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Abstract 

Trimmed means are robust estimators of location for distributions having heavy tails. Theory and 

simulation indicate that little efficiency  is lost under normality when using appropriately 

trimmed means and that their use with data from distributions with heavy tails can result in 

improved performance. This report uses the principle of equivariance applied  to  trimmed means 

sampled from a Cauchy distribution  to form a discrepancy function of the data and parameters 

whose distribution is free of the unknown median and scale parameter. Quantiles of this 

discrepancy function are estimated via asymptotic normality and simulation and used to 

construct confidence intervals for the median of a Cauchy distribution. A nonparametric 

approach based on the distribution of order statistics is also used to construct confidence 

intervals. The performance of these intervals in terms of coverage rate and average length  is 

investigated via simulation when the data are actually sampled from a Cauchy distribution and 

when sampling is from normal and logistic distributions. The intervals based on simulation 

estimation of the quantiles of the discrepancy function are shown to perform well across a range 

of sample sizes and trimming proportions when the  data are actually sampled from a Cauchy 

distribution and to be relatively robust when sampling is from the normal and logistic 

distributions.  
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Chapter 1  Introduction 

 

1.1 Goal of the Report 

 Although the heavy tails of a Cauchy distribution can make it difficult to work with, there are 

several parametric methods based on trimmed means for constructing confidence intervals for its 

median, denoted by µ  , from data consisting of a random sample. Using simulation, this report 

studies, compares and assess the performance of these methods, and a nonparametric one, in 

terms of actual coverage rate and interval length when sampling is from Cauchy, normal and 

logistic distributions. A study of confidence intervals based on the maximum likelihood 

estimator of µ  for the Cauchy distribution is left to future work.  

 1.2 Introduction to Cauchy Distribution 

 The Cauchy–Lorentz distribution, named after Augustin Cauchy and Hendrik Lorentz, is a 

symmetric, heavy tailed, continuous probability distribution. Among statisticians it is known as 

the Cauchy distribution, while among physicists, it is known as the Lorentz distribution, 

Lorentz(ian) function, or Breit–Wigner distribution. The Cauchy distribution has the probability 

density function of the form 

( ) (1/ ) (( ) / ))f x g xσ µ σ= − ,    (1) 

where  

  
2( ) 1/ (1 )g z zπ= +                  (2) 

is the standard Cauchy density, and µ  and 0σ >  are respectively location and scale parameters, 

taken here to be unknown. Note that µ  is the median of (1). Figure 1.1 illustrates some 

representative Cauchy densities. The one in purple is the standard Cauchy density. Cauchy 

densities look similar to normal densities. However, they have much heavier tails, so heavy that 

they do not have a mean. The mean and standard deviation of the Cauchy distribution are 
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undefined. The practical consequence of this is that collecting 1,000 data points gives no more 

accurate an estimate of the mean than does a single point.  The high rate at which the Cauchy 

density produces outliers makes it useful for studying the robustness of statistical procedures 

with respect to extremes in particular and departures from normality in general. 

                            Figure1.1  Graphs for Cauchy Densities with 0x  = µ   γ=σ  

                     
 

The standard Cauchy distribution is a t-distribution with one degree of freedom and hence the 

distribution of the ratio of two independent, standard normal random variables. 

In physics, economics, mechanics, and electrical engineering, and many other technical and 

scientific fields, especially in dealing with calibration problems, Cauchy distributions are used 

instead of normal distributions when extreme values are comparatively likely to occur. Heavy 

tails are also described by Jacob and Protter( 1998) as leading to what is called fat tailed 

behavior. The Cauchy distribution is often used for counter-examples in probability theory. 

Specifically, as noted above, it does not possess the usual descriptive moments such as mean and 

variance. As noted above, it does have a median, denoted µ  here, which is also the mode. This 

extreme behavior motivates my report, a study of the performance of confidence intervals for µ  

based on trimmed means.  
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Let nX ={ , 1,2,..., }iX i n=  be iid having the Cauchy density given in (1). Having observed 

nX = nx , suppose that it is desired to construct a nominal 1 α−  confidence intervals for the 

median µ  of the form 

  ( , ) [ ( ), ( )]n n nCI L Uα =x x x  

                  where                   

                                                        ααµ −≈=∈ 1)),(( CRXCIP n  

and CR denotes the actual coverage rate.                                               

The Cauchy distribution, because of its heavy tail, often results in data sets that contain both 

large and small, extreme outliers,which adversely affect the performance of the sample mean 

1
/

n

n i
i

X X n
=

=∑ as an estimator of the median µ . Since nX  has the same distribution as 1X , it also 

has median µ . However, it also follows that: (i) if we sample  n = 10,000 observations, nX  is no 

better as an estimator of µ than is a single observation 1X ; (ii)  commonly used confidence 

intervals based on the approximate normality of nX are  not even applicable.  Although the 

sample median is inefficient, according to Fisher and Tilanus(1964), it is the simplest consistent 

estimator of  µ  and is used in practice. The maximum likelihood estimator of  µ  is consistent 

and asymptotically efficient. But it is difficult to compute and interpret, as pointed out in Fisher 

and Tilanus(1964). This report uses another consistent family of estimators of µ , trimmed 

means. 

1.3 Introduction to Trimmed Means 

A trimmed mean is computed by discarding a certain percentage of the lowest and the highest 

values in a sample and then computing the mean of the remaining observations. For many years, 



4 

 

 

the trimmed mean has been an extremely popular estimator of location parameters, as noted in 

Stigler(1973). Theory and simulation indicate that little power is lost under normality when using 

appropriately trimmed means can result in substantially higher power than tests of hypothesis 

based on the sample mean when sampling from a heavy-tailed distribution. Using the trimmed 

mean, Yang(2001) achieved robustness of parameter estimation in a zero-inflated Poisson model, 

in which excessive zeroes occur. Walfish(2006) gave  another example of applications of 

trimmed means to accommodate recent changes in the Olympic scoring system for ice skating,  

In this study, trimmed means, of which the sample median is a special case, are used to estimate 

the median µ  of a Cauchy distribution to remedy the deficiencies of nX  described above.  

Specifically, suppose that it is desired to trim the 100p% largest and smallest 

observation, 0 1/ 2p≤ < , and average the rest. Specifically, letting ( ){ ; 1,2,..., }iX i n= denote the 

order statistics obtained from{ ; 1,2,..., }iX i n= , a trimmed mean for specified integer r is defined 

by 

,p nX = ( )
1

/( 2 )
n r

i
i r

X n r
−

= +

−∑ , 

where, approximately in some cases, p = r/n.  Note that for r = 0, nX = 0,nX . The trimmed 

mean ,p nX  is the sample median if: (i) n = 2m + 1 and r = m; (ii) n = 2m and r = m-1. We assume 

that the amount of trimming is fixed prior to analyzing the data and that sampling is from a 

distribution symmetric about its median. Trimmed means are examples of equivariant estimators. 

Equivariance, as described below, facilitates the construction of confidence intervals for the 

location parameter µ  from location-scale families such as the Cauchy given in (1).  
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Chapter 2 Confidence Intervals Based on Equivariance in 

Location-Scale Models 

2.1 Equivarinace 

I begin with the definition of equivariance and then apply it to use trimmed means to construct 

confidence intervals for the median of a Cauchy distribution. The setting here is the Cauchy 

family given in (1), but it could be used for any location-scale family.  

