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INTRODUCTION

The two-stage least square method of linear estimation

of coefficients was developed by Theil (1958). Basmann (1957)

independently developed a similar solution under the name of

the Generalized Classical method of linear estimation which

leads to equivalent estimators. Several studies have been con-

ducted more recently on the effectiveness oT the method and its

limitations

.

The two-stage least square method was developed to

replace existing methods (Indirect least squares , Least variance

ratio, or Limited-information single equation) by providing a

method of more general applicability while being less expensive

to apply.

The problem to which this method is to be applied

differs from single equation models in two ways. First, although

interest may center on a single equation of a system, the entire

system of relations is considered simultaneously to obtain a

solution. Second, in many instances the problem may be to

estimate all the parameters in. a model and to make predictions

from the complete model. In other words although it may be

required to analyze only a single equation of the model, infor-

mation from the entire system is included in the solution. In

a system of equations the variables may be classified as endo-

genous and exogenous. Endogenous variables are those whose

values are determined by the simultaneous interaction of the

relations in the model and exogenous variables are those whose

values are independent of those used in the model.

(1)



In the first stage of a two-stage least squares solu-

tion ordinary least squares methodology is applied to the entire

system of predetermined variables to obtain estimates for the

endogenous variables. In the second stage, these estimates

are substituted in the system and ordinary least squares is

applied again to a particular equation or a set of equations

of the system to estimate the required parameters.

The method is not only relatively expeditious in terms

of time required for calculations but the estimates derived can

be shown to be asymptotically unbiased, consistent, and minimum-

variance .

(2)



DEFINITION OF THE PROBLEM AND ASSOCIATED TERMS

In a system of linear equations containing G endogenous

variables ylt , . . . ,yQt
and K exogenous variables x

lt
> • •

•

>

x
Kt '

a typical set of equations may be written as:

H

(l) y EB v., + Ey,.x.^ + e., , t=l,...,T
It j.^11 lt i=l 1:L xt it

where H-l < G; K* < K

The quantities H-l and K* Indicate the number of variables of

the system present In this particular set of equations. This

set of equations may in turn be written in matrix form as:

where

1.1 21 HI

IT 2T NT

12 11 K*l

1H IT K*T

11

1*

Y1K*

(3)



The stochastic errors are assumed to have zero

means and finite variances and covariances

:

E < eitV -
°ij 1.J -1.2.....0

a < «° s,t = 1,2, . . . ,T

E(e. e. ) - s A t
it js

for all s,t

E(x e ) = k = 1,2, . . . ,K
kt is

To illustrate the basis for not applying the simple

least squares method to this system consider a simple example:

(2) y it
=

*
+ py 2t

+ e
t

(3) y 2t
= y lt

+ X
t

Substituting (2) in (3) yields

+ W
2t

+ X
t

+ V
or y 0i.

= + _JL_ x
^

+ ^t_^ i-B i-e r 1-3,

so that y is seen in general to be influenced by e .

E(y
2t ) = _!L_ + _i_ X
2t

1-6
+

1-6 t

or E{e
t [y 2t

- E(y
2t

)]} - 1 E(e
t

) ¥ 0.
1- 6

The random. error term and the explanatory variable,
.

in the equation are thus correlated and the direct application

(4)



of the simple least squares method will not yield unbiased

estimates

.

DEVELOPMENT OP TWO-STAGE LEAST SQUARES METHOD

Since the random error vector and explanatory variables

cannot be assumed independent, the number of methods of estima-

tion are reduced. However, the mutual relationships which are

the cause of the complication, are used to make estimation

possible

.

Consider the system of simultaneous linear equations

outlined in the previous section and assume this system contains

K > K* predetermined variables, each of which assumes non-

stochastic values. Under these conditions it is possible to

base the estimation method on the independence of the random

error vector, e_, and the set of all predetermined variables in

the entire system. More precisely:

Equation (1) is one of a system of G > H stochastic

linear equations in G jointly dependent and K _> K s + H-l pre-

determined variables. This system can be solved for the jointly

dependent variables.

Using the above assumptions it is now possible to apply

simple least squares to the system using the X matrix of values

for all predetermined variables, X x being a submatrix of X.

