T(x
3

; 8
2

) (?)

Again assigning a value to x^ the values of ^(Xjj 8 ) and x are computed

from equations (8) and (9) respectively. The value of f (x ) in Table 1A

corresponding to the computed x
g

is added to P^x ; ). The optimum profit,

fgCxj), for the particular x is the maximum among all the computed values



12

Table I

Illustration of dynamic programming
algorithm

Table I. A Table LB

x
2

9* f,cx2 ) x, x
3

e* f
2 (x3

) x
2

Table l.n-1 Table l.n

xn en-i ^n-i<Xn> Xn., Xnf,.en fn(Xn+|) X„
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of JP (x,; 6 ) + £.(x
?
)l for all possible 9 , The succeeding 9? and the x

correspondent to the computed x„ are located in Table 1A. Table IB is like-

wise constructed by repeating the above calculation for each possible x,.

In a similar fashion all N tables may be constructed sequentially. In general,

an n-th stage table has the form of Table In. With a particular x.. . "X.L
N+l in

given, we proceed to Table N and find and x^ from it. Proceeding to the

(N-l) stcge, Om J
and xl. corresponding to the initial state, x are ob-

tained, and this process can be continued until the entire sequence of the

optimal decision, Gk» 8jj'_]_, .. .,6£, is extracted. This algorithm not only

provides the answer to the particular x x , but it also yields a
N+l i^n

series of solutions for a whole range of x , meaning that the dynamic

programming tables contain solutions for M x N number of optimization prob-

lems. Knowing this is especially useful in chemical engineering problems.

While the feed condition can hardly be kept at a steady state, we can de-

termine the effect of putting on or taking off a few stages. Furthermore,

the dynamic programming formulation not only allows a problem with high

dimensionality to be replaced by a sequence of problems with lower dimen-

sionality, but it also provides a straight forward computing algorithm. The

device by which computational solution is brought about is through a system

of recursive equations, which is well suited to high speed computer machine

solution.

Another way of ordering the series for the stages for the problem just

considered is presented in Figure 3. The algorithm is essentially the same

as before, except that the direction is reversed in numbering the states

and control variables. According to this scheme,
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OS f
N
(x

Q ) = Max P
N
(x

o ; e
x

) + f^) (Ua)

While the former way of numbering the system is more canvenient for the purpose

of a computer programming, each has its advantage. The latter enables us to

compare dynamic programming with the maximum principle.

The dynamic programming algorithm, as has been shown, is convenient and

powerful, but it is not a rote to be thoughtlessly applied to every problem.

One of its best features is that it permits exercise of ingenuity in simpli-

fying the complexities of a particular problem before applying the basic

algorithm. Two schemes for reducing the complexities will be introduced by

means of concrete examples.

Lagrange Multiplier

Quite often the use of the Lagrange Multiplier can reduce the dimen-

sionality of a problem and enable the problem to be handled within the capa-

city of computers (17). Usually the Lagrange Multipliers are applied when

there are inequality constraints or restrictions on the variables (17).

There are two important rules in applying this technique (17): 1. The number

of Lagrange Multipliers to be introduced must be equal to the number of con-

straining equations and 2. The Lagrange expression must be equal to the ob-

jective function plus the product of the Lagrange Multipliers and ',...' is

the constraints. These constraints must be in the form of an equation which

is equal to zero.

Suppose that the function f (x,y,z) » x + 2y2 + z
2
, subject to the con-

straint that x + y + z - 1 = 0, is to be minimized. The Lagrange expression

(17) is:

w(x,y,z) = x + 2y + z +A(x + y+z-l)
Where^A is the Lagrange Multiplier. ConsiderX as a new variable.
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aw
1 + ^-o

#2 = hy + A - o
ay

2z + A
aw

£? = x+y + z-l =

Solving these four equations simultaneously,

A - - l, x - 0.25, y = 0.25, z = 0.5

2 2 2
Thus, the minimum value of f(x,y,s)B x + 2y +2 - (0.25) + 2(0.25) +

2
(0.5) 0.625, under the constraint, x + y + z-l = 0.

Now the case with two types of resources represented by quantities

x and y respectively will be considered (k). The quantities of these re-

sources allocated to the n-th activity are designated by x and y

respectively. If there exists an interval profit P (x , y ) which is the

return from the n-th activity due to respective allocations of x and y ,
n n

then the optimal problem is to maximize the objective function of 2N vari-

ables, i.e., the proper allocation of the resources for an efficient utili-

zation. In other words, it is to maximize

0(x
x
, x

2
,..., x

N
; y

x
, %,..., rj - g \(\, 7n > (10)

subject to the constraints

"S 7 x X
J-* n
n-1

x ^
n

N
si y • y jrv o

n

(11)
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This is a two-dimensional allocation process, independent of the value of N.

Applying the dynamic programming algorithm,

tfW)« f
N
(x,y) - Max P^, X^...,^, y^ y,,,...,V

x and y are values to be determined,
n "n

For N - 1

f
1
(x,y) P

1
(x,y)

For K22, the following recurrence relation is obtained,

f (x,y) -

Q

jto
o
jx^ [Pg^jr,) - y» - V y - y

N )J

The solution of this recurrence equation is quite involved and demands a large

computer capacity. In the following treatment it will be shown how the

Lagrange Multiplier can simplify the computation.

The following equation with constraints on x and y

o(xi'--v y
i v vvv + vvv + - + yw

X
l

+ X
2

+ •" +V X
• \2°

is replaced by the problem of maximizing the modified function

p
1c«lf tj) * p

2
u

2 , y2 ) * ...y*j,, yK ) - ^i * y2
+ ••• + yN

_]

subject to the constraints

x
1

+ x
2

... xjj - x , x
n20 (13)
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For the moment consider /\ as a fixed parameter and assume that

p U i y )/y -=* o as y —* °°
n n n n n

The maximization over y can be done independently of the maximization over

x (It). Thus
n

h
n

(V^ )
= h

n
(x
n

}
= ^[VV V "^nl

Tne problem is transformed to that .of maximizing the function

W + h
2
(x

2
)

+ •" +h
N
(X
N

)

subject to the constraints of equations (13) and (111). Repeating the pro-

cedure by varying X until it satisfies the restriction

2 yn(A) - r
n»l

it may be found that the corresponding optimal policy is the solution for

the problem.

Geometrically, the Lagrange Multiplier can be interpreted as the slope

of the searching lines in the complex plane (1*). As will be shown in the

first example in the application section, the Lagrange Multiplier can also

denote price or relative cost.

Batio of State Variables

The term "homogeneous nature" implies that the transformation

functions of the problem are linear with respect to each other (6). This

linear property simplifies the optimization problem in that the ratio of
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two state variables may be used as a new state .variable, and thus the number

of state variables is reduced (6).

As an example, the system of a first order consecutive reaction

A-^B-^C, will be considered.

Heferring to Figure 2 the concentrations of A and B which are denoted

by x and y respectively, are the state variable and the temperature is the

controlling variable. The n-th reactor has the volume V and the volu-
n

metric flow rate of the stream v is constant throughout the multistage

system. It will be assumed that there is no density change in the process,

which is essentially true for the liquid phase reactions. The holding time

is e .__»
n V

Since the reaction under consideration is a first order consecutive reaction

represented by

k(t) h(t)
A" >B >Q

and the kinetic equations for rate of appearance of A and B

r
A

- - k(t)x

p - k(t)x - h(t)y

the material balance around the n-th stage for each species is:

vx - vx + (-r ) V
n+1 n v

A n

x x + k(t ) x deln+1 n n n n ^AS '
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and

V
n*l

=
^n

+
(
-r
B

} \

y
n+l

=y
n

+ h^V yn " k(V X
n

8
n ^

The production of y for a definite feed condition is to be maximized by-

choosing the optimal series of decisions, 6 and t . It can be seen that
n n

in order to describe the system completely the composition, x and y, must

be individually specified at each stage. This is a two-dimensional prob-

lem which not only requires complex computational scheme but also demands

a great deal of computer memories. However, as we examine closely, we can

see that because of the linear transformation equations involved, the

problem can be simplified by definirrg a new variable

x

(17)

Dividing equation (16) by equation (15)

**! X
n

+ X
n

8
n

k(V

°n+l

e + 8 f e h(t
) - k(t i)n n j n n' ^ VJ

1+0 k(t )
n n

e e

i e
n

h(t
n )

n+l n ( 1 + 6 k(t )

k(t
)n a'

1 + 8 k(t )

n n

e + SO>) JIV^V
11+1 1 + g

n
k(tnM 1*0 h(t)

n+l
f
1 + 6

n
k(
VJ

+ 8
n

k(V
j
/ fr * °

n ^J (18)
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This equation gives a functional relation for determining the output ratio

at any stage in terms of the feed ratio e^. From equations (15) and (16)

3
n

Vl \ + \ k<V °n

i e
n

k (t
n )

Since the formation of B is to be maximized, the' objective function is:

y
i " yn+l * \ frn " yn+1 ) (20)

and the optimum function, f (x ; y ). is

M

Because of the linear nature of the equations, this must be proportional to

Xj
J+1

and depends only on the ratio jr^j/J^ • e^ i.e.

VVl' 7w)* X
N+1

g
N
(e
N+l

} (22)

Now applying the dynamic programing algorithm to the function f
N

N' N V
)

Combing equations (15), (19), (22) and (23)

g (e ) » Max
yN

" yN+l 1
, ,

}
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g (3 ) - Max fe
k( t

n } - 8
n

h\K + 1 ,
J , , ,

N Vl Cl\
—

1 + e
n

k(v~ ^v^y ^^j (2U)

This is an equation in e only, and can be solved recursively in conjunction

with equation (18).

