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Abstract

Various tests have been created to compare the means of two populations in many
scenarios and applications. The two-sample t-test, Wilcoxon Rank-Sum Test and bootstrap-
t test are commonly used methods. However, methods for skewed two-sample data set are
not well studied. In this dissertation, several existing two sample tests were evaluated and
four new tests were proposed to improve the test accuracy under moderate sample size and
high population skewness.

The proposed work starts with derivation of a first order Edgeworth expansion for the
test statistic of the two sample t-test. Using this result, new two-sample tests based on
Cornish Fisher expansion (TCF tests) were created for both cases of common variance
and unequal variances. These tests can account for population skewness and give more
accurate test results. We also developed three new tests based on three transformations (7;
test, i = 1,2,3) for the pooled case, which can be used to eliminate the skewness of the
studentized statistic.

In this dissertation, some theoretical properties of the newly proposed tests are presented.
In particular, we derived the order of type I error rate accuracy of the pooled two-sample t-
test based on normal approximation (TN test), the TCF and T} tests. We proved that these
tests give the same theoretical type I error rate under skewness. In addition, we derived the
power function of the TCF and TN tests as a function of the population parameters. We
also provided the detailed conditions under which the theoretical power of the two-sample
TCF test is higher than the two-sample TN test. Results from extensive simulation studies
and real data analysis were also presented in this dissertation. The empirical results further
confirm our theoretical results. Comparing with commonly used two-sample parametric and
nonparametric tests, our new tests (T'C'F and T;) provide the same empirical type I error

rate but higher power.



MORE ACCURATE TWO SAMPLE COMPARISONS FOR
SKEWED POPULATIONS
by
BO TONG

M.S., Kansas State University of Kansas, 2012

A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree
DOCTOR OF PHILOSOPHY

Department of Statistics

College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2016

Approved by:

Major Professor

Haiyan Wang



Copyright

BO TONG

2016



Abstract

Various tests have been created to compare the means of two populations in many
scenarios and applications. The two-sample t-test, Wilcoxon Rank-Sum Test and bootstrap-
t test are commonly used methods. However, methods for skewed two-sample data set are
not well studied. In this dissertation, several existing two sample tests were evaluated and
four new tests were proposed to improve the test accuracy under moderate sample size and
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test, i = 1,2,3) for the pooled case, which can be used to eliminate the skewness of the
studentized statistic.

In this dissertation, some theoretical properties of the newly proposed tests are presented.
In particular, we derived the order of type I error rate accuracy of the pooled two-sample t-
test based on normal approximation (TN test), the TCF and T} tests. We proved that these
tests give the same theoretical type I error rate under skewness. In addition, we derived the
power function of the TCF and TN tests as a function of the population parameters. We
also provided the detailed conditions under which the theoretical power of the two-sample
TCF test is higher than the two-sample TN test. Results from extensive simulation studies
and real data analysis were also presented in this dissertation. The empirical results further
confirm our theoretical results. Comparing with commonly used two-sample parametric and
nonparametric tests, our new tests (T'C'F and T;) provide the same empirical type I error
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Chapter 1

Introduction

In many scenarios and applications, people are interested in doing hypothesis testing con-
cerning differences between means of two populations. For example, based on proper samples
we may wish to decide whether medicine A can be as effective as medicine B, or based on
a survey we may want to decide whether the average weekly income of families in one city
exceeds that in another city and etc. These comparisons of two independent population
means are very common in many research fields.

Various tests have been created to do the comparisons under different scenarios. The
two-sample T test is the most commonly used approach. It is a test to check the equality
of means, and derived under the assumption that the two populations follow normal dis-
tribution. In many research areas, the assumption of normality is often violated. Skewed
data are common. For example, several well-known variables are known to be markedly
skewed, such as the survival time of a product following Weibull distribution; the phar-
macokinetics parameters often following log-normal distribution; the bacterial growth rate
following exponential distribution and etc. When the normality assumption does not hold,
the nonparametric test such as Wilcoxon-Mann-Whitney test or the test based on resam-
pling method such as bootstrap-t test can be used. These tests, however, were not developed
specially for skewed data. There are situations that comparison of means or total in skewed

samples is of interest. One example is about profit in farm animals, such as cattle. The



weight gain of some animals may be heavily right skewed due to some diet additives. To
compare the profit based on weight gain of animals with the additives vs. those without the
additives, it is necessary to compare the mean of possibly skewed populations. Figure 1.1
shows a real two-sample data set from exercise 6.17 of the textbook Ott and Longnecker
(2008). The data from both control and treatment groups show a skewed population. To
make the question more challenging, the sample size is not very large. It can be clearly seen
from the boxplot that the medians differs by quite a bit. However, neither the two-sample

t-test nor the Wilcoxon Rank-Sum Test can give significant result.
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Figure 1.1: Descriptive Statistics

In this dissertation, we will evaluate several existing two sample tests and propose new
tests that improve the test accuracy under moderate sample size and high population skew-
ness. Some of our proposed new tests did find significant difference for this example. The
organization of the dissertation is as follows: Chapter 2 reviews several existing two sample

tests, which include ordinary two sample t-test, some nonparametric tests and tests based on



resampling method. Since the methodology development utilizes Edgeworth expansion, we
will also review the principle of Edgeworth expansion in Chapter 2. Chapter 3 and Chap-
ter 4 introduce the methodology to derive four new test based on Edgeworth expansion
theory. Chapter 4 gives three new tests obtained with transformations. Simulation study
are presented for comparing the type I error rate and power of several existing tests with the
new tests. We expand this research and apply the results to do the two-sample comparison
for skewed populations with unequal variance in Chapter 5. Appendix A provides the proofs

of several theorems in Chapter 3 and Chapter 4.



Chapter 2

Literature review

Suppose Yi1,., Y1, and Ya1,., Y5, are two simple random samples from two independent
populations, with sample size n; , ny, population mean i , ps and variance o? , o2 respec-
tively. Let N denote the total sample size with N = ny; + ny. We are interested in testing
wether the two populations have equal means or not. In this section, we will review several
commonly used tests in practice under the above settings, including ordinary two sample
t-test, modifications of two sample t-test with non-normal data, some nonparametric tests

and the test based on resampling method. A review of each test is given as follows.

2.1 Commonly used tests

2.1.1 Two-sample t-test

The most commonly used test is Student’s t-test, proposed by Gosset (Mankiewicz, 2004;
Box, 1987). There are various versions of student t-test depending on the context of problem.
Under the settings above, if variances of two populations are different, unpooled two sample
t-test is used. The test statistic is

_ Y -Yo— (uf - )

St S

ni ng

T (2.1.1)

Y



where 10 is the true population mean under null hypothesis, Y; = Z;":l Yi;/n; and S? =

LS (Y; — Y;)? with @ = 1,2. Under the null hypothesis, when data are normally

n;—1

distributed the test statistic follows a t-distribution with degree of freedom
(53)
ni na
1 522 1 s2\?
an () +m ()

If the variance of two populations are the same, the pooled two sample t-test should be used

with the test statistic ~ ~
Vi —Y — () — )
Spy/ -+ + n%

ni

T

: (2.1.2)

where Sp = \/ (nl_lf_li:ig_l)sg. Under the null hypothesis, when data are normally dis-
tributed, the test statistic follows a t-distribution with degree of freedom n; + n, — 2.

Both versions of the two sample t-test presented above require certain assumptions. One
of the most important assumptions is that the data follow normal distribution. This as-
sumption ensures that the test statistics in equations (2.1.1) and (2.1.2) follow t-distribution
with corresponding degrees of freedom. If the normality assumption is violated, the exact
distribution of test statistic becomes unknown. T-test is known to be robust to modest
departures from the normality assumption (Mankiewicz, 2004). However, it still has its
limitations depending on the magnitude of departure from normal distribution.

Skewness is one of the most commonly used statistic to quantify the magnitude to which
the data are asymmetry. Let + denote the value of skewness of the population calculated

as y; = E[(@)‘g] The sample skewness is 7; = —76—5 Z?;l(%gﬁ)?’ with i = 1,2

in Zhou and Philip (2005). Several investigations have been conducted to figure out the
impact of skewness on Student’s t-test (Chen, 1995; Gayen, 1949; Johnson, 1978). These
studies found that the performance of t-test can be poor when the data are skewed (Barrett
and Goldsmith, 1976; Boos and Hughes, 2000).

If the data are skewed, the most commonly used method to get around skewness is based
on Central Limit Theorem (CLT). It has been justified that normal distribution can be used

to approximate the distribution of test statistic in equations (2.1.1) and (2.1.2) with skewed

5



data. When the sample size is large this approximation is shown to have order of accuracy

O(n~%/2) by Hall (1992a). That is,
P(T < z) = ®(z) + O(n~1?), (2.1.3)

where ®(z) is the cumulative distribution function of the standard normal distribution. The
limitation for application of this approximation is that, for a specific data set, a reasonable
size of n used for approximation in (2.1.3) is unknown. The size of n should depend on the
skewness (Barrett and Goldsmith, 1976; Boos and Hughes, 2000).

Another commonly used method under skewness does a transformation on the observed
data, such that the transformed data follow normal distribution. A logarithm transfor-
mation is usually applied to the original data, followed by the two sample t-test on the
transformed data. Finally, inferences will be made on the mean of the transformed data.
By log transformation, skewness problem is avoided on the two sample t-test. However, the
test on the two sample mean difference on the log-transformed data do not always reveal
the relationship of two population means of the original skewed data, due to the fact that

E(log(X)) <log(E(X)) as a result of the Jensen’s Inequality.

2.1.2 Wilcoxon Rank-Sum Test

The two-sample t test is based on three important assumptions: independent sampling,
normality, and equal variances. When the conditions of normality and equal variances are
not valid but the sample sizes are large, using a t test is approximately correct. In this
case, the Wilcoxon Rank-Sum test provides an alternative test procedure that requires less
stringent conditions for comparing two independent samples. It replaces the normality
assumption with that the two samples are taken from identical distribution. It does not
require that the populations have normal distribution. The other conditions, equal variances
and independence of the random samples, are still required for the Wilcoxon Rank-sum test.

In Wilcoxon Rank-sum test, the ranks of all observations are first obtained from the
combined samples. Let W; be the sum of the ranks of the observations from sample i, here

1 = 1,2. The Wilcoxon Rank-Sum test is a two-sample permutation test based on W;.



Assume that n; observations are from sample 1 and n, observations from sample 2. And
no two observations have the same value, so that the ranks are distinct. The procedure of

the rank sum test consists of the following steps in below:

e Combine the n; + ng observations and rank them from smallest to largest. Find the

observed rank sum W; of sample i, 7 = 1, 2.

e Find all the possible permutation of the ranks in which n; ranks are assigned to sample

1 and ny ranks are assigned into sample 2 separately.

e For each permutation of the ranks, find the sum of the ranks for sample 1 (or sample

2).

e Determine the upper-tail, lower-tail, or two-sided p-value. For an upper-tail test, the
p-value is:
number of rank sums > observed rank sum W

PuppeT tail — 142
(")

The rank sum of either sample can be used. The choice of sample 1 is arbitrary. Instead of
using the sum of the ranks, the test could also be based on the difference of mean ranks. Let
W7 be the Wilcoxon sum rank for sample 1. Since we have total N = n; + ny observations,
the sum of all ranks is: T'=14+2+ ...+ N = N(N + 1)/2. And the difference of mean

ranks is defined as:

1 1 N(N +1
Difference of mean ranks = W, (— + —) _NWAD)
nq N9

2n9

This implies that the statistical test based on the sum of ranks of one of the treatments
will have the same p-value as just using the first method discussed above. And either to
use upper-tail or lower-tail test is determined by the context of the specific problem. When
there are ties among observations, all the tied observations are grouped together and the

average rank to tied values in that group is calculated and assigned to them. These ranks

are called mid-ranks. So the Wilcoxon rank-sum test adjusted for ties becomes:

e Compute the mid-ranks



e Perform the permutation test using the mid-ranks, where the test statistic is the sum

of mid-ranks for sample 1 (or sample 2).

2.1.3 Mann-Whitney Test

The Mann-Whitney U test is used to compare differences between two independent groups
when the dependent variable is either ordinal or continuous, but not normally distributed.
The Mann-Whitney U test is often viewed as the nonparametric equivalent of Student’s
t-test. The major difference between the Mann-Whitney Test and Student’s t-Test is that
the former one does not require a normal distribution of the data from the sample. Based
on our two sample settings, assuming the data have no ties so a given observation is either
strictly less than or strictly larger than any other observation. The Mann-Whitney statistic,

denoted as U, is defined as:
U = number of pairs (Y3;, Ys;) for which Yy; < Y5;.

A large U value means that the larger observations tend to occur with sample 2 and a small
U value means that the larger observations tend to occur with sample 1. Lower-tail U values
and upper-tail U values under the null hypothesis (the distributions of Y; and Y, are the
same) are related as: Uypper = n112 — Ujpwer- The procedure of the Mann-Whitney U test

consists of the following steps as follows:

e Assign numeric ranks to all observations, starting with 1 for the lowest rank. The

observations with tied values are assigned a mid-rank.
e (Calculate the sum of the rank W; for sample 1 and W for sample 2.
e [U; is defined as: U, = W, — M We have Uy + Uy = ning, i = 1, 2.
e The smaller U; is used to consult significance tables.

The Wilcoxon Rank Sum Test and the Mann-Whitney Test are equivalent. In fact, the test
is often call the Mann-Whitney-Wilcoxon Test (or more commonly called the MWW Test).

These two tests are equivalent in the sense that one is a linear combination of the other.



2.2 Test bases on resampling methods

2.2.1 Permutation test

The method of permutation, also called randomization, is a very general approach to test-
ing statistical hypotheses. Permutation test can be traced back to at least Fisher (1935)
and Pitman (1937). Permutation test provides an efficient alternative when the data do
not follow normal distribution. It is applicable to very small samples without specifying the
parametric form of the underlying distribution. The speed of modern computers allow us
to perform many statistical test using the permutation method. The advantage is that one
does not have to worry about distribution assumptions of classical testing procedures. In a
two-sample case, let Fj(x) be the cdf of population i, i = 1,2. The two-sided hypothesis of

permutation test is:
Hy : Fi(z) = Fy(x) H, : Fi(z) < Fy(z) or Fi(x) > Fy(x) for all x,

where strictly inequality happens for at least one x. The alternative hypothesis indicates
that the observations for population 1 tend to be larger or smaller than the observations
for population 2. With the same two-sample setting, under the above null hypothesis,
any permutation of the observations between the two populations have the same chance
to happen as any other permutations. The steps for a two-sample permutation test are as

follows:
e Compute the mean difference between the two samples, denote as D s;

e Permute the N observations from the combined samples, so that there are n; ob-
servations for sample 1 and ny observations for sample 2. Obtain all the possible

permutations with a total number ( fl\i );
e For each permutation of the data, compute the mean difference, denoted as D;

e [f the population mean p is bigger than us, under H; compute the p-value as the



proportion of D’s greater than or equal to D, i.e.

number of D's > D
Pupper tail — N
(o)

e [f the level of significance is «, then reject Hy if the p-value < a.

This permutation test is very flexible. One can choose a test statistic fitted to the context
of the question. Besides testing the mean difference between two populations as a test
statistic, one can also use the sum of each sample. And these two methods will reach the

same conclusion.

2.2.2 Bootstrap tests

Bootstrap is a well-known method to derive asymptotic approximations for carrying out
inference. The basic idea of bootstrapping is that inference about a population from sample
can be modeled by resampling the sample and performing inference on those resamples.
More formally, given the original data, the bootstrap works by treating inference of the true
probability distribution f, as being analogous to inference of the empirical distribution of
f , given the resampled data. The accuracy of inferences regarding f using the resampled
data can be assessed because f is known. If f is a reasonable approximation to f, then the
quality of inference on f can in turn be inferred. This technique allows estimation of the

sampling distribution of almost any statistic using random sampling methods.

2.2.2.1 Basic Bootstrap

The permutation tests described in Section 2.2.1 are special nonparametric resampling tests,
in which the resampling process is done without replacement. In this section we discuss
the resampling procedure with replacement rather than without. Basic bootstrap test is
based on the resampling procedure with replacement, which may apply to much wider areas
including hypothesis testing.

When doing significance tests, the probability calculation under the null hypothesis is

crucial. With the same two-sample settings about Y; and Y5, we are interested in comparing

10



two populations means. So the test statistic of basic bootstrap test is defined as T' = Y; —Y5.

The steps for a basic bootstrap test are listed below:

e Randomly draw n; bootstrap samples from sample ¢ with replacement, i = 1, 2. Repeat

this process B times.

e Calculate the bootstrap sample mean Y;  for sample i, and then the bootstrap test

statistic T* = Y} — Y5

e Under Hy : p1; = po, compute the p-value as the proportion of 7% > T | which is

1+ number of T* > T
B+1

P-value =

2.2.2.2 Tilted Bootstrap

Based on the same two-sample example of basic bootstrap test above, generally we might tilt
the empirical distribution of T™* by sampling with weight p; = (p;1, - - ., Pin, ), attached to the
data values 1, ..., ¥in,, with ¢ = 1,2. For the sampling procedure of basic bootstrap, the
corresponding weight p; = n; '(1,...,1). Of course, the p;’s form a multinomial distribution
with p; > 0 and >, p; = 1. The Tilted bootstrap test follows the same steps of the basic

bootstrap test except sampling with weight p;, which is listed as follows:

e Randomly draw with replacement n; bootstrap samples from sample ¢ with weighs
(Pits - - -+ Din; ), here i = 1,2 and p;; is the weight of jth observation from sample 7.

Repeat this process B times.

e Calculate the bootstrap sample mean Y; for sample 4, then the bootstrap test statistic

is T = Y — Y

e Under Hy : j17 = o, compute the p-value as the proportion of 7% > T | which is

1+ number of T* > T
B+1

P-value =

Tilting is used in many contemporary generalizations of the bootstrap, such as empirical

likelihood and the weighted or biased bootstrap.

11



2.2.2.3 Studentized Bootstrap

The studentized bootstrap test is generally referred as bootstrap-t test, which is the test
that works similarly as the usual Student’s t-test, but replaces the quantiles derived from the
normal or Student t-distribution approximation by the quantiles from the bootstrapped dis-
tribution of the Student’s t-test. The estimated quantiles from bootstrap distribution are
theoretically demonstrated to give more accurate asymptotic approximation under skew-
ness (Hall, 1992a).

To illustrate the procedure of Bootstrap-t, consider the same two sample settings about
Y; and Y, and testing whether the two populations have equal means or not. The test statis-
tic of pooled two sample t-test 1" is defined in (2.1.2). The Bootstrap-t test uses resampling
method to estimate the quantiles of test statistic T by its bootstrapped distribution. The

main principle is illustrated as follows:

e Draw B bootstrap samples of size N = n; + ny with replacement from the original
two samples respectively, with sample of size ny from original sample one and sample

of size ny from original sample two.

e For each bootstrap sample, compute
« /1 1 ’
Spy ne T ong

where Y}; and Y, are the sample means of the b bootstrap sample from sample 1

T, =

and sample 2 respectively; Y7, and Y5, are the sample means of original sample 1 and

(n1—1)S;2+(n2—1)S532
ni+ns—2

original sample 2 respectively; S; = \/ is the pooled two sample

S (Y=Y i =1,210s

ng

standard deviation of bth bootstrap sample; S} = \/

the b"" bootstrap sample standard deviation for each sample.

e Dstimate the p-value as the proportion of 7 > T" , which is

1+ number of T > T
B+1

P-value =

12



2.2.2.4 Other Bootstrap methods

Several bootstrap methods are specifically created for constructing confidence intervals. In
this section, we will review two of them: bias-corrected and accelerated bootstrap (BCa) by
Efron (1987) and t-Pivot by Fisher and Hall (1989).

The bias-corrected and accelerated bootstrap (BCa) is an improved version of boot-
strap method, which adjusts for both bias and skewness in the bootstrap distribution. This
method has been widely used in constructing confidence intervals. And it has been shown
to give better intervals in terms of higher coverage accuracy, narrower width and less com-
putation requirements.

These good properties of BCa bootstrap intervals will be demonstrated by the following
example. Considering the location model X = p + ¢, where E(¢) = 0, the interest is to
construct a confidence interval for p. With an i.i.d. sample of X : {Xy,..., X,,}, a standard

way to construct the confidence interval is based on an asymptotic normal approximation

as follows: -
Xn— 1
~ N(0,1).
o~ N
Its 1 — 2« standard confidence interval is
(X, + za8/vVn , X+ 21-a5/V/1), (2.2.1)

where z, and z;_, are the ot and (1-— a)th percentiles of standard normal distribution.
When the population distribution is heavily skewed, the above confidence interval (2.2.1)
can be greatly improved by replacing X,, and x by some monotone transformation g(.) with

¢ = g(X,) and ¢ = g(p), some bias constant zy, and some acceleration constant a. Now

the asymptotic normal approximation becomes:

(6= 9)/7 ~ N(=2004,07)

U¢:1—|—CL¢,

(2.2.2)

where o4 > 0 and 7 is the standard error of ¢. In addition, it has been shown that (2.2.2)
can always be reduced to the case with 7 = 1 by (Efron, 1987). Denote G () to be the

13



o' percentile of the bootstrap distribution. Then the (1 — 2a)" BCa bootstrap confidence

interval for u becomes

~ A

[GHD(21))), GH@(211-a)))];

where
(ZO + za)
1—a(z0+ 2za)’

Za) = 20

and z[;_q) is similarly defined. In addition, the constant a and 2, are estimated by:

20~ @7 (G(X,))

1 "
am SKEW, (1),

where SKEW,_x (X) is the skewness of a random variable X, evaluated at parameter

1= X,, and I is the score function of the family fu(X,):

1,(X,) = 0/0ulog f.(X,). (2.2.3)

Luckily, the bootstrap process will automatically transfer X,, to normal. Therefore one does
not need to compute the exact form of transformation function g(.) beforehand.

Besides bias-corrected and accelerated bootstrap (BCa) method, pivoting bootstrap is
another improved version of bootstrap method for constructing confidence intervals. The
pivoting bootstrap confidence intervals were first created by Fisher and Hall (1989). They
found that the bootstrap confidence intervals based on pivotal statistics have higher coverage
accuracy than the ones derived from nonpivotal statistics. In our two-sample case, with test
statistic T' defined in (2.1.2), the distribution of 7" depends only on the distribution of the

error term ¢. To demonstrate this, replacing Y;; in (2.1.2) with p; + ;5 gives
€1 — &2

Sepr/ ns + 7

where &; is the sample mean of error of sample 7, and Sgp is

& i
Zznlj—nQ—Q

i=1 j=1

1. =
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If €;; follows normal distribution, then 7" and 7 are equivalent under the null hypothesis

and both follow t-distribution with degrees of freedom n; + ny — 2. So the 95% confidence

interval for p; — po can be obtained by solving the following inequality

Yi—Y, — (p1 — pa2)
Spy /- + L

ni n2

—toors < T = < to.975,

where (975 is the 97.5t" percentile of the t-distribution with degrees of freedom n; 4 ny — 2.
If €;;’s do not follow normal distribution, then t-Pivot bootstrap can be used to approximate
the distribution of T, and obtain a bootstrap confidence interval for the difference of the

means p; — 2. The steps are as follows:
e (Calculate the observed error €;; = Y;; —¢; and combine the &;; of two samples together;
e Randomly draw n; errors with replacement from the set of all errors and assign them

to sample 7. Denote these errors as €]; then compute 7. based on €}; and denote it as
T>.

e Repeat the previous step B times to get 77,, b=1,2,..., B;

e Find 2.5"" and 97.5"" sample percentiles of T7, and denote them as t. o5 and t. g75.
Then the 95% bootstrap confidence interval of 111 — 2 based on t-Pivot can be obtained
by solving the following inequality:

Vi —Y; — (11 — p2)

1 1 < Zfe,.9757
S\ T s
_ _ 1 1 - - 1 1
Y1 =Yy —teorsSpy ) — + — < pr — pp <Y1 — Yo —te 02550y — + —.
nq N9 nq N9

2.3 Edgeworth expansion and Cornish Fisher expan-

teos < T =

with

sion

Edgeworth expansion by Hall (1992a) is a well known asymptotic expansion theory. It is used

for investigating the behaviour of asymptotically normally distributed random variables such
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as sum of independent variables. In some cases, Edgeworth expansion theory helps find the
convolution integral or sum explicitly and derive any asymptotic expansion from an explicit
form. By the end, we can get an explicit function to approximate the distribution of the
statistics. Cornish Fisher expansion is an inverse form of the Edgeworth expansion that gives
an asymptotic expansion of percentiles, so it is also called Cornish Fisher inversion. Cornish
and Fisher (1938) and Fisher and Cornish (1960) studied the Cornish Fisher expansion of
the sums of independent variables. Generally, Cornish Fisher expansion can be derived
from Edgeworth expansion. In this section, we will first introduce the general idea of these
two expansions in Section 2.3.1. Then an example of Edgeworth expansion is provided to
construct confidence interval for two sample mean difference from Zhou and Philip (2005)

is given in Section 2.3.2.

2.3.1 General idea of the two expansions

We will demonstrate these two expansions by constructing the asymptotic expansion for
S, = \/Lﬁ >, Xi, where X; are independently and identically distributed random variables
from F(z) with population mean 1 = 0 and variance 02 = 1. Denoting v = E(X?) and
7 = E(X}) with 7 < oo, v and 7 are the population skewness and kurtosis respectively. By

Central limit theorem, for each X:
P(S, <z) — &(x).

The Edgeworth expansion of S,, is built on the above approximation, but gives a better

approximation of P(S, < x) than ®(x). The main principle is illustrated as follows:

1. Compute the characteristic function of S,,:
Us, (1) = Eexp{(it/v/n) > Xi} = [Wx(t/v/n)]".

2. Apply Taylor expansion on exp{itX/\/n}, as n — oo, then

\px(%) _ B+ "7_2 P, %‘2\2 T o)
= (1- Qt—n) + éz)\/% + (;i)n; + 0(%).
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Increasing exp{itX/\/n} to its nth power gives:
t t2 t2 (it)3y  (it)*r
\If _ i| — |: 2 \n _ ~ yn—1
[ X<\/ﬁ> =g+ =)™ 6vn | 24n )

b Dy

2n
By binomial theory (Bag, 1966), Wg, (¢) in step 1 becomes:

tt )y (i) (it)5y? 1

8n T 6yn | 2d4n | 7om ]+O(E)

gl @)%y (@) =3) | (i) 1
= [H NG 24n 72n ]+O(E)'

s, (1) = e/ [1 N

3. Do a Fourier Transformation (Bochner and Chandrasekharan, 1949) on the approxi-
mated characteristic function of S, in step 1 to get the following probability density

function g(z) as an approximation of the distribution of S,

1 o0 , o0 )
g(x) </ e~ e t/2q¢ 4 7 / eﬂme’ﬁ/?(it)?’dt

—3 [ 2 e
+ T2 . / e’”xe’tQ/Q(it)‘ldt—i-%—n / e*ﬁtﬂfe*tz/?(it)ﬁdt)

Simplify the integrals in this equation to yield

VHs(x) | (1 —3)Ha(x) 72H6($)>
6y/n 24n 2n )’

g(x) = olx) (1+
where H;(z) is the jth Hermite polynomials (Fedoryuk, 2001).

