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INTRODUCTION

For many years the problem of automatic control has been on the forefront

of interest in refrigeration engineering. It is well known that automatic

control is economically profitable and provides maximum technical security.

In many fields of engineering the study of system dynamics has become an

integral part of the basic theoretical concepts related to that field. In re-

frigeration, however, the study of automatic control systems has not yet out-

grown the early stage of a certain empiricism. The reason is twofold.

First, no simple relations are available to relate the temperature and

the humidity control. In the second place, a lack of knowledge exists as to

the dynamic response of the different parts which essentially constitute a

cold room. In the present thesis the former difficulty has been removed by the

introduction nn "equivalent evaporator surface", the latter by a series of

simplifications, resulting in some approximate responses.

The purpose of this thesis is to provide an analytical basis for the

study of the dynamic response of cold rooms. The simplest assumptions are made

to approach this problem. A deeper analysis would automatically require the

use of computer simulation techniques. Due to the complexity and nonlinearity

of the governing differential equations, this computer would be of

extraordinary size. The subject of this thesis is in line with that of a

current ASHRAE research project, conducted at the University of Wisconsin (l).

(l) Numbers in parenthesis refer to similarly numbered references in

bibliography at end of thesis.



THE FUNDAMENTAL EQUATIONS OF ENVIRONMENTAL CONTROL

1. The variables to be controlled

Basicly a system of environmental control in a cold room must maintain:

a low storage temperature: everybody is acquainted with the fact that

foods in general preserve better the lower the storage temperature,

a constant storage temperature: this is particularly true for frozen

foods. The 9th International Congress of Refrigeration (Paris,

September 195>5>) was devoted to this subject (2). Temperature vari-

ations shift the thermodynamic equilibrium conditions between the

ice-crystals and the remainder of cell-liquid in frozen foods. They

hereby force higher kinetic rates of transition to occur beti^een both

phases. This results in a recrystallization and an excessive growth

of large crystals due to their smaller surface energy (per unit

volume). These large crystals finally destroy the cell membrane, the

main cause of the so-called drip of deep-freeze products. Variations

in the storage temperature thus reduce or annihilate the advantages

obtained by quick-freezing procedures. More on this subject can be

found in the extensive literature of food technology, for instance

references (3,U,5)»

an optimum value of the room humidity: low humidities result in

product desiccation, weight losses, in shriveling (fruits, vegetables)

or in a loss of firmness (meat); high room humidities on the other

hand may cause the deposition of moisture and possibly of mold on



the goods, followed by their decay. Since both phenomena (desiccation and

mold formation) can more or less be remedied by the use of diffusion tight

packages, the practice of packing the foodstuffs becomes quite general.

In practice it would be very hard to measure a representative value for

the temperature within the whole storage load. Therefore the emphasis in the

environmental control of cold rooms is shifted towards keeping the temperature

of the room air constant. By doing so possible variations of the storage

temperature are intercepted before they can occur except, of course, during

loading periods.

For optimum preservation of foods the highest permissible variation of

the room air conditions is rather small. The temperature should not vary more

than ± 0.£ C and the relative humidity no more than ± 0.025 (2.$%). As

will be shown later, a better criterion for the actual storage temperature of

the foods would be the thermodynamic wet-bulb temperature of the .oom air.

2. Cold Storage Room Model

It is advantageous to assume a reasonable analytical model in an effort

to simplify the analysis of the dynamic characteristics of a cold storage

room. The model assumed further will present the following basic features:

a. It is a storage room in the literal sense, -with no other purpose than

to keep at a predetermined temperature, goods, which before entering

the room were precooled just to said storage temperature.

b. During the total storage period the moisture content of the goods

never decreases to the so-called "equilibrium moisture content" with

respect to the surrounding air. In other words, the goods act as an



inexhaustible source of moisture to the room air. It is moreover

assumed that the food surfaces act as wet or frosted, i.e. as

saturated, surfaces. This is true, with almost no exceptions, in the

case of unpacked food products (fruits, vegetables, meat, etc.)

and has been confirmed by numerous experiments. As an example

reference is made to (6).

The assumption of perfect mixing is assumed to hold. In this assumption

the cold air coming from the evaporator is considered to mix directly

and completely with the total air content of the storage room. The

cold air stream is looked upon as a cold source as distinct from the

various heat sources in the room. According to the perfect mixing

assumption the temperature and the humidity ratio of the air are uni-

formly distributed throughout the whole room and air in this state is

ducted to the evaporator. Although such assumption without doubt re-

veals a poor image of the actual situation in cold rooms, in practice

it turns out to be a more than satisfactory approximation.

A last assumption is made concerning the influx of heat and moisture

from external sources into the room, more particularly the influx

due to infiltration, heat conduction and moisture diffusion through

the walls • Actually these quantities are a rather complex function of

many variables, two of these variables being the temperature and the

humidity ratio of the room air itself. The dependence on external heat

and moisture sources will not be expressed explicitly in the analysis

to follow as these gains from outside sources will be represented

by arbitrary time-dependent functions. Although a weak point of the

proposed method, the fact just mentioned should not be considered as



a ma.ior disadvantage for following reasons. Unlike similar analyses of

the same topic (for instance by means of rheo-electric simulation

techniques) the present study is more concerned with the dynamic res-

ponse of the room humidity to arbitrary heat input functions. The same

is true for the automatic control activities discussed further: they aim

at intercepting all possible perturbances of the heat and mass influx

apart from the fact whether and how they occur. However it must be noted

too that even the largest deviation of the room air conditions from a

predetermined value remains insignificant } so that the effect of such

deviations accounts for Only .very few percent of the influx quantities.

3. The Unsteady-state Balances of Cold Rooms

The perfect mixing assumption permits writing two differential equations

that govern the dynamic behavior of a cold room. These equations are found by

making an enthalpy balance on the air and a mass balance on the water-vapor

within the air in the cold room. They are:

Q, n (0)
+ Q, - 6QF - R - ... (1)in e E d6

JL-Cfl) + MU - £M- - R $£ ... (2)
b

d0

where Q .-.

n ( G ) * the influx of heat from external sources (kcal/hr)

Min(O) '• the influx of water-vapor from external sources (kg/hr)

Qp : heat flowing from the cooling load to the room air

because of temperature fluctuations (kcal/hr)

Mp : moisture loss of the cooled goods (kg/hr)

Qg : the heat removed by the evaporator (kcal/hr)



M : the moisture removal by the evaporator (kg/hr)

R : the total air content of the cold room (kg a

)

H : the room air enthalpy (kcal/kga)

W : the humidity ratio of the room air (kg/kga)

i the time coordinate (hr)

o i the so-called delta-function or Dirac-functionj

0=1 when the compressor is running,

during stand-still periods of the compressor.

The use of the delta-function implies neglecting the start-

up time when the compressor is working at a reduced rate

of heat removal (the evaporator pressure first has to drop

off to its working point). This assumption is justified

because of its simplicity.

The equations (1) and (2) completely describe the dynamic behavior of a

cold room. The different terms they contain must therefore be worked out in

terms of appropriate variables. This will be done in the subsequent chapters.



BASIC HEAT AND MASS TRANSFER EQUATIONS

The total heat and the mass transferred from a wet or frosted surface

element into a passing air stream can be expressed by the following equations

^

d ( W
s
-W )( H

g
- Hfw ) dA .. (3)

... U)

(kcal/hr)( kcal/kghr)

(kg/hr)

(kga/hr)

(m2 )

(C)

(kcal/kga)

(kg/kga)

(kcal/m2hr C)

(kg/m2hr kg kga"1 )

dQ = G dq - h
c

( T
s

- T ) dA

dM <= G dW = hd ( W
s

- W ) dA

where Q : the heat flow; q when related per kg airj

M : the mass flow (transferred water-vapor)

G : the air flow rate

A : surface area

T : temperature

H : enthalpy

W : humidity ratio

h : convection heat transfer coefficient

h, : convection mass transfer coefficient

: no subscript: bulk flow properties of the air

g : properties of water-vapor

f : properties of liquid water or ice

s : properties evaluated within the saturated interface layer of

air, immediately next to the surface

w : denotes properties to evaluate at the liquid water or ice

temperature.

An accurate value of h should account for the fact that the molecular trans-

fer of heat takes place in a kind of downstream motion, caused by the presence

of mass transfer (7). A short cut approximation was given as early as in 1937

(8). In psychrometric applications the correction factor is neglectible (9).



One may introduce the perfect gas relations for moist air (10), a fair approxi-

mation of more accurate values (11), and the dimensionless group h
c
/h

d
C ,

designated as the "Lewis-number" (Le) (see ref. (12) and (13)). This results by

straight-forward substitutions in the following equation:

& - Le
(Hs " H)

(1 - Le) H- - Hfw
dW (W

s
- W)

g

The factor Cps appearing in Le is the specific heat of moist air, which in

foregoing derivation has been evaluated at the saturation conditions

existing next to the wet or frosted surface.

Various methods have been used to determine Le. Arnold's film theory

l2ads to a complicated expression (lh)(l£), and boundary layer theory arrives

at a result

hc/hd
= (Pr/Sc) m (k/D)

where Pr represents the Prandtl number, Sc the Schmidt number, k the thermal

conductivity of air, D the diffusion coefficient of water-vapor into air, and

m an exponent depending on the geometry of the problem and the type of flow

(for turbulent flow m equals 0,33). An average value for Le on the basis of

the last equation would be: Le = 0.91 •

For air-vapor mixtures the Lewis number may be taken equal to one, which

was shown again in 1937 (16). In psychometric calculations the equality

Le = 1 ... (5)

is generally encountered. Hence the equation above can be written:

fa . ivi« . Hfw ... («
dW (w

s
- w)

fw

As such equation (6) excludes all heat transfer other than that following from

a mixing process of bulk air with saturated air in the boundary layer. On the



basis of this explanation the equation has often been used to describe cooling

and dehumidification processes, for instance in the famous paper (17)

•

Besides the heat and mass transfer, described by the Eqs. (3) and {k)

,

the transport of enthalpy from the surface to the air can be expressed in a

similar way. It will consist of two parts: the heat transferred plus an

additional term accounting for the transport of moisture itself, carrying the

enthalpy it possesses as liquid water (ice). The transport of enthalpy is

found by dropping the term H^w from Eq. (3), which results in:

G dH * h
c

( T
s

- T ) dA + hd ( W
s

- W ) H
g

dA ... (7)

Following the same procedure used in developing the heat equation yields

enthalpy transferred per unit mass of water-vapor, an expression analoguous to

Eq. (6) concerning the heat transferred. Thus, it is derived:

dH ( Hs - H ) 1— « » ~ ... (8)

dW ( W
s

- W ) L

Eq. (8) represents a straight line element on the psychrometric chart. The

slope W - W/H - H of this element will further be called the "humidity slope"

and designated by the symbol L.

For practical reasons Eqs. (3), (h) and (7) are simplified by substitu-

tion of the perfect gas relations for moist air, by taking the Lewis relation

into account and by introducing the humidity slope. The fdlowing ecuations are

easily obtained:
hr

G dH - —— ( H - H ) dA ... (9)

Cos

h

G dW - —— ( Wc - W ) dA ... (10)



10

hc
dq - —- ( H - H )( 1 - Ifl ) dA ... (11)

°ps

In the last equation the term LHfw is usually neglected: in the normal range

of refrigeration applications it accounts for no more than a few percent of

the total heat transfer (depending upon the relative importance of the latent

with respect to the sensible heat transfer, the former causing the effect of

moisture deposition on the surface). Neglecting the term just discussed

reduces Eq. (ll) into the extremely simple form:

h
G dq » —£- ( H

g
- H ) dA ... (12)

PS

Neglecting the term Hfw however does not result in a simplification when

a graphical procedure on the psychrometric chart is used. As shown in fig. 1

by drawing a line of constant enthalpy e and an adiabatic saturation line p,

both going through the representation point S of the saturated air conditions

next to the surface, the following rule may be derived:

"The actual driving force in wet-surface heat-transfer is an enthalpy

difference, given directly by a vertical line segment on the psychrometric

chart; lying on a line of constant humidity ratio through the entering air

state, it is measured by the vertical distance from this air state to the

intersection with the isotherm of the surface temperature T
s
in the fog

region; moreover, if the length of this segment is measured in temperature

units, corresponding with the line of constant humidity W
g , an equivalent

temperature difference is obtained by means of which the performance of a

wet heat exchanger can be calculated directly as that of a dry surface."

This rule is based on the analytical expression of the adiabatic saturation

line p (fig. 1), which is given by

H - H
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and, moreover, on the fact that in the fog region of the psychrometric chart,

the lines of constant thermodynamic wet-bulb temperature or adiabatic satu-

ration lines exactly coincide with isothermal lines of constant temperature T
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THE COOLING LOAD AS A HEAT AND MASS EXCHANGER

1« Mass Exchange

The cooling load in cold storage rooms acts as a heat and mass exchanger.

The air next to its surface is saturated, an assumption made before and

strictly speaking only valid for unpacked food products.

Eq. (10) may directly be applied to this case and becomes:

h
c

cL\ = G dW = ( WsF - W ) dF

ps

where M™ moisture loss of the foods (kg/hr)

W y humidity ratio of the saturated interface layer

of air ( subscript s denotes saturation) (kg/kga)

F total surface area of the foods (m^)

The foregoing equation may be integrated over the total surface area

of the cooled products. According to the perfect mixing assumption, the

humidity ratio of the room air is constant throughout the room. Likewise,

W ™ may be taken as a constant for all products, a uniform storage temper-

ature throughout the room being a reasonable assumption. Thereby the

integration simply results in:

Mg. = — ( W
sp

- W ) F ... (13)

psF

Both h „ and C -, must be evaluated at the surface conditions of the
cF psi1

goods.

The quantity Mj,, as found in Eq. (13), is the total moisture loss of

the L;oods. It is to be substituted into the balance equation (2).



13

2. Heat Exchange

For the cooling load a thermal balance can be set up, which takes the form

Q
rad

+ Qbio - Q
air " "V

C
F ^ C ^ >

where Q d
thermal radiation absorbed by the goods (kcal/hr)

Q-. biologic heat generation within living storage products as

fruits, vegetables, etc., when kept above C (kcal/hr)

Qair sensible and latent heat transferred from the goods to tne

surrounding room air (kcal/hr)

irw, total mass of the storage products (kg)

C
F

the specific heat of the storage products (kcal/kg C)

Tp mean product temperature from surface to core (C)

Fortuitously in almost all refrigeration applications tne quantities Qrad and

Q Di are negligibly small. Values of Q^j_ as listed in (18,1°) are available

to prove this. Qra(j however depends slightly on the type of evaporator used.