DISCRETE MAXIMUM PRINCIPLE

In this section, the general maximum principle algorithm for discrete

systems with recycle is presented first ftj). It is then reduced to a special

form with no recycle.

A series of multi-stage ideal backmix reactors with recycle from the

last stage to the first stage will be considered. They are schematically

shown in Figure h. If the superscript, n, indicates the stage number,
n. ciox
i

s, i » l, 2,...,s, are the state variables leaving the n-th stage and

e
r > r =

1j 2>-">t, are the control variables at the n-th stage. If T. is

the transformation function for each different i, then

1-1, 2,...,s

n = 1, 2,...,N

where T?(x. . O
n

l Is a >h««t h=nri f„~™ <•-» * /•_
n"1

. .n-1 __n-lira I
i
(x
k" I V is a short hand f°™for I.(X

J
• x?"1, . . . ,x

n_1
;

The feed enters the system at a rate q, while the recycle stream is fed

back at a rate r. The mixing conditions are represented by

X
i

= K {x
l-> \) > i-l, 2,...,s (26)

where x£ are the state variables in the feed.
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The problem is to find a sequence of control decisions \e
n

{ , with or

without the constraints, c("^9"—/"; n = 1, 2,...,Nj r - 1, 2,...,t,

which will maximize x .
m

The essence of the discrete algorithm for the maximum principle (5) is

to introduce a new set of variables defined by

n, n-1 n.

i - 1, 2,...,S

n = 1, 2,...,N

The Hamiltonian H is formed as follows:

(29)

It can be shown that (5) (15)

az
i

Then the optimization problem becomes that of finding a seo.uence of [ Q
n

[

to satisfy the following conditions (.$,15)

s
n

a " ZT Sj TjCxjj" ; e") - Maximum (31)

with the boundary conditions (15)

x
i

= VV V (32)



25

Z
i

" K Z
3

J

\ " ^ (33)
1 Ji J

a 4
n 1, 2,...,N

i 1, 2,...,x

(1 i - ra

S. -

where &. is the Kroneclcer delta, i.e. ST -i

"1 i = m

-0 i / m

If the minimizing sequence instead of the maximizing sequence of control

actions is to be decided, the basic algorithm remains unchanged except that

the equation H
11

max is replaced by Hn » min.

Quite often the maxima sought in equation (31) are found to lie at

stationary positions. This is equivalent to

n. n-1 n.

e
r ; 2> J ^

p
r

. o (3U)r
d-i 3 ao

R

r

If the 9's are under the constraints

then, for each n, the maximum required by equation (31) may be found at some

stationary place between s/
n and a " or at one of the end points, (j

n
or

A . In this situation, the following equations must be used:

r

«r 4
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or : =
J>

This algorithm can seldom be solved analytically (15). Even in simple

cases considerable ingenuity is needed. Therefore, only a very general work-

ing procedure for finding a numerical answer to a specific problem according

to the algorithm is presented:

1. Propose a sequence 6 , 9 , ...

2. Propose a set of x'. . i = 1, 2,...,s

f
3. With a given x., solve equations (26) and (25) forward and get a

new set of x . Kepeat the calculating using this new set of x

N
*

until the subsequent x. are close enough.

h. With these x and
11

, solve the equations (27) and (33) in the z's
i r

backward from n N to n 1.

5. With these x's and z's compute a sequence of 8
n
from equation (31)

and return to step 2. <

6. The iteration procedure is terminated when the successive computed

N
values of x are sufficiently close, possibly together with the con-

m

dition that successive computed strings of are also close enough.

Quite often a modification in practice may save considerable work.

Instead of taking computed in step 5 directly' back to step 2, it may

sometimes be desirable to regard the new as a mere indication of direction

in 8-space and apply the methods appropriate to steepest descent calcula-

tions to choose the best length of step in this direction, and possibly even

to modify the direction in the light of the iterative history.
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For the process without product recycle, i.e., r - 0, equation (32)

reduces to

f
x - x
i i

1-1, 2,...,s

and the basic algorithm reduces to

n
[ -
i

2j£
_ n
Jz.

X

n an"
i af4

n = 1, 2,...,N r - 1, 2,...,t 1-1, 2,...,s

0^ are determined where H
n

- max, with the boundary conditions
n

f
x. - X.
i i

i \0,

i"m

i^m

(36)

(27)
n-l A, 9*K* i gj n

z
.

= 21 "—=-*——— z ^
1 3-1 ^x"-1 J

n A n n, n-l n.

(29)

(30)

(36)

(37)

Hie general working procedure is the same as stated for the case with product

recycle except that the step of guessing a set of x1

? may be omitted saving con-

siderable labor in matching the JT by trial and error.
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It is worthwhile to note that for each assigned value of x , the corre-

sponding calculated values of x", n = 0, 1, 2,...,N-1 are the optimal state

variables corresponding to the initial condition x computed in each run of

trial calculation.

If the final values of certain x's other than x are specified, the

boundary conditions of tquation (37) are changed tot

N [ 1, i=m

V[0, Wrf.p W
x
p

" b (39)

Otherwise the algorithm is the same as before.

APPLICATIONS

Cross-current Elutriation of Sludge

The purpose of elutriation in the sludge treatment is to reduce the

alkalinity of the sludge with wash water or wash solution (18). Here, the

term "sludge" indicates the sludge in wet slurry form after the filtration

process. The alkalinity of the sludge is usually expressed as mg/liter of

calcium carbonate equivalent to the determined alkalinity. The elutriation

can be carried out practically by repeated cross-current washings as shown

in Figure 5 (18). The sludge is fed at a constant rate corresponding to liter

of water per unit time and with alkalinity E mg/liter. In the tank, it is
o

kept in suspension by air or mechanical agitation. After thorough washing,

the sludge and wash water are. separated. The out wet sludge solids and wash

water should have the same alkalinity. The outlet sludge solids become the

feed to the next tank. The wash water is available at the alkalinity w mg/liter.

It is fed into the tank at the rate of A liter per unit time.
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For a system with a finite number of stages and a definite input alkalinity

E , two types of problems may arise:

1. With a fixed total amount of wash water & , how can this amount of wash

water be distributed amoung the stages in order to maximize the reduction in

alkalinity, E -E , of the sludge?

2. If the cost of providing and pumping the wash water is a fraction,

A , of the value to be gained by reducing the alkalinity of the sludge, how

should the flow rate of wash water to each stage be regulated to maximize the

net profit, E - E -Aq ?
' N N

It will be shown later that the solution of the second problem also

yields the solution of the first and is, in fact, the easiest method of

solving the problem. The realtive cost, A, plays the role of the Lagrange

multiplier (U,7).

It will be shown below that dynamic programming and the maximum principle

algorithms yield the same solution for this particular problem. The optimal

decision, as will be shown later, is to distribute the wash water evenly among

all the stages.

For the convenience of formulating the problem, the following notations

are defined:

(1»0)

E= x

It can be recognized that

e = *

q

The physical condition demands that

a^> x, j> . . .> x ^. .
.'> x ,> w— 1— — n— H~
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Dynamic Programming Solution . The material balance around the n-th stage

with respect to alkalinity yields

qE , + a W = RE +qE
n-1 n n n ^ n

n-1 n n n n

x , 9 w

n

This represents the transformation function, T(x : S ).
' n' a

Interval profit per unit volume of the wet sludge at the n-th stage is,

P = x -x -/ie
n n-1 n n

Therefore, according to equation (l;a) and Figure 3,

* ( \
N

B f (a) = Max ) a - x - X "ST 9
N

f
9
nl ' ^ n

Max

\ )! ^--.--v]

Max \ P (a, ) + f (x )
< »

v
' r N-l

v

l'

f (a) ' Max J a - x - \q + f (x ) ,N
^ 11 n-1 1 I

(1*2)

Clearly, if there is no stage existing, the profit will be zero, i.e.

f M -
(1,3)

For the one-stage system, shown in Fig. 6A, equation (1|2) is reduced to,

Va)

"*fy-\-\ +f
o

(vf



32

o
CI

5 D
CM 00

CD o
5

E
o E
i_ m
on-
n (0

>,
CJ 00

CD
CO

Ci

Lt-

CD
D>
-:2
00

I

CD
C
O

p F~ «D
i n
n CO

Q

<
CD

o>

Lu



33

Combining this with equations (li3) and (Ul)

a + 0_ w

Olli)
f
l(
a)-Max a- _

r
_l_ .^

By straightforward differentiation, it yields the optimal decision as

o = Ctsi) - i (W)
1

/\

Inserting equation (US) into equations (Ul) and (UU)

x
1

A(a - w)J + w t (U6)

1 1

f
1
(a) - a - w + j\- 2 ^

2
(a - w)

2

(U7)

For the optimal two-stage policy, referring to Figure 6B and employing

equation (U2),

f,(a) - Max J a - x, - A + f , (x ) I (U8)

Combining this equation with equations (1;1) and (li7)

f
2
U) Max j a-i - Ae + x +A-w-2/i(x - w) |

f
2
(a) = Max S a + /i - w -Ao,

By direct differentiation the optimum point is found as

7

(5D
x
x
4A(a-w) 2

]j + w
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f
2
(a) - a - w + 2 A _ 3 /\ 3 (a - w) 3

(S2 )

According to the principle of optimality the second tank should use the

optimal one-stage policy with respect to its input x . Therefore, from

equation (it5)

x-w *

\
=

(

7T
) -

1 (Wa)

Inserting equation (Si) into the equation above

1

V^- 1
(S3)

Comparing this with equation (SO)

e
2

= 9
l

Thus for the two-stage system, it has been proved that the optimal policy is

to divide the washwater equally between the two stages.