4. Integrate g(x) to get its cumulative distribution function of G(z):
_ B vHa(z) (1 —3)Hs(x)  7*Hs(x)
Glz) = () gb(x)( 6y/1 * 24n i 2n )
_ B y(@?—=1) (7 —=3)(x®—3x) ~*(a® — 102 — 15x)
= 2() gb(:v)( 6+/1 24n * 2n )

(2.3.1)

The G(z) function in equation (2.3.1) is the second-order Edgeworth expansion of distribu-

tion of S,,. And the first-order Edgeworth expansion of distribution of S, is:

v(@* - 1)
Gy/n

From the above two expansions in (2.3.1) and (2.3.2) we can see that:

P(S, <) = G(z) + O(n") = d(x) — gb(as)( ) +O(n™). (2.3.2)
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1. If distribution F'(x) is symmetric and v = 0, then zero order central limit theorem

approximation ®(x) becomes first-order accurate.

2. The distribution approximation of .S,, based on the first order Edgeworth expansion
in (2.3.2) can adjust to the population skewness, which provide a more accurate ap-

proximation than the one from Central limit theorem with skewed population.

From the approximated distribution G(z) in (2.3.2), the o' percentiles of F(x) can be
derived by Cornish Fisher expansion. By inverting the equation (2.3.2), we can show that

the solution = = p, of the equation P(S, < x) = o admits an expansion as follows:
v(@* - 1)

6/n

where 2, is the o' percentile of standard normal distribution given by ®(z,) = a. The

fo = 2o + (2.3.3)

inverse formula in (2.3.3) is called first-order Cornish Fisher expansion (Hall, 1992a). The
percentile of p,, in (2.3.3) adjusts the approximation by taking into account of the population

skewness, which provides a more accurate approximation under high skewness.

2.3.2 Application of Edgeworth expansion in two-sample case

So far, the Edgeworth expansion theory has been used to construct confidence intervals under
skewness in many studies. The corresponding confidence intervals or tests give more accu-
rate results than the ordinary ones (Hall, 1992a). We will first review the way to construct
confidence intervals by three transformations depending on the final form of Edgeworth ex-
pansion. Section 2.3.2.2 reviews the work on constructing confidence intervals by Edgeworth

expansion in a two-sample comparison scenario.

2.3.2.1 Confidence intervals based on three transformations

Considering the same settings from Section 2.3.1, X; are independently and identically
distributed random variables from F(z) with population mean p and variance 2. Usually,

the interval of population mean p is based on the one-sample t-statistic:
_ X
-~ S//n’

18
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where X is the sample mean, S is the sample standard deviation and n is the sample size.
The corresponding t-statistic based confidence interval of population mean p is:
- S - S
X_ta n— _aX_l'ta n—17,~=1]>
( et et )

ath percentile of a t-distribution with degrees of freedom n — 1. This

where tq/2,-1 18 the §

confidence interval is known to have exact 1 — v coverage when F'(z) follows normal distri-
bution. But when F'(z) does not follow normal distribution and highly skewed, the coverage
accuracy of the above t-statistic based confidence interval can be poor.

Hall (1992b) and Zhou and Philip (2005) proposed three transformations to set up the
confidence intervals of Studentized statistics under skewness. These three transformations
can eliminate skewness from the distribution of a Studentized statistic. Let us denote these

three transformations as T;, ¢ = 1,2, 3, and they are listed as follows:

1

T, =T(U)=U +ayU? + ga%QU?’ +n by (2.3.4)

Ty = To(U) = (2an~?3) " Yexp(2an~Y?4U) — 1} + n~ by (2.3.5)
1

T3 =T3(U)=U+U?+ gU3 +n b, (2.3.6)

where the values of a, b and v depend on the final form of the statistic derived from Edge-
worth expansion. For example, under the settings in Section 2.3.1, X; are independently
and identically distributed random variables from F(z) with population mean p = 0 and
variance o2 = 1. Applying T} transformations to U = \%Sn = %Z?:l X, then the values
of a, b and ~y in (2.3.4) depend on the Edgeworth expansion of S,, in (2.3.2):

P(S, < 2) = O(a) + O ™) =a(@) ~ 2D [ L] 1 o)

=d(z) — () [7(@962 + b)] +0(n™)

We have a = %, b= —% and 7 equals to the population skewness of X;.

In addition, these three transformations have two properties:
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1. After transformation, the Studentized statistic under skewness becomes virtually sym-
metric and approximately normal, with property:
P(vnTy(U) < 2) = ®(z) + O(n™ ). (2.3.7)

2. The three transformations are monotone and have simple, explicit inversion formulae

as follows:

TH(t) = ()7L + 3a(t — 03 /n)}* — (af) ™ (2.3.8)
Ty () = (2an~'23) og{2an " ?4(t — n~1by) + 1} (2.3.9)
Tyl (t) = {1+3(t —n'p9) /3 — 1. (2.3.10)

According to the above two properties, the procedure to construct t-statistic based confi-

dence intervals under skewness by each of the three transformations is:

e Denote the t-statistic as T'. Do a T; transformation on the U = \/LET to derive a new
statistic. The distribution of the transformed statistic /nT;(U) is virtually symmetric

and approximate standard normal

e Use the percentile of standard normal distribution, say z,/2, to approximate the per-

centile of the transformed variable /nT;(U)

o Now, T;(U)ajs = “%2 is the § percentile of T,(U). Plugging in T;(U)as into T; ' (U)

to get the corresponding

ath

5 percentile of U

e Since U = \/LET , the 2" percentile of the original t-test statistic is /n7} ' (%)
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By the above procedure, we can get confidence interval of p from each of the three
transformations as follows:
S _ Rl—a/2 S o 1 [ P2 S
X —/nT; ! —, X —/nT, =
(- (232) X v (3) 7))

where ¢ = 1,2,3 and z,2 and 2;_,/2 is the /2th and 1 — «/2th percentiles of standard

normal distribution respectively. The confidence intervals based on three transformations

above have better coverage accuracy than the ones from t-statistic under skewness.

2.3.2.2 Confidence intervals in two sample case by Edgeworth expansion

Zhou and Philip (2005) applied the above idea to construct confidence intervals in a two-
sample scenario. Suppose Y;1,.,Y),, and Y, ., Y5, are two simple random samples from
two independent populations, with sample sizes n; , ny, population means p; , po, variances
o2 , 03 and skewness 77 , 73, respectively. Let N denote the total sample size, i.e., N =
ny + ny. We are interested in constructing confidence intervals for py — po.

By Edgeworth expansion theory, Zhou and Philip (2005) derived an approximation dis-
tribution for the test statistic of unpooled two sample t-test defined in (2.1.1) as follow:
Let Ay = n1/(ny + ng) = ny/N. Assume Ay = A+ O(N™") for some r > 0. Under regu-
larity conditions in Hall (1992a) Appendix A, the distribution of the unpooled two sample

t-statistic 7" given in (2.1.1) has the following expansion:

P(T < z) = ®(z) + %(2352 + 1)p(z) + O(N—min(Lr+1/2)y (2.3.11)

where ¢(x) is the probability density function of the standard normal distribution, ®(x) is
the cumulative distribution function of the standard normal distribution and

2 2 —3/2 3 3
01 05 o1mn 0272

By the same idea in Section 2.3.2.1, Zhou and Philip (2005) provided three (1 — «)100%

transformation-based confidence intervals as follows:

(?1 — Yy — T} (Zl‘“”) S, X — /nT;? (Z“/Q) S) ,

vn Vn
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where T} ' is one of the three inverse transformations, i = 1,2,3 and S = 4/ i—f + i—f

Zhou and Philip (2005) proved that the coefficient of A/v/N in equation (2.3.11) can
represent the extent of skewness in a two-sample scenario. When A/v/N is small (< 0.3),
the coverage accuracy of t-based confidence interval is good; Meanwhile, when the A/ VN is
large (> 0.3), the t-based confidence intervals can be improved by 7} and T3 transformation-
based confidence intervals.

So far, we have reviewed four confidence intervals of the difference of two sample means,
one based on Cornish Fisher expansion and the other three based on transformations. The
confidence intervals can account for population skewness. We would like to consider similar
ideas to hypothesis tests and hope that the derived tests would have better test properties
such as Type I error rate and power. In the next Section 2.4, we will review factors related

to the performance of a test.

2.4 Factors related to type I error rate and power of

the test

Type I error rate and power are two of the most important properties of a test. The value
of type I error rate is defined as the probability to reject a true null hypothesis. Under
our setting, the type I error is the incorrect rejection of a true null hypothesis. It happens
when we conclude that the two populations have different means while their true population

means are equal.
Type I Error Rate = P(reject null hypothesis | null hypothesis is true).

The maximum Type I error rate is defined as the level of significance, denoted as «. The
value of « is often predetermined before data collection and usually a = 0.05.

The power of a test is defined as the probability to reject a false null hypothesis, which
under our setting is the probability of rejecting null hypothesis when the true population

means are unequal.
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Power = P(reject null hypothesis | alternative hypothesis is true).

For every test, we want to increase the power as much as possible, while maintain the
type I error rate to be a small value. The power of a test depends on several parameters,

which are listed as follows:

the distribution of the test statistic

the significance level;

the sample size from each population;

the effect size d, defined as the difference between true and hypothetical value of the

parameter of interest (Cohen, 1988);

the two population variances;

the two population skewness (if populations are skewed).

In two-sample comparison, the effect size equals the absolute value of the true population
mean difference minus the hypothetical mean difference, as § = (11 — p2) —hypothetical (p; —
pi2)-

There are several ways to increase the power of a test. First, one can define a larger
value of significance level, which will enlarge the area of rejection region. As a result,
the probability of rejecting the null hypothesis will increase, so does the power of test.
The second thing is to increase the sample size. The greater the sample size, the more
information for the population. Then the test will have bigger chance to reject the null
hypothesis when the two populations have different means. A third way is to magnify the
effect size. The effect size actually reflects how much the ‘true’ value of the parameter is
away from the one specified in the null hypothesis. In other words, the greater the difference
between the ‘true’ value of the parameter and the value specified in the null hypothesis, the

greater the power of the test.
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On the contrary, either increasing the population variance or skewness decreases the
power of a test. A big population variance increases the amount of sampling error inherent
in a test result. This reduces the probability of rejecting the null hypothesis when the two
populations have different means and hence reduces the power of the test. In addition, the
population skewness has been proved to have effect on the power of one sample t-test by
(Chaffin and Rhiel, 1993; Reineke et al., 2003). When data are skewed, the test statistic
of t-test does not follow t-distribution any more. So it is no longer appropriate to use
t-distribution to approximate the distribution of the test statistic. Furthermore, using an
inaccurate test statistic distribution will not only decrease the accuracy of a test but also
reduce the power of a test.

Although Zhou and Philip (2005) already gave the explicit form of Edgeworth expansion
of the unpooled two sample test statistic, it is still important to find the form of Edgeworth
expansion of the pooled two sample test statistic. As we know, with same population
variances and unbalanced sample size, the pooled two sample test gives higher power than
the unpooled two sample test. This increment of power of the test is a crucial factor to
increase the test accuracy when the sample size is small and limited. In phase-one study
of pharmaceutical industry, the researchers often need to test if there is a significantly
difference in population means of some pharmaceutical dynamics parameters between two
groups of healthy volunteers. In most of the studies, the two group sample sizes are often
limited. In this case, the pooled two sample test is preferred when the two groups have same
population variance, in that the pooled two sample test gives higher power and provides
bigger chance to reject the null hypothesis when the two populations have different means.
In the following Chapter 3 and Chapter 4, we will derived the explicit form of Edgeworth
expansion of the pooled two sample test statistic and provide four new two sample tests

under skewness, one based on Cornish Fisher expansion and three based on transformation.
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Chapter 3

Proposed two-sample test using

Cornish Fisher expansion

In this chapter, we will derive a better approximation of the distribution for pooled two
sample t-statistics based on Edgeworth expansion theorem. The new approximated dis-
tribution can account for population skewness and gives more accurate test results. The
theoretical results are given in Section 3.1 and 3.2. Section 3.3 presents a simulation study
to investigate and compare the type I error rate and power of different two-sample tests

under skewness.

3.1 Edgeworth expansion of the pooled two sample t-
statistic

In this section, we derive the Edgeworth expansion of the pooled two sample t-statistics to
achieve a better approximation of the distribution of the test statistics, which we expect to
account for the effect of skewness.

Suppose X1 1, ., X1, and Xy, ., X3 ,, are two simple random samples from two indepen-
dent populations with mean g, o and common variance 0. The two population distribu-

tions are possibly from different families which are distinct from each other with population
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skewness 7; and 7, respectively. Denote N as the total sample size N = n; + ny and the

population parameters are summarized in Table 3.1: We know that, the test statistic for

mean variance skewness

population 1 g o "
population 2 o o Y2

Table 3.1: Parameters of the two populations

the pooled two sample t-test is as follows,

Xy — Xy — (10 — 10
T 21 2 — (19 /1’2)’ (3.1.1)
Spr/ ==+ =

ni ng

where 1! is the true population mean under null hypothesis, X; = Z?’:l Xij/ni, S, =
\/ (m-DS+me=D% ond §2 = —L- S (X, — X;)2 with i = 1,2,

ni+ng—2 n;—1

s Xij—1) e n; * *2 n; * y * ) —
Let Yz’j — JT“’ YZ — n%ijl Xij and Si _ 1 Zj:l(yij _ YZ )27 for i = 1,2 and

n;—1

7 =1,...,n;. Using these newly defined equations to replace the original statistics in pooled

two sample t-statistic, we have

Y — oYy Vi - Y5
T = Gl e — VN Nt S (3.1.2)
\/(n171)a2s;‘ +(na—1)0255> (n1+n2) (n1—1)8: +(na—1)S53>
ni+ng—2 ning (N=2)An(1-AN)

where Ay = n1/N = ny/(ny + na).
Furthermore, let X = (X3, X3, X3, X4), where

. S . 1 & e
Xi=Y", Xo=— Y X;5=Y", 6 X,=— Yo'
1 1 2 ny JZI 15 > 3 2 4 g ]Zl 2j

Now plugging X into (3.1.2) to further transform the pooled two sample t-statistic, finally
we can write the test statistic 7' as a function of X with 7' = v/Ng(X), which has the form

as follows:
VN(X; — X3)
k:(X)l/Q ’

T =+VNg(X) =
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DS (ne-1)830 (i —1)(X2—X2)+(na—1)(Xa—X2)
where, k(X) = 1(N—21)AN(13AN)2 = = (12V72;>\N(12*/\N) —

expansion to g(X) at EX =U = (U, U, Us,Uy) = (0,1,0,1) gives:

Next, applying Taylor

9(X) = g(U) + a%(g) (X —-U)+ %(X — U)'%(X ~U)+...,
note that g(U) = 0. so
T:\/N{a%(g)/(X—U)+%(X—U)'a;gg?()(—U)jL...}.
If we let
W —\/N{M(X—U)+1(X—U)’829(U)(X—U)}
N U 2 oU? '

Under regularity conditions, we can show that
T=Wyx+ Op(N_l).

Corollary 3.1.1. Assuming EY;? < 00. The first three moments of Wy are as follows:

1

EWy) = —QN‘W[A(l — N2y = 72) + O(N i)y (3.1.3)
E(WX) =1+0(N7), (3.1.4)
AMI=NTY2 /1A =2 9—11A ol
3y _ . min(l,r+3)
E(WR) { N } ) FOW ), (3.1.5)

where A\y = —— = 5. Assume \y = A+ O(N~") for some r > 0. ; = E[(YJJ—:“):)’] is the

ni+ng

population skewness, 1 =1, 2.
The proof of Corollary 3.1.1 is given in Appendix A.1.1.

Corollary 3.1.2. Let Ky, Koy and K3y be the first three cumulants of Wy . The following
results hold:

1 .
Kiv— — N1 — N2 (~, — + O(N—min(1/27+1/2)y 3.1.6
Koy =1+ O(mein(l,r+1/2))’ (3.1.7)
B A(1=)) V2T 8N —2 6 — 8\ —min(1/2,r+1/2)
Ko =~ |52 | - G| o ) (319

where X\ is given in Corollary 3.1.1.
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The proof of Corollary 3.1.2 is given in Appendix A.1.2.
Let xn(t) be the characteristic function of Wy. Then:

(?2 (it)° }

+ Ksy~—2 + ...

XN(t) :exp{KlN(it)—f—KgN 6

Based on the properties of cumulants from (Good, 1977), all cumulants of order r > 3 of
the standardized sum tend to zero, which is a demonstration of central limit theorem. Since

Wy is a function of the standardized sum, then we have the following results:

. (Zt)z (lt>3 —min(1,r4+1/2)
XN(t) =exp KlN(Zt)+K2N 9 —|—K3NT—|—O(N ’ )

2 (3.1.9)

t .
=exp (—§> exp {N71/2 (—A(Zf}) - B(it>3) + O(mezn(l,r+1/2))} 7
where A and B are defined as

A= N1 =N]Y2(y — 72)/2,

_ ~ (3.1.10)
B = A1 - \)]Y? (8AA 2 61 _8;72> /12.

By Taylor expansion, we have
t? .
xn(t) = exp (—§> {1+ N7Y2(=A(it) — B(it)®) + O(N—mnril/2h 1 (3.1.11)
Using Fourier Transformation, the probability density function of Wy can be obtained with:

fun (@) = — / it (t)dt

2m J_o
o )

. 2 ,
e " exp (—5) {1+ N7V2(=A(it) — B(it)®) } dt + O(N-mn(Lr1/2)y,
Based on the properties of Hermite polynomials of k" order

Hy(z)o(x) ! /00 e e 2 (it)kdt.

=5 N
We can write
firy (@) = 6(x) — N"V2AH, (2)(x) — N2 BHy(2)(x) + O(N (17112

= ¢(x)[1 + N_1/2(3B — Az — N_1/2B£L'3] + O(N—min(l,r+1/2))‘
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where H;(z) = x and Hs(z) = 2® — 3z. To get the cumulative distribution function of Wy,

we can use another property of the Hermite polynomial

L H()0(2) = ~Heor(2)0(a).

Then
PWx <z) :/ fwy (z)dz + O(N_mm(l’rﬂm)

:/”’ [gb(x) — N—1/2AH1(x)gz§(x) - N‘l/QBHg(m)(b(x)} dr + O(N—min(l,r-i-l/Q))

:@(x) + N_1/2AHO(IE)¢($) + N_l/QBHz([L')Qb(QZ') + O(N—min(l,r+1/2))
—®(z) + N"V2[A + Bz — 1)]é(x) + O(N-mn(Lr+1/2)y
(3.1.12)

where Ho(z) = 1 and Ha(z) = 2* — 1. Since T = Wy + O,(N~1), we have the following
result for the distribution of 7"

Theorem 3.1.3. Let Ay = ny/(ny + ng) = ny/N. Assuming Ay = X+ O(N~") for some
r > 0, under reqularity conditions (in Appendix A), the distribution of the pooled two sample

t-statistic T' given in (2.1.2) has the following expansion:
FP(z) = P(T < x) = ®(z) + N"V2[A + B(a® — 1)]¢(x) + O(N-n1r+1/2)) (31 13)

where ¢(x) is the probability density function of the standard normal distribution, ®(z) is the
cumulative distribution function of the standard normal distribution and A, B are defined

in (3.1.10).

The proof of Theorem 3.1.3 is given in Appendix A.1.

The right hand side of equation (3.1.13) is the first order Edgeworth expansion of the
pooled two sample t-statistic, which can account for population skewness by A and B in the
second term of this expansion. The Edgeworth expansion theory can be applied to construct
confidence intervals by giving better approximation of the percentiles of the test statistic.

Following this idea, we construct a new two-sample test with rejection region derived from
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the Edgeworth expansion theory. The details are given in Section 3.2. This rejection region
is expected to be more accurate than the ones from normal approximation under skewness.
We expect the new test to provide a better power in detecting the true two population mean

difference.

3.2 Cornish Fisher expansion and the new test based

on Cornish Fisher expansion

3.2.1 A two-sample test based on Cornish Fisher expansion

One new test can be constructed by Cornish Fisher expansion theory. From Section 2.3.1,
we know that the Cornish Fisher expansion can be used to compute the percentiles of
the distribution derived from Edgeworth expansion. In this case, the percentiles of the

distribution in (3.1.13) admits a Cornish Fisher expansion, which has the form as follows

Corollary 3.2.1. Let 1, denote the o' percentile of distribution F}l)(t) in (3.1.13). Then
based on Cornish Fisher expansion theory, the value of n, admits an expansion with the

form below:

Na = 2a — N7V2[A 4 B(22 — 1)] + O(N~min(Lr+1/2)) (3.2.1)

where z, is the o' percentile of the standard normal distribution and A , B are defined

in (3.1.10).

This corollary is a direct result of the theory for Fisher expansion from Hall (1992a).

Hence we omit the proof.

Now define £ = z, — N"V2[A + B(z2 — 1)], where

A=D1 =22 (5 =) /2
B

AN —2 . 6—8\y .
= (1= )]V 2 - 20, ) /12,
AN 1— Ay
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and

n n; & Xij_Xi ’
%_(n,»—l)(ni—2)z{ Si }

j=1
ny

Ay = ————
N (n1+n2)

,i=1,2.
With the test statistic 7" defined in equation (2.1.2), we have:

1. The rejection region for two-sided test with hypothesis Hy : iy — pto = 19 — fioo VS.
Hy @ py — pg # pao — pigo 18

T<id, oo T>H (3.2.2)

2. The rejection region for one-sided upper tail test with hypothesis Hy : p; — ps =
H1o — foo VS. Hy @ piy — pio > pig — oo 18

T> (3.2.3)

3. The rejection region for one-sided lower tail test with hypothesis Hy : g — pe =
pio — p2o V8. Hy o pp — pa < piao — oo 18

T <t (3.2.4)

We reject the null hypothesis if T" falls into the rejection regions for corresponding al-
ternative hypothesis. In the further discussions, we will refer the two sample test based on

Cornish Fisher expansion as “TCF” and the two sample test based on normal approximation

as “TN”.

3.2.2 Type I error rate of the two-sided test based on Cornish

Fisher expansion

In this section, we calculate the order of approximation to type I error rate for the two-

sided test with rejection region in (3.2.2) from the first order Cornish Fisher expansion.

31



Under the two-sample setting in above Subsection 3.2.1, the distribution of the test statistic
T is F;l)(x) defined in Theorem 3.1.3, and the rejection region of the test is defined in
formula (3.2.2). Denote the two cutoffs in formula (3.2.2) as

fcf :ZQ,Q_N_I/2[A+B(Z§ _1>]éza2+ANa2
af2 = Zaf /2 / o (3.2.5)

A

ti{a/Q = Zl-a/2 — N7V? [A + é(szaﬂ - 1)] = Z1—a/2 T+ A1\7,1—a/2,
where
AN,a/2 =N[4+ B(Zi/z —1)]

AN,1704/2 = _N_I/Z[A + B(Z%—ap - 1))

Note that the two cutoffs in (3.2.2) are not symmetric about zero. Instead, they are a shift
version of the cutoff from the large sample normal test. From Bai and NG (2005), under

standard regularity conditions we have
o=+ Op(N7V2),
and as defined previously Ay = A+ O(N~"). Then we have the following results

A= An(1— )\N)]lﬂ(’?l —72)/2
= [(A@ =)+ OV ) [ES2 + 0, (N712)]

= (A1 = W)V ISR O (Ne)

A4 Oy (N,

similarly

R SA\v —2 . 6—8\y .
B =[\n(1= Ay N2 - N ) /12
Ay 1— \y

— (- o { B - 825

8\ —2 6 — 8\ (e L
= OO = AP = T3l 124 G, (V)

1

— B + Op(]vfmin(r@))‘

ot op<Nmm<“%>>} /12
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Based on the above results of A and B, we can obtain
AN,a/Q = -—N"'2[A+ B(Zi/z —1)]
= —N"V2[(A+ O, (N"™"2))) 4 (B + O, (N~™"2)))(22, — 1)]
= ~NT[A+ B(2 )5 — D] + Op(N-mnLr1/2)

= Ao+ OP(N—min(l,r—H/Q)),
and

AN,I—a/2 =Apni—a/2 + Op(N_mm(l’TH/2))~
Now we have

5262 _ tZJ;Q + OP<N—min(1,T+1/2))

By = 15 o Op(N A1)

and the following Lemma:

Lemma 3.2.2. Let 1, denote the o' percentile of distribution F}l)(t) in (3.1.13) and 1,
denote the estimate of 1., which satisfies Nl = Mo +O,(N~™ML+Y2)) - Then under standard

reqularity conditions, the following result holds:

P(T < fas2) + P(T > f1-a/2)
=1- Fi(“l)(nlfa/Z) + F}”(na/z) + O(N_min(l’r+1/2))-

Recall that the distribution of F}l)(x) in Theorem 3.1.3 takes the following form
F{(z) = P(T < o) = ®(x) + N"Y2[A + B(z? — 1)]¢(x) + O(N™n(r+1/2),
Hence, based on the result of Lemma 3.2.2, the type I error rate of the two-sample TCF

test can be obtained as

P(type I error of the two-sided TCF test)

=1-FD@ )+ B

T a2 a/2) + O(N—min(l,r+1/2))

(3.2.6)
=1= 0t ) + @(t),) = N7V A+ B((t], )" = DIt )

+ N71/2[A + B((tgj;2>2 _ 1)]¢(t2];2) + O(mein(l,r+1/2))_

33



Due to the fact that A and B in (3.1.10) are fixed, then we have
Anae = ANi—ap2 = O(N~1/%) (3.2.7)
Note that

N™YA+ B((td,)" = 1)]
~N7Y2[A+ B((2a72 + Anas2)? — 1)]
_ _N—1/2[A + B(zg/Q + O(AN,a/z) —1)]
= Anap+ O(Anap - N7Y2)

= Anape+O(NT. (3.2.8)
Similarly,

NTPA+ B, )" = D)
=ANi—app+ON) =Anap+ON. (3.2.9)

Then apply Taylor expansion to ®(t;” a/2) qb(t?iaﬂ) at 21_q/2 and to O(t a/2) gzﬁ(ta/Q) at Zq)2

correspondingly, we have

Bt 5) = P(21-a/2) + P(21-0/2) AN1-as2 + O(AX 1 _ay2);
O(tl,) = D(za2) + 6(2a/2) Anasz + O(AR 0 /2),
St 1) = D(21-a/2) + & (21-a/2) ANi1—aj2 + O(AN 1 a2,
O(tls) = B(zass) + ¢ (Za2) Anajz + O(A% o p0)-

Using these four Taylor expansions and (3.2.8), (3.2.9) to replace the terms in (3.2.6), we
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have:

P(type I error of the two-sided TCF test )

= 1=, ,) +(t,) - NTVA+ B((,,)° — Vet )
+NTPA+ B((t,)? = DIg(t,) + O(N-mmbr i)

= /2= ¢(21-a2) ANasz + /2 + G(2a/2) Anasz + O(AF , 0)
+HANa/2 + ONT[G(21-a/2) + & (21-a/2) An,asz + O(AF ap2)]
~[Ana/2 + ON[B(zas2) + ¢ (Za/2) Anasz + O(AY 4 0)]
FO(N-min(rH1/2))

= 0+ Anapd(2i-a2) — Anapd(zap) + O(NTH) + O(N - H1/2))

— a4 O(Nmin(r1/2)) (3.2.10)

where (3.2.10) is due to the fact that ¢(z1-a/2) = ¢(2as2) and Anapp = Aniap =
O(N~'/2). Then we have the follow theorem,

Theorem 3.2.3. Under standard reqularity conditions, when Hy is true, the theoretical type

I error rate of the two-sample TCF test, with level of significance « is

P(T <)+ P(T >, )
—a+ O(mein(l,rJrl/Z))'
We can easily show that the approximated type I error rate of the pooled two-sample
t-test based on normal approximation is o + O(N~™"1r+1/2)) " This means the type I error

rate accuracy is the same order of O(N~™"1Lr+1/2)) for both the test based on Cornish

Fisher expansion and the test based on normal approximation.

