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Abstract

In 1998 Pak and Stanley defined the original Pak-Stanley labeling as a bijective map

from the set of regions of an extended Shi arrangement to the set of parking functions.

This map was later generalized to other arrangements: Sam Hopkins and David Perkin-

son considered Pak-Stanley labeling on bigraphical arrangements ([1]), and Mikhail Mazin

generalized the labeling to arrangements associated with directed multigraphs ([2]). In this

generalized setting the labeling always provides a surjective map from the set of regions of

the arrangement to the set of graphical parking functions. However, this map often failed

to be injective.

This lead to a natural question, what graphs admit arrangements with a bijective label-

ing? In this paper we present a necessary, but not sufficient, condition for the injectivity of

the generalized Pal-Stanley labeling. Moreover, for n = 3 we show that even if an arrange-

ment has duplicate labels, then the closure of the union of regions with the duplicate label is

connected. Lastly, we present ways to construct bijective arrangements for several families

of graphs in n=3, and present examples showing that the conditions are not sufficient.
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Chapter 1

Introduction

For the introductory topics, we will first begin with a look at posets and their connection to

general hyperplane arrangements. Then we will look at parking functions and the Sandpile

model, some of its history, and how the model motivated the concept of G-parking functions.

In the last part of the introduction we will talk about the Pak-Stanley labeling and some

results for a particular family of hyperplane arrangements called multigraphical hyperplane

arrangements.

1.1 Posets and General Hyperplane Arrangements

A poset is defined as

Definition 1.1. A partially ordered set, poset, is a set P together with a relation ≤ that

is

1. Reflexive, x ≤ x for all x ∈ P

2. Antisymmetric, if x ≤ y and y ≤ x, then x = y for all x, y ∈ P

3. Transitive, if x ≤ y and y ≤ z, then x ≤ z for all x, y, z ∈ P .
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An element m ∈ P is called minimal if there does not exist an x ∈ P such that x < m,

however if m is a unique minimal element then it is called the least element, usually denoted

0̂. We say that y covers x, x l y, in poset P if x < y and there does not exist an element

z ∈ P that satisfies x < z < y. Moreover, any finite poset is fully determined by the covering

relations and can be represent pictorially by the Hasse diagram.

Definition 1.2. Given a poset P , the Hasse diagram is graph, G = (V,E) constructed

as follows. The vertex set of the diagram is the set of elements in the poset P where x is

drawn lower than y if x < y. The edge set of the graph is given by, the edge (x → y) ∈ E

if xl y. See Figure 1.1 for an example.

Beside the relation, some posets have the property that for every pair of x, y ∈ P there

is a largest common lower bound called the meet, denoted x ∧ y, and a unique smallest

common upper bound called join, denoted x ∨ y. These posets are called:

Definition 1.3. A poset L is a lattice if for every pair x, y ∈ L there exists unique

(1) x meet y, x ∧ y = max{z ∈ L : z ≤ x, z ≤ y},

(2) x join y, x ∨ y = min{z ∈ L : z ≥ x, z ≥ y}.

Inside a poset, we can have a chain of length l which is a subset of the elements in our

poset P , say {x0, x1, . . . , xl} that satisfy x0 < x1 < · · · < xl. Further, we say that the chain

is saturated if the relations along the chain are all covering relations, i.e. x0lx1l · · ·lxl.

Figure 1.1: Shown are two Hasse diagrams for posets that have a least element, located at
the bottom of the diagram. Both posets are graded, where the left poset is of rank 3 and the
right is of rank 2.
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If for every maximal chain in the poset P the length of the chains is l, then P is said to be

graded and of rank l. Naturally, we can define a rank function rk : P → N by

for every minimal element rk(0̂) = 0, rk(y) = rk(x) + 1 if xl y in P.

Definition 1.4. Given two elements x, y ∈ P with x ≤ y, the interval from x to y, denoted

[x, y], is defined as

[x, y] = {z ∈ P : x ≤ z ≤ y}.

Moreover, the length of the interval can be determined using the rank function where

rk(x, y) = rk(y)− rk(x) is the length of [x, y].

Let P be a locally finite poset and let Int(P ) denote the set of all closed intervals of P .

For locally finite posets, there is a fundamental invariant that can be defined. Consider the

following function µ : Int(P ) → Z, called the Möbius function of P , where the following

conditions are met:

(1) µ(x, x) = 1 for all x ∈ P

(2) µ(x, y) = −
∑

x≤z<y
µ(x, z), for all x < y in P .

If the poset has 0̂, then we consider µ(x) = µ(0̂, x). See Figure 1.2 for a poset together with

the Möbius function values for each of the elements.

The Möbius function is an incidence function in an incidence algebra which is an asso-

ciative alegbra that is defined for any locally finite poset. For a field K, let J (P ) = J (P,K)

be the vector space of all functions of the form f : Int(P )→ K where the multiplication in

J (P ) is defined by

(f · g)(x, y) =
∑
x≤z≤y

f(x, z)g(z, y) for f, g ∈ J (P ).

Let V be a vector space, then a finite hyperplane arrangement A is a finite set of affine

3



hyperplanes contained in V . A linear hyperplane is defined as subspace H ⊂ V of co-

dimension one. More precisely, it is defined as follows. Let f ∈ V ∗ \{0} be a non-zero linear

functional on V , then

Hf = {ω ∈ V : f(ω) = 0} .

Further, an affine hyperplane is a translated linear hyperplane, i.e.

Ha = {ω ∈ V : f(ω) = a}

for some fixed non-zero w ∈ V and a in any field K. For any finite arrangement A ⊂ V ,

the dimension of the arrangement dim(A) is equal to the dimension of the vector space V ,

while the rank(A) of the arrangement is the dimension of the space spanned by the normals

to the hyperplanes in A. Further, we say that A is essential if rank(A) = dim(A).

For hyperplane arrangements, we want to consider a special poset called the intersection

poset due to its use in the application of the Möbius function.

Definition 1.5. Let A be an arrangement in the vector space V . Let L(A) be the set of all

non-empty intersections of hyperplanes in A, this includes V itself as the intersection over

the empty set. The relation is defined by x ≤ y if and only if x ⊇ y as subsets of V . The

poset L(A) ordered by reverse inclusion is called the intersection poset of A. See Figure

1

−1 −1 −1

1 1 1

−1

rk = 0

rk = 1

rk = 2

rk = 3

Figure 1.2: Shown is the intersection poset L(A) for an arrangement A together with the
corresponding Möbius values and rank values for the elements in L(A).
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Figure 1.3: Shown are two hyperplanes together with their corresponding intersection
posets.

1.3 for an example.

Now that we have the intersection poset defined, we can discuss the following polynomial

Definition 1.6. Given an arrangement A with corresponding intersection poset L(A), the

characteristic polynomial χA(t) is defined by

χA(t) =
∑

x∈L(A)

µ(x)tdim(x).

Example 1.7. Consider the arrangement given in Figure 1.2, then the corresponding char-

acteristic polynomial is given by

χA(t) = t3 − 3t2 + 3t− 1.

Let V now be a vector space over R. Consider the complementary space Y in Rn to the

space X which is spanned by the vectors normal to the hyperplanes in A. Also, consider

the following space

W = {ω ∈ V : ω · y = 0, ∀y ∈ Y },

i.e. the space W is the set of vectors in V that are orthogonal to every vector in Y . Note,

5



x

H0

A Ax AH0

Figure 1.4: Given the arrangement A, in the center we see Ax where x is the intersection
point of three hyperplanes in A. On the far left, we see AH0, where H0 is a hyperplane in
the arrangement A. Note that the ambient space of AH0 is the hyperplane H0.

since we are taking K = R, then we can take W = X. Moreover. for any H ∈ A we have

that H ∩ W is of co-dimension one i.e. a hyperplane in W . Now consider the following

arrangement, called the essentialization of A, defined by

ess(A) := {H ∩W : H ∈ A}.

Definition 1.8. Given an arrangement A, a region of A is a connected component of the

complement of A. Moreover, we say a region R is relatively bounded if R∩W is bounded.

Further, for an arrangement A, we let r(A) be the number of regions of A while b(A) is the

number of bounded regions in A.

For any arrangement A in the vector space V , one can define the subarrangement of A

as a subset B ⊂ A. For our purposes, we are interested in two specific arrangements which

are defined as follows. Let x ∈ L(A), then we define the following

Ax = {H ∈ A : x ⊂ H},

Ax = {x ∩H 6= ∅ : H ∈ A \ Ax},

6



where Ax is a subarrangement of A and Ax is an arrangement in the affine space X.

Now, for any H0 ∈ A, let A′ = A − {H0} and A′′ = AH0 , then the number of regions

and bounded regions for A is given by the following lemma.

Lemma 1.9. Given an arrangement A and H0 ∈ A. Then

r(A) = r(A′) + r(A′′),

b(A) =


b(A′) + b(A′′), if rank(A) = rank(A′),

0, if rank(A) = rank(A′) + 1.

It turns out that the number of regions and bounded regions can be calculated using

the characteristic polynomial, but one needs a few more pieces of machinery first. The first

piece is that the characteristic polynomial obeys a recursive property.

Lemma 1.10. Given an arrangement A and H0 ∈ A. Then

χA(t) = χA′(t)− χA′′(t).

The other piece that is needed was first proven for linear arrangements by Whitney, but

was extended to arbitrary arrangements in [4]. Note, that for this theorem to hold, we must

extend the definition of what it means for an arrangement to be central. Normally we say

an arrangement A is central if ∩H∈AH 6= ∅, however, we can extend it slightly by saying

that a subset B of A is central if ∩H∈BH 6= ∅.

Theorem 1.11 (Whitney’s). Let A be any real hyperplane arrangement, then

χA(t) =
∑

central B⊂A

(−1)|B|tdimA−rank B.

Theorem 1.11 and Lemma 1.10 are used to prove a major theorem for hyperplane ar-

rangement that relates the characteristic polynomial to the number of regions and bounded

regions.
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Theorem 1.12 (Zaslavsky’s). Let A be a real hyperplane arrangement. Then

r(A) = (−1)dimAχA(−1)

b(A) = (−1)rank(A)χA(1).

1.2 Parking Functions and the Sandpile Model

The classic notion of the parking function was introduced in [5] and the parking problem

can be stated as follows. On a one-way street with ordered parking spaces 0, 1, . . . , n − 1

we have n cars, c1, . . . , cn, that want to park. The driver of car ci prefers to park in space

si. The cars then proceed to enter the street in the order c1, . . . , cn and try to park in their

preferred spot first, but if the space is occupied then they park in the next available. If no

spot exists, then the driver leaves. Therefore, if all drivers are parked, then the sequence

(s1, . . . , sn) is a parking function of length n.

In [6] a new generalization of parking functions called G-parking functions which were

associated with a general connected digraph G. More specifically, G = (V,E) was a directed

graph on the vertex set with V = {0, 1, . . . , n}, with multiple edges and loops allowed, and

a vertex called a sink represented by vertex 0. To establish the notation that will be

used, we say that G has the directed edge (i → j) where i is the tail and j is the head

of the edge. Further, for any subset of U ⊆ V and vertex i, we define outdegU(i) to be

#{(i→ j) ∈ E : j /∈ U}. Postnikov and Shapiro defined a G-parking function as a function

f : V \ {0} → Z≥0 where the condition that for each subset U ⊆ V with 0 /∈ U , there

exists a vertex i ∈ U such that f(i) < outdegU(i). For our purposes we will use a different

definition that does not use the designated vertex.

Definition 1.13. Given a graph G on vertex set V = {1, . . . , n}, a function f : {1, . . . , n} →

Z≥0 is called a G-parking function if for any non-empty subset I ⊆ {1, . . . , n} there exists

an i ∈ I such that the number of edges (i→ j) ∈ E such that j /∈ I is greater than or equal

to f(i).
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Lemma 1.14. Given a graph G on the vertex set V = {1, . . . , n} and a G-parking function

f , then there exists at least one i ∈ V such that f(i) = 0.

To show the relation between Definition 1.13 and the Portnikov-Shapiro G-parking func-

tion, we proceed as follows. Let G be a graph on the vertex set {1, . . . , n}, and let Gcone be

the cone over G, i.e. create the rooted graph from G by adding the root vertex 0 and an

edge from every vertex in G to 0. Then f is a G-parking function, according to Definition

1.13, if and only if it is a Gcone-parking function according to Postnikov-Shapiro. Note, that

in their definition the sink is not required to have a zero out-degree and to be connected to

every other vertex so our definition is more restrictive.

Remark 1.15. One is able to view the classical parking function of length n as a G-

parking function by letting G be the complete graph on n vertices with edge directed in

both directions, i.e. for vertices i, j ∈ V , then (i→ j), (j → i) ∈ E.

Example 1.16. Consider the following graph G = (V,E) where the vertex and edge sets

are given by V = {1, 2, 3, 4} and edge set {(1→ 2), (1→ 3), (1→ 4), (2→ 3), (2→ 4)}. We

will show that the four-tuples λ0 = 〈0, 0, 0, 0〉 and λ1 = 〈2, 1, 0, 0〉 are G-parking functions,

while λ2 = 〈1, 1, 1, 1〉 is not a G-parking function.

1 2 3 4

By the definition of a G-parking function, one must check every non-empty subset I ⊂ V

and find a vertex i ∈ I such that
∑

j /∈I mij ≥ λ(i). Indeed, consider the following table:

Since for every non-empty I ⊂ V , there exists an i ∈ I and
∑

j /∈I mij ≥ λ(i), then λ1 =

〈2, 1, 0, 0〉 is a G-parking function according to Table 1.1. For the four-tuple λ0 = 〈0, 0, 0, 0〉,

one can see that it is a G-parking function by the following observation. Indeed, for any

I ⊂ V and any i ∈ I, then ∑
j /∈I

mij ≥ 0.
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I ⊂ V λ1(i)
∑

j /∈I mij I ⊂ V λ1(i)
∑

j /∈I mij I ⊂ V λ1(i)
∑

j /∈I mij

{1} λ1(1) = 2 3 {1, 2} λ1(1) = 2 2 {1, 2, 3} λ1(3) = 0 0
{2} λ1(2) = 1 2 {1, 3} λ1(1) = 2 2 {2, 3, 4} λ1(3) = 0 0
{3} λ1(3) = 0 0 {1, 4} λ1(1) = 2 2 {1, 3, 4} λ1(3) = 0 0
{4} λ1(4) = 0 0 {2, 3} λ1(3) = 0 0 {1, 2, 4} λ1(4) = 0 0

{2, 4} λ1(4) = 0 0 V λ1(3) = 0 0
{3, 4} λ1(4) = 0 0

Table 1.1: Contains all possible choices of I ⊂ V along with satisfactory choices for i ∈ I,
in the form of λ1(i), and the calculation

∑
j /∈I mij that shows λ = 〈2, 1, 0, 0〉 is a G-parking

function.

Consider the four-tuple λ2 = 〈1, 1, 1, 1〉. To show that it is not a G-Parking function one

must find a subset I ⊂ V where regardless of the i ∈ I one has
∑

j /∈I mij < 1. If I = {3},

then one has m31 +m32 +m34 = 0 < 1 = λ2(3). Therefore it is not a G-parking function.

There is a relation between G-parking functions and an automaton model created by

Bak, Tang, and Wiesenfeld. This model is a dynamical system used to showcase self-

organized criticality which refers to the proclivity of a system to show states over varying

fluctuations. In a natural setting, one can see examples of this from earthquakes, coastlines,

and mountains ([7]).

In 1990, [8] adapted the cellular automaton describing this phenomenon to a rectangular

grid of cells in which the system evolves of discrete time. For every time interval a random

cell is selected and a grain is added; after four pieces of grain have been accumulated the

cell becomes unstable. To resolve the instability, the cell topples and sends one grain to

each of the neighboring cells which either remain stable or becomes unstable and restarts

the toppling process. In the case that the cell is located on the boundary of the grid, then

grains are sent to the neighboring cells and one grain falls off (into the sink) or two grains

fall off if the toppling cell is in a corner. This process continues over the entire time sand has

been added and continues until all of the cells are stable. To illustrate the process, consider

the following example.
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Example 1.17. Consider the 4× 4 grid with the following grain multiplicities contained in

each cell.

0 2 1 2

0 3 3 0

0 1 3 1

1 0 3 0

According to the model, a grain is randomly added to a cell, for our purposes we will say

the grain is added to row three column three. Once the grain is add the cell becomes unstable

and must topple by way of the following sequence.

0 2 1 2

0 3 4 0

0 1 3 1

1 0 3 0

⇒

0 2 2 2

0 4 0 1

0 1 4 1

1 0 3 0

⇒

0 3 2 2

1 0 2 1

0 3 0 2

1 0 4 0

⇒

0 3 2 2

1 0 2 1

0 3 1 2

1 1 0 1

For the toppling process it does not matter the order in which unstable cells are toppled

or whether or not multiple unstable cells are toppled simultaneously, the resulting stable

configuration is the same.

For the sandpile model, we are interested in knowing whether or not a stable sand config-

uration is recurrent, i.e. if the configuration can be obtained from any other configuration

by a sequence of grain additions and topplings. Finding recurrent configurations is not

simple, however Dhar [8] was able to produce a method called the Burning Algorithm. Sim-

ilarly to the sandpile model, it is defined on a grid and is stated as follows. For a stable

configuration on a grid, all cells are labeled unburnt, and then each cell whose number of

grains is greater than or equal to the number of unburnt neighbors is burned. If this process
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ends with all cells burned, then the configuration is recurrent. Otherwise the configuration

is called transient, i.e. not recurrent.