In general for the N-stage system it can be deduced that

f
M
(a) = a-w + NA-(N+l)A I:fI

(a.w)
^

(&)

N
(~j-) - 1

(55)

8=8
-, n

n n-1 n = 1, 2, ..., n

The optimal policy is always to distribute the wash water evenly among all

the stages.

Maximum Principle Solution. This problem is a simple case without recycle.

Following the notation of the maximum principle algorithm and from eauation

(Ul)
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X 1 K
1 +

"-1
+ e

n w

?

Defining

n „ , n-1 n^ n-1 n-1 n \ n
x - T x : 8 ) = x, + x - x" - A 8
2 2 tc 1 1 1

(56)

(57)

.N
H n-1 n

it can be shown that x" = 2 (x ~ x
i

~ "* J ^ *^e objective function
2 n=l ! x

M
to be maximized. The problem is then to maximize x with the boundary-

conditions

1

x =
2

From equation (27)

n-1

1 + 8 1 + 8

n = 1, 2,...,N

n-1 n
z = z
2 2

From equation (37)

N „z -
1

z - 1
2

From equations (59), (60) and (61)

n-1 n
z - z >= 1
2 2

n
•z

„n-l
.

n-1, 2,...,N

B

1 + 0" 1 + 8"

From equations (28), (56) and (62)

(58)

(59)

(60)

(61)

(62)

(63)
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H
X?"1 + 9° W

n-1 n
x, + 9 v

i
(-—H 4(4 + 4"1 - -—

-n- - A e
n
)

l + o " * •- i + er

h" -
( a
° - 1) (.1 ; x*'

1
x^-

1

A^0" (i + Q
a
f

' /l
(64)

Since A imposes a restriction on
11

automatically the nature of the physical

situation assures the existence of the extremum points at which 9
11

make

equation (61;) equal to zero (IS). Thus

(w - Xj_ ) (Zl _ i)

J
A

Solving equation (65) for z"

(1 * 6
n

) A
n-1

+ 1

(65)

(66)

For the (n+l)-th stage

1 n -1-

W - X.
(66a)

From equation (63)

n+1

1
i + e

n+1

n+1

l + e"

Substituting equations (66) and (66a) into this equation.

(i * e")
n=I

w - x
1

(i j o
n+1

) (67)
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From equation (56)

8 + 1 " -h (68)
x, - w

n+1 __i
8 + 1 ° x^

+i
- « (68a)

Combining equations (67), (68) and (68a)

(x^1 - w) (x^
+1

- w) = (*£ - w)
2

(69)

The general solution of this finite difference equation is (19):

x^ = c(d)
n

+ w , n - 0, 1,...,N+1 (70)

From the boundary conditions, the constants, c and d, can be evaluated.

From equation (58)

c a - w

Equation (69) then, becomes

(71)

3C° = (a - v) (d)
n

+ w (72)

At the N-th stage, by equations (68) and (68a)

H-1

6
M

+ 1 =
X - w

N
x - w
1

Combining equations i (61) and (66)

N
e + l -

H-1
x, - w<—

;

)

A

Thus:

(68b)

(73)
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(xj - w)
2

= (x*"
1

- w) A (7U)

Inserting equation (72) into equation (7li) yields

d - (If1 (75)
a-w

The general solution for x is then obtained by substituting equation (75)

into equation (72)
n

N+l
2? . (a _ w )

(-A_)
]_

a - w'
(76)

Ins er tin;
"

g x.^ from equation (76) into equation (56)
1 1

N+l
n

= (S-^-2) - 1 (77)

N+T ^^
x
N

= (A)
(a _w) +_w (78)

By a simple summation of equation (57)

»J
«£»$ -aJ-sA* (79)

Combining equation (79) with equations (58), (76), (78) and (77)

H 1

N v
N+l N+l

x - a - w + N/\- (N+l) (/\) (a-w) (80)

Since 8 is independent of stage number, as can be seem from equation (77),

the optimal policy is to distribute the wash water evenly among all the

stages.

For this simple problem, both the dynamic programming and maximum

principle approaches result in identical analytic solutions although the

latter approach is more direct than the former.
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These solutions are for the second type of .-the problems listed at the

beginning of this section, but it also contains solutions for the first type,

i.e., the case with fixed C3 . Since the optimal policies for different values
K

of A , which is a paramter, give Q = 2± ° = Qn(A)> bT searching through
N n=l "

different/A, suchAcan be found that Q_( /[) matches the given Q_ as described

in the previous section describing the use of the Lagrange multiplier.

Step Rocket Problem

A step rocket is a multistage rocket system employing the technique of

jettisoning structural weight during flight to increase performance. Figure

7 is a sketch of a three-stage step rocket system (20). The rocket weight is

defined as the initial gross weight at the start of a stage which is the period

of time starting just after the jettison of one structural package and lasting

until just after the jettison of the next. The difference of weight between

two consecutive stages is called the step weight, and weight remaining after

the jettison of the last stage, the rocket payload.

The purpose of the rocket system is to attain a specified final velo-

city carrying a desired rocket payload (21). If the number of stages and

the material and propellant for constructing the rocket system have been

decided, the problem is to determine the optimum size of each stage so that

the gross weight of the system is minimized. A two-stage optimization problem

has been solved by Goldsmith (22) by using calculus and a three-stage problem

by Schumann (23). To make hand calculation possible, certain simplifying

assumptions have been made in their solutions. For many problems the assump-

tions are quite reasonable and the results are found to compare favorably,

with actual practice (20). The simplifying assumptions, however, must be
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verified by comparison with solutions obtained by removing all or some of the

assumptions. Also, many practical problems may have to be solved by use of

other approaches.

Dyke (20) employed the dynamic programming algorithm to solve the prob-

lem, which will be summarized below. A working scheme suitable for the

machine computation of this algorithm and the maximum principle solution are

also presented in this section. These approaches not only can be used to

check the simplified solutions mentioned before but should also yield reliable

results for rocket systems with more than three-stages.

Before introducing the general transformation equation, the following

terms will be defined (20):

c propellant exhaust velocity of stage n

f (V) = minimum weight of rocket n achieving velocity V

M = ratio of initial thrust to weight of rocket n

n number of stages

V velocity ideally added by the rocket n; design velocity of
rocket n

W « rocket system payload weight
Jj

w = initial gross weight of step n

K^j = that portion of stage n jettison weight which is constant

(/n
wn = portion of stage n jettison weight dependent of step weight

'-^nVSi portion of stage n jettison weight dependent on thrust

G~n n » total jettison weight of stage n

xn
= initial gross weight of rocket n

8 « velocity ideally added during stage n
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a = -Ah -J
a ran <* n

b = 1 -</
n ' nn

d " W
n xn

It is assumed that M_ is constant for the stage n. The following rela-

tion holds for each stage (20).

(fi = A * + /5n M. x + w (81)
n n 1 n n r a » n xn

i.e. for stage n, total jettison weight is the sum of the jettison

weight which depends on the step weight and step thrust plus a constant tern.

This assumption is quite reasonable (20). d , iff and w are con-

(82)

straints for n-th stage. From the definition of x
n

The well-known rocket equation yields (20)

X
n S

n
x . + fa wn

= exP <ol>
(83)

n-1 v n n n

Combining equations (8l), and (82) and (83)

(1 -< } Vl + W
xn

%-£*»-<*exp(--4- ^„M
n
-^

n
n

b x , + d_
n n-1 n

(BU)

exp ( - — ) + a
n "

Dynamic Programming Solution (20). Applying equation (h)

f (V ) - Min J n * a
n n-1 n-r ( (8£)n n oiSiv ) ;

er
a [ exp ( _ -ii) + a
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v , » v - e
n-l n n

(86)

For the last stage

w d
l

* a
i
W
L

V,
exp ( i) + a

(87)

An outline of the computer flow chart for solving these recurrence rela-
,

tions is shown in Figure 8 and a Fortran 1620 program is given in Appendix

A.

Maximum Principle Solution . Applying the maximum principle algorithm, the

problem can be reformulated as shown in Figure 9 which corresponds to Figure

7. From equation (81i)

, n n-l ,n
b x, + d

exp ( - 0y) a
n

(8Ua)

Defining

2 2

n-l _n
(88)

the problem is then to minimize x with the following boundary conditions

x » W
1 L

„
x » V
2

*j[-0 (89)
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Start

Read in an
, b",c",d

n,wLyN

Set V, = 9|
fltn B

Compute f

Set A-»Vn
(r.22)

bo J~
J

C
i

©n

Vn-l = Vn-Qn

No

Compute f
i

fn <<M No
,S YPS

fn— /.
*

en+A—

e

n
i

Gr D 1
Yes

Punch Vn,^8i
correspondir.gj 6n.Vn-i

Vn*A—=-Vn

No Vn =-B ?~v?
n+ i -n

n = n ?
A Yfis

Stop

No

Fig. 8. Outline of computer program for
rocket problem.
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It can be shown that
N n-1 n

N

/^ (x„ - x
2

) =2
n=l n=l

N

n-l

Applying the end point specification case of the maximum principle algorithm

equations (27), (28), (38) and (39) become

(90)

Thus

b z

n-l 1
z

1

exp(- £.) * a
n

c
n

n-l
z
2

-*2

*• i

*2
= Z

2
Z
2

n-l, 2,...,N

/ n n-l n
b X, + d

H
11 - z

n J
X

(91)

(92)

exp( - 5_) + a
«»

Because of the introduction of the second state variable, x . the
' 2'

constraints, 0i8nflV, are automatically removed as indicated by the rela-
N

tion 2T e" = V and the fact O
1^ 0.