3.2.3 Power of the two-sided test based on Cornish Fisher expan-
sion

Now consider data generated under H, : p; — ps # p10 — poo- For power calculation, let

d = (1 — p2) — (10 — po0). When H, is true, the theoretical power equals the probability
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of rejecting the null hypothesis with formula:
Py, (T >80 ,) + P, (T <i,).

Following the same Edgeworth expansion procedures in Section 3.1, the distribution of the

test statistic 7' under H, can be obtained:

Theorem 3.2.4. Let Ay = ny/(ny +n2) = ny/N. Assume Ay = X+ O(N™") for some
r >0, and § = O(N~Y2) under H,. Then under regularity conditions (in Appendiz A), the
distribution of the pooled two sample t-statistic T given in (2.1.2) has the following expansion

under H,
P (2) = Py (T < x) = FY(z — ¢,) + %n(iv — ea)d(x — ¢) + O(N ™7 +2))(3.2.11)

where ¢(x) is the probability density function of the standard normal distribution, ®(z) is
the cumulative distribution function of the standard normal distribution, and F}l)(x) 15 the
distribution of T under Hy defined in Theorem 3.1.3. Here, cy = &/ 02(7%1 + n%) and
gy =007 AL = N)](m —72).

The proof of Theorem 3.2.4 is given in Appendix A.2. Now, denote

Qz) = %V(a: —en)d(a — cn). (3.2.12)

Thus the equation (3.2.11) becomes
F{™ (@) = Py, (T <) = F{Y(z — ex) + Q() + O(N-™m(rs1/2) - (3.2.13)

Let t‘f{ o2 80d ti% be the 1—«/2 and «/2 percentiles obtained from distribution F}l) (x).

Denote £/ _ /o and 52;2 their sample estimate given in (3.2.5).

R N 1 1
cf __ jef _ 2(___ _
L=t , §/\]o (n1+n2)
— 21 /2+AN1 /2_5/ 0—2(i+i)
- e V ny N

= UNi—aj2 + ANJ,QQ
= UN,l—a/Q + AN,l—a/Z + Op(N—min(l,’r‘—i-l/Q))

— sz + OP(N—min(l,r+l/2))
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where Uy 1_a/2 = Z1—aj2 — 0/ ‘72(% + %) and LY = Uyn1_qj2 + AN1—q/2. Similarly

1 1
Lyt =i, —6/4/0? —
o+ )
= Z/2+AN /2—5/\/02(1+i)
« @ n g

= UN,a/2 + AN,oz/2
_ UN,a/Q + AN,a/Q + Op<N—mm(1,r+1/2))
_ L;:f + Op(mein(l,erl/Q))
where Uy /2 = Zaj2 — 0/ (72(7%1 + ) and L; of = = Un,aj2 + An,a/2- We have,
ch ch +0 (N min(1, r+1/2))
ﬁ? — Llcf + Op(N—min(l,r—H/Z))'
Then based on the result of Lemma 3.2.2, under standard regularity conditions, the theo-
retical power of the two-sample TCF test can be obtained by
Py, (T > i /2) + Py, <T < t‘”;2>
H, H, min(1l,r
— 1 —Fj(ﬂ )( tef a/2) —{—F( )( a/2) + O(N—min(Lr+1/2))
= 1= (L) = N7V2[A+ B((L))? = D)]o(Ly)) — Q(LY)
+O(LT) + NV2[A + B((LI)? = D]o(LY) + Q(LY) + O(N—min(hr+1/2)) (3.2.14)
Under the local alternative, we consider the departure from the null hypothesis 6 = oy —
0 in the order of O(N~'2) i.e. dy = O(N~'/?). In this case, the order of §/,/0?(;- + ;=)
is O(1) and both Uy /2, Uni-aj2 have the same order of O(1). While under the fixed
alternative, § equals a constant which is O(1). Therefore the order of 6/,/0%(;= + -) is
O(\/N) and both Uy /2 and Uy 1_q 2 have the same order of O(\/N)
Note that the main purpose of this study is to improve the power of the two-sample test

when the two population mean difference is small and the total sample size is limited, i.e.,

d/o is small and the total sample size N is not very big. Under this scenario, without loss
of generality, we can assume:

/ 1 1
Z1—a/2 >(5/ 0'2(n—+n—)
1 2
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For example, if a = 0.05 we have:

1 1
Z1-aj2 — 5/\/02(71—1 + n_g) >0

) (ANLAD)
= 1.96 > —
o N
1.962%02
= N<——"——
2An(1 = Ay)’

The Figure 3.1 shows the upper bound of N that satisfies the above equation, with effect
size < in (0.1,0.3). When g = 0.3 the minimum upper bound of N is 170, which is reached
at )\N = 0.5. As long as N is smaller than the values on the plot with corresponding Ay,

we have:

Zl_a/Q_d/ 02<T%1+nl2) > 0

nitnz
= 5<21,a/20'1/m

= 5= O(N-1/2),

Therefore, under the main focus of this study, the order of § is more close to O(N~'/2),
which is the order under local alternative hypothesis. Thus, for further discussion, we will
focus on the power of two-sample T'C'F test with the data generated under local alternative

hypothesis.

3.2.3.1 Power of the two-sided TCF test under local alternative hypothesis

Recall that, under the local alternative, both Uy /2 and Uy 1_a/2 have the same order of
O(1). Therefore we have
N7Y2A + B((L)? - 1)]

(
(UNa/Q + ANa/2> —1)]

(
= — N2[A+ B( (5.2.15)
(
(

=— N"'"?[A4 B(UR o + O(N'?) = 1)]

N7P[A+ B(UR 0p — D]+ O(NT).
Similarly, —N~"2[A + B((L{)* = 1)] = =N""?[A+ B(U},_,/» — D] + O(N7'). Then
apply Taylor expansion to ®(L), ¢(L) at Uy, aje and to ®(L), ¢(Li) at Uyao
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Figure 3.1: Upper bound of total sample size N for local alternative. The upper bound is

a function of the effect size = g and Ay .

correspondingly, we have

(L) = ®(Un1-as2) + ¢ (Un1-a/2) Ani—as2 + O(AN 1)),
O(Li") = ®(Unas2) + ¢(Unaj2) Anasz + O(A% ), (32.16)
sz = ¢(Unji—aj2) + ¢/<UN,1—a/2)AN,1—a/2 + O(A?\/,ka/z)a

= O(Un.a2) + 6 (Un.a2) Axajz + O(AY0)0)-
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Then (3.2.14) can be further calculated as

power of the two-sided TCF test =1 — F( )( )+ F(H“)( ) + O(N~min(Lr+1/2))

i /2
=1—0(Un1-0/2) — A(Un1-as2)ANa2 + P(Una) + d(Unaj2)Anap + O(NH)—
(NTV2IA4 B(UR o = DI+ O(N™)) (9(Un-a2) + ¢ (Uni-ar2) Ani-ajp+O(N))
+ (N"[A+ B(UR 2 — DI+ O(N ) ((b(UN,a/z) + 0 (Una/2)Anase + O(N_1)>

— QL) + QL") + O(N—mmthr1/2))

= 1= ®(Uni-a2) = NVA+ B(UR,_jo — DIO(Uni—aj2) — QL) + QL)

+ ®(Unayz) + N7 A+ B(UR g2 = D]G(Unas2) + Lo + O(N 1)),
(3.2.17)

a/2

where Ly , 4,1 has the form

Livmmn =— O(Uni—ap)Anap + 0(Unap)Anas +O(NT)
— (NTV2[A+ B(UR 1 _ajo — DI® (Uni—a/2) An1-as2
+ (N"V2A+ B(UR 0o — D] (Uniaj2) Anaa (3.2.18)
= — ¢(Un1-aj2)An.ajz + O(Una2) Anasz + O(N7H)
=ANa/2[0(Unas2) = (Uni—as2)] + O(N )
Note that, the approximated power of the same test based on standard normal approxima-
tion is:
power of the two-sided TN test = 1 — F( (UN 1—ay2) + F (UN aj2) + O(N—min(Lril/2)y
=1=®(Uniasp) = NVPIA+ BUR 0 — DI6(Uni-as2) = QU 1-a2) + Q(Ux.as2)
+ ®(Unaj2) + N2 A+ B(UR oo = DIG(Unaj2) + O(N T2,
(3.2.19)
By comparing the two power functions in (3.2.17) and (3.2.19), we can prove the following

result.

Corollary 3.2.5. For the two-sided tests at level

Power of TCF test - Power of TN test = Ly, 4,1 + O(N-™mLrH1/2)y (3.9 90)
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The proof of Corollary 3.2.5 is given in Appendix A.3. Clearly, the power of the test
from Cornish Fisher expansion in (3.2.17) will be bigger than the power of the test based

on normal approximation in (3.2.19) if Ly, 4., in (3.2.18) is bigger than zero.

Corollary 3.2.6. The two-sided TCF test at level o is more powerful than the TN test, if

and only if the following inequality holds

2 2
(8 + Co — X)’Yl > (8 -+ Co — m)’}@, (3221)

_ 6
where Co — W
[e3

The proof is given in Appendix A.5. Clearly the sign of Ly, ~,,» depends on the values of
A, 71 and ¥. In real practice, the values of v; and 7, are determined by the population. Then
the value of A = Ay +O(N™") = ny/N+O(N~") becomes the main factor to control the sign
of Ly, 4. With a fixed value of 71 and ~,, we can further rewrite the equation (3.2.21)

into

2 2
(8+Ca - X)71 > (8+Ca - m)’h

S (84 ca)(m1 — )N+ [(8 4 ca)(y2 — 71) — 2(71 +72) A+ 271 < 0. (3.2.22)
The left side of inequality (3.2.22) always has roots since
(84 c)(v2 —71) = 2(1 +72)]* — 4(8 4+ ¢) (1 — 12)(2m)
=(c+6)*7] + (c + 6)*v5 — (56 + 24c + 2c*) 172
=[(c+6)71 — (c+ 6)72]* + 2(c + 6)*y172 — (56 + 24c + 2¢*) 1172
=[(c+6)y1 — (c+ 6)72)> + 167172 > 0,

with equality holds iff 74 = 79 = 0. Suppose w; and wy are the two roots of the left side
of (3.2.22), without loss of generality let w; < wy. Then we have the following solutions of

A for Ly, 4,0 > 0:
e if v; > 5 then wy < A < wy;

o if 74 < vy then A < wq or A > ws.
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To demonstrate the relationship between A and Ly 4, +,,1), consider one specific example.
Suppose population 1 follows Gamma distribution and population 2 follows normal dis-
tribution. Let the two populations have common population variance o and population
skewness v; > 0 and 7, = 0 respectively. In addition, the total sample size N = 40 and
the true two population mean difference u; — puo departs from Hjy in the amount of § that
satisfies /0 = 0.3. With o = 0.05, the TCF and TN tests were applied to test the two
population mean difference. Since v, > 75, by solving the inequations (3.2.22), the solutions
2

can be obtained as wy < A < wy, where w; = T = 0.1978 and wy = 1. The power gains of

TCF over TN test (i.e. L(nq.0) for 1 =2 and 7, = 6 are shown in Figure 3.2.

Power difference between TCF and TN Power difference between TCF and TN
N=40 vy, =2 vy, =0 N=40 vy, =6 vy, =0

0.4
0.4

0.3
1
0.3
1

0.2
0.2

0.1
0.1

0.0
0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.2: Power difference between TCF test and pooled two-sample t-test

From Figure 3.2, we can see that the power of TCF test is bigger than the pooled two-
sample t-test when the value of X is between 0.1978 and 1, which is the same solution from
solving the inequations (3.2.22). In majority of real applications, the two sample sizes satisfy
this condition of 0.19 < A < 1, which promises a higher power of TCF test than the pooled
two-sample t-test. Note that we should ignore the phenomenon around A = 0 in the plot.
This is because the Edgeworth expansion theory was established for fixed A > 0.

Discussion: the difference of power relies on the value ~q, 5 critically. In practice, 1, ¥2
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are unknown. We would need an estimate of them in order to see the difference in power.
With larger sample size, the estimate 4; is generally close to v, (in the order of O(N~1/2)),
But with small sample size, the estimated 4; may be far from the ;. In this case the actual
power difference from the tests can only achieve Ly 5, 4,,15)- For example, N = 40, A = 0.6,
(which gives ny = 24, ny = 16), 71 = 6, 72 = 0. In this setting with data from gamma
distribution for population 1 and normal distribution for population 2, the average estimate
of 41 from 10000 runs is only 3.17. However the true parameter is 7v; = 6. Even though
2 is close to 7, the power difference is L(n 3, 4,,y) Which is around 0.13. If we had used
L(N 1 72,0, We would expect the difference of power to be 0.258. This would be unrealistic
since the 4; estimate used in the test did not get close enough to 6.

From this section, we know that the power difference between the two-sample TCF test
and the pooled two-sample t-test depends on Ly, ~,.2. Under local alternative, we can
always arrange the Ay to achieve a higher power of TCF test in real practice. In addition,

the actual power increment depends on the estimation accuracy of the population skewness

i

3.2.3.2 The difference of sample sizes needed to achieve certain power for TCF

and TN tests

In Section 3.2.3.1, the theoretical power the of two-sample TCF test and TN test can be
calculated based on the equations (3.2.17) and (3.2.19) respectively. Thus, with a given
level of significance o and the desired power, we can compute the minimum sample size
of two-sample T'C'F test and T'N test by solving these two equations. For example, with
given population parameters (71,72, A) and desired power, we can plug these values into the

power equations (3.2.17) and (3.2.19) to solve for the total sample size N:

power of the two-sided TCF test = desired power (3.2.23)

power of the two-sided TN test = desired power. (3.2.24)

The equation is a nonlinear function of the total sample size N. The solution can be obtained

numerically using known root find algorithms. Some examples are bisection method, secant
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method, Newton’s method, fixed point iteration method, etc. We provide an R function to
solve for the total sample size.

From Section 3.2.3, we know that the power of the two-sided TCF test is bigger than the
power of the two-sided TN test if the condition in Corollary 3.2.6 holds. In this case, the
two-sided TCF test will need smaller sample size than the two-sided TN test to achieve the
same power under skewness. In this section, we will illustrate this property by an example.

Suppose population 1 follows gamma distribution and population 2 follows normal dis-
tribution, with common population variance o2. Suppose the population skewness is v; and
v9 = 0 respectively. In addition, the true two population mean difference p; — s departs
from Hy in the amount of § that satisfies 6/0 = 0.3. Take A = 0.6, that is ny = 0.6/N. With
a = 0.05, we want to use TCF and TN tests to test the two population mean difference.

Then the total sample sizes needed for each test to achieve power 0.8 are shown in Table 3.2.

M Nrcr Nrn o Naipr Anag2
0 363 363 0 0.00
1 355 366 11 -0.04
2 347 369 22 -0.08
3 339 371 32 -0.13
4 331 374 43 -0.17
5) 323 377 54 -0.22
6 314 380 66 -0.27
7 306 383 7 -0.32
8 297 386 89 -0.36
9 290 389 99 -0.42

10 281 392 111 -0.47

Table 3.2: Sample size to achieve power=0.8 for TCF and TN tests

In Table 3.2, v, is the population 1 skewness that increases from 0 to 10. Npeop and

Nry are the sample sizes needed to achieve 0.8 power for two-sample TCF and TN tests
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respectively. Ngirr = Npy—Nrcor is the sample size difference between two-sample TCF and
TN tests. Ayao = Ly — Unajpg = —N"V2[A+ B(22 — 1)] equals the amount of percentile
correction based on Cornish Fisher expansion in equation (3.2.1) from Corollary 3.2.1. The
amount of percentile correction |Ay /2| gets bigger as the skewness v, becomes larger.
Clearly, the TN test needs more samples to achieve the same power 0.8 than the TCF test
when v, > 0. In addition, the sample size difference NVy;¢; increases quickly as 7, increases.

Note that the sample size calculation of these two tests is based on the population
skewness v and ;. In practice, the values of population skewness are unknown. We have
to estimate the population skewness by sample skewness 4, and 5. Thus, the computation
of Nrcr and Nrppy relies on the estimation accuracy of v; and 7, critically. In this case,
the sample sized needed is the max(N,, Ng), where N, is the sample size needed to give
satisfactory estimate of the population skewness and Nz refers to the sample size calculated
from solving equations (3.2.23) and (3.2.24).

Recall that, if the condition in Corollary 3.2.6 holds, the power of the two-sided TCF
test is higher than the power of the two-sided T test under skewness. This power increment
of the test is a crucial factor to increase the test accuracy. Furthermore, when the sample
is limited or very expensive to be obtained, the two-sample TCF test can not only achieve
a higher power of the test but also save money in collecting the data comparing with the

two-sample TN test.

3.2.4 Type I error rate of the one-sided test based on Cornish

Fisher expansion
As is known in the Edgeworth expansion literature that one-sided tests may behave differ-
ently from two-sided tests. We also present the order of approximation to type I error rate

for the one-sided TCF test with rejection regions given in (3.2.3) and (3.2.4) for upper and

lower-tailed tests respectively under the same two-sample setting.
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3.2.4.1 Type I error rate of the one-sided upper-tailed TCF test

Recall that the distribution of F}l)(x) in Theorem 3.1.3 takes the following form
FM(x) = P(T < 2) = ®(x) + N"V2[A + B(a? — 1)]¢(x) + O(N-min(Lr1/2)y,
Then the type I error rate of the one-side upper-tailed TCF test can be expressed as:
P(type I error of the one-sided upper TCF test)
—1_ F}l)(ﬁ{a) + O(N—mm(l,r+1/2)) (3.2.25)
=1-(tiL,) = NV [A+ B((tL,)? — D]e(tiL,) + O(N—mmrHi2),
Earlier from (3.2.8), we can approve:
—NTV2[A+B((t )P =1)] = Ayi_a + O(N7Y), (3.2.26)

where t¢/ | = 2o+ An1_o and Ay _q = —N"V2[A+ B(22 , —1)]. From previous results,
we can also show:

O(t77,) = ®(21-a) + G(21-a) AN1—a + O(AX 1 o),

O(t7) = ¢(21-0) + 6 (21-0) AN 10 + O(AX 1 ).
Put (3.2.26) and (3.2.27) into (3.2.25), we have

(3.2.27)

P(type I error of the one-sided upper TCF test )
— 100 - NV B - DI, ) + OV
= a — (fb('zl—a)AN,a + O(A?V,a)
"’[AN,a + O(NA)][(Z)(ZP&) + (b/(zlfa)AN,a + O(A?V,a)]
_{_O<mein(1,r+1/2))
_ a—+ AN,aﬁb(Zl—a) . AN,aﬁb(Zoé) + O(N—l) + O(N—min(l,r—i—l/Q))
= a4 O(NTmin(ril/2)y (3.2.28)
Then we have the follow theorem,

Theorem 3.2.7. Under standard regularity conditions, when Hy is true, the theoretical type

I error rate of the upper-tailed TCF test, with level of significance « is

P(T > tA?ia) =+ O(N—min(l,r—ﬁ-l/Q)).
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3.2.4.2 Type I error rate of the one-sided lower-tailed TCF test

Following the same procedures in Section 3.2.4.1, the type I error rate of the one-sided

lower-tailed TCF test is:

P(type I error of the one-sided lower TCF test)
:F}U(tﬁf) + O<mein(1,r+1/2)) (3_2‘29)

(1) + N7V + B — DJ(1ET) + O(N-minChrs1/2),

Again from (3.2.8), we can show:
~NY2[A+ B((t9)* = 1)) = Ano + O(N7Y), (3.2.30)
where % = 2z, + Ay and Ay, = —N7Y2[A + B(22 — 1)]. Furthermore,

®(te) = ®(2a) + d(2a) Avia + O(AY ),

/ (3.2.31)
¢(tgf) = ¢(2a) + ¢ (20) AN + O(A?V,a)‘

Put (3.2.30) and (3.2.31) into (3.2.29), we have

P(type I error of the one-sided lower TCF test )
— (I)(tgf) + N—l/Q[A + B((tgf)Q N 1)]¢(tzf/2> + O(N—min(l,r+1/2))
= a+ ¢(2a) AN + O(A?V,o)
_[AN,a + O(Nil)][(b(za) + (b/(za)AN,a + O(A?V,a)]
+O(N—min(l,T+l/2))
= @+ Anad(2) = Anad(za) + O(N 1) 4 O(N-mn(r1/2))
= a4 QN2 (3.2.32)

Then we have the follow theorem,

Theorem 3.2.8. Under standard regularity conditions, when Hy is true, the theoretical type

I error rate of the lower-tailed TCF test, at significance level a is
P(T < i) = a+ O(N-mnbrti2)),
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For the two-sample TCF test, both one-sided upper and lower-tailed tests have the
same type I error rate approximation accuracy of o 4+ O(N—™"(1m+1/2))  Moreover, we can
show that the approximated type I error rates of the same one-sided tests based on normal

approximation are

P(type I error of the one-sided lower-tailed TN test )
— (I)(z;f) + N—1/2[A + B((zgf)2 _ 1)]¢(Z2J;2) + O(N—min(l,r+1/2)>

=  a+O(N"V?), (3.2.33)

P(type I error of the one-sided upper-tailed TN test )
= 1-0(7,) = N7V A+ B((2 )2 = Dg({! ) + O(N—mimr+1/2)
=  a+O(N?). (3.2.34)
According to the above results, the type I error rate accuracy for the one-sided TCF test

has higher approximation accuracy than the one-sided TN test, since min(1,7+1/2) > 1/2
with r > 0 as defined in Corollary 3.1.1.

3.2.5 Power of the one-sided TCF test under local alternative

hypothesis

In this section, we derive the power function of the one-sided upper and lower tail TCF and
TN tests under local alternative hypothesis. We also provide the detailed condition under
which the theoretical power of the one-sample TCF test is higher than the one-sample TN
test.

3.2.5.1 Power of the one-sided upper-tailed TCF test under local alternative
hypothesis

According to the previous two-sided results in Section 3.2.3.1, now we consider data gener-

ated under H, : py — po > pui — pu3. When H, is true, the theoretical power of the one-sided
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upper-tailed TCF test equals the probability of rejecting the null hypothesis:

Py, (T > f‘{{a) ,

where £/ is the estimated (1 — ) percentile from distribution Fél)(x) following similar

formula as (3.2.5). Denote

N . 1 1
Ly, =1, =/ )o2(— + —
l—« l—« / 9 <n1 + n2)
N 1 1
= Zca + Anj—a — /40 (— + —)
nq N9

_— UN}l_a + AN,l—O&
= UN,lfa + AN,lfa + Op(mein(l,r+1/2))

—_ L?ia 4 Op(mem(l,rJrl/Q))’

where Uy o = 21-a — 0/4/0%(+ + niz), and Li{’ia =UNi-a+ ANi-a- We have

ni
IA/;’J:& _ L?ia + Op(mein(l,r+1/2)>.
Then the power can be expressed as,

= 1= F(L) - QML) + O(N Tt
= 1-0(L) - N A+ B((LL) - D)oL,

~QUEL,) + O(N-Tn /)
We have shown in equations (3.2.15) and (3.2.16) that
~ NT2A+ B((LiL,)? )] = -N"V2A+ B(UX o — D]+ O(N7Y);

(L) = ®(Un,i-a) + O(Uni—a)An,i—a + O(AY 1 0)
AL ) = ¢(Unia—a) + ¢ (Uni—a)Ani-a + O(AY ;).
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Putting equations (3.2.36) and (3.2.37) back into (3.2.35), we have the
power of one-sided upper tail TCF test = 1 — F}H“)(L?ia) + O(N—minthrl/2))
=1—P(Uni-a) — ®(Uni—a)ANi—a + O(A?V,l—a)

— (N2 A+ B(U% 1y = D]+ ONY) (0(Uni-a) + ¢ (Uni-a)Ani-a

' (3.2.38)
+O(A% 1)) = QL) + O(N-mintrair2)
=1=®(Un1-a) = N7V [A+ B(UR 1o — DIo(Uni-a) — QL)
+ LuNNl?w’)\ + O(N—min(l,r+1/2))’
where Ly has the form
LQ(LN/Yl,“/z,)\)
= — ¢(Un1-a)An1a— NTPA+BUY o = D]¢ (Uni-a)Ania (3.2.39)

= - ¢<UN,1fa)AN,1fa + O(N_l)
The approximated power of the same T statistic based on standard normal approximation
is:
power of the one-sided upper tail TN test =1 — F;H“)(UNJ_Q) + O(N—min(Lr+1/2))
=1—-®(Unpa) = N2A+ BUF,; o — DI$(Un1-0) = Q(Un1-0)
+ O(mein(l,rJrl/Z))'
(3.2.40)
From (3.2.38) and (3.2.40) the difference in power relies on Ly _ . We write this result
in the following Corollary.
Corollary 3.2.9. For the one-sided upper-tailed tests at level «,
Power of TCF test - Power of TN test= Ly, ., \+ O(N—min(Lr+1/2)y = (3.2 41)

The prove is similar to Corollary (3.2.5). Then we have the following result:

Corollary 3.2.10. The one-sided upper-tailed TCF test at level o is more powerful than
the TN test, if and only if the following inequality holds

2 2
(8 + Co — X)’Yl > (8 + Cq — m)"}@, (3242)
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where cq = 5.
«

Comparing Corollary (3.2.10) with Corollary (3.2.6), the inequality conditions in (3.2.42)
and (3.2.21) are the same. Therefore, the discussion on the sign of Ly , 4,1 in Section 3.2.3.1
still holds for the sign of LY., . . With given estimates of two population skewness v, and

Y2, we can solve (3.2.42) to get a solution of A as follows,
o if 74 > 5 then w; < A\ < wy;
e if v; <y then A < w; or A > ws,
where w; and w9 are the two roots of the left side of (3.2.22), here without loss of generality
assume wi < ws.
3.2.5.2 Power of the lower-tailed TCF test under local alternative hypothesis

Following the same procedure in Section 3.2.5.1, now consider data generated under H, :
p1 — po < pd — p. When H, is true, the theoretical power of the one-sided lower tail TCF

test is:
PHa (T < g;f) )

where ¢/ is the estimated o' percentile from distribution F}l)(x) using formula similar

. . 1 1

LS =t — 5/ [o?(— + —
=i o)y [or )
T N TN L
- « N, n, Ns

- UN,a + AN,oz

to (3.2.5). Denote

_ UN,a +AN,a +Op(mein(1,r+1/2))

_ Lgf + OP(N—min(l,r-i-l/Q))’
where Uy o = 24 — 9/ 02(7%1 + nig), and LY = Uy o + An. We have
i’/;f — Lgf + OP(N—mz'n(l,r+1/2))'
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Then the power can be expressed as
Py, (T < L)
= ED(LY) + QL) + O(N-minLr1/2)
= O(LL)+ NTV2A+ B(LY)? = DIG(LY) + QL) + O(N~™n(r+2)) - (3.2.43)
We have shown in equations (3.2.15) and (3.2.16) that
— NTV2[A+ B((LY)* — 1)) = =N ?[A+ B(U} . — )] + O(N7Y); (3.2.44)
(L) = ®(Una) + d(Una)Ana + O(AY L)

Qb(ngf) = ¢(UN,a) + (b/(UN,a)AN,a + O(A?V,a>~
Putting equations (3.2.44) and (3.2.45) back into (3.2.43), we have the

(3.2.45)

power of one-sided lower tail TCF test = FT(,HQ)(tgf) + O(N—min(Lr+1/2))
= ®(Un,a) + ¢(Una)Ana + O(AL L)

+ (N_l/Q[A + B(U]2V,o¢ — )]+ ON) (¢(Un,a) + ¢ (Un,a)Ana
FO(A%,) + QULE) + O(N—rinthr1/2)

= O(Una) + N2 [A + BUR o = DIé(Una) + QL)

+ Lév”n;m’)\ + O(mein(l,r+1/2))’

(3.2.46)

l .
where Ly . is defined as

l
L(Nm 25A)

=0(Una)Ana + NV2A+ BUR ., — D] (Una)Ana (3.2.47)
:¢(UN,a)AN,a + O(N_l)
The approximated power of the same T statistic based on standard normal approximation
is:

power of the one-sided lower tail TN test = F}H“)(UN@) + O(N~min(Lr+1/2)) ( )
3.2.48

= ®(Un,a) + N V[A+ B(Ux.o — D]¢(Una) + Q(Un.a) + O(N—min(Lr+1/2)y

l

Ny AaAe We state this result in the following

Again, the power difference depends on L

Corollary.
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Corollary 3.2.11. For the one-sided lower-tailed tests at level a,
Power of TCF test - Power of TN test = Lle,mA + O(N—minLr+1/2)y - (3.2.49)

The prove is similar to Corollary (3.2.5). Then we have the following result:

Corollary 3.2.12. The one-sided lower-tailed TCF test at level a is more powerful than
the TN test, if and only if the following inequality holds
(84 co — 2 < (8+ 2 (3.2.50)
Co — — Ca — — )72, 2.
\ gs! Y Y2

where ¢, = 226_1.
«@

Comparing Corollary (3.2.12) with Corollary (3.2.6), the inequality in (3.2.50) defines

a set that is the complement of the set given in (3.2.21). Thus, the sign of Ly, 1, in

u

Nyen- Given the two population skewness v

Section 3.2.3.1 is opposite of the sign of L

and 9, we can solve (3.2.50) to get a solution of A as follows,
o if 7 < vy then w; < A\ < wy;
o if 7y > 5 then A < w; or A > wy,

where wy < wq are the two roots of (3.2.22).