From the above assumption, all jointly dependent variables can

be written as stochastic linear functions of X.

s
Applying simple least squares, extimators for Y^, the

vector of (H-l) dependent variables, are obtained and are written



in matrix form as

Y
2

= X (X'X)
_1X^Y

2

which may be rewritten as

Y
2

= X (X'X)
1
X'Y

2
+ V

where V denotes the matrix of reduced-form residuals for the

(H-l) dependent variables appearing on the right-hand side of

the equation ( 1)

.

Now equation (1) may be rewritten as:

y1
= (I2

- V) £'
2

+ _X
S X^ + (e + V3

2
)

[(Y
2

- V) X*]

1*
+ (e + VB

2
)

Applying simple least squares to this relation gives

(A'A) A'y.

where A = [(Y_
2

- V) X s ]

now (Y - V) ' (Y
2

- V) = Y
2
Y
2

- V'Y_
2

- Y^V + V'V

and V'Y
2

= V*(£
2

+ V) = V*£
2

+ V'V

Since it is a property of the least squares fit that the residual
A

is uncorrelated with the estimate value; it follows that V'Y^ =

This yields the result:

(6)



Tl2
= 1^--

Similarly

Y'V - V'V.-2-

Hence

do - z>
-

(i - v) = r
2
j_
2

- V'V.

Moreover,

X'V = X' [Y - X(X'X)
X
X'Y

2
]

X'Y_
2

- X'X.
2

0,

which illustrates the property of least squares that the random

error vector is uncorrelated with the explanatory values. Since

X'V equals zero, X* V must equal zero since X^ is a submatrix

of X.

Returning to the solution for
2

1*

and using the above results, the two-stage estimator may be

written
"

(Y
2
-V)'(Y

2
-V) (y

2-D 'x*"
-1

-Y-V^

X*'(Y
2
-V) x* x x

*

Y

2
Y
2
-V'V

x*T
2

-1
"i2-r

(7)



The need for the inequality K >_ H-l + K* is now ap-

parent. The matrix A defined above is of order T by H-l + K*

.

Hence A/A is a square symmetric matrix of order H-l + K* and

,(A'A) =e(A). Now

_1 I

A = [(Y
2

- V) X*] = I C(X'X) l'Y
2

,

where I is the identity matrix of order K K and is the null

matrix of order K-K* by K*. Thus the rank of A cannot be great

er than the rank of X, which is K. If the rank of A is less

than H-l + K*, then A 'A is singular and no solution can be

obtained. This will happen if K < H-l + K* . However, since

the inequality K _> H-l + K* was originally assumed to hold, a

solution is assured.

The two-stage least square method of estimation may

be justified in the following heuristic manner. If the parent

reduced-form random error distribution corresponding to Y, say

V, were known; simple least squares could be applied to

y = (X2
-v) s

2
' + \ Tl ; + (e-vp

2
).

In this case the objection that some of the right-hand variable

are not independent of the random error vector is no longer

valid; (Y-V) being an exact linear function of X and hence

non-stochastic. The matrix V is not known, but it can be

estimated by means of V, and the sampling error tends to zero

for Increasing T under appropriate conditions. The primary

conditions being that the assumptions made previously about the

random error vector are true. Applying least squares as before

(8)



the estimates are again:

A

A

.V

n2-n ^x
x

PROPERTIES OF THE ESTIMATORS

By defining the sampling error as

A .

_

Y l*-_

and using the above equations it is apparent

-1
Y 'Y -V'V-2-2 Y'-V

It is seen that, under the previous assumptions on

e and X, the estimator is not unbiased for finite samples.

However, it is asymptotically unbiased, lirn E (y_) = 0_, provided

that each row of Y-V is asymptotically an exact and non-stochastic

linear function of the corresponding row of X. This involves

the assumption of consistent reduced-form estimation; hence:

For each pair t,f (=1, ,T) and for each pair z 3 z" (=1,...,G),

the parent reduced-form random errors v (t) and v ,{t') corre-
z z

sponding to the right hand variables y^ and y
z

^ 3 respectfully,

of equation (1) have zero mean and satisfy

(9)



E[v
z
(t) v

B
.(t')] - r

zz * if t=f

= if

a „ being independent of t and t'.
zz

This assumption is satisfied as soon as each of the

G original equations of the system have random errors that

satisfy a similar condition.