Example 1.18. Consider the 4× 4 grid with the following grain multiplicities contained in

each cell. The cells that are slated to be burned will appear in red, and burnt cells will have

their entries removed.

0 2 1 2

0 3 3 0

0 1 3 1

1 0 3 1

This is the stable configuration that we are testing to see if the configuration is recurrent.

By Dhar’s burning algorithm the following occurs:

0 2 1

0 3 3 0

0 1 3 1

1 0 1

⇒

0 2 1

0 3 3 0

0 1 1

1 0

⇒

0 2 1

0 3 0

0 1

1 0

⇒

0

0

0 1

1 0

When the algorithm ended, there are remaining unburnt cells which implies that the

original configuration was not recurrent. Moreover, the remaining sub-configuration is called

forbidden since any configuration containing this sub-configuration cannot be recurrent.

In a similar scope to the abelian sandpile model, many combinatorists studied chip-

firing games which are defined on finite, connected graphs that have no loops. A version

of the game is described as follows. Given a graph G on the vertex set V = {1, . . . , n},

a configuration is a string of non-negative integers, ~w where ~w(i) is the number of chips

located on vertex i, and a move in the game is done by choosing a vertex v ∈ V such that

~w(i) ≥ deg(i). After the vertex is fired, chips are sent along each of the edges connected to

12



11

21 s 4 1

51 6 0

11

21 s 4 1

51 6 1

Figure 1.5: Shown are graphs on six vertices with the sink marked by the label s. In red
next to each vertex is an integer that corresponds to the number of chips located on the
corresponding vertex. The configuration on the left is superstable while the configuration on
the right is not since S = {6} breaks the definition of superstable.

i to the adjacent vertices. The game is complete when no more vertices can be chosen and

the resulting configuration is called stable.

The question now is, what happens if we fire a subset of the non-sink vertices of our

graph? For this question we want to talk about superstable configurations.

Definition 1.19. Given a configuration σ on G, we say that σ is superstable if the entries

of σ are all non-negative and for all S ⊂ V , there exists a v ∈ S such that

σ(v) < outdegS(v) = #{(i→ j) : j /∈ S}.

Note, for our purposes, the configurations we are considering are always non-negative, this is

because of the type of chip-firing game we are considering. For an example of a superstable

configuration see Figure 1.5.

In the case of superstable and recurrent configurations, there is a relation between the

two. Let σmax be the maximal stable configuration, i.e. adding a grain to any vertex would

make it unstable. Then for any configuration σ, σ is superstable if and only if σmax − σ is

recurrent. Note σmax and σ0 (empty configuration) are both superstable.

The superstable configurations on a graph G are precisely the G-parking function defined
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in Definition 1.13.

1.3 Shi and Multigraphical Arrangements

Let V ⊂ Rn given by x1 + · · ·+ xn = 0, and further we will use the following notation. For

any i, j ∈ {1, . . . , n} and a ∈ R>0, let

Ha
ij := {xi − xj = a} ⊂ V.

The original Shi arrangements were first introduced by Shi in [9] during his study of

Kazhgan-Lusztig polynomials and cells of affine symmetric groups. These arrangements

were defined as:

Definition 1.20. The Shi arrangement is the arrangement consisting of the hyperplanes

Shn := {Ha
ij : 0 < j < i ≤ n, a = 0, 1}.

These Shi arrangements were studied by Stanley where he looked at the enumeration of

regions of the arrangement with respect to the distance from a specified base region. Here

the distance between two regions is defined as the number of hyperplanes in the arrangement

that separate them. Stanley was able to create a bijection between the set of regions and

the set of parking functions, where the sum of the values of the parking function equals the

distance from the base region to the corresponding region. This bijection is refered to as

the Pak-Stanley labeling. Furthermore, this construction also applies to k-Shi arrangements

where these are arrangements of the form

Shkn := {H l
ij : 0 < j < i ≤ n,−k < l ≤ k}.
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While the original bijectivity proof of the Pak-Stanley labeling is complicated, one can

see the bijectivity for the Shi and k-Shi arrangements by comparing the cardinality of the

set of regions to the set of parking functions and proving either injectivity or surjectivity of

the map. For 1-Shi arrangements, Shi calculated the number of regions in [9] and showed

that it is equal to (n+ 1)n−1. It was then shown in [5] and [10] that the number of parking

functions was also (n + 1)n−1. In the case of k-Shi arrangements, with k > 1, Stanley in

[11] calculated the number of k-parking functions and showed that they totaled (kn+1)n−1.

The k-parking functions are defined as follows:

Definition 1.21. A k-parking function of length n is a sequence (a1, . . . , an) ∈ Nn

satisfying the following condition. If b1 ≤ b2 ≤ · · · ≤ bn is a monotonic rearrangement of

the terms a1, . . . , an, then bi ≤ k(i− 1).

In [12] and [13] the number of regions for the k-Shi arrangement was shown to also be

(kn+ 1)n−1.

Remark 1.22. One is able to view the k-parking function of length n as a G-parking

function by letting G be the complete graph on n vertices with k copies of each edge

directed in both directions.

Let A be any finite arrangement of hyperplanes of the form Ha
ij = {xi − xj = a} ⊂ V

where a > 0. For each of these hyperplanes we are able to associate an edge in a graph,

and therefore for an arrangement there is the associated oriented multigraph GA which is

defined as:

Definition 1.23. Given an arrangement A, the associated directed graph GA is the

graph with set of vertices {1, . . . , n} and directed edges i→ j whose multiplicity is given by

mij := #{a ∈ R>0 : Ha
ij ∈ A}.

Notice that one gets mij + mji hyperplanes parallel to {xi = xj} in the arrangement A

where mij are located on one side of the origin, and mji are located on the other side of the
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Figure 1.6: Both arrangements correspond to the graph G that is given. Note that by
changing the coefficients, in this case c3 was changed, one is able to create and collapse
regions without affecting the graph.

origin. The combinatorial type of the arrangement is not determined by the multigraph GA

since one is able to shift the hyperplanes by changing the corresponding constants without

changing the graph. See Figure 1.6 for an example.

Definition 1.24. We will call arrangements of this type multigraphical arrangements.

In [2] the generalized Pak-Stanley labeling for the regions of a multigraphical arrange-

ment A was defined:

Definition 1.25. Let R be a region of the arrangement A. Let AR ⊂ A be the subset

containing all the hyperplanes that separate the region R from the origin. The label, λR is
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defined to be the function λR : {1, . . . , n} → Z≥0 given by the following formula:

λR(i) := #{(a, j) : a ∈ R>0, j ∈ {1, . . . , n}, and Ha
ij ∈ AR}.

In particular, λR(i) is the number of hyperplanes in the arrangement A, of the form Ha
ij,

that separate the region R from the origin. One should note that here, i is fixed, but j and

a may vary.

For a label λ we will use the notation 〈λ(1), . . . , λ(n)〉. The region R0, containing the

origin, is the only region labeled by 〈0, . . . , 0〉. Moreover, the labeling of the regions can be

defined inductively by: as one crosses the hyperplane Ha
ij = {xi−xj = a > 0} in a direction

away from the origin, the ith component of the label is increased by one, and the rest of the

components remain unchanged.

Theorem 1.26 ([2, 1]). Let R be any region of a multigraphical arrangement A. Then the

corresponding label λR is a GA-parking function.

Theorem 1.27 ([2, 1]). Let A be a multigraphical arrangement, and let λ be any GA-parking

function. Then there exists a region R of A such that λR = λ.

The previous two results were proved in [1] and [2] and together they imply that the

generalize Pak-Stanley labeling gives a surjective map from the set of regions of A to the

set of GA-parking functions. In [1], Hopkins and Perkinson showed that the surjectivity of

the map holds for a restricted family of graphs, called bigraphical arrangements. However,

it was in [2] that Mazin was able to generalize it to multigraphical arrangements. While the

bijectivity results have been extended to other families of arrangements besides extended Shi

arrangements, in general, the generalized Pak-Stanley labelings often fails to be injective.
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23

〈0, 0, 0〉

〈0, 1, 0〉

〈0, 1, 0〉

〈0, 2, 0〉

〈1, 0, 0〉

〈2, 0, 0〉

〈2, 1, 0〉
〈1, 1, 0〉

〈1, 2, 0〉

Figure 1.7: We consider the multigraphical arrangement that corresponds with the digraph
G given on the left. The regions of the arrangement are labeled with the corresponding
generalized Pak-Stanley labels and the regions with the duplicate labels are colored in yellow.

1.4 Main Results

Naturally, one might ask the question; is there a way to characterize the directed multigraphs

for which there exist arrangements with a bijective labelings? In this thesis we will first

discuss the special case of central hyperplane arrangements, meaning arrangements for which

all hyperplanes pass through a common point in Section 2.

While working with central arrangements we realized that the graphs associated with

these types of hyperplane arrangements are simple and acyclic. Moreover, we realized that

the condition that guaranteed the existence of arrangements with bijective labelings can be

stated as follows.

Theorem 1.28. ([14]) Let V = {1, 2, . . . , n} and G = (V,E) be an acyclic digraph on

n vertices with edges oriented in the increasing way. Then the hyperplane arrangement
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corresponding to G produces duplicate Pak-Stanley labelings if and only if there exists 1 ≤

k < i < j ≤ n such that (k → i), (k → j) ∈ E and (i→ j) /∈ E.

For the third section, we will consider general hyperplanes in dimension n = 3, and we

will look to expand on Baker’s necessary condition for the multigraphs to have a bijective

labelings where her condition is stated as follows.

Theorem 1.29. ([3]) Suppose A is a multigraphical hyperplane arrangement with a bijective

Pak-Stanley labeling and corresponding graph GA = (V,E). For a fixed i, j, k ∈ V , if mij 6= 0

and mik 6= 0, then mij +mik − 1 ≤ mjk +mkj.

During our research, we noticed that if one expands the aforementioned condition, then

we are able expand the necessary condition as follows.

Theorem 1.30. Let A be a multigraphical arrangement and let GA be the corresponding

digraph. If A has a bijective Pak-Stanley labeling, then for i, j, k ∈ V with mij 6= 0, mik 6= 0,

then mjk + mkj ≥ mij + mik − 1. Furthermore, if also mjk 6= 0 and mji 6= 0, then at least

one of the following inequalities is strict.

1. mjk +mkj ≥ mij +mik − 1.

2. mik +mki ≥ mjk +mji − 1.

However even though this is only a necessary condition, it is a sufficient condition when

the multigraphs have less than five distinct edge types. Also in Section 3 we will show that

if an arrangement is injective ”locally,” then it is injective globally. More precisely, we have

the following theorem in dimension n = 3:

Theorem 1.31. Let A ⊂ V be a multigraphical arrangement in R3. The generalized Pak-

Stanley map from the set of regions of A to the set of G-parking functions is injective if and

only if it is injective locally.
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In Section 4 we will show that while the criteria discussed in Section 3 is necessary, it is

not sufficient to guarantee a bijective arrangement. This is done by presenting families of

graphs in the cases of five and six edge types that produce a bijective arrangement and do

not produce a bijective arrangement.
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Chapter 2

Central Multigraphical Arrangements

In this section we will considered central multigraphical arrangements, which are defined

as arrangements A where all hyperplanes intersect at a common point. For central multi-

graphical arrangements, the arrangement is determined by the corresponding digraph up

to a global shift. In the case of central multigraphical arrangements the graphs that corre-

spond to these arrangements are easily classified. For the sake of completeness, the following

theorems are provided with proofs from [14].

Theorem 2.1. ([14]) Let A be a central multigraphical hyperplane arrangement, then the

corresponding multi-digraph is simple and acyclic. Further, if G is a simple acyclic digraph,

then there exists a central multigraphical arrangement A such that GA = G.

Proof. Let A be a central multigraphical arrangement such that all hyperplanes intersect

at the point c = (c1, c2, . . . , cn). Since all hyperplanes Ha
ij intersect at c, then we can have

at most one Ha
ij for each pair i, j. Moreover, if we have a hyperplane Ha

ij then we cannot

have a hyperplane of the form Hb
ji, because they would also be parallel. Thus the digraph

GA is simple.

Assume that GA contains the cycle i0 → i1 → · · · → ik → i0. It then follows that the

hyperplanes corresponding to the edges in the cycle exhibit
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xi0 − xi1 = a1 > 0

xi1 − xi2 = a2 > 0

...
...

...

xik−1
− xik = ak > 0

xik − xi0 = ak+1 > 0

Since each hyperplane passes through the point c all these equations are satisfied at x = c.

After taking the sum of the above equations we see that 0 =
∑k+1

i=1 ai which contradicts the

assumption that the ai > 0 for all i. Thus GA is acyclic.

Now, given a simple acyclic digraph G = (V,E), with V = {1, . . . , n}, one can assume

without loss of generality that the edges are oriented in an increasing way. We create

the corresponding arrangement A by: for every edge (i → j) ∈ E create the hyperplane

Hj−i
i,j = {xi − xj = j − i}. Consider the following point c ∈ V :

c =

(
n+ 1

2
, . . . ,

n+ 1

2

)
− (1, 2, . . . , n)

We immediately see that the point c lies in the intersection of all the hyperplanes since

ci − cj = j − i for all 1 ≤ i < j ≤ n. Therefore the graph G has a corresponding central

multigraphical arrangement.

Further, let A be any central multigraphical arrangement and consider the linear ar-

rangement A′ that is obtained from A by shifting all the hyperplanes so that they all pass

through the origin. By shifting A to the origin, the corresponding associated multigraph GA

becomes the simple graph G where the orientation on the edges is removed. It is well-known

that the acyclic reorientations of G are in one to one correspondence with the regions of the

linear arrangement A′ ([15]). To give orientations to the edges of G consider the following.

For a region R of A′ and an edge (i− j) of G, we then orient the edge (i→ j) if and only

if xi < xj at every point of R.

This construction shows that the regions of the original multigraphical arrangement A
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are precisely the regions of A′ shifted by a vector. Moreover, this shows that there is a

bijection between the acyclic orientations of G and the acyclic reorientations of the graph

GA. More precisely, we get the following theorem:

Theorem 2.2. ([14]) The fundamental region of A corresponds to the original orientation

of GA, and crossing a hyperplane Ha
ij ∈ A switches the orientation of the corresponding edge

between i and j.

Proof. LetR0 be the fundamental region of the arrangementA, and letA′ be the correspond-

ing linear arrangement. Let c = (c1, . . . , cn) be in the intersection of all the hyperplanes of

the arrangement A.Then it follows that −c belongs to the corresponding region R′ = R0− c

of A′. Therefore, if Ha
i,j ∈ A and the edge i → j is the corresponding edge in GA, then at

c we have ci − cj = a, in particular we have that ci > cj. It then follows that at −c ∈ R′

that we have −ci < −cj. Thus, in the orientation corresponding to R′ we also get the edge

oriented as i→ j.

Finally, crossing a hyperplane Ha
i,j corresponds to crossing the hyperplane xi = xj of the

linear arrangement A′, which switches the orientation of the corresponding edge.

The bijection between the regions of a multigraphical arrangement A and the acyclic

reorientations of the corresponding graph GA, implies that one is actually able to calculate

the Pak-Stanley labels for the regions in terms of the acyclic reorientations of GA.

Lemma 2.3. The Pak-Stanley labels for the arrangement A can be computed in terms of

acyclic reorientations of the graph G. More precisely, for a region R of A, the label λR(i)

equals to the number of edges of G leading from i such that their orientations got switched

in the reorientation corresponding to R.

See Figure 2.1 for an example of how the labels of the regions are calculated in terms of

the reorientations of GA.

Now, for any central multigraphical arrangement, the following condition on the graph

GA guarantees that the arrangement has a bijective Pak-Stanley labeling.

23



Ha
12

Hb
13

Hc
23

〈2, 1, 0〉1

2 3

x3 < x2 < x1

〈2, 0, 0〉

1

2 3

〈1, 0, 0〉

1

2 3〈0, 0, 0〉
x1 < x2 < x3

1

2 3

〈0, 1, 0〉
1

2 3

〈1, 1, 0〉
1

2 3

Figure 2.1: We consider the central arrangement corresponding to the digraph GA = {(1→
2, 1→ 3, 2→ 3)}. The regions of the arrangement are labeled by the corresponding reorien-
tations and the generalized Pak-Stanley labels. Note that the fundamental region is labeled
by GA and 〈0, 0, 0〉, and as we cross the hyperplanes the orientations of the corresponding
edges switch. Moreover, as we cross the hyperplane Ha

ij in a direction away from the origin,
the ith entry of the Pak-Stanley label increases by 1.
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G′′

k . . . i . . . j

G′

k . . . i . . . j

Figure 2.2: Here we see the two reorientations of the graph G, G′ and G′′, and the corre-
sponding cycles created depending on the orientation of the edge i→ j.

Theorem 2.4. ([14]) Let V = {1, 2, . . . , n} and G = (V,E) be an acyclic digraph on

n vertices with edges oriented in the increasing way. Then the hyperplane arrangement

corresponding to G produces duplicate Pak-Stanley labelings if and only if there exists 1 ≤

k < i < j ≤ n such that (k → i), (k → j) ∈ E and (i→ j) /∈ E.

Proof. ⇒) Assume that G produces duplicate Pak-Stanley labelings and for the sake of

contradiction assume that no such i, j, k exists. Since labelings correspond to acyclic reori-

entations of G, let G′ = (V,E ′) and G′′ = (V,E ′′) be such reorientations.