In summary, for two-sided test the power difference between the TCF test and the pooled
two-sample t-test relies on Ly, 4,2. Under local alternative, we can always arrange the
An to achieve a higher power of TCF test in real practice. In addition, the actual power

gain depends on the estimation accuracy of the population skewness ;. For one-sided tests,

u

Nt s A for the upper-tailed test and L} for the

the power difference depends on L NovtsA

lower-tailed test respectively. The way to arrange Ay for achieving a higher power of TCF
test is also presented.

As we have seen that the sets to ensure higher power for the TCF test than the TN
test mutually exclusive for the upper-tailed and lower-tailed test. Therefore, only one of the

one-sided TCF test will have higher power than the TN test.
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3.3 Simulation study for two-sample TCF test

3.3.1 Main purpose of the simulation study

Recall that the main purpose of this study is to improve the power of the two-sample test
under skewness, when the two population mean difference is small and the total sample
size is limited. Thus, the main purpose of this simulation study is to compare the type
I error rate and the power of our TCF test with commonly used tests under the above
scenario. We consider the following four tests, pooled two-sample t-test, test by Cornish
Fisher expansion, Bootstrap-t test (Davison and Hinkley, 1997; Efron and Tibshirani, 1993)
and Wilcoxon Rank-Sum Test. We apply the four tests in this simulation study on testing
the population mean difference between two independent populations with equal variances.
This simulation study considers on one-sided upper-tailed test, one-sided lower-tailed test

and two-sided test.

3.3.2 Detailed settings of a simulation study

This simulation study has two pairs of population settings. We let the first population be
Gamma or Log-normal distribution and let the second population be normal distribution.

Under the null hypothesis of equal means, the settings of each population parameters are

listed in Table 3.3.

Populationl Population2 "
Pairl Gamma(a =0.1,4=0.08)  N(u; =1.25 0} =15.625) 6.3
Pair2 Lognormal(us = 0,02 =1) N(uy = e¥/?,02 =el(e! — 1)) 2.9

Table 3.3: Population parameters setting

Under the alternative hypothesis of one-sided upper-tailed and two-sided tests, a constant
in the amount of 0.30 was added to the first population mean. That is the population mean

of the first population is bigger than the second population, and the mean difference is 0.30.
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Under the alternative hypothesis of one-sided lower-tailed test, a constant in the amount of
0.30 was subtracted from the first population mean. The reason that we choose the value
0.3¢ is according to Cohen (1988), the effect size is considered as small when /0 = 0.2,
medium when §/o = 0.5, and large when §/c = 0.8. In other words, the mean difference
of the two population is relatively small, so that we can check how much power these four
tests have to detect a small amount of population mean difference.

As we mentioned in Chapter 2, the power of the test depends on several factors. In order
to figure out the effect of the skewness on the power of the test, we have to fix the other

parameters. The parameter settings of each test and population are as follows:

e Significance level a = 0.05;

First population sample size n; = 15,25, ..., 150;

Anv =n1/N = 0.6, here N = n; + no;

Second population sample size ny = (1 — Ay)N;

Effect size: § = (u1 — p2) — Hypothesized(py — p2) = 0.30, where o2 is the common

variance.

Note that the population 1 is a right skewed distribution either from Gamma distribution
or Log-normal distribution and population 2 is symmetric. The value of A reflects the sample
size ratio. When A is close to 1, the majority samples are from population 1. When A is close
to 0, the majority samples are from population 2. Thus, under fixed population skewness
and sample size ny, the two-sample data sets with bigger \ are easier to detect departure
from Hy than the two-sample data sets with small X\. In addition, when we increase nq, the
total sample size N increase faster than n; with a smaller .

In order to achieve a small sampling variation for the four tests, we generate 10, 000 sam-
ples for each parameter setting and each sample size. For bootstrap tests, 1,000 bootstrap

samples are resampled from each generated data set.
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3.3.3 Details of the simulation study for each test

For each simulation setting, the empirical type I error rate and power of the pooled two-

sample t-test, the TCF test and the Wilcoxon Rank-Sum Test are calculated as follows:

1. Generate 10,000 data sets, each contains a sample of size ny, ny from the two popu-
lations respectively, with sample of size n; from population one and sample of size nq

from population two.

2. For each generated data set, conduct the pooled two sample t-test using R built-in
function t.test with var.equal=T and the Wilcoxon Rank-Sum Test using R function
wilcox.test. For the TCF test, compute the test statistic 7' defined in equation (2.1.2)

as - -
Yi—-Y, — —
AL 2 (Nl M2).

ni ng

Reject Hj if the test statistic 7" falls into the rejection regions given by 3.2.2; 3.2.3

and 3.2.4 for two-sided, upper-tailed and lower-tailed test, respectively.
3. Repeat this testing process for each of the 10,000 generated data set.

4. When the alternative hypothesis is true, the two populations having different means,
the proportion of times rejecting the null hypothesis out of 10,000 generated data
set is the empirical power of the tests. When the null hypothesis is true, the two
populations having equal means, the proportion of times rejecting the null hypothesis

out of 10,000 generated data set is the empirical type I error rate.

The empirical type I error rate and power of the two-sided bootstrap-t test can be

computed by the following steps:

1. Draw B = 1,000 bootstrap samples of size N = n; 4+ ny, with replacement from each
of the 10,000 generated data set, with sample of size n; from sample one and sample

of size ny from sample two.
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2. For each bootstrap sample, compute
_ Xikb - X;b - Xln + XQn

)
e /11
Spb ni + ng

where X 1 and X;b are the bth bootstrap sample means of sample one and sample two

Ty

respectively; Xi, and X, are the sample means for original sample one and original

(nrl)jﬁz?;l)sy is the pooled two sample standard

deviation of bth bootstrap sample; S} = \/ LY (X = X3)?%, i = 1,2 are the bth

sample two respectively; S;b = \/

n;—1

bootstrap sample standard deviation for sample 7.

3. Estimate the /2" percentile of test statistic T' by the value to /2 such that

B
B~ I(Ty <tap) = af2

b=1

4. The rejection region of two-sided bootstrap-t test with significance level « is then:
T < fa/g or T > fl_a/g.
Reject Hj if the test statistic T falls into the rejection region above.
5. When the alternative hypothesis is true, the two populations having different means,
the proportion of times rejecting the null hypothesis out of 10,000 generated data
set is the empirical power of the test. When the null hypothesis is true, the two

populations having equal means, the proportion of times rejecting the null hypothesis

out of 10,000 generated data set is the empirical type I error rate.

For the one-sided bootstrap-t test, the a'* percentile and (1 — «)! percentile can be
estimated as the same way from step 3. Then the rejection region for one-sided upper-tailed
bootstrap-t test is

T > t1_q,

and the rejection region for one-sided lower-tailed bootstrap-t test is
T <t,.

In the following section, we will present the results of a simulation study with data generated

from skewed distributions for first population and normal for second population.
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3.3.4 Results of simulation study and discussion

Following the data generation settings description in Section 3.3.2, we run the simulation
study with the procedure in Section 3.3.3. The simulation results are shown in the following

three sections.

3.3.4.1 Simulation results for two-sided test

The simulation results of the four tests from each pair of population settings are presented
in Figure 3.3, Table 3.4 and Table 3.5.

Figure 3.3 shows the empirical type I error rate and power from four tests includ-
ing pooled two-sample t-test denoted as “I"”, two-sample Bootstrap-t test denoted as
“bootstrap”, Wilcoxon Rank-Sum Test denoted as “Wilcoxr” and the Cornish Fisher ex-
pansion based two sample TCF test denoted as “CF”. The top two panels in Figure 3.3
give the empirical type I error rate of the four tests with A = 0.6. The bottom two graphes
provide their corresponding empirical powers. From Figure 3.3, when n; < 15, only the
two-sample Bootstrap-t test gives a type I error rate below «. The empirical type I error
rate of the other three tests are all bigger than 0.1. When n; > 15, the empirical type I
error rate of all four tests reduces to a except for Wilcoxon Rank-Sum Test. The empirical
type I error rate of Wilcoxon Rank-Sum Test keeps increasing as n; getting larger. The
two-sample TCF test gives a constant higher empirical power than the other three tests.
The two-sample Bootstrap-t test gives the second highest power and the Wilcoxon Rank-
Sum Test provides the smallest power. The numerical results of the empirical power are
presented in Tables 3.4 and 3.5.

This simulation study shows that the two sample TCF test has significantly better
power than the other tests in testing the two population mean difference under skewness.
Comparing with the two-sample T and bootstrap t-test, the two-sample TCF test provides
the same amount of type I error rate but requires fewer sample size to reach the desired
power. The Wilcoxon Rank-Sum Test gives the most rejection regardless of under our

Hy or H,. That’s because the assumption of the Wilcoxon Rank-Sum Test is violated in
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this simulation study. From Section 2.1.2, we know that the Wilcoxon Rank-Sum Test
assumes the two samples are taken from identical distribution but the two populations in

this simulation follow distinct distributions.

Tests

ny skewness T-Test Bootstrap-t Wilcox CF
Hy H, Hy H, Hy H, H, H,
15 0.477 | 0.087 0.107 0.070 0.146 0.124 0.132 0.100 0.228
25 0.435 | 0.081 0.134 0.069 0.199 0.132 0.156 0.083 0.271
35 0.412 | 0.078 0.175 0.068 0.247 0.147 0.175 0.079 0.318
45 0.385 | 0.076 0.220 0.066 0.306 0.163 0.200 0.074 0.369
55 0.364 | 0.070 0.266 0.065 0.350 0.177 0.211 0.070 0.419
65 0.350 | 0.067 0.310 0.063 0.401 0.188 0.237 0.066 0.466
75 0.335 | 0.066 0.365 0.062 0.448 0.207 0.259 0.068 0.512
85 0.322 | 0.065 0.416 0.060 0.497 0.213 0.282 0.063 0.562
95 0.313 | 0.063 0.458 0.059 0.538 0.224 0.298 0.062 0.599
105 0.302 | 0.061 0.503 0.057 0.580 0.230 0.323 0.060 0.638
115 0.293 | 0.062 0.554 0.058 0.625 0.244 0.343 0.060 0.682
125 0.286 | 0.061 0.590 0.060 0.660 0.258 0.364 0.062 0.712
135 0.278 | 0.059 0.629 0.060 0.688 0.267 0.384 0.061 0.739
145 0.271 | 0.058 0.663 0.059 0.718 0.277 0.403 0.060 0.762

Table 3.4: Proportion of rejections for two-sided tests when 1st population is Gamma

3.3.4.2 Simulation results for one-sided upper-tailed test

Figure 3.4, Table 3.6 and Table 3.7 present the simulation results of one-sided upper-tail
test. In Figure 3.4, when n; > 15 all four tests maintain their type I error rate below
or close to a. When it comes to the empirical power, the one-side upper-tail TCF test

gives consistently higher power than the other three tests, which is similar as the results of
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Tests

ni1 skewness T-Test Bootstrap-t Wilcox CF
Hy H, H, H, H, H, H, H,
15 0.302 | 0.073 0.104 0.067 0.143 0.086 0.104 0.090 0.186
25 0.283 | 0.068 0.139 0.064 0.194 0.097 0.126 0.077 0.233
35 0.273 | 0.067 0.175 0.060 0.238 0.105 0.144 0.072 0.278
45 0.259 | 0.064 0.222 0.058 0.288 0.116 0.167 0.066 0.327
55 0.248 | 0.062 0.268 0.058 0.336 0.125 0.185 0.066 0.378
65 0.240 | 0.065 0.312 0.059 0.381 0.135 0.203 0.066 0.415
75 0.231 | 0.063 0.368 0.057 0.429 0.147 0.230 0.066 0.468
85 0.223 | 0.060 0.416 0.058 0.476 0.155 0.252 0.061 0.515
95 0.219 | 0.058 0.454 0.056 0.514 0.164 0.272 0.061 0.554
105 0.213 | 0.057 0.501 0.058 0.558 0.173 0.294 0.061 0.596
115 0.207 | 0.057 0.547 0.056 0.599 0.185 0.321 0.059 0.636
125 0.203 | 0.058 0.586 0.058 0.634 0.196 0.341 0.061 0.670
135 0.199 | 0.054 0.622 0.056 0.668 0.200 0.359 0.060 0.703
145 0.195 | 0.054 0.655 0.056 0.696 0.211 0.378 0.060 0.729

Table 3.5: Proportion of rejections for two-sided tests when 1st population is Lognormal

empirical power in two-sided tests from Figure 3.3. The numerical values of the type I error
and power are given in Tables 3.6 and 3.7.

For one-sided upper-tailed test, all four tests control their type I error rate well. The
TCF test still provides higher empirical power than the other three tests under skewed

populations.

3.3.4.3 Simulation results for two-sided lower-tailed test

The results for lower-tailed tests are given in Figure 3.5. They are quite different from the

results for two-sided or upper-tailed test. The Wilcoxon Rank-Sum Test failed to maintain

60



Tests

ni1 skewness T-Test Bootstrap-t Wilcox CF
Hy H, H, H, H, H, H, H,
15 0.477 |1 0.034 0.161 0.061 0.212 0.043 0.174 0.074 0.288
25 0.435 | 0.030 0.222 0.058 0.289 0.033 0.205 0.061 0.351
35 0.412 |1 0.029 0.280 0.056 0.344 0.029 0.237 0.056 0.410
45 0.385 | 0.028 0.343 0.056 0.410 0.022 0.267 0.058 0.470
55 0.364 | 0.029 0.399 0.056 0.461 0.018 0.288 0.056 0.520
65 0.350 | 0.030 0.452 0.055 0.513 0.018 0.315 0.054 0.566
75 0.335 | 0.030 0.507 0.057 0.562 0.017 0.343 0.056 0.614
85 0.322 | 0.031 0.561 0.057 0.610 0.014 0.373 0.054 0.663
95 0.313 | 0.030 0.606 0.057 0.647 0.012 0.392 0.056 0.696
105 0.302 | 0.032 0.647 0.054 0.688 0.012 0.417 0.051 0.730
115 0.293 | 0.031 0.690 0.056 0.730 0.010 0.442 0.052 0.766
125 0.286 | 0.032 0.722 0.056 0.756 0.009 0.464 0.052 0.794
135 0.278 | 0.034 0.754 0.058 0.783 0.010 0.484 0.054 0.818
145 0.271 | 0.031 0.778 0.056 0.808 0.008 0.508 0.052 0.839

Table 3.6: Proportion of rejections of one-sided upper-tailed tests when 1st population is

Gamma

the type I error rate as in the two-sided case. The T test has elevated type I error rates even
with a big n; sample size. In fact, for most of the n; sample size settings, the type I error of
the T test is close to or more than 0.1, twice the intended level significance level o = 0.05.
When n; > 15, the type I error rate of TCF and bootstrap-t test are both smaller than the
T test and approaches « as n; increases.

Wilcoxon Rank-Sum Test gives the most rejection regardless of under our Hy or H,.
Among the remaining three tests, the T test provides the biggest power at the expense of
doubling the type I error rate. On the contrary, bootstrap-t test gives the lowest power and

smallest type I error rate. The TCF test is in the middle, not only keeps a reasonable type
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Tests

ni1 skewness T-Test Bootstrap-t Wilcox CF
Hy H, H, H, H, H, H, H,
15 0.302 | 0.036 0.163 0.060 0.210 0.033 0.143 0.064 0.253
25 0.283 | 0.033 0.224 0.058 0.279 0.025 0.184 0.058 0.317
35 0.273 |1 0.032 0.283 0.056 0.335 0.020 0.214 0.055 0.373
45 0.259 | 0.033 0.343 0.053 0.395 0.018 0.245 0.053 0.434
55 0.248 | 0.030 0.400 0.052 0.449 0.015 0.267 0.050 0.484
65 0.240 | 0.031 0.447 0.052 0.492 0.014 0.293 0.051 0.529
75 0.231 | 0.035 0.499 0.055 0.542 0.013 0.325 0.056 0.576
85 0.223 | 0.032 0.554 0.056 0.591 0.011 0.354 0.053 0.624
95 0.219 | 0.035 0.594 0.054 0.629 0.012 0.377 0.053 0.660
105 0.213 | 0.036 0.639 0.054 0.671 0.009 0.400 0.052 0.702
115 0.207 | 0.036 0.679 0.052 0.707 0.008 0.430 0.050 0.733
125 0.203 | 0.038 0.711 0.055 0.735 0.007 0.450 0.054 0.761
135 0.199 | 0.039 0.741 0.058 0.762 0.007 0.475 0.054 0.787
145 0.195 | 0.037 0.767 0.055 0.788 0.006 0.498 0.052 0.812

Table 3.7: Proportion of rejections of one-sided upper-tailed tests when 1st population is

Lognormal

I error rate but also gives a good power. These three tests clearly demonstrate the trade
off between the type I error rate and power. The T test sacrifices the type I error rate but
gives a higher power, while the bootstrap-t test is more conservative on the type I error rate
which leads to a small power.

This simulation study shows that the two-sample TCF test has good property in testing
the two population mean difference under all three hypotheses for skewed data. It can not
only maintain a reasonable type I error rate close to «, but also provides a higher power

than the other commonly used tests.
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Tests

ni1 skewness T-Test Bootstrap-t Wilcox CF
Hy H, H, H, H, H, H, H,
15 0.477 | 0.109 0.303 0.063 0.199 0.137 0.348 0.082 0.248
25 0.435 | 0.106 0.355 0.065 0.262 0.176 0.502 0.080 0.294
35 0.412 |1 0.099 0.398 0.063 0.301 0.198 0.605 0.076 0.335
45 0.385 | 0.100 0.436 0.063 0.345 0.223 0.689 0.074 0.373
55 0.364 | 0.092 0.480 0.060 0.381 0.240 0.763 0.069 0.412
65 0.350 | 0.089 0.515 0.055 0.416 0.256 0.815 0.065 0.449
75 0.335 | 0.088 0.542 0.056 0.448 0.279 0.855 0.064 0.477
85 0.322 | 0.084 0.571 0.055 0.479 0.285 0.891 0.064 0.509
95 0.313 | 0.080 0.599 0.052 0.513 0.298 0.912 0.061 0.540
105 0.302 | 0.075 0.627 0.051 0.540 0.312 0.936 0.058 0.567
115 0.293 | 0.077 0.649 0.052 0.567 0.327 0.953 0.060 0.591
125 0.286 | 0.076 0.676 0.053 0.594 0.341 0.964 0.060 0.621
135 0.278 | 0.074 0.695 0.052 0.618 0.354 0.974 0.059 0.639
145 0.271 |1 0.073 0.721 0.051 0.646 0.367 0.979 0.055 0.667

Table 3.8: Proportion of rejections of one-sided lower-tailed tests when 1st population is

Gamma

3.4 Summary

In this chapter, we obtained the Edgeworth expansion of the test statistic of pooled two
sample t-test to derive a new approximation of it under skewness. The explicit form of its
first order expansion was given in Theorem 3.1.3. On the basis of this expansion, a new
two-sample test from Cornish Fisher expansion theory was constructed. We proved that the
new two-sample test based on Cornish Fisher expansion (TCF test) can not only control the
type I error rate but give a higher power of the test comparing with the pooled two-sample

test under local alternatives with skewness. The power increment equals Ly, 4, defined
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Tests

ni1 skewness T-Test Bootstrap-t Wilcox CF
Hy H, H, H, H, H, H, H,
15 0.302 | 0.093 0.270 0.059 0.194 0.108 0.307 0.082 0.246
25 0.283 | 0.088 0.324 0.060 0.256 0.138 0.443 0.076 0.289
35 0.273 | 0.087 0.379 0.057 0.301 0.153 0.555 0.073 0.337
45 0.259 | 0.085 0.425 0.058 0.354 0.172 0.650 0.070 0.383
55 0.248 | 0.080 0.469 0.060 0.396 0.188 0.721 0.068 0.425
65 0.240 | 0.081 0.514 0.057 0.441 0.198 0.780 0.067 0.469
75 0.231 | 0.080 0.552 0.055 0.481 0.218 0.830 0.065 0.506
85 0.223 | 0.077 0.580 0.055 0.516 0.224 0.864 0.064 0.536
95 0.219 | 0.074 0.612 0.053 0.550 0.239 0.894 0.061 0.570
105 0.213 | 0.072 0.641 0.054 0.580 0.256 0.916 0.061 0.597
115 0.207 | 0.072 0.659 0.052 0.599 0.266 0.936 0.062 0.617
125 0.203 | 0.071 0.687 0.052 0.629 0.276 0.947 0.060 0.646
135 0.199 | 0.071 0.713 0.052 0.657 0.287 0.961 0.060 0.672
145 0.195 | 0.067 0.736 0.051 0.683 0.298 0.970 0.057 0.695

Table 3.9: Proportion of rejections of one-sided lower-tailed tests when 1st population is

Lognormal

in equation (3.2.18). In practice, majority of settings satisfy the sample ratio condition in
Corollary 3.2.6, which leads to higher power for the TCF test.

Furthermore, the results from the example in Section 3.2.3.2 and the simulation study
in Section 3.3 support the theoretical results in Section 3.2 well. Under the simulation
settings in Section 3.3, the two-sample TCF test provided the highest power and should be
recommended over the pooled two-sample t-test, Bootstrap t-test and Wilcoxon Rank-Sum
Test for skewed data.

Note that this simulation study focuses on the empirical results based on a fixed sample

ratio A = 0.6 and population skewness, i.e., 71 ~ 6 and 5 = 0. In Section 4.4, we will
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conduct a more completed simulation study to figure out the effects of the following factors

on the empirical type I error rate and power of the test:
1. Different population distributions;
2. Different levels of \;
3. Different levels of common population variance o?;

4. Different levels of population skewness ;.
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Figure 3.3: Proportion of rejections of two-sided test. In top 2 panels the data were gen-
erated under Hy. In bottom 2 panels, the data were generated under H,. The left 2 panels
correspond to population 1 being Gamma distribution. The right two panels correspond to

population 1 being Lognormal distribution.
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Figure 3.4: Proportion of rejections of one-sided upper tail test. In top 2 panels the data
were generated under Hy. In bottom 2 panels, the data were generated under H,. The
left 2 panels correspond to population 1 being Gamma distribution. The right two panels

correspond to population 1 being Lognormal distribution.
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Figure 3.5: Proportion of rejections of one-sided lower tail test. In top 2 panels the data
were generated under Hy. In bottom 2 panels, the data were generated under H,. The
left 2 panels correspond to population 1 being Gamma distribution. The right two panels

correspond to population 1 being Lognormal distribution.
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Chapter 4

New tests through transformations

based on Edgeworth expansions

4.1 Two-sample tests based on three transformations

Here we introduce three new tests based on transformations proposed by Hall (1992b)
and Zhou and Philip (2005). These three transformations can be used to improve the
coverage probability of confidence intervals based on studentized statistic under skewness
by eliminating the skewness from the corresponding distribution of the studentized statistic.
In particular, when the cumulative distribution function of a studentized statistic has an
Edgeworth expansion

¢(z)

o)+ [7(ax2 + b)] Lo, (4.1.1)

then the three transformations have the forms
T, =T(U)=U +aqU? + %a%QUﬁf +n7'by,
Ty = To(U) = (2an~"?3)Hexp(2an~"?4U) — 1} + n~ b7,
Ty =T3(U) = U+ U? + %Uf’) +n'by,

where a, b and v are the coefficients of Edgeworth expansion in (4.1.1). In our Edgeworth ex-

pansion under the two-sample settings in Section 3.2.1, the cumulative distribution function
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of the test statistic 7" in (3.1.1) under Hy has the form

P(T < ) = (x) + DDA 1 B(a? — 1)) 4 O(Vmintrs1/2),

\/ﬁ
where A and B are defined in equation (3.1.10).

Clearly, our Edgeworth expansion does not have the same format as the expansion
in (4.1.1) of Hall (1992b), in that our expansion has an extra term A. In this case, we can
not directly follow the standard procedures in Section 2.3.2.1 to get the values of a, b and ~
for each transformation and derive the values of percentiles. To solve this problem, we first

apply a linear transformation on 7" as in Phillip and Zhou (2005):

Theorem 4.1.1. Let T' =T + N=Y2A, then under H,,
Py, (T < z) = ®(z) + N"V2B(2? — 1)¢(z) + O(N—™in(hr+1/2)), (4.1.2)
And under H,, assume 6 = O(N~Y2). Then

Py (T <z) =®(x—cn)+NV2B((x — en)? — Dz — e)
—f—Q(I) + O<N—mm(1,r+1/2))

= Py (T < 7 — cn) + Q(z) + O(N-min(lr+1/2)) (4.1.3)

where cy = 0/ 02(n—11 + L) and Q(z) is defined in (3.2.12). And A is the estimate of A

n2

given by
A== A2 (9 — ) /2,
Ay — 2 6 — 8\
B= (1= )2 [ 22y — Moo ) /12,
AN 1— My
where
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The proof is given in Appendix A.4. Obviously, 7" in (4.1.2) has the same format as the
expansion in (4.1.1). Therefore, we can first use the three transformations to find the a'®
and (1 — a)" percentiles of distribution of 7", then transfer them back to get the o' and
(1 — )*" percentiles of distribution of 7. Based on the distribution of 7" in Theorem 4.1.1,
we have a = 1/3, b= —1/3 and v = 3N~'/2B with its estimate 4 = 3N~/2B, where

B = [\n(1 = Ay)]Y2 <8AN —2 OB ) /12.

Ay T 1— Ax 72
Given a two-sided hypothesis with significance level o and the test statistic 7" in (3.1.1), the

three new rejection regions can be computed through the following steps:

1. Do a T} transformation on the U = \/—INT/ to derive a new statistic. The distribution of
the transformed statistic v NT;(U) is virtually symmetric and approximately standard

normal.

2. Use the percentile of standard normal distribution, say 2./, to approximate the per-

centile of the transformed statistic v NT;(U).

Za

3. Denote 1); 42 = ﬁ, then 7, 45 is the 2™

9 i

percentile of T;(U). Accordingly, T, (1;.a/2)

ath

gives 2" percentile of U, where T; ' (.) is the inverse transform of Tj(.). They are given

as follows:
Ty () = (a8) 1+ 3a3(t — b3/N) 5 — (a) !