Definition:  Equivariance:  Let ˆ ( )µ X  be an estimator of µ  and ˆ ( )σ X an estimator of σ  for the   

family of densities given in (1) such that for any constants a  > 0 and b   

                                                          ˆ ( )a bµ +X 1 = a ˆ ( )µ X + b,                    (3) 

                                                         ˆ ( )a bσ +X 1 = a ˆ ( )σ X . 

Estimators satisfying the first line in (3) include ˆ ( )µ X  equal to a trimmed mean and those 

satisfying the second line include  

            
∑

=

−=
n

i
nin nXXX

1
1 /)(ˆ)(ˆ µσ

  
,             (4) 

o                                                

                                                   ∑
=

−=
n

i
nin nXXX

1

2
2 /))(ˆ()(ˆ µσ  ,         (5) 

or                   

                                                  2/)()(ˆ 4/14/33 XXXn −=σ  ,                        (6) 

 where 4/3X  is the sample third quartile, 4/1X  is the sample first quartile. 

To use equivariance, note that for X  having a Cauchy distribution given in (1), 

( ) /Z X µ σ= −  has the standard Cauchy density given in (2). Hence, letting  



6 

 

 

nZ = 1 2( , ,..., ),nZ Z Z  using equivariant estimators of location and scale, we have that     

( )nT X     )(ˆ/))(ˆ( XX σµµ −≡          

       =    )(ˆ/)(ˆ nn ZZ σµ  

=  ( )n nT Z  

has a distribution function, denoted     , free of the unknown µ  and .σ Specifically                          

=                     .      can be computed from (2) without knowing µ  or .σ  

 

2.2 Constructing Confidence Intervals Using Equivariance   

To use the setup given above to construct a confidence interval for µ , find quantiles / 2, 1 / 2,,n nt tα α−  

so that / 2,( ) / 2nH tα α=  and 1 / 2,( ) 1 / 2nH t α α− = − . Note again that these quantiles do not depend 

on the unknown location and scale parameters. Then, 

                                               / 2, 1 / 2,( ) 1 ,n n nP t T tα α α−≤ ≤ = −   

and hence,  having observed n =X  nx , an exact 1 α−  confidence interval for µ  is given by 

                                   )](ˆ)(ˆ),(ˆ)(ˆ[ ,2/1,2/ xtxxtx nn σµσµ αα −++                     (6) 

In this report, I will use the trimmed mean ,p nX = ( )
1

/( 2 )
n r

i
i r

X n r
−

= +
−∑ ,  an equivariant estimator 

of the median of the Cauchy distribution, and  σ̂ = 2/)()(ˆ 4/14/33 XXXn −=σ . Then, an exact 

1 α− confidence interval for µ is given by   

                                                 )](),([ 3,2/1,3,2/, xtxxtx nnpnnp

∧

−

∧
++ σσ αα   .  

)(•nH

))(( zZTP n ≤

)(zHn
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Instead of computing the quartiles / 2, 1 / 2,,n nt tα α− , which would be very difficult, two methods will 

be used in this report to estimate them. 

 

2.3 Methods for Estimating the Quartiles of ( )H •  

 Method I: Asymptotic Normality  

 

Note that equivariance allows us, without loss of generality, to take 0µ =  and 1.σ =  

Letting n → ∞ and  r → ∞  so that /r n p→ , Serfling(2001) showed that )(ˆ 3 nXσ is a consistent 

estimator of σ .  With 1/ 2k p= − , 1/ 2p ≠ , Rothenberg et. al. (1964) showed that, in 

distribution, as n → ∞ ,  

                                                2
,( )( ) / (0, )n p nW kn X Nµ σ γ= − →                (7)                                   

where, 2 2[(1 ) tan ( / 2) / 2 tan( / 2) / 1]k k k k kγ π π π= − + − , for n = 2m + 1, m = 0, 1,…, ; r = m- 

[nk]-1. Since [nk]/n = (m-1)/n –p so that approximately k = ½-p.        

Then, in distribution, as n → ∞ , Slutsky’s Theorem, as in Hogg(2004), yields    

                                               nnn WXTkn ))(/( 3

∧
= σσ  

                                                        
2(0, ).N γ→  

Hence, for large n, approximately  

                                        / 2, / 2 / ( )nt z nkα αγ= −   and  1 / 2, / 2 /nt z nkα αγ− =  , 

where ( )zδ δΦ = , 0 < 1/ 2δ <  and ( )Φ ⋅ denotes the standard normal distribution function. 

Henceforth, I will fix p and let k = ½-p.  
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The method described above needs to be modified to handle the case when 1/ 2p = so that the 

trimmed mean is the sample median. Specifically, the trimmed mean ,p nX  is the sample median 

if: (i) n = 2m + 1 and r = m; (ii) n = 2m and r = m-1. As n → ∞ , Ferguson  et.al (1996) showed 

that for sample medians  { }nm  of  the Cauchy distribution, 

                                           )4/,0()( 22σπµ Nmn n →−  

Again, using Slutsky’s Theorem, a large sample, approximate 1 α−  confidence interval for µ  is 

given by  

                                        / 2, ˆ[ ( ) /(2 )n nm z nα σ π− x , / 2, ˆ ( ) /(2 )]n nm z nα σ π+ x        (8) 

 

Method II:  Simulation 

For large R, generate * *{ ( , 1,2,..., ), 1,2,..., }i ijZ j n i R= = =Z , where *{ }ijZ  are iid random variables 

having the standard Cauchy distribution in (2) and compute },...,2,1),({ * RiZT in = . Let  ˆ ( )nH •  be 

the empirical distribution function obtained from },...,2,1),({ * RiZT in = , defined by 

*ˆ ( ) #{ ;  ( ) }/n n jH z j T Z z R= ≤ . Letting 1ˆ ( )nH β−  be the corresponding estimate of the order 

β quantile, then approximately,  

                                            )2/(ˆˆ 1
,2/ αα

−= nn Ht  and )2/1(ˆˆ 1
,2/1 αα −= −

− nn Ht  
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Chapter 3 A Nonparametric Confidence Interval  

 

 For the sample median of any continuous distribution, such as the Cauchy, having a unique 

median, we have that P(X<µ)=P(X>µ)=1/2. Then, based on a random sample of size n, Y= #{i, 

Xi<µ}has a Binomial(n,1/2) distribution. Letting ( ){ }iX  denote the order statistics and ‘r’ an 

index such that  αµ −=<<=<< +−+− 1)0(( )1()()1()( rnrrnr ZZPXXP  , a 1 α−  confidence 

interval for µ  is given by: 

                                                      ],[ )1()( +−rnr XX . 

To approximate the index r needed for constructing an approximate, nonparametric 1 α−  CI, for 

large sample size n =2m+1, using approximate normality, 

                      )()( )1()( rnYrPXXP rnr −≤≤=≤≤ +−µ       

                                               )
4/

2/12/()
4/

2/12/()
2
1)((

n

nr

n

nrnnn
k

rn

rk

−−Φ−+−−Φ≅∑=
−

=
 

                                               )
4/

()
4/

(
n

mr

n

rm −Φ−−Φ=  

Thus, we have 2/4/ αz
n

rm ≅− , and thus 4/2/ nzmr α−≅ . Since r is an integer, we take 

]4/[ 2/ nzmr α−= , where [ ]•  is the greatest integer function. Henceforth, intervals constructed 

using this approach will be referred to as Method III. 
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Chapter 4 Simulation Study 

4.1 Simulation Algorithm 

I used nominal coverage rate 1 α−  = 0.95 and selected representative values of n = 2m+ 1 and p. 