Since reorientations are in correspondence with labelings then there is an edge k → i of

GA that is reoriented as i → k in G′ but not in G′′. Moreover since the labels are equal,

then there must also be another edge emanating from k, say edge k → j, such that it is

reoriented as j → k in G′′ but not in G′. In other words, the duplicate labeling implies that

we have edges (i→ k), (k → j) ∈ E ′ and (k → i), (j → k) ∈ E ′′.

Let k be the largest integer such that this occurs. Since k is the largest possible, it

follows that all edges between vertices p, q where p, q > k are oriented in the same way in

both reorientations. Without loss of generality we can assume that i < j. This gives arise to

two cases depending on whether or not the edge from i→ j, is oriented as i→ j or j → i in

both G′ and G′′. If we have the edge i→ j then in G′′ we have the cycle k → i→ j → k, a

contradiction since G-parking functions rise from acyclic reorientations. Otherwise we have

the edge j → i, but as before we have the cycle k → j → i→ k in G′ (see Figure 2).

⇐) The easiest way to produce the acyclic reorientations, G′ and G′′, is reordering
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the vertices and reorienting the edges so that they point in the increasing direction after

considering the new vertex order. For the reoriented graph G′ = (V,E ′) we reorder the

vertices of G′ as follows

1 ≺ · · · ≺ k − 1 ≺ k + 1 ≺ · · · ≺ i− 1 ≺ i+ 1 ≺ · · · ≺ j − 1 ≺ i ≺ k ≺ j ≺ · · · ≺ n.

In other words, for G′ we move the vertices k + 1, . . . , i − 1, i + 1, . . . , j − 1 to the left so

that they precede vertex k, and then switch vertices k and i. Note that as we reorder the

vertices, the only edges that are reversed are

(1) (k → p) ∈ E such that :

p ∈ {k + 1, . . . , i− 1}, or

p ∈ {i+ 1, . . . , j − 1}, or

p = i

(2) (i→ p) ∈ E such that: p ∈ {i+ 1, . . . , j − 1}.

To produce the reorientation that corresponds to G′′ = (V,E ′′) we reorder the vertices of

G′′ as follows:

1 ≺ · · · ≺ k − 1 ≺ k + 1 ≺ · · · ≺ i− 1 ≺ i+ 1 ≺ · · · ≺ j − 1 ≺ j ≺ k ≺ i ≺ j + 1 ≺ · · · ≺ n.

In other words, for G′′ we move the vertices k + 1, . . . , i − 1, i + 1, . . . , j − 1 so that they

precede vertex k, but now we move vertex j two places to the left so that it precedes k

instead of switching vertices k and i. This time the following edges are reoriented

(1) (k → p) ∈ E such that :

p ∈ {k + 1, . . . , i− 1}, or

p ∈ {i+ 1, . . . , j − 1}, or

p = j

(2) (i→ p) ∈ E such that: p ∈ {i+ 1, . . . , j − 1}.
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Note that (i→ j) /∈ E by assumption, therefore it does not need to be reoriented.

We conclude that both G′ = (V,E ′) and G′′ = (V,E ′′) produce the labeling

τ = 〈0, . . . , 0,
kth

(N + 1), 0, . . . , 0,
ith

(K), 0, . . . , 0〉

where

N = #{(k → p) ∈ E : p ∈ {k + 1, . . . , i− 1} ∪ {i+ 1, . . . , j − 1}}

and

K = #{(i→ p) ∈ E : p ∈ {i+ 1, . . . , j − 1}}.

Example 2.5. Consider the following graph G = (V,E) where the vertex and edge sets are

given by E = {(1 → 2), (1 → 3), (2 → 3), (2 → 4), (2 → 5), (3 → 4)} on the vertex set

V = {1, 2, 3, 4, 5}.

1 2 3 4 5

In this example we see that the graph contains the edges (2 → 4) and (2 → 5), but

(4 → 5) /∈ E. It then follows that Theorem 2.4 implies that there should exist at least two

reorientations G′ and G” of G that produce the same Pak-Stanley labeling. Consider the

following two reorientations

1 2 3 4 51 2 3 4 5
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These two reorientations of GA produce the label 〈0, 1, 0, 0, 0〉. Similarly for (2 →

3), (2→ 5) ∈ E, but (3→ 5) /∈ E there will be duplicates.

1 2 3 4 51 2 3 4 5

These two reorientations of G produce the duplicate label 〈3, 2, 1, 0, 0〉. Actually, this

graph produces fourteen more duplicate labelings.

Theorem 2.4 provided motivation for the idea of local injectivity of the labeling since

examples for general multigraphical arrangements in n = 3 always had the duplicates “close”

to one another. We define local injectivity as follows:

Definition 2.6. Let A be a multigraphical arrangement and p ∈ V be any point. The

Pak-Stanley labeling for A is locally injective near p if all of labels of R such that p ∈ R

are distinct. Further, if this holds for all p ∈ V , then we say that A is locally injective.

In the case of central multigraphical arrangements, local injectivity and “global” injec-

tivity are the same.
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Chapter 3

General Hyperplanes in Dimension

n=3

In [3] Baker worked on generalizing the requirements on the associated multigraph in the

n = 3 case. During her research she noticed that arrangements with a bijective labeling

satisfied the following:

Theorem 3.1. ([3]) Suppose A is a multigraphical hyperplane arrangement with a bijective

Pak-Stanley labeling and corresponding graph GA = (V,E). For a fixed i, j, k ∈ V , if mij 6= 0

and mik 6= 0, then mij +mik − 1 ≤ mjk +mkj.

However, later on in her thesis she shows that while this is a necessary condition, it was

not sufficient. See Figure 3.1 for an example of a graph that does not admit an arrangement

with an injective label despite satisfying Theorem 3.1. In the case of central multigraphical

arrangements Theorem 3.1 reduces as follow, if the edges (i → j) and (i → k) are in the

associated graph GA, then 1 ≤ mjk +mkj. Meaning that either the edge (j → k) or (k → j)

is present in GA. Moreover, in the case of central arrangement, Theorem 2.4, the condition

is not only necessary but sufficient for the arrangement to emit a bijective labeling.

Examples in the n = 3 case show that when an arrangement yields duplicates that the

duplicate labels are ”close” to each other. More precisely, for a duplicate label λ in an
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1 2

3

〈0, 0, 0〉〈0, 1, 0〉

〈0, 1, 0〉

〈1, 2, 0〉

〈0, 2, 0〉 〈1, 1, 0〉

〈1, 1, 0〉

〈2, 0, 0〉

〈2, 1, 0〉

Hb1
13

Hc1
23

Ha1
12H

a′1
21

〈2, 1, 0〉

〈0, 0, 0〉

〈1, 0, 0〉

〈1, 0, 0〉

〈1, 1, 0〉

〈1, 2, 0〉

〈2, 0, 0〉

〈0, 1, 0〉

〈0, 2, 0〉

Hb1
13

Hc1
23

Ha1
12H

a′1
21

Figure 3.1: Despite satisfying the conditions listed in Theorem 3.1, this graph does not
emit an arrangement with a bijective labeling. Further, this is the smallest such graph. We
illustrate this with two arrangements (center and right) corresponding to the graph. In the
first arrangement (center) the label 〈0, 1, 0〉 appears twice, while in the second arrangement
(right) the label 〈1, 0, 0〉 appears twice. One can alter the arrangements by changing the

positive constants a1, a2, b1, and c1 on the right hand sides of the equations of Ha1
12 , H

a′1
21 , H

b1
12,

and Hc1
12, but one cannot get rid of both duplicates at the same time (see [3] for details).

arrangement A, then the closure of the union of all the regions labeled by λ is connected.

This means that in the case of general arrangements in n = 3, that if the arrangement is

locally injective at every point, then the labeling is injective. The following theorem shows

that this holds in our special case.

3.1 Injectivity: Local to Global

Recall from Chapter 2 that the definition of local injectivity is defined as follows. Let A be

a multigraphical arrangement and p ∈ V be any point. The Pak-Stanley labeling for A is

locally injective near p if all of labels of R such that p ∈ R are distinct. Further, if this

holds for all p ∈ V , then we say that A is locally injective.

Theorem 3.2. Let A ⊂ V = {x1+x2+x3 = 0} ⊂ R3 be a multigraphical arrangement. The

generalized Pak-Stanley map from the set of regions of A to the set of G-parking functions
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is injective if and only if it is injective locally.

Proof. If A is injective, then there are no duplicates which means locally there are no

duplicates. Therefore the arrangement is locally injective.

Now assume that A is locally injective and for the sake of contradiction that it is not

injective. Let R1 and R2 be the two regions containing the duplicate label λ. Now consider

the subarrangement B ⊂ A that consists of the hyperplanes that separate R1 from R2. Note,

since R1 and R2 have duplicate labels, then after removing all non-separating hyperplanes

the labels for the new regions containing R1 and R2 in B will also have duplicate labels in

B. Let R1 and R2 be the regions of B such that R1 ⊂ R1 and R2 ⊂ R2.

First, we claim that if λ(R1) = λ(R2) and a hyperplane of the type H12 separates R1

from R2, then there exists a hyperplane of the type H13 that also separates them. Indeed,

all hyperplanes of the type H12 that separates R1 from R2 have to separate one (without loss

of generality assume R1) from the origin and not separate the other from the origin. Since

λ(R1) = λ(R2), then there has to be hyperplanes of the type H13 that separate R2 from the

origin and not separate R1 from the origin (first entry of each label is equal). Similarly, for

any i, j, k ∈ {1, 2, 3}, if two regions have the same label and a hyperplane of the form Hij

separates R1 from R2, then there must exist a Hik that separates the two regions.

Assume now, that hyperplanes of the type H12 and H21 separate the regions and let

Ha
12 and Ha′

21 be hyperplanes of each type that separate R1 and R2. Note, if R1 and R2

are separated by hyperplanes of types H12 and H21, then all of the hyperplanes of type

H12 separate one (without loss of generality say R1) from the origin, and all of the H21

hyperplanes separate the other (say R2) from the origin. The assumption that the labels

of each region are equal implies that there is at least one hyperplane of type Hb
13 that

separates R2 from the origin (and not R1) and at least one hyperplane of type Hc
23 that

separates R1 from the origin (and not R2). Let (y1, y2, y3) and (z1, z2, z3) be points in R1

and R2, respectively. It follows that each point satisfies the following
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(y1, y2, y3) ∈ R1 (z1, z2, z3) ∈ R2

y1 − y2 > a z2 − z1 > a′

y2 − y3 > c z1 − z3 > b

y1 − y3 < b z2 − z3 < c

From region R1 we get the inequality c+a−b < 0, while R2 yields the inequality a′+b−c < 0.

After adding both inequalities, one sees that a′+a < 0 which is a contradiction since a′ and

a are positive. Therefore hyperplanes of the types H12 and H21 cannot both separate the

regions. In general, hyperplanes of the type Hij and Hji, for some i, j cannot both separate

the regions.

Assume now that the hyperplanes Ha
12, H

c
23, H

b′
31 separate region R1 from R2. It follows

that two hyperplanes separate one region from the origin while the third separates the other

region from the origin. Since the labels are equal, then all three entries for λ are non-zero.

This is a contradiction since λ is a G-parking function and therefore has to have at least

one zero entry by Lemma 1.14.

We have now shown that the only two types of hyperplanes that can separate R1 from R2

are of the form Hij and Hik for some i, j, k ∈ {1, 2, 3}. Lastly, assume that the hyperplane

Ha
12 separates R1 from the origin and R2 while the hyperplane Hb

13 separates R2 from the

origin and R1. Since the intersection of the hyperplane Ha
12 with Hb

13 creates a bad inter-

section and since A is locally injective, then there exists either a Ha−b
32 or Hb−a

23 , depending

on the sign of a − b, that rectifies this bad intersection. More precisely, if a − b > 0, then

Ha−b
32 ∈ A while if a − b < 0, then Ha−b

23 ∈ A. One cannot have that a = b since these are

affine hyperplanes. Let (y1, y2, y3) and (z1, z2, z3) be points in R1 and R2, respectively. It

follows that each point satisfies the following

(y1, y2, y3) ∈ R1 (z1, z2, z3) ∈ R2

y1 − y2 > a z1 − z2 < a

y1 − y3 < b z1 − z3 > b

From region R1 the inequalities yield y3− y2 > a− b while region R2 yields z3− z2 < a− b.
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This implies that either Ha−b
32 and Hb−a

23 depending on the sign of a − b separates the two

regions, i.e. is in B. This is a contradiction of the previous claim that only two types of

hyperplanes that can separate R1 from R2 are of the form H12 and H13. Therefore if A is

injective locally, then the map from the set of regions of A to the set of G-parking functions

is injective.

Even though a proof is provided in the case of n = 3, it is believed that the following

holds for general n.

Conjecture 3.3. Let A ⊂ V = {x1 + · · · + xn = 0} ⊂ Rn be a multigraphical arrange-

ment. The generalized Pak-Stanley map from the set of regions of A to the set of G-parking

functions is injective if and only if it is injective locally.

In [2] Mazin proved that the Pak-Stanley labeling is always a surjective map. From a

set-theoretic standpoint, since it is surjective, the number of regions is bounded from below

by the number of parking functions. Therefore we will always consider arrangements with

the fewest number of regions.

The following theorem provides a necessary condition for a directed multigraph to yield

a multigraphical arrangement that admits an injective Pak-Stanley labeling.

3.2 Necessary Condition for a Bijective Labeling

Theorem 3.4. Let A be a multigraphical arrangement and let GA be the corresponding

digraph. If A has a bijective Pak-Stanley labeling, then for any i, j, k ∈ V with mij 6= 0,

mik 6= 0, one has mjk + mkj ≥ mij + mik − 1. Furthermore, if also mjk 6= 0 and mji 6= 0,

then at least one of the following inequalities is strict.

1. mjk +mkj ≥ mij +mik − 1.

2. mik +mki ≥ mjk +mji − 1.
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Ha1
ij Ha2

ij Ha3
ij

. . . Har
ij

Hb1
ik Hb2

ik Hb3
ik

. . . Hbs
ik

Figure 3.2: General multigraphical arrangement for Theorem 3.4 where the blue points rep-
resent rectified points between hyperplanes of type Hij and Hik and the green points represent
the points P1, . . . , Pr+s−1.

Proof. The proof of the first part of the statement is covered by Theorem 3.1 and can be

seen in more detail in [3]. The premise of Theorem 3.1 is that for an arrangement A with

mij > 0 and mik > 0 hyperplanes of type Hij and Hik, respectively, that one needs at least

mij +mik − 1 hyperplanes of type Hjk and Hkj to rectify the bad intersections.

Let the arrangement A have a bijective labeling where the edge multiplicities of GA

are given by mij = r > 0, mik = s > 0, mjk = t > 0, mji = u > 0, mki = v > 0 and

mkj = w > 0. For the sake of contradiction assume that mjk + mkj = mij + mik − 1 and

mik + mki = mjk + mji − 1. It follows that the arrangement A contains the potential bad

intersection points created from the hyperplanes

Ha1
ij , . . . H

ar
ij with Hb1

ik , . . . , H
bs
ik

Hc1
jk, . . . H

ct
jk with H

a′1
ji , . . . , H

a′u
ji .

By our assumption, there is exactly enough hyperplanes to rectify all of the potential
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bad intersections. Assume without loss of generality that a1 < · · · < ar, b1 < · · · < bs,

c1 < · · · < ct, and a′1 < · · · < a′u. Furthermore, define the points P1, P2, . . . , Pr+s−1 to be

the intersection points of the hyperplanes

Ha1
ij , . . . H

ar
ij with Hbs

ik , and

Hb1
ik , . . . H

bs
ik with Har

ij .

Consider the following differences of the coefficients for hyperplanes of type Hij and Hik

d1 = bs−a1, d2 = bs−a2, . . . dr = bs−ar, dr+1 = bs−1−ar, dr+2 = bs−2−ar, . . . , dr+s−1 = b1−ar.

Note that d1 > d2 > · · · > dr+s−1 and to avoid having bad intersections at points P1, . . . , Pr+s−1

one must have the hyperplanes Hd1
jk , . . . , H

dr+s−1

jk ∈ A. Since r + s − 1 = t + w, it follows

that d1 > · · · > dt > 0 > dt+1 > · · · > dt+w.

To rectify the bad intersections, let ct = d1, ct−1 = d2, . . . , c1 = dt and c′1 = −dt+1, . . . , c
′
w =

−dt+w. These coefficients place the hyperplanes of types Hjk and Hkj; further the bad in-

tersections have been rectified.

Consider the points Q1, . . . , Qt+u−1 to be the intersection points created from the hyper-

planes

H
a′1
ji , . . . H

a′u
ji with Hct

jk, and

Hc1
jk, . . . H

ct
jk with H

a′u
ji .

The potential bad intersections are rectified in a similar way, however, mji + mjk − 1 =

mik + mki implies that all hyperplanes of the form Hik and Hki are used to rectify the

potential bad intersections. More precisely, Hbs
ik must be used, and by the previous argument

the coefficient is defined to be bs = ct − a′1. However, the coefficient ct was defined as

ct = bs−a1, so adding together yields 0 = −a1−a′1. This is a contradiction since a1, a
′
1 > 0.
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Therefore at least one of the equations is a strict inequality.

3.3 Graphs that emit a Bijective Labeling

For some families of hyperplane arrangements, Theorem 3.4 is not only necessary, but also

sufficient for the multigraph to emit an arrangement that has a bijective labeling. In the

n = 3 case, there are six different types of hyperplanes of the form Hij for i, j ∈ {1, 2, 3},

and the set of families will be broken up by the number of different types that appear in

the arrangement. We begin with one type chosen as follows:

Theorem 3.5. Let G = (V,E) be a graph on n = 3 vertices. If there is exactly one mij 6= 0,

then there exists an arrangement A with a bijective labeling such that G = GA.