T, (t) = (2aN"Y24) " og{2aN /24 (t — N~'by) + 1}

Ty'(t) = {1+3(t — N~19) /3 — 1.

. o L / gth . . . . /. —1 M
4. Since U = —=T", the ™ percentile of the distribution T" is VNT, (W)

5. Report the rejection regions of 7" based on each of the three transformations as:

T <VNT! (Z“—\/%) or T > VNT; ! <Z1‘?7V/2> , (4.1.4)

where 1 = 1,2, 3.
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6. Finally, the new rejection regions of 7" can be derived from (4.1.4) based on the linear

transformation in Theorem 4.1.1,

Za/2 fl1—a/2
T < \/_+\/_T (\/N) r T > \/_+\/_T (\/N) (4.1.5)

where 1 = 1,2, 3.

We reject the null hypothesis if 7" falls into the rejection regions in (4.1.5) for the two-sided
hypothesis. In the further discussions, we will refer the two sample test based on three
transformations as “T;” test, i = 1,2,3. Accordingly, the rejection region for one-sided
upper-tailed T; test is

T>\/—_+\/_T (JNQ) (4.1.6)

and the rejection region for one-sided lower-tailed T; test is

T < _—A+\/NT;1(

i o), (4.1.7)

VN

4.2 Type I error rate of the test based on three trans-
formations

In this section, we present the theoretical type I error rate for the three tests introduced
in Section 4.1. Under the two-sample setting in Section 3.2.1, the distribution of the test
statistic 7" is still F}l)(t), and the rejection regions are given by (4.1.5), (4.1.6) and (4.1.7)

for two-sided, upper-tailed and lower-tailed T; test, respectively.

4.2.1 Type I error rate of the two-sided 7T; test

Based on the results from Theorem 4.1.1, we have T" = T+ N~'/24 and the rejection region
of T' shows in (4.1.4) as
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where i = 1,2,3 and 7" has the cdf given in (4.1.2). Denote the lower threshold in for-
mula (4.1.4) as tg}Q and the upper threshold as t(liza /o That is

(@) _ —1/”a/2
ta), = VNT, l(m)

i _1,”1—a/2
tgzoc/Z = \/Nj"l 1( \/N/ )

These two values are not symmetric about zero. When Hj is true, the theoretical type I

error rate of the T test is obtained by:

P(T' =10, )+ P(T' <)) (4.2.1)

In addition, based on the results from Hall (1992b) introduced in equation (2.3.7) and the

results from Theorem 3.1.3, in two-sample case we have
P(VNT,(U) < z) = ®(z) + O(N~mnLr+1/2) (4.2.2)

where U = \/LNT'. Based on the above results, the type I error rate of these tests based on

transformations can be derived as:

P(type I error of T test) = P(T" > tgizaﬂ) +P(T < tg}Q)

=1-P(I' <t )+ P(T <t),)

= 1- P(VNT,(U) < VNT,(t),, ,/VN) + P(VNT(U) < VNT(t),/VN),

where the last equality holds due to the fact that T;(¢) are monotone functions. Replacing

tﬁa / and tg% with their definitions, we have

P(type I error of T} test) = 1 — P(VNT;(U) < Z1—aj2) + P(VNT,(U) < Za)2)
=1—®(21_n2) + B(20/2) + O(NmnlLrt1/2)) (4.2.3)
- a4 O(N—min(l,r-&-l/Z)).

Therefore, the approximated type I error rate of the two-sample T; test has an order of

O(N—mm(r+1/2)) “wwhich is the same order of the type I error rate of the two-sample TN
test.
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4.2.2 Type I error rate of the one-sided upper-tailed 7T; test

For the one-sided upper-tailed T; test, the rejection region in (4.1.6) can be expressed by T
based on the linear transformation 7" = T+ N~Y/2A from Theorem 4.1.1. The new rejection

region for one-sided upper-tailed T; test becomes:

T > x/NTi—l(Z\;N“), (4.2.4)

where ¢ = 1,2, 3. Denote the threshold in (4.2.4) as tgila. That is

0, = VNT N2,

When Hj is true, the theoretical type I error rate of one-sided upper-tailed T; test is obtained
by:

P(T >t ) (4.2.5)

Recall that we have P(VNT}(U) < x) = ®(x) + O(N-™n1r+1/2)) from (4.2.2), where
U= \/LNT ". Then the type I error rate of one-sided upper-tailed 7} test can be derived as:

P(type I error of one-sided upper-tailed 7T; test) = P(T/ > t@a)
—1-P(T <t )=1-P(VNT,(U) < VNT,(t\" . /VN),

where the equality holds due to the fact that T;(¢) are monotone functions. Plugging in t@

[0

with its definition, we have

P(type I error of one-sided upper-tailed T} test) = 1 — P(VNT;(U) < 21_4) ( )
4.2.6

-1 (I)(Zl,a) + O(mein(l,r+l/2)) = a4+ O(mein(l,rJrl/Z))'

4.2.3 Type I error rate of the one-sided lower-tailed 7T; test
Following the same procedures in Section 4.2.2, the new rejection region of one-sided lower-
tailed T} test under Hy can be expressed by T as

k2

T <VNT Y

), (4.2.7)

2

74



where ¢ = 1,2, 3. Denote

19 = VNI ()
N

When Hj is true, the theoretical type I error rate of one-sided lower-tailed T; test is:
P(T" <t (4.2.8)
Based on the results from (4.2.2), we have
P(type I error of one-sided lower-tailed T} test) = P(T" < t¥))
= P(T" <t{)) = P(VNT,(U) < VNT,(t /VN).
Then plug in 5 = = V/NT; ! (\F) we have

P(type I error of one-sided lower-tailed T; test) = P(VNT;(U) < zq) ( )
4.2.9
— (I)(Za) + O(N—min(l,r—i-l/Q)) —a+ O(N_mm(l’TH/Q)).

From Section 3.2.4.1, we know that the approximated type I error rates of the same
one-sided upper-tailed and lower-tailed TN tests are both o + O(N~%/2). Then the type I

error rate accuracy for the one-sided 7T; test has higher approximation accuracy than the

one-sided TN test.

4.3 Power of the test based on three transformations

Now consider the data generated under H,. We derive the power function of the one-sided

and two-sided T; tests under local alternative hypothesis.

4.3.1 Power of the two-sided T; test under local alternative hy-
pothesis

Based on Theorem 4.1.1, the theoretical power of the two-sided T; test is given by

~

—A _1,%a)2 “l-a/2
PHG(TS\/—N+\/NTZ. (\/N))+PHG(T>\/_+\/_T (\/N>>

= Py (T’ > 11, — en) + Py (T <10y — en) = Q1Y 0) + Q1)) (4.3.1)
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where ¢y = §/ 02(731 ) and Q(z) = % (x — cn)p(z — cn). Denoting til_a/Q —cy as LY

and ¢/, jo —CN @s Ll(i), then the power can be expressed as:
power of two-sided T} test = 1 — Py, (T < L) + Py (T" < Ll(i)) - Q(LY) + Q(Ll(i))
=1 = Pu,(VNT(U) < VNT(LE [VN) + P, (VNT(U) < VNT(L" [VN)
~QUY) + (L),

where the last equality is due to the fact that T;(¢) are monotone functions. Then replacing

Lq(f' ) and Ll(i) with their definitions, we have

power of two-sided T; test

=1— Py, (\/NTi( U) < VNT, {(t(z —5/,/02(”11 n%))/\/ND
—l—PHO(\/NTi(U)S\/NTi[( —5/,/02(7111 n—Q))/\/ND

— QLYY + Q(LY).

Under the local alternative, § = O(N~"/?) and 6/, /0(;- + ;L) = O(1). Therefore we have

o (\/NE(U) < VNT, Ktl a/Q—(S/,/ﬁ(;l i)) /\/ND

o (e (veme < V(a0 ) ]| ))

T T
A R K

Due to the fact that
. Zl a/ 2y —6/y ]2 (—
l 7’L1 TLQ

—T (Zl a/2)+O 1/2

(4.3.2)

&V

We can apply Taylor expansion to T;(U) at T, (22 2) to get

U)
(\/_T U) < VNT, K”/Z 5/,/02 - nZ)/\/_D




Now equation (4.3.2) can be simplified as:

power of two-sided T} test =1 — F (<I> {Zl_a/g —T [T-fl(zl*—am)} 5/ 02(n—11 =+ ,%2)})

i i VN
+EB (‘P {Za/g ~ T [Tfl(%)] 5/ 02(%1 + n%)})

Comparing the power of the two-sided T; test in (4.3.3) with the power of the two-
sample T'N test in (3.2.19), they do not have the same functional form even though their
approximation order is identical. The approximation in equation (4.3.3) adjusts the term

§/4/02(% +

1
ni | n2

) by a coefficient T} [T[l(i/"‘%)}, which is a function of standard normal
percentile.
Next, we further investigate the power of T; tests and compare them with the power of

TCF test. Recall that the three transformations have the forms:

1

T\ =T (U)=U+aiU* + gaWU?’ + N4, (4.3.4)

Ty = Ty(U) = (2aN"Y?4)"Hexp(2aN~V24U) — 1} + N~1b79, (4.3.5)
1

T3 =T3(U)=U+U?+ gU?’ + N71b9, (4.3.6)

where a = 1/3, b = —1/3 and 4 = 3N~/2B. Conditional on B, 4 = O(N~'2). The
derivatives of T;(U) are given by

T, = T,(U) = 1 4 203U + a*35*U? = (1 4+ ayU)?, (4.3.7)
T, = To(U) = exp(2aN~Y?5U), (4.3.8)
Ty =Ty(U)=14+20+U?=(1+U)> (4.3.9)

To evaluate T} [Tfl(zl_T;[/Q)], recall that the inverse transforms are

T () = (a9) {1+ 3a(t — b3/N)}3 — (a) 7, (4.3.10)
Ty ' (t) = (2aN~Y24)"Yog{2aN~/24(t — N7'b7) + 1}, (4.3.11)
Ty(t) = {1+3(t — N"19) /3 — 1. (4.3.12)
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Both Zl\;"ﬁ” and Z\%vz are O(N~Y2). So we can apply Taylor expansion to T} '(t) at t =

0. Specifically, since conditional on B, 4 = O(N~Y/2) | then {1 + 3a%(t — by/N)}/3,
log{2aN~'/2%(t — N~'b4) + 1} and {1+ 3(t — N~'b7)}'/? can be approximated with Taylor

expansion as

{1+ 3a4(t — by/N)}'/® =14 3a7(t — b/N)1/3 + O([a4(t — b7/N)]?),

log{2aN~24(t — N~'b4) + 1}

= log(1) + 2aN"Y23(t — N7'%) + O([2aN~V?5(t — N~'b9)]?),

{14+3(t— N9} =143t - N9)1/3+ O([t — N~'b4]?).
Therefore for ¢t = O(N~%/2), conditional on B,

') = (o) {1 +3ad(t = bY/N)1/3+ O(N?)} — (aF) ™!
= t— N7y + O(N—3/2), (4.3.13)

Ty (1) = (2aN-/29) 1 log(1) + 2aN~Y24(t — N'b4) + O(N )}

= t — N1y + O(N2), (4.3.14)
Ty (t) = 143(t— N"4)1/3+ O(N~) — 1
= t— N~y + O(N-Y). (4.3.15)

4.3.1.1 Power of the two-sided 7} test under local alternative hypothesis

Recall that, conditional on B

T, = T,(U) = (1 + ajU)?
T7Y(t) =t — N7'4 + O(N~3/?) for t = O(N~Y/2).
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Thus the first two terms of the 77 power function from (4.3.3) becomes
/ - Zl—a/2 1 1
1—E(®< 2100 — Ty |17 0/y)0*(— + —
(o {oan 1t [ )| o o+ D))
1 1 21 /2 bﬁ/ 2
— 1—E|®Lz_ oy —6/y]02(— + — 14 g8 [ Z=e2 27 N3/2
( {Zl a/2 / 0<n1+n2> ( +CL’}/( \/N N+OP( ))> ]})
— 1—FE (P2 _5/ /0-2(i_+_i) 1+M+O<N—2)
el ny na \/N i

Apply Taylor expansion to ®(x), we know the above term is equal to

N_1/2(52a:y21_a/2¢(UN,1—a/2)
2(1L . 1
o?(— + m)

ni

= 1-E|®Uni-ap) — +O(N% |, (4.3.16)

where Uy 1—a/2 = 21—aj2 — 0/4 /02(%1 + n%) Then the power function of the two-sided T}

test becomes

N_1/2520’7Z1—a/2¢(UN,1—a/2)

1~ E | Uy a) — : — QLD +Q(LY)
o?(- + ,%2)
N=Y252a4 2, Un o ,
+E (P(UN@/Q) B (1'721 /2¢(1 N, /2> + O(N—mm(l,r-i-l/Q)) (4317)
02(,71 + n—Q)
2aN"1262_, .
— 1= O(Uygap) + 2 (Un1-as2) E(9) = QL) + Q(L;")
02(,71 + n—Q)
2aN"1252, R i
+®(Un,ay2) — 2(1—1/2)¢(Uw,a/2)E(7) + O(NmnbrEl/2)
ol t g

Note that 4 = 3N~Y2B = 3N~Y2(B + O,(N~—™"(1/2))) and B is a linear combination of

A1, A2, whose distribution is continues, we know E(¥) = v + O(N~™"(+1/21)) " Hence the
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power of the two-sided T} test is

N71/252CL7217Q/2¢(UN,1704/2)
1 1
02(,71 + n—Q)
N_1/252a’}/2'a/2¢(UN,a/2)
02(7%1 + n%)
=1 ®(Un1—a2) + P(Unap) — QELY) + QL)
02av21—q
N 2[(Un_as) + ¢(UN,a/z>]#
Uz(L + L)

ni n2

1— q)(UN,l—a/2> +

— QLYY + QL)

+(I)(UN,a/2) o + O<N—min(1,r+1/2)>

+ O(N~min(hr+1/2)y (4 3.18)

Recall that the power of the two-sided TCF test in (3.2.17) is,

1= ®(Unias2) — N2 [A+ B(UR1_0jo — D]o(Uni-ap2) — QULY) + QL)

+O(Un.as2) + N~2A+ B(UJQV,a/Q — D]d(Unas2) + Ly pon + O(N—min(lr+1/2)y

where

LN,’n,'yg,)\ == AN,a/2[¢(UN,a/2) - ¢<UN,17a/2)] + O(N_l)7

and Ay o2 = =N"Y2[A+ B(22 , — 1)]. The power difference between the two-sided T} test
and the two-sided TCF test can be expressed as:

Power of two-sided T} test - Power of two-sided T'C'F test

02 —a _
= NV G(Unaaps) + ¢<UN,Q/2W% 4 NV2AG(Unaaj2) = HUae)

ni ng

+N_1/QB[¢(UN,1—a/2)(U?v,ka/z = 1) = ¢(Un.a/2) (U oo = )]
— {—Nﬁl/Z[A + B(Zi/g — 1)]} [D(Unas2) — O(Uni—as2)]
—QULY) + QL) + QL) — QL) + O(NmnLre1)

02ay21_q
— N_1/2[¢(UN,1—a/2) + ¢(UN,a/2)]—’y 1= +
PG

B
_[¢<UN,1—a/2>(U1%/,1fa/2 - Zia/z) - ¢(UN,@/2)<U]%/,a/2 - Zi/Q)]

QLYY + QL) + QL) — QL) + O(N—min(tr+1/2)),

2
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After further investigating the power difference, we have
—QULY) + QL) + QL) — QL) = O(N ). (4.3.19)

The proof is given in Appendix A.7. In addition, a = 1/3, v = 3N~/2B and
52 25za/2
UZQV a/2 22/2 = 1 1y )
Pl ta)  JorE + L)

ni n2

then we have the following result.

Corollary 4.3.1. The power difference between two-side Ty test and two-sided TCF test at

level o is
Bé 0
— O(UNn1-a/2) | —221-aj2 + — (4.3.20)
VN o*(o-+ ) (- + )
g —min(1,r+1/2)
+¢(UN,04/2) _22:1—04/2 - T + O(N ’ )
02(n- + o)

4.3.1.2 Power of the two-sided T, test under local alternative hypothesis

In this Section, we will derive the power function of the two-sided T5 test and compare it

with the power of the two-sided TCF test. Recall that conditional on B,
T, = To(U) = exp(2aN~Y250)
Ty'(t) =t — N7y + O(N7?).

Then we can compute the first two terms of the 75 power function from (4.3.3) as

= ({1 [ e+ D))
b (v o ) [ {2 (2 Y o))

Apply Taylor expansion to e, we have

1 1.[ 2092 .
_ 1—E((I){Zl_a/2—6/ O-2<n_+n_) 1+$—|—O<N3):|})
1 2 L

Apply Taylor expansion to ®(x), we have

020921 —a/20(UN1—a/2)
N O.2<L -+ l)

ni ng

— 1 - q)(UN,l—a/Z) —|— E

+O(N% ], (4.3.21)
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where Un1_aj2 = Z1—a/2 — 0/ /02(7%1 + %) Now we have the power function of two-sided
T, test:

. 02aE(H)z1-a/20(UNnj1—a/2) (2) (2)
1 —®(Unj-aj2) + N oL QL") +Q(L;7)

+B(Uyap) — 020B()z0/20UN.0/2) O(N—min(Lr+1/2))

N\/UQ(T%-F%)
62avz1 o /2P(UN 1—a
=L W)+ BT - QU + QL)
ny ' ng
020720, /29 (UN 0 /2) —min(1l,r
—|—(I)(UN,a/2) o N’i/agiifi/)z + O(N ®, +1/2))
711 7L2

_ 1= B(Un1-as2) + P(Unas) — QL) + Q(LP)

—1/2§2q~2 ;
N2[p(Un 1 Uy ap)| N 20010/2 o o N—min(Lr+1/2)) - (4.3.92
+ [¢( N,1 /2) + ¢< N, /2)] \/@ + ( ) ( )

Based on the result in (4.3.19), the power difference between two-sided T3 test and two-sided
TCF test can be obtained:

Power of two-sided T5 test - Power of two-sided T'C'F’ test

N=Y252a72
= N_1/2[¢(UN,17a/2) + ¢(Un,a/2)] 2(4 - 11 )/2 - N_l/QAw(UN,lfa/?) — 0(Unas2)]
(= + P

+N71/2B[¢(UN,1—0¢/2)(U]%f,lfa/2 - 1) - ¢(UN,a/2)(UJ%f,a/2 - 1)]
—{=N2A+ B(2L ) = D]} 6(Unaja) = d(Uniaja)] + O(N 77T
N7Y262ay21 4 0

02(i + L)

ni n2

= N"Y2[¢(Uni—aj2) + ¢(Unas)]

B —man(l,r
\/_N[(b(UN,l—a/Q)(U]zV,lfa/Q - foa/Z) - ¢(UN,a/2)(U]2\77a/2 - Za/g)] + O(N ., +1/2))_

Here a = 1/3 and v = 3N~Y/2B. Then Corollary below states this result.

Corollary 4.3.2. The power difference between two-side Ty test and two-sided TCF test at

level o s
Bé )
5, 1 1 ¢(UN,1—a/2) _Qzl—a/Q + ﬁ (4323)
VN2 (5 +5) oL+ 1)
0 —min(1,r+1/2)
+d(Unaj2) | —221—a/2 — —F—— + O(N ’ )
A )
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4.3.1.3 Power of the two-sided T3 test under local alternative hypothesis

In this Section, we will investigate the power difference between the two-sided T3 test and
the two-sided TCF test. Let’s first recall that, conditional on B,
T, =T\(U) = (1L + V)
Ty (t) =t — N7y + O(N7Y) for t = O(N~V/2).

Then the first two terms of the T3 power function based on (4.3.3) can be derived as:

1= £ (0 {13 |1 (252 Wm})
= 1-F (CD {Z1a/2_5/m {(1+Zl_—\/aﬁ/2 - %JrO(N_l))zl})
_ 1_m (@ {Zl_a/g _ 5/\/% [1 + 2z\1/ﬁa/2 + o(N—l)} })

Apply Taylor expansion to ®(x), the above term is equal to
N726221_020(Un1—ay2)
U2(L + L)

ni n2

where Un1—a/2 = Z1—aj2 — 0/4 /02(7%1 + n%) Then the power function of the two-sided T3

test becomes

= 1-9Unj-ap)+ +O(N™1), (4.3.24)

N=Y28221 0 10d(Un.1—a
11— (I)(UN,l_a/g) + \/:2(§2+(11\;,1 /2) Q(L'(u3)) + Q(Ll(3)>

N71/2522a/2¢(UNa/2) —min(1,r+1/2

, N min(l,r+1/2)
T O( )
— 1= (Un;1-as2) + ®(Unaz2) — QULE) + QL)

0221_q /2 —min(1,r
+N2P(Un1-as2) + ¢(UN,a/2)]ﬁ + O(N (Lr¥1/2)), (4.3.25)

+®(Un,a2) —

Based on the result in (4.3.19), the power difference between two-sided T3 test and two-sided
TCF test can be expressed as:

Power of two-sided T3 test - Power of two-sided T'C'F test

0221_¢
— N V2 [$(Uni—a2) + O(Un )] ——el2
02(L + L)

ni n2

B —man(l,r
U -02) URmaa = o) = S(Uxap2) ORaga = 20p2)] + ON 0712,
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Then we have the following result.

Corollary 4.3.3. The power difference between two-side Ty test and two-sided TCF test at

level o is
) Bo
1 . qb(UN?l_a/Q) QZl_a/g — 2B21_a/2 + ﬁ (4326)
\/N U(n—1+n—2) O(n—1+n—2)
B —min(1,r+1/2)
+O(Unyay2) |221-a2 — 2B21—0)y — —F—— +O(N ’ )
o2(5- +75)

4.3.1.4 Power comparison of three two-sided 7T; tests under local alternative

hypothesis

In this section, we will further investigate the power of three two-sided T; tests under local
alternative hypothesis. Recall that the power function of the three two-sided T; tests are
given in equations (4.3.18), (4.3.22) and (4.3.25) for i = 1,2, 3 respectively. Denote the

common term of these three equations as

5
On = N 77221 0 [0(Un1ay2) + (Unayz)] ————. (4.3.27)

o2(- + 7o)
Denote Hypo = —Q(Unj1-ay2) + Q(Un,a/2). In Section A.7, we showed that
~QULY) + QL") = Hyuo + O(N™™),
where m > 1. Then the three power functions are

e Power of T}

2B )
=1—-®(Uni-a/2) + P(Unas2) + \/_NQN + Hypo + O(N_mm(l,r—i—l/Q))’ (4.3.28)

e Power of T5

2B )
=1—-®(Unji-as2) + ®(Un,as2) + WQN + Hypo + O(N_mm(l,r—&—l/Q)), (4.3.29)
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e Power of T3

=1 - ®Un1-a2) + ®(Unas) + 295 + Hypo + O(N"mmErT2)) 0 (4.3.30)

It is obvious that the only difference among these three equations (4.3.28), (4.3.29)
and (4.3.30) is the coefficient of Q5. We can compare the power of three T; tests by
investigating the three coefficients above. We know that B is O(1) under local alternative
hypothesis, and Qy has order O(N~'/2), which sign depends on §. Besides, we can always
arrange the two populations such that B or {2y is positive. Without loss of generality, we

arrange the two populations and make €25 > 0. Then for large N and B > 0

2B 2B

Therefore, as N gets larger, T3 test is more powerful than 7 and T5 tests. In addition, T}
test is more powerful than 75 test. On the other hand, for large N and B < 0

2B 2B
2Qn > 0 > WQN > —Qn (4.3.32)

VN
Therefore, as N gets larger, T3 test is more powerful than 77 and 75 tests. In addition, T3

test is more powerful than T} test.

4.3.1.5 Power comparison between TCF and three two-sided 7; tests under

local alternative hypothesis

In this section, we investigate the power difference between the three T; test and TCF test.

Denoting
c
D =B [¢(Un1-as) (221-as2 — en) + 0(Unasa) (221-aja +cn)] s (4.3.33)
VN
where cy = ——2——. Here we have B = [A(1 — \)]V/2 (822, — 6824,) /12 and \ =

2( 1 4 1
VoG tag)

21—+ O(N™") as defined in Theorem (3.1.3). Then the three power differences become
e Power of 71— power of TCF from (4.3.20):
—D + O(N—min(Lr1/2)y, (4.3.34)
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e Power of T5,— power of TCF' from (4.3.23):

—D 4 O(N~min(Lr+1/2)y (4.3.35)

e Power of T5— power of TC'F' from (4.3.26):

2Cy — D + O(N—min(Lr1/2)), (4.3.36)
Recall that
c
D=B-~ [6(Un,—as2) (221-as2 — en) + 0(Un.aj2) (221-a/2 + cN) ]

VN

Note that, in Section 3.2.3 we studied the sign of z;_,/2 — ¢y and presented Figure 3.1 to

1.962%02

show the upper bound of N < e (Tw)

, which satisfies the above inequality 2;_n/2—cny > 0
when o = 0.05. Now, when it comes to the inequality 221_,/2 —cy > 0, the upper bound of
N will increase 4 times. In this case, under the local alternative hypothesis and the main
focus of this study, without loss of generality we can assume 22;_,/2 — ¢y > 0.

Since ¢(Un-a/2) > ¢(Un,aj2) > 0, the sign of D depends on the sign of Bey. Besides,

we can always arrange the two populations such that B or cy is positive. Without loss of

generality, we arrange the two populations and make ¢y > 0. Then,

e if B > 0, we have D > 0 and the power of two-sided TCF test is higher than the
two-sided 17 and T2 tests;

e if B < 0, we have D < 0 and the power of two-sided TCF test is smaller than the
two-sided T} and T2 tests.

As shown in (4.3.26), the power difference between two-side T3 test and two-sided TCF test

at level « is:

) Bo
A(Un,1—a/2) |221—aj2 — 2Bz1_q)2 +
VN Jo2(L + 1) oX(L 4+ 1)
B —min(1,r+1/2)
+O(Unyas2) |221-a/2 — 2B21—a) — —F—— + O(N ’ )
o*(o + 57)
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As we can see, this power difference depends on «, common population standard deviation
o, sample sizes ny and ny, skewness vy; and ¥, and effect size §. So it is not easy to give
an explicit cutoff to pick the one with higher power. However, we can give a rule of thumb
cutoff, which is satisfied by the majority of real applications.

Again, without loss of generality, we arrange the two populations and make 6 > 0. When
the sample size ratio A is around 0.5 and y; —72 < 6, we have B < 1 and 221_4/2—2B21_q/2+

Bé
—=2 > (. Then
02(%4—%)

Power of two-sided T3 test - Power of two-sided T'C'F' test

) Bo
= - - A(Un,1—as2) |221—aj2 — 2Bz1_q)2 + N YEREREEN
\/N 0'2(n—1+n—2) 02(n_1+n_2)

Bo —min(1,r+1/2)

+¢(UN,a/2) 221_q2 —2B21_opp — —————m——— + O(N ' )

G+ 5s)
ni no
54751704/2

> O(Unas2)(1 — B) + O,(N~mnLr1/2)y >
VN, /o2(L + ) 8

ni

Thus the power of the two-sided T3 test will be larger than the TCF when B < 1. On the
other hand, when population is highly skewed and the sample are very unbalanced, the data
can yield a much larger B. Then the power of the two-sided T3 test will be smaller than the
TCF test. This result means the two-sided TCF test can provide more accurate two sample

mean comparison when the two populations are highly skewed.