In order to calculate the asymptotic standard errors,

it is necessary to find

lim E(Tyy')

lim ( T Y'Y-V'V Y'X,-2-2 ~2-J

-1
\-i

e e

X—
*.

Y'Y -V'V Y'X^-2~2 -2~*

X'Y X'X

-1

Since (e e') equals o 2

and Y-V Y^Y-V'V Y^X*

and the result is

o l plim T
Y'Y-V'V Y'X-2-2 -2~*

X'Y X'X—*—2 —*—

*

-1

Thiel (1958) has shown that although two-stage least

squares has a larger variance than ordinary squares; if the bias

(10)



of ordinary least squares Is corrected, two-stage least squares

becomes the smaller. In fact, he has shown his method to

be a minimum variance unbiased estimator under the given assump-

tions. Basman (1957) in his development of the method shows

the estimators are best linear unbiased in addition to being

consistent

.

GEOMETRIC INTERPRETATION

'

In order to further clarify the method of two-stage

least squares the following geometric picture is presented.

Consider a T dimensional cartesian space; along the first axis

measure the first observation on each variable, along the second

axis the second observation, etc. The values assumed by each

variable are then represented by a point in this space; or

alternatively by a vector from the origin to this point.

This leads to one point Y, corresponding to the left hand depen-

dent variable of the equation; to G-l points Y , . . . ,Y corre-
2 G

sponding to the right hand dependent variables; and to K points

X , . . . ,X ,...,X corresponding to the predetermined variables.
1 K* K

The first stage of two-stage least squares amounts to

replacing Y_,...,Y„ by their reduced values. This gives G-l
2 G

points Y ,...,Y which are the projections of Y , . . . ,Y
2 "' G * 2 G

respectively, in the K dimensional plane determined by the K + 1

points 0, X ,...,X . In Pig. 1 this is illustrated for the
1 K

case T=3, G=2, K=2.

The second step is the application of ordinary least

squares with the left hand Y, as dependent variable and the

(11)



reduced right hand Y's and K* of the X's as independent vari-

ables. This implies projecting Y-^ onto the (G-l + K*) dimen-

sional plane determined by 0, , • • • , Yq X. , Xp . . . 3 X^ X , which

leads to a point y-^. After this, the decomposition of the

vector 0y#2 in terms of the vectors OYj

*

, . . . ,OX^-x- gives the

estimated coefficients according to two-stage least squares.

Figure 1. GEOMETRICAL ILLUSTRATION OF TWO-STAGE
LEAST SQUARES

AN EVALUATION OF THE METHOD

VJhile the two-stage least squares estimator may be

shown to be asymptotically unbiased, consistent and minimum

variance, this does not give an accurate picture of their

(12)



performance when working with small samples of data. The

advent of the computer has made it possible to conduct Monte

Carlo studies on the small sample properties of the estimators

in relation to other available methods. The sample size was

generally chosen in the range of 15 to 40, to reflect the sample

sizes which are typically found in practice.

The Monte Carlo studies by Basmann ^ ( 1961 ) ,
Nagar (I960),

Summers (1965), and Wagner (1958) give insight on the choice

of the best method of estimation for structural parameters under

the restriction of small sample sizes. The evidence from these

studies appears to indicate that the full-information maximum-

likelyhood method is the best available. However, it has serious

disadvantages. The computational burden is very heavy and the

optional properties of the estimator depend heavily upon the

correctness of the specification of the model. In light of

these disadvantages, this method is not considered to be of

practical use.

Of the remaining methods available two-stage least

squares becomes the best method which can be practically applied

to a system of linear equations. While the Basmann study shows

the method to be superior by a more pronounced margin, all of

the studies indicate the preferability of two-stage least squares.

A criticism of two-stage least squares given by G.C Chow

(1964) is that the choice of a dependent variable, say Y , for

the first equation, etc., in the second stage seems arbitrary.

The estimates will differ according to the choice made. In

other words , it has not yet been specified in which directions

(13)



the sum of squares should be minimized in the second stage.

Also a second criticism is that the method does not adequately

take into account the interdependence of the e
i

in different

equations

.

While it is generally conceded that this method is

not the ultimate for finding the estimates under all conditions,

it is the most universally applicable method and certainly the

shortest computationally for the validity of the results.