For each such choice I generated data from the Cauchy, normal and logistic distributions and 

used the following algorithm: 

(1) Generate R = 1000 independent random samples *
1 2{ ( , ,..., )}i i i inz z z z= , i= 1,2,…, R, each 

consisting of  n values independently sampled from (2). As described above, use sample 

quantiles to estimate / 2, 1 / 2,,n nt tα α− . 

(II) Independently generate n observations *x from (2). Construct confidence intervals using the 

three methods. Record whether or not each interval contains 0µ =  and its length. 

(III) Independently generate n observations *x from the standard Cauchy, scaled standard normal 

and logistic distributions. Construct confidence intervals using the three methods for each of the 

three data sets. Record whether or not each interval contains 0µ =  and its length. 

(IV) Independently repeat (II)-(III) N =1000 times.  

 

Assess and compare the performance of the confidence intervals across all parameter settings. 

I begin the summary of my results using Cauchy data. 
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4.2 Cauchy Data Method I: (Asymptotic Normality)    

 

I carried out the algorithm given above using the asymptotic normality method for samples from 

the standard Cauchy distribution with parameter settings R=1000, n=11, 21, 31, 101 and p=0.1, 

0.2, 0.3, 0.5. First, for 1/ 2p < , which p=r/n, k=1/2-p, I computed γ  given by the formula 

2 2[(1 ) tan ( / 2) / 2 tan( / 2) / 1]k k k k kγ π π π= − + −  and used it to find estimates of the critical 

points  / 2, / 2 / ( )nt z nkα αγ= −   and  1 / 2, / 2 /nt z nkα αγ− = . Then, I independently generated a set 

of 1000 samples (N=1000) from the standard Cauchy distribution and used this value, along with 

trimmed means and 3

∧
σ , to construct Method I nominal 0.95 confidence intervals for each 

sample. For 1/ 2p = , I used Serfling’s asymptotic variance given in (8). The results are 

summarized in terms of estimated coverage rates, average and median confidence interval 

lengths from Cauchy data in Table 4.1 below. The SAS code I used is given in Appendix A.  

 

4.3 Cauchy Data Method II: (Simulation) 

I carried out the algorithm given above for samples from the standard Cauchy distribution with 

parameter settings R=1000, n=11, 21, 31, 101 and p=0.1, 0.2, 0.3, 0.5. Given sample size n, I set 

the index r so that the trimming proportions were approximately 0.1, 0.2, 0.3 and 0.5. 

Specifically, for instance, for n=31, r=3, which gives p=3/31=0.1, I generated 1000 samples of 

size n = 31 from the standard Cauchy distribution and deleted the three largest and smallest 

observations and averaged the remaining 25 observations from each sample to yield 1000 

trimmed means. I sorted these 1000 trimmed means and found the 2.5th and 97.5th sample 

quartiles needed for a 0.95 confidence interval. Due to the symmetry of the Cauchy density, 
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/ 2, 1 / 2,n nt tα α−= − .  Hence I used ±  the average of absolute values of the sample quartiles as the 

critical points. Then, I independently generated another set of 1000 samples (N=1000) from the 

standard Cauchy distribution and used this method to construct nominal 0.95 confidence 

intervals for such as n =31 and r = 3, which gives p= 3/31=0.1 for each sample. The simulation 

results are summarized in terms of estimated coverage rates, average and median confidence 

interval lengths in Table 4.2 below. The SAS code I used is given in Appendix B.  

                                               Cauchy Data Method I 

Table 4.1 Simulated Coverage Rates, Average Lengths Based on Asymptotic 

Normality 

  p=0.1 p=0.2 p=0.3 p =0.5 

n=11 

 

Estimated t 0.912 0.896 0.892 N/A 

Coverage Rate  62.2 86.3 93.6 95.5 

Average CI Length  2.66 2.61 2.6 2.71 

Median of CI Length 2.21 2.17 2.17 2.25 

n=21 Estimated t 0.659 0.648 0.646 N/A 

Coverage Rate  66.8 84.3 89.3 91 

Average CI Length  1.36 1.33 1.33 1.38 

Median of CI Length 1.26 1.24 1.23 1.28 

n=31 Estimated t 0.542 0.533 0.532 N/A 

Coverage Rate  76.1 91.5 95 95 

Average CI Length  1.23 1.2 1.2 1.25 

Median of CI Length 1.18 1.57 1.15 1.2 

n=101 Estimated t 0.3 0.295 0.2946 N/A 

Coverage Rate  81.2 91.1 94.1 94.6 

Average CI Length  0.6 0.59 0.59 0.62 

Median of CI Length 0.599 0.59 0.588 0.61 
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Cauchy Data Method II 

Table 4.2  Estimated Coverage Rates, Average Lengths Based on Equivariance Cauchy 

Data 

  p =0.1 p =0.2 p =0.3 p =0.5 

n=11 

 

Estimated t 1.216 0.918 0.878 0.887 

Coverage Rate  94.7 95.7 95.4 94.4 

Average CI Length  3.55 2.68 2.5 2.59 

Median of CI Length 2.95 2.23 2.13 2.15 

n=21 Estimated t 1.056 0.795 0.748 0.799 

Coverage Rate  93.5 95.9 95.7 95.3 

Average CI Length  2.17 1.64 1.54 1.64 

Median of CI Length 2.02 1.52 1.43 1.53 

n=31 Estimated t 0.762 0.558 0.53 0.573 

Coverage Rate  95.6 95.8 95.6 95.6 

Average CI Length  1.72 1.26 1.2 1.3 

Median of CI Length 1.65 1.21 1.15 1.24 

n=101 Estimated t 0.419 0.325 0.304 0.305 

Coverage Rate  93.4 94.7 94.8 94.6 

Average CI Length  0.843 0.654 0.611 0.614 

Median of CI Length 0.836 0.648 0.606 0.608 

 

 

4.4 Cauchy Data Method III: (Nonparametric) 

 The results from the method III are summarized in terms of estimated coverage rates, average 

and median confidence interval lengths in Table 4.3 below. The SAS code is in Appendix C.  
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                                              Cauchy Data Method III 

Table 4.3 Estimated Coverage Rates, Average Lengths Based on Nonparametric Method 

 n=11 n=21 n=31 n=101 

Coverage Rate  100 99.2 98.7 98.7 

Average CI Length  52.08 2.86 1.83 1.83 

Median of CI 

Length 

14.41 2.61 1.75 1.75 

 

4.5 Assessments of Coverage Rates Method I and II Cauchy Data. 

 

Using the data in Tables 4.1 and 4.2, estimated coverage rates (CR) were compared for the first 

two methods in terms of sample size, n, and trimming proportion (trimp), p. Proc GPLOT of 

SAS was used to make plots to visualize CR and average length in terms of n, p and Method. 