4.3.2 Power of the one-sided upper-tailed 7; test under local al-
ternative hypothesis
Under H,, the theoretical power of the one-sided upper-tailed T; test is obtained by:
1— Py (T <t —cn) — Q). (4.3.37)

Denoting t]_, —0/4/0%(;- + 7-) as Lt

14, then the power can be expressed as:

power of one-sided upper-tailed T} test

—1— Py, (VNT(U) < VNT(LY V) = Q(t,),
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where the last equality is due to the fact that T;(t) are monotone functions. Then replacing

70

12, With its definition, we can get

power of one-sided upper-tailed T} test
i 1 i
=1 = Py,(VNT,(U) < VNT[(1y, = 8/ 0*(— + —))/VN]) = Q(ty",).
1 2

Based on the (4.3.3) from Section 4.3.1, we can write

(4.3.38)

power of one-sided upper-tailed T; test

~1-E <<I> {zl_a - {T[l(i}_—]\j)] 5/@}) — Q). (4339

Next, based on the results from Section 4.3.1.1, 4.3.1.2 and 4.3.1.3, the power functions of

the one-sided upper-tailed T tests, i = 1,2, 3 can also be obtained. Define
O = N7122_p(Uni—o) ——— (4.3.40)

Hypper = —Q(Unj1-a)-
Then the power functions are
e Power of the one-sided upper-tailed 77 tests
1 — ®(Uni_a) + N='252avz1 0 ¢(Un,1—a) + Hupper + O(N—min(Lr+1/2))

VoG g
= 1= ®(Un,1-a) + ZZCON" + Hypper + O(N 7RI, (4.3.41)

e Power of the one-sided upper-tailed 75 tests

—162av21_q _a L -
1-— q)(UN,l—a/Q) + N 6?/:2(113?((111\)1,1 ) + Hupper + O(N min(1, +1/2))
ny ' ng

= 1= ®(Uni—a) + 22OW" + Hypper + O(N—min(Lr1/2)) (4.3.42)

e Power of the one-sided upper-tailed T3 tests

“29221 0 —o —min(1,r
1—®(Uyy o) + ¥ \;;zlﬁ([fv)’l )t Hypper + O(IN—min(Lr+1/2))
ny ' ng

= 1 — ®(Uni_a) + 2087 + Hypper + O(N—minLr+1/2)), (4.3.43)
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For the upper-tailed tests, we always have § > 0 and C/*" > 0. Then for large N and
B >0

2B 2B
Zle\tfpper N \/NCKTPPET > Wc%pp” >0 (4344)

Therefore, as N gets larger, T3 test is more powerful than 7 and T5 tests. In addition, T}

test is more powerful than 75 test. On the other hand, for large N and B < 0

2B 2B
2CJ1<7pper >0> _CXTPPGT > _C’X[pper (4345)

N VN

Therefore, as N gets larger, T3 test is more powerful than 77 and 75 tests. In addition, T3
test is more powerful than T} test.
Furthermore, the power difference between the one-sided upper-tailed T; tests and the

one-sided upper-tailed T'C'F test at level o can be obtained as well. Define

Q
upper ﬁﬁﬁ(UN,lfcﬁ) (2217(1 _ CN) , (4.3.46)

then we have

e Power difference between the one-sided upper-tailed T} test and TCF test

— pupper O(N*mm(l»?”rl/?)); (4347)

e Power difference between the one-sided upper-tailed T5 test and TCF test

— pupper O(N*mm(l»?”rl/?)); (4348)

e Power difference between the one-sided upper-tailed T3 test and TCF test

QCX[pper — pupper . O(mein(l,rﬂ/?)). (4349)

Following the same discussion for the two-sided test, without loss of generality we can also
assume 2z1_, — ¢y > 0 under upper-tailed local alternative hypothesis. Since § and cy are

both positive under the local alternative of one-sided upper-tailed test, then
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e if B > 0, we have D"PP?" > () and the power of two-sided TCF test is higher than the
two-sided 17 and T2 tests;

e if B < 0, we have D"PP" < () and the power of two-sided TCF test is smaller than the
two-sided T} and T2 tests.

Note that the power difference between the one-sided upper-tailed T3 tests and the one-

sided upper-tailed T'C'F' test at level « is:

C .
L (o(Ua-) 2210 — 2210 + Byl + OV 071

Based on the same rule of thumb in two-sided case, when B < 1, we have 2z;_, —2Bz_,+
Beny > 0. Then the power of the one-sided upper-tailed T3 tests will be larger than the
one-sided upper-tailed TCF' test.

4.3.3 Power of the one-sided lower-tailed 7; test under local al-

ternative hypothesis
Similarly, the theoretical power of the one-sided lower-tailed 7T; test is obtained by:
Py, (T" <t —en) 4+ Q). (4.3.50)
(i) (1)

Denoting t,” — cy as Lg’, then the power can be expressed as:

power of one-sided lower-tailed T; test
=Py, (VNT,(U) < VNT,(LO /VN) + Q(t),

where the last equality is due to the fact that T;(¢) are monotone functions. Then replacing

LY with its definition, we can get

power of one-sided lower-tailed T; test

(4.3.51)
=Py, (VNT(U) < VNT[(t — 5/%)/\/ﬁ]) + QD).
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First of all, based on the results (4.3.3) from Section 4.3.1, we have

power of one-sided lower-tailed T; test

ool v r ] s et 5V 4 oo, (4.3.52)
(ofm [ 50})

Next, based on the results from Section 4.3.1.1, 4.3.1.2 and 4.3.1.3, the power functions of

the one-sided lower-tailed T; tests, i = 1,2, 3 can also be obtained. Define

)
C]l\(;wer — N71/2217a¢(UN,a>— (4353)
(s +25)

Hlower - Q(UN,Q)-
Then below are the power functions of the 7} tests:

e Power of the one-sided lower-tailed T test

12820y a —min(1l,r
U)o
ny | ng

= (I)(UN@) + j_BNC%wer + Hipwer + O(mein(l,rJrl/Z)) (4354)

e Power of the one-sided lower-tailed 75 test

(b(UN,a) N N‘\;j;z(w?f(lljz\)f,a) + Hlower + O(mein(l,r+1/2))
ny ' ng
= O(Una) + FOR + Higwer + O(N (LT H1/2)) (4.3.55)

e Power of the one-sided lower-tailed T3 test

@(UNQ) o N—1/252z1a¢(({1v,a) 1 Hypwer + O(N—min(l,r—l—l/Q))
’ VoG +ag)
- q)(UN#l) + 2011\?1”” + Hipwer + O(N*min(l,r+1/2)) (4356)

For the lower-tailed tests, we always have § < 0 and C%“*" < 0. Then for large N and
B >0

2B
VN

2B
O[T < SO < S ORT <0 (4.3.57)
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Therefore, as N gets larger, T5 test is more powerful than 7} and T3 tests. In addition, T}

test is more powerful than 75 test. On the other hand, for large N and B < 0

2B
VN

Therefore, as N gets larger, T} test is more powerful than 7, and T3 tests. In addition, 75

2B
Clgrer > 22 0l > 0. 20k (4.3.58)

test is more powerful than T3 test.
Furthermore, the power difference between the one-sided lower-tailed T; tests and the

one-sided lower-tailed T'C'F test at level a can be obtained as well. Define

Q
Dlewer — B\/—Ngﬁ(UN,a) (221_0 +9Q), (4.3.59)

then we have

e Power difference between the one-sided upper-tailed 7T} test and TCF test

_ Dlower + O(N—min(lﬂ“-i'l/?)); (4360)

e Power difference between the one-sided upper-tailed T5 test and TCF test

_Dlower + O(N—min(l,r-i-l/Q)); (4361)

e Power difference between the one-sided upper-tailed T3 test and TCF test

ZC]l\z;wer — pupper O(mein(l,rJrl/Z)). (4362)

Following the same discussion for the two-sided test, without loss of generality we can also
assume 227, + £ > 0 under lower-tailed local alternative hypothesis. Since ¢ and {2 are

both negative under the local alternative of one-sided lower-tailed test, then

e if B >0, we have D'**" < () and the power of two-sided TCF test is smaller than the
two-sided 17 and T2 tests;

e if B <0, we have D**" > () and the power of two-sided TCF test is higher than the
two-sided T and T2 tests.
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Note that the power difference between the one-sided lower-tailed T3 tests and the one-
sided lower-tailed TCF' test at level « is:
L $(Uxa) 210 — 2Bz — BOJ} + O(N-minr41/2)
JN Na 1-a l-a
When B <1, we have 2z;_, —2Bz;_,— BQ > 0. In addition, since €2 < 0, the power of the
one-sided lower-tailed T35 tests will be smaller than the one-sided lower-tailed TCF' test.
For given population parameters and fixed sample size, the theoretical type I error rate
of the two-sample TCF tests and three T; test introduced in Section 3.2 and Section 4.1
approach to o by an order of O(N-""17+1/2)) " The theoretical powers of the four tests

depend on terms listed in below:

e How close the F}l)(t) to the true distribution of the test statistic T

The significance level «;

ny
ni+ng’

The two sample sizes nq, ny and their ratio Ay =

The effect size 0;

The two population variances o3 and o3;

The two population skewness v; and 7,.

In next Section 4.4, we will conduct a simulation study aiming to figure out that to what
extent, the four new two sample tests can improve the power of the test and maintain the

type I error rate under skewness.

4.4 Simulation study

4.4.1 Main purpose of the simulation study

Zhou and Philip (2005) used the coefficient % in equation (2.3.11) in Section 2.3.2.2 to

represent the relative skewness in two-sample scenario. Zhou and Philip (2005) found the
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relative skewness % can affect the coverage accuracy of confidence intervals based on normal

approximation. Under our two-sample setting with equal variances, the relative skewness
can be calculated as ¥ = 3N~V/2B, where B is in equation (3.1.10) in Theorem 3.1.3. So
the main purpose of this simulation study is to figure out how the relative skewness affect
the test results accuracy and to which extent, the four new tests derived from Edgeworth
expansion can improve the test accuracy.

The simulation study compares the type I error rate and the power of seven tests under
skewness. The seven tests are pooled two sample t-test, tests by three transformations (7;),
test by Cornish Fisher expansion (TC'F'), Bootstrap-t test (Davison and Hinkley, 1997; Efron
and Tibshirani, 1993) and Bias acceleration bootstrap-t test(BCa) (Efron, 1987). The above
seven tests in this simulation study, are testing the population mean difference between two
independent populations with equal variances. Furthermore, this simulation study focuses
on two-sided hypothesis test, one-sided lower-tailed hypothesis test and one-sided upper-
tailed hypothesis test, which assume equal population means under the null hypothesis and

unequal population means under the alternative hypothesis.

4.4.2 Detailed settings of simulation study

The two skewed populations are chosen from Gamma family and Log-normal family, which
are both right skewed and their relative skewness depends on the value of v = 3N~1/25.
Based on the formula of B in Theorem 3.1.3, it is clear that if both samples are skewed,
their relative skewness can cancel each other and yield a small value of v = 3N~'2B. To
prevent this happen, we let the first population follow Gamma or Log-normal distribution
and let the second population follow normal distribution.

Denote normal distribution as N(uy,07) , where iy and 0% are the mean and variance
of the normal distribution. Let Gamma(a, 5) be the notation for gamma distribution with
shape parameter o and rate parameter 5. We know, when o« = 1, the gamma distribution is

an exponential distribution and when 3 = 0.5, the gamma distribution is a y? distribution.

Let LN (y2,02) be the notation for Log-normal distribution with log-transformed mean p
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and log-transformed variance o3. We summarize these three distributions in Table 4.1

N(py,0%) Gamma(a, B)  Lognormal(usg, o3)

parameter  mean=pu; € R shape=a >0 Location= pus; € R

variance= 0'% >0 rate=p0>0 scale=cgy > 0
mean fh a/B e o3/
variance o? a/B? (€73 — 1)e22to3
skewness 0 2/\/a (€73 4 2)V/ e — 1

Table 4.1: Population Parameters of Three Distribution Famailies

There are six pairs of populations used in this simulation study. Under null hypothe-
sis, the setting of each population parameters is listed in Table 4.2 and the corresponding
distributions of each pair are presented in Figure 4.1. From Table 4.2, the distributions in
pairl, pair3 and pairb have small common variance, while the distributions from pair2, paird
and pair6 have big common variance. In addition the second population in pair3, pair4 and

pair6 have higher skewness than the second populations in pairl, pair2 and pair5.

Population2 Populationl "
Pairl N(up =1,02 =1) Gamma(a=1,0 = 1) 2.0
Pair2 N(u; = 8,0% = 16) Gamma(a =4, =0.5) 1.0
Pair3 N(py = 04,02 =2) Gamma(a =0.08,3=10.2) 7.1
Paird N1 = 1.25,0% = 15.625) Gamma(a = 0.1, =0.08) 6.3

Pair5  N(u; = e%%2 02 = e%5(e®® — 1))  Lognormal(ps = 0,02 = 0.5) 2.9
Pair6 N(p = e'/2,02 = e'%(e!® — 1))  Lognormal(us = 0,02 = 1.5) 12.1

Table 4.2: 6 Pairs of Population Settings

Under the alternative hypothesis of one-sided upper-tailed and two-sided tests, a constant
in the amount of 0.30 was added to the first population mean. That is the population mean

of the first population is bigger than the second population, and the mean difference is 0.30.
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Under the alternative hypothesis of one-sided lower-tailed test, a constant in the amount of
0.30 was subtracted from the first population mean. Again, the reason we choose the value
0.3 is according to Cohen (1988), we are here to check if these seven tests have enough power
to detect a small amount of population mean difference. The other population parameter

settings are the same with those in Section 3.3.2:

e Significance level a = 0.05;

First population sample size ny = 5,10, 15,...,150;

Ay =n1/N =0.3,0.5,0.8, here N = nj + no;

Second population sample size ny = (1 — Ay)N;

Effect size: § = (u1 — p2) — Hypothesized(py — p2) = 0.30, where o2 is the common

variance.

Note that when Ay = 0.3 or Ay = 0.8, the two-sample data set becomes highly unbalanced.
Same as in Section 3.3.2, there are 10,000 simulated samples generated for each parameter
setting and each sample size. For bootstrap tests, 1,000 bootstrap samples are resampled

from each generated data set.
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Figure 4.1: 6 pairs of distributions
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4.4.3 Steps of simulation study for each test

For each simulation setting in Subsection 4.4.2, we generate 10,000 data sets of size N =
ny1 +ne from the two populations respectively, with sample of size n; from population 1 and
sample of size ny from population 2. Then apply the seven tests on each data set. When the
alternative hypothesis is true, the two populations having different means, the proportion of
times rejecting the null hypothesis out of 10,000 generated data set is the empirical power
of the test. When the null hypothesis is true, the two populations having equal means, the
proportion of times rejecting the null hypothesis out of 10,000 generated data set is the
empirical type I error rate.

Below we describe how each test is conducted. The pooled two sample t-test, tests by

three transformations and test by Cornish Fisher expansion are calculated as follows:

1. For each generated data set, compute the test statistic 7" defined in equation (2.1.2)

as -
:Y1—Y2—(M1—M2)

1 1 ’
SP\/ 7 5

2. For each of the five tests above, reject Hy if the test statistic T falls into their corre-

T

sponding rejection regions. Repeat this testing process for each of the 10, 000 generated

data set.

Follow the same procedure in Subsubsection 2.2.2.3, the empirical type I error rate and

power of the bootstrap-t test can be computed by the following step:

1. Draw B = 1,000 bootstrap samples of size N = n; 4+ n, with replacement from each
of the 10,000 generated data set, with sample of size n; from sample one and sample

of size ny from sample two.

2. For each bootstrap sample, compute
_ Xikb - ng - Xln + X2n

)
« f1 4 1
Spb ni + ng
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where X7}, and X3, are the bth bootstrap sample means of sample one and sample two

respectively; Xi, and X, are the sample means for original sample one and original
_ \/(n171)s;2+(n271)s;2

sample two respectively; 57

rE—— is the pooled two sample standard

deviation of bth bootstrap sample; S =

> (X5 — X2, i = 1,2 are the bth

n;—1

bootstrap sample standard deviation for sample 7.

3. Estimate the a/ 2" percentile of test statistic 7 by the value ty /2 such that
B
B™'Y (T} < tap) = /2
b=1

4. The rejection region of bootstrap-t test with significance level « is then:
T< tAa/Q or T > tAl—a/2-
Reject Hy is the test statistic T falls into the rejection region above.

Follow the same procedure in Subsubsection 2.2.2.4, the empirical type I error rate and

power of the BCa test can be obtained by the following step:

1. Draw B = 1,000 bootstrap samples of size N = n; 4+ ny with replacement from each
of the 10,000 generated data set, with sample of size n; from sample one and sample

of size ny from sample two.

2. For each bootstrap sample, compute the BC'a confidence interval of 11 — pio introduced

in Subsubsection 2.2.2.4, which has a form

(G (®(z10/2)), G Bz )

Equate the lower and upper bounds of this interval with the t-statistic based confidence

intervals for p, — po:

_ _ 1 1 - 1 1
(Xln — Xon — tl—a/QSp — + — Xln - X2n - ta/ZSp — + _) .

ny no ni no
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3. By solving the above the equations, the rejection region of BCa test with significance

level «v is then:

Xn_Xn_GA_1® -« Xn_Xn_é_1® o
o K= Ko = G @Cpap)) | K= X @G) (441
Sp n%—i—% Sp %"’r%

Reject Hj if the test statistic T falls into the rejection region above.

So far, we described the steps to compute type I error rate and power of each seven
tests in this simulation study. In the following section, we will present the results of the
simulation study with differen levels of population skewness, sample size ratio and common

variance.

4.4.4 Simulation results for two-sided test

In this simulation study we have six pairs of population settings shown in Table 4.2. The
population 1 of the first four pairs follows Gamma distribution and the population 1 of the
last two pairs follows Log-normal distribution. The population 2 of all six pairs follows
normal distribution.

The simulation results consist of two parts. The first part includes the theoretical results
of the type I error and the power of the five two-sample tests including pooled two-sample
t-test, TCF test and three T; tests based on transformations. Recall that these five two-
sample tests have the same test statistic 7" defined in equation (2.1.2). Therefore, our new
approximation of 7" in 3.1.13 based on the first order Edgeworth expansion can be used to
calculated the type I error and power of each test. Note that, for the two-sided test, we have
already provided the forms of the (a/2)" and (1 — a/2)"" percentiles of the above five two-
sample tests in Chapter 3 and 4. Thus, without generating any data sets, the theoretical
results can be obtained on the basis of the two percentiles calculated by the population

parameters from each simulation setting:

Type I error rate = 1 — F}l)(Tl_a/Q) + F}l)(Ta/g)
Power = 1 — F(Ti-ajs = /02 + 2)) + Fr (Taje = 6/ /0> + 75))

1 1
no ni
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However, we can not get the theoretical results of the Bootstrap t-test and BCa test, because
these two methods need to resample from a data set.

The second part of this simulation study is the empirical results from seven tests men-
tioned in Section 4.4.1. And the empirical type I error rate and power of these seven tests
were obtained by calculating the proportion of rejections in each simulation setting under
Hy and H, respectively.

The results of the theoretical and empirical type I error rate and power of the seven
tests from each pair of population settings were presented with twelve figures in Figures 4.2
through 4.13 and eighteen tables from Table 4.3 to Table 4.20. In the further discussion,
we will refer the simulation results for the first pair of population setting as “Pairl”, the
second pair of population setting as “Pair2” and so forth. The results of Pairl will be
given first then followed by the results from Pair2 and so on.

Pairl has a distribution combination with small skewness and small common variance.
Figure 4.2 is the theoretical type I error rate and power for Pairl from five tests including
pooled two sample t-test denoted as “I”, the three transformation-based two sample tests
denoted as “TV", “Iy”, “T3" respectively and Cornish Fisher expansion based two sample
test denoted as “C'F”. There are six panels in Figure 4.2. The top three panels are the
theoretical type I error rate of five tests with A = 0.3,0.5,0.8 respectively. The bottom
three panels provide the corresponding theoretical power of each test. From Figure 4.2,
under every level of A\, all five tests have a fairly stable theoretical type I error rate, which
is close to a = 0.05 for n; > 20, and the T} test gives a constantly higher theoretical power
than the other four tests. When A\ > 0.5, the theoretical power of 77 and C'F becomes
higher than T and T5.

The six panels in Figure 4.3 give the corresponding empirical type I error rate and
power for the tests in Figure 4.2. Besides the five tests above, Bootstrap-t test denoted as
“bootstrap” and BCa test denoted as “BCa” are also included. For the empirical results,
the BCa test gives higher type I error rate than the other tests when sample size is small. As
the sample size increases, the type I error rate of all seven tests reduced to «. When A = 0.8,

the type I error rate of BCa test became much larger than the other six tests. The patterns
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of empirical power in Figure 4.3 support the theoretical power results in Figure 4.2. The
pooled two-sample t-test gives the lowest power while T3 test provides the highest power
across all levels of A. When A > 0.3, TCF test and BCa test give the second largest power.

The numerical results of Pairl empirical power were presented in Tables 4.3, 4.4 and 4.5.
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Pair2 has a distribution combination with small skewness and big common variance.
Figure 4.4 is the theoretical type I error rate and power for Pair2 and Figure 4.5 gives the
corresponding empirical results. The numerical results of empirical power were presented
in Table 4.6, 4.7 and 4.8. The simulation results of Pair2 is very similar to Pairl. All the

discussions from Pairl still hold for the results of Pair2.
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Pair3 has a distribution combination with big skewness and small common variance.
Figure 4.6 gives the theoretical type I error rate and power for Pair3 and Figure 4.7 gives
the corresponding empirical results. The numerical results of empirical power were presented
in Tables 4.9, 4.10 and 4.11. Since Pair3 has bigger skewness than Pairl and Pair2, the
simulation results are quite different. From Figure 4.6, across all levels of A the theoretical
type I error rate of five tests are all smaller or equal to . The pooled two-sample t-test
still provides the lowest power. When A = 0.3, T3 test gives the highest power followed by
the TC'F and T} test. When A > 0.5, TC'F test becomes the test with the largest power
and 77 test gives the second largest followed by the third largest from T3 test.

Note that the theoretical results in Figure 4.6 are consistent with the empirical results
in Figure 4.7. When A = 0.3, the type I error rates of Bootstrap t-test and BCa test are
larger than 0.05 and close to 0.1. While the type I error rates of all the other tests are
smaller than o = 0.05. BCa test, T3 test and Bootstrap-t test give higher power than the
other tests. When A\ = 0.5 and n; > 15, the type I error rate of all the tests are close to
a = 0.05 except BCa test. The power of TCF test and Tj test are higher than the power of
BCa test and Bootstrap-t test. As A reaches 0.8, i.e., there are 80% of the data coming from
the skewed population 1, the type I error rate of all the tests are bigger than 0.10 when n,
is small. Among seven tests, Bootstrap-t test and BCa test have a smaller type I error rate
than the other tests. However, the Bootstrap-t test and BCa test also provide smaller power
comparing to the TCF, T3 and 77 tests. Among all the seven tests, the pooled two-sample

t-test offers smallest power of the test across all levels of \.
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Paird has a distribution combination with big skewness and big common variance. Fig-
ure 4.8 gives the theoretical results and Figure 4.9 gives the corresponding empirical results.
The numerical results of empirical power were shown in Tables 4.12, 4.13 and 4.14. We
found that simulation results of Pair4 is very similar to Pair3, so we omit the discussion

of simulation results form Pair4.
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The population 1 of Pair5 follows Log-normal distribution and the Pairb has a distri-
bution combination with small skewness and small common variance, which is similar to
the setting of Pairl. We found that the theoretical results showed in Figure 4.10 for Pairb
have the same pattern as the results in Figure 4.2 for Pairl. The empirical results of Pairb
in Figure 4.11 also resemble that for Pairl. The numerical results of empirical power are

given in Tables 4.15, 4.16 and 4.17.
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The simulation setting of Pair6 is similar to Pair4 with big skewness and big common
variance. We found the simulation results of Pair6 in Figure 4.12 and Figure 4.13 are

similar to the simulation results of Pair4. The numerical results of empirical power are in

Tables 4.18, 4.19 and 4.20.
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4.4.5 Simulation results for one-sided test

For the simulation study of the one-sided test, we only present the empirical results from
the seven tests mentioned in Section 4.4.1. And the empirical type I error rate and power of
these seven tests were obtained by calculating the proportion of rejections in each simulation
setting under Hy and H, respectively. Figure 4.14 and Figure 4.15 give the empirical type
I error rate and power for one-sided upper-tailed and lower-tailed tests respectively. The
numerical results of Figure 4.14 are presented in Tables 4.21, 4.23 and 4.25; while the
numerical results of Figure 4.15 are given in Tables 4.22, 4.24 and 4.26.

Under the simulation settings of Pairl, all the seven two-sample one-sided upper-tailed
tests keep the empirical type I error rate under 0.1 shown in the upper panel of Figure 4.14.
Among all the seven tests, the one-sided upper-tailed T3 test gives higher empirical type I
error rate than the other six tests across all levels of A from 0.3 to 0.8. The empirical power
of the seven tests are close to each other except the empirical power of T3 test, which is
slightly higher than the rest of the six tests.

For the one-sided lower-tailed tests in Figure 4.15, T3 test gives the smallest empirical
type I error rate than the other tests. Across all levels of A, the type I error rate of all seven
tests are below 0.1. The highest empirical power comes from the pooled two-sample t-test,
which also keeps its empirical type I error rate close to 0.05. Although the type I error rate
of T3 is consistently smaller than 0.05, its empirical power is much lower than the other

tests.
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As mentioned previously, the Pair2 has a distribution combination with small skewness
and big common variance. The empirical results of the one-sided upper-tailed and lower-
tailed tests are given in Figure 4.16 and Figure 4.17 respectively. Their corresponding
numerical results are given in Table 4.27, 4.29, 4.31 and Table 4.28, 4.30, 4.32 respectively.
The empirical results of seven one-sided tests under the simulation settings of Pair2 are
very similar to those from Pairl. All the discussions from Pairl still hold for the results

of Pair2.
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Pair3 has a distribution combination with big skewness and small common variance.
The empirical results of Pair3 are presented in Figure 4.18 and Figure 4.19. The numerical
results are in Table 4.33, 4.35, 4.37 and Table 4.34, 4.36, 4.38. Since Pair3 has bigger
skewness than Pairl and Pair2, the simulation results are quite different.

From Figure 4.18, when A = 0.3, the bootstrap-t test and BCa test provide an empirical
type I error rate below 0.05, but also give the highest power. when A = 0.5 with balanced
sample, the highest power goes to TCF test and T3 test, which both keep the type I error rate
close to a = 0.05. when A = 0.8, the majority of the samples are from the first population
which is a highly skewed Gamma distribution. The type I error rate of all the seven tests
are bigger than a except the pooled two-sample t-test. As the sample size n; increasing,
the type I error rate of all seven tests decrease and drop below 0.1. The empirical power
of TCF, T} and Tj tests are higher than the rest of tests, but these three test also give a
bigger type I error rate.