Proof. In the instance that only one edge multiplicity is non-zero, say mij = r > 0, there are

no conditions required to guarantee a bijective arrangement. It follows that the arrangement

A is given by

Haα
ij , where aα = α, for 1 ≤ α ≤ r.

See Figure 3.3 for a picture of the arrangement with corresponding labels.

In the second family we have that two different hyperplane types are chosen, and in this

case there are multigraphs with two different types of edges that do not produce bijective

arrangements. First, lets address the multigraphs that have corresponding arrangements

that emit bijective labeling.

Theorem 3.6. Let G = (V,E) be a graph on n = 3 vertices. If there exists exactly two

non-zero edge multiplicities and the non-zero multiplicities are not of the form mij, mik

for some i, j, k ∈ V , then there exists an arrangement A with a bijective labeling such that

G = GA.
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H1
12 H2

12 Hr
12

〈0, 0, 0〉 〈1, 0, 0〉 〈r, 0, 0〉

Figure 3.3: In this example we see the bijective arrangement with labels for a graph that
has non-zero multiplicity m12 = r.

Proof. In the instance that two edge multiplicities are non-zero, there are three different

scenarios depending which multiplicities are non-zero. However, for each case there are

several graphs that only differ up to a rearrangement of the vertices, so without loss of

generality we will consider the following three cases.

Assume that the graph G has non-zero multiplicities mij = r and mji = u. In this case,

there are no conditions required to guarantee a bijective arrangement, and it then follows

that the arrangement A is given by

Haα
ij , where aα = α, for α ∈ {1, . . . , r},

H
a′β
ji , where a′β = β, for β ∈ {1, . . . , u}.

See Figure 3.4 for a picture of the arrangement with corresponding labels.

In the second scenario, assume that G has non-zero multiplicities mji = u and mki = v.

Similar to the previous scenario, there are no conditions required to guarantee a bijective

arrangement, and it follows that the arrangement A is given by

H
a′α
ji , where a′α = α, for α ∈ {1, . . . , u},

H
b′β
ki , where b′β = β, for β ∈ {1, . . . , v}.

See Figure 3.5 for a picture of the arrangement with corresponding labels.
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H1
12 H2

12 Hr
12

〈0, 0, 0〉 〈1, 0, 0〉 〈r, 0, 0〉

H1
21H2

21Hu
21

〈0, 1, 0〉〈0, u, 0〉

Figure 3.4: In this example we see the bijective arrangement with labels for a graph that
has non-zero multiplicities m12 = r and m21 = u.

H1
21H2

21Hu
21

H1
31H2

31Hv
31

〈0, 0, 0〉

〈0, 0, 1〉

〈0, 0, v〉

〈0, 1, 0〉

〈0, u, 0〉

〈0, 1, 1〉

〈0, u, 1〉

〈0, 1, v〉

〈0, u, v〉

Figure 3.5: In this example we see the bijective arrangement with labels for a graph that

has non-zero multiplicities m21 = u and m31 = v.
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In the third scenario, assume that G has non-zero multiplicities mji = u and mki = v.

Similar to the previous scenario, there are no conditions required to guarantee a bijective

arrangement, and it follows that the arrangement A is given by

Haα
ij , where aα = α, for α ∈ {1, . . . , r},

H
cβ
jk , where cβ = β, for β ∈ {1, . . . , t}.

See Figure 3.6 for a picture of the arrangement with corresponding labels.

H1
12 H2

12 Hr
12

H1
23

H2
23

Ht
23

〈0, 0, 0〉 〈1, 0, 0〉 〈r, 0, 0〉

〈0, 1, 0〉 〈1, 1, 0〉 〈r, 1, 0〉

〈0, t, 0〉 〈1, t, 0〉 〈r, t, 0〉

Figure 3.6: In this example we see the bijective arrangement with labels for a graph that

has non-zero multiplicities m12 = r and m23 = t.

In the case that two edge types are chosen, there is a forbidden graph that does not

emit any arrangements with a bijective labeling. This graph occurs when mij and mik are

non-zero for some i, j ∈ {1, 2, 3}, and it fails Theorem 3.1.

In the third family we have that three different types of hyperplanes are chosen, and the

ones that emit an arrangement with a bijective labeling are as follow.

Theorem 3.7. Let G = (V,E) be a graph on n = 3 vertices. If there exists exactly three

non-zero edge multiplicities and if the graph satisfies one of the following two cases:
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1 2 3 4

Figure 3.7: In the case that three edge types are chosen, these four graphs are the only
choices up to a relabeling of the vertices. For Theorem 3.7, graphs 1 and 2 satisfy case one
while graph 3 satisfies case 2. The remaining graph, 4, fails to produce a bijective labeling.

1. There does not exist an i ∈ V such that mij and mik are non-zero

2. There does exist an i ∈ V such that mij and mik are non-zero and the edge-multiplicities

satisfy mij +mik − 1 ≤ mjk.

Then there exists an arrangement A with a bijective labeling such that G = GA.

Proof. In the instance that three edge multiplicities are non-zero, there are three different

scenarios depending on which multiplicities are non-zero. However, for each case there are

several graphs that only differ up to a rearrangement of the vertices, so without loss of

generality we will consider the following three cases.

Assume that the graph G has non-zero multiplicities mij = r, mji = u, and mkj = w.

In this case, there are no conditions required to guarantee a bijective arrangement, and it

follows that the arrangement A is given by

Haα
ij , where aα = α, for α = {1, . . . , r},

H
a′β
ji , where a′β = β, for β ∈ {1, . . . , u},

H
c′γ
kj , where c′γ = γ, for γ ∈ {1, . . . , w}.

See Figure 3.8 for a picture of the arrangement with corresponding labels.

In the second scenario, assume that G has non-zero multiplicities mij = r, mjk = t, and

mki = v. Similar to the previous scenario, there are no conditions required to guarantee a

bijective arrangement, and it follows that the arrangement A is given by
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H1
12 H2

12 Hr
12

Hw
32

H2
32

H1
32

H1
21H2

21Hu
21

〈0, 0, 0〉 〈1, 0, 0〉 〈r, 0, 0〉〈0, 1, 0〉〈0, u, 0〉

〈0, u, 1〉 〈0, 1, 1〉 〈0, 0, 1〉 〈1, 0, 1〉 〈r, 1, 0〉

〈0, u, w〉 〈0, 1, w〉 〈0, 0, w〉 〈1, 0, w〉 〈r, 0, w〉

Figure 3.8: In this example we see the bijective arrangement with labels for a graph that
has non-zero multiplicities m12 = r, m21 = u, and m32 = w.

Haα
ij , where aα = α, for α ∈ {1, . . . , r},

H
cβ
jk , where cβ = β, for β ∈ {1, . . . , t},

H
b′γ
ki , where b′γ = γ, for γ ∈ {1, . . . , v}.

See Figure 3.9 for a picture of the arrangement with corresponding labels.

In the third scenario, assume that G has non-zero multiplicities mij = r and mik = s.

For this scenario the graph does have conditions required to have a bijective arrangement,

namely that either mjk or mkj is non-zero and mij +mik − 1 ≤ mjk +mkj. Without loss of

generality, assume that mjk = t is non-zero since the case that mkj is non-zero is the same

case with the vertex labels of j and k switched. The arrangement A is given by

Haα
ij , where aα = α, for α ∈ {1, . . . , r},

H
bβ
ik , where bβ = r + β, for β ∈ {1, . . . , s}.

When the hyperplanes of the form Hij and Hik intersect they create bad intersections

that need to be rectified. This is done by intersecting each bad intersection with a hyperplane

of the form Hjk. Furthermore, the coefficients can be found in terms of the aα’s and bβ’s by

considering the following differences
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H1
12 H2

12 Hr
12

H1
23

H2
23

Ht
23

H1
31H2

31Hv
31

〈0, 0, 0〉 〈1, 0, 0〉 〈r, 0, 0〉

〈0, 1, 0〉 〈1, 1, 0〉 〈r, 1, 0〉

〈0, t, 0〉 〈1, t, 0〉 〈r, t, 0〉〈0, t, 1〉〈0, t, v〉

〈0, 1, 1〉〈0, 1, v〉

〈0, 0, 1〉〈0, 0, v〉

〈1, 0, 1〉

〈r, 0, v〉

〈1, 0, v〉 〈r, 0, 1〉

Figure 3.9: In this example we see the bijective arrangement with labels for a graph that
has non-zero multiplicities m12 = r, m31 = v, and m23 = t.
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d1 = b1 − ar = 1

d2 = b2 − ar = 2

...

ds = bs − ar = s

ds+1 = bs − ar−1 = s+ 1

...

ds+r−1 = bs − a1 = s+ r − 1

Note, by the construction of coefficients, all of the differences are positive since b1 > ar

and correspond to the ordering needed for hyperplanes of the form Hjk. Therefore the

hyperplanes can be placed as follows

H
cγ
jk , where cγ = dγ, for γ ∈ {1, . . . , r + s− 1}.

H
cr+s−1ω

jk , where cs+ω = cr+s−1 + γ, for ω ∈ {1, . . . , t− r − s+ 1}.

See figure 3.10 for a picture of the arrangement with corresponding labels.

In the case that three edges types are chosen, there are two forbidden graphs that do not

emit any arrangements with a bijective labeling. The two graphs are similar up switching

the order of j and k, therefore the graphs are given by the non-zero multiplicities mij, mik,

and mji. This graphs fail to emit a bijective labeling since they fail Theorem 3.1, i.e. there

are no hyperplanes to rectify the bad intersections between the hyperplanes of the type Hij

and Hik.

In the fourth family we have that four different types of hyperplanes are chosen, and the

ones that emit an arrangement with a bijective labeling are as follow.

Theorem 3.8. Let G = (V,E) be a graph on n = 3 vertices. If there exists four non-zero

directed edge multiplicities mij = r, mik = s, mjk = t, and mki = v where the inequality

mij +mik−1 ≤ mjk is satisfied, then there exists an arrangement A with a bijective labeling

such that G = GA..
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H1
12 H2

12 H3
12 Hr

12

H1
13 H2

13 H3
13 Hs

13

H1
23

H2
23

H3
23

Hs
23

Ht−2
23

Ht−1
23

Ht
23

〈0, 0, 0〉
〈1, 0, 0〉 〈2, 0, 0〉 〈r, 0, 0〉 〈r + 1, 0, 0〉 〈r + 2, 0, 0〉

〈r + s, 0, 0〉

〈0, 1, 0〉 〈1, 1, 0〉 〈2, 1, 0〉
〈r + 1, 1, 0〉

〈r + 2, 1, 0〉 〈r + s, 1, 0〉

〈0, 2, 0〉 〈1, 2, 0〉
〈2, 2, 0〉 〈r + 2, 2, 0〉

〈r + s, 2, 0〉

〈0, t− 2, 0〉 〈1, t− 2, 0〉

〈2, t− 2, 0〉 〈s + 2, t− 2, 0〉

〈r + s, t− 2, 0〉

〈0, t− 1, 0〉 〈1, t− 1, 0〉 〈2, t− 1, 0〉

〈s + 1, t− 1, 0〉

〈s+ 2, t− 1, 0〉 〈r + s, t− 1, 0〉

〈0, t, 0〉 〈1, t, 0〉 〈2, t, 0〉

〈s, t, 0〉

〈s+ 1, t, 0〉 〈s+ 2, t, 0〉 〈r + s, t, 0〉

Figure 3.10: In this example we see the bijective arrangement with labels for a graph that
has non-zero multiplicities m12 = r, m13 = s, and m23 = t. Note that in the figure that we
take that t = r + s − 1. Note that the labels of the regions between the kth and (k + 1)th
horizontal lines have the second entry equal to k and the first entry of these labels grows
monotonically from left to right.
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1 2 3 4

Figure 3.11: In the case that four edge types are chosen, these four graphs are the only
choices up to a relabeling of the vertices. For these graphs, graph 1 satisfies Theorem 3.8
while graph 2 satisfies Theorem 3.9. The remaining graphs, 3 and 4, these fail to produce a
bijective labeling.

Proof. In the instance that four edge multiplicities are non-zero, there are two different

scenarios depending on which multiplicities are non-zero, this case corresponds the graph

labeled 1 in Figure 3.11. However, for this case there are several graphs that only differ

up to a rearrangement of the vertices, so without loss of generality we will consider the

following case.

Assume that the graph G has non-zero multiplicities mij = r, mik = s, mjk = t, and

mki = v. In this case, there is one condition required to guarantee a bijective arrange-

ment, namely that mij + mik − 1 ≤ mjk. Consider the arrangement given by the following

hyperplanes of the form Hij, Hik, and Hjk

Haα
ij , where aα = α, for α ∈ {1, . . . , r},

H
bβ
ik , where bβ = β + r, for β ∈ {1, . . . , s},

H
cγ
jk , where cγ = bγ − ar = γ, for γ ∈ {1, . . . , s− 1},

H
cs+ω
jk , where cs+ω− = bs − ar+1−ω = s+ ω − 1, for ω ∈ {1, . . . , r},

H
cs+r−1+δ

jk , where cs+r−1+δ = cs+r−1 + δ = s+ r − 1 + δ, for δ ∈ {1, . . . , t− r − s+ 1}.

Where the coefficients were defined in Theorem 3.7, and now the only hyperplanes that

need to be placed are of the form Hki. These can be placed using the coefficients

H
b′ε
ki , where b′ε = ε, for ε ∈ {1, . . . , v}.
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Ha1
12 Ha2

12 Ha3
12

Hb1
13 Hb2

13 Hb3
13

Hb3
13

Hc1
23

Hc2
23

Hc3
23

Hc4
23

Hc5
23

Hc6
23

Hc7
23

H
b′1
31H

b′2
31

Figure 3.12: In this example we see the bijective arrangement with labels for a graph
that has non-zero multiplicities m12 = 4, m13 = 5, m23 = 7t, and m31 = 2, and the blue
intersection points indicate bad intersections that have been rectified. Moreover, in this case
there are no restrictions on the number of hyperplanes of type H31, so we are able to add as
many hyperplanes of type H31 as we want by assigning coefficients larger than b′2.
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Theorem 3.9. Let G = (V,E) be a graph on n = 3 vertices. If there exists four non-zero

directed edge multiplicities mij = r, mik = s, mjk = t, and mkj = w and the inequality

mij +mik − 1 ≤ mjk +mkj is satisfied, then there exists an arrangement A with a bijective

labeling such that G = GA.

Proof. In the second case that four edge multiplicities are chosen, corresponding to the graph

labeled two in Figure 3.11, assume that G has non-zero multiplicities mij = r, mik = s,

mjk = t, and mkj = w. In this case, like the previous one, the only condition required to

guarantee a bijective arrangement is that mij + mik − 1 ≤ mjk + mkj. However, in this

scenario there is more freedom of choice depending on whether mij > mkj, mij ≤ mkj,

and whether the inequality is strict or not. To address this freedom consider the following

method for placing the hyperplanes of the form Hij and Hik.

First, assume that r+ s−1 = t+w, this will form the base case for the strict inequality.

This is since any extra hyperplanes of type Hjk and Hkj can be placed anywhere above

the last Hjk or below the last Hkj that is used to rectify a bad intersection between the

hyperplanes of type Hij and Hik. Now, let the hyperplanes of the form Hij be placed using

the following coefficients

Haα
ij , where aα = 2α− 1, for α ∈ {1, . . . , r}.

For the hyperplanes of the form Hik, the placement is dependent on the number of

hyperplanes of the form Hjk and Hkj. If mij > mkj, i.e. r > w, then the hyperplanes of the

form Hik can be placed in the following manner

Hb1
ik , where b1 = a|w−s| + 1 = 2(r − w),

H
bβ
ik , where bβ = b1 + 2β − 2 = 2(r − w) + 2β − 2, for β ∈ {2, . . . , s}.

By this construction, there are precisely t hyperplanes of the type Hjk and w hyperplanes

of the type Hkj needed to rectify the bad intersections. Since these bad intersections are

rectified by intersecting either a hyperplane of type Hjk or Hkj, then the coefficients can be

found in terms of the aα’s and bβ’s by considering the following differences.
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d1 = b1 − ar = −2w + 1

d2 = b2 − ar = −2w + 3

...

ds = bs − ar = 2(s− w)− 1

ds+1 = bs − ar−1 = 2(s− w) + 3

...

ds+r−1 = bs − a1 = 2(r − w) + 2s− 3

By construction the first w differences are negative and the next t are positive, therefore

they can be used to place the last two types of hyperplanes as follow

H
c′γ
kj , where cγ = dγ, for γ{1, . . . , w},

Hcδ
jk, where cδ = dw+δ, for δ ∈ {1, . . . , t− w}.

In the case that mij ≤ mkj, i.e. r ≤ w, the coefficients for the hyperplanes will follow

a similar argument as the above case with the exception that the hyperplanes of the form

Hik will be placed first. More precisely, the indices i and j are switched and the coefficients

are assigned in the exact same manner.

For the case when mij + mik − 1 < mjk + mkj, it follows that for some m1 ≤ mjk

and m2 ≤ mkj that mij + mik − 1 = m1 + m2. Therefore, we can use one of the above

scenarios to create the bijective arrangement for G′ with multiplicities mij, mik, mjk = m1

and mkj = m2. The remaining mjk −m1 and mkj −m2 hyperplanes of type Hjk and Hkj,

respectively, can by placed by assigning unique coefficients c and c′ such that c > cm1 and

c′ > c′m2
.