Therefore in deep-freeze storage rooms large bare coil evaporators may be

preferred to finned units as far as product desiccation goes. Both terms Q ,

and Quj~ tend to shift the representation point for the surface conditions of

the products towards higher humidity values on the saturation curve of moist

air. If both terms are zero, steady-state will be reached at the thermodynamic

wet-bulb temperature of the room air. With the approximation that ^ , and Q^i0

both are zero, the transient equation above becomes, according to Sq. (12),

h
c

d

Qair
—

( HsF - H ) F *- ny C
p
— ( T

? )

ps uv

This equation has been integrated on the same basis as Eq. (13).

For simplicity it is assumed now that the tnermal resistance at the food
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surface constitutes the major part of the total resistance against heat flow

of the goods. The type of heat flow allowed for is thus Newtonian heating or

cooling and temperature gradients within the foodsare considered negligible.

A more complete analysis would require methods out of the scope of this work.

If only small temperature fluctuations, as for example in a storage chamber

for precooled goods, are taken into consideration the heat exchange between

air and products is small. Moreover the air velocities in cold rooms are

small and therefore the surface resistance high. For these reasons the

assumption of Newtonian heating and cooling although roughly approximate,

seems appropriate to be used here.

Hence the mean temperature of the foods may be replaced by their surface

temperature. Linearizing the saturation curve and introducing the slope

drL
,

6 —

^

F
"

dig jT
sF

... (lli)

p rmits one to write for the heat exchange between goods and air:

h v -1 dHn
qf - r^-( HsF- H ' F -y°A if - (15)

psF

where Q^ is the heat flow from goods to air, to substitute into Eq. (l)

are to be evaluated at the fo

indicated by the subscript F.

Eouation (lli) apparently justifies a former statement, made on page 3,

that the best criterion for the actual storage temperature of the foods is the

thermodynamic wet-bulb temperature of the room air. This follows from the fact

that changes in the temperature of the food surface are caused by differences

in the wet-bulb temperature, approximately the enthalpy, between the room air

and that in the saturated layer next to the food surface.
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THE EVAPORATOR AS A HEAT AND MASS EXCHANGER

1. Heat and Mass Transfer from/to a Surface at Uniform Temperature

Eqs. (9), (10) and (ll) - or, as an approximation (12) - describe the

heat and mass transfer from or to a surface element. In or^er to be complete,

one more equation can be added to this group. This equation contains the

first term of the right-hand member of Eq. (3) and describes the sensible

heat transferred from the surface element to the air:

G C
p

dT = h
c ( T

s
- T ) dA ... (16)

No difficulties arise in the integration of the ~~<vjp of equations, just

mentioned, over a surface at a constant temperature T , whence ;-/

s
and H

s
are

constant too. An arbitrary state (no subscript) of the air between the inlet

state 1 and the outlet state 2, where the letter a denotes a part of the

total surface area A, is characterized by the following equations:

. -hca/GCos
, NH - H_ = (H, - H ) e ... (17)

1 S
-h

c
a/GC

ps
W -W

q
= (VL-'Oe PS

... (18)
-h

c
a/GGo

T - T - (T, - T ) e
p

... (19)
s is

Applying these equations to the particular case of the final air state

and rearranging, results in:

H
n

- H = (IL - H )(1 - e
pS

) ... (20)
-h

c
A/°C ns

W, - *, - (W- - WJ(1 - e
PS

) ... (21)12 1 S -hA/u
T

n
- T = (T. - T )(1 - e P

) ... (22)12 Is
Dividing Eg. (iC) by So. (17) shows that the process curve 1-2 is a
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straignt line on the psychrometric chart, for the humidity slope, L, defined in

Eq. (8), remains constant during the whole process. This is the so-called

straight-line law, analysed in (20) and (21), investigated further in (22) and

(23). Since L remains constant, the heat transfer for the whole process is

given by:

- h A/G C

Q = G (1 - LHfw )(Ks
- K

L
)(1 - e

P
) ...(23)

Sq. (23) is obtained by integrating Eq. (11). If however the approximate

form (12) is used (with omission of the water deposited on or withdrawn from

the surface) the total heat transfer reduces to the simple expression:
- h A/G C^c

Q = G (H
s

- E
L
)(1 - e ° pS

) ... (2U)

differ from C , the former may be replaced by the latter in Eqs. (19) and
p&

(22). All equations from (20) up to (25) then contain the common factor

s
- h A/G C

V- ( 1 - e °
PS

) ... (2Z*b)

This factor is usually referred to as the "surface contact factor" . Its use

is based entirely on the assumption of Le being one. In fig. 1 it is shown

how the surface contact factor may be used directly in the graphical deter-

mination of the process curve on the psychrometric chart.

In cases where extreme accuracy is required or where the Lewis relation

does not apply, the basis for the computation of process curves is Eq. (19)

and the following, more original form of Eq. (18):

- h
d
a/G

W - W = (W
1

- W ) e

For this particular case reference is made to (21;). In all cases the mass

transfer is given by: - h,A/G
M = G (W

s
- W

x
)(l - e

a
) ... (25)



17

2. Heat and Mass Transfer from/to a Surface at Non-uniform Temperature

In the foregoing section the point of view was restricted to the presence

of some surface, exchanging heat and mass with the surrounding air, and being

at a uniform temperature. Consideration was actually given to the most outer

surface of an exchanger, in this case the liquid film or frost layer.

In practice however the assumption of a uniform surface temperature turns

out to be highly unrealistic. Three possible reasons may be proposed to explain

why direct expansion evaporators display non-uniform sux-face temperatures.

A. As a first reason there is the presence of a pressure drop and, in

flooded evaporators, of liquid columns . Ingenious systems have been designed

to counter these drawbacks, definitely disadvantageous in low-temperature

systems. A fine example thereof , with many others, can be found in (2£).

B. Variations of the heat flow resistance between surface and refrigerant,

always occurring in exter.de \ surfaces , so widely used, also cause non-uniform

temperatures. In finned evaporators the temperature of the film surface is a

function of the temperature along the fin itself and of the film thickness,

which varies along the fin. This variation in turn depends on geometric factors,

on the action of gravitational and hydrodynamic forces • xerted by the passing

air stream, and last but not least on the rate of latent heat transfer or con-

densation itself. This last effect in particular is of basic importance since

it forms an essential mechanism of wetted surface heat transfer.

An exact solution of the problem, even when the fin surface would be at a

uniform temperature, seems almost impossible. Ref. (26) presents a most pro-

found analysis, based on Nusselt's condensation theory.

Although somehow unrealistic, the assumption of a constant film thickness
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is very common. Thoroughly investigated in ref . (27) under the additional

assumption of a complete covariance of sensible and latent heat transfer ( in

practice this comes down to neglecting the curvature of the saturation curve

of moist air ) it provides some simple results and seems to be a reliable

approximation, for the proper influence of the (varying) film thickness on the

total thermal resistance in most cases turns out to be small. From this study,

tne following results (in a slightly adapted form) will be retained.

Per definition, an overall heat transfer coefficient U is introduced by

the equation:
dQ = G dq = U (H

R
- H) dA = G dR ... (26)

an equation, which, according to the convention of signs adopted before,

describes the heat flow from the evaporator to the air. More particularly,

Eq. (26) describes the amount of heat dQ delivered to the air by a small but

finite part dA of the evaporator surface; dA should be large enough to

consist of both pipe and fins, in proportion to their total surface areas, but

limited, so that the passing air can be described by a single value H.

K
R

finally refers to a fictitious enthalpy, that saturated moist air would

have at the refrigerant's evaporating temperature TR.

The overall heat transfer coefficient U can be expressed in terms of two

thermal resistances: an outside surface resistance R and an internal one, R^ *•

U = — i__ ... (27)
Ri

+ Rs

These resistances are defined as follows:

where

:

c

h
c

Pr
a a P

... (28)

(1 -<* ) A C
+ ES. .. (29)

A
P

+ * h h
c

h
i
A
i

A
p

+ ^ A
9 k
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Aj , A , AA : the inside tube surface area and the outside surface
i 7 p' <t>

areas respectively of bare pipe and fins

h,, h : both, the in and outside heat transfer coefficients
i* c

k , y : thermal conductivity and average thickness of moisture film

Furthermore (cf. Eq. (li;)):

and ft. SSI ... (30K31)
ans 1

dT e JdT
s

Jt
r

dV Tfinav.

The quantity £ finally denotes a wet fin efficiency, defined as

4>:
^(actual fin)

(for fin at base temperature)

According to the author of the original treatment (27), this wet fin efficiency

can be derived directly from the theoretical expression for the dry fin effici-

ency merely by replacing the outside heat transfer coefficient h
Q

in the ex-

pression for the latter by an analogous coefficient h£, taking on the role of

h in the wet case, and defined as

JL . ia L

If heavy frost conditions are avoided, h^ is approximately

c <$ c/ u ps

Despite all the work undertaken to determine boiling and outside heat

transfer coefficients, the most reliable method to evaluate the performance of

a particular evaporator remains the experimental determination of the overall

heat transfer coefficient. This method however should be based on and make use

of the possibilities offered by the Eqs . (27), (28) and (29). It is easy to

see that for a given type of evaporator, within a given range of evaporating

temperatures, the expression for U contains three essentially variable quan-

tities, namely h^, h and y . For under these circumstances the wet fin
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efficiency ( see ref . (28) ) and the thermal conductivity of water films or

frost layers (strictly spoken time-dependent) may be looked upon as fairly

constant. As for the variable parameters, just mentioned, some theoretical

correlations were set up, recommended for practical use in the "ASHRAE Guide

and Data Book" or in the "Handbuch der Kaltetechnik" . For a complete descrip-

tion of the use of these formulas, consult the original references.

These correlations are:

a. the refrigerant side heat transfer coefficient hj

:

- flooded evaporators:

h
±

- c (Q/A)
n

... (32)

where c and n are constants, depending on each particular case.

The following values have been proposed for the exponent n:

for F12: n - 0.60 (29)

for F22: n =° 0.70 (29).

for S02 : n - 0.5U (30)

for NH3: n 0.$6£ at Te
« -10 C

(31)(32) n = 0.602 Te - -20 C

n » 0.6U3 T
e

= -30 C

- dry expansion evaporators: the most reliable correlation for the

forced convection boiling coefficient in this case, together with

its justification, is given in (33) to be:

(gQ/A) -*

h± = c ... (33)

It is based on ref. (3U) and is in excellent agreement with the

results of other investigators (35) (36) (37) (38) (39) (U0)

.

In Eq. (33) g represents the amount of refrigerant flowing through

the dry expansion coil of inside diameter d. As in Eq. (32) Q/A de-

notes the heat removed per unit surface area and c is a constant.

In this type of evaporator the amount of refrigerant g is directly

proportional to the heat removal, at least when steady-state exists,

the degree of superheating being regulated by the feeding valve.
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Eq. (33) for a given evaporator therefore may be written:

h
±

- K Q ... (3li)

This linear law corresponds closely to another relationship, often

used in design study and experimentally verified in (1^1), namely

^ - K
x

+ K2 Q/A ... (35)

b. the outside heat transfer coefficient h
Q

:

- free convection systems: will not be considered here.

- forced convection systems: the critical Reynolds number, 100, is

always exceeded j the correlation recommended in (1*2), from more spe-

cified data (k3)(hh)(k5)(h6), is that of turbulent flow heat trans-

in the present analysis simply rewritten in the following form:

h
c

- c G - 6 ... (36)

c. tne tnickness of the moisture deposit: y = f ... (37)

- for water films: treated as a constant.

- for frost layers: a function f, depending on the frost conditions.

Combining the Eqs. (27)(28)(29)(36)(37) and either (32) or (3h) , depending

on the case, results in the following "semi-theoretical" relationships for the

overall heat transfer coefficient U, expressed in terms of the total heat

removal Q, the air flow rate G, and the thickness f of the moisture layer:

- flooded evaporators: ~n
U = 2 ... (33)

A B (f + CG~
0,b

) Q
n

where A, B and C are constants.

- dry expansion evaporators (formulas based on Eq. (3M and not on Eq.(35>)

are given): U jTT ••• (39)

•A + B ( f + CG"
U#

) Q



22

For a fixed air flow rate and given average frost conditions (or water film)

Eq. (39) may even further be reduced to:

If the overall enthalpy difference AHm- HsR
- Hm(cf. Eq. (1*3)) is preferred

as a variable, Eq. (39) takes the form:

Mm - A/F
u - 2

'

... (la)
B (f + CG"0,6 )

where F stands for the total surface area of the evaporator. It should be

remarked here that for flooded evaporators there exists no simple relation,

analogous to Eq'. (id), in terms of the overall enthalpy difference (i.e. the

so-called log mean enthalpy difference).

The practical advantages of the foregoing equations are obvious:

1. They permit extrapolations from a minimum of experimental data.

2. The number of experimental measurements can be reduced to a reasonable

number, necessary to evaluate the constants A, B and C.

Some other aspects are worth being noted:

1. If the heat flux becomes large, U tends to an assymptotic value:

B(f + CG" *6
)

2. If the heat flux tends to zero, the slope of the function U is given by:

dU-i 1

dQ J Q=0 " A

and the value of U itself is found from Eqs. (38) and (39):

(In this particular case Eq. (1*1) cannot be derived from Eq. (39) because

of mathematical considerations).

The foregoing analysis of the overall heat transfer coefficient concludes the

study of the heat flow resistance from surface to refrigerant in evaporators.
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C. The third reason why non-uniform surface temperatures occur in evapo-

rators are the enthalpy variations of the air itself along the evaporator sur-

face. For at each point the surface temperature takes an equilibrium value be-

tween the air and refrigerant temperatures. This effect may well be compared

with the kind of situation occurring in a counter-flow heat exchanger.

In theoretical studies the effect of pressure drops and liquid columns in

evaporators is usually neglected. Hence the refrigerant's evaporating temper-

ature may be considered as a constant throughout the evaporator. As far as the

overall heat transfer coefficient U is concerned, the simplest method is to

take for U a constant value, evaluated on the basis of the average surface

conditions. With these assumptions Eq. (26) may be integrated, which results in

- UA/G
- QE

- Q - ( HsR - % )( 1 - e ) - G ( H
2

- 1^ ) ... (U2)

Eq. (1*2) is often written in terms of an overall or logarithmic mean enthalpy

difference AHm as follows

-Q
E

- Q = U A AH
m ... (Ii3)

where H? - H-, H? - H-,

AH
m

= - - - -* i ... m
n

HsR-Hl "
HsR"H2

It should be remarked that according to the convention of signs, adopted thus

far, the positive direction of heat flow is taken from the surface to the air,

whence in the foregoing equations the quantity of heat Qg removed by the evapo-

rator, is given the opposite sign. .

Instead of being integrated over the whole evaporator surface, Eq. (26)

can also be integrated over a part A of this surface. Such integration would
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result in the following expression for the enthalpy of the air during its

passage

<
H
l * H

sR>

- UA/G ... (U5)

Eq. (u£) however implies that the air flow displays following characteristics:

- a. the air is completely cross-mixed: it is at uniform thermodynamic con-

ditions across its flow passage which contains the entire flow.