Proc GLM was used to fit a linear model to the data in the Tables 4.1 and 4.2 with CR and 

average interval length  as the responses and n, method, p as predictors.  Since the observed CR’s 

fell in a narrow range, it was not deemed necessary to use logistic regression. The linear model is 

expressed as:       

εβββββββββ ++××+×+×+×++++= 2
876543210 pmethodpnmethodpmethodnpnmethodpnY

 

      Y: Coverage Rate or Average Length;  

       81 ββ − : Parameters to be estimated;  

       ε : Residuals term;  

         Model assumption: ε ),0( 2~ σN
IID

 

In these two models, all the variables are treated continuous except that method is treated as a 

categorical variable.  

The output from Proc GLM using CR as the response from the Cauchy data summary tables, is 

given in Table 4.4 below, guided my plots and conclusions. The coefficient of determination 2R  

= 0.84 and the residuals plot and the Q-Q plot (Figure 4.1a) and b)) indicate that the model fits 

the data reasonably well. All of the effects involving just method and /or trimming proportion are 
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statistically significant at the 0.05 level. Most of the variation is accounted for by effects 

involving just these two sources. Somewhat surprisingly, effects involving sample size n account 

for just around 3 % of the total. The following graphical presentations of the data in Figures 4.2-

4.4, highlighting main effects and two way interactions, plotted separately for different values of 

the third effect, help in interpreting the regression analysis. 

                     

                     Table 4.4 Output of Proc GLM using CR as Response for Cauchy data 

 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 8 1807.627116 225.953390 14.95 <.0001 

Error 23 347.695071 15.117177   

Corrected Total 31 2155.322187    

 

R-Square Coeff Var Root MSE CR Mean 

0.838681 4.278053 3.888081 90.88438 

 

Source DF Type III SS Mean Square F Value Pr > F 

N 1 54.4201484 54.4201484 3.60 0.0704 

Method 1 660.7717734 660.7717734 43.71 <.0001 

Trimp 1 398.8731387 398.8731387 26.39 <.0001 

N*method 1 79.5145073 79.5145073 5.26 0.0313 

N*trimp 1 28.2600714 28.2600714 1.87 0.1848 

trimp*method 1 317.9783047 317.9783047 21.03 0.0001 

N*trimp*method 1 36.5160714 36.5160714 2.42 0.1338 

trimp*trimp 1 240.8263718 240.8263718 15.93 0.0006 
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                             Figure 4.1 a) Residuals Plot CR Cauchy Data 
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b) Normality QQ plot CR Cauchy Data 
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                       Figure 4.2 CR: Sample Size by Method Interaction Cauchy Data  

                                                                  a) p = 0.1 
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                                                          c) p =0.3 
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                Figure 4.3   CR: Trimming Proportion by Sample Size Interaction Cauchy Data 

a) Method I 
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Figure 4.4 CR:  Trimming Proportion by Method Interaction Cauchy Data 

a) n=11 
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                                                              b) n=21  
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c ) n=31 
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The plots of CR versus n with respect to the two methods at p=0.1, 0.2, 0.3 and 0.5 are given in 

Figure 4.2 a)-d) respectively. Non-parallelism was observed in the plots, which supports the 

statistical significance of the effect between n and method, in the regression analysis in Table 

4.4. In general, CR for method II is higher than those of method I.  Figure 4.3a) and b) are the 

plots of CR versus trimming proportion p for the two methods with respect to n. Non-parallelism 

was also observed, which supports the statistical significance of the effect between p and method 

in the regression analysis in Table 4.4. It seems that for Method I, the coverage rate goes up as 

the trimming proportion p increases, while for Method II method, p does not have a big effect on 

coverage rate. Graphs of CR versus p with respect to Method I and II at n=11, 21, 31, 101 are 

presented in Figure 4.4 a)-d), respectively. Relative parallelism was observed in the n by p plots, 

which is consistent with the non- statistical significance of the interaction between n and p in 

Table 4.4. From Figures 4.4, the relative parallelism of the profiles hints that any interaction that 

may exist between n and p is not of practical importance. It appears that at each specific sample 

size n, as p increases, for Method I, CR increases, while for Method II,CR does not change very 

much, which further indicates that the differences between the coverage  rates of the methods 

depend on trimming rate p.  

 

Overall, these plots support the conclusions that in terms of coverage rate: (i) Method II is better 

and more stable across conditions than Method I; (ii) Method I improves as n increases, except 

for n = 21; (iii) Method I improves as p increases from 0.10 to 0.30 and then levels off. The later 

observation may be due to the fact that increasing trimming discards outliers up to a point where 

the remaining values are relatively well behaved.  

 

4.6 Assessments of Average Length Method I and II Cauchy Data 

 

 The average lengths of the confidence intervals in tables 4.1 and 4.2 were also compared for 

Method I and II in terms of sample size n and trimming rate p. Proc GPLOT was again used to 

make plots to visualize the average lengths in terms of n, p and Method. Proc GLM was used to 

fit a linear model with average interval length as the response and sample size n, method and 

trimming proportion p as independent variables, as given in  section 4.5. 
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The output from Proc GLM for average length as response is given in Table 4.5 below. The 

coefficient of determination for the model 2R = 0.86 and the plot of residuals and the normality 

QQ plot are given in Figure 4.5a) and b). Although these plots indicate possible shortcomings of 

the model and raise questions about the assumption of normality, they can still be useful as 

guides to identifying significant sources of variation. The only statistically significant effect is 

sample size n, which has estimated regression coefficient equal to negative 0.0135. Thus, all 

other effects being held fixed, we estimate that for either Method I or Method II, average 

confidence interval length decreases by 0.0135 per unit increase in sample size.  

 

Table 4.5 Output of Proc GLM using Average Length as Response for Cauchy data 

Source DF 

Sum of 

Squares Mean Square F Value Pr > F 

Model 8 7.81419709 0.97677464 17.47 <.0001 

Error 23 1.28584528 0.05590632   

Corrected Total 31 9.10004237    

 

R-Square Coeff Var Root MSE aveCIW2 Mean 

0.858699 76.90711 0.236445 0.307443 

 

Source DF Type III SS Mean Square F Value Pr > F 

N 1 1.64160370 1.64160370 29.36 <.0001 

method 1 0.07738558 0.07738558 1.38 0.2514 

trimp 1 0.11110120 0.11110120 1.99 0.1720 

n*method 1 0.00000439 0.00000439 0.00 0.9930 

n*trimp 1 0.00015492 0.00015492 0.00 0.9585 

trimp*method 1 0.03075777 0.03075777 0.55 0.4658 

n*trimp*method 1 0.00019454 0.00019454 0.00 0.9535 

trimp*trimp 1 0.09262202 0.09262202 1.66 0.2108 
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Figure 4.5 a)   Residuals Plot Average Length Cauchy Data 
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Figure 4.6 Average Length:  Sample Size by Methods I and II Interaction Cauchy Data 
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c ) p=0.3   
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Figure 4.7 Average Length: Sample Size by Trimming Proportion Interaction  

Cauchy Data 
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 Figure 4.8 Average Length: Trimming Proportion by Method Interaction Cauchy Data 
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                                                               c ) n=31  
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The graphs of average lengths versus sample size n at p=0.1, 0.2, 0.3 and 0.5 with respect to the 

two methods are displayed in Figure 4.6 a)-d), respectively. It appears, as expected, that average 

length decreases as n increases for all four graphs. Similar trends were observed for the two 

methods and for the four trimming proportions.   Figure 4.7 a) and b) are the plots of average 

lengths versus trimming proportion p for the two methods with respect to n. It seems that for the 

two methods, the average lengths do not change much as p changes. Similar approximate 

parallelism was observed for both of the graphs, indicating there was no interaction between p 

and method, between n and p. Graphs of average lengths versus trimming proportion p with 

respect to methods at sample sizes n=11, 21, 31, 101 are presented in Figures 4.8 a)-d), 

respectively. It appears that at each specific sample size, as trimming proportion p increases, for 

Method I, average lengths do not change much, while for Method II, average length decrease in 

general. Overall, average length for Method II is greater than that for Method I, which may 

explain why the coverage rates for Method I tend to be lower than nominal, especially for small 

n.  Also, the average length for Method II for the smallest trimming p = 0.1 is considerably 

greater than that for p > 0.1. This may be due to the fact that the data still contains large outliers 

for p =0 .1, which inflates trimmed means and simulated estimates of the quantiles of the 

statistics  / 2, 1 / 2,,n nt tα α−  , given in Tables 4.1-4.2.   