In the case that four edge types are chosen, there are two forbidden graphs that do

not emit any arrangements with a bijective labelings. The first graph has non-zero edge

multiplicities mij, mji, mik and mki which fails Theorem 3.1, this corresponds to the graph

labeled 3 in Figure 3.11.
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Ha1
12 Ha2

12 Ha3
12 Ha4

12

Hb1
13 Hb2

13 Hb3
13 Hb4

13

Hc1
23

Hc2
23

Hc3
23

Hc4
23

H
c′1
32

H
c′2
32

H
c′3
32

H
c′4
32

H
c′5
32

Figure 3.13: In this example we see the bijective arrangement with labels for a graph
that has non-zero multiplicities m12 = 4, m13 = 4, m23 = 4, and m32 = 5, and the blue
intersection points indicate bad intersections that have been rectified.

For the second forbidden graph, corresponding to graph labeled 4 in Figure 3.11, assume

that mij, mik, mji, and mjk are the non-zero edge multiplicities. In this case there are two

families of bad intersections, the first between the hyperplanes of types Hij and Hik, and

the second between the hyperplanes of types Hji and Hjk. For both families to be rectified,

the following two inequalities must be satisfied:

mij +mik − 1 ≤ mjk and mji +mjk − 1 ≤ mik
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where at least one of them is strict. Regardless of which is strict, adding the two inequalities

together will yield

mij +mji − 2 < 0

which cannot happen since mij,mji > 0. Therefore this is indeed a forbidden graph.
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Chapter 4

Necessary but Not Sufficient

For the cases of five and six types of edges the conditions in Theorem 3.4 are necessary, but

not sufficient to guarantee the existence of an arrangement with a bijective labeling. We

will first discuss the families of graphs that do emit a bijective labeling in the case of five

types of hyperplanes.

In this case since we have one edge multiplicity being zero, without loss of generality we

will assume that mkj = 0, then we have two equations according to Theorem 3.4,

mij +mik − 1 ≤ mjk and mji +mjk − 1 ≤ mik +mki.

By our conditions at least one of these equations must be strict, however if one of these is

equality then there is a forced rigidity on how hyperplanes must be placed since there just

enough hyperplanes to rectify all of the bad intersections. Another situation unique to this

case is that there is no inequality creating an upper bound to the number of hyperplanes

of the type Hki that is in our arrangement. The first family of graphs that produce an

arrangement with a bijective labeling is based on the fact that there are enough hyperplanes

of the type Hki to rectify all of the bad intersections between the Hji and Hjk hyperplanes.
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4.1 Five Edge Types with a Bijective Labeling

Theorem 4.1. Let G = (V,E) be a graph on n = 3 vertices. For i, j, k ∈ V with the mkj

being the only edge multiplicity that is zero, and the following inequalities where at least one

is strict

1. mij +mik − 1 ≤ mjk,

2. mjk +mji − 1 ≤ mki,

then there exists an arrangement A with bijective labeling such that G = GA.

Proof. In the instance of five edge multiplicities are non-zero, there is one situation up to a

rearrangement of the vertices. Assume that the graph G has non-zero multiplicities mij = r,

mik = s, mjk = t, mji = u, and mki = v. The assumption that mji +mjk − 1 ≤ mki implies

that there are enough hyperplanes of the type Hki to rectify all of the bad intersections

between the hyperplanes of type Hjk and Hji. Let the hyperplanes of the type Hij and Hik

be placed using the following coefficients

Haα
ij , where aα = α, for α ∈ {1, . . . , r},

H
bβ
ik , where bβ = ar + β = r + β, for β ∈ {1, . . . , s}.

Since there are no hyperplanes of the type Hkj, then the bad intersections are rectified

solely with hyperplanes of the form Hjk. This is done by using the coefficients defined by

H
cγ
jk , where cγ = γ, for γ ∈ {1, . . . , r + s− 1},

H
cs+r−1+ω

jk , where cs+r−1+ω = cs+r−1 + ω, for ω ∈ {1, . . . , t− r − s+ 1}.

Note that for the first r + s − 1 Hjk hyperplanes to rectify all of the bad intersections

between the hyperplanes of type Hij and Hik one requires the coefficients to satisfy

γ ∈ {b1 − ar, . . . , bs−1 − ar, bs − ar, . . . , bs − a1} for γ ∈ {1, . . . , r + s− 1}.
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By substituting the corresponding integer for each coefficient one yields

{b1 − ar, . . . , bs−1 − ar, bs − ar, . . . , bs − a1} ⇔ {1, . . . , r + s− 1}.

Therefore all of the bad intersections, between the hyperplanes Hij and Hik, are rectified by

the first r + s − 1 Hjk hyperplanes. The remaining to hyperplanes, those of type Hji and

Hki, can be placed in the following manner.

H
b′ζ
ki , where b′ζ = ζ, for ζ ∈ {1, . . . , v},

H
a′η
ji , where a′η = ct + b′η = t+ η, for η ∈ {1, . . . , u}.

Theorem 4.2. Let G = (V,E) be a graph on n = 3 vertices. If for i, j, k ∈ V with mij = 1,

mik 6= 0, mjk 6= 0, mji 6= 0, mki 6= 0, mkj = 0, and the following inequalities where at least

one is strict

1. mik ≤ mjk,

2. mji +mjk − 1 ≤ mik +mki,

then there exists an arrangement A with a bijective labeling such that G = GA

Proof. In the instance that five edge multiplicities are non-zero, and fitting the inequalities

above. For both cases there are several graphs that only differ up to a rearrangement of the

vertices, so without loss of generality we will consider the following two cases. For either

case, assume that the graph G has non-zero multiplicities mij = 1, mik = s, mjk = t,

mji = u, and mki = v.

In the first case, assume that the inequality mjk + mji − 1 ≤ mki is satisfied, then by

Theorem 4.1 there exists an arrangement A such that G = GA.

In the second case, assume that mjk +mji− 1 > mki. In other words, hyperplanes of the

types Hki and Hik are needed to rectify the bad intersections between the hyperplanes Hjk
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H2
12

H1
12

H3
13

H4
13

H1
23

H2
23

H3
23

H4
23

H5
21H6

21

H1
31H2

31H3
31H4

31H5
31

Figure 4.1: In this example we see a graph on three vertices with edge multiplicities m12 = 2,
m13 = 2, m23 = 4, m21 = 2, and m31 = 5. This graph satisfies the conditions of Theorem
4.1 since there are just enough hyperplanes of type H31 rectify all of the bad intersections
between the hyperplanes of type H21 and H23. All of the bad intersections that have been
rectified are represented by blue.

and Hji. Let the hyperplanes of the type Hij, Hik, and Hjk be placed with the following

coefficients.

Ha1
ij , where a1 = 1,

H
bβ
ik , where bβ = 3β − 1, for β ∈ {1, . . . , s},

H
cγ
jk , where cγ = 3γ − 2 for γ ∈ {1, . . . , t}.

For the hyperplanes of type Hjk to rectify a bad intersection between those of type Hij
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and Hik the coefficient cγ, for some γ ∈ {1, . . . , t}, must be contained in the set

{b1 − a1, . . . , bs−1 − a1, bs − a1} for γ ∈ {1, . . . , r + s− 1}.

By substituting the corresponding integer for each coefficient one yields

{b1 − a1, . . . , bs − ar, . . . , bs − a1} ⇔ {1, 4, 7, . . . , 3(r + s− 1)− 2}.

Therefore the first r+ s− 1 hyperplanes of type Hjk are rectifying the desired bad intersec-

tions, and further the remaining hyperplanes are placed at the same intervals.

Now, let the hyperplanes of type Hki and Hji be placed in the following manner

H
b′δ
ki , where b′δ = 3δ − 2, δ ∈ {1, . . . , v},

H
a′ε
ji , where a′ε = 3 max{1, t− s} − 1 + 3ε− 3 for ε ∈ {1, . . . , u}.

Similarly to the hyperplanes of type Hjk, the coefficients for the Hik and Hki hyperplanes

must be of the form a′−c or c−a′ for some a′ and c defined above. Let X = 3 max{1, t−s}−1

and consider the following

x2 − x1 = q, ∈ {X,X + 3, . . . , X + 3u− 3},

x2 − x3 = p, ∈ {1, 4, 7, . . . , 3t− 2}.

It then follows that the coefficients for Hik and Hki satisfies

q > p x3 − x1 = q − p, ∈ {1, 4, 7, . . . , X + 3u− 4},

p < q x1 − x3 = p− q, ∈ {2, 5, 8, . . . , 2t− 2−X}.

Therefore the coefficient are indeed in the same sequence of integers that were defined earlier.

Now, all that remains is to show that the following two inequalities are satisfied

(1) X + 3(u− 1)− 1 ≤ 3v − 2 and

(2) 3t− 2−X ≤ 3s− 1.
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If the inequalities are satisfied, then the furthest intersections from the origin of the hyper-

planes of type Hjk and Hji are rectified by a Hki, inequality (1), and a Hik, inequality (2).

Indeed, inequality (1) is satisfied as follows

X + 3(u− 1)− 1 ≤ 3v − 2

3 max{1, t− s} − 1 + 3(u− 1)− 1 ≤ 3v − 2

If max{1, t − s} = 1, then t = s and the inequality becomes u ≤ v. Which is true, since

t + u− 1 < v + s simplifies to u− 1 < v. The second case is if max{1, t− s} = t− s, then

the inequality simplifies to t− s+ u− 1 ≤ v, i.e. the inequality mjk +mji− 1 ≤ mki +mik.

For the second inequality

3t− 2−X ≤ 3s− 1

3t− 2− 3 max{1, t− s}+ 1 ≤ 3s− 1

t−max{1, t− s} ≤ s

Similarly to the previous inequality, there are two cases depending on max{1, t − s}. If

max{1, t − s} = 1, then t = s and t − 1 ≤ s. In the other case, if max{1, t − s} = t − s,

then the inequality becomes t− (t− s) ≤ s which is trivial. Therefore, both inequalities (1)

and (2) are satisfied and all bad intersections between hyperplanes of type Hji and Hjk are

rectified.

The following three cases of five edge types with a bijective labeling depends on the

behavior of how the hyperplanes of types Hji and Hik intersect. See Figure 4.3 for examples

of the three different types of lattices these hyperplane types create when they intersect.

However, all three cases are covered in Theorem 4.3.

In the case of example 1 in Figure 4.3, since mji = 1 then one is able to use every

intersection of the hyperplaneHji with the hyperplanes of typeHik provided other conditions

are met. Note, if mik = s, then there are at most s intersection points, denoted P1, . . . , Ps,

that can be utilized. The first condition is that mij + mik − 1 < mjk, this gives us the

56



H1
12

H2
13

H5
13

H1
23

H4
23

H7
23

H10
23

H5
21

H1
31H4

31

Figure 4.2: In this example we see a graph on three vertices with edge multiplicities m12 = 1,
m13 = 2, m23 = 4, m21 = 1, and m31 = 2. This graph satisfies the conditions of Theorem
4.2 since m12 = 1. All of the bad intersections that have been rectified are represented by
blue. Note in this example that the hyperplanes of type H23 are split into to groups to utilize
both the hyperplanes of type H13 and H31 to rectify bad intersections with the hyperplane
H21.

freedom to place the hyperplanes of type Hjk that are not used to rectify bad intersections

between those of type Hij and Hik in a manner that allows them to intersect a point Pα for

some α ∈ {1, . . . , s}.

The first condition in Theorem 4.3 that must be met is

(1) mji − 2 ≤ mki −mik −mij ⇐⇒ mji + (mik +mij − 1)− 1 ≤ mki.
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H21 H13 H21 H13 H21 H13

1 2 3

Figure 4.3: This figure shows examples of the three types of intersection lattices created
between the hyperplanes of types Hji and Hjk that are utilized in Theorem . In each example
the blue intersection points represent points that can be utilized by intersecting a hyperplane
of type Hjk through the lattice.

Since mij + mik − 1 is the number of hyperplanes of type Hjk that are needed to rectify

all of the bad intersections between those of type Hij and Hik, then the condition can

be interpreted in the following way. Condition (1) says that there are at least enough

hyperplanes of the type Hki to rectify all of the bad intersections, mji + (mik +mij − 1)− 1

in total, between the hyperplane Hji and the mik + mij − 1 hyperplanes of type Hjk that

are used rectify the intersections between the Hij and Hik hyperplanes.

The second condition is mjk + mji ≤ mij + 2mik which is derived as follows. First, we

count the number of hyperplanes of the type Hjk that can intersect the lattice and have

all of the intersections with the hyperplanes Hji occur within the lattice, this is given by

mik −mji + 1. For the graph to have an arrangement with a bijective labeling we require

that

mik −mji − 1 ≥ mjk − (mij +mik − 1),

i.e. that the number of hyperplanes of the type Hjk that are not being used to rectify bad

intersections with those of type Hij and Hik is less than or equal to the number that can

pass through the lattice without creating non-rectified bad intersections. Note, combining

the above like terms yields the desired inequality.
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Theorem 4.3. Let G = (V,E) be a graph on n = 3 vertices. If for i, j, k ∈ V with mij > 1,

mik 6= 0, mjk 6= 0, mji 6= 0, mki 6= 0, mkj = 0, and the following inequalities where at least

one is strict

1. mij +mik − 1 < mjk,

2. mji +mjk − 1 ≤ mik +mki,

3. mji +mjk − 1 > mki.

If G also satisfies mji− 2 ≤ mki−mij −mik and mjk +mji ≤ mij + 2mik, then there exists

an arrangement A with a bijective labeling such that G = GA

Proof. In the instance that five edge multiplicities are non-zero, and satisfy the inequalities

above there is one case. However there are several graphs that only differ up to a rear-

rangement of the vertices, so without loss of generality we will consider the following case.

Assume that the graph G has non-zero multiplicities mij = r, mik = s, mjk = t, mji = u,

and mki = v. Let the hyperplanes of type Hij and Hik be placed as follows

Haα
ij where aα = α, for α ∈ {1, . . . , r},

H
bβ
ik where bβ = r + β, for β ∈ {1, . . . , s}.

For the hyperplanes of type Hjk, these will be split into two groups where the first

r+s−1 are used to rectify the bad intersections between those of type Hij and Hik and the

second group which will utilize the hyperplanes of type Hik to rectify the bad intersections

they create with those of type Hji. Consider the following placement of the first r + s − 1

hyperplanes of type Hjk

H
cγ
jk where cγ = γ, for γ ∈ {1, . . . , r + s− 1}.

We will now place the hyperplanes of type Hji and Hki in the following manner, then

we will place the remainder of the Hjk hyperplanes. Consider the following placement
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H
a′δ
ji where a′δ = r + s− 1 + δ, for δ ∈ {1, . . . , u}

H
b′ε
ki where b′ε = ε, for ε ∈ {1, . . . , v}.

The remaining hyperplanes of Hjk must be placed in a manner that the hyperplanes of

type Hik rectify the bad intersections between them and the hyperplanes of type Hji. Let

the remaining hyperplanes be placed as follows

H
cr+s−1+ζ

jk where cr+s−1+ζ = 2r + s+ u− 1 + ζ, for ζ ∈ {1, . . . , t− r − s+ 1}.

Since these hyperplanes of type Hjk are placed one unit apart, it suffice to check that

b1 ≤ cr+s − a′u and bs ≥ ct − a′1. Indeed,

b1 = cr+s − a′u = 2r + s+ u− (r + s+ u− 1) = r + 1.

By a similar argument we have that

ct − a′1 = r + v + t− (r + s) = v + t− s.

To see that v + t− s ≤ r + s, it follows from the condition that

u+t = m21+m23 ≤ m12+2m13 = r+2s ⇔ u+t−s = m21+m23−m13 ≤ m12+m13 = r+s.

Therefore all of the bad intersections are rectified and A is bijective.

4.2 Five Edge Types with a Non-Bijective Labeling

In the following theorems we will assume that the only multiplicity that is zero is mkj which

means that the only equations this graph must obey to have a bijective labeling are

mij +mik − 1 ≤ mjk,
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Figure 4.4: In this example we see a graph on three vertices with edge multiplicities m12 = 2,
m13 = 2, m23 = 4, m21 = 1, and m31 = 3. This graph satisfies the conditions of Theorem
4.3 and the lattice is similar to example 1 in Figure 4.3. All of the bad intersections that
have been rectified are represented by blue. Note in this example that the hyperplanes of type
H23 are split into to groups to utilize both the hyperplanes of type H13 and H31 to rectify bad
intersections with the hyperplane H21.
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Figure 4.5: In this example we see a graph on three vertices with edge multiplicities m12 = 2,
m13 = 2, m23 = 4, m21 = 2, and m31 = 4. This graph satisfies the conditions of Theorem
4.3 since m13 = m21. All of the bad intersections that have been rectified are represented by
blue. Note in this example that the hyperplanes of type H23 are split into to groups to utilize
both the hyperplanes of type H13 and H31 to rectify bad intersections with the hyperplanes
H21.
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Figure 4.6: In this example we see a graph on three vertices with edge multiplicities m12 = 2,
m13 = 3, m23 = 6, m21 = 2, and m31 = 5. This graph satisfies the conditions of Theorem 4.3
since 1 < m21 < m13. All of the bad intersections that have been rectified are represented by
blue. Note in this example that the hyperplanes of type H23 are split into to groups to utilize
both the hyperplanes of type H13 and H31 to rectify bad intersections with the hyperplanes
H21.
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mji +mjk − 1 ≤ mik +mki.