The optimal sequence of (e
n
f therefore must occur at the extreme points.

That is:
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3 8* 2 =
n

n (b^"
1

- d
n

) exp(- £)
=

L
exp(— ^) + a

n

Solving for z

V exP I- — )
+ a

c

1 , n n-1 n, . 9
n

(b r. + d
n

) exp ( - —

)

(93)

likewise

n-1

n-1
n-1 n

, 8 ,
n-1

exp (- -jj^jJ + a

n-1 n-2 ,n-l
(b x

-a-1
+ d ) exp (- 2_

)

1 c
n "i; (A)

Inserting equations (93) and (9U) into equation (90)

n-1 i n-1n-i , w .

(exp(- --j) *

n-1 n-2
.

,n-l. rfl-1
(b x + d ) exp( _)

1 n-1
c

From equation (81;a)

exp (- 2L)
c

bV"1
-a

n
x" t d

n

"5

, n n-l n
n

, . n
b x

l
+ d

exp (- -—) + a
n

bV
J

exp (- t) a
»

(b^"1 + d
n

) exp (- £)

(95)

(96)

(97)

likewise
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n-l n-2 n-1 n-1 n-1
n-1 b\ -a ^ + d

ex*> (- stf n-1
xl

e
n-l ,

b^-^d-1

o n-1

(98)

(99)

Combining equation {96), (96), (97), (98) and (99)

la"/ •

For the N-th stage, from equations (90) and (91)

(100)

N-1 ,N

exp(- ) + a

Substituting equation (91) into equation (93)

exp(- *,) V
exp (- Sjj) * a

K
2 N N-1 N

(bJj + d )

(101)

(102)

For the (N-l)-th stage, from equation (9h)

N-1

exo( )

N-l ; N-1

N-1
/ . N-1

6XP( - TZ }
+ a

2 N-1 N-1 N-2 N-1
z, (b x + d )

(103)
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Dividing equation (102) by equation (103) and inserting equation (101) for
N-1

1

/ o
W

, iil, N-l n_2 N-l /-I
exp(-~) bcN

(b ^ + d )exp(-° )

c

exp(-^) a
K

c"

(10U)

c -J l

The working scheme for digital computation is as follows:

1. Since x^ and x° are known, x and x^ can be evaluated from equa-

tions (61ia) and (88), by assuming a value for .

2. Next, x" can be calculated directly from equation (100) for stages

2 to (N-l). Then
n
and x£ are calculated from equation (8Ua) and equa-

tion (88) respectively,

3. Finally, Q is obtained from equation (10U) for the last stage
N

(N-th stage). If x'
2

calculated by substituting the computed 8
N

into

equation (68) is not zero, the procedure is repeated from the first step

by assuming a new value for 9^.

i N
k. If the x' thus obtained is zero, this sequence of 9

11
is the

optimal control actions sought, x'
1

can be secured from equation (8Ua)

A similar working scheme may be followed by assuming a value of x1

instead of 9 .

Stagewise Biochemical Reactors

In this section a generalized optimization problem of first order

consecutive biochemical reaction is considered. It is numerically solved

in detail. A comparative study of the two approaches is also made.
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In many of the biochemical reactions, the catalyst is an enzyme of pro-

tein origin (21;). Although the catalytic behavior of enzymes is quite com-

plicated, the two most influential factors on the activity of anzymes are

temperature and pH value (210. An increase of temperature or pH value

will enhance the activity of the enzyme; but, beyond a certain extent the

enzyme would be deactivated by further increase of terrperature or pH value.

This feature of the biochemical reaction is different from that of nonbiochem-

ical reactions whose specific reaction rates change according to the Arrhenius

rate expression. The fact that there exists an optimum condition for the

enzyme activity is well-known (21;, 25). Though the exact functions of the

activity versus temperature and pH value should be acquired under the actual

operating condition, the general form can be represented by the unimodal graph

similar to that shown in Figure 10 which is a sketch of the following hypo-

thetical functions (25):

k(0) = - 3S
2

+ 10 9 + 12
(105)

h(0) = - Q
2

98 - 6 (lo6)

where Q is the variable representing either temperature or pH value, and

h(8) and k(9) are the activities of enzymes.
'

The following consecutive biochemical reaction system will be con-

sidered

A k(9) j>b Mei_^c
Enzyme

-
!

'

Enzyme 2

This reaction system is fairly common in the fermentation processes. Some

of the examples are listed in Table 2 (25). The enzyme indicated is the

catalyst for each reaction. Many of them are of commerical importance.
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©
Fig. 10. Graphs of

5 6 7

k(e) and h(e)
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The raw material A is expensive, B is waste and C is the de-

sired product. If a series of ideal equal volume backmix reactors

shown in Figure 2 is available, the problem is to find an optimal

decision sequence < > in order to maximize the production of

C for a fixed input A.

The feed rate is maintained constant and thus the residence

time in each stage is equal, let it be t . A solution is presented in

a general form first and then a three-stage optimization problem is

numerically solved for the case with the residence time in -each stage

t = 0.01.

Dynamic Programming Solution . Let x, y and w represent the con-

centrations of A, B and C respectively. The material balance for

the n-th stage is

x
n+l " x

n
+ k ( 6n> V ( 10?)

^n+1 " ^n
+ t

[
h^J ^n ' k ( 8n>

x
n]

'( 10S )

w„^ w
. - »(°J *„* (109)

Defining

yn+l
n+l x .

n+l

w 1

n+1 x
n+l

(110)
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TABLE 3

Some examples of consecutive biochemical reactions (25;

, _ ,. . Cellulase _ . . , . Cellobiase „,
1. Celluloses »* Cellobiose » Glucose

2. ^
lal*°? e

Trehalase > Glucose
Zvmase

Alcohol + 00,Trehalose -^ 2

-i t u Inulase _ .. , Zym a se _ ,, , , „.
3. Insulin S»- Fructose & Alcohol + CO,

2

Albumoses _ . „ Hydroxy-acid
i n Erecsin , . ... Desaminases

,

J J

4. Peptones '
«»" Ammo Acid —^ £*> +

Peptides Ammonia

v ... Xanthoxides _ ... , . . Uricase ... . .

5. Xantnme »- Uric Acid - ^ Allantom

T Fructose _
t o Invertase Zymase ,. , . _,
6. Sucrose w + » » Alcohol + CO,

Glucose
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and dividing equations (108) and (109) by equation (107) and com-

bining the resulting equations with equation (110)

u fl + h(6 )t] - k(Q ) t
n L v n' J v n' i,,,\

J
n+ i 1 J k (e )t <m )

II

t h(e
n ) u

n
V
n+ 1 1 ; k(0 )t < 112 )

v n'

i'rom equation (109) r x

y h(e )t
f
y„+ i

+ k ^ e >* <
i ; III ;t >

a- h(e )t
*. , X . "^V " x . 1 + h(0 )t
n+1 n+1 n+1 / * n

h(9 )t ( k(S )t

X
n+ 1

T-Thtojt
j

U
n+ l

+
1 J k(S

n
)t < n 3)

The objective function of f„(x„T . . y.. . ) is
N N+1 N+1

N

V X
N+1'W " *\2j < wn " W

n+1> (U^

It can be seen from equation (113) that equation (11^) depends only

on the ratio of 1^ . and y„ . which is il .< This reduction in

t'ne number of state variables from two to one is possible because

of the homogenous nature of the first order consecutive reaction.

Therefore:

f
N
(x
N+l' yN+l } " *H+ 1 %( U

N+l) < U 5)
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Now, applying the dynamic programming algorithm to the function f.
H

V X
H+ 1« yN+ l^ " M*X

f<
w
N " W

N+ 1^
+ fH-l(V V

Combining equations (113), (H5) and (116)

(116)

th(eK
)-t k(S )t

i + h(o
H
)t < un+ i

+
i ; k(o

N
)t)-

+
i + k (e

N
)t Su-i^V

(117)

The general recursive equation j. or the n-th stage is,

/
h ^ Sn^ k ^ n^ 1

sJ u
n+ i) " Kax

ti + "(e )t < un+ i
+

i ; k(e )0 +
i J k(e )t sn-iK)

(118)

Equation (118) contains only one state variable, u, and it can be

solved recursively in conjunction with the following equation:

u . |l + k(0 )t] + k(0 )t
n+1 L

v n y
J ^ n /

n " 1 + h(Q )t (119)

A flow chart for solving the recurrence equations is shown

in figure 11, and a Fortran 1620 program is given in Appendix B,

The results for u , ranging from 0.03 to 2 are presented in Figure

12. About 12 hours were required to obtain such results using the

increment of 0, 0.1, and that of u, 0.03. The range of 6 considered

was from 1 to 5. The computer used for this calculation is IBM

1620 with 60,000 memories.
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Start
A

Read in , T
i

Set fn-, =

Xn _, (AtoB)
x

SetA—

x

n
A

Cem—^-TnA
i '

Set
C =-9n

.1

Compute
Xn-.. Pn

A

Evaluate fn
j.

fn^fnA?H
IYes

fn "~ fn A
:..

mlen+ a— e n
j.