From Figure 4.19, when \ = 0.3 the empirical type I error rates of bootstrap-t test and
BCa test are consistently above 0.1 even with a large sample size n; = 150. The rest of
the tests maintain the type I error rate at or below «, while give the similar power. As A
increases to 0.5, only TCF, T} and T3 tests keep the type I error rate close to «, then give
slightly smaller power than the other four tests. Given A = 0.8, all the tests have a type I
error rate bigger or equal to 0.1 except for bootstrap-t test. Although the bootstrap-t test
maintains the type I error rate below 0.05, its empirical power is much smaller than the

other six tests.
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Paird has a distribution combination with big skewness and big common variance. Fig-
ure 4.20 and Figure 4.21 present the empirical results of type I error rate and power of
upper-tailed and lower-tailed tests respectively. The numerical results are given in Ta-
ble 4.39, 4.41, 4.43 and Table 4.40, 4.42, 4.44. Despite that the populations setting of Paird
has a much bigger common variance than the population setting of Pair3, their simulation
results are quite the same. In this case, we omit the discussion of the simulation results of

Paird.
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As we know, the population 1 of Pairb follows Log-normal distribution and the Pairb
has a distribution combination with small skewness and small common variance, which
is similar to the setting of Pairl. Although the two population settings choose different
skewed populations, their simulation results are similar. We found that the empirical results
for the one-sided upper-tailed test in Figure 4.22 for Pair5 have the same pattern as the
results in Figure 4.14 for Pairl. Besides, the empirical results of the one-sided lower-tailed
test of Pairb in Figure 4.23 also resemble those for Pairl. The numerical results of the
empirical type I error rate and power of the upper-tailed and lower-tailed test are given in

Table 4.45, 4.47, 4.49 and Table 4.46, 4.48, 4.50 respectively.
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The simulation setting of Pair6 is similar to Paird, which has a big skewness and
common variance. Although the two settings have difference skewed populations, one from
Gamma and one from Log-normal, their simulation results are quite similar. The simulation
results of Pair6 in Figure 4.24 and Figure 4.25 are similar to the simulation results of

Pair4. The numerical results of the empirical type I error rate and power are given in

Table 4.51, 4.53, 4.55 and Table 4.52, 4.54, 4.56.
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4.4.6 Discussion

From the simulation study, we can conclude several findings as follows:

1.

Across all levels of A, as the sample size gets larger, the power of all the seven tests
increases and the type I error rate of the seven tests approaches the significant level.
When the sample size n; remains constant, the type I error rate of the seven tests

increases as the relative skewness v = 3N~1/2B gets bigger.

The theoretical type I error rate of TCF test and 7T; test is smaller than a under each
simulation settings. However, the empirical type I error rate of the four new tests
is close to o when the relative skewness v = 3N~'/2B is smaller. When the relative
skewness is big, the empirical type I error rate of the four new tests is bigger than 0.1

even with a big sample size.

Among all the seven tests, the two-sample TCF test and T3 test not only give con-
sistently bigger power but also control the type I error rate well. As the population
relative skewness v = 3N~Y2B increases, the power of these two tests outperform the

power of Bootstrap-t test and BCa test.

The two-sample Bootstrap-t test and BCa test give better power when the two-sample
data are balanced and less skewed; The pooled two-sample t-test gives the smallest
power among the seven tests across all the simulation settings. In addition, the pooled
two-sample t-test also gives the highest type I error rate when the data set is small

and highly skewed.

This simulation study can not reflect the effect of the common variance o on the power

of the test. That’s because the term of 02 was canceled out during the calculation

of two sample relative skewness v = 3N~Y/2B and 6/, /02(%1 + n%), in that §/o is

considered a constant in our simulation setting.

In this simulation study, we investigated two positive skewed families, Gamma dis-

tribution and Log-normal distribution. We found that the power of the test was not
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significantly affected by the types of the skewed distribution. In both lognormal and
gamma families, the amount of their population skewness ~; affect the performance of

the tests.

4.5 Two sample comparisons with population skew-
ness from outliers

In our previous simulation study, the population skewness comes from the population dis-
tribution being skewed, i.e., from Gamma distribution or log-normal distribution. In this
section, we will study the case that the population skewness is only due to some outliers.
In other words, the skewed population becomes symmetric if we delete all its outliers. Thus
the main purpose of this section is to check if the TCF test and the three T; tests have
enough power to detect the population mean difference under this situation.

To investigate the above questions, a simulation was conducted to compare the type
I error rate and power of the eight tests: pooled two-sample t-test, Wilcoxon Rank-Sum
Test, Bootstrap t-test, BCa test, three T; tests and TCF test. Under Hy, the data were
generated from standard normal distribution without outliers. Under H,, outliers were
added to population 1. The outliers were randomly generated integers from 10 to 20, which

accounts for 5% of the population 1 original sample size.

Population2 Populationl
Pairl N(u; =0,07=1) N(u; =0,0? = 1)+ Outliers
Pair2 N(u; =0,0f =1) N(u; =0.3,0% = 1)+ Outliers

Table 4.57: Two Pairs of Population Settings

Since all the outliers are positive integers, the first population mean i is bigger than the
second population mean po. These outliers also make the first population right skewed with
a positive population skewness ;. The second population is symmetric with 75 = 0. The

other simulation settings are the same as in Section 3.3.2. 10, 000 samples were generated for
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each parameter setting and each sample size. For bootstrap tests, 1,000 bootstrap samples

are resampled from each generated data set.

e Significance level a = 0.05;

First population sample size n; = 15,25, ...,145;

Second population sample size ny = (1 — Ay)NV;

Effect size: § = (u1 — p2) — Hypothesized(py — p12), depends totally on the outliers in
pairl setting and is equal to 0.3 plus the effects due to added outliers to popoulationl
for pair2 setting .

The simulation results are presented in Figure 4.26, Table 4.58 and Table 4.59.

Figure 4.26 shows the empirical type I error rate and power from these eight two-sample
tests including pooled two-sample t-test denoted as “T"”, Wilcoxon Rank-Sum Test denoted
as “Wilcox”, three T; tests denoted as “T;”, i = 1,2,3 and two sample TCF test denoted
as “C'F”. The two-sample Bootstrap-t test and two-sample BCa test are constructed based
on two different resampling methods. The first resampling method generates bootstrap
samples from each group separately. In the second resampling method the bootstrap samples
were generated from the pooled X;; — X, all 4,j. We denote the tests based on the first
resampling method as “boot1” and “BCal”. And denote the tests based on the second
resampling method as “boot2” and “BCa2”. The top two panels in Figure 4.26 give the
empirical type I error rate of the eight tests with A = 0.6. The bottom two panels provide
their corresponding empirical powers.

Table 4.58 and Table 4.59 present the numeric results of the empirical power under each
pair of population settings in Figure 4.26. The 4;, 42 and B are the mean estimates of
population 1 skewness 7;, population 2 skewness v; and B respectively. The “skewness”

calculated as % stands for the mean estimate of the relative skewness of two populations

3B
defined as iR

194



From Figure 4.26, all the eight tests control the type I error rate well. For the empirical
power of pairl, the Bootstrap-t test and BCa test based on the first resampling method give
the best power, which are consistently higher than the power of the other tests. The TCF
test, 77 and T3 tests provide the second best power. The power of Wilcoxon Rank-Sum Test
is very small, which is almost 0. The empirical power results of pair2 keep the same pattern
as the results from pairl, except that the power of the Wilcoxon Rank-Sum Test is higher
than the pooled two-sample t-test and 15 test as long as n; < 65. The empirical powers of
the eight tests for pair2 increase faster than the powers of pairl, because the two population
mean difference for pair2 is larger than pairl.

From Table 4.58 and Table 4.59, the mean estimate of 4; is around 4 and 4, is around 0,
which means the first population is heavily skewed and the second population is symmetric.
Moreover, the mean estimate of the relative skewness is between 0.23 and 0.65, which means
the two pairs of population settings have a high relative skewness.

Under this simulation setting, the bootstrap-t test and BCa test based on the first re-
sampling method have significantly better power than the other tests in testing the two
population mean difference when the population skewness comes from the outliers. Com-
paring with the pooled two-sample t-test, our four new tests are more robust with the
existence of outliers. The Wilcoxon Rank-Sum Test gives the worst power in the two sim-
ulation settings. Regarding the two resampling methods for the bootstrap-t test and BCa
test, we found the empirical powers based on the first resampling method provides much

higher power than the second resampling method in this data generating setting.
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4.6 Real data analysis

In this section we report the result of applying our four new two-sample tests, pooled two-
sample t-test and bootstrap t-test to analyze two real data sets. These two data sets are
both from textbook Ott and Longnecker (2008).

The first data set is about bonus percentage of employees. A personnel officer took
samples of 24 female and 36 male managers to see whether there was any difference in

bonuses, expressed as a percentage of yearly salary. The data are listed here:

Gender Bonus Percentage
F 92 77 119 62 90 84 69 76 74
80 99 67 84 93 91 87 92 9.1

84 96 77 9.0 9.0 84
M 104 89 11.7 120 87 94 98 9.0 9.2
9.7 91 88 79 99 100 10.1 9.0 114
87 96 92 97 89 92 94 9.7 89
9.3 104 119 9.0 120 96 9.2 99 9.0

Table 4.60: Bonus percentage data set. The data set is from exercise 6.13 of textbook Ott
and Longnecker (2008)

The data set is unbalanced with Ay = 0.4 and total sample size 60. Standard practice is
to first conduct an equal variance F-test to decide whether pooled or unpooled t-test should
be used. Here the sample standard deviation of the female group is 1.188959 and that for
the male group is 1.00385, which leads to non-rejection for the F-test. As a results, the
two population variances can be treated as equal. The F-test however, is sensitive to the
assumption of normality for the population distribution. In Figure 4.27, we can see that
the sample median of Bonus Percentage from the male is higher than that from the female.
And the sample from male does not follow normal distribution. The pooled two-sample t

statistic value is —4.036748. The cut offs for the rejection regions and the conclusions of
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the tests are given in Table 4.61. We can see that all the six two-sample tests reject the
null hypothesis and conclude that the two populations have significantly different means.
In addition the Wilcoxon Rank-sum test also reject the null hypothesis with a p-value of
0.00015. Even though all tests reject Hy, they have quite different rejection regions except
for TCF and Tj tests. Comparing to the rejection region of the two-sample t-test, the cutoff
values for all other tests have different amount of shift in both ends to reflect the correction

on skewness.

Boxplot of Bonus Percentage

Male
!

Female
|

6 7 8 9 10 11 12
Normal Q—Q Plot for Female Normal Q—Q Plot for Male
S S A
—
=
—
=
S
=
o
o - =
oo
o -
o
~ -
o -
.
«© T T T T T T T T T T
-2 -1 o 1 2 -2 -1 o 1 2
Theoretical Quantiles Theoretical Quantiles

Figure 4.27: Boz-plot and Q-Q plot for bonus percentage data

The second two-sample data set is from a cable TV company who was interested in
making its operation more efficient by cutting down on the distance between service calls
while still maintaining at least the same level of service quality. A treatment group of 18
repair-persons was assigned to a dispatcher who monitored all the incoming requests for
cable repairs and then provided a service strategy for that day’s work orders. A control

group of 18 repair-persons was to perform their work in a normal fashion, by providing
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lower cutoff upper cutoff Conclusion at level 0.05

T .test -2.002 2.002 Reject HO
bootstrap -2.081 2.037 Reject HO
TCF -1.881 2.039 Reject HO

T1 -1.884 2.043 Reject HO

T2 -1.949 1.971 Reject HO

T3 -2.959 1.612 Reject HO

Table 4.61: The cutoff for rejection region and conclusion of different tests

service in roughly a sequential order as requests for repairs were received. The average daily

mileage for the 36 repair-persons are in Table 4.62:

Groups Mileage

Treatment Group 62.2 79.3 83.2 82.2 84.1 89.3
95.8 979 915 96.6 90.1 98.6

85.2 879 86.7 99.7 101.1 88.6

Control Group 97.1 70.2 94.6 1829 85.6 89.5
109.5 101.7 99.7 193.2 105.3 92.9

63.9 882 99.1 951 924 873

Table 4.62: Cable TV Company data set. The data set is from exercise 6.17 of textbook Ott
and Longnecker (2008)

The two-sample data set is balanced, with Ay = 0.5 and total sample size 36. In
Figure 4.28, the two samples have different medians and at least one population appears to
be skewed. The pooled two-sample t statistic value is 1.70509. Then comparing to the cut
off values of the rejection region listed in Table 4.63, we can see that the two-sample TCF,
T1, T3 and bootstrap t-tests reject the null hypothesis and conclude that the two populations
have significantly different means. But the pooled two-sample t-test, Wilcoxon Rank-Sum
Test(p-value = 0.082) and 75 test fail to reject the null hypothesis and conclude the two

populations means are not significantly different with p-value all close to 0.1.
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Boxplot of Mileage
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Figure 4.28: Boz-plot and Q- plot for mileage data

In this first example, our four new test gave consistent testing results as the pooled
two-sample t-test, bootstrap t-test and Wilcoxon Rank-Sum Test. Furthermore, when it
comes to the second example whose data are more skewed, our proposed new two-sample
tests reject the null hypothesis and conclude that the two population means are significantly
different from each other except for T, test, while the commonly used pooled two-sample
t-test and Wilcoxon Rank-Sum Test did not reject the null hypothesis and conclude that

the two population means are not significantly different.

4.7 Summary

In this chapter, we presented three new two-sample tests based on transformations followed
by extensive simulation studies. When testing the two population mean difference, our

study shows that the four new two-sample tests, one based on Cornish Fisher expansion
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lower cutoff upper cutoff Conclusion at level 0.05

T .test -2.088 2.088 Do Not Reject HO
bootstrap -3.760 1.570 Do Not Reject HO
TCF -2.362 1.558 Reject HO
T1 -2.475 1.614 Reject HO
T2 -2.062 1.851 Do Not Reject HO
T3 -3.710 1.454 Reject HO

Table 4.63: The cutoff for rejection region and conclusion of different tests

(TCF) and three based on transformations (7;), ¢ = 1,2, 3, can provide more accurate tests
under skewness. Comparing to the two-sample test based on normal approximation (T'N),
TCF and T; tests have the same type I error rate but give higher power for the same sample
size.

The Bootstrap-t test and BCa test not only provide elevated type I error rate but
also need significantly more computation time due to bootstrap resampling. Among the
seven two-sample tests in the simulation study, the two-sample TCF test and T3 test are
recommended for comparing skewed populations over the T'N test since they have better

power both theoretically and empirically in addition to well maintained type I error control.
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Chapter 5

Proposed two-sample test using
Cornish Fisher expansion for skewed

populations with unequal variances

In this chapter, we will extend this research in previous chapter by considering two-sample
comparison for the skewed population with unequal variances. As introduced in Sec-
tion 2.3.2.2, Zhou and Philip (2005) derived an approximation distribution for the test
statistic of unpooled two sample t-test by Edgeworth expansion theory as follows:

Let Ay =n1/(ny +ng) =ng/N. Assume \y = A+ O(N~") for some r > 0. Under regu-
larity conditions, the distribution of the unpooled two sample t-statistic 7" given in (2.1.1)

has the following expansion:

/

@) () = "< 2) = B(x i 72 T —min(1,r+1/2)
FY(r) = P(T' < ) = ®(a) + (20 + 1)o(e) + O(N ) (5.0

where ¢(x) is the probability density function of the standard normal distribution, ®(x) is
the cumulative distribution function of the standard normal distribution and

, o2 o2 ) 32 oy oy
P tn__odn 1 02
{)\+1—/\} {v TESNE (5.0.2)

Based on the above approximation distribution in (5.0.1), we follow the same procedures

in Chapter 3 to derive a new two-sample t-test by the Cornish Fisher expansion theory.
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5.1 New test based on Cornish Fisher expansion under

unequal variances

5.1.1 A two-sample test based on Cornish Fisher expansion under

unequal variances

As introduced in Section 2.3.1, the percentiles of the distribution in (5.0.1) admits a Cornish

Fisher expansion, which has the form as follows.

Corollary 5.1.1. Let 7, denote the o' percentile of the distribution F;U)(t) in (5.0.1).
Then based on Cornish Fisher expansion theory, the value of 7, admits an expansion with
the form below:

/

A .
To = 2o — —=(222 4 1) + O(N~mn(Lrt1/2)), (5.1.1)

6v N

where 2, is the o' percentile of the standard normal distribution and A" is defined in (5.0.2).

This corollary is a direct result of the theory for Fisher expansion from Hall (1992a).
Hence we omit the proof.

Now define 7, = 2z, — %(22& + 1), where

s 5_%+ S8\ S S
Av 1=y A (=an)2)7

Uy Z{XS_ Xl}g

j=1

and

n .
Ay = ——+— i=1,2
N (n1+n2)

With the test statistic 7" defined in equation (2.1.1), we have:

1. The rejection region for two-sided test with hypothesis Hy : iy — pto = 119 — oo VS.
Hy o py — pg # pig — poo is

T <typ or T > %o (5.1.2)
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2. The rejection region for one-sided upper-tailed test with hypothesis Hy : p; — po =

H1o — foo VS. Hy @ piy — po > pig — oo 18

T > g (5.1.3)

3. The rejection region for one-sided lower-tailed test with hypothesis Hy @ py — po =
H1o — Hoo V8. Hy @ piy — po < pig — oo 18

T < 7. (5.1.4)

We reject the null hypothesis if 7" falls into the rejection regions for corresponding
alternative hypothesis. In the further discussions, we will refer this two sample test based

on Cornish Fisher expansion under unequal variances as “unpooled-TCF test”

5.1.2 Type I error rate of the two-sided unpooled-TCF test

In this section, we calculate the order of approximation to type I error rate for the two-
sided unpooled-TCF test with rejection region in (5.1.2) from the first order Cornish Fisher
expansion. Under the two-sample setting in above Section 3.2.1, the distribution of the test

statistic 7" is F}U) (x) defined in (5.0.1). Denote the two cutoffs in formula (5.1.2) as

: A X
Ta/2 = Raj2 — m@zi/z +1) 2 Zaj2 T AN,a/Q
, (5.1.5)

A <
Ploaj2 = Z1—aj2 — — =221 oo+ 1) £ 2102 + AN o)
1—a/2 1—a/2 6\/N( 1—a/2 ) 1-a/2 Ni1-a/2

where
A/

N4

o 222, +1
Naj2 = 6\/_( /2 )

~

AN,1—04/2 6\/_

Under standard regularity conditions and previous results, we have

(227 a2 T 1)

Vi =V + Op(N_1/2)7
S; =0 + Op(N_1/2)7
AN =A+O(NT).
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Then we can show that

o8, s s sh
Av 1= Ay A2 (1= y)?

of o} AT e 0 TR o n(r. L
—J 1 4 OP(N—mzn(T,§)> _ + Op(N—mm(r,i))
A

) 22 (-2
(N—min(r,%)),

Based on the above result of /Al/, we can obtain

NG

N4

wo = ——=(222,,+1
N,a/2 6\/N< /2 )

A’+O N—min(r,l)

6V N

A —man(1l,r
= ——=(22 )y + 1) + Op(N L2

6v'N

_ A/N,a/Q + Op<N7min(1,r+1/2))’

and

S

AN717Q/2 = AN,17Q/2 + OP(N—mz'n(l,r+1/2))'
Now we have

7@(1/2 = Ta/2 + Op(N—min(l,r—l—l/Q))

7:1_&/2 = Ti_a/2 + OP<N—min(1,T+1/2))

Y

and the following Lemma:

Lemma 5.1.2. Let 7, denote the o' percentile of distribution F}U)(t) in (5.0.1) and 7,
denote the estimate of 1, given in (5.1.5). Then under standard regularity conditions, the
following result holds:

P(T < 7A'a/2) + P(T > 721,0[/2)

= 1= FO (1) + F) (raja) + O(N-min(r41/2))
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Recall that the distribution of F}z) (x) in equation (5.0.1) takes the following form

/

F}U) (x) = P(T/ < ;{;) = (I)(I) + %(21’2 + 1)¢($> + O(]\]'fmm(l,r+1/2))7

Hence, based on the result of Lemma 5.1.2, the type I error rate of the two-sample

unpooled-TCF test can be obtained as
P(type I error of the two-sided unpooled-TCF test)

=1 - Fz(ﬂU)(Tlfa/Z) + F'_Z(ﬂU)(Ta/Q) + O(N—min(l,r—f—l/Q))

o 5.1.6
=1 — ®(T1_ay2) + P(7ay2) — m(%f—am +1)o(T1-a/2) o0

A
6V N

Due to the fact that A" are finite constant, then we have

+ (272 )3 + 1)(Taj2) + O(N 7L H1/2)),

AIN,OC/Q = A/N,1—a/2 =O(N~'/?) (5.1.7)

Note that

/

A 2
—W(QTQ/2 + ].)

!

A ,
= ————(2(2a2 + Ay o) +1
GW(( /2 N, /2) )

A _
= —m(22«’2/2+1+0(]\[ 1/2))
= Ay +ONTY). (5.1.8)

Similarly,
A/
VN

Then apply Taylor expansion to ®(7i_q/2), ¢(Ti—as2) at zi_a/2 and to ®(7./2), ¢(7a/2) at

— (211 a2 T 1) = A11\7,1—04/2 +ONY) = A;\[u/z +O(N™). (5.1.9)

Zq/2 correspondingly, we have

D(Ti-as2) = P(21-0/2) + ¢(Zlfa/2>A;v 1—a/2 T O(A;e/,l—aﬂ)a
(

P Ta/2) (za/Z) + ¢(Za/2) Na/2 + O<AN a/2)
¢(7'1 a/2) (Zl—a/Q) + ¢ (Zl—oc/2)AN 1—a/2 + O<A/]3,1—a/2)7
A(Tay2) = O(2as2) + ¢ (Za/2)AN a/2 T O(ANa/2>

(5.1.10)
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Using these four Taylor expansions and (5.1.8), (5.1.9) to replace the terms in (5.1.6), we

have:

P(type I error of the two-sided unpooled-TCF test )

A/
=  1—=9(r_ap)+ P(1ap) — W(QHQ—@/Q + 1)(T1-as2)

/

A —man(1,r
+m(273/2 + 1)$(7aj2) + O(NmmLrH/2))
= Oé/2 - ¢(21—a/2)AlN,o¢/2 + Oé/2 + (b(ZQ/Q)AIN,aﬂ + O(A;\Qf,a/Q)
+[AIN,04/2 + O(N_l)][ﬁb(zlfaﬂ) + ¢/(Zlfa/2)AlN,1—o¢/2 + O(A/J\Zf,l—a/m
_[A;V,Q/Q + O(N_l)][¢(za/2) + ¢,(ZQ/Q)A;V,Q/2 + O<A/J\2/,a/2)]
_|_O<mein(1,r+1/2))
=t A ablnars) — Ahgadleas) + ON) + O(N-m707112)

= a4 O(NTmin(rel/2)y (5.1.11)
Then we have the follow theorem,

Theorem 5.1.3. Under standard reqularity conditions, when Hy is true, the theoretical type

I error rate of the two-sample unpooled-TCFE test, with level of significance a is
P(T’ S 7A_a/2) + P(T’ 2 7A_17a/2) — a4+ O<N—min(17r+1/2))'

Note that the approximated type I error rate of unpooled two-sample t-test based on
normal approximation is also o+ O (N ~™"1L+1/2)) " This means that the two tests have the

same type I error rate accuracy.

5.1.3 Power of the two-sided unpooled-TCF test

Now consider data generated under H, : p; — pio # p1o — p20- For power calculation, let
d = (1 — p2) — (p10 — p20)|. When H, is true, the theoretical power equals the probability

of rejecting the null hypothesis with formula:
Pu, (T2 #1oa2) + Pat, (T < Fap2)
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Following the same Edgeworth expansion procedures in Section 3.2.3, the distribution of

the test statistic 7" under H, can be obtained. We state the result in the Theorem below.

Theorem 5.1.4. Let Ay = ny/(ny + n2) = ny/N. Assume \y = X+ O(N~") for some
r >0, and § = O(N~Y2) under H,. Then under regularity conditions (in Appendiz A),
the distribution of the unpooled two sample t-statistic T given in (2.1.1) has the following

expansion under H,:
Filioned(®) = Ff @ = en) + (0 = ex)ole = ey) + OV 07412), - (5.1.12)

where ¢(x) is the probability density function of the standard normal distribution, ®(x) is
the cumulative distribution function of the standard normal distribution and F}U)(a:) is the
distribution of T under Hy defined in (5.0.1). Here, cxy = 6/ o2(;- + 7o) and qn =
0o AL = N](m = 72)-

Denoting
2 2
’ R g g
Lu = Tl_a/g — (5/ _ni + _nz
2 2
~ 0-1 0-2
= Zl_a/2+AN,1—o¢/2_5/ ny + Ng

— UN,I—a/2 + AN,I—Q/Q
= UN,lfa/2 + AN,lfcz/Q + OP<N_mM(LT+1/2))

_ L; + Op<mein(1,r+1/2))

/ o2 o2 / ’ ’ ..
where UNi—ap = #1—a/2 = d/1/ m+2and L, = Uni—apt AN,l—a/Z’ Similarly

2 2

r! A g g ! —min(1,r
Ly =7ap2 =6/ n_i + n_z = Ly + Op(N-mnlr1/2))

/ 0'2 0'2 / ! /
where Uy o = zaj2 —0/y/ ;1 + 32 and Ly = Uy, p + Ay, p. We have

i/; — qu + Op(]\[—min(1,7"—&—1/2))7

IA/; _ L; _{_OP(N—min(l,r—H/Z))'
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Then based on the result of Lemma 5.1.2, under standard regularity conditions, the theo-

retical power of the two-sample unpooled-TCF test can be obtained by

Pu, (Tzﬂ) + Py, (Tgi;)
= 1-FOL) + FY(L) — QL) + Q(Ly) + O(N-min(lr1/2))

_ 1= ®(L,) + B(Ly) — A= (2L + 1Dé(L,) — QL)
el LY + DAL + Q(LY) + O(Nmn(rst/2), (5-1.13)

5.1.4 Power of the two-sided unpooled-TCF test under local al-

ternative hypothesis

Recall that, under the local alternative, both U]'\, )2 and U]'\, 1—a/2 have the same order of

O(1). Therefore we have

/ ’

A , A / _
— m(ZLU? + ].) — _m<2UJ\?’17&/2 + ].) + O(N 1). (5].].4)

Similarly, — f(2L 241 = ﬁﬁ(ZU;@a/z + 1)+ O(N~!). Then apply Taylor expansion
to ®(L.), ¢(L.) at UN,lfa/Z and to ®(L,), ¢(L;) at U;V’Q/Q correspondingly, we have
u) q)<UN1 a/2) + ¢(UN1 a/Z)A,N,l—a/Z + O<A/I\2/',1—a/2)7
= (I)(UN,a/2> + ¢(UN,Q/2)AN,Q/2 + O(A/]\2/a/2)7

¢(U;V,1—a/2) + ¢/(UJI\771—O¢/2)AN1 a2 T O(ANl a/2)s

Qb ;) = QS(U;V,Q/Q) +¢/(U]/V,a/2)ANa/2+O(ANO¢/2)
Then (5.1.13) can be further calculated as

(5.1.15)

power of the two-sided unpooled-TCF test =

A

— D (Unnss) — ——=QUZ 0o+ D)O(Un o) — QUn 1) + QUx .,
(Una /2) 6\/N( Nl-a/2 JO(Un 4 /2) Q(Uy, /2) Q(Uy, /2) (5.1.16)

/

/

A
2U 2
6\/N( Na/2

has the form

+ (I>(U]/v7a/2) + )gb(U}V’a/Q) + L;me’)\ + O(N—min(l,r-i-l/Q))’

where L)y, PN

’ /

Linmn) = Anaj2ldUnasa) = $(Un i _ap)] + O(N ) (5.1.17)
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Note that, the approximated power of the unpooled two-sample t-test based on standard

normal approximation is:

power of the unpooled two-sample t-test =

, A , / / /
1= Uy um) — ——=QUZ, oo+ DUy asm) — QUy 1 ) +QUy,
(Una /2) 6 /—N( N1-a/2 )o( N1 /2) Q( N1 /2) QU /2> (5.1.18)
/ A/ ! ! —man(1l,r
+ @(Up,ap2) + —(QU]\%Q/Q +1)¢(Upy o2) + O(N (Lr+1/2)).