Moreover, if one of these inequalities is actually an equality, then there is forced rigidity

on the hyperplane arrangement. Specifically, consecutive hyperplanes are spaced at equal

intervals for all hyperplanes of type Hij, Hik, Hji, and Hki. The only exception to this is

the hyperplanes of type Hjk since they must utilize both hyperplanes Hik and Hki to rectify

bad intersections with those of type Hji.

Theorem 4.4. Let G = (V,E) be a graph on n = 3 vertices. If for i, j, k ∈ V with mkj

being the only edge multiplicity that is zero, and the following inequalities

1. mij +mik − 1 = mjk,

2. mki < mji +mjk − 1 < mik +mki.

Further, if mij > 1, then there does not exist an arrangement AG with a bijective labeling.

Proof. In this instance of five edge multiplicities are non-zero, there is one situation up to a

rearrangement of the vertices. Assume that the graph G has non-zero multiplicities mij = r,

mik = s, mjk = t, mji = u, and mki = v. The assumption that mij +mik − 1 = mjk implies

that there are just enough hyperplanes of the type Hjk to rectify all of the bad intersections

between the hyperplanes of type Hij and Hik. Consider the following placement of the

hyperplanes of type Hij, Hik, and Hjk.

Ha
ij, H

a+1
ij , . . . , Ha+r−1

ij

Hb
ik, H

b+1
ik , . . . , Hb+s−1

ik

Hb−a−r+1
jk , Hb−a−r+2

jk , . . . , Hb−a
jk , . . . , Hb+s−1−a

jk

Note that b > a + r − 1 > 1 since all of the bad intersections between the Hij and Hik

hyperplanes must be rectified by a hyperplane of type Hjk. If this inequality did not hold,

then one of the bad intersection points would be rectified by a hyperplane of type Hkj.

Since mji > 0, then there exists a Ha′
ji such that its intersection with Hb−a+s−1

jk is rectified

by a hyperplane of type Hik. Let such a hyperplane be Hb+α
ik for some α ∈ {0, . . . , s − 1}.
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One can solve for a′ by

b− a+ s− 1− a′ = b+ α ⇔ s− a− a′ − 1− α = 0,

i.e. that a′ = s − a − 1 − α > 0. Once the hyperplane Ha′
ji is placed, the bad intersec-

tions created when it intersects Hb−a+s−1
jk , Hb−a+s−2

jk , . . . , Hb−a+s−α
jk are all rectified by Hik

hyperplanes, namely Hb+α
ik , Hb+α−1

ik , . . . , Hb
ik.

However, the intersection with Hb−a+s−α−1
jk must be rectified by Hb−1

ik . Moreover, since

b > a+ r − 1 > 1 then b− 1 > 0, but Hb−1
ik /∈ A. Therefore there does not exist a bijective

arrangement.

Example 4.5. In this example we consider the graph G that has multiplicities m12 =

2,m13 = 2,m23 = 3,m21 = 1, and m31 = 2, see Figure 4.7 for two arrangements that

correspond to the graph G.

On the left, the hyperplanes are placed in a manner similar to how the hyperplanes in

Section 4.1 however one is not able to rectify the bad intersection point between Hc3
23 and

Ha′
21. The highlighted regions correspond to the duplicate label 〈0, 3, 0〉.

For the arrangement on the right, the hyperplanes are placed in a manner similar to

Theorem 4.4. Recall that in this theorem we have that m12 + m13 = m23 which forces the

hyperplanes of type H12, H13, and H23 in the following grid.

Following the proof of Theorem 4.4, one sees that Hb1
13 rectifies the intersection between

Hc3
23 and Ha′

21, however to rectify the next intersection, shown in red, one requires one more

hyperplane of the type H13 to rectify the intersection. However, that is not possible and the

only option to rectify the bad intersection is with the hyperplane H
b′1
31 which can be done by

letting b′1 < 1 which cannot happen due to the graph or let b′1 = c1 = a1 = 0 which also

cannot happen since our hyperplanes are all affine.
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Figure 4.7: In this example we see a non-bijective arrangement AG where the graph G has

the multiplicities m12 = 2, m13 = 2, m23 = 3, m21 = 1, and m31 = 2. This graph satisfies

Theorem 4.4.

Theorem 4.6. Let G = (V,E) be a graph on n = 3 vertices. If for i, j, k ∈ V with mkj

being the only edge multiplicity that is zero, and the following inequalities

1. mij +mik − 1 < mjk,

2. mji +mjk − 1 = mik +mki.

Further, if mij,mji > 1, then there does not exist an arrangement AG with a bijective

labeling.

Proof. In the instance of five edge multiplicities are non-zero, there is one situation up to a

rearrangement of the vertices. Assume that the graph G has non-zero multiplicities mij = r,

mik = s, mjk = t, mji = u, and mki = v. The assumption that mji + mjk − 1 = mik + mki

implies that there are just enough hyperplanes of the types Hik and Hki to rectify all of
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the bad intersections between the hyperplanes of type Hji and Hjk. Consider the following

placement of the hyperplanes of type Hji and Hjk:

Hc
jk, H

c+1
jk , . . . , Hc+t−1

jk

Ha′
ji , H

a′+1
ji , . . . , Ha′+u−1

ji .

Where c and a′ are positive real numbers. Now, each of the intersections between the

hyperplanes of type Hjk and Hji need to be rectified by either a hyperplane of type Hik and

Hki. Moreover, since the distance between consecutive hyperplanes of type Hjk (or Hji) is

one, then so is the distance between consecutive hyperplanes of type Hik or Hki, and the

distance between the hyperplanes Hik and Hki that are closest to the origin. Consider the

following placement of the hyperplanes of type Hik and Hki:

Hc−a′+t−1
ik , Hc−a′+t−2

ik , . . . , Hc−a′+t−s
ik ,

Ha′−c+s−t+1
ki , Ha′−c+s−t+2

ki , . . . , Ha′−c+u−1
ki .

For these hyperplanes, note that the last hyperplane Hik placed is the closest to the origin,

and that has each Hki is placed they are placed in a manner that is moving away from the

origin. Moreover, note that the distance between the closest Hik and Hki to the origin are

distance one from each other. This implies that

1 > c− a′ + t− s > 0.

Consider now the first hyperplane of type Ha
ij. When this hyperplane is placed it cre-

ates bad intersections between the hyperplanes of type Hik which must be rectified by a

hyperplane of type Hjk. More precisely, consider the intersection between

Ha
ij and Hc−a′+t−s

ik ,

which must be rectified by the hyperplane Hc+α
jk for some α ∈ {0, . . . , t− 1}. To find α, one
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must solve

c− a′ + t− s− a = c+ α ⇔ t− s− a′ − a− α = 0.

This implies that a = t − s − a′ − α > 0 since a > 0. Now, t − s − a′ − α > 0 and

1 − c > t − s − a′ > −c imply that the only α that guarantees a > 0 is α = 0. However,

mij > 1 so we need to place another Hij hyperplane, but since mkj = 0 we cannot place the

any Ha2
ij with coefficient a2 > a since that would require a hyperplane of type Hkj to rectify

the bad intersection it creates with Hc−a′+t−s
ik . Lastly, since α = 0, it implies that a2 ≮ a.

Therefore no bijective arrangement exists.

Example 4.7. In this example we see a non-bijective arrangement AG where the graph G

has the multiplicities m12 = 2, m13 = 1, m23 = 4, m21 = 3, and m31 = 5; see Figure 4.8 for

two arrangements that correspond to the graph G.

On the left, the hyperplanes are placed in a manner similar to how the hyperplanes in

the previous section would be placed, however one is not able to rectify the red or green in-

tersection points. The highlighted regions correspond to the repeated labels 〈0, 4, 0〉, 〈0, 5, 0〉,

〈0, 6, 0〉, and 〈1, 4, 0〉 for regions red, orange, yellow, and brown respectively. Note, there is

some freedom in the placement of Hc3
23, Hc4

23, and Hb
13, however one is not able to rectify all

of the bad intersections.

Following the proof of Theorem 4.6, one sees that the intersection between Hc1
23 and Hb1

13 is

utilized by the hyperplane Ha2
12 . Moreover, one sees that the hyperplane Ha1

12 cannot be placed

to the right of Ha2
12 , i.e. letting the coefficients satisfy a1 > a2. Therefore the remaining

hyperplane must be placed to the right and utilize the hyperplane Hc2
23 to rectify the bad

intersection it creates when intersecting the hyperplane Hb1
12. However, since the distance

between the the hyperplanes of type H23 is one it forces a1 = a2−1 < 0. This cannot happen

since the coefficient must be positive for the hyperplane to be of the type H12.
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Figure 4.8: In this example we see a non-bijective arrangement AG where the graph G has
the multiplicities m12 = 2, m13 = 1, m23 = 4, m21 = 3, and m31 = 5. This graph satisfies
the conditions of Theorem 4.6.

Example 4.8. In this example we see a non-bijective arrangement AG where the graph G

has the multiplicities m12 = 2, m13 = 2, m23 = 4, m21 = 2, and m31 = 3; see Figure 4.9 for

two arrangements that correspond to the graph G.

On the left, the hyperplanes are placed in a manner similar to how the hyperplanes in

the previous section would be placed, however one is not able to rectify the red intersection

points. The regions highlighted in red correspond to the repeated label 〈0, 3, 0〉.

The arrangement on the right follows the proof of Theorem 4.6 where the intersection

point between Hc2
23 and Hb1

13 is utilized by Ha2
12 . Further, one sees that the hyperplane Ha1

12

cannot be placed with coefficient a1 > a2 since the intersection point between Ha1
12 and Hb1

13

would have to rectified by a hyperplane of type H31 which A does not have. Therefore Ha1
12

must be placed with a1 < a2. However, similar to the previous example where we would have

that a1 = a2 − 1 < 0.
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Figure 4.9: In this example we see a non-bijective arrangement AG where the graph G has
the multiplicities m12 = 2, m13 = 2, m23 = 4, m21 = 2, and m31 = 3. This graph satisfies
Theorem 4.6

Example 4.9. In this example we see a non-bijective arrangement AG where the graph G

has the multiplicities m12 = 2, m13 = 3, m23 = 7, m21 = 2, and m31 = 5; see Figure 4.10

for two arrangements that correspond to the graph G.

On the left, the hyperplanes are placed in a manner similar to how the hyperplanes in

the previous section would be placed, however one is not able to rectify the red intersection

points. The regions highlighted in red correspond to the repeated label 〈0, 6, 0〉.

The arrangement on the right follows the proof of Theorem 4.6 where the intersection

point between Hc3
23 and Hb3

13 is utilized by Ha2
12 . Further, one sees that the hyperplane Ha1

12

cannot be placed with coefficient a1 > a2 since the intersection point between Ha1
12 and Hb1

13

would have to rectified by a hyperplane of type H31 which A does not have. Therefore Ha1
12

must be placed with a1 < a2. However, similar to the previous example where we would have

that a1 = a2 − 1 < 0.
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Figure 4.10: In this example we see a non-bijective arrangement AG where the graph G has
the multiplicities m12 = 2, m13 = 3, m23 = 7, m21 = 2, and m31 = 5. This graph satisfies
Theorem 4.6.

4.3 Five Edge Type Conjectures

For the following conjecture, even though we have that mji + mjk − 1 = mik + mki which

normally would require rigidity in the placement of the hyperplanes of type Hji and Hjk, it

is not the case for this family of graphs. Since mji = 1 for this family, then one is able to

place the hyperplanes of type Hjk with any positive coefficient c.

Conjecture 4.10. Let G = (V,E) be a graph on n = 3 vertices. If for i, j, k ∈ V with mkj

being the only edge multiplicity that is zero, and the following inequalities

1. mij +mik − 1 < mjk,

2. mji +mjk − 1 = mik +mki,

3. mji − 2 > mki −mij −mik.
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Figure 4.11: In this example we see a non-bijective arrangement AG where the graph G
has the multiplicities m12 = 2, m13 = 2, m23 = 4, m21 = 1, and m31 = 2. Similar to
previous examples, the red intersection point is not rectified and the red regions correspond
to the duplicate label 〈0, 3, 0〉. On the right is the same arrangement, but all points have
been rectified. However, to rectify the remaining bad intersection, we collapsed the region
containing the origin and had to let a1 = b′1 = c1 = 0. This graph satisfies Conjecture 4.10.

Further, if mij > 1 and mji = 1, then there does not exist an arrangement AG with a

bijective labeling.

See Figure 4.11 for the smallest example of a graph that satisfies the conditions of the

previous conjecture.

For the following five conjectures the necessary conditions are strict inequalities

mij +mik − 1 < mjk and mji +mjk − 1 < mik +mki.

However, unlike in the previous section the arguments do not suffice since there is nothing

that forces the spacing for these arrangements to be equally spaced.
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Conjecture 4.11. Let G = (V,E) be a graph on n = 3 vertices. If for i, j, k ∈ V with mkj

being the only edge multiplicity that is zero, and the following inequalities

1. mij +mik − 1 < mjk,

2. mji +mjk − 1 < mik +mki.

Further, if mik < mji, mij > 1, and mji + mjk − 1 > mki is also satisfied, then there does

not exist an arrangement AG with a bijective labeling.

Conjecture 4.12. Let G = (V,E) be a graph on n = 3 vertices. If for i, j, k ∈ V with mkj

being the only edge multiplicity that is zero, and the following inequalities

1. mij +mik − 1 < mjk,

2. mji +mjk − 1 < mik +mki.

Further, if mji ≤ mik, mij > 1, and mji + mjk − 1 > mki is also satisfied, then there does

not exist an arrangement AG with a bijective labeling.

Conjecture 4.13. Let G = (V,E) be a graph on n = 3 vertices. If for i, j, k ∈ V with mkj

being the only edge multiplicity that is zero, and the following inequalities

1. mij +mik − 1 < mjk,

2. mji +mjk − 1 < mik +mki.

Further, if mji < mik, mij > 1, mji − 2 > mki −mij −mik and mji +mjk − 1 > mki is also

satisfied, then there does not exist an arrangement AG with a bijective labeling.

Conjecture 4.14. Let G = (V,E) be a graph on n = 3 vertices. If for i, j, k ∈ V with mkj

being the only edge multiplicity that is zero, and the following inequalities

1. mij +mik − 1 < mjk,

2. mji +mjk − 1 < mik +mki.
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Further, if mji = mik, mij > 1, and mji + mjk − 1 > mki + 1 is also satisfied, then there

does not exist an arrangement AG with a bijective labeling.

Conjecture 4.15. Let G = (V,E) be a graph on n = 3 vertices. If for i, j, k ∈ V with mkj

being the only edge multiplicity that is zero, and the following inequalities

1. mij +mik − 1 < mjk,

2. mji +mjk − 1 < mik +mki.

Further, if 1 < mji < mik, mij > 1, and mji +mjk > mij + 2mik is also satisfied, then there

does not exist an arrangement AG with a bijective labeling.

The following theorem conjectures that in the case of five edge types that the theorems

in Sections 4.1, 4.2, and 4.3 categorize all of the graphs where five edge multiplicities are

nonzero. This conjecture is based on observations done in Sage, where for fixed number of

edges, that each graph falls in one of the above families with no overlap. See Appendix A

for the data through nineteen total edges.

Conjecture 4.16. Let G = (V,E) be a graph on n = 3 vertices. If for i, j, k ∈ V with mkj

being the only edge multiplicity that is zero, and G has a bijective labeling, then it satisfies

either Theorem 4.1, 4.2, or 4.3.

4.4 Six Edge Types with a Bijective Labeling

In this section we consider graphs where all six edge types are non-zero, and in this case

there are three equations according to Theorem 3.4

1. mij +mik − 1 ≤ mjk +mkj,

2. mji +mjk − 1 ≤ mik +mki,

3. mki +mkj − 1 ≤ mij +mji.

74



By our condition at least two of the inequalities must be strict. Similar to the case where

five edge types were nonzero, the above conditions is necessary but not sufficient for a graph

to have an arrangement with a bijective labeling. The following theorem is a unique family

of graphs that produce an arrangement with a bijective labeling that has the property that

all of the hyperplane are placed at the equal interval three.

Theorem 4.17. Let G = (V,E) be a graph on n = 3 vertices. For i, j, k ∈ V with all

non-zero edge multiplicities which obey the following inequalities

1. 0 ≤ mij −mkj ≤ 1,

2. 0 ≤ mjk −mik ≤ 1,

3. 0 ≤ mki −mji ≤ 1.

Then G there exists an arrangement A with bijective labeling such that G = G = A.

Proof. In this instance of six edge multiplicities are non-zero, there is one situation up

to a rearrangement of the vertices. Assume that the graph G has non-zero multiplicities

mij = r, mik = s, mjk = t, mji = u, mki = v, and mkj = w. Consider the placement of the

hyperplanes using the following coefficients

Haα
ij , where aα = 3α− 2 for α ∈ {1, . . . , r},

H
bβ
ik , where bβ = 3β − 1 for β ∈ {1, . . . , s},

H
cγ
jk , where cγ = 3γ − 2 for γ ∈ {1, . . . , t},

H
a′δ
ji , where a′δ = 3δ − 1 for δ ∈ {1, . . . , u},

H
b′ε
ki , where b′ε = 3ε− 2 for ε ∈ {1, . . . , v},

H
c′ζ
kj , where c′ζ = 3ζ − 1 for ζ ∈ {1, . . . , w}.