Until a better method is developed it is certain more and more

applications will be found for two-stage least squares.

EXAMPLE

The following illustrates how to find the estimates of

coefficients using the two-stage least square method. The

model used in that of the Girshick-Haavelmo economic model com-

posed of the following structural equations

:

(1) y lt
= B

12 y 2t
+ B

13
y 3t

+ Y 18
X
8t

+ Y
19

X
9t

+ Y
10

+ e
it

(2) y 2t
= g

22 y 2t
+ 6

2ij y 1|t
+ y 2Q

x
Qt

+ y
2q

+ e
£t

(3) y 3t
- y

37
x
?t

+ y
39

x
9t

+ y 30
e
3t

(4) y 4t
=

3
4 5

y 5t
+ Y 46

x
6t

+ Y 48
x
8t

+ Y 4o
+ e

4t

(5) y 5t
= B

52 y 2t
+ y 58

x
8t

+ y 50
+ e

5t
.

t = 1,2, .... 20 sample observations,

where y. , i = 1,...,5 3 denote the endogenous variables

(14)



x , J
= 6,...,9j denote the exogenous variables

3 i,j = l,...,5 a
denote the coefficients of endogenous

variables

Y , k = 6,... ,9, denote coefficients of exogenous

variables

denotes the intercept of the 1
th equa-

tion

It is assumed the endogenous variables are jointly distributed

according to the following reduced form equations:

(6) y
it = n

i6
X
6t

+ + n
9
*
9t

+
"io

+
"it

i = 1,...,5

GENERALIZED CLASSICAL ESTIMATES

TABLE I*

(Table continued on following page)

(15)
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TABLE I* (continued)

* The following series were used for the model:

y is food consumption per capita published by the Bureau of

Agricultural Economics. (An adjustment has been made in the

official series for 193 1
! to exclude the quantity of meat pur-

chased by the Government for relief purposes and distributed

through noncommercial channels.)

y ? is retail prices of food products (BAE) , deflated by the

Index of Consumer Prices for Moderate Income Families in Cities,

published by the Bureau of Labor Statistics'.

y is disposable Income per capita (Dept.' of Commerce), de-

flated by the BLS Consumer Price Index.

y, is production of agricultural food products per capita

(BAE)

.

y s
is prices received by farmers for food products (BAE)

,

deflated by BLS Consumer Price Index.

x
6

= y t _ 1 i s prices received by farmers for food products,

lagged one'year «

x
7

is net investment per capita, i.e., disposable income

minus consumers' expenditures, based on Dep. of Commerce data,

deflated by BLS Consumer Price Index.

xg = t is Time.

x 9
= ^3 t-1 is disposable income per capita lagged one year.

All the data are expressed in terms of index numbers
(1935~39 = 100) except for time, xg, which has the values,

1,2,..., 20. The analysis covers the period 1922 through 19*11.

(a) Preliminary Computations

Compute

:

20
M = £ (y.<_ - y,) (y.. - y, ) 1=1,2,4,5
yy t=1

it i it l

where _ T=20

i i t=1 it

(17)



This will form a matrix of sums of squares and crossproducts

of deviations over all the y's appearing in all the equations

to be estimated. In this example it is required to estimate

only equations (2), (4) and (5). Since y 3t
does not appear in

any of these, the sum of squares and crossproducts need not

be taken.

From the data in Table I:

yy
151.7295 62.4765 180.8860 226.1155

583.2285 108.8320 1231.2685
391.6480 320.2040

3164.9495

Compute

y>;

20

£ (y,
t=i it V ( \t - V 0=1,2,4,5

K=6,7,8,9

257.7885
920.2995
364.6480

1793.9165
1870 .0155
2073.5520

2169.4165 6297.5185

72.2500 401.6250
-257.7500 430.5750
-172.7000 306.1900
-306.8500 1290.2350

Compute

20
M = E (x -x ) (x - x )

xx t=l kt K nt n
k,n=6,7,8,9

3071.7255 3963.8095 415.2500 1714.9250
32367.3055 658.1500 4956.0350

665.0000 317.7000
2067.0700

(18)



Compute by means of the forward Doolittle method, the matrix

yy yx xx yx

(b) Computation for a Single Structural equation.

For expository purposes suppose it is required to com-

pute estimates of the coefficients 3
±J

. and ylk
appearing in the

structural equation.