 

For Method III, the nonparametric method, coverage rates tend to be a bit above their nominal 

0.95 value and also greater than those from Method I and II, as given in Figure 4.9a). 

Correspondingly median lengths of Method III intervals, which decrease with increasing sample 

size n, are greater than those from Method I and II, as illustrated in Figure 4.9b).  Median length 

was used instead here because the average length for n=11 is distorted by outliers. 

                      

 

 

 

 

 



31 

 

 

 

                             Figure 4.9 a) Average of CR across p against Method by n 

 

                  

b) Median of CI lengths across p against Method by n 
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                      Chapter 5  Robustness Study 

 

I also briefly investigated the performance of the confidence intervals constructed above 

assuming the Cauchy model when the data are actually sampled from the normal and logistic 

distributions, two widely used symmetric distributions. Thus, the quantiles estimated in Chapter 

4 were used here to construct intervals under the erroneous belief that the data are sampled from 

a Cauchy distribution. In order to facilitate comparison of interval length, I scaled both 

distributions so that they have interquartile ranges (IQR) equal to 2.0, the IQR of the standard 

Cauchy distribution, as follows:   

        Normal Data: Generate ~ (0,1)Y N  and let X = (2/1.35)Y               (9) 

        Logistic Data:  Generate ~ (0,1)Y Logistic  and let X = (2/2.20)Y    (10)  

 

To carry out my study, I used the same settings as for Cauchy data. Specifically, I set nominal 

coverage rate 1 α−  = 0.95 and used the same representative values of n = 2m+ 1 and p. In the 

simulation algorithm given below, ‘D’ stands for either the logistic or normal distribution.  

(1) Generate R = 1000 independent random samples *
1 2{ ( , ,..., )}i i i inz z z z= , i= 1,2,…, R, from the 

standard Cauchy distribution. I actually used the same data generated in Chapter 4. 

(2)  Generate a random sample 1 2( , ,..., )nx x x=x  from distribution D. 

 (3)  Let 3σ̂  equal the sample semi-interquartile range, as defined in (6), computed from 

1 2( , ,..., )nx x x=x . 

(4) For Method I, use the formulas  / 2, / 2 / ( )nt z nkα αγ= −   and  1 / 2, / 2 /nt z nkα αγ− =  , resulting 

in the same values as those obtained in Chapter 4. 
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(5)  For Method II, use the values )2/(ˆˆ 1
,2/ αα

−= nn Ht  and )2/1(ˆˆ 1
,2/1 αα −= −

− nn Ht obtained in 

Chapter 4 from Cauchy data.  

(6)  Construct confidence intervals using all three methods. Record whether or not each interval 

contains 0µ =  and its length. 

 (7) Independently repeat steps of (2)-(6) N =1000 times.  

Assess and compare the performance of the confidence intervals across all parameter settings.     

             

5.1 Normal Data Results  

Table 5.1 Simulated Coverage Rates, Average Lengths  Method I Normal Data 

  P=0.1 P=0.2 P=0.3 P=0.5 

n=11 

 

Estimated t 0.912 0.896 0.892 N/A 

Coverage Rate  90.2 90 89.7 90.9 

Average CI Length  1.98 1.95 1.94 2.01 

Median of CI Length 1.91 1.88 1.87 1.94 

n=21 Estimated t 0.659 0.648 0.646 N/A 

Coverage Rate  87.8 86.2 86.6 86.5 

Average CI Length  1.22 1.2 1.195 1.24 

Median of CI Length 1.206 1.185 1.18 1.23 

n=31 Estimated t 0.542 0.533 0.532 N/A 

Coverage Rate  92.2 91.5 91.5 91 

Average CI Length  1.11 1.093 1.09 1.133 

Median of CI Length 1.1 1.082 1.08 1.22 

n=101 Estimated t 0.3 0.295 0.2946 N/A 

Coverage Rate  93.8 92.4 90.9 89.4 

Average CI Length  0.593 0.583 0.582 0.605 

Median of CI Length 0.591 0.581 0.58 0.603 
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  Table 5.2  Estimated Coverage Rates, Average Lengths Based on Method II Normal Data 

  P=0.1 P=0.2 P=0.3 P=0.5 

n=11 

 

Estimated t ( Cauchy Result) 1.216 0.918 0.878 0.887 

Coverage Rate  97.6 92.7 90.5 89.1 

Average CI Length  2.64 1.99 1.907 1.93 

Median of CI Length 2.55 1.92 1.84 1.86 

n=21 Estimated t( Cauchy Result) 1.056 0.795 0.748 0.799 

Coverage Rate  98.2 92.4 91.2 92 

Average CI Length  1.96 1.47 1.384 1.48 

Median of CI Length 1.94 1.45 1.368 1.46 

n=31 Estimated t( Cauchy Result) 0.762 0.558 0.53 0.573 

Coverage Rate  99.2 93.9 91.8 92.1 

Average CI Length  1.56 1.14 1.087 1.175 

Median of CI Length 1.55 1.13 1.076 1.163 

n=101 Estimated t( Cauchy Result) 0.419 0.325 0.304 0.305 

Coverage Rate  99.4 95.1 92.2 89.3 

Average CI Length  0.827 0.641 0.6 0.6 

Median of CI Length 0.825 0.64 0.599 0.6 

 

Table 5.3  Estimated Coverage Rates, Average Lengths Based on  Method III Normal data 

 n=11 n=21 n=31 n=101 

Coverage Rate  100 99 98.9 97 

Average CI 

Length  

4.71 2.31 1.762 0.808 

Median of CI 

Length 

4.66 2.28 1.748 0.799 
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5.2 Logistic Data Results 

 

Table 5.4. Estimated Coverage Rates, Average Lengths Method I  Logistic Data 

 

  P=0.1 P=0.2 P=0.3 P=0.5 

n=11 

 