No e„^-D?
IYes

Output, fn A, Xn , and
corresponding Gn , Xn-i

A

Xn+ A—

X

n

I .

No Xn >E ?

-

1 Yes

n+i—

n

.1

No
n ?tN?

,1 Yes
Stop

Fig. 1 1. Flow chart for dynamic Programming
solution of bjocnemrcal reaction problem.
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0.03 0.18 a33 0.48a43 0.73 0.03 1.08 1.23 1.38 1.53 1.68 1.83 1-98
Ratio of concentration

Fig. 12. A graphical representation of the results

of the dynamic programming solution

for biochemical reaction.
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Maximum Principle Solution . The notations lor the maximum principle

algorithm are adopted, x , x and x being used to represent the con-

centration of x, y and w respectively.

.from equations (107), (103) and (109)

n-l n . , , An-,. (
k. - x. / 1 + k(9 )t

n-1 n
n N n-1

1 + h(e
n
)t . -L-i-1

—

J
1 + k(9

n
)t

x " = x - h(0 ) x
2
t

Solving for x., k = 1, 2, 3

n-1
*1

1 + ki,Q )t

(120)

. k(e
n
)x"-

1
t

/

• . /nn N n-1 ,

, k(8 ) x, t
r. n-1 , /„n \4. <" n_ l y

1
x = x + h(Q )t (x + -

(8 ) xl t 1-

\ ) / l + h(8
n
)t

1 + k(e
n
)t L

(121)

(122)

The problem is to maximize x with the starting conditions,

(123)
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Applying the maximum principle algorithm and referring to

Figure 4, the following set of equations are obtained from equations

(27). (28). (36) and (57):

n_ x *£ t k(e
n

)
(,» + h(e

n
) A)

1
l + k(e

n
)t (l + k(e

n
)t) (l + h(e

n
)t)

n

1z
n-l _ 4 - "^)* J

2
1 + h(O

n
)t

r.-l n
z
3 "

z
3

The boundary conditions for z. are
l

M [1. i-3
z. •
1

0, i/3

Thus

"3
1 (124)

5 * k(O
n
)t

.a-1 _2_

1 + h(9
n
)t

n_!
[l + h(Q

n
)tj z? + k(9

n
)t [,° + h(Q

n
)tj

1
[l + h(e

n
)t] Pi + k(e

n
)tj

z
2 -

~

—

rrzr ( 12 5)

(126)

and

i k(e
n
)t [

2 J 2
i + k (o

n
)t L J

(127)
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60

P(8») = "('"It

1 + k(o
n
)t

1 - F(u
n

) = —L

n, _ h(O
n
)tG(0 .

1 + h(9
n
)t

1 + k(6
n
)t

1 - G(G
n

)

Fi(0 . i_Fl£l

d

1 + h(0")t

(e
n _d^l

d G

H
n

- x^-
1

.J [ i - P(e
n

)J
[ x- 1

+ p(e
n

) x^Vjfz^i - G(e
n
)J

+ tG(e
n

))

n-1

The optimal decision 6 is at

9
n

: &£ .

(128)

x^z^ce11

) f
1
(o

b)^"1
t [.».[i - G(s

n
)J

+ to(e
n
j}

+

{x^ 1
+ Pie^- 1 t] [tGl (e

n
) - ^(q 11

)] . o (129)

This problem does not yield the analytic solution as did the

first two problems. The general working procedure stated before should

be applied.

A flow chart for solving this problem is shown in Figure 13, and

a Fortran 1620 comruter program for the three-stage system is included

in Appendix C. It was found to be more convenient to use the
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Start

l

Read in T,X? X° X?

i

Compute xP
n= 1,2, N K

k = l.2.3
1

Compute z"
A

— o-o —o- <jL

i

a— en

i

Compute Hn

,i,

H° =~dt.
n
1

NO

A Yes .

H
n-~ Jl

n

No

A

en+-A-^-en -—

1

A

»

en> b ?
A Yes

n-t- I—

n

i

No n = M 7

J/ Yes

Output ^n corresponding

Q n ax?
i

No Is successive e"x£ close
enough?

A Yes

Stop

Fig. 13. Flow chart for maximum principle

solution of biochemical reaction
problem.
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expression H m Kax than
*r

to solve the optimum 8 in computation

with the use of a digital computer.

With the given values of the initial concentrations, x = 1,

x„ - 0.3, x = 0, a set of G , 8 and 8 is arbitrarily chosen,

x is then calculated by equations (120), (121) and (122) and z by

equations (125) slld ( 126} . Substituting these values into equation

(127), a new set of 8 , 8 and 8 is obtained, This new set of

decisions is employed to calculate the x and z and again a set of

12 3
8 , 8 and 6 . The procedure is stopped when two consecutive sets

of decisions are sufficiently close. Table 3 shows the detail of

calculation.

The machine calculation from the first guess to the final answer

required less than half an hour with 8 ranging from 1.0 to k.5 with

an increment 0.1. Table 3 shows that *> and x converge very rapidly,

and the results of two different first guesses are iuentical. The

computer used was an IBM Fortran 1620 with 20,000 memories.

The dynamic programming solution for tku same given initial12 3 ^
concentrations were 8 = 2.0, 8 = 3.2, Q

y = ^.0, and x^ = O.323I

which agree very closely with the maximum principle solution. A

detailed comparison of the two approaches will be presented later.

Denbigh's Reaction System

Denbigh(26) propesed the following reaction systen

(A + B)
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TABLE ^

Calculation according to the maximum principle algorithm

Initial concentrations x
1

= 1, x = 0.3, x =

. First guessing 6 = 2.5, 8
2

= 3.0, Q 3 = 3.5

First Calculation

Second Calculation

Third Calculation

Fourth Calculation

Fifth Calculation

Sixth Calculation

1 2 3
First Guessing Q = 4.0, . 4.0, 6^ > 4.0

First Calculation

Second Calculation

Third Calculation

Fourth Calculation

Fifth Calculation

Sixth Calculation

Seventh Calculation

e
1

e
2

6 3 x 3

3

2.7 3-3 4.0 O.32O6

2.6 3.1 3-9 0.3208

2.7 3.2 4.0 0.3210

2.6 3.1 4.0 0.3210

2.6 3.2 4.0 C.3211

2.6 3-2 4.0 0.3211

2.5 2.8 3.5 O.3126

2.8 3-3 4.1 O.3196

2.6 3.1 3.9 O.32O8

2-7 3.2 4.0 O.32IO

2.6 3.1 4.0 0.3210

2.6 3-2 4.0 O.3211

2.6 3.2 4.0 O.3211
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and demonstrated that a great improvement in yield of the desired

product Y can result when optimal policies are adopted for a stage-

wise reactor system. X is an intermediate and P and Q are the pro-

ducts of side reactions. A and B are the raw material where B is cheap

and excess amounts are available for reaction. This system comprises

a general class of reactions which are encountered in the manufacturing

chemical industry (26). The reactions are taken to be first order

regarding the concentration of A and X. The reaction rate constants

of the four reactions are of the usual Arrehnius form

k. = a. exp /-E./rt) , i = 1, 2, 3, k

Four cases, depending on the relative magnitude of the reaction

rate3, arise (6)

.

1. E. \E , E,>E, : It can he seen that a conversion of nearly

all A to Y is expected with a sufficiently high operating

tenperature.

2. 3.< E , E <E,: For this case, the lowest possible

temperature will give the best yield.

3. E.> E , E < E. : In the early stages of the reaction the

temperature should be high to promote the production of X.

As soon as the quantity of X becomes considerable, the

temperature should be lowered to prevent the side reaction.

Hence, a decreasing sequence of temperature is desirable.

k. E^ < E ,
' E y E, : In this case the same argument calls for

an increasing temperature sequence.

The first two cases are not of much interest. The third and fourth

cases are considered.
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Let w, x and y denote the concentrations of A, X and Y respec-

tively and 'the residence time in each stage. The material 'balance

around the n-th stage, referring to Figure 2, yields

w . = w ) 1 + C (k. + k„ )n+1 n
(.

n v In 2n'

x . = - w P k, + x il + f (k, + k, )n+1 n > n In n
]

n v 3n <fn'

yn+l " * x
n
e

n
K
Jn

+ yn

Using the values of the specific reaction rates given by Denbigh (26)

— = 10 exp (- -^-j-)

k
l

* in"* /3000,— . 10 exp (^-)

and making the following substitution

k„

8 - ^ . 10* exp (- ^f ) (130)

the mat er ia l balance around the n-th stage of a system consisting of

K completely stirred tank reactors becomes

(131)

(132)

(133)

w , = fl t t (1 + 8 ) I w
n+1 (. n^ n' \ n

x , - -t w + 1 + 0.01 t 9" (1 + 9 ) \ x
n+1 n n ) n n n \ n

'n+1
0.01 t x + yn n ''n
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Since these equations are homogeneous in the concentrations, the

ratio oi the state variables may be employed (6) to reduce the

dimensionality of the problem. Aris (6) solved this problem by

means of the cynamic programming algorithm, proceeding in the same

way as done in solving the biochemical reaction problem. When he

encountered the difficulty of the individual state variables being

too largo, the reciprocals of the state variables were employed to

improve the accuracy of interpolation (6). His results are listed

in Table *f.