- b. the air is unmixed as a whole but completely mixed in separate air flow

cnannels; at the exit of each channel the air is in the same state;

(of course, area A denotes the contact surface of each channel apart)

On the basis of Eq. (27) > where the total thermal resistance of tne

system was subdivided into an internal and a surface resistance, and on the

basis of Eq. (26), a representative mean surface enthalpy H can be associated

with each little part dA of the evaporator surface. At a particular cross-

section the surface enthalpy H is given by

-UA/G
H
s - H

sR " m
± ( H

l - HsR } e •" {k6)

obtained from Eq. (k$) and from the equality

H. - H .

= U Ri (U7)

derived from Eq. (26) by equalizing:

dQ = U (H
sR

- H) dA = -L. (HsR- H
s ) dA

Hitherto, the Ecs. (U2) and (U5) have always been considered as the final

results obtainable by analytical procedures in the theory of cooling and dehu-

midification of moist air. An analogous derivation for the air humidity was
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taken for impracticable (Ij7)(li8). Since the problem is of basic importance in

the design of cooling towers and evaporators, various graphical procedures

have been worked out ( i^9 ) ( ^0 ) but the first and by far the simplest one

remains the method of Merkel and Mickley, conceived by the first as early as

in 1927 (5l)(52)(53). In this method one makes use of the temperature-enthalpy

diagram for moist air, which becomes more and more popular in Europe. An

excellent survey of the method is presented in (5M and (55). Of theoretical

interest is another procedure proposed in (56).

The author however, strongly impressed by the simplicity of Merkel 1 s

procedure, which led him to introducing Eq. (Ii6), was able to set up a com-

pletely mathematical solution of the problem under consideration. The deriva-

tion thereof is given now.

Basic assumptions are: 1. The effect of both pressure drop and liquid

columns within the evaporator are neglected. The refrigerant's evaporating

temperature is constant everywhere in the evaporator (cf. Merkel 1 s method).

2. The type of air flow can be described by

one of both theoretical models, described on page 2!i (cf . the analogous

solution for the enthalpy).

3. The overall heat transfer coefficient is

fairly constant throughout the evaporator and may locally be replaced by its

mean value for the whole evaporator (cf. all previous methods).

h» The saturation curve of moist air can be

approximated by a polynomial (algebraic function) up to any degree of accuracy.

5» Mathematically it is assumed that the air

enthalpy H, the air humidity W, as well as the enthalpy H , the temperature T
s

and the humidity W of the air next to the evaporator surface are continuous
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and integrable functions in terms of the contact surface area. These

assumptions are fulfilled on the basis of Eq. (h$) , the conservation of mass,

Eq. (U6) and the saturation curve of moist air.

The equations to start the discussion with are:

Eq. (1*5) for the enthalpy of the air stream: .

- UA/ G
H - HsR

=
( Hl " HsR )

e ••• U£)

Eq. (U6) for the enthalpy of the surface air layer:
- U A / G

H
s - HsR " U h. ( Hl - H

sR )
e — «*)

Eq. (10) for the transfer of water-vapor from the surface to the air:

G dW » -~r- ( W
s

- W ) dA ... (10)

PS

The mathematical expression of the saturation curve given by the humidity of

saturated air as a function of its enthalpy. A high degree of accuracy can be

obtained with a quadratic expression:

W
s

- W
sR

o m ( Hs - HgR ) n ( H
s

- HsR )

2
... (U8)

In the foregoing equations following symbols are used:

H, W enthalpy and humidity ratio of the air flow

H
s , W , C enthalpy, humidity ratio and specific heat of saturated

air at the temperature of the evaporator surface

HgR, W R enthalpy and humidity ratio of saturated air at the

refrigerant's evaporating temperature

U, R. , R respectively the overall heat transfer coefficient,

the internal and the surface thermal resistances, the

last being equal to R
g

» C / h (cf. Eq. (28))

h the outside heat transfer coefficient

m, n two coefficients, obtainable from the methods of

finite differences or least squares.
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A the evaporator surface area the air at a given cross-

section has already been in contact with

dA. a small part of the evaporator surface as specified on

page 18, see Eq. (26).

On the basis of the continuity assumptions (sub $ y

page 2£) symbol d however may be treated as a differen-

tial.

Combining the Eqs. (10), (I16) and (1*8) results in the differential

equation:

« jl .
. as -a ol. h

R)

.-
UA/G

• -jM (Hl. h
sr)

* e"

2UA/G

dA GR
3

B, GR3
U GR

S (u?)

The solution of the reduced equation equals
- A/GR

W - C e

and that of the complete equation will take the form:

- A/GRS - UA/G - 2UA/GW-Ce + 1^ + Kg e + K3 e

By substitution of this expression into the differential equation the

coefficients K-j_, Kg and K3 can be evaluated. The general solution of the

differential equation then becomes

- A/GR
S

-UA/G n(H,- H R )

2
- 2UA/G

W - Ce W
sR

m ( Hl- H
sR

)e - -— e _ ^
The constant of integration C is to be found from the boundary condition:

for A - 0, W - W
x

It is directly found to be

n(H
n

- H R )

2

(W, - W
sR ) - m( Hl - HsR )

L_i£- ... (5D
i-r;/rj
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The equations (£0) and (£l) may be used instead of any of the graphical

procedures which are known. The humidity ratio of the air at the evaporator

outlet can directly be calculated by substituting for A the total surface

area of the evaporator. The method is easy and almost completely correct, for

the saturation curve of moist air is very closely approximated by a quadratic

curve within the limited range of evaporator temperatures. Nothing prevents

the replacement of Eq. (I18) by an algebraic expression of the third degree

(or even higher).

From the practical point of view however, a more important remark is to

be made. In almost all practical cases the assumption of a constant evapo-

rating temperature of the refrigerant is highly unrealistic. One therefore

even may content himself with a linear approximation of the saturation curve:

W
s

- W
s>?s T < H

s
- H

S)
-
s

) ... (52)

where T
g

stands for the (expected) average surface temperature and y repre-

sents the slope d.tf
-i

r- — - ... «3)
dHs JTs

clearly distinct from another slope f of the saturation curve, some particu-

lar values of the latter being shown in Eqs. (lii), (30) and (31).

From Eq. ($2) can easily be derived that

"a" WsR" Y ( Hs- H
sR> — (5W

Replacing Eq. (1;8) by Eq. ($h) and solving by an analogous procedure the

system of Eqs. (10), (h$) f (k6) and ($h) leads to a simple solution for the

humidity ratio of the air at an arbitrary cross-section of the evaporator:

- A/GR_ / - UA/G - A/GR
s

l

W - WsR - <W
X

- WsR ) e +
J

(HX
- HgR ) \ e - e J ^

-v^ps w ,r
UA/G -hc

A/GC
p

#

sTW-WsR - (W1 -WsR)e"^ '"px-lWJe"
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The simplified solution, given by Eq. (55), will be taken as a basis for the

further development of this study. From it an expression for M, the total

transfer of water-vapor from the evaporator to the air (M is a negative

quantity) is easily found to be:

M = G (W
2

- W
x

) = G( WgR - W^){l - e
" ° pS

)

t -UA/G -h A/GC >

*p(Hi -H
sR ) {e - e

C PS
J ... (56)

Eq. (56) as to its form and significance is completely analogous to Eq. (U2)

for the total heat transfer.

One may safely say that the assumption of a linearized saturation curve

does not give rise to considerable errors (certainly lesser than those re-

sulting from neglecting the pressure drop and liquid columns inside the evapo-

rator). Therefore the following statement may be derived from Eqs. (i£) and

(56): THEOREM I

"An evaporator, in general, may be thought of as a simple heat and mass

exchanging surface with uniform surface conditions; this substitution has no

effect, neither upon the heat nor upon the mass transfer, provided that said

surface conditions are represented by a point on the saturation curve, which

has a corresponding enthalpy value:"

'[ -UA/G " -h
c
A/GC

ps )
l
l - e 1 - e

where E is a subscript which will be used throughout this text to denote the

"equivalent evaporator surface" introduced and defined in foregoing statement.

This equivalent evaporator surface will often be referred to as the "evapo-

rator surface," without any further specification, unless misunderstanding

would be possible. Q_is the heat removed by the evaporator, taken positive.
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PROOF. The same amount of heat must be removed respectively by the actual

evaporator and by the equivalent surface. Hence Eqs. (ii2) and (2k) must be

equal to each other. Eq. (57) is directly obtained from

- UA/G -h„A/GC

% = G(H
1 " H

sR )(l " e }
= G(H

1 " H
sE

)(l " e
PS) — (57b)

Similarly the amount of moisture removed from the air must be the same in both

cases. Denoting this quantity by the symbol Mu (taken positive), one may write

on the basis of Eqs. (56) and (25)

-h A/GC - UA/G - h A/GC

\ - °<W1 -V (1 - « °

y

PS
) - X°<V «

sR
)(e - e " "

s
)

-h A/GC
= G(W

1
-- W

sE
)(l -e c Ps

)

Hence the equivalent surface must be represented by a point on the saturation

curve which has a corresponding humidity value: -UA/G

W
sE " W

sR * fh - H
sR> "

t
(H
l "V 1

'.

'-h A/GC
1-e ° PS

On the basis of Eq. (h2) this equality can be written

YVG

W
sE " W

sR
+

y
(H
l - H

sR
}

-h A/GC
1 - e

C Ps

which in comparison with Eq. (58) simply equals

W
sE

W
sR

+
Y
(HsE- H

sR>

The conclusion is obvious: according to Eq. (5^) both H _ and W are proper-

ties of one and the same point on the saturation curve. This point may thus be

taken to represent the total evaporator surface. In this case both the heat

and mass transfer will remain unchanged.

THEOREM II

"For all evaporators, where a linear approximation of the saturation curve

may be used as a satisfactory simplification, the heat and moisture removal
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from the air may be expressed in terms of the equivalent surface conditions

as follows:"

Q
E

- a^(H-H
sE

) ... (59)

"B
G ^

BE'
\\t ( W - W

sE
) ... (60)

This theorem directly follows from the definition of the equivalent

surface conditions. The variables H and W refer to the room air properties.

J is the evaporator surface contact factor, defined in Eq. (2ltb).

It need not be said that the introduction of an equivalent evaporator

surface forms an original contribution to the study of heat and mass

exchangers.

Moreover, it is thanks to this procedure only, that the problem of the

dynamic response of cooled rooms becomes solvable. But the steady-state solu-

tion for the heat and mass exchange of cooling coils, will in the future

be considerably simplified too, by the use of the new method.
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THE DYNAMIC RESPONSE OF THE EVAPORATOR-COMPRESSOR LOOP

1. The Problem

Comparing with each other Eq. (l£) arid one of the expressions (59) or

(\\2) directly reveals a striking difference. In both cases some quantity of

heat ( Q„; QE ) is expressed in terms of two variables (H, H
spj

H, H
gg or H

s^).

In the first case Cv,, the heat transfer from the storage goods to the air,

is determined by two equations, permitting the elimination of one of the varia-

bles H or H p. -The quantity Q^, is then completely defined in terms of the

second variable and of the time coordinate, appearing in one of said equations.

In system dynamics the air-foods system would therefore be designated as a

closed-loop system. But in the second case things seem to be different: appar-

ently the heat removal is a function of two input variables viz. H and H s or

H
g£.

A close investigation of a cooling system however reveals an additional

relationship exists between the heat removal and the variables under consid-

eration, to wit the capacity output of the refrigeration system as a whole,

i.e. the compressor-condensor unit and the evaporator performances synthe-

sised together.

The study of this additional relationship will be the subject of this

chapter. Its final purpose consists in finding the feedback relation, which

would result in bringing the air-evaporator interaction into the form of a

closed-loop. The problem, as it is posed here, is new and, due to its complexi-

ty, yet incomplete. Nevertheless the results, already obtained, seem to be

far-reaching.
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2. Performance Characteristics of the refrigeration Unit

The capacity of a refrigeration unit, as one often calls the compressor

and condenser as a whole, is given by the following expressions, the last of

which applies if the suction line to the compressor is thermally insulated:

Qex
= M

o
(lo" I

i
)

= ~ ^""V = -£2(I*-Il> -• < 61 )ex oo i * o i yi {.
i

where Qex the heat evacuated by the refrigeration unit (kcal/hr)

M the mass flow rate to the compressor (kg/hr)

D the rate of displacement of the compressor (m-^/hr)

X the compressor's actual volumetric efficiency

I the refrigerant enthalpy in various states (kcal/kg)

i subscript, denoting the refrigerant inlet state

o id. for the outlet state of the evaporator

* superscript, denoting the refrigerant's properties just before

the entrance of the compressor

v specific volume (m-^/kg)

If the refrigerant gas is assumed to behave as a perfect gas, Eq. (6l)

may be rewritten as

Qex - — (I« - Ii V',,/v*) ... (62)

p*

where " superscript, denoting saturated vapor properties

p",f the compressor' s suction pressure

For all practical calculations, ref. (£7) recommends the following

approximation, resulting in a small error of about one percent:

^x ^rtty- x
i> - (63 >

To make the analysis simpler and more meaningful, this approximation
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will not be used in the sequel. It will be replaced by another expression,

based on the following three assumptions:

a. the displacement rate of the compressor is constant (the rotating speed

and number of operating cylinders are fixed)

.

b. the subcooling temperature in the condenser remains substantially

constant, whence I- may be treated as a constant value.

c. for each evaporating temperature there is one and only one value for the

compressor capacity, resulting in a steady-state operation of the

installation. (The foregoing assumptions are assumed to be fulfilled here).

From these assumptions it follows directly that the capacity of a

refrigeration unit, operating at steady-state conditions, may be represented

by a function Q «= *"(tr) ••• (^li)

This function does not differ too much from a straight line at least for a

limited range of evaporating temperatures. Hence it may be linearized as

«ex " a + b T
R ••• W>

In the further treatment this function will be assumed to be known or

computable. Most manufacturers provide sufficient data for this purpose.

An important remark however must be made here. Up to now it has been

assumed that the suction line does not contain an evaporator pressure-

regulating valve. If such valve is present in the suction line to the

compressor, the refrigerant gas undergoes a throttling process along a line

of constant enthalpy, while passing through it. Thereby the gas pressure

drops from the evaporating pressure down to that in the main suction line,

the difference A p between these pressures depending on the opening of the

valve. If one assumes the refrigerant gas to behave as a perfect gas, the
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refrigerant density before and behind the valve will be proportional to the

pressure it has on both places. The volumetric efficiency of the compressor

moreover depends on the suction pressure. These factors result in reducing

the capacity. This reduced capacity equals the capacity the system would

have without the pressure regulating valve, multiplied by a correction

factor in order to take the above phenomena into account. The reduced capacity

can thus be written

«ex " f <P*/PR ). f(T
R ) ... (66)

where P^ is the suction pressure of the compressor.