Estimated t 0.912 0.896 0.892 N/A 

Coverage Rate  88.2 89.4 90.7 90.7 

Average CI Length  2.02 1.98 1.98 2.05 

Median of CI Length 1.98 1.94 1.93 2.01 

n=21 Estimated t 0.659 0.648 0.646 N/A 

Coverage Rate  87.3 87.8 87 86.1 

Average CI Length  1.24 1.22 1.215 1.26 

Median of CI Length 1.22 1.2 1.195 1.24 

n=31 Estimated t 0.542 0.533 0.532 N/A 

Coverage Rate  92.2 91.8 91.2 90.1 

Average CI Length  1.13 1.11 1.108 1.15 

Median of CI Length 1.123 1.1 1.1 1.14 

n=101 Estimated t 0.3 0.295 0.2946 N/A 

Coverage Rate  92.8 92.8 92 90.5 

Average CI Length  0.592 0.582 0.581 0.604 

Median of CI Length 0.591 0.581 0.58 0.603 
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Table 5.5.  Estimated Coverage Rates, Average Lengths Based on Method II Logistic Data 

 

  P=0.1 P=0.2 P=0.3 P=0.5 

n=11 

 

Estimated t ( Cauchy Result) 1.216 0.918 0.878 0.887 

Coverage Rate  96.6 92.1 90.4 89.8 

Average CI Length  2.69 2.03 1.94 1.96 

Median of CI Length 2.64 1.99 1.9 1.92 

n=21 Estimated t( Cauchy Result) 1.056 0.795 0.748 0.799 

Coverage Rate  98.8 94.3 92 92.2 

Average CI Length  1.99 1.5 1.41 1.5 

Median of CI Length 1.96 1.47 1.39 1.48 

n=31 Estimated t( Cauchy Result) 0.762 0.558 0.53 0.573 

Coverage Rate  98.4 93.7 91.8 91.1 

Average CI Length  1.59 1.63 1.105 1.2 

Median of CI Length 1.56 1.16 1.1 1.19 

n=101 Estimated t( Cauchy Result) 0.419 0.325 0.304 0.305 

Coverage Rate  92.8 92.8 92 90.5 

Average CI Length  0.592 0.582 0.581 0.604 

Median of CI Length 0.591 0.581 0.58 0.603 

 

Table 5.6  Estimated Coverage Rates, Average Lengths Method III Logistic Data 

 

 n=11 n=21 n=31 n=101 

Coverage Rate  99.8 99.7 98.9 97.4 

Average CI Length  5.35 2.37 1.779 0.808 

Median of CI 

Length 

5.13 2.36 1.744 0.797 
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5.3 Comparison of CR and Average length Cauchy, Normal and Logistic Data Method II 

The plots of average of CR and average of average length across p against distribution at n=11, 
21, 31 and 101 are displayed in Figure 5.1 and 5.2 respectively. In Figure 5.1, it can be seen that 
the coverage rates for the three distribution data are similar, with a slight but noticeable decrease 
as trimming proportion increases for intervals constructed from normal and logistic data (see 
table5.2 and table 5.5). This may happen because increasing trimming removes ‘information’ 
from these relatively light tailed distributions. In Figure 5.2, for n=11 the average of average CI 
lengths from Cauchy data are wider than those of Normal and Logistic data. But, the averages of 
average lengths are quite similar among the three distributions for the larger sample sizes. As 
expected, the averages of average lengths decrease as sample size n increases. We could 
conclude that Method I and II are reasonably robust with respect to departures from an assumed 
Cauchy model in the settings I studied. 

 

Figure 5.1 Average of Coverage Rate across p vs Distribution by n 
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Figure 5.2 Average of Average lengths across p vs Distribution by n 
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Chapter 6   Summaries 

 

The Cauchy distribution is important as an example of a pathological case. Cauchy distributions 

look similar to a normal distribution. However, they have much heavier tails. When studying 

hypothesis tests that assume normality, seeing how the tests and confidence intervals perform on 

data from a Cauchy distribution is a good indicator of how sensitive the tests are to heavy-tail 

departures from normality. Likewise, using it is a good check for robust techniques that are 

designed to work well under a wide variety of distributional assumptions.  

 This report investigated the performance of confidence intervals for the median of a Cauchy 

distribution based on trimmed means when the data are sampled from Cauchy, normal and 

logistic distributions. Actual coverage rate of nominal 0.95 confidence intervals and their 

average lengths were used as criteria for judging performance. Two methods, as described in 

Chapter 2.3, were used to estimate the quintiles of exact 0.95 equivariant confidence intervals for 

the median. A nonparametric method based on order statistics was also used to construct 

confidence intervals, as discussed in Chapter 3. My simulation study led to the following 

conclusions.  

 1) Coverage Rate Cauchy Data: 

In terms of coverage rate,  (i) Method II is better and more stable across all conditions than 

Method I; (ii) Method I improves as sample size n increases, except for n = 21; (iii) Method I 

improves as trimming proportion p increases from 0.10 to 0.30 and then levels off. The later 

observation may be due to the fact that increasing trimming discards outliers up to a point where 

the remaining values are relatively well behaved. For Method III, coverage rates tend to be a bit 

above their nominal 0.95 value and also greater than those from Method I and II. 

 

2) Average Length Cauchy Data: 

For Method I, the average lengths do not change much as p changes, while for Method II, the 

average lengths decrease in general as p increases. Overall, the average lengths for Method II are 

greater than those for Method I, which may explain why the coverage rates for Method I tend to 
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be lower than nominal, especially for small n.  Also, the average lengths for Method II for the 

smallest trimming, p = 0.1 is considerably greater than that for p > 0.1. This may be due to the 

fact that the data still contains large outliers for p =0 .1, which inflates trimmed means and 

simulated estimates of the quantiles of the statistics / 2, 1 / 2,,n nt tα α−  .  

 The average lengths of Method III intervals are greater than those from Method I and II.  

 

3) Robustness Study: 

It was observed that the coverage rates for data from the three distributions are similar. At 
sample size  n = 11, the average CI lengths from Cauchy data are wider than those of normal and 
logistic data, and are quite close among  the three distributions for the larger sample sizes.  

 

4) Overall Summary:  

Method II, based on using simulation to estimate the quantiles of the exact, equivariant intervals 
performed better than the other two methods for all three distributions in the settings I studied.  I 
recommend using this method with p= 0.2 and n >30 to estimate the median of a Cauchy 
distribution. It also performed reasonably well when data were actually sampled from normal 
and logistic distributions.  
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Appendix A -  

SAS code for Asymptotic Normality Method  

 
ods rtf file="t:/asymp.rtf";  
ods listing close;  
libname  ms "t:/" ; 
%macro msreportv(seed, repeat,n,r); 
 
%do j= 1 %to &repeat; 
data cau_&j(drop=i); 
%Do i = 1 %to &n; 
w=rancau(&seed+&j); 
output; 
%end; 
run; 
 
proc sort data=cau_&j; 
by w; 
run; 
proc means data=cau_&j noprint; 
var w; 
output out=a_&j p25=q1 p75=q3; 
 
data caunew_&j; 
set cau_&j; 
xx=_n_; 
if  xx >= &n-&r+ 2 or xx<=&r then delete; 
proc means data=caunew_&j noprint; 
var w; 
output out=s_&j mean=mu; 
run; 
data as_&j; 
merge a_&j s_&j; 
run; 
data as1_&j; 
set as_&j; 
stdev= 0.5*(q3-q1); 
 
 
run; 
 
%end; 
 
%mend 
; 
 
%msreportv( 789569, 1000, 101, 30) 
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%macro namesv(prefix,maxnum); 
%do i= 1 %to &maxnum; 
&prefix&i 
%end; 
; 
 