Since the hyperplanes are all spaced at distance three, it suffices to check that the furthest

bad intersections from origin are rectified for each family of bad intersections. Without loss

of generality, consider the family of bad intersections that are created by hyperplanes of

type Hij and Hik since the all families of bad intersections are checked in a similar manner.
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To rectify the bad intersections for this family one must have the hyperplanes of type

Hjk and Hkj have coefficients of the form b − a or a − b, respectively, for some a and b as

defined earlier. The first intersection we want to consider is between the hyperplane of type

Ha1
ij and Hbs

ik . It then follows that 1 < 3s − 1 since s ≥ 1 that this intersection is rectified

by a hyperplane of type Hjk, specifically it is rectified by the hyperplane with coefficient

Hc
jk where c = bs − a1 = 3s− 2.

Further, since 0 ≤ t− s ≤ 1, then 3s− 2 ≤ 3t− 2 and it follows that there is a hyperplane

with the coefficient to rectify the bad intersection.

By a similar argument we want to check that the intersection between the hyperplane

of type Har
ij and Hb1

ik is also rectified. For this intersection we can have two cases, s = 1

or s > 1. In the case that s = 1, then as = a1 = 1 and b1 = 2. This implies that the

intersection must be rectified by the following hyperplane

Hc1
jk where c1 = b1 − a1 = 1.

Since t 6= 0, then this hyperplane does exist and rectifies the bad intersection. If s > 1, then

the intersection must be rectified by the following hyperplane

Hc′

kj where c′ = as − b1 = 3s− 4.

However, since 0 ≤ s− w ≤ 1, i.e. s = w or s− 1 = w, then

3s− 4 = 3(s− 1)− 1 ≤ 3w − 1.

Therefore there exists a hyperplane of type Hkj that rectifies this bad intersection.

Remark 4.18. In the case of Theorem 4.17 a choice was made on which group of hyper-
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planes would be placed closest to the origin, i.e. have a hyperplane whose coefficient is

one. The two choices are Hij, Hjk, Hki, or Hkj, Hik, Hji. For Theorem 4.17, Hij, Hjk, and

Hki where chosen, however one is able to place the second group first by just switching the

coefficients between the pairs, i.e. switch the coefficients for Hij and Hkj, Hjk and Hik, and

Hki and Hji.

By making the switch to Hkj, Hik, Hji, one is able to create a bijective arrangement for

another graph family that has multiplicities mij+1 = mkj, mjk+1 = mik, and mki+1 = mji.

This is done in a similar manner to the previous theorem.

The following graph is the smallest example of a graph that does not satisfy Theorem

4.17 or Remark 4.18, but still produces an arrangement with a bijective labeling.

Example 4.19. Consider the graph G = (V,E) with edge multiplicities given by m12 = 3,

m13 = 1, m23 = 2, m21 = 1, m31 = 2, and m32 = 1. Despite not satisfying Theorem 4.17,

the graph G does emit an arrangement with a bijective label. See Figure 4.13 for the bijective

arrangement AG.

4.5 Six Edge Types with a Non-Bijective Labeling

The following graph is the smallest example of a graph that does not satisfy Theorem 4.17

or Remark 4.18, and does not produce an arrangement with a bijective labeling.

Example 4.20. Consider the graph G = (V,E) with edge multiplicities given by m12 = 3,

m13 = 2, m23 = 3, m21 = 1, m31 = 2, and m32 = 1. Even though this graph satisfies the

necessary conditions of Theorem 3.4, it fails to emit an injective Pak-Stanley labeling.

To show this, assume for the sake of contradiction that A is a bijective arrangement

corresponding to G. Assume without loss of generality that a1 < a2 < a3 and b1 < b2. Since

mij +mik− 1 = mjk +mkj we know that the hyperplanes of type Hij and Hik must be placed

at equal intervals, i.e. a2 = a1 +α and a3 = a2 +α for some α > 0. Further, since mkj = 1,
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Figure 4.12: In this example we see a bijective arrangement AG where the graph has the
multiplicities m12 = m32 = 4, m13 = m23 = 2, and m21 = m31 = 3. Further, in this example
the blue, green, and red intersection points represent rectified points for hyperplanes H12 and
H13, H21 and H23, and H31 and H32 respectively.
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Ha1
12 Ha2

12

Ha3
12

H
a′1
21

Hb1
13H

b′1
31H

b′2
31

Hc1
23

Hc2
23

H
c′1
321 3

2

Figure 4.13: In this example we see an a graph on three vertices with no non-zero edge
multiplicities. The graph G, seen on the left, does not satisfy the conditions of Theorems
4.17, but still admits an arrangement with bijective labels. In the arrangement on the right,
all potential bad intersections, shown in blue, have been rectified.

then the coefficients must also obey the following condition

a1 < a2 < b1 < a3 < b2.

To rectify the bad intersections between the hyperplanes of types Hij and Hik, all of the

hyperplanes of type Hjk and Hkj must be used. Further, they must be placed in the following

way:

c3 = b2 − a1,

c2 = b2 − a2,

c1 = b2 − a3,

c′1 = a3 − b1.
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Now, the next family of bad intersections is between those of type Hji and Hjk which

must be rectified with either a hyperplane of type Hik or Hki. However, since

mji +mjk − 1 = 3 < 4 = mik +mki,

we have two choices, either we use all of the hyperplanes of type Hki or all the hyperplanes

of type Hik to rectify the the bad intersections. By an argument similar to Theorem 3.4 we

know that we cannot use both Hik hyperplanes to rectify the bad intersections. Therefore we

must use both hyperplanes of type Hki and hyperplane Hb1
ik . Therefore the hyperplane Hji

must utilize the intersection point between Hb1
ik and Hc3

jk, and that forces Ha′
ji to be placed by

a′ = c3 − b1. This in turn forces the hyperplanes type Hki to be placed by the coefficients

b′1 = a′ − c2 and b′2 = a′ − c1.

Now, consider the following

b′1 = a′ − c2

= a′ − b2 + a2 Substitute c2 = b2 − a2

= c3 − b1 − b2 + a2 Substitute a′ = c3 − b1

= b2 − a1 − b1 − b2 + a2 Substitute c3 = b2 − a1

= −a1 − b1 + a2.

However, since a2 < b1, then b′1 = −a1 − b1 + a2 < 0 which cannot happen since the

coefficients must be positive. Therefore no such arrangement exists.
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Ha1
12 Ha2

12

Ha3
12

Hb1
13

Hb2
13

Hc1
23

Hc2
23

Hc3
23

Ha′
21

H
b′1
31H

b′2
31

Hc′
32

Figure 4.14: In this example we see a non-bijective arrangement AG where the graph has
the multiplicities m12 = 3, m13 = 2, m23 = 3, m21 = 1, m31 = 2 and m32 = 1. Further,
in this example the blue, orange , and green intersection points represent rectified points for
hyperplanes H12 and H13, H21 and H23, and H31 and H32 respectively. However, notice that
the red intersection point between hyperplanes Hc2

23 and Ha′
21 cannot be rectified. One can see

this in the following way, since m12 +m13 − 1 = m23 +m32, then all of the hyperplanes are
locked into a rigid lattice, i.e. all the hyperplanes are spaced equally. This in turn forces the
remaining hyperplanes to follow. Therefore the only option that one can use to rectify the
red intersection is to shift the hyperplanes of type H31. However, if one does this we must
have that b′1 < 0 which cannot happen since b′ must be positive.
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Appendix A

Five Edge Types Classification Tables

This appendix contains a table relating to the case of five edge types are chosen where one

is given the total number of edges in the graph, the edge multiplicities, and the theorem

that tells us whether the graph has an arrangement with a bijective label or not. Note, the

m32 is not listed and is assumed to be zero. Note that after eight hyperplanes, the list does

not include those with m12 = 1.

#H m12 m13 m23 m21 m31 Injective Not Injective

5 1 1 1 1 1 Theorem 4.2

6 1 1 1 1 2 Theorem 4.2

6 1 1 2 1 1 Theorem 4.2

7 1 1 1 1 3 Theorem 4.2

7 1 1 1 2 2 Theorem 4.2

7 1 1 2 1 2 Theorem 4.2

7 1 2 2 1 1 Theorem 4.2

8 1 1 1 1 4 Theorem 4.2

8 1 1 1 2 3 Theorem 4.2

8 1 1 2 1 3 Theorem 4.2
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#H m12 m13 m23 m21 m31 Injective Not Injective

8 1 1 2 2 2 Theorem 4.2

8 1 1 3 1 2 Theorem 4.2

8 1 2 2 1 2 Theorem 4.2

8 1 2 3 1 1 Theorem 4.2

8 2 1 2 1 2 Theorem 4.1

9 2 1 2 1 3 Theorem 4.1

9 2 1 3 1 2 Theorem 4.3

10 2 1 2 1 4 Theorem 4.1

10 2 1 2 2 3 Theorem 4.1

10 2 1 3 1 3 Theorem 4.1

10 2 2 3 1 2 Theorem 4.4

11 2 1 2 1 5 Theorem 4.1

11 2 1 2 2 4 Theorem 4.1

11 2 1 3 1 4 Theorem 4.1

11 2 1 3 2 3 Theorem 4.6

11 2 1 4 1 3 Theorem 4.3

11 2 2 3 1 3 Theorem 4.1

11 2 2 4 1 2 Conjecture 4.10

11 3 1 3 1 3 Theorem 4.1

12 2 1 2 1 6 Theorem 4.1

12 2 1 2 2 5 Theorem 4.1

12 2 1 2 3 4 Theorem 4.1

12 2 1 3 1 5 Theorem 4.1

12 2 1 3 2 4 Theorem 4.1
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#H m12 m13 m23 m21 m31 Injective Not Injective

12 2 1 4 1 4 Theorem 4.1

12 2 2 3 1 4 Theorem 4.1

12 2 2 3 2 3 Theorem 4.4

12 2 2 4 1 3 Theorem 4.3

12 2 3 4 1 2 Theorem 4.4

12 3 1 3 1 4 Theorem 4.1

12 3 1 4 1 3 Theorem 4.3

13 2 1 2 1 7 Theorem 4.1

13 2 1 2 2 6 Theorem 4.1

13 2 1 2 3 5 Theorem 4.1

13 2 1 3 1 6 Theorem 4.1

13 2 1 3 2 5 Theorem 4.1

13 2 1 3 3 4 Theorem 4.6

13 2 1 4 1 5 Theorem 4.1

13 2 1 4 2 4 Theorem 4.6

13 2 1 5 1 4 Theorem 4.3

13 2 2 3 1 5 Theorem 4.1

13 2 2 3 2 4 Theorem 4.1

13 2 2 4 1 4 Theorem 4.1

13 2 2 4 2 3 Theorem 4.6

13 2 2 5 1 3 Theorem 4.3

13 2 3 4 1 3 Theorem 4.4

13 2 3 5 1 2 Conjecture 4.10

13 3 1 3 1 5 Theorem 4.1
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#H m12 m13 m23 m21 m31 Injective Not Injective

13 3 1 3 2 4 Theorem 4.1

13 3 1 4 1 4 Theorem 4.1

13 3 2 4 1 3 Theorem 4.4

14 2 1 2 1 8 Theorem 4.1

14 2 1 2 2 7 Theorem 4.1

14 2 1 2 3 6 Theorem 4.1

14 2 1 2 4 5 Theorem 4.1

14 2 1 3 1 7 Theorem 4.1

14 2 1 3 2 6 Theorem 4.1

14 2 1 3 3 5 Theorem 4.1

14 2 1 4 1 6 Theorem 4.1

14 2 1 4 2 5 Theorem 4.1

14 2 1 5 1 5 Theorem 4.1

14 2 2 3 1 6 Theorem 4.1

14 2 2 3 2 5 Theorem 4.1

14 2 2 3 3 4 Theorem 4.4

14 2 2 4 1 5 Theorem 4.1

14 2 2 4 2 4 Theorem 4.3

14 2 2 5 1 4 Theorem 4.3

14 2 3 4 1 4 Theorem 4.1

14 2 3 4 2 3 Theorem 4.4

14 2 3 5 1 3 Conjecture 4.13

14 2 4 5 1 2 Theorem 4.4

14 3 1 3 1 6 Theorem 4.1
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#H m12 m13 m23 m21 m31 Injective Not Injective

14 3 1 3 2 5 Theorem 4.1

14 3 1 4 1 5 Theorem 4.1

14 3 1 4 2 4 Theorem 4.6

14 3 1 5 1 4 Theorem 4.3

14 3 2 4 1 4 Theorem 4.1

14 3 2 5 1 3 Conjecture 4.10

14 4 1 4 1 4 Theorem 4.1

15 2 1 2 1 9 Theorem 4.1

15 2 1 2 2 8 Theorem 4.1

15 2 1 2 3 7 Theorem 4.1

15 2 1 2 4 6 Theorem 4.1

15 2 1 3 1 8 Theorem 4.1

15 2 1 3 2 7 Theorem 4.1

15 2 1 3 3 6 Theorem 4.1

15 2 1 3 4 5 Theorem 4.6

15 2 1 4 1 7 Theorem 4.1

15 2 1 4 2 6 Theorem 4.1

15 2 1 4 3 5 Theorem 4.6

15 2 1 5 1 6 Theorem 4.1

15 2 1 5 2 5 Theorem 4.6

15 2 1 6 1 5 Theorem 4.3

15 2 2 3 1 7 Theorem 4.1

15 2 2 3 2 6 Theorem 4.1

15 2 2 3 3 5 Theorem 4.1
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#H m12 m13 m23 m21 m31 Injective Not Injective

15 2 2 4 1 6 Theorem 4.1

15 2 2 4 2 5 Theorem 4.1

15 2 2 4 3 4 Theorem 4.6

15 2 2 5 1 5 Theorem 4.1

15 2 2 5 2 4 Theorem 4.6

15 2 2 6 1 4 Theorem 4.3

15 2 3 4 1 5 Theorem 4.1

15 2 3 4 2 4 Theorem 4.4

15 2 3 5 1 4 Theorem 4.3

15 2 3 5 2 3 Theorem 4.6

15 2 3 6 1 3 Conjecture 4.10

15 2 4 5 1 3 Theorem 4.4

15 2 4 6 1 2 Conjecture 4.10

15 3 1 3 1 7 Theorem 4.1

15 3 1 3 2 6 Theorem 4.1

15 3 1 3 3 5 Theorem 4.1

15 3 1 4 1 6 Theorem 4.1

15 3 1 4 2 5 Theorem 4.1

15 3 1 5 1 5 Theorem 4.1

15 3 2 4 1 5 Theorem 4.1

15 3 2 4 2 4 Theorem 4.4

15 3 2 5 1 4 Theorem 4.3

15 3 3 5 1 3 Theorem 4.4

15 4 1 4 1 5 Theorem 4.1
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#H m12 m13 m23 m21 m31 Injective Not Injective

15 4 1 5 1 4 Theorem 4.3

16 2 1 2 1 10 Theorem 4.1

16 2 1 2 2 9 Theorem 4.1

16 2 1 2 3 8 Theorem 4.1

16 2 1 2 4 7 Theorem 4.1

16 2 1 2 5 6 Theorem 4.1

16 2 1 3 1 9 Theorem 4.1

16 2 1 3 2 8 Theorem 4.1

16 2 1 3 3 7 Theorem 4.1

16 2 1 3 4 6 Theorem 4.1

16 2 1 4 1 8 Theorem 4.1

16 2 1 4 2 7 Theorem 4.1

16 2 1 4 3 6 Theorem 4.1

16 2 1 5 1 7 Theorem 4.1

16 2 1 5 2 6 Theorem 4.1

16 2 1 6 1 6 Theorem 4.1

16 2 2 3 1 8 Theorem 4.1

16 2 2 3 2 7 Theorem 4.1

16 2 2 3 3 6 Theorem 4.1

16 2 2 3 4 5 Theorem 4.4

16 2 2 4 1 7 Theorem 4.1

16 2 2 4 2 6 Theorem 4.1

16 2 2 4 3 5 Conjecture 4.11

16 2 2 5 1 6 Theorem 4.1
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#H m12 m13 m23 m21 m31 Injective Not Injective

16 2 2 5 2 5 Theorem 4.3

16 2 2 6 1 5 Theorem 4.3

16 2 3 4 1 6 Theorem 4.1

16 2 3 4 2 5 Theorem 4.1

16 2 3 4 3 4 Theorem 4.4

16 2 3 5 1 5 Theorem 4.1

16 2 3 5 2 4 Conjecture 4.13

16 2 3 6 1 4 Theorem 4.3

16 2 4 5 1 4 Theorem 4.4

16 2 4 5 2 3 Theorem 4.4

16 2 4 6 1 3 Conjecture 4.13

16 2 5 6 1 2 Theorem 4.4

16 3 1 3 1 8 Theorem 4.1

16 3 1 3 2 7 Theorem 4.1

16 3 1 3 3 6 Theorem 4.1

16 3 1 4 1 7 Theorem 4.1

16 3 1 4 2 6 Theorem 4.1

16 3 1 4 3 5 Theorem 4.6

16 3 1 5 1 6 Theorem 4.1

16 3 1 5 2 5 Theorem 4.6

16 3 1 6 1 5 Theorem 4.3

16 3 2 4 1 6 Theorem 4.1

16 3 2 4 2 5 Theorem 4.1

16 3 2 5 1 5 Theorem 4.1
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#H m12 m13 m23 m21 m31 Injective Not Injective