Once again, it should be emphasized that all the expressions, hitherto

given, are related to steady-state operations of the compressor-evaporator

unit.

The capacity curves of the unit, Eqs. (6£) and (66), are expressed in

terms of the evaporating temperature. It turns out however, that in many

cases an expression in terms of the variable H ^ be more convenient, H r>

being the enthalpy of saturated moist air at the evaporating temperature Tj»«

The transition from the latter to the former variable presents no difficulties

and may graphically be performed by means of the saturation curve of moist

air. Linearization of this curve directly results in a new expression for Eq.

(65): Q^ = a« + b* H
sR ... (67)

where b* - b fi^
1

(cf. Eq. (30))

and where a R is a constant which can be determined from a single value of

the function Q .
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3. Steady-state of the Evaporator

The evaporator reaches dynamic equilibrium (a so-called balance point)

when the heat it receives from the air equals the instantaneous capacity of

tne refrigeration unit. An excellent treatment of this subject can be found

in ref. (58)- Mathematically, steady-state thus implies:

Q
E

= Q
ex

... (69)

Replacing these quantities by their respective expressions, as given by the

Ecns (h.2) and (67), gives the value of the steady-state evaporating temper-

ature, which the refrigerant has after a sufficient time and which will

depend on the room air entnalpy. Expressed by the function H R in terms of

the prevailing room air enthalpy H, this temperature is characterized by

- UA/G

F . G H (1 - e
)

- a» ... ( 70)
sR - UA/G

G (1 - e ) + b R

The numerical value of U, which is to be used in the calculation of each par-

ticular value of Hd, depends on the corresponding heat flow (Q^ or Qex ) and

is found from Eq. (38) or (39) according to the type of evaporator used.

One may even go further and relate to each particular value of the room

air enthalpy the corresponding surface conditions (i.e. the mean or equivalent

surface conditions as described on page 29) the evaporator will take after

a sufficient time. Combining the Ecs. (70) and (57) and expressing Qg in terms

of H g and H is the next step. For the locus of surface conditions H
g£ in

terms of the room air enthalpy H the following expression is found:

H
E

= H - b*©H - a*0 ... (71)

gOB + -tfb* gOG + v'b'*

where in an effort to simplify the notation the "evaporator contact factor" <y



37

has been introduced. This coefficient will be used throughout this text to

designate the expression
- UA/G

6 = (1 - e ) ... (72)

As such it is clearly distinct from the surface contact factor v , defined by

Ea. (2iib).as o, - h A/GC
V = (1 - e

C ps
)

Eq. (71) seens somewhat complicated. Therefore another method will be

presented now which at the same time is simpler and more meaningful. Instead

of expressing the evaporator surface conditions H ^ as a function of the room

air enthalpy, tne same surface conditions can be expressed in terms of the

heat flux to the evaporator Q^. This flux is, at least during steady-state ope-

ration* tne heat evacuated by the refrigeration unit Qpv . Therefore one simply

expression
£. ... (73)
b*

sE E
{ G©

"
Gtf

+
b-J

would be a straight line if the overall heat transfer coefficient U, appearing

in the evaporator contact -factor , were a constant. Since this is not the

case, one profits by a graphical procedure of solving the system of Sqs. (57) t

(67) and (38) or (39) • As shown in fig. 3, this method is extremely simple.

The result is a curve which delivers the steady-state values of the evaporator

surface conditions as a function of the heat removed by the evaporator (or the

heat evacuated, by the refrigeration unit), This curve, H j(Qv), may tnen be

approximated by a straight line. Within the range of expected surface temper-

atures this consequently provides an expression of the form:

QE
= Qex - a* + b- HsE ... (7h)

This expression, together with the familiar expression of Qg, given by Eq. ($9)
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jdiately delivers an expression for H E , which is in form very similar to

So.. (70). This expression is

" h
c
A/GC

ps

HsE
. 2JLO- ) - a»

... ( 75 )
snj

- h a/GC
G (1 - e ° pS

) + b=

The coefficients a", b" evidently are to be determined graphically and will

depend not only upon the evaporator used, but also upon the refrigeration unit

and the specific range of evaporator temperatures for which the system is fit.

The Ecs. (7h) and (75) permit a Yery simple analysis when they are applied

to the influence of the evaporator upon the humidity in cold rooms. Their

application however remains restricted to the steady-state or final value the

evaporator surface conditions will reach, when a certain heat load is imposed

upon the refrigeration system. The principal features of the method proposed

here are:

1. the similarity of the equations, governing the heat and mass transfer to

the evaporator, when expressed in terms of the equivalent evaporator

surface conditions (one should compare the Ecs. (3>9) and (60) with the

analoguous pair of Eqs. (1;2) and (£6)). By this fact, the straight-line

law becomes fully applicable.

2. the effect of variations of the overall heat transfer coefficient with

changing heat loads is already incorporated into the form of the modified

capacity curve of the unit. (Of this curve Eq. (7u) is the linear approxi-

mation) .

The conclusion is obvious: if there would be no transient response of the

evaporator system (the system would go from one steady-state value to another),

tnen Eq.(7J?) would be the feedback relation, discussed on page 32.
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h. The Dynamic Characteristics of Dry Expansion Evaporators

A. Evaporator Model

Based on a considerable number of simplifications, the analysis to follow

is presented as an example of how the problem of the dynamic response of dry

expansion coils can be approached. The model of evaporator investigated

consists of multiple circuit coils supplied with refrigerant through a

distributor. The individual circuit outlets join into a common suction header.

According to the types of design most commonly used, a cross-flow tube

arrangement will be considered in which the direction of the air flow and the

overall refrigerant motion through the evaporator are opposite to each other.

In other words, the refrigerant enters the coils at that extremity of row

depth where the air is leaving the evaporator. The warm entering air is brought

in contact with the row of tubes which discharges into the suction header.

The individual circuits are identical in form and located in planes,

parallel to each other and to the direction of air flow.

B. Heat Transfer Assumptions

In an effort to simplify tae analysis and to make it more meaningful,

the following assumptions are made as to the heat transfer part of the problem:

1. In order to account for the pressure drop and for the superheating in

part of the coils, an average refrigerant temperature will be taken as repre-

sentative for the total evaporator. It will be denoted by T
R , the corresponding

enthalpy value of moist air being H .

2. The thermal parameters of the system remain substantially constant at

each moment and at all places within the evaporator.
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3. The evaporator surface area and the mass of the material of pipe and

fins is constant per unit depth of the evaporator in the direction of the

air flow. This material, moreover, is considered to be homogeneous.

h» The material of an individual refrigerant pipe and of the fins

attached to it, if any, is assumed to have a uniform temperature in any cross-

section perpendicular to the pipe axis. This uniform temperature is assumed to

be the average surface temperature of the element under consideration.

{?. At the evaporator entrance section the air has uniform properties and

a uniform and constant mass flow rate. The flow rate remains constant and

uniform throughout the evaporator.

The foregoing assumptions, combined together, may be said to describe a

special type of heat exchanger, in which the tnermodynamic properties of the

air are uniform at each cross-section of the evaporator. This is true because

all possible variations of the system's characteristics in the direction of

tne refrigerant tubes have systematically been neglected. This procedure is

often called lumping of the parameters.

As a conclusion, the total analysis of the coils is simplified by

considering the air as a perfectly mixed fluid, i.e. as having the same

properties across its flow passage, which contains the entire flow, at each

cross-section of the evaporator.
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C. Heat Transfer Equations

The following equations entirely describe the various quantities of heat

which are involved in the heat transfer through a single row of tubes, across

which the air flows in a perpendicular direction (cross-flow arrangement) (5>9)

•

Air side heat transfer:

- G
ffl Ax

( H - H ) = S * ( € E)
- Sm

^ CvP/R> - ... (76)

dx r
s

ie 6e

where following symbols are used:

H enthalpy of moist air, dry basis (kcal/kga)

E internal energy of moist air, wet basis (kcal/kg

H
s

enthalpy of saturated air, corresponding with the mean surface tem-

perature of the tubes (including fins, if any) (kcal/kga)

R the outside surface resistance of extended surfaces (cf. Eq. (28)),

the driving force being an enthalpy difference (m hr/kga)

g the density of moist air, wet basis (kg/nr)

C the specific heat of moist air at constant volume, expressed on the

basis of the kg as the unit of mass (kcal/kg C)

R gas constant of moist air, same basis as Cv (m /sec2 G)

P absolute (atmospheric) pressure (kg m/sec 2 m2 )

G mass rate of air flow (kga/hr)

x the direction of the air flow (m)

G time (hr)

A outside surface area of the evaporator related to the unit of

length in the x direction; A is an idealized parameter, introduced

to overcome discontinuities in the contact surface; A is equal to
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the outside surface area of a single row of tubes, divided by

the distance between two consecutive rows; the dimensions of

A
x

are (m2/m)

S the average flow passage of the air (m2)

In Eq. (76) use is made of the perfect gas relationships, for moist air may be

considered as an ideal mixture of two perfect gases, to wit dry air and water-

vapor. For the sake of completeness it should however be remarked that Eq.

(76) may result in a small error. In fact it is possible that at a given point

in the evaporator the composition of the air mixture varies with time. This

would result in a time dependent variation of the coefficient C and Eq. (76)

would not equal zero. The possible changes of Cv however are very small and

any departure of this sort may therefore be neglected.

Thermal balance of tube material: the following energy, balance may be set up:

£(h- v - £chs
- h

sr)
- W;1 ^ ...(77)

where H R enthalpy of saturated air at the refrigerant's evaporating

temperature (kcal/kga)

R. the internal resistance of extended surfaces (cf. Eq. (29)),

related to the total external surface area, which includes both

pipe and finsj the driving force being an enthalpy difference,

Rj_ is expressed in (m2hr/kga)

Z mass of the pipe- and fin material used per unit deptn of the

evaporator in the x direction (kg/m)

C specific heat of the pipe- and fin material (kcal/kg C)

Z C is the thermal capacity of the evaporator material per unit

depth of the evaporator.
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ft is defined as the following slope of the saturation curve

of moist air:

PA
. 5n ...(78)

dTs
J Tsurf . av .

This slope is evaluated at the average temperature of the

total evaporator surface. The value of this temperature

need not be known with great accuracy, for it is not very

critical

Heat Transfer to the refrigerant:

Introducing the symbol J to designate the total heat flow, which reaches the

refrigerant between the air entrance section of the evaporator, where x » 0,

and between the row of tubes to which the present analysis applies,

one may write the following equation

bx r.

H
s " H

sR) ... (79)

The quantity J(x,6), introduced by Eq. (79) > is a function of the time and

of the distance from the air entrance section of a particular tube row. It

has a mathematical rather than a physical significance.

The dimensions of the function J evidently are those of a heat flow: kcal/hr.

Transform Operations.

It is advantageous, in order to apply the Laplace transform method, to

express the above equations in terms of deviation variables from some steady-

state initial values, found as outlined in section 3 of this chapter.
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It should be pointed out that the steady-state initial values, just mentioned,

are functions of the space coordinate x. In each evaporator section these

functions usually take a different value (except for H R ).

The following notation will be used throughout the further treatment:

(a) deviation variables are denoted by small characters, whereas capitals des-

ignate the absolute value of the corresponding variable; (b) the superscript o

denotes initial values; (c) unless misunderstanding is to be avoided, no

special notation is used to indicate Laplace-transformed functions.

The deviation variables, which will be introduced now, are:

o o

h (x,e) = H (x,6) - H where H = H (x,0)
o o

hs (x,e) = H
s
(x,6) - H

s
where H

s
= H

s
(x,0)

hsR (©) " HsR W " HsR where K
sR = H

sR
(0)

o o

j (x,9) = J (x,G) - J where J = J (x,0)

Writing the Eqs. (76), (77) and (79) in terms of these variables, and

Laplace transforming with respect to , while noting s as the subsidiary

domain of G , results in

dh(x,s) _ Ax
G

dx R
s

-1
zx c Pa * h

s
(x,s)

( h
s
(x,

Ax

Re

h (x,s) ) ... (80)

( h (x,s) - hs (x,s) ) ... (81)

*i

-* ( hs (x,s) - hsR(s) )

f^ifl = ^ ( hs(x,s) - hsR(s) )
... (82)

dx R
±

As far as the left-hand member of the second equation is concerned, it may be

recalled that the initial conditions for tne deviation variable h
g

are (in

the original time domain): h (x,0) =
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The Eqs. (80), (8l) and (82) may be integrated in the space domain, i.e.

over the total depth X of the evaporator. Integrating from x = ap to x = X

results in

G ( h (X,s) - h (0,s) ) - -1
(

[h (x,s) - h(x,s)J dx ... (63)

o

z v c

-i
r
x

r
x

^A s I h,(x,s) dx - fx [h (x,s) - h
g
(x,s)j dx

Jo
Rs

J

- ^ [
V(x,s) - h

sR
(s)]

R
i J

. (8U)

dx

j (X,a) - j (0,s) - -*
[

(h
s
(x,s) - h

sR
(s)] dx ... (85)

R
i

J

These equations contain quar ities, which must be explained further.

h (0,s) and h (X,s) are the Lapiace transforms of possible deviations or

changes of the air enthalpy at the inlet and outlet of the evaporator. As such

they may be represented by the more familiar symbols h-,(s) and ^(s), but

one should not forget to consider them as deviation variables.

From the definition of the heat flux J, given on page h3> 3 it follows

directly tnat J (0,6) and consequently also j (0,0) and j (0,s) are iden-

tically zero at all times.

The quantity J (X,Q) and its transform J (X,s) represent the total heat

flow delivered to the boiling refrigerant inside the evaporator; the quantities

j (X,8) and its transform j (X,s) on the other hand, represent the deviations

of this heat flow from a steady-state initial value. All these quantities are

functions of time only for X is a constant. In an effort to make a directly

meaningful symbol, the total depth X of the evaporator will be dropped as a

variable and replaced by the subscript q.
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Taking the above remarks into account, one can rewrite Eq. (8p) as

f

X R ^

•'o

Substituting Eqs. (83), (85) and (86) into Eq. (810 results in

f
X R

i

J
h
s
(x,s) dx = — j (s) + X h

sR
(s) ... (86)

G ( hjU) - h
2 (s) ) = (1 + T2 s)jq

(s) + KJ s hsR(s) ...(87)

Zv C R.

TA Ax

Z v C X

(89)

1 has the dimension of a time (hr); K' has the dimension of a mass (kg

Recalling that, on the basis of Eqs. (76) and (83), the left side of

Eq. (87) represents the Laplace transform of the deviation, q^, of the quantity

Qg from its initial and steady-state value, one may draw the following

conclusion. Eq. (87) is the mathematical expression of the forward loop in the

closed-loop system, formed by the evaporator and the refrigeration unit.