%mend namesv; 
 
data alldiff; 
set  %namesv(as1_, 1000); 
run; 
%let  a=101; 
%let  b=30; 
%let  m=62; 
 
data ms.alldd&m; 
set  alldiff; 
p=&b/&a; 
k=1/ 2-p; 
f=sqrt(( 1-
k)*tan( 3.14159*k/ 2)*tan( 3.14159*k/ 2)/k+ 2*tan( 3.14159*k/ 2)/( 3.14159*k)- 1); 
t=f* 1.96/sqrt(&a*k); 
LLCI=mu-t*stdev; 
ULCI=mu+t*stdev; 
CIW&m=ULCI-LLCI; 
 
data ms.alldiffd&m(keep=CIW&m c&m); 
set  ms.alldd&m; 
if  LLCI <= 0 and ULCI >= 0 then  c&m=1; 
else  c&m=0; 
data dd1; 
set  ms.alldiffd&m(drop=CIW&m); 
proc transpose data =dd1 out =transc; 
data transc1; 
set  transc; 
CR=sum(of col1-col1000)/ 1000* 100; 
run; 
data dd2; 
set  ms.alldiffd&m(drop=c&m); 
proc transpose data =dd2 out =transciw; 
data transciw1; 
set  transciw; 
aveCIW=mean(of col1-col1000); 
medCIW=median(of col1-col1000); 
data ms.ciwc&m; 
merge  transc1(drop=_name_ col1-col1000) transciw1(drop=_n ame_ col1-col1000); 
proc print data =ms.alldiffd&m; 
proc print data =ms.ciwc&m; 
proc print data =ms.alldd&m; 
 
run; 
 
ods rtf close;  
ods listing; 
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/* code for sample median;  
libname  ms "t:/" ; 
%macro msreportv(seed, repeat,n,r); 
 
%do j= 1 %to &repeat; 
data cau_&j(drop=i); 
%Do i = 1 %to &n; 
w=rancau(&seed+&j); 
output; 
%end; 
run; 
 
proc sort data=cau_&j; 
by w; 
run; 
proc means data=cau_&j noprint; 
var w; 
output out=a_&j p25=q1 p75=q3; 
 
data caunew_&j; 
set cau_&j; 
xx=_n_; 
if  xx >= &n-&r+ 1 or xx<=&r then delete; 
proc means data=caunew_&j noprint; 
var w; 
output out=s_&j mean=mu; 
run; 
data as_&j; 
merge a_&j s_&j; 
run; 
data as1_&j; 
set as_&j; 
stdev= 0.5*(q3-q1); 
 
 
run; 
 
%end; 
 
%mend 
; 
 
%msreportv( 789569, 1000, 101, 50) 
 
 
%macro namesv(prefix,maxnum); 
%do i= 1 %to &maxnum; 
&prefix&i 
%end; 
; 
 
%mend namesv; 
 
/* Call the macro on the SET statement */  
 
data alldiff; 
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set  %namesv(as1_, 1000); 
run; 
%let  a=101; 
%let  m=63; 
 
data ms.alldd&m; 
set  alldiff; 
LLCI=mu- 1.96* 3.14*stdev/( 2*sqrt(&a)); 
ULCI=mu+1.96* 3.14*stdev/( 2*sqrt(&a)); 
CIW&m=ULCI-LLCI; 
 
data ms.alldiffd&m(keep=CIW&m c&m); 
set  ms.alldd&m; 
if  LLCI <= 0 and ULCI >= 0 then  c&m=1; 
else  c&m=0; 
/*proc sort data=ms.alldiffd&m; 
by CIW&m;*/  
data dd1; 
set  ms.alldiffd&m(drop=CIW&m); 
proc transpose data =dd1 out =transc; 
data transc1; 
set  transc; 
CR=sum(of col1-col1000)/ 1000* 100; 
run; 
data dd2; 
set  ms.alldiffd&m(drop=c&m); 
proc transpose data =dd2 out =transciw; 
data transciw1; 
set  transciw; 
aveCIW=mean(of col1-col1000); 
medCIW=median(of col1-col1000); 
data ms.ciwc&m; 
merge  transc1(drop=_name_ col1-col1000) transciw1(drop=_n ame_ col1-col1000); 
proc print data =ms.alldiffd&m; 
proc print data =ms.ciwc&m; 
proc print data =ms.alldd; 
 
 
run; 
ods rtf close;  
ods listing;  



46 

 

 

 

Appendix B - SAS code for Simulation Method 

ods rtf file="t:/simu.rtf";  
ods listing close;  
options  nonotes  nosource  nosource2  errors= 0; 
libname  ms "t:/" ; 
%macro msreport(seed, repeat, n, r); 
 
%do j= 1 %to &repeat; 
data cau_&j(drop=i); 
%Do i = 1 %to &n; 
w=rancau(&seed+&j);  
 output; 
%end; 
run; 
proc sort data=cau_&j; 
by w; 
run; 
proc means data=cau_&j noprint; 
var w; 
output out=a_&j p25=q1 p75=q3; 
 
 
data caunew_&j; 
set cau_&j; 
xx=_n_; 
if  xx >= &n-&r+ 1 or xx<=&r then delete; 
proc means data=caunew_&j noprint; 
var w; 
output out=s_&j mean=mu; 
run; 
data as_&j; 
merge a_&j s_&j; 
run; 
data as1_&j; 
set as_&j; 
stdev= 0.5*(q3-q1); 
T=mu/stdev; 
 
*proc print data=as1_&j;  
run; 
%end; 
 
%mend 
; 
 
%msreport( 12345, 1000, 31, 15) 
 
%macro names(prefix,maxnum); 
%do i= 1 %to &maxnum; 
&prefix&i 
%end; 
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; 
 
%mend names; 
 
data all; 
set  %names(as1_, 1000); 
run; 
proc sort data =all; 
by  T; 
data all1; 
set  all; 
nn=_n_; 
 if  nn= 25 then  LL=T; 
 If  nn= 975 then  UL=T; 
 
 proc sql; 
 select  LL into : LLC 
 from  all1  
 where  LL ne .; 
 select  UL into :ULC 
 from  all1 
 where  UL ne .; 
quit; 
 
%macro msreportv(seed, repeat,a,b); *a=n, b=r;  
 
%do j= 1 %to &repeat; 
data cau_&j(drop=i); 
%Do i = 1 %to &a; 
w=rancau(&seed+&j); 
output; 
%end; 
run; 
 
proc sort data=cau_&j; 
by w; 
run; 
proc means data=cau_&j noprint; 
var w; 
output out=a_&j p25=q1 p75=q3; 
 
data caunew_&j; 
set cau_&j; 
xx=_n_; 
if  xx >= &a-&b+ 1 or xx<=&b then delete; 
proc means data=caunew_&j noprint; 
var w; 
output out=s_&j mean=mu; 
run; 
data as_&j; 
merge a_&j s_&j; 
run; 
data as1_&j; 
set as_&j; 
stdev= 0.5*(q3-q1); 
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%end; 
 
%mend 
; 
 
%msreportv( 789569, 1000, 31, 15) 
%macro namesv(prefix,maxnum); 
%do i= 1 %to &maxnum; 
&prefix&i 
%end; 
; 
 