(7) -yit
+

J 2
fjt 6

ij
+

J,
x
kt^ik

+ c
it

-

The variable y 1
appears with coefficient 3-^ = -1.

Let y A
denote the vector of H - 1 < G endogenous variables

(except y^) appearing in (7) with non-zero coefficients, and

let x
A

denote the vector of K* < K exogenous variables appearing

in (7) with non-zero coefficients. It is assumed that necessary

condition for the identification of (7) are met; i.e. K _> K* + H.

Define

:

M as the submatrix of M involving only the sums of cross
y AxA yx

products of endogenous and exogenous variables appearing with

non-zero coefficients in (7).

M as the submatrix of M involving only the sums of squares
xAxA yx

and cross products of the exogenous variables appearing with

non-zero coefficients in (7).

M* as the submatrix of M"x corresponding to the endogenous
y Aya yy

variables appearing among the y .

M* . as the 1 x(H-l) submatrix of M* corresponding to y-,

yiy A yy 1

and y

.

(19)



M , as the 1 x K* submatrix of M involving only the sums
ylxA yx

of cross products of and the endogenous variables appearing

with non-zero coefficients in (7).

My lyA as the corresponding submatrix of Myy

•

Form the compound matrices

M";;

yAyA yAXA

yAxA xAxA

which is square of order H-l + K x and

M , = [M« -, M . ] , 1 x (H-l + K*)
ylz ylyA ylxA J 3

Arrange the above matrices for Doolittle computation

[S
4
][HW [I

H-1+K* ]

and compute the vector of sample estimates, ( b
A

> of non "

zero coefficients g^ 3 and appearing in (7) 3
where

A ylz

Compute the sample variance w.^ of the residual e.^

in equation ( 7 )

:

(20)



a = T*iKyl- 2 M'yAyl b
A

+ 2 MylxA MxA^ M'yAxAbA

+ b ' TM -M M
1 lb}D L yAyA y Ax A xaxa y a x a A

j

where T* = T - K - 1

.

Compute the sample varlance-covarlance matrix of the

estimated coefficients b
&

and c
A

Var - Cov (b
A ,

c
A

) = u-q S

To illustrate the numerical application of the steps

outlined in Section (b), the method is applied to Equation 2.

The appropriate Doolittle layout is exhibited in Table II.

TABLE II

342.036418 201.496935 -257.75OO

221.303177 172.7000

665.0000

97.187553

115.531281

72.2500

10

10

1

Results of Doolittle computations applied to Table

II are exhibited In Table III along with the corresponding

estimated standard deviation given in parenthesis. The sample

variances of residuals have been computed according to Section

(b) and are exhibited in the last column.

TABLE III

(Table continued on following page)

(21)



TABLE III

ESTIMATES OF EQUATION (2)

y
2

y
4

X
8

0.1633 0.6366 0.3372

(.0997) (.1168) (.0545)

(22)
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The two-stage least squares method of linear estimation

of coefficients was developed to replace existing methods by

providing a method of more general applicability while being

less expensive to apply. The basic idea of two-stage least

squares is to apply simple least squares to the entire system

of predetermined variables to obtain estimates for the depend-

ent variables. Then, with these estimates substituted in the

system, simple least squares may be applied again to a particular

equation or a set of equations of the system to estimate the

required parameters.

A typical set of equations of a linear system con-

taining G dependent variables, y ±t
and K predetermined vari-

ables, may be written as

H K*

ylt = y±t + x.
t

+ e
lt , t=l,...,T

where H-l <_ G ; K* < K

In addition to the usual assumptions on the random error vector,

the assumption of K > K* + H-l will assure a solution of the

system by the two-stage least squares method.

By successive application of simple least squares the

parameter estimates are



Where V denotes the matrix of reduced-form residuals found in

the first application of simple least squares. These estimators

are asymptotically unbiased, consistent and minimum-variance.

Several Monte Carlo studies have been made to deter-

mine the performance of the two-stage least square method when

working with small samples of data. The studies made to date

indicate two-stage least squares is the best available method

which can be applied practically to a system of linear equations.

While it is generally conceded that this method is not the ulti-

mate for finding the estimates under all conditions, it is the

most universally applicable method and certainly the shortest

computationally for the validity of the results.