However, an additional backward or return-loop relationship between the

variables ,j and h „ must be found. To find this relationship constitutes the

purpose of the following pages.
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D. Assumptions concerning the Internal Vaporization

The vaporization of a refrigerant inside a dry expansion evaporator is

a very complex phenomenon, which is not yet completely understood.

Since both the liquid and the vapor phase of a pure substance exist

simultaneously the type of flow encountered is usually classified under the

general name of two-phase flow. This type of flow evidently obeys the usual

mass-, momentum- and energy equations, which are all partial differential

equations. But the ma.ior problem is more that of predicting the flow

pattern which occurs when phases of different densities flow together in the

same direction. The general problem, however, in the present analysis may

be considerably simplified by making the following assumptions, which in most

cases may be looked upon as reasonable approximations:

1. The evaporator pressure will be taken as a constant throughout the coils.

Variations of this pressure are considered to be directly transmitted or, in

otner words, to be the same throughout the evaporator. This eliminates the

possibility of compression waves inside the coils. As a matter of factj

the foregoing assumption comes down to completely disregarding tne momentum

equation of the flow, and to lumping the space parameters of the flow in the

system.

2. The part of the heat transfer to the boiling refrigerant which, in case

of variations of the evaporating temperature, is absorbed by the liquid phase

will be neglected. This is permitted because of the small liquid content of

the coils. Moreover, the reference state (zero point) for the refrigerant's

internal energy and enthalpy will be taken at the saturated liquid state of the

refrigerant corresponding with the (initial) evaporating temperature. These
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assumptions permit the writing of a mass and an energy balance both related

to the vapor phase only, i.e. dropping in the formulation of balance equations

those terms which deal with the presence or the state of the refrigerant

liquid in the coils.

3. In assumption 1 on page 39 an average refrigerant temperature was

introduced in order to simplify the heat transfer part of the problem. Little

error will be made by doing the same for the density of the refrigerant. Since

the superheat region is small, the superheat will have only a slight effect

on the weighted average temperature T . Therefore T_ will be considered as
R R

the actual temperature in the saturated region of the coils. As to the mean

density, just mentioned, the density of saturated refrigerant vapor at the

mean temperature TR will be taken as representative of the entire vapor

content of the coils. Exactly the same method will be arplied to the internal

energy of the vapor. The error resulting from this procedure is negligible.

This becomes clear if one considers the fact that the mean quantities just

defined appear in the balance equations of the coils under the form of

derivatives only. Therefore their absolute magnitude has little importance.

Iu Finally it will be assumed also that the vapor velocity inside the coils

is high enough to neglect the delay, caused by the finite gas velocity, as

far as the heat transfer to the system is concerned. More specificly, it will

be assumed that at each moment, the state of the gas leaving the coils

describes the relative proportions of the total heat taken up by the

refrigerant during its vaporization, and of the heat transfer absorbed during

the refrigerant's superheating. Both quantities of heat are taken at the same

moment along the entire length of the coils (lumping of space parameters).
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E. The Refrigerant's Mass and Energy Balances

With the foregoing assumptions, the two following mass and energy

balances can be set up. These balances describe the average state of the

refrigerant vapor inside the evaporator. They are related to tne vapor phase

only.

- M
I„ I - I.
Ig 1

M (I - I 1
) + J

o o ' q
- *£** ')

(90)

(91)

Symbols: M'.' flow rate of entering flash gas (kg/hr)

M flow rate of gas leaving the coils (kg/hr)

I refrigerant enthalpy (kcal/kg)

E refrigerant internal energy (kcal/kg)

I- latent heat of vaporization (kcal/kg)

£ refrigerant density (kg/m-*)

J total heat flow rate (kcal/hr)

V total internal volume of the coils (m^)

" superscript, denoting saturated vapor

' superscript: saturated liquid

i subscript, referring to the refrigerant inlet conditions

o subscript: refrigerant outlet conditions

The procedure to follow in order to solve the Eqs. (90) and (91) is to

express all the terms, appearing in the system, in terms of a few basic

variables. These variables will be the following deviation variables, measured

with respect to the initial steady-state values (as before, these values are

denoted with the superscript °)

:
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m B M _ M

m 1
.' = N" «. M"
1 l i

Z
R

= T
R

~

J
q

=
,1 _ ,1

q q

t* = T" - T"

The only new variable, introduced by these Eqs., is the superheat of the leaving

gas, at each moment defined as

O
X
R

The balance equations (90) and (91) in terms of these deviation

variables may now be rewritten as approximatively equal to

ft**) - (§ ..) ft
* ^ ( x - V!!l22) . vc

A

x
fg

+ ai\ x" - J
±

&ds"

m
I
)(I

fg
+ °iV - ("o

+ "oXifg Vr +
V*

+
V*5

+
(V V

i dt^ O cLti,

fg
e do e ^ de

In order to arrive at these forms some coefficients have been introduced

which follow from a linearization of the refrigerant's thermodynamic properties

in the neighbourhood of the initial steady-state conditions. They are

P it* e dTR
Z

dTR
E

dTR

Subtracting from the above equations the solutions of the initial steady-

state operations and dropping second-order differences result in the following

expressions (after some mathematical rearrangements):

1 CnT* dtp „
Jo c

R

"
I

^ I" -I.
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"i^-^fg +
°p
T)

' '* '-fit^ < "ZT* ...(93)
o

I
v o i' R p o

It may be noted here that in an effort to simplify the problem the enthalpy

difference I" -I. has been considered as a constant, resulting in a very

small error. The error introduced by neglecting the second term on the right

side of Ec. (93) also is negligible. This term is very small compared with

the first term and is smaller than a corresponding energy term for the liquid

phase, which has been left out of the analysis on the basis of one of the

foregoing assumptions (page hi and U8)

.

The approach described here for obtaining a linear form for the balance

equations is always possible in practice. It must be emphasized that the

linear forms, given by Eos. (92) and (93), strictly speaking apply only to

small deviations from the initial operating point. As such they may be used

as a means to find the response of p refrigeration unit which is operating

continuously under varying heat loads. In practice abrupt changes of the heat

load do not occur. The Eos. (92) and (93) cannot be considered for describing

the system's behaviour during starting periods of the compressor like they

occur in on-off control systems for refrigeration plants.

The Scs. (92) and (93) contain five variables, namely t_., t . .1 , m" and
R q l

m . The ultimate purpose is to express the evaporating temperature t in terms

of the heat load j . Therefore it will be necessary to eliminate bwo more

dependent variables, namely the entering and the leaving mass flow rates of

refrigerant vapor.

In order to eliminate these variables, additional relationships between

the five variables, just mentioned, will be found in the next sections.
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F. Analysis of the Thermostatic Expansion Valve

The time constant of a typical pneumatic valve is on the order of 10 sec.

That of a thermometer or a sensing bulb damned to a coil usually does not

differ too much from a minute. The reason why these numerical values are given

here, is to show that the combination of valve and sensing bulb may be

treated as a first-order system.

Assuming that the valve itself contributes negligible dynamic lag, the

transfer function relating the valve stem position to the superheat may be

written in terms of deviation variables as

y(s) %

t*( S ) 1 +TV S
... (9h)

where K-, is a constant, having the dimensions of a length divided by a

temperature. K-. often called the steady-state gain, is the proportionality

factor between the steady-state stem position and the superheat reached after

an infinite period of time, y is the stem position, -c is the time constant

of the entire bulb and valve system.

The area of flow passage through the valve orifice is a function of the

stem position: S = f (Y)

Linearizing this relationship in the neighbourhood of the steady-state

condition at time zero, results in

Sv
- K

2
y f(Y) - <9S)

The flow of refrigerant through the valve orifice may be expressed by

the well-known hydraulic formula

Mi - K
3

Sv
(P

c
- P

E
)* ... (96)

where Pp is the condenser pressure and P the evaporator pressure. Ko is a
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coefficient which may be looked upon as substantially constant for a

particular valve in a particular application.

In Eq. (96) the condenser pressure is considered to be constant. From the

saturated refrigerant tables tne functional relation between P and T given as

?.. (T ), is obtained. Kence Eq. (96) can easily be linearized, as shown for
R R

instance in ref. (60). Therefore one expands M^ about the initial operating

point in a Taylor series of which only the linear terms are retained. The

result will be given in deviation variables. When combined with the Eqs. (9h)

and (95), one obtains the following relationship for the Laplace transformed

valve characteristics in terms of two constants k"" and k^:

, t«t»(s)
+

*
(s) _ (?7)

1 + TV S ^ R

This expression is not directly usable in the present analysis, or the

variable which occurs in the previous balance equations is the amount of flash

gas entering the coils. This quantity is given by

M>.' = K. S (P„ - PJ2 X. ... (98)
1 3 v C R 1

where ^represents the quality of the refrigerant entering the coils. An

analogous procedure makes it possible to derive, in exactly the same way as was

done for rrij_, the following relationship for the deviation variable m^

m»(s) = K* ^(s)
+ K t (s) ... (99)

1
1 + ry

s R R

The relation between tne coefficients introduced here and the coefficients

introduced before is easily found to be

(kg/hr C)

(kg/hr C)

is given by

- I"

- i<
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G. The Mass Rate of Flow to the Compressor

The mass rate of flow to the compressor at each moment is given by (cf

.

... (100)

Eq . (61))=
Ad

where A the compressor's actual volumetric efficiency

D the rate of displacement of the compressor (m^/hr)

v the specific volume of the refrigerant gas before it enters the

compressor (m^/kc)

A distinction must now be made between two possible cases:

A. If there is no appreciable pressure drop in the suction line , except the

inevitable friction losses, then the suction pressure nearly equals the

evaporator pressure. Moreover, the suction line to the compressor is usually

well insulated, whence the temperature of the refrigerant gas remains

unchanged from the outlet of the coils to the compressor. Using the perfect gas

relationships for superheated refrigerant gas, one may write Eq. (100) as

follows XD P_

n = 5

—

where R is the refrigerant's gas constant

TR is given in absolute degrees

Many experiments have shown that the volumetric efficiency of a reciprocating

compressor obeys a linear law when expressed in terms of the compression ratio

(ref. (61)).

Putting A = cx
- cx (P

C
/P
R

)

and substituting this formula into the expression above results in
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... (101)

where CA and cA are constants. P can directly be expressed In terms of T .

Theiij by means of the same procedure as applied before, Eq. (101) is rea..."

be linearized. Expanding in a Taylor series and retaining the linear terms

only, yields for the deviation variable m a relation of the form

*o •
BR*R

+ B#t* - (102)

where B„ and B* are two coefficients whose value must be calculated in each

particular case.

3. If the suction line contains an evaporator pressure-regulating valve ,

the problem becomes a little more complicated, for now the suction pressure,

i.e. the pressure which prevails in the main suction line, intervenes as to

determine the mass flow, cuxteJ to the compressor. Due to the high velocity of

tiie refrigerant gas in tne suction line, one may safely assume that at each

moment steady-state flow prevails in the suction line. As a consequence,

tne mass flow rate at each moment is the same along the entire length of the

suction line. The following method may then be used in order to linearize the

outgoing mass function in terms of the appropriate deviation variables

introduced before. It should, however, directly be pointed out that this method

merely constitutes an example . It is a guide as to how one may proceed in order

to arrive at an acceptable result, and can be applied to almost any case. Due

to the great variety in valve characteristics, as given in the manufacturer's

data, the method is outlined in general terms only and must be adapted as to

each particular application. Although not strictly necessary, it will also

be assumed for the sake of simplicity that the refrigerant gas, when super-
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heated, behaves as a perfect gas.

The method proceeds as follows: The flow rate of gas tnrough the

evaporator pressure-regulating valve can always be expressed by a function

M
Q

- £ (Y,P
R
,P*)

where Y is the valve stem position, P the evaporating pressure and P* the

back pressure in the suction line. Often one finds that this function has

a form analogous to Eq. (96). A more extended treatment is found in ref. (62).

On the other hand, the flow of refrigerant to the compressor is given by

a function M
Q

- f (T
R
,T",F~

;:
~)

Eq. (101) after some obvious modifications gives a general example of this

function.

Eliminating the variable P between the foregoing expressions, and

making use of the relationship between PR and TR which is given directly by

the refrigerant's vapor pressure curve, result in

M
Q

- f (T,T
R
,T*) ... (103)

Function (103) has a total derivative which in the neighbourhood of the

initial operating point can be evaluated to give:

dM = ^2dT + !!kdTp + ^l°df ... (lOii)
° *Y *T

R
R

*T*

which may be written in terms of deviation variables and of constant

coefficients as

m
Q

= B
y y + B

R
t
R

+ B* t* ... (105)

Equation (lOf?) is a generalization of Eq. (102) for the case where an

evaporator pressure-regulating valve is used. It contains one more independent

variable, to wit the deviation stem position y, which further will be treated

as a quantity acted upon by parameters external to tne system. Because of its

generality Eq. (10£) will be used in the sequel with the understanding that,
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if no pressure regulating valve is installed in the suction line, the

coefficient 3 may be put equal to zero.

H. Dynamic Response. Transfer Functions

The dynamic response of the internal part of the evaporator, connected

to a given type of compressor, is found by combining the Eqs. (92), (93),

(99) and (105). Laplace-transforming those equations which have not yet been

transformed, and substituting the Eqs. (99) and (10£) into the balance

equations (92) and (93), yields the following equations

Vq(s) (br- h- v r
s) V s) + (B*- G*- rr^

}t*(s)

- E
y

y(s) ... (106)

3 fl
(s) = (bR

- kR
- gR

+ £S ) t (s) + (b* - g* - _JiL ) t*(s)
q n it n. 1 + T S

+ b
y

y(s) ... (107)

where the various coefficients, which appear in these equations, are defined

as follows:

Kj., K* coefficients introduced by Eq. (99)

Bp, B*, B coefficients introduced by Eq. (105>)
r y

kp, k* coefficients, by definition equal to:

bn , b~, b coefficients, by definition equal to:
r y

^
= h l

fS
V,

k*
?g

*R
=

o

% (I
f

+^ o
fe

0„

.

b* - B*(I- + c r»)

o
f e P

"*sV y fg
C
p
T")
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1 Q m*

Furthermore G =2 ( 1 - —2 )

q X
fe n I" - I-

CJWC I Jq
,

If
g

P " X
i

6 o
J C

G = - ^ J
I
fg d" " I±)

2
R

- - c
T

(M - §»)

o

S " " °p M
o

4 -
v c

t
!
fg

+ v
e"

ce

In order to make the analysis more meaningful, the following physical

significance may be attached to the foregoing coefficients.

The coefficients K„ and K represent the partial derivatives of the

entering vapor flow with respect to the evaporating temperature and the

superheat. The coefficients kR
and k* represent the corresponding enthalpy

changes per degree of temperature change.