%mend namesv; 
 
 
data alldiff; 
set  %namesv(as1_, 1000); 
run; 
%let  m=47; 
data ms.alldd&m; 
set  alldiff; 
t2=(abs(&LLC)+abs(&ULC))/ 2; 
LLCI=mu-t2*stdev; 
ULCI=mu+t2*stdev; 
CIW&m=ULCI-LLCI; 
 
 
data ms.alldiffd&m(keep=CIW&m c&m); 
set  ms.alldd&m; 
if  LLCI <= 0 and ULCI >= 0 then  c&m=1; 
else  c&m=0; 
data dd1; 
set  ms.alldiffd&m(drop=CIW&m); 
proc transpose data =dd1 out =transc; 
data transc1; 
set  transc; 
CR=sum(of col1-col1000)/ 1000* 100; 
run; 
data dd2; 
set  ms.alldiffd&m(drop=c&m); 
proc transpose data =dd2 out =transciw; 
data transciw1; 
set  transciw; 
aveCIW=mean(of col1-col1000); 
medCIW=median(of col1-col1000); 
data ms.ciwc&m; 
merge  transc1(drop=_name_ col1-col1000) transciw1(drop=_n ame_ col1-col1000); 
proc print data =ms.alldiffd&m; 
proc print data =ms.ciwc&m; 
proc print data =ms.alldd&m; 
 
 
run; 
 
ods rtf close; 
ods listing; 
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Appendix C -  SAS code for Nonparametric Method 

 
ods rtf file="d:/nonparametric.rtf";  
ods listing close;  
libname  ms "t:/" ; 
%macro msreportv(seed, repeat, n, m); 
 
%do j= 1 %to &repeat; 
*data cau_&j(drop=i);  
data cau_&j; 
%Do i = 1 %to &n; 
w=rancau(&seed+&j); 
output; 
 
%end; 
run; 
 
proc sort data=cau_&j; 
by w; 
run; 
 
 
data caunew_&j; 
set cau_&j; 
r=int((&n- 1)/ 2- 1.96*sqrt(&n/ 4)); 
if _n_=r  then output; 
if  _n_=&n-r+ 1 then output; 
data caunew1_&j; 
set caunew_&j(drop=r); 
 
proc transpose data=caunew1_&j out=trans_&j; 
run; 
data trans1_&j(drop=_name_ col1 col2); 
set trans_&j; 
CIW&m=col2-col1; 
if col1<= 0 and col2>= 0 then c&m= 1; 
else c&m= 0; 
run; 
 
 
%end; 
 
%mend 
; 
 
%msreportv( 789569, 1000, 31, 68) 
 
proc print data =caunew1_1; 
 
%macro namesv(prefix,maxnum); 
%do i= 1 %to &maxnum; 
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&prefix&i 
%end; 
; 
 
%mend namesv; 
 
%let  m=68; 
 
data ms.alldiffd&m; 
set  %namesv(trans1_, 1000); 
run; 
 
data alldd1; 
set  ms.alldiffd&m(drop=CIW&m); 
proc transpose data =alldd1 out =transc; 
data transc1; 
set  transc; 
CR=sum(of col1-col1000)/ 1000* 100; 
run; 
data alldd2; 
set  ms.alldiffd&m(drop=c&m); 
proc transpose data =alldd2 out =transciw; 
data transciw2; 
set  transciw; 
aveCIW =mean(of col1-col1000); 
medCIW=median(of col1-col1000); 
data ms.ciwc&m; 
merge  transc1(drop=_name_ col1-col1000) transciw2(drop=_n ame_ col1-col1000); 
proc print data =ms.alldiffd&m; 
proc print data =ms.ciwc&m; 
run; 
ods rtf close;  
ods listing; 
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Appendix D - SAS code for CR and mean length 

analysis and plots 

 
ods  rtf  file ="t:/cauopCR32.rtf" ; 
ods  listing  close ; 
libname  ms "t:/" ; 
 
/*%macro cauchy(m,method, n, p); 
data ms.cauaveCIW&m; 
set ms.ciwc&m;; 
method="&method"; 
n=&n; 
trimp=&p; 
run; 
 
%mend; 
%cauchy(67,simu,101,0.5) 
 
 
data ms.cauallaveCIW; 
set ms.cauaveCIW1-ms.cauaveCIW8 ms.cauaveCIW20-ms.cauaveCIW27 ms.cauaveCIW40-
ms.cauaveCIW47 ms.cauaveCIW60-ms.cauaveCIW67; 
run; 
 
data ms.cauallaveciw; 
set ms.cauallaveciw; 
aveCIW2=log(aveCIW); 
run;*/  
proc glm data =ms.cauallaveciw; 
class  method; 
model  CR=n method trimp  n*method n*trimp trimp*method n* method*trimp  
trimp*trimp/ ss3 solution ; 
output  out =resi r=resi p=pred; 
run; 
 
proc gplot data =resi; 
plot  resi*pred; 
 
proc univariate data =resi normal  plot ; 
var  resi; 
qqplot  resi; 
run; 
 
symbol1   i =join c = black v=dot; 
symbol2   i =join c = red v=sqaure; 
symbol3   i =join c = blue v=star; 
symbol4   i =join c = purple v=circle; 
proc sort data =ms.cauallaveCIW; 
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by  trimp; 
proc gplot data =ms.cauallaveCIW; 
plot  aveCIW*n=method; 
by  trimp; 
*title 'two way interaction of n*mthod';  
run; 
proc sort data =ms.cauallaveCIW; 
by  method; 
proc gplot data =ms.cauallaveCIW; 
plot  aveCIW*trimp=n; 
by  method; 
*title 'two way interaction of n*trimp';  
run; 
proc sort data =ms.cauallaveCIW; 
by  n; 
proc gplot data =ms.cauallaveCIW; 
plot  aveCIW*trimp=method; 
by  n; 
*title 'two way interaction of method*trimp';  
run; 
symbol1   i =join c = black v=dot; 
symbol2   i =join c = red v=sqaure; 
symbol3   i =join c = blue v=star; 
symbol4   i =join c = purple v=circle; 
proc sort data =ms.cauallaveCIW; 
by  trimp; 
proc gplot data =ms.cauallaveCIW; 
plot  CR*n=method; 
by  trimp; 
*title 'two way interaction of n*mthod';  
run; 
proc sort data =ms.cauallaveCIW; 
by  method; 
proc gplot data =ms.cauallaveCIW; 
plot  CR*trimp=n; 
by  method; 
*title 'two way interaction of n*trimp';  
run; 
proc sort data =ms.cauallaveCIW; 
by  n; 
proc gplot data =ms.cauallaveCIW; 
plot  CR*trimp=method; 
by  n; 
*title 'two way interaction of method*trimp';  
run; 
 
ods  rtf  close ; 
ods  listing ; 
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******SAS code Chapter 5 Robustness Study 
libname  ms "d:/warsaw898" ; 
data ms.chap5robust; 
set  ms.cauallaveciw ms.norallaveciw ms.logisticallaveci w; 
run; 
data ms.chap5robust2; 
set  ms.chap5robust; 
if  method= 'asym'  then  delete ; 
run; 
proc sgpanel data=ms.chap5robust2; 
panelby n/spacing= 5; 
vbar dist/response=CR group=trimp; 
run; 
proc sgpanel data=ms.chap5robust2; 
panelby n/spacing= 5; 
vbar dist/response=aveCIW group=trimp; 
run; 
 
 

 