The remainder of this section describes the solution of the

problem by use of the maximum principle algorithm. The results from

both methods are also compared.

Adopting the notations of the maximum principle algorithm

and referring to Figure k, equations (151), (152) and (155) become

x
1

. x
"J_

1 + t (I + )J

n-1 n n f, A . ,n,. .n> /.n] n
2

= 1 +
) * t (1 + 6 )/Q > x„

n-1 n n n
e, - o.oi t x, + x.
5 2 5

Solving for x , k = 1, 2, 5,

n-1

**" =
k n7 t 1^

i + t (i + e )



n-1
+ t

1

1 + t"(l + a")

i + o.oi t
n
(i + Q

n
)/e

n

67

(U5)

n n-1

n-1 , n
K
2

+ t

3 3
x' + 0.01 t

n-1

1 + t"(l + Q
n

)

i + o.oi t
n
(i: h o

n
) /e

(136)

The problem is to maximize x with the starting conditions

X° =

x°.o

(137)

Applying the maximum principle algorithm the following set of

equations corresponding to equations (27), (28), (36) and (37) is

obtained

n-1 1 z 2

1 "
1 + t

n
(l t 0") [l + t"(l + Q

n

)J

[l + 0.01 t"(l + -i)]

0.01 z?(t
n

)

2

+ 2_ .

[1 + t
n
(i + e

11

)] h + 0.01 t
n
(i + \)1

n-1

1 + ,01 t
n
(l + ±) 1 + 0.01 t

n
(l + i)

n-1 n
z
3 "

z
3

The boundary conditions for 2. are
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z.

' 0, i . 1,2

Thus

z
3 " X n - 1. 2 » (138)

n
-°- 1

. 8
,

o.oi t
n

, .

2
i + o.oi t

n
(i + -L) i + o.oi t

n
(i + X )

U39;

e e
n

z" + "
n-l z

l * z
z
l

n _n
2

i + t
n
(i Q

n
) [i + t

n
(i + g

n
)J

[i + o.oi t
n
(i + i)l

_ 2

0.01 (t
n

)+
[i I t

n
(i + e

11

)]
[i ^ o.oi t

n
(i I ±)~1

(HfO)

and

n-l n
x
n_1

t
n

n-l
x
l

t

1 + 0.01 t
n
(l + -i-

) < J 3i + t"(i + e
n

) / i + o.oi t
n
(i -i.

)

e" : H
n

= Max
(1^1)

The general procedure for solving this problem is exactly the -same

as the one used in solving the biochemical problem in the last sections.

In the results presented in Table 5, the notations are changed slightly

to match those in Table k for the convenience of comparison. The

Fortran 1620 programs for two and three-stage problems are included



TABLE k

Aris's results lor Denbigh's reactions (6)

Number of
Reactors Temperature "Holding Tines" Yield

W ?
3

*
a

I
x

tj t t
]_

(>)

With no restrictions

1 326 25

2 280 =>o Zf.o o° 57.

4

J 270 320 00 1.6 0.8 tx> 66.3

With restrictions on temperature and holding time

1 318 3^-0 2221

2 276 ^A 2:82 2100 1+5.I

3 260 288 39^ l.k 1.3 2100 k$.5
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in Appendices J and E. The programs can be easily converted into a

general program for an N stage system. The computing time, dependent

linearly on the number of stages, is almost independent of the number

of state variables, while the time used for the two-stage system

calculation was about two hours, the amount of time would largely depend

on the searching range and searching grid of the two variables. The

time required is approximately proportional to the products of the

number of increments of both control variables, t and 6 , used in

search. Actually, a proper choice of the searching grid could make

the calculation of a three-stage reaction system possible in half

an hour without the sacrifice of too much accuracy.

A comparison of the results presented in Tables k and 5 shots

that they are very close in the case without constraints on the

control variables. But for the case with restrictions, the results

do show sizable differences for the case of the three-sta«;e system.

The yields depend largely on the control variables of the last stage,

and the difference between the control variables of the last sti.ge

and the rest of the stages is much greater in the first case than is

that of the second case. This difference means that the control var-

iables of the first two stages have more influence on the yields in

the restricted case than in the case without restriction. Because of

the inevitable interpolation in the dynamic programming solution, a

greater error would result for the case with restriction than for the

case without restricxion.
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Another fact which may uphold the .statements above, is that, if the values

of the control variables given by Aris for the three-stage process with re-

striction are used to calculate the yield directly from equations (131), (132)

and (133), the answer is 53.83$ instead of h9.5% as given by Aris. It appears

that, for this problem, the maximum principle approach not only makes the

calculation simpler but also gives more accurate results than dynamic pro-

gramming.

Problem of Growth and Predation

Some interesting models of bacterial growth and competition have been

proposed recently. In this section two problems of this kind, formulated by

Aris (27) using the dynamic programming, are reformulated by using the maxi-

mum principle algorithm. These two problems, especially the second one,

exhibit the superiority of the maximum principle approach over that of dynamic

programming.

The dynamic programming solution is not repeated. A short statement

of the problem, however, is provided, adopting notations in Figure h.

First Problem . A population of creatures x preys on a population x

and both classes are undesirable (27). A pesticide is effective against

n-1
x , but not against x . If x is the population of x at the beginning

-i

of the treatment in the n-th time interval and x " the corresponding

population of x„ in the same time interval, the growth and predation can be

represented by

n n-1 , ,.n. n-1
x - x, = h(8 ) x11 1
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Table £

Denbigh's system calculated by the maximum principle algorithm

Number of
Temperature "Holding Times" Yield

Reactors
00 Tj T

2
T
x

tj t
2

t
x

(/»)

With no restrictions

1 326 «"> 25

2 279-9 o* ^-55 c=o 57-99

3 267.4 295 <x? 1.7 2.6 o" 66.55

With restrictions on temperature and holding time

1 318 340 22

2 278.8 39^ 3.85 2100 49.03

3 265 292 39k 1.35 2.35 2100 5^.85
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n n-1 , ,ji, n-1 , n. n-1
X
2 " X

2
=

(
'

X
l

"^
^
X
2

X*.- [l + h(8
n
)] x^1

(1^2)

x^[l + m(e
n
)j xj"

1 -k^x^1
(31,3)

where h, k and m are functions of the dosage of the pesticide, 6, which is

added at a definite time interval-stage.

The problem is to minimize the linear combination function of x and x

at the end of the pesticide process, with the initial conditions x » a,

x b. That is to minimize (ex + dx ), c and d being constants.

Defining a new state variable

n n
j. j

n
x, = ex + dx„
3 12

x^/o [h ( 8
n

) + ij - dk(e
n

) I + d [i + m (e
n

)J
x^1

The problem is then transformed to minimize x , with the starting con-
3

ditions

x
1
-a

x°-b

x = ac + bd
3

Applying the maximum principle algorithm (5), the following set of

equations corresponding to equations (27), (28), (36) and (37), is obtained:
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"-1
= fh(o

n
) *l}%l- z\(e

n
) £ £ ( Me") - l)

(e^ + ^d [i + m(e
n

)J

dk(8 )

1 + m(
n-1

z
2

n-l nz =0
3

The boundary conditions for z_ are

l,i - 3

10,1 - 1,2

Thus

z
11'1

- /h(e
n

) i

n-l
1 + m(8

n
)

n

and

H
n

-
,J £ h(e") Jx""

1
.jA. * m(9

n
)) x^

1
- k(e

n
) x^"

H* - x^h^) l}- dk(8
N
)j

+ d (l m(8
N
i) x/-l

(U*6)

(11*7)

(11*8)

(11*9)

(150)

(1*1)
8"

: H" - Min

n - 1,2, ...,N

The general procedure for solving this problem is to follow the procedure

stated in the maximum principle section by using equations (11*2) through

(151).

An alternate algorithm (28,29) to solve this problem without introduc-

ing the third state variable is to use the general working scheme in con-

junction with equations (li*2), (ll»3), (11*7) and (1U8) and the following

boundary conditions instead of equations (ll+5) and (ll*6):
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x = a
1

x„ = b

(152)

N
z c

1

z « d
2

Second Problem . A nutrient, x , is required by two forms of an organism,

x and x if they are to remain viable, x is not capable of reproduction

but x may be consumed to form a product x and this product enhances the

reproductive process. If the control action is taken at an equal time interval,

ssy t, the following relationship among x can be deduced by a simple biolo-

gical model:

1. the spontaneous change from x to x
2 .1

n-1 n nt , . ,X
2

" X
2

" ""V (1?3 )

2. the formation of x from x , the reproduction of a fraction, (1 -
n
),

of itself and the use of the remaining fraction S
n

to form x

x^-x^ax\ + (l- e
n
)x^t. eN^ (15U)

3. the formation of x and its use to affect the reproduction con-

stant x?
k

x^-x^be^t-^t 055,

It, the effect on the reproduction constant x
11

h

n-1
x, - xi?-«5t
n - \ " c5t d56)
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5. the use of the nutrient x to maintain the life of x and x ,

x
n-1

- x" = -(dx
n

+ lcc
n
)t (157)

5 5 2 1

where a, b, c, d and k are constants.

From these relationships, the transformation functions can be derived

from equations (153), (155), (156), and (157) as follows:

n-1

Vf\*)-4- ^
T (x^1 ,

n
) - x" -

at

n-1 n n
x -bOxt
J 1_

1 - ct

1 (x
11-1

e
n

) = x
n

= x
n-1

- (
ct

n-1
1

. tdx
n-1 n. n n-1 2Vx
k '

e

}

" x
5

* x
5

+ rrn

) (x
3

- bO x t)

tkx

(158)

(159)

(160)

(161)

Combining equations (15U), (158) and (160) .