The coefficients BR , B* and B represent the partial derivatives of the

outgoing mass flow rate with respect to changes in the evaporating temperature,

the superheat and the stem position of the evaporator pressure-regulating

valve in the suction line, if any. Again the corresponding derivatives of the

outgoing enthalpy flow are represented by bn , b"" and b .

ft y

The coefficients G , G and G"~ represent the change of the amount of

vapor, which is formed inside the coils per unit variation respectively of

the heat flow, the evaporating temperature and of the superheat. As such

these coefficients may be considered as partial derivatives too). The liquid

refrigerant flowing through the coils needs, in order to vaporize, an

amount of energy which will vary at each moment. This amount will change
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according to the evaporating temperature. The variation of this amount of

energy per unit change in the evaporating temperature, is evaluated for the

total liquid flovr, passing through the coils per unit time, and represented by

the coefficient -g . Coefficient -g on the other hand represents the change in

the amount of heat, absorbed by the total refrigerant flow, when the superheat

increases by one degree.

The coefficients u and a respectively are the changes in the total mass

and energy content of the vapor inside the coils when the evaporating temper-

ature (the mean refrigerant temperature) increases by one degree.

The variable t" must now be eliminated from the Eqs. (106) and (107).

By doing so, one rets the following expression for the evaporating temperature

as a function of the heat inflow and of the stem position of the evaporator

pressure-regulating valve, if any,

jq
(s){ (B*- G*- K*) - G

q
(b*- g*- k*) + s x

y
[(B*- G*) - (b*- g*) C

q|
+

s
2
T
y

[£(B*- G*) - |i(b*- g*)] + s[e(B*- 0*- K*) - T(b*- g*)^-

y(s) I B
y
G
q
(b'

::

- g*- k*) - hy(B*- G*- K*) * s t
y

[B
y
G
Q
(b*- g*) -

KR" V + V**"
°*)(V V ^ ' \^~ B

#
- k*>] " V K -

. (1C3)

G
R
)(b*- g*- k*) 4 (B*- G*- K*)(b

R
- 1^- g

R
)

This equation in terms of Laplace ' ransformed deviation variables shows

clearly that the response of the internal system, formed by the evaporator's

inner part and by the compressor, is essentially second-order. This result is

in excellent agreement with some physical phenomena, often encountered in

practice, as for example valve hunting or "sluggish 1 evaporator response. Eq.
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(108) can be brought into the standard form

%«>) (1 * T3 s ) j
q
(s) t

R
(0) 'g* T

h
s) y( S )

(1Q9)V s >

J (0) T^s2 + 2$Ts +1 y (0) x
2
s2 + 2^xs

q

In this equation x, T-, T. are time constants; t, is the so-called damping
5 a

factor.

Eq. (109) also contains the following so-called steady-state gains, reached

after an infinite period of time, for s = 0, and easily computed from Eq. (108)

t (0) (B* - G* - K*) - G(b* - g* - k*)
J5—

! s S 5
-

i <110 )

j (0) -(^ - ^ - G
R
)(b~ - g* - k*) + (B~ - G* - !C"')(b

R
- k

R
- g

R
)

tR (0)
BvGQ (b" " g* ~ k*) - bv<

B* - G* - **)
— - —

z
: z

2—, = (111)

y (0) -(B
R

- 1^ - G
R
)(b* - g* - k*) + (B" - G* - K~)(b

R
- k^ - gR

)

The overall transfer function, which directly relates the evaporating

temperature of the refrigerant to the inlet and outlet conditions of the air

stream through the evaporator, is found by combining the Eqs. (87) and (109).

Eq. (87) may first be transformed and expressed in terms of the evaporating

temperature. By means of Eq. (30) one may write

G (h^s) - h
2
(s)) = (1+T

2
s)i(s) + K

w
s t

R
(s) ...(112)

where in accordance with Eq. (89) a new coefficient K is introduced, equal to

^ =
Zx CX Pk = (3R KJ ... (H2b)

Elimination of j (s), the instantaneous heat flow from the walls of the coils

to the refrigerant, allows the combination of , (109) and (112) into the

following overall relation

:
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3(h
1
(s) - h

2
(s)) = t

R
(s) t^Co)

(1 + T
2
s)( ts

2
+ 2^rs + 1) + ;v s (1 + Xjs)

(1 + t
3
s)

y (0) (1 + x
3
s)

Eq. (113) completely describes the dynamic behaviour of dry expansion

evaporators, connected to a particular type of compressor and whether or not

provided with an evaporator pressure-regulating valve. In this equation three

Laplace transformed variables are related to each other, namely the heat

transfer from the air to the coils, the evaporating temperature of the refrig-

erant and the stem position of the evaporator pressure-regulating valve. Any

of these three variables may be considered as the output variable in terms of

the two others (input variables). In order to avoid confusion, it should

be repeated that the constant values jAO), t„(0) and y(0) in Eq. (113) are
M ft

Laplace transforms, so that the zero coordinate refers to the value of s =

after an infinite period of time. The constant values, just mentioned, are thus

the final steady-state values those respective functions will take.

.1(0) j (0)

As to the ouotients —

!

and -^ appearing in Eq. (113) and also
t
R (0) y(0)

in Eos. (109) and (110), some practical considerations must be made.

These quotients are coefficients which can be found from a complete graph of

the capacity curve of the refrigeration unit. A distinction, however, must be

made between two possible cases.

A. There is no evaporator pressure-regulating valve in the system.

Then, by definition of the coefficient b in Eq. (6£), the following equality

exists O„(0)
b - _!_ ... tii)

t
R
(0)
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The coefficient fa is, by definition , equal to the expression given by the

inverse of Eq. (110). This expression will be the slope of the unit's

car '-city curve at the evaporating temperature used.

B. The refrigeration system contains an evaporator pressure-regulating

valve. In this case one may go back to Eq. (103) and write the capacity of the

unit as a oroduct:

*R'
Q̂ex

Now one can use the approximate assumption of Eq. (63), which actually puts

forward that the capacity of the system changes but negligibly with the

superheat of the leaving refrigerant gas. This permits one to write the

foregoing functional relationship as

Qex - r (I, T
R )

This function is graphically represented by a group of capacity curves, each

of them applying to a particular opening of the evaporator pressure-regulating

valve. The partial derivatives of this function with respect to its variables,

and evaluated in the neighbourhood of the operating point of the system at

time zero, are precisely the quotients needed here. In order to keep the

notation coherent these partial derivatives of the capacity function in this

thesis will be represented by

*>Qex j (0)—!2E . -2— = b , ... (n5)
^TR ^(0)

^ Qex -V 0)
, ,x^ = -2 = b" ... (116)

^Y y (0)
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I. Response of the Evaporator Surface

Not the evaporating temperature of the refrigerant but the evaporator

surface temperature governs the heat and mass transfer from the room air to

the cooling coils. For the study of the overall response of cold rooms it will

therefore be of direct importance to find the function which governs the

instantaneous state of the evaporator surface.

The analysis which will follow now has much in common with similar

studies, found in the references (62), (59), (63) et al.

The starting point will be the Eos. (80) and (8l), which may directly

be combine} into a single expression

dh(x,s) A h(x,s) Ax , VR
s

p { 1 " —— : ~ >

<* GR
* s^ + ^ + ^S s^x£ + ^x

Pa r
s

R
i h Rs R

i

This equation is a simple differential equation which can be solved directly

with respect to the variable x.

The boundary condition, imposed on the equation, is given by

h(x,s) = h_ (s) at x =

Solving the equation yields
ZVC

U-h(x,s) - h^s) - {1 - exp
^ z^C ^ Ax ^ Ax [|V s)

^s
l

^A RjJ
^ U

h£ + ti + ^ * r
fa R. R )i

1 s

I ( Z C Av \R / Z C
s '

R.
i

This solution represents the enthalpy of the airstream at each moment and at

eacn cross-coction of the evaporator model described before.
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For practical use the expression just derived is too complicated. It may

therefore be simplified on the basis of the following considerations.

In actual evaporators the evaporating temperature inside the coils

varies very slowly. A kilogram of air, passing through the evaporator,

is not able to detect any variation of this temperature. Therefore when the

state of the air at the entrance of the evaporator changes, the refrigerant

temperature will follow, but very slowly and gradually. Therefore one may

consider the state of the leaving air as a function of the state of the

entering air only.

As a consequence, one may neglect the influence of the deviation

variable hsR(s) in the above solution for h(x,s). Hence a transfer function

can be derived directly from this solution. This transfer function relates

the air enthalpy at the outlet to the same property at the inlet of the

evaporator. and is given by

h,(s) -— is -— + —\1— - - exp G*sl h RjJ _ (n8)

h % «s

This transfer function presents a few very interesting characteristics,

that will follow now. Applying the initial and the final value theorem, one

may calculate that at time zero, i.e. for s = oo,

h
2
(oo) X A

x
h
c
A

= - exp ( - ) = - exp ( )

h^oo) GR
s

GCps

where use is made of Eq. (28) and of the definition of Ax on page Ul.

On the other hand, after an infinite period of time, i.e. for s = 0,

one easily finds:
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h^O)
(- - -

) = - exp (-UA/G)

One may conclude:

As soon as the enthalpy of the air, entering an evaporator, is subjected to

a variation, the first reaction of the evaporator is that of a surface which is

at constant temperature. The longer the period this variation lasts the more the

evaporator will react as a composite wall. The transition between these

responses depends on the quantity of heat absorbed by the walls themselves.

After an infinite period of time, the system again reaches steady-state

and the only effect of the entire event will be a very small change of the

refrigerant's evaporating temperature.

In well designed evaporators the external surface resistance constitutes by

far the ma.ior part of the total resistance. Therefore only a small error will

be made if one takes for the exronent in the above transfer functions the

value it has after an infinite time, namely

h
2
(s) -UA/G

Considering the fact that these enthalpy values are deviation variables

from an initial enthalpy distribution, which obeys the law

o o

K
2

- K
sR

-UA/G
_ — = l - e

8
x - Kn

and neglecting the small changes in the evaporating temperature, one obtains

by adding the foregoing relations
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K
2
(s) - H

sR (s)
- U A/G

: S i - e

H
1(s)

- H
sR (s)

The meaning of this equation is that the relationships, which govern the heat

transfer to evaporators during steady-state operation, may be used for

unsteady-state conditions too. This evidently.will result in a certain error

but, for lack of a simDle and better approximation, there is no alternative.

The concept of an equivalent evaporator surface, introduced on page 29,

will thus be generalized as to apply also during changes in the heat load.

Eq. (57) keeps its validity but, of course, will be given an enlarged

significance in order to allow for possible variations of the evaporating

temperature. Mathematically it will be rewritten as (cf. Eq. (72)):

HsE^ = H
SR

(S) + G(H
l
(s) -H

2
(s)) ( |

-i)
... (119)

G
or in terms of deviation variables

h
sE

(s) = h
gR

(s) + (hx (s) -h
2
(s)) (| -|) ... (120)

In these expressions, however, one can make use of the basic property of the

equivalent surface conditions themselves. More particularly, since on the basis

0f Eq
* ( *9)

' Q
E

= G (H
x

- H
2 ) - g3( Hi - HsE )

where u is the evaporator surface contact factor, one may rewrite the

equalities above as

H
sS

(s) = H
sR

(s) + ^ (H
l
(s) ' Hs2 (s)) ( 7 " ^ •••

(121)

h_(s) = hsR(s) + d(h-(s) - hsE (s)) (1-1) '•• <122)
S£, SK 1 Sb © ^

Similarly, one may rewrite Eq. (113) in terms of h „ and of h
R

(on the basis

of Eq. (30)), which will result in an expression
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GtfCh^s) - h
sE
(s))^

R
(1 + x s)

h (s) =

b' (1 + T
2
s)(t2 s

2
+ 2£rs + 1) + K

ws(l
+ r

3
s)

+
7(3)PR

b" (1^T
2
S)(1 + ^S) ^

b« (1 + T
2
s )(r2 s 2 + 2£ts + 1) + I^sCL+Tjs)

In these equations use is made also of the equalities (115) and (116).

By elimination of the variable h R it now becomes possible to find the response

of the evaporator surface. Eliminating h
gR

between the Eqs. (122) and (123)

results in

h
sE

(s) = h^s)
-^-(1 + t

3
s) +^(g -J) PCs)

^(l + r
3
s) + (l, +

§
-^)P(s)

ft
b"

y(s)
Vd^^Ci^,,)

(121*)

S (i + r
3
s) + (1 + £-$ p(s)

where P(s) = (l + t
2
s) (t^s 2 + 2$rs + 1) + K, s (l + x^s)

Eq. (121;) at each moment relates the equivalent evaporator surface enthalpy to

the enthalpy h^ of the air stream), entering the coils , and to the instantane-

ous stem position y of the evaporator pressure-regulating valve in the suction

line to the compressor.

Because of its importance in the sequel Eq. (121±) will be represented by

the following notation, the functions 4> and 4> being directly found from Eq.
h y

(121*),

hsE^ " *
h
<s) h^s) + *

y
(s) y(s) ... (125)

The functions 4> and *£ are the transfer functions which relate the evapo-



rator surface conditions respectively to the enthalpy of the entering air and

to the stem position of the evaporator pressure-regulating valve, provided

that the other variable in each case is kept constant.

It is easy to see, by completely writing down these transfer functions,

that one may consider the response of the evaporator surface conditions as

an essentially second-order function. This result agrees with how one

intuitively expects the system to behave: the evaporator surface may be

expected to follow the response of the internal part of the evaporator, which

in turn is a second-order function in terms of the entering air stream proper-

ties. In their complete form the above transfer functions are

Th(s) -

b'
-JS.(l+^s) + (l + |-|)[(l + -r

2
s)(i2 s2 +2^Ts+l) ^sd +t

3
s)}

... (126)

*» (1 + t
2
s)(1 + r^s)

* (1 + T.s) + '" -
-- vx - ^, - (1 + @- £)i(l +T

2
s)(i?s2 + 2^ts +1) + K^sd + T

3
s)l

... (127)
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THE TOTAL RESPONSE 0? COLD STORAGE ROOMS

Now one may go back to the original balances, given by Eqs. (1) and (2),

and one may express these equations in terms of deviation variables from the

initial steady-state operating point. Laplace-transforming further results in

qin
(s) + qp

(s) - qs (s) = R s h(s) ...(128)

min (s)
+ m

F
(s) - mgCs) = R s w(s) ...(129)

In these equations h(s) and w(s) are the deviation enthalpy and humidity ratio

of the air in the room; q^n (s) and m. (s) represent sudden perturbations of

the influx of heat and moisture from external sources into the room; on the

other hand, q^s) and itig(s) are the increases of the heat and moisture which

will be removed by the evaporator, because of the load perturbations just

mentioned.

The Action of the Food Surfaces

.