6V N

From (5.1.16) and (5.1.18) we have the following Corollary:

I

Corollary 5.1.5. The two-sided unpooled-TCF test at level o is more powerful than the
unpooled two-sample t-test if and only if the following inequality holds

e, (1= X203y > ¢, N0y, (5.1.19)
where c,, = 223, — 1.

In real practice, the sign of L/(Nm,va) can be manipulated by adjusting A = Ay +
O(N7") =n1/N+O(N™"), since 7; and v, are determined by the population. With a fixed

value of y; and 7, we can further rewrite the equation (5.1.19) as
(e, 07 — co87) N2 — 2¢,03 1\ + ¢, o5y, > 0. (5.1.20)

Now we can solve for A which satisfy the inequality in (5.1.19). The left side of inequal-

ity (5.1.20) will have real roots if (5.1.21) is nonnegative.

(2c,087m)? = 4(cyoin — cuo3re)caoin > 0.

That is 4c2oladyye > 0. (5.1.21)

Clearly, (5.1.21) satisfied if y;75 > 0, since c,, o1 and oy are all greater than 0 in real
practise. When 717, < 0, we can switch the two samples and let 74 > 0 and 2 < 0. Then
the inequality (5.1.19) always hold. Suppose w; and w, are the two roots of the left side
of (5.1.20). Without loss of generality, let w’l < w;. Then under ;2 > 0, we have the

following solutions of A for L,Nm,w, 5 >0
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o if 03y, — g3y, > 0 then A < w) or A > wy;
o if 0y, — 0375 < 0 then w) <\ < ws.

To demonstrate the relationship between A and L/( N consider one specific example.

2,A)’
Suppose population 1 follows Gamma distribution with population skewness v; = 2 and
population standard deviation o; = 3; population 2 follows Log-normal distribution with
population skewness 7; = 6 and population standard deviation o7 = 1. With a = 0.05,
the unpooled-TCF and unpooled two-sample t-tests were applied to test the two population
mean difference. Based on the given population parameters, we can solve for A that gives a
higher power in the two-sample unpooled-TCF test. Since 172 > 0 and o3y, — 057y, > 0,
by solving the inequality (5.1.20), the solutions can be obtained as A < w; or A > wy, where

wy = 0.75 and w, = 1.5.

5.1.5 Summary

In this chapter, we derived the order of type I error rate accuracy and the power function
of the two-sample unpooled-TCF test. Besides, we also provide the detailed conditions
under which the theoretical power of the two-sample unpooled-TCF test is higher than the
two-sample TN test. Comparing with the TCF test, the unpooled-TCF test can test the

population mean difference under unequal variance assumption.
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Dissertation summary

In this dissertation, we applied the Edgeworth expansion on the test statistic of pooled two
sample t-test to derive a new approximation of its distribution under skewness. On the
basis of this new expansion, a new two-sample test from Cornish Fisher expansion theory
(TCF test) was constructed. We proved that the TCF test can maintain the type I error
at rate O(N—™"(Lr+1/2)) "hut, give a higher power than the pooled two-sample t-test when
the underlying data are skewed. We quantified the power increment as a function of the
sample size ratio and population skewnesses. A sufficient and necessary condition was given
in the dissertation to guide users on the range of sample size ratio such that the TCF test
has higher power than the two-sample t-test.

We also developed three new tests based on three transformations (7; test, i = 1,2, 3)
for the pooled two-sample case. These three transformations help to eliminate the skewness
of the studentized statistic. We proved that the three T; tests have the same order of
type I error rate accuracy as the pooled two-sample t-test based on normal approximation
(TN test) and the TCF test. In terms of power, we proved that the two-sided TCF test
has higher power than the two-sided 77 and 75 tests; the power difference between two-
sided TCF test and T3 test depends on the relative skewness B defined in (3.1.10). Small
population skewness difference yield a small B, which leads to a higher power for the Tj
test than the TCF test. On the other hand, a big population skewness difference will yield
a large B, which leads to a lower power in T3 test than TCF test. This result means the
two-sided TCF test can provide more accurate two sample comparison when the populations
are highly skewed.

Beyond theoretical development, this dissertation also give extensive simulation studies
to compare the proposed tests with commonly used two-sample tests. The simulation study

in Section 3.3 shows that the two-sample TCF test not only maintained the type I error rate
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but provided highest power and should be recommended over the pooled two-sample t-test,
Bootstrap t-test and Wilcoxon Rank-Sum Test for skewed data. Moreover, the simulation
results for two-sided hypothesis or upper-tailed test show that, among all the seven tests,
the two-sample TCF test and T3 test not only give consistently higher power but also control
the type I error rate well. As the population relative skewness increases, the power of these
two tests outperform the power of Bootstrap-t test and BCa test. For the lower-tailed test,
we observed interesting phenomenon. For populations with smaller relative skewness, the
TN test performs the best in terms of both type I error and power. When the relative
skewness increases, the TN test exhibits higher power but also has the most elevated type
I error rate.

Finally, this dissertation extends the study to compare two skewed populations with
unequal variances. We derived the unpooled-TCF test based on the Edgeworth expansion
of the test statistic of the unpooled two-sample t-test. The theoretical result shows that
the unpooled-TCF test gives the same order of type I error rate accuracy as the unpooled
two-sample t-test based on normal approximation. We also provided the condition on the
sample ratio to yield a higher power for the unpooled-TCF test.

The five new two-sample tests i.e., TCF test, unpooled-TCF test and three T; tests are es-
pecially designed for the two-sample comparison under the skewed populations. Comparing
with the commonly used pooled and unpooled two-sample t-tests and Wilcoxon Rank-Sum
test, the five new tests have less restricted assumptions and provide better power to detect
departure from the null hypothesis. Compared to resampling based bootstrap-t test and
BCa test, the five new tests have better type I error control while giving a comparable

power.
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Appendix A

Proof of Theorems

A.1 Proof of Theorem 3.1.3

Proof of Theorem 3.1.3:
Under the sufficient regularity conditions from Hall (1992a):

E(|XJ*?*) < oo and limsup|X ()] <1 (A.1.1)
[t| =00
holds if the distribution of X is nonsingular.

The pooled two sample t-test is as follows,
}71 - Yz - (,ul - ,UQ)
/1 1 ’
Spr/ s t g
where Y; = Y1 Yi;/ni, S, = \/ m-DSHm D55 g §2 = LS (YY) withd = 1,2,

ni+ng—2
Let Y, = “it yr = LS v and ) — Y*)?, for i = 1,2 and

Z - n; Jj=1"1j = i_l jzl( i

T —

7=1,..n; Use these new defined variables to replace the original statistics in pooled two

sample t-statistic, we have

0'1}/1* — 0'2}/2*

\/(n1—1)0%5f2+(n2—1)o§s;2 (n14n2)
ni+ng—2 ning

B \/N 0.1371* o 0_2)72* (A12)
\/ (11— D)2+ (ng~ )35

(N=2)AN(1-AN)

219



where Ay = ny/N = ny/(ny + na).
Furthermore, let X = (X1, Xs, X3, X), where

_ 1 &
)(1 :Y'l*’ XQZ_ZYVI;
nq 1
iy N
X3:Y2,X4:H—QZY2]-.

Now plug X into (A.1.2) to further transform the pooled two sample t-statistic, finally we
can write test statistic T as a function of X with T = v/Ng(X), which has the form as

follows:

01X1 — 09X

(ny — 1)02S + (ny — 1)0283

(N —2)An(1 = Ay)
_ (m —1)of(Xz2 — XF) + (n2 — 1)o3 (X4 — X3)
(N — 2))\N(1 — )\N)

k(X) =

Next, apply Taylor expansion to ¢(X) with EX = U = (Uy,Us, Us, Uy) = (0,1,0,1), we

have

dg(U) 19%9(U)

o(X) = g(U) + L2 (X~ )+ 5B (x — v+
T:W{%(X—UH%(X—U)’aagg)(X—UH...},
where g(U) = 0.
Now, if we let
=V x4 -0y P8 oy

Under regularity condition in (A.1.1), from Zhou and Philip (2005) we can show that

T=Wx+ O(N_l).
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Assuming EY;} < oo, the first three moments of Wy are as follows:

Emh)z—%N1”MO—AW”Mq—w)+OUme@”9% (A.1.3)
EWR)=1+0(N1h), (A.1.4)
AMI=NTY2 11A—2  9—11A il
3y — _ min(l,r+35)
E(WR) { AN } ( \ 71 Y v2) + O(N ), (A.1.5)

where v; = E [(Y’a—:“)?’] is the population skewness and i = 1, 2.

A.1.1 Proof of Corollary 3.1.1

The proof of Corollary 3.1.1 is shown as follows: First we will find E(Wy).

0%g(U)
U

By = V) (X - U)+ %\/NE(X —U)

o (X - U).

To calculate E{ag(U (X —U)} and E{(X —U)Z4Y (X — U)}, denote P = N Dot ond

ou? (N—2)ning
N 1o
Q—ﬁ%mf Then,

oU
r B Xl 1)
2 2 Xy —1
= EQlpg)" 0 g | o
3 ..
X, -1
:E<X1( 0-% )1/2—X3( O-% )1/2)
P+Q P+Q

=0
Then the expectation of the second term

E {(X . U>'a;9[§§> (X — U)}

( [ T )

Pg(X) . Pg(X) X1

oX7 x| | (A.1.7)
:E [Xb X2—17 Xg, X4—1]
X3

9(X) .. 99X

0X40X1 (37X42 X4 -1
\ L d 7
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We break (A.1.7) down to calculate the middle term first:

[ 2%9(x) . 9%9(X)
0X2 9X10X4
?9(x) .. %X
| 9X,0X, ox32
0 Lo (P + Q)" 0 o (P Q)
|t 0 L oy(P 4 Q)2 0
0 gO'Q(P—f—Q)ig/z 0 %UQ(P—I—Q)*:S/Q
_—%Jl(P + Q)32 0 _%O_Q(P + Q)32 0 |
(A.1.8)
Denote the matrix in (A.1.8) as W, and we put W back to (A.1.7)
( B T )
Xy
Xy —1
EL[X1, Xo—1, Xa, Xy — 1JW s
X3 (A.1.9)
\ _X4 - 1_ /

= E[(=P)(P + Q)01 X\(Xo — 1)] + E[(Q)(P + Q) %02 X5(Xy — 1)]

Here (X3, X3) are independent with (X3, X,), and P, @ and o; are all constants. So the
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random terms in (A.1.9) are E[(Xy — 1)X;] and E (X, — 1)X3].

1SN 1O
El(X;-1)X,] =FE (n—lzylj —1)(n—12Yu)
j=1 i=1

(1o 1 &
BN -D(=S"v;
_nl ]Zl( 15 )(nl ; lz)

ni ni

=ni% SOS B[ - )Yy

j=1 i=1

(A.1.10)
if 7 # j then Y, independent with Y7;

1 G *2 *

:F Z EKYU — Y7
1 3

=—FB[(Y*
n [( 1]]

_n
ny .

Based on the similar calculation, we get E [(Xs —1)X3] = 2. Put the results in (A.1.10)

back to (A.1.9), we have

( B T )

Xy

Xo—1
EL X1, Xo—1, X3, Xy — 1|W

X3 (A.1.11)
X,—1

\
—(=P)(P+Q) 0t + Q)P + Q) 0 2.
ny N2

Combing the results from (A.1.6) and (A.1.11), we have

-0y i - o)

Ve

E(Wy) =E {\/N@%(g)l (X —U) + %
(A.1.12)
:%\/N {Q(P + Q)—WUQ% —P(P+ Q)_3/201£}

ni

The first term %\/N {Q(P + Q)_3/20271—2} can be computed as,

VN {Q(P + Q)*’/%—ﬁ}

no

(g () o

(A.1.13)

Nl
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3

3
2 —1)o no—1)o - . .
let B; = (ijng)zn?im (NZ[(”l(]\}zz%;anz 1) %]) * then, above equation is equal tos VN (B; — %)

Then we apply Tyler expansion to term [(ny — 1)o? + (ns — 1)02]72 in B; and have,

(1 — 1)o? + (ny — 1)o3] 2

3

=[(ANN —1)of + (N = AyN — 1)o3] >

N

=[AvNo? + N(1 = Ay)o2] "7 + ;[)\NNaf +N(1 = Ay)od] 2 (0 + 02) + O(N %)
(since Ay = A+ O(N™"), we have)
=[A+O(N)No2+ N(1— X+ ON )02 "% + O(N"2)
=N Dot + (1= Mg + O(N )4} + O(NF)
=N {0t + (1= NoF] F + OV ")} + O(NH).
(A.1.14)

Then putting the results from (A.1.14) back to By, we have,

3
2

B, — N (N2[<n1 — 1ot + (nz - 1)03])

(N = 2)nins (N —2)ning
3 N =2 ,[(ni — 1o+ (ny — 1)o3]73/2

=03 % N2 )" (n1ng)~1/2
e 2)1/2N 3/2{[>‘0 + (1= N)a3] 72 + O(N~ T)}
=049 72 N2 N- 1[)\(1_)\>+O( 7«)]
Ly N—a Pt - et o
=0, 72( N3 ) [)\(1 _ )\)]7% n O(N )
. N-=2,, o2+ (1= N)o2] 3 )
— 272( N3 ) { [)\(1_)\”_% +O(N )}

_3

i (A.1.15)

N[A(l e

Then plug By back to (A.1.13), we have

1 B,
~“VN(B, — =
2 ( ! ng)

3

_LU% Aot + (1= Na3] > —r—1/2
“2UN ”2{ 1= N2 }ww !

(A.1.16)

224



Placing (A.1.16) back to (A.1.12), we have

oUu 2<

_ 1 0-171 — 0-372 O-% 422 02 s + O(Nfrfl/Q)
2W/N L A1 =N I—X A

= = A —72) + OV ),

B(Wy) :E{\/_[ag( W) )y Lx oy e <U)(X—U)]}

where the last equality is due to o; = 0».

Next, we will compute E(W3):
1 0%g(U)

B3 = BN - 0+ - 0y SRR - oy

= NE{[(G1) + (G2) + (G3)]},

where

(@) = {20 (x - U>}2 ,
(G2) = {249 (x >}{<X U) 2(X - U)},
(G3) = {(X Uy (x ~ )}

The expectations F(G1), E(G2) and E(G3) are

BG) = %
(1) = ni (P + Q) N ny(P + Q)
—Po? Qo? B _
BGD) = gpm Y " p g TV =00

E(G3) = O(N7?).
Based on the equations in (A.1.19) and (A.1.18), we can get

E(WR) = N{[E(G1) + E(G2) + E(G3)]}

2

- {m(;i NEELE) *O(NQ)}

=14+ O0(N.
Finally, we will calculate E(W3):
sy = 5 w2 x -y + o -0y 28 x - oy

= N32E{[(D1) + (D2) + (D3) + (D4)]},
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where

(D) = {2 (x - )},

(D2) = {20 (X — 1)}2{(X — U) 249 (x — 1)},
(D3) = 2{240 (X — U)}{(X - U) 22D (x — )},

(D4) = t{(x — 0y 2 (x — 1))

Their expectations are

1 2

3y
E(D2) =3 {a%b12—2 + (a%b34 + 2alai%blzl) g }
ny n1n2

3 A.1.22
+3 {(aﬁ,bu + 2a1a3ba3) - + a§b34i22 + O(Ng)} 7 | |
nineg ns
E(D3) =O(N—%),
E(D4) =O(N™%),
where,
2 2
01 1 o — 02 1 —
ay = (P+Q)2 ag =0, ag (P+Q)2’ ay =0,
P
big = by = —%(P%— Q) % by = by = —%(P +Q)” % (A.1.23)
Po o
baz = b3y = TQ(P+ Q)_%, b3 = bz = —%(P + Q)_%7

and all other b;;s are zero, i = 1,2,3,4 and j = 1,2, 3,4. Based on the results from (A.1.22)
and (A.1.21), we have

E(W3) = N*2E{[(D1) + (D2) + (D3) + (D4)]}

= N*2E{[(D1) + (D2)]} + O(N~?) (A.1.24)

1 e [ 11X =2 9 — 11
= o A= (- (e

)v2| FONT" 1/2)

A.1.2 Proof of Corollary 3.1.2
Let Kin, Koy and K3y be the first three cumulants of Wy. Then,
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Kiy = EWy
Koy = EW} — (EWy)? (A.1.25)
Ksy = E(Wy — EWy)?

Plugging in the results of Corollary 3.1.1, we can get the following equations

1

fon = _le = N2 (11 = 72) + O(N MG,

Koy = 1+ O(N-min(lr+1/2)) (A.1.26)
1 8\ — 2 6 — 8 s

Kan = —m[)\(l — )12 {(T)% - (T )’Yz} + O(N—minB2rEL2),

Let xn(t) be the characteristic function of Wy. Then,

XN(t) =€exrp {KlN(Zt) + KQN (it)Q + KgN@ + .. }

2 6
4t2 .t3 )
:mm{Kw@w+KmﬁQ +Kwﬁg~HXN”m@”W»} (A1.27)

=exp <—%) exp {N—1/2 (—A(@'t) . B(it)3) + O(N—min(l,r+1/2))} '

By Taylor expansion, we have
t? .
xn(t) = exp (—5) exp {1+ N~1/2 (—A(it) — B(it)*) + O(N_mm(l’rﬂ/z))} . (A.1.28)
Based on the results of Hermite polynomials (Fedoryuk, 2001) and Fourier Transforma-

tion (Bochner and Chandrasekharan, 1949), the probability density function of Wy is

mmmzi/me%m@ﬁ

2r J_o

1 e t2 .
e exp (—§> exp {1+ N~1/2 (—A(it) — B(it)*) } dt + O(N~min(Lr+1/2))

= % -
= ¢($> - N_l/QAHl(fL’)QZS(ZL‘) — N_I/QBH;),(ZL‘)QZ)(ZL’) + O(N—min(l,r+1/2))
= ¢(2)[1 + N"V2(3B — A)x — N~V2Bg3) + O(N—mn(Lr+1/2)y

(A.1.29)
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where H; = x and H; = 2% — 32. Then the cumulative distribution function of Wy is

P(Wy <) = / " fu (@) + O(N i 1/2)
/ Qb 1/2AH1(I)¢(x) _ Nﬁl/zBHg;(I)gf)(l‘)dl’ + O<mein(1,r+1/2)>

®(z) — N"V2AHy(x)d(x) — N~V2BH;(x)d(x) + O(N-mrH1/2)
=& (z) + NV A + B(2? — 1)]¢(x) + O(N~min(hr+1/2)y
(A.1.30)
where Hy = 1 and Hy = 2* — 1. Since T = Wy + O(N~!), Theorem 3.1.3 follows.

A.2 Proof of Theorem 3.2.4

The test statistic of the pooled two sample t-test under H, is
Vi—Yo— (] —pg)  Yi—Yo— (1 —p2) +9

- )
/1 1 1 1

where § = p; — pp — (pd — p3). Similarly, with the same X = (X1, X3, X3, X}) defined in

T =

Section A.1, we can express the T under H, as

7= VN () + m(X) = Mt
where
9(X) = (X1 — X3)k(X)/?
m(X) = 0k(X)~'?,
and
F(X) — (1 = DST +(n2 = 1S5 _ (m = 1)(Xo — X7) + (n2 — 1)(Xs — X3)

(N = 2)An(1 = An) (N =2)An(1 = Ay)
Next, apply Taylor expansion to ¢(X) and m(X) with EX = U = (Uy,U,, U3, U;) =
(0,1,0,1), we have

o(x) = o)+ 2 0 LEID (e
m(x) = m() + 22D (x ) 1D (g



where g(U) = 0. Now, we let

wy = V{2 -0y 4 L -0y P (x
Wy = V() + 22 (x 0y 4 Lx -0y T (x oy

Under regularity conditions in (A.1.1),
T=Wyx+Ws+O(N1).
Assuming EY;% < oo, the first three moments of Wy + W can be obtained

E(Wy + Ws) = E(Wy) + ey + O(N~mnr+3)),
E(Wx +W;)? = E(Wy)? + & — 00[M1 = X)) (11 — 72) + O(N-™in(r+2)),
E(Wy + W5)? = E(Wyx)? + & + 300 VNA (1 — )]/

=200 VNIAL - N2 ( — ) + O(N 04D,

where ¢y = 0/,/0%(;- + ) and E(Wy)' are the first three moments of Wy under H,,
i =1,2,3. They follow the same formulae (A.1.3) — (A.1.5) as in the case of H,. Based on
the first three moments of Wy + Wy, the first three cumulants of Wy + W can be obtained

as follows
Ky = Kiy+ev + O(N~min(Lrtg)y
KQI}I\L; = E(WN + W§)2 _ EQ(WN —+ Wé) = KQN + q + O(N—min(l,r—f—%))’
Kile = EWy + W5 — E(Wy + Ws))® = Ky,

where gy = 00 A(1 = \)](71 — 12) and K,y are the first three cumulants of Wy under Hy,
i=1,2,3. Let xn(t)" be the characteristic function of Wy + W;s. Then,

. it)? it)3
() = exp{Kg\‘}(zt)+K£\‘}(;) —i—Kg\? ) +}

= exp{(KlN—i—cN)( ) (K2N+q> (it)? + Ksy (zt }—i—O(N min(l,r+1 ))

Apply Taylor expansion and result in (A.1.28), we have
2

t 2 , L
xn () = exp (z‘tcN — 5) {1 + N7V (= A(it) — B(it)®) + 7(] - O(N—"“”(lm))} .
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Based on the results of Hermite polynomials (Fedoryuk, 2001) and Fourier Transforma-
tion (Bochner and Chandrasekharan, 1949), the probability density function of Wy + Wi

is

1 > .
Jwy+w; (1) / e "xn(t)edt =

frnd % N
oz — cn) [1 — N7V2AH(z — ) — Ho(z — cN)%V — N"Y2BH,(x — cN)]

+O(N—min(1,r+l/2))7

where H, = x, Hy = 2> — 1 and Hs = 23 — 3z. Then the cumulative distribution function

of Wy + W is

P(Wy +Ws <u) = [* fwyrws(x)de + O(N-mnhr1/2))
= O(u—c)+ N A+ B((u—c)? = 1oz —¢) + L(u—c)p(u —¢)

+O(N—min(1,r+1/2) ) ]

Since T' = Wy + Ws + O(N™1), Theorem 3.2.4 follows.

A.3 Proof of Corollary 3.2.5

By subtracting the two power functions in (3.2.17) and (3.2.19), we can get

Power of TCF test - Power of TN test

= —Q(L) + QL) + QUnN-as2) = Q(Un.aj2) + Ly + O(N T2,

Thus, if we can prove

—Q(L) + QUL + QU1 -0p2) — QUnas2) = O(N Y,

then we are done. Note that

Q(sz) = QEN(UN,ka/z + Ani—as2)0(Unji—aj2 + Ani—ay2)
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Since Ay 10 = —N12[A+ B((t;’:a/Q)Z —1)] = O(N~Y2) and gy = O(N~'/%), we have

QL) = B Uiy + O ) Uaapa + OV )
= D [(Un 1)U ap2) + ON 2]

— B (U2 0(Unaap2) + O(N)

= Q(Un1-as2) + O(N7)

Thus, we have
QL) = Q(Un,i—as2) = O(NTH).
Similarly, we can also show that
QL) = Q(Unap) = O(NT),
Therefore,
— QL) + QL) + QUN1—ay2) — QUn.ayz) = O(N7L).

Then the results in Corollary 3.2.5 holds.

A.4 Proof of Theorem 4.1.1

Proof of Theorem 4.1.1. Under H,

P(T'<z)=P(T+ N Y?A<z)=P(T <z— N24)
= &z — N 2A) + N"V2[A+ B((x — N"V24)? = 1)] (A4.1)

¢($ _ N71/2A) + O(mein(l,r+1/2)).
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Applying Taylor expansion at x, we can calculate the probability as
Oz — N7V2A) + NTV2 A+ B((x — N7V2A)? — 1)]g(z — N™V2A) + O(N—min(Lr1/2))
—=[®(x) + ¢(2)(~N"V2A) + O(N"Y) + NV [A+ B(a? - N"Y2Az — 1+ O(N7Y)]
[p(z) + ¢ (2)(=N"V2A) + O(N™)] + O(N—min(Lr+1/2))
=P(z) + N V2 [—A+ A+ B> —1) + O(N"V?)]p(z) + O(N™Y) + O(N—mnLr1/2)
=d(z) + N"V2B(2% — 1)¢(x) + O(N!) + O(N—min(r+1/2))
=®(z) + N"V2B(2? — 1)p(z) + O(Nmin(r+1/2),

then the distribution of P(T" < x) follows the same form as that in Hall (1992b) and Zhou
and Philip (2005). The proof under H, is similar and is thus omitted.

A.5 Proof of Corollary 3.2.6

Proof of Corollary 3.2.6:
We know that

Ly = Anap[d(Unas) — ¢(Unji—a)] + O(NT,
where ¢(Un,a/2) < @(Unji—aj2). So Ly > 0 if and only if Ay /2 < 0. Note that
Anap=—N"?[A+ B(z},, —1)].
So An,a/2 < 0 if and only if A + B(zi/2 — 1) > 0. Recall that
A=D1 =N —2)/2,

B = A1\ (8A -2, 6= 8372) /12

A 1

Plugging A and B into A + B(zi/2 —1) > 0, we have

8\ —2 6 — 8\ = ) 6

\ 71 1_)\72 T2 N 22/2_1
6 2 6 2
SE+ = )y > (8 -
( + a/2 1 A)/yl ( + 23/2 o 1 1 - )\)72
&(8+ 2) > (8 + 2 )
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where ¢ = = 6_1. Then corollary 3.2.6 holds.
a/2

A.6 Proof of Corollary 5.1.5

Proof of Corollary 5.1.5:
We know that

!/

L/(N,'yl,'yg,)\) = AN,oz/2[¢<[]]l\/,oz/2) - gb(U]lV,lfa/Z)] + O<N71>7

where ¢(Uy /o) < ¢(Uyy_0s0)- S0 Ly, 5,5 > 0if and only if Ay, < 0. Note that

I
’

A
AN,@/Q = _m

So AINM2 < 0 if and only if A/(in/2 + 1) > 0. Recall that

PO K S o
X 1o PN GESDNCY

Plugging A" into Al(2z2/2 +1) > 0, we have

2 2 -3/2 3 3
01 03 o1mn 0572 2
— — 2 1 0
{A+1—>\} {)\2 (1—)\)2}(2"‘/2+)>

3 3
91N 0272 2
@{ 2 —(1_)\)2}(2za/2+1)>0

& {(1=N)?oim — Noyya} (222, +1) >0

s, (1 - N2y > e, 2057,,

where c,, = 222 s — 1. Then corollary 5.1.5 holds.

A.7 Proof of Results 4.3.19

We want to prove

QLYY + QL) + QL) — QL) = O(N ).
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Recall that

T7Ht) =t — N+ O(N™) and 4 = O(N~V?),

]

where m > 1 and

i i 1 Rl—a/2
LY =t ap— N = VNT, i /—]\; ) —cn
Q i / 1, R
Ll():ta/Q_CN: NCTZ 1(\/%)—0]\[.

We have

QL) =B (VT — ey ) (VT () o)

= (W(Z;“N/Q — N) — cN) (\/N(Zi;%” — N4 — cN)
= D 0(z1-02 — en + O(N ) (21ajz = e + OV )

= D0(21-a/2 = o) (F1-ap2 = o) + O(N )

= D 0(Unaa/2) Una—ap2) + O(N )

= Q(Un1-as2) + O(N7)

Similarly, we can also show that

In Section A.3 we have proved that

QL) =Q(Unj—ap) + O(NT)
Q(chf) =QUn,a) + O(N).

Then the result in equation (4.3.19) holds.
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