5-S*^ (1 - e
n
)te

n
bt(x

n
)

2
+ x

n h - At t (1 •- e
n
)t(x

n"1
- JSLy)

n-1

n-1
„ , atx
n-1 o

- x +
1 - at (162)

If the constants are available, equation (162), which is a quadratic

equation, can be solved. Let its solution be

and also let

D3 n-1
ctx

n-1 3
CrrSE>ZTibt»

a
*(i - e

11

)
+ 1 - e\t (1 - e

n )t(x^ - r^ ) (l63a )
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Then differentiating equation (162) with respect to x , x

,

. for Z
r\ , fl , Zh }h , and

Z. n-l - n-l n-l n-l
Jx x 3 x ^x

1 2 3 k

n-l n-l
X
3 >\ '

and x , and so]

n-l
?XJ

T
? 1 - D

3 "-1
<? X

1

2

atD

1 - at

?\ ct(l - 9
n
)tT D

n-l

? x
3

1 - ct

(163)

(100

(165)

i-^j - - t
1
(i - e

n

)tD (166)

7)
n-1

(167)

~n
The objective is to choose optimal to maximize the final concentration

N
of x with the specified initial concentrations of the x and with the exhaus-

tion of the nutrient as the end point of the process. If e
n

is small, the

reproduction constant x remains small; but, if it is large, too much effort
h

is put into enhancing the reproductive process and too little x is left to

reproduce. There is the optical decision for 9n to maximize the production

of x .

The problem is then to maximize x with the boundary conditions
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(168)

and the constraint:

0" : o^on^i (169)

This is a fixed end point problem. Employing equation (27) and com-

bining it with equations (163) through (167)

z
l"

' z5~ z
$

n " 1»2,. ..,» (170)

ktz
5 f (171)

n n
atDbte z

1 " at ' 1 " at
+

U - ct)(l -at)

atDcte n
btz? f -}

_ , i* + ZJ dt ktatD / (172}
(i - at)(i - ct)

z
s| r^TE - rrsW (

'
'

n-1 ot(l - O
n
)tT Dz" f O

n
btct(

z

3

= r^t^1 i T
;(1 - 0")tT D
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ctz ktz^

1 - ot 1 - ct 1 - ot
/

z?
-1

= -T
n (1 - 9

n
)tD z? - J + zM + __

h 1 / 1 i _ ct 5

with the boundary condition for z.

;te
n
btz[|

ct

l,i = 1

z
i >,i/l,5

1°'

Thus the Hamiltonian expression is,

H
n

= z^ z^ + z^ + fa zf$

(173)

(171*

)

(175)

(176)

end

8"
: H" Max (177)

z^ is treated as a parameter, like the A in the sludge problem.

Assuming a value of z-, the problem is solved by the general working pro-

cedure without recycle, using equations (158) through (161) and (168)

through (177) and obtaining the optimal sequence of decisions Y 8/ for

this particular z . The value of z^ is varied until the calculated x
H

5 5 5
is zero. The sequence of the optimal { 9

n
^ thus obtained is the answer

for the problem.

The equation derived above appear to be lengthly and tedious, but the

algorithm is straightforward and overcomes the difficulty associated with

high dimensionality, encountered in the dynamic programming solution, and

resulting from the large number of state variables involved in the problem.
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Problems of .Resource Allocation

In this short section, one and two-dimensional allocation processes

formulated by Bellman according to the method of dynamic programming (U)

are reformulated with the use of the maximum principle algorithm. A gen-

eral approach to the problems of rnulti-dim6nsional allocation is also

suggested. The problem of allocation of nutrients is included as a specific

example.

First, the case of allocating one type of resource y is considered.

The resource y is to be divided into N independent parts, each of which is

called an activity. There is a utility function associated with each activity.

This function measures the dependence of the return from this activity upon

the quantity of the resource allocated. Let h be the utility function which

is the net profit received from one particular activity. If the allocation

of resource to the n-th activity is 8 , the objective function to be maxi-

mized is the sum of the interval profits.

= Max
r n

h
n
(e
n

)

with the constraints

n-l

8 > ; n-l, 2,...,N.

The maximum principle formulation proceeds as follows:

Defining

n .n,„n. n-l
x = h (8 ) + x
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2 2

with the boundary conditions

x° =
1

4-0

it is deduced that

N

\= 2J h (8 )

n-1

N
N <tt- n

x - 2- e r
2 n-l

N
The problem is then transformed into that of maximizing x by employing

the maximum principle algorithm for the case with the specified end point.

Depending on the nature of the utility function, h(6), the solution may

be analytical or semi-analytical or numerical.

If there are two types of available resources, y and w, to be allo-

cated, the objective function is

0*= Max fh
»
(8
» e")|

under the constraints

21 -1

n-l

- y

Z °2-»
2

n-l
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8^270 n = 1,2,...,

N

9
n
2;0 n = 1.2,. ...N

2

Solution by the maximum principle proceeds in the manner similar to the case

of the one-dimensional allocations. Defining

n n-1 n
x x +
2 2 1

n n--1 _n
X X + B„
3 3 2

with the boundary conditions

x° = A

.
x
2

x° =

3

N
x
2
-y

N
x w
3

N
Now the problem is to maximize x employing the maximum principle algorithm

for the case with the specified end point. It can be seen that an n-dimen-

sional allocation problem with n+1 state variables and n control variables

can be solved similarily.

If the function, h(8) is quite complicated, the method of dynamic

programming may be preferred for some cases of one and two-dimensional problems.

However, for most of the cases, especially when analytical solutions are
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permissible, the answers are much easier to obtain by using the maximum prin-

ciple than by the dynamic programming algorithm. For multi-dimensional re-

source allocation problems, the dynamic programming approach will be at a

impasse because of the exponential increase in computational labor; the maximum

principle method may be the only choice.

Suppose that there are of N species of food; each unit of the individual

food species contains cf units of calories and P units of a particular nutrient

content which is to be maximized in the diet. Let superscript n denote the

n-th species of food and n be the units of each food species to be allocated

to make up a diet. If the diet requires the maximum content of the particular

nutrient, as mentioned before, but at the same time, requires that the total

units of calories be maintained at a definite value, y, the objective junction

is,

with the constraints

H

JT ct
n
s
n

- y
n-1

9
n->l , n-1, 2,...,N.

The formulation according to the maximum principle proceeds as follows

Defining

^-J»
u f*^

. (i78)

4 - *r
X Hn

e
n

(179)

with the boundary conditions
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(160)

The problem is transformed into that of maximizing x . From equation (28),

the Hamiltonian expression is

uH _ „n, n-1
H » z (x + Ji 8 ) + z

2
(x *<A 8 )

From equation (30)

n n-1
z • z
1 1

(181)

n n-1
z « z
2 2

«T z" *
(182)

Applying the boundary conditions of z

z
N -l

thus

1

x
" 1 , n-1, 2,...,N (183)

^-^V^IW 1'*/)'' (18U)

8
n

; H
11

- Max (185)

where

e"2i

Taking z
2

as the parameter, the solution can be carried out by the gen-

eral working scheme by using equations (178), (179), (180), (1810 and (185).

Zj is varied until the boundary conditions are met.
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GENEliAL DISCUSSION

The maximum principle and the dynamic programming are generally re-

garded as two alternative ways of solving optimization problems of non-

linear nature (30),

The principal prerequisite for optimizing a process by means of the

dynamic programming and the maximum principle algorithms is a mathematical

description of the process itself, which often lags far behind the theory of

optimization. The principle of optimality, however, can be applied to any

optimization problems of stagewise nature irrespective of the availability

of the exact mathematical description of the process. The directed net

work problem is one of the examples for which the transform functions are

not in exact functional form.

The sludge treatment problem is an example for which the analytical

solution can be obtained either by the maximum principle algorithm or by

the dynamic programming algorithm. However, for many of the problems,

these methods are not always practicable. A considerable number of problems

fall into a class for which semi-analytical solutions can be derived by use

of the maximum principle algorithm, as in the case of the s tep rocket problem,

but it is not so when the dynamic programming algorithm is employed. This

resulting in semi-analytical solution is one of the advantages in using the

maximum principle algorithm. The semi-analytical solution reduces computational

labor considerably. For some problems even a simple hand calculation enables

one to obtain a fairly accurate answer.

The majority of problems belong to a class of problems for which no

analytical solutions are obtainable, and for which the general computing
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scheme must be employed. The last three problems in the application section

belong to such a class of problems.

Despite outward difference the basic notions behind dynamic programming

and the maximum principle are similar. Under most circumstances their nu-

merical answers are very close and can be used jointly. Their essential

difference is a tactical one (30). While dynamic programming starts the

investigation by searching the entire grid of the s variables at one stage,

stores this grid of values, and proceeds stage by stage, the maximum prin-

ciple starts the investigation by computing one optimum path along the n

stages and then proceeding to improve this optimum path based on the values

obtained from the preceding computation. This scheme enables the maximum

principle to deal with processes in which the optimum conditions at any

stage can be disturbed by conditions at a following stage.