As to the influence of the surface of the storage goods upon the air

conditions inside the cooled room, one goes back to Eq. (l£). This equation

may be written also in terms of deviation variables and Laplace-transformed.

By doing so one easily obtains:

h
cF ft"

1

qJ® = -£E_ F(h
p
(s) - h(s)) =-mvC? PF s h

F
(s) .. (130)

upsF

Eq. (130) may be put also in the form of a transfer function, relating the

surface enthalpy (more accurately, the enthalpy of the air in the saturated

layer at the food surface) of the food, to the enthalpy of the air in the

room. This transfer function takes the form:
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h
sF (s)

1

-rrr =
mP B-i r

... (131)
h(s) ! + m?CF P? C ?

. the approximate assumption of Newtonian heating or cooling of the goods

this transfer function, of course, is first-order.

The quantity q_,(s) may be written directly by means of Eq. (131 ) as
if

qF
(s) - -2E-* (% -1) h(s) ... (132)

psF

In order to find the term rv, in Eq. (129) one may go back to Eq. (13).

The term m_, stands for the increase of the product desiccation, due to the

change of the room air conditions because of variations in the heat and vapor

influxes into the cold room. Eq. (13 ), expressed in terns of deviation

variables and Laplace transformed, simply becomes

inpCs) = ^2»F (w
sp

(s) -w(s)) ... (133)
C
psF

The quantities which appear in this equation are not all independent variables.

The humidity ratio w
p

of the saturated air in the surface layer of the

foods is related directly to the enthalpy of the same air, enthalpy, which is

given by h (thought is of all these properties as of deviations from the
Sr

initial steady-state conditions). The relationship between w_™ and h „ follows

from the saturation curve of moist air. Linearizing this curve in the

neighbourhood of the wet-bulb temperature of the room air permits the introduc-

tion of

fc — 1 o ... cuw

(the initial wet-bulb temperature of the room air in the previous discussion
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on page lli, has been shown to be the temperature that initially also the

surface of the goods must have, for the initial conditions are assumed to be

steady-state conditions).

The introduction of the slope y_, directly gives Eq. (133) the following

form
h _

m^s) = -r^ ? ( TFnsF (s) " w(s))
CpsF

and further, because of the dependence of h _, on h given by the transfer

function (131),

nuCs) = ~Y ( ylh(s) - w(s)) ... (135)Y G
psF '* F

Equation (135) gives a perfect example of how, in the response of cooled

spaces, the phenomena of heat and mass transfer are inherently interwoven.

The Action of the Evaporator-

The presence of the evaporator in tne cold room constitutes the biggest

factor in determining the conditions, taken by the room air, for the evapo-

rator is responsible for the removal of heat and moisture from the cold room.

For tiiis heat removal by the evaporator, one has on the basis of Eq. (59)

Q^ = G 3 (H - K
sE

)

which in terms of deviation variables becomes

qE
= Gl)(h- h

sS )

In this eouation, however, the variables h and h _ are related to each
S£

other by the equality (121). Introducing this expression into the above

equation results in

q
E
(s)= G-&[(l-$h h(s) - iy y(s)J ...(136)

The moisture removal by the evaporator in terms of the equivalent surface



conditions is given by Eq. (60) as

M = G $(;I - W J
E Si

and, in terms of deviations from the initial steady-state operation of the

system, becomes

m-, = G V (w - w
sE )

The variable w in this equation is directly related to the enthalpy value
sE

h j, by the saturation curve of moist air. Using the same linear approximation

of this curve as done on page 28, Eqs. (£2) and (5>3)> the deviation variable

w may be expressed as

W
sE " T

h
32

Here again Eq. (l2£) may be used to relate the Laplace transforms of the

functions h(s), h ^(s) and consequently also w ^(s). All this permits one to

write for m_,(s)

:

iBgCa) = G^(w(s) -y$h
h(s) - y^ y(s)) ... (137)

In this result, the mutual interaction of heat and mass removal from the room

by the evaporator surface is clearly illustrated by the form of the right-hand

member.

Solution of the Balance Equations

The Eqs. (132), (135) > (136) and (137) all represent quantities of heat

or vapor transfer that appear in the balance equations (128) and (129).

Substitution of these equations into the balances yields the following

expressions

q.
n
(s) = h(s)j Rs + G3(l -\(s)) + jj^-F (l -%(s))\ - y(s) joi?<f

y
(s)

J

... (138)
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n.
n
(s) = -w(s) (Rs + 0* + r^-FJ - h(s) JGOyt ( s ) + ^ZL ?£$>){

c
ps^4

- y(s)[ GJyt(s)j ... (139)

These equations comoleteley express the behaviour of the cold room under sudden

changes of the heat load and of the moisture infiltration. They relate

directly to each other the changes of the room air conditions and the stem

position of the evaporator pressure-regulating valve, considered as an inde-

pendent variable. As can be seen from Eq. (138), the solution of the heat

transfer problem in a cooled space does not depend on the quantities of vapor

present in the air entering or leaving it. The vapor content of the room

however, depends on the enthalpy content. In other words, the heat transfer

problem affects the mass transfer problem. It should be remarked that the

foregoing discussion is set up with the assumption that the enthalpy and the

humidity ratio of the room air are the two independent variables of the

system

.
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Steady-state Solution of the Balance Equations

A particular solution of the Eqs. (138) and (139)* which is of

importance, is the final steady-state solution for the conditions, the room air

will take after an infinitely long period of time, i.e. a certain time after

the perturbances in the heat or moisture load of the room did occur.

In order to find this solution, a small digression is to be made as to

the final values of the various "transfer functions 4* " appearing in the

Eqs. (133) and (139).

Erom Eq. (131) one directly finds, by putting s -0, that

$ (0) = 1 ...OllO)

Erom Eq. (126) one finds that after an infinite period of time, i.e. for

s = 0, that

^— ^-FTTTT '"m)
b< 0"

From Eq. (12?) one finds by an analoguous procedure

b"

V 0)
" „.*« . 1 . ft ^ -^

°*Pr
+

"l1
I - fl

By substituting these function values into the balance equations, one

finds that for s=0, the following final conditions will be fulfilled by the

state of the room air

q. (0) = h(0)

y(o)

b ' ® ^ ...(11,3)

Gt)^ b"
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ILLUSTRATIVE PROBLEMS

In this chapter a few problems are solved, which illustrate the theory,

set forth in the foregoing chapters.

Air at - 10 C, with a humidity degree of Q0%, enters an evaporator. The

refrigerant evaporating temperature in the coils is - 15 C The air flow rate

is 2200 kg/hr. The total extornal surface area of the coils is i|2 m .

Experiments have shown that the overall heat transfer coefficient is given by

U = 50 kcal/ hrn2 (kcal/kg)

The outside heat transfer coefficient equals

h
c

= lh.6 kcal/hr C m2

Define directly, without using any graphical method, the state of the air

leaving the coils.

SOLUTION; From the psychrometric chart one is able to obtain the following

values: Enthalpy of the air H = - 1.68 kcal/kg

Humidity ratio W = 0.00128 kgw/kg

Saturated air enthalpy at - 15 C H = - 3.01 kcal/kg

Specific heat of saturated moist air at - 1$ C

C = 0.2U + 0.U6 (- 15)(0. 00101) = 0.233 kcal/kg C
ps

Furthermore, one calculates the evaporator contact factor

_ - UA/G - (50)(li2)/(2200)
© = 1 - e - 1 - a =1- 0.385 = 0.615

and the evaporator surface contact factor
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<l - hcA/GC - (lU.6)(l2)/(2200)(0.233) - (l;2)/(2200)x
V - 1 - e = 1 - e =l-e (0.016)

= 1 - 0.303 = 0.697

The total heat transfer from the air to the coils is given by

QE = G0(H - K
sR ) = (2200) (0.61^) (1.33) - 1800 kcal/hr

Now, by means of Eq. (57), one calculates the equivalent surface enthalpy

QE fI l\ 1800 j_l 1 1

K
sE

= H
sR

+ Tl© ' *3
= -3' 01 +

2200 lo.fiL* 0.697 J

= -3.01 + (0.82)(1.622 - 1.U32) = -3.01 + 0.15U = - 2.861;

From the psychrometric chart, the corresponding equivalent evaporator surface

temperature equals - 11|.5>1C. The corresponding value for the humidity ratio of

saturated air is

W
sE

= 1.061 x 10 kgw/kg

The mass transfer from the air to the coils is given by

M^ = G^(V7-W
sE ) = (^200) (0.697) (1.280 - 1.061) (10"

)

= 0.325 kgw/hr

Since Q£
= G (H - H

2 )

M
E

= G (W - W
2 )

one directly finds for the state of the leaving air

H
2

= -1.68 - (1800 )/( 2200) = - 2.50 kcal/kg

V/
2

= 0.00128 - (0.325)/(2200) = 0.001122 kgw/kg

The transfer of sensible heat to the coils can be found

SQE
= G (T--T

2
)(C ) = Gx5'(0.2h)(T - T

sE )

However, it is not necessary to determine Q„,for the temperature of the

leaving air, according to Sq. (22), is given by the expression

T
2

= T - J*(T - T
gE ) = - 10 - (0.697)(-10 * lii.51)

- - 13.1U C
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DISCUSSION

The foregoing example shows clearly how the introduction of an equiva-

lent evaporator surface permits the analytical solution of the problem of

heat and mass transfer in cooling coils. A few simple calculations provide

the same result as a long and inaccurate method, in which the process curve

of the air, piece by piece, is determined on the psychrometric chart. The

method is completely revolutionary. In the future it will supersede all the

methods, at present commonly used in the field of refrigeration, air

conditioning and chemical engineering.

The foregoing example made use of Eq. (57). This means that a linear

approximation of the saturation curve was considered to be good enough. If,

however, a greater accuracy is required, as for instance in the field of

chemical engineering, one should take preferably a quadratic approximation

of the saturation curve and use the Eqs. (50) and ($1) . These equations

permit the finding of the total mass transfer. From there on, the procedure

to find the state of the leaving air flow, remains the same as in the

foregoing example.
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PROBLEM II

Find the parameters which govern the dynamic behaviour of the internal

evaporator-compressor system for the evaporator encountered in problem I.

Additional information:

Evaporator: the total internal volume, occupied by the refrigerant is

V = 0.008 m3

Compressor: the volumetric efficiency is a linear function of the

compression ratio (ref . 61

)

A = 0.9756 - 0.h56 (P
C
/P
R )

Thermostatic Expansion Valve: the thermostatic expansion valve has the

following characteristics:

Mass flow rate of refrigerant (kg/hr):

M. = 1*6,900 S
y

(P
c

- P
R
)i

Orifice (m2) (linear valve)

:

-6 -6
S = 5.8 x 10 + 0.925 x 10 x t

where t";;" is the deviation of the superheat from its

o
setting value T'"' = 5 C . Thus.

o
t* = T* - T*

Time constant: the time constant of the valve and of its

feeling bulb is given to be

T v
= 0.01 hr (36 seconds)

Remark: The valve characteristics, just described, are com-

pletely fictitious values. A setting of 5 C superheat would

require the presence of a solenoid valve in order to protect

the coils against "flood back" in this case.
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Condenser temperature: 20 C

Subcooling temperature: 15 C

The initial steady-state operation is the same as described in problem I

o

Evaporating temperature: - 1$ C (TR )

Heat load: 1800 kcal/hr (J )

Refrigerant used: F12

SOLUTION

From the refrigerant chart and tables the following values are determined

P
R

= 18,600 kg/m2

P
c

= ^7,800 kg/m2

I' = 96.68 kcal/kg I" = 135.30 kcal/kg

I. = 103.50 kcal/kg I = 136.03 kcal/kg

i
±

= 0.175 (17.550

v
q

= 0.096 mVkg

Introducing the variables

t =T-T =T + l5
R R ,R R

t* = T* - T* = T* - 5

the following linear approximations can be found from the refrigerant chart.

P
C
/P

R
- 3.11 - 0.13 t

R

(P. - Pja = 198 - 6.2 t

I
fg

o
z

t
R

- 38.62 - 0.1 t
R

e
M

- e"
+ c

e *r
= 10 - s + °- 35 \

v - 0.096 - 0.0036 t« + 0.00031t*
O ft

1
±

= x
±

+ c
x

t
R

= 0.175 - 0.005 tR

The specific heat of the refrigerant gas at constant pressure is

nearly C = 0.1U5 kcal/kg C
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After the foregoing data have been gathered, determining the system' s

dynamic parameters will be a matter of calculations.

The outgoing mass flow rate

.

At each moment M
v
o

In this expression X is given by (cf . the original data) :

A = 0.9756 - 0.h$6 (3.11 - 0.13 %) - 0.85 + 0.006 t
R

The rate of displacement D is given indirectly by the initial steady-state

operation of the system:

D = ]*_ lo . (1800) (0.096) „ 6#oy5 m3/hr

I^Ii I (33.53) (0.85)

The expression for M then becomes

M m (0.85 + 0.006 t
R )(6.075)

(0.096 - 0.0036 tR
+ 0.00031t""*)

Partially differentiating this expression with respect to the variables t
R

and

frjf results in the following expression for M

M = 53.8 + 2.U6 t - 0.1730 t* .. (a)
O K

The entering mass flow rate .. (in the form of flash gas)

One may combine into a single expression the functions, which were given

in the original data to describe the valve characteristics. Further introducing

the linearized expression for the pressure difference between the condenser

and the evaporator results in the following equation:

Mj_ = i|6,900 (5.8 + 0.925 t'
:;')(lO"

6
)(l98 - 6.2 t

R )

The amount of flash gas entering the coils is obtained as follows:

MV = M
±
X
t

= ii6,900 (5.8 - 0.925 t'
;-)(lO'6 )(l98 - 6.2 tR )(0.175 -0.005tR )
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Linearization of the last expression results in

M£ = 9.U2 - 0.565 tR
+ 1.50 t* .. (b)

(It should be pointed out here that this expression, as well as the foregoing,

holds during steady-state operations of the thermostatic valve only).

The vaporization coefficients

On the basis of the relations, given on page 58, one may

calculate the following coefficients:

G = 1 (1 - (O.lliSHS)
) = .1 (0.977) = 0.0252

q
135'.3 - 96.68 135.3 - 103.5 38.62

°R
_ (iaoo)(-o.i)

(0#977) „ 0#1178

(33. 62)
2

(1800)(0.1U5)
G* - - = - 0.2127

(38.62)(135.3 - 103.5)

gR
- - ( - 0.1M53.S - 9.U2) = UJ»2

g* = - -(0.1U5K53.8) = - 7.82

The changes in the mass and energy content of the coils

As defined on page 58, these coefficients are

u- (0.008)(0.35) - 0.0028

e= (0.008)(3lj.62)(0.35) * (0.O03)(lO.8)(0.l) = 0.105

O O P-q (V - '

In the last computation the value of E~ I- - —
fS fg

1427

has been introduced. The coefficient c
£

approximately equals Cj.
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The inlet and outlet coefficients

From the equations (a) and (b) one finds directly that

.Ii6 kg/hrC

B* = - 0.1730 kg/hrC

KD = - 0.565 kg/hrC
R

K* = 1.50 kg/hrC

By means of the formulas, given on page 57, one further calculates

b
R

= (2. U6) (136.03 - 96.66) = 96.9 kcal/hrC

b* = (- 0.1730) (136.03 - 96.68) = -6.30 kcal/hrC

kn = (- 0.565) (135.3 - 96.68) = - 21.31 kcal/hrC
R

k* = (1.50)(135.3 - 96.68) = 57.9 kcal/hrC
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PROBLEM III

Find the function which, in terms of the heat influx, describes the

dynamic response of the system, consisting of the internal evaporator, the

compressor and the valve.