16 3 2 5 2 4 Theorem 4.6

16 3 2 6 1 4 Theorem 4.3

16 3 3 5 1 4 Theorem 4.4

16 3 3 6 1 3 Conjecture 4.10

16 4 1 4 1 6 Theorem 4.1

16 4 1 4 2 5 Theorem 4.1

16 4 1 5 1 5 Theorem 4.1

16 4 2 5 1 4 Theorem 4.4

17 2 1 2 1 11 Theorem 4.1

17 2 1 2 2 10 Theorem 4.1

17 2 1 2 3 9 Theorem 4.1

17 2 1 2 4 8 Theorem 4.1

17 2 1 2 5 7 Theorem 4.1

17 2 1 3 1 10 Theorem 4.1

17 2 1 3 2 9 Theorem 4.1

17 2 1 3 3 8 Theorem 4.1

17 2 1 3 4 7 Theorem 4.1

17 2 1 3 5 6 Theorem 4.6

17 2 1 4 1 9 Theorem 4.1

17 2 1 4 2 8 Theorem 4.1

17 2 1 4 3 7 Theorem 4.1

17 2 1 4 4 6 Theorem 4.6

17 2 1 5 1 8 Theorem 4.1

17 2 1 5 2 7 Theorem 4.1
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#H m12 m13 m23 m21 m31 Injective Not Injective

17 2 1 5 3 6 Theorem 4.6

17 2 1 6 1 7 Theorem 4.1

17 2 1 6 2 6 Theorem 4.6

17 2 1 7 1 6 Theorem 4.3

17 2 2 3 1 9 Theorem 4.1

17 2 2 3 2 8 Theorem 4.1

17 2 2 3 3 7 Theorem 4.1

17 2 2 3 4 6 Theorem 4.1

17 2 2 4 1 8 Theorem 4.1

17 2 2 4 2 7 Theorem 4.1

17 2 2 4 3 6 Theorem 4.1

17 2 2 4 4 5 Theorem 4.6

17 2 2 5 1 7 Theorem 4.1

17 2 2 5 2 6 Theorem 4.1

17 2 2 5 3 5 Theorem 4.6

17 2 2 6 1 6 Theorem 4.1

17 2 2 6 2 5 Theorem 4.6

17 2 2 7 1 5 Theorem 4.3

17 2 3 4 1 7 Theorem 4.1

17 2 3 4 2 6 Theorem 4.1

17 2 3 4 3 5 Theorem 4.4

17 2 3 5 1 6 Theorem 4.1

17 2 3 5 2 5 Theorem 4.3

17 2 3 5 3 4 Theorem 4.4
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#H m12 m13 m23 m21 m31 Injective Not Injective

17 2 3 6 1 5 Theorem 4.3

17 2 3 6 2 4 Theorem 4.6

17 2 3 7 1 4 Theorem 4.3

17 2 4 5 1 5 Theorem 4.1

17 2 4 5 2 4 Theorem 4.4

17 2 4 6 1 4 Conjecture 4.13

17 2 4 6 2 3 Theorem 4.6

17 2 4 7 1 3 Conjecture 4.10

17 2 5 6 1 3 Theorem 4.4

17 2 5 7 1 2 Conjecture 4.10

17 3 1 3 1 9 Theorem 4.1

17 3 1 3 2 8 Theorem 4.1

17 3 1 3 3 7 Theorem 4.1

17 3 1 3 4 6 Theorem 4.1

17 3 1 4 1 8 Theorem 4.1

17 3 1 4 2 7 Theorem 4.1

17 3 1 4 3 6 Theorem 4.1

17 3 1 5 1 7 Theorem 4.1

17 3 1 5 2 6 Theorem 4.1

17 3 1 6 1 6 Theorem 4.1

17 3 2 4 1 7 Theorem 4.1

17 3 2 4 2 6 Theorem 4.1

17 3 2 4 3 5 Theorem 4.4

17 3 2 5 1 6 Theorem 4.1
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#H m12 m13 m23 m21 m31 Injective Not Injective

17 3 2 5 2 5 Theorem 4.3

17 3 2 6 1 5 Theorem 4.3

17 3 3 5 1 5 Theorem 4.1

17 3 3 5 2 4 Theorem 4.4

17 3 3 6 1 4 Conjecture 4.13

17 3 4 6 1 3 Theorem 4.4

17 4 1 4 1 7 Theorem 4.1

17 4 1 4 2 6 Theorem 4.1

17 4 1 5 1 6 Theorem 4.1

17 4 1 5 2 5 Theorem 4.6

17 4 1 6 1 5 Theorem 4.3

17 4 2 5 1 5 Theorem 4.1

17 4 2 6 1 4 Conjecture 4.10

17 5 1 5 1 5 Theorem 4.1

18 2 1 2 1 12 Theorem 4.1

18 2 1 2 2 11 Theorem 4.1

18 2 1 2 3 10 Theorem 4.1

18 2 1 2 4 9 Theorem 4.1

18 2 1 2 5 8 Theorem 4.1

18 2 1 2 6 7 Theorem 4.1

18 2 1 3 1 11 Theorem 4.1

18 2 1 3 2 10 Theorem 4.1

18 2 1 3 3 9 Theorem 4.1

18 2 1 3 4 8 Theorem 4.1
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#H m12 m13 m23 m21 m31 Injective Not Injective

18 2 1 3 5 7 Theorem 4.1

18 2 1 4 1 10 Theorem 4.1

18 2 1 4 2 9 Theorem 4.1

18 2 1 4 3 8 Theorem 4.1

18 2 1 4 4 7 Theorem 4.1

18 2 1 5 1 9 Theorem 4.1

18 2 1 5 2 8 Theorem 4.1

18 2 1 5 3 7 Theorem 4.1

18 2 1 6 1 8 Theorem 4.1

18 2 1 6 2 7 Theorem 4.1

18 2 1 7 1 7 Theorem 4.1

18 2 2 3 1 10 Theorem 4.1

18 2 2 3 2 9 Theorem 4.1

18 2 2 3 3 8 Theorem 4.1

18 2 2 3 4 7 Theorem 4.1

18 2 2 3 5 6 Theorem 4.4

18 2 2 4 1 9 Theorem 4.1

18 2 2 4 2 8 Theorem 4.1

18 2 2 4 3 7 Theorem 4.1

18 2 2 4 4 6 Conjecture 4.11

18 2 2 5 1 8 Theorem 4.1

18 2 2 5 2 7 Theorem 4.1

18 2 2 5 3 6 Conjecture 4.11

18 2 2 6 1 7 Theorem 4.1
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#H m12 m13 m23 m21 m31 Injective Not Injective

18 2 2 6 2 6 Theorem 4.3

18 2 2 7 1 6 Theorem 4.3

18 2 3 4 1 8 Theorem 4.1

18 2 3 4 2 7 Theorem 4.1

18 2 3 4 3 6 Theorem 4.1

18 2 3 4 4 5 Theorem 4.4

18 2 3 5 1 7 Theorem 4.1

18 2 3 5 2 6 Theorem 4.1

18 2 3 5 3 5 Conjecture 4.14

18 2 3 6 1 6 Theorem 4.1

18 2 3 6 2 5 Theorem 4.3

18 2 3 7 1 5 Theorem 4.3

18 2 4 5 1 6 Theorem 4.1

18 2 4 5 2 5 Theorem 4.4

18 2 4 5 3 4 Theorem 4.4

18 2 4 6 1 5 Theorem 4.3

18 2 4 6 2 4 Conjecture 4.13

18 2 4 7 1 4 Conjecture 4.13

18 2 5 6 1 4 Theorem 4.4

18 2 5 6 2 3 Theorem 4.4

18 2 5 7 1 3 Conjecture 4.13

18 2 6 7 1 2 Theorem 4.4

18 3 1 3 1 10 Theorem 4.1

18 3 1 3 2 9 Theorem 4.1
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#H m12 m13 m23 m21 m31 Injective Not Injective

18 3 1 3 3 8 Theorem 4.1

18 3 1 3 4 7 Theorem 4.1

18 3 1 4 1 9 Theorem 4.1

18 3 1 4 2 8 Theorem 4.1

18 3 1 4 3 7 Theorem 4.1

18 3 1 4 4 6 Theorem 4.6

18 3 1 5 1 8 Theorem 4.1

18 3 1 5 2 7 Theorem 4.1

18 3 1 5 3 6 Theorem 4.6

18 3 1 6 1 7 Theorem 4.1

18 3 1 6 2 6 Theorem 4.6

18 3 1 7 1 6 Theorem 4.3

18 3 2 4 1 8 Theorem 4.1

18 3 2 4 2 7 Theorem 4.1

18 3 2 4 3 6 Theorem 4.1

18 3 2 5 1 7 Theorem 4.1

18 3 2 5 2 6 Theorem 4.1

18 3 2 5 3 5 Theorem 4.6

18 3 2 6 1 6 Theorem 4.1

18 3 2 6 2 5 Theorem 4.6

18 3 2 7 1 5 Theorem 4.3

18 3 3 5 1 6 Theorem 4.1

18 3 3 5 2 5 Theorem 4.4

18 3 3 6 1 5 Theorem 4.3
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#H m12 m13 m23 m21 m31 Injective Not Injective

18 3 3 6 2 4 Theorem 4.6

18 3 3 7 1 4 Conjecture 4.10

18 3 4 6 1 4 Theorem 4.4

18 3 4 7 1 3 Conjecture 4.10

18 4 1 4 1 8 Theorem 4.1

18 4 1 4 2 7 Theorem 4.1

18 4 1 4 3 6 Theorem 4.1

18 4 1 5 1 7 Theorem 4.1

18 4 1 5 2 6 Theorem 4.1

18 4 1 6 1 6 Theorem 4.1

18 4 2 5 1 6 Theorem 4.1

18 4 2 5 2 5 Theorem 4.4

18 4 2 6 1 5 Theorem 4.3

18 4 3 6 1 4 Theorem 4.4

18 5 1 5 1 6 Theorem 4.1

18 5 1 6 1 5 Theorem 4.3

19 2 1 2 1 13 Theorem 4.1

19 2 1 2 2 12 Theorem 4.1

19 2 1 2 3 11 Theorem 4.1

19 2 1 2 4 10 Theorem 4.1

19 2 1 2 5 9 Theorem 4.1

19 2 1 2 6 8 Theorem 4.1

19 2 1 3 1 12 Theorem 4.1

19 2 1 3 2 11 Theorem 4.1
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#H m12 m13 m23 m21 m31 Injective Not Injective

19 2 1 3 3 10 Theorem 4.1

19 2 1 3 4 9 Theorem 4.1

19 2 1 3 5 8 Theorem 4.1

19 2 1 3 6 7 Theorem 4.6

19 2 1 4 1 11 Theorem 4.1

19 2 1 4 2 10 Theorem 4.1

19 2 1 4 3 9 Theorem 4.1

19 2 1 4 4 8 Theorem 4.1

19 2 1 4 5 7 Theorem 4.6

19 2 1 5 1 10 Theorem 4.1

19 2 1 5 2 9 Theorem 4.1

19 2 1 5 3 8 Theorem 4.1

19 2 1 5 4 7 Theorem 4.6

19 2 1 6 1 9 Theorem 4.1

19 2 1 6 2 8 Theorem 4.1

19 2 1 6 3 7 Theorem 4.6

19 2 1 7 1 8 Theorem 4.1

19 2 1 7 2 7 Theorem 4.6

19 2 1 8 1 7 Theorem 4.3

19 2 2 3 1 11 Theorem 4.1

19 2 2 3 2 10 Theorem 4.1

19 2 2 3 3 9 Theorem 4.1

19 2 2 3 4 8 Theorem 4.1

19 2 2 3 5 7 Theorem 4.1
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#H m12 m13 m23 m21 m31 Injective Not Injective

19 2 2 4 1 10 Theorem 4.1

19 2 2 4 2 9 Theorem 4.1

19 2 2 4 3 8 Theorem 4.1

19 2 2 4 4 7 Theorem 4.1

19 2 2 4 5 6 Theorem 4.6

19 2 2 5 1 9 Theorem 4.1

19 2 2 5 2 8 Theorem 4.1

19 2 2 5 3 7 Theorem 4.1

19 2 2 5 4 6 Theorem 4.6

19 2 2 6 1 8 Theorem 4.1

19 2 2 6 2 7 Theorem 4.1

19 2 2 6 3 6 Theorem 4.6

19 2 2 7 1 7 Theorem 4.1

19 2 2 7 2 6 Theorem 4.6

19 2 2 8 1 6 Theorem 4.3

19 2 3 4 1 9 Theorem 4.1

19 2 3 4 2 8 Theorem 4.1

19 2 3 4 3 7 Theorem 4.1

19 2 3 4 4 6 Theorem 4.4

19 2 3 5 1 8 Theorem 4.1

19 2 3 5 2 7 Theorem 4.1

19 2 3 5 3 6 Theorem 4.3

19 2 3 5 4 5 Theorem 4.6

19 2 3 6 1 7 Theorem 4.1
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#H m12 m13 m23 m21 m31 Injective Not Injective

19 2 3 6 2 6 Theorem 4.3

19 2 3 6 3 5 Theorem 4.6

19 2 3 7 1 6 Theorem 4.3

19 2 3 7 2 5 Theorem 4.6

19 2 3 8 1 5 Theorem 4.3

19 2 4 5 1 7 Theorem 4.1

19 2 4 5 2 6 Theorem 4.1

19 2 4 5 3 5 Theorem 4.4

19 2 4 6 1 6 Theorem 4.1

19 2 4 6 2 5 Conjecture 4.13

19 2 4 6 3 4 Theorem 4.6

19 2 4 7 1 5 Theorem 4.3

19 2 4 7 2 4 Theorem 4.6

19 2 4 8 1 4 Conjecture 4.10

19 2 5 6 1 5 Theorem 4.4

19 2 5 6 2 4 Theorem 4.4

19 2 5 7 1 4 Conjecture 4.13

19 2 5 7 2 3 Theorem 4.6

19 2 5 8 1 3 Conjecture 4.10

19 2 6 7 1 3 Theorem 4.4

19 2 6 8 1 2 Conjecture 4.10

19 3 1 3 1 11 Theorem 4.1

19 3 1 3 2 10 Theorem 4.1

19 3 1 3 3 9 Theorem 4.1
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#H m12 m13 m23 m21 m31 Injective Not Injective

19 3 1 3 4 8 Theorem 4.1

19 3 1 3 5 7 Theorem 4.1

19 3 1 4 1 10 Theorem 4.1

19 3 1 4 2 9 Theorem 4.1

19 3 1 4 3 8 Theorem 4.1

19 3 1 4 4 7 Theorem 4.1

19 3 1 5 1 9 Theorem 4.1

19 3 1 5 2 8 Theorem 4.1

19 3 1 5 3 7 Theorem 4.1

19 3 1 6 1 8 Theorem 4.1

19 3 1 6 2 7 Theorem 4.1

19 3 1 7 1 7 Theorem 4.1

19 3 2 4 1 9 Theorem 4.1

19 3 2 4 2 8 Theorem 4.1

19 3 2 4 3 7 Theorem 4.1

19 3 2 4 4 6 Theorem 4.4

19 3 2 5 1 8 Theorem 4.1

19 3 2 5 2 7 Theorem 4.1

19 3 2 5 3 6 Conjecture 4.11

19 3 2 6 1 7 Theorem 4.1

19 3 2 6 2 6 Theorem 4.3

19 3 2 7 1 6 Theorem 4.3

19 3 3 5 1 7 Theorem 4.1

19 3 3 5 2 6 Theorem 4.1
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#H m12 m13 m23 m21 m31 Injective Not Injective

19 3 3 5 3 5 Theorem 4.4

19 3 3 6 1 6 Theorem 4.1

19 3 3 6 2 5 Conjecture 4.13

19 3 3 7 1 5 Theorem 4.3

19 3 4 6 1 5 Theorem 4.4

19 3 4 6 2 4 Theorem 4.4

19 3 4 7 1 4 Conjecture 4.13

19 3 5 7 1 3 Theorem 4.4

19 4 1 4 1 9 Theorem 4.1

19 4 1 4 2 8 Theorem 4.1

19 4 1 4 3 7 Theorem 4.1

19 4 1 5 1 8 Theorem 4.1

19 4 1 5 2 7 Theorem 4.1

19 4 1 5 3 6 Theorem 4.6

19 4 1 6 1 7 Theorem 4.1

19 4 1 6 2 6 Theorem 4.6

19 4 1 7 1 6 Theorem 4.3

19 4 2 5 1 7 Theorem 4.1

19 4 2 5 2 6 Theorem 4.1

19 4 2 6 1 6 Theorem 4.1

19 4 2 6 2 5 Theorem 4.6

19 4 2 7 1 5 Theorem 4.3

19 4 3 6 1 5 Theorem 4.4

19 4 3 7 1 4 Conjecture 4.10
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#H m12 m13 m23 m21 m31 Injective Not Injective

19 5 1 5 1 7 Theorem 4.1

19 5 1 5 2 6 Theorem 4.1

19 5 1 6 1 6 Theorem 4.1

19 5 2 6 1 5 Theorem 4.4

105


	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Introduction
	Posets and General Hyperplane Arrangements
	Parking Functions and the Sandpile Model
	Shi and Multigraphical Arrangements
	Main Results

	Central Multigraphical Arrangements
	General Hyperplanes in Dimension n=3
	Injectivity: Local to Global
	Necessary Condition for a Bijective Labeling
	Graphs that emit a Bijective Labeling

	Necessary but Not Sufficient
	Five Edge Types with a Bijective Labeling
	Five Edge Types with a Non-Bijective Labeling
	Five Edge Type Conjectures
	Six Edge Types with a Bijective Labeling
	Six Edge Types with a Non-Bijective Labeling

	Bibliography
	Five Edge Types Classification Tables