The dynamic programming algorithm leads immediately to a neat com-

puter program for machine calculation. However, since it must store the

results of the entire grid of s variables at each stage, the computing

time may become considerable and require a large capacity of computer

memories. Suppose that there are t decisions to be made at each stage for

a process with s state variables at each stage and n total stages, and

also suppose that a grid of ten for each variable—state and control

—

would yield the results with sufficient accuracy. In the dynamic program-

ming formulation, 10* calculations would be required at each stage for each

s+t
state variable, and therefore, a total of 10 calculations would be

required at each stage, resulting in the n 10 calculations altogether.

The maximum principle formulation would need n 10 calculations, almost

independent of the increase in the number of state variables s. If the
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s becomes large, dynamic programming may require much more calculation than

the maximum principle, but the most serious difficulty associated with the

use of dynamic programming lies in the exponential increase of storage space

with respect to s. This difficulty is one of the reasons that, in dynamic

programming formulation, an effort is always made to reduce the number of

state variables, either by using the ratio of the state variables, either

by using the ratio of the state variables as a new variable or by using

other techniques. Since in employing dynamic programming the computer

program must be written by double indexing the variables, memory space

is easily exhausted by an increase in the number of state variables. In

programming the maximum principle algorithm for computation only one index

is used so that total memory space increases linearly with respect to s.

The error introduced due to the interpolation technique employed in

the dynamic programming algorithm is difficult to estimate. If the grid is

sufficiently small and the function has no flat portion, the interpolation

may not create too much of a problem. It is to be noted, however, that an

increase in grid number will result in tremendous increase in computing

time and computer memories. Usually a balance should be sought in light

of the nature of the transformation functions.

From the previous statements the following conclusion may be drawn:

If an appreciable error results from the interpolation and the number of

state variables is large, the maximum principle approach is preferable. If

the results for a large number of initial values of the state variables

are desired, it would be too tedious to run the maximum principle calcula-

tions repeatedly. In such instances dynamic programming may be the better

choice. If the results for only a few initial values of the state variables
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are wanted, the maximum principle approach would give more accurate answers

in much shorter computing time than dynamic programming. Generally speak-

ing, if the transformation functions are complicated, it may be advisable

to work with dynamic programming, since the maximum principle algorithm

requires handling of equations of very complex form which may easily lead

to manipulation error.
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KCKENCLATURE

a = a given constant

a = a given constant

a. = frequency factor in Arrehnius rate equation

a = -B Mn - dLn n n

A = chemical specie

b = a given constant

b = a given constant

b = 1 - c<
n n

B = chemical specie

c = a given constant

c = propellant exhaust velocity of stage n

C = chemical specie

d = a given constant

,1 . . _.
a = a given constant

d = w
n xn

?(8 ;

D . = defined by equation (163a)

e = x/y

E = sludge alkalinity

E. = the activation energy of the chemical reaction

f > optimal net profit of the time interval from the

present stage to the end of the process

f (V) = minimum weight of rocket n achieveing velocity V

r-(o
n
)t

l + K(e
n
)t
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(8
.
}

. <M^

f/x
•O^v

1 + h(O
n
)t

1
d9

n

h = Optimal net profit taking A as a parameter; function

of control variable; chemical reaction rate constant

H = the Hamiltonian

i = node number

j • node number; an indication of the path the particle

should follow

k a function of control variable; chemical reaction

constant; a given constant

m = function of the control variable, total grid number

K = ratio of initial thrust to weight of rocket n

n a number of stages

H a total number of stages; total number of years for

a resource to be available; lest stage

= objective function

P = interal profit; chemical specie

q = flow rate of the feed stream

Q = chemical specie

GL- = total amount oi' wash water

r = flow rate of the recycle stream; rate of reaction

E = the ideal gas law constant; flow rate of wash water
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s = total number of state variables

t = residence time; total number of control variable;

control variable

T = transformation function; absolute temperature

u = x/y

v = volumetric flow rate; w/x

V = reactor volume; design velocity of rocket

w = state variable; alkalinity of the wash water; initial

gross weight of step rocket

w = that portion of jettison rocket weight which is

constant

V = rocket system payload weight
L

x = state variable

X = chemical specie

y = state variable

V - chemical specie

2 = an independent variable; a variable introduced in the

basic algorithm, equation (27)

Greek Letters

^ = a given constant

P = a given constant

C~\ = a given constant

X = Lagrange multiplier; relative cost

ft = Kronecker delta, defined by a . = \ ' .a ' " ii lo, i



© = residence time; control variable

[ = residence time
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APPENDIX A

11
12

i4

DIMENSi ON A(4)»3l4>»C(4)»D(4)»W<7v>4).VA<70»4)
DIMENSICNWAI 7'- .4) >WB< 70.4) »X(7C4) >XA<70,4) »XB(70>4) .VI 70.4)
F C R KA T ( E 1 . 4 , E i C . 4 , E 1 C • 4 , F. 1 . 4 , E 1 . 4 , E 1 . 4 )

R?ADliA(2)iA{9>,AU)»B{2)«BI3)t3l4)
SEAD1 »C t 2) .C(3!iC(4) .0(21.0(3) .0(4)
READ 1 ,?

DC2N'=1 .70

XA (M.2 I =VN,*5C.O
WA(M»2l *< ! 1.C-AC2) 1 wpt-DI 2) ) / (EXP(-XA(M»2') /C(2) )-B(2)-A(2) )

PUNCH I .WAIM.2 ) »XA(M .2)

D09I=3,4
DC9N=1 .70
KAiN.l 1=9999599999.9
VN=l\i

XIN.I )=3CC.C+VN*50.0
V(N»I)=O.C
X:.\.I-1)=X(N.I)-V(N»I)
DC13K=1 ,7.

XD=X(N. i-1 1-XAlM.l-l

)

Ir (XD-- .0.-) 11.14.12
xo=-xj
ir (XD~2d.C)14. 14.13
L J )N T i \ o c

.: (N.I-1 l»X(N.I-l)*XA(M.I-l 1/XA1M. 1-1)

•.'(.Nil ! = ( U.O-AI 1 > )*W(N.I-1)+DU ) )/<EXPl-V(,M.I 1 /C ( I )
) -o ( I

) -A ( I

i

If (WAIN, I 1-WIN.I ) 16.6.5
WA(N.I )=W(N. i )

VA ( N . I 1 =V ( H , I

)

XA'(N»I)=X(M»I)
WB<Nt I-l,)=W(Ni I -11
Xo(N.I-i)=X(N« 1-1

1

FA=X(N.l 1-50.

C

IF( VI.N.i ) -FA 17.9.9
V1N.1 )=V(N.I 1+30.0

PUNCH1.WAIN. I ) .VAiN.l I.XA(Ntl) »W8(N»I-1) >Xd( N.I-1)
END
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APPENDIX S

u . i
j

> <i.:\iE:TICS PROBLEM
D X i'icr>iS I CN 'JA { 100 >4 ) » t 100 »4 ) »r^l i-ui'ti »F ( 10

KEAM.T
DC 3 M= 1 » 1 CO

Ust) > D d t i » 4 J

DAi,'<;, i ) =VM*0.03
r A(.-i,l ) -u
DC6.\=2.A
0^. D J = i » 1 \J U

Vj= J

D ( J f i\ J - VJ * w • u J

r A( J »N) =-U..VVV9c+iO
P^i »v>

X=-P*"i t9 . i_-«-r-6 • J

D( J»N-1 Js (U( JtN)*'ll.i;+Y*T)+Y*T ) /( i«0+X*Tl
ci=X*T»( D( JiN ) M Y*T )/ (1.0+Y*1 ! ) / ( 1.0+X*T !

DC 12 « = 1,1..'.!

XD=D( Ji\-i)-OA<M»N-l )

i? ( xn-.. . ; 1 1., ,ia ,ii
aC=-XJ
IF { XD— ^ • o i 3 ) i^>ib»12

r l«m\-. /-ul v »|N—1)*FA I
;•','. i\-i i / J A I Mi,«-l )

r ! J > N ) =ot I- ( J > i\-l ) / ( 1 .0 + Y*l J

lr lr I J.M-.FAI J.N) ) 9 >9>b
r " C wi » "n; j = F [ J > ,\i

}

* IJ.N-l

)

=D(J»N-1 1

DA( j.N)=D(J.N)
'l F [P-b.C )2vt2C: ,6

3 IC'P

i U > i\ ) . P A > r A i J , N ) i Da IJ i fv- 1 )
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A brief introduction to the principle of optimality is given

at the beginning by an illustration of it using the directed net

work problem. Brief summaries of dynamic programming and the

maximum principle algorithms follow.

In the application section, six problems are solved and pre-

sented in order oi complexity. The sludge treatment problem is a

fairly simple case for which identical analytical solutions could

be obtained by both dynamic programming and the maximum principle

algorithms. The step rocket problem resulted in a semi-analytical

solution by the use of the end specification algorithm of the maximum

principle. Regarding computational, this method is often much simpler

than dynamic programming solution. The third problem is the optimization

of a general consecutive first order biocheir.ical reaction system in a

series oi ideal baokmix reactors. The general working schemes were

employed. Tie numerical solutions obtained by both methods were

compared in detail. Denbigh's reaction system was solved by means of

the maximum principle ai.d the answers were compared with those

obtained by Aris with the use of the dynamic programming approach.

The section on application also includes two problems of growth

and predation. The solutions of these two problems, especially the

second one, clearly show the advantage of employing the maximum

principle approach over employing the dynamic programming method

when the number of state variables is large.

The last section gives a general discussion on the relative

merits of. the two approaches.


