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INTRODUCTION 

A great amount of research effort has been expended on the problem of 

electromagnetic back-scatter. Theoretical, experimental, and laboratory 

simulation work on this subject is now in progress at various international 

facilities. Acoustic simulation, although not suitable for simulation of 

some polarizations, is considered to be a very inexpensive and useful method 

in this field. The simulated return is generally of the form of a randomly 

varying amplitude pulse, which is then sampled and analyzed statistically. 

Therefore an electronic sampler offers a great saving of time in such an 

analysis. It was therefore necessary to design and build such a device. 

The problem of scattering of electromagnetic wave from almost plane 

inhomogeneous terrain with randomly varying impedance-like function is dis- 

cussed in the first part. An electronic sampling circuit for the acoustic 

simulation facility of the Department of Electrical Engineering, Kansas 

State University, is discussed in the second part. 
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SCATTERING OF ELECTROMAGNETIC WAVE FROM ALMOST PLANE INHOMOGENEOUS 
TERRAIN WITH RANDOMLY VARYING IMPEDANCE 

A number of papers on the subject of calculation of electromagnetic 

back-scatter from a rough surface have been published in the last decade 

(Davies, 1954; Moore, 1957; Cooper, 1958; Hayre, 1961). Usually a statisti- 

cal model of rough surface is employed. For instance, the surface heights 

of natural terrain have been shown to be often normally distributed about 

the mean ground level. The scattering of an electromagnetic wave, incident 

on such a rough surface, can be calculated in terms of its statistical 

parameters, the wavelength and the angle of incidence. 

There are basically two methods of attack: one relies on the statisti- 

cal description of a rough surface, and employs either the Kirchhoff-Huygens 

approximation or Maxwell's equations; whereas the other method incorporates 

the random roughness of a surface in its impedance while assuming its sur- 

face to be a plane surface (Felson, 1962; Fock, 1956; Isakovich, 1956; and 

Senior, 1960). A modification of the latter is studied exclusively in this 

work. 

Derivation of Rayleigh Conditional Probability Density Function 

The conditional probability density of a Rayleigh distributed variable 

R is used to obtain an expression for the average received power from the 

target terrain and its derivation is given in the following paragraph. 

Let R denote a complex quantity and let its real and imaginary components 

be u and v respectively. Then, 

R = u + jv = IRI cos + j IRI sin8 

IRI2 u2 v2 
(i) 



It is assumed that u and v are normally distributed with (0,0-), and 

their probability density functions are 

p(u) - 
1 

21t 0-2 

p(v) - 1? 

2 

exp (- u), - 00 u +00 
2e 

2 

exp (- 

242 

- coo< v <+ 00 

(2) 

(3) 

If u and v are independent random variables, then their joint probability 

density is 

1 
p(u,v) = p(u) p(v) = exp (- u v ) 

271C(P2 -* 20 

2 2 

(4) 

3 

If a transformation from rectangular coordinates (u,v) to polar coordinates 

(R,A) is made, q(Rle), the probability density function for the polar co- 

ordinates, is given as 

q(R,A)dR dA = p(u,v)du dv (5) 

Transforming differential areas yields 

du dv = R dR de (6) 

Combination of Eqs. (4), (5), and (6) gives 

/20-2 

q(R,A)dR 
Re 

- dR die , R = o 
21t 0 

and q(R,e) = 

27tcr. 
exp ( -R2/2 02) 0 < A < 2 it 

The marginal density function q(R) is then calculated by integrating Eq. (8) 

over A, for 0 < A < 27t (Bendat, 1958), as 

2 TE 

ir 

or-2 

R R 
2 

, 

q(R) = q(R,e)de = exp (- 
2 
6_) 

0 

(9) 
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Let (u 
1, 

v 
1 

) and (u 
2' 

v 
2 

) denote the orthogonal components of R at the 

points (xi, yl) and (x2, y2) respectively. The components are normally 

distributed with mean zero and standard deviation a-, and are independent of 

each other. It follows from the central limit theorem that the four random 

variables u1, v 
1, 

u 
2' 

v 
2 

have a four-dimensional normal density function as 

2 

f(u v2) 
1 

= (21t)-2 imr2 exp(- 2(Mi 2:: mi,uivj) (10) 
19 

v 
19 

u 
2' 

v 
2 

i,j=1 

Their second moments are 

ul 
2 

= vl 
2 

= u2 
2 

= v2 
2 

= IT- 
2 

uivi = u2v2 = 0 (12) 

ulu2 = viv2 (autocorrelation of u and v) 

uiv2 = u2v1 = 0. 

The moment matrix M for these variables is 

M = 0 )4 0 

0 C-2 0 )4 

14 0 r 2 0 

0 is 0 0? 

The cofactors of the determinant 'MI are 

V).Mll =M22 =M33=1444 =0.2(a-/142) 
= C A, where A= (T 

M13 =M24 = 

M14 =M23 =° = M12 = M34 

iMi = A 
2 

(13) 

(14) 

(15) 
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The joint probability density of the four random variables is therefore 

1 1 2, 2 2 2 2 
f(u v u 

2' 
v 
2 

) = 0- lui + vi + u2 v2) - 2/4(uiu2+viv2) 
4-Tc 

2 
A 

ex 
P 

- 2A 

The joint probability density of Ri and R2 (Rice, 1944) is 

f(R1, R2) = 
R1R2 

0(R1R2 
/a) exp [ - 2 -1 (D2 

4. 2' 
) R2) 

A A 

(20) 

( 21 ) 

where I 
0 

is the Bessel function of the first kind with imaginary argument. 

The conditional probability density of R2 given Ri can now be calculated 

from Eq. (9) and (20) as 

f(R / R - f(R1, R2) 

q(R1) 

f(R1, R2) 

R 
1 

o-2 

exp(- -2) 
2 Cr' 

R2 
2 

2 
( 

1 
2 - 2A 2A 2 

u ) _