SOLUTION

The solution of this problem is found by substituting into Eq. (108) the

time constant and the dynamic parameters found in problem II.

By doing so, one obtains the following transfer function

t (s) - 0.092676 + O.OOOlh s
R ^^

,i

q
(s) 0.0013U775 s

2 + 0.002295 s - 7.73913

According to this result, the capacity curve of the unit has a slope

0.09267

This value is normal for a unit of 1800 kcal/hr, working between -1$ and 20 C.

DISCUSSION

Eq. (108), derived in this thesis, arrives at the result that the'

response of an evaporator-compressor-valve system, in terms of the heat influx

is essentially second order.

• As shown in the above problem, however, Eq. (108) is very difficult to

apply. Because of the small numbers it involves, the slightest error in the

refrigerant properties leads to erroneous results. In almost all cases,

however, the refrigerant properties cannot be found with the necessary

accuracy. *

As a conclusion, one may say that for all practical applications, it is

better to start from experimental response curves of cooling coils, and to cal-
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culate by means of these data the complete response of cold rooms. How this

can be done, will be shown in the following problem.

PROBLEM IV

Experiments have shown that the response of a certain refrigeration

unit, working under the same circumstances as in problem I, may well be

approximated by the following transfer function

t
R
(s) 0.01

cl(s) ( 1 + 0.02 s) 2

In other words, the unit would have a critically damped second-order response.

The steady-state gain would be 100 kcal/hr C (slope of the capacity function)

This unit will be used to cool a cold storage room, containing 2000 kg

of frozen fish (specific heat approximatively equal to O.k kcal/kg C). The

convection heat transfer coefficient at the food surface is 7 kcal/hr m2 C.

p
The total surface area of the foods is 12 m .

The total air content of the room is approximately 200 kg.

The problem is to determine the transfer functions, which relate the

enthalpy of the room air to a sudden change in the heat load on the room,

and which relate the humidity ratio of the room air to sudden variations

either of the vapor or of the heat influx (or both) into the storage room.

The initial conditions of the room air are to be taken as given in

problem I.
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SOLUTION

The slope of the saturation curve in the neighbourhood of - 15 C is equal

to PR
= ^k = 0.3 kcal/ C

dT

Hence, the above transfer function may be written

h^
_

0.0033

qE
( 1 + 0.02 s) 2

This function is completely equivalent to Eq. (123) on page 6?.

The variable q_ can be expressed in terms of the equivalent surface
hi

enthalpy h«, as follows

\ - ^-V
On the other hand one has the equality

Elimination of the variables qE
and h R from the above equations results

in the following transfer function

V s)

Using the data and the values C _ 0.235 and f = 0.32, obtained from

the psychrometric chart, one directly finds on the basis of Eq. (131 ) the

transfer function for the food surface enthalpy in terms of the enthalpy of

the room air:

h
sE

(s >

1 -

1

h
1

(s) J 0.0033 G<5
+

(1 + 0.02 s) 2

h
sP

(s)
m 1 A

h (s) 1 + (2QOO)(0.h)(0.235) ~* ]

1
(0.32)(7)(12)

(s)
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The transfer functions 9 (s) and 9
p
(s) thus become (cf. the data in problem I)

<£
h (s) - 1 -

1

—J7l
1.132 + 22± -

(1 + 0.02s) 2

F 1 + 7s

The complete response of the room air, given by the Eqs. (138) and (139),

can now be written as follows. On the basis of Eq. (138) one has

h(s) 1

qin (s) 200 s + (2200) (0.697) + (7)(12)/(0.23S)
(

,

1.132 + 5.1 1 + 7 s

(X + 0.02s) 2

A similar equation can be set up to describe the response of the humidity ratio

of the room air.(cf. Eq. (139)). By means of the values Y=0.000U and V^ = 0.000U5

one has
m.

w(s) = i£

200 s + (2200)(0.697) + (7)(12)

0.23$

q. [(0.1699) [l i l/<*l£L-]
+

in I l 1.132 + $,i(l + 0.02 s)"
2

J 1 + 7 s J

(200 s + 2200(0.697) + UHl)(200s + 2200 (0.697) 2597s

0.235 A 1.132 + 5.i~;
+—

r

(1 + 0.02s) 2 X + 7o

Thus, the humidity of the air depends not only upon the influx of vapor

into the room, but also upon the heat influx to the room.

After an infinite period of time the room air enthalpy will increase by

anamOUnt ^— = 0.0001x0$ kcal/kg

^in (0) kcal/hr

for each additional kcal/hr of heat influx into the room.
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Similarly, after an infinite period of tine, the humidity ratio of the

room air will increase by an amount

w(0)
0.00053

kgw/kg

min (0)
kgw/hr

for each additional kgw/hr of vapor influx into the room.

But, the humidity ratio of the room air will also increase

w( °) k£rw/kF
= 0.000,00133 g/7

qin (0)
kcal/hr

for each additional kcal/hr of heat influx into the room, whether this be

sensible or latent heat. This conclusion is rather surprising, for it is

common knowledge that the humidity in cold rooms decreases under heavy heat

loads. Therefore it must be pointed out that the last statement is perfectly

true for cold rooms with on-off control systems. It does not apply to systems

where the compressor would be adjusted to the instantaneous heat load and

thus would run 2U hrs a day. For then the evaporating temperature does

increase slightly when the heat load undergoes a small and upward variation.

As to the form of the response curves, the dynamic response of the

room air enthalpy to a step input function for the heat load is fourth-order.

That of the humidity ratio of the room air is first-order with respect to

a step perturbance of the vapor influx, but at the same time, it is fifth-

order with respect to the perturbances occurring in the heat influx,

accompanying this vapor in the form of latent heat. By means of the results,

calculated above, the response of cold rooms can be found for any forcing

function Q-; n (s) and m. (s).



CONCLUSIONS

The problems .lust solved show clearly that the concepts, set forth in

this thesis, are completely revolutionary. By means of two equations, given

as Eq. (138) and Sq. (139) in the text, it becomes possible to calculate

directly how the enthalpy and the humidity ratio of the room air will respond

to sudden or gradual perturbances in the heat and moisture load imposed upon

the room.

Wilfully these final equations have been formulated in general terms.

This is done to allow for a further development of the theory and to

facilitate computer simulations. In each particular case the transfer functions

which describe the dynamic response of the various parts of the system must

be substituted into the above equations. A complete example has been given

in problem IV.

A special theory was set up to find the dynamic response of dry expansion

evaporators. From a theoretical viewpoint the results are completely satisfac-

tory. Moreover, they are in close accordance with phenomena as valve hunting

and sluggish action of the evaporator, often encountered in practice. However,

it was found in problem III that the direct application of these results

encounters practical difficulties of a mathematical character.

The most important feature of the present thesis is that it constitutes

the first attempt to solve the problem of the dynamic response of cold rooms

in terms of two variables of the room air, for these variables, the enthalpy

and humidity ratio of the room air, are inherently related to each other. A

function which would describe the response of the room air in terms of its

temperature only would be either incomplete or false. The special approach,



used in this thesis was made possible by the introduction of an "equivalent

heat and mass exchanging surface" (Eq. (£7) . Since actual heat and mass

exchangers have non- uniform temperature distributions along their surface,

complicated graphical procedures were necessary to derive from the heat

transfer the quantity of mass transferred to the surface.

The procedure introduced in this thesis replaces these graphical methods

by a very simple analytical calculation. An example was given in problem I.

It may be exrected that the new method will find general acceptance in the

fields of chemical and environmental engineering for use in the design of

cooling devices.

The analytical approach to dynamic response problems is necessarily

restricted to the simplest systems and applications. However, once the basic

concepts have been fixed, many specialized techniques are available to the

engineer. It may therefore be expected that the analytical approach, grounded

in this thesis, will be elaborated further and become a basic tool in the

design of refrigeration systems.



EXPLANATION OF PLATE I

Fig, 1. The driving potential difference in wetted surface heat exchange.
In Fig. 1. the driving potential difference is given by segment
1-Z, the distance Z-Z' being equal-to H^(W-j_ - Wg). The equivalent
temperature difference is measured by tne segment X-S. The surface
contact factor is equal to the ratios (l-3)/(l-Z' ) and (l-2)/(l-S).

Fig. 2. The equivalent surface enthalpy is given by H g. By definition,

the indicated surfaces are equal.



Plate i

Fig. 1.

FiC . 2.



Plrte h

Q
QKrI.a-

atHsa

Fig. 3e.



EXPLANATION OF PLATE II

Fig. 3. The capacity curve in terms of the equivalent surface enthalpy. The
various steos in the procedure can be followed. The segments A are
equal to (Q/G)[^ -

J].
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NOMENCLATURE

A surface area

A constant

a part of the total evaporator surface area

a } a R
, a" coefficients in the capacity curve" of the refrigeration unit

3 constant

b, b*, b6 coefficients in the capacity curve of the refrigeration unit

EL, 3"", 3 partial derivatives of the mass flow rate to the compressor

b , b""", b^ partial derivatives of the enthalpy flow to the compressor

C constant

C specific heat for liquids and solids

C specific heat at constant pressure for gases

Cy specific heat at constant volume for gases

c constant

c first degree coefficient in the linear approximation of thermodynamic

properties

D diffusion coefficient

D displacement rate of the compressor

d diameter

d differential

E internal energy

? surface area

?, f function

f the thickness of a frost layer as a function of other variables

G air flow rate
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£r>> g partial derivatives of two enthalpy quantities

g refrigerant flow rate

H, h enthalpy of moist air (absolute value and deviation variable)

h air side heat transfer coefficient
c

h, air side mass transfer coefficient
d

h
w

special coefficient in x>retted surface heat transfer

h. refrigerant side heat transfer coefficient

refrigerant enthalpy

heat flux quantity (absolute and deviation variable)

heat flux from the walls of an evaporator to the refrigerant

constant

special coefficients for the heat transfer through evaporator walls

partial derivatives of the amount of flash gas, entering an evapo-

rator

id. for the corresponding enthalpy flow

thermal conductivity

humidity slope of a process line on the psychrometric chart

mass flow rate of water vapor

m constant coefficient of approximative saturation curve of moist air

m quantity of mass

N constant coefficient

n coefficient of approximation of saturation curve of moist air

P pressure

Q heat flow

q heat flow related to the unit mass of (passing) air

R the total air content of a cold room

I

J, 3

j
q

K

V k'
w

h> K*

kR , k*

k

L

M
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R gas constant

R thermal resistance

S the area of a valve orifice
v

Sm the average flow passage of air through an evaporator

s subsidiary domain of the time

T, t temperature (actual and deviation value)

U overall heat transfer coefficient

V total internal volume, occupied by the refrigerant in cooling coils

v specific volume

W, w humidity ratio of moist air (actual and deviation value)

X quality of refrigerant

X total length of an evaporator in the direction of the air flow

x distance

y layer thickness

Yt y stem position of valve

Z the total mass of the evaporator material per unit depth in the

direction of the air flow

GREEK LETTERS

ft slope of the enthalpy of saturated air with respect to the temperature

V slope of the humidity ratio with respect to the enthalpy

OjA partial derivative; finite difference

£ partial derivative of the energy content of the vapor phase inside an

evaporator, with respect to the evaporating temperature

evaporator contact factor

v evaporator surface contact factor

6 time
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£ damping factor

A actual volumetric efficiency of compressor

U partial derivative of the vapor content of cooling coils with respect

to the evaporating temperature

D density

T time constant

4* fin efficiency

4> transfer function

SUBSCRIPTS

f liquid water

g water vapor

fg vaporization

i refrigerant entrance

i thermal coefficients related to the inner part

m mean value

o refrigerant exit

s saturated air conditions

x quantities, measured per unit depth of the evaporator

y values related to the evaporator pressure-regulating valve

in influx

ex efflux, evacuation

A evaporator surface

E equivalent evaporator surface conditions

F product surface, products

R refrigerant evaporating temperature

P bare pipe

<p fins
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1 air inlet

2 air outlet

SUPERSCRIPTS

initial steady-state value

average value

liquid refrigerant

saturated refrigerant vapor

properties of the refrigerant as sucted to the compressor, in particular

superheat
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The environmental control of cold rooms involves the control of two

thermodynamic variables of the room air, to wit its enthalpy and humidity

ratio. During steady-state these variables take an equilibrium value, for

which the influx of heat and moisture from external sources and from the

storage goods is equal to the removal of heat and moisture by the evaporator.

Variations of the heat and moisture load, imposed upon the room, shift

the equilibrium conditions of the room air. The purpose of the present thesis

is to determine the response of the room air to these load variations.

The complexity of the problem is due to the fact that the heat and mass

balances are not independent. For the heat and mass exchangers inside the room

are saturated surfaces. Moreover, they have non-uniform temperature distrib-

utions. These difficulties are removed by the introduction of a new concept:

the equivalent surface conditions. The introduction of equivalent surface

conditions permits an easy and analytical solution for a problem which before

could only be solved by a lengthy graphical procedure.

In order to find the dynamic response of the total room, one must know

the response of the various parts, which constitute a cold room. The response

of the storage goods is obtained by assuming that they follow the type of

transient heat flow, which is known as Newtonian heating or cooling. For the

dynamic response of the evaporator a new and approximative theory is set up.

In this theory, only the refrigerant vapor phase is taken into consideration

as to determine the response of the internal part of the evaporator in dry

expansion coils. A great deal of the discussion deals with the linearization

of the governing differential equations. The theory brings to light some very

interesting aspects, concerning the dynamic response of dry expansion coils.

A direct application of the results, however, turns out to be unreliable



because of mathematical difficulties. This does not constitute a major

inconvenience. For, once the general pattern of the evaporator response

is determined, it is not difficult to find experimentally the response curve

which applies in a particular case.

In terms of the response curves of the various parts, and by combining

these responses together, the total response of the cold room is found.

Practical calculations show a close agreement between the calculated

and the expected values.

Since the final results of the thesis are kept in general terms, further

developments of the theory can directly build on the analytical results

obtained here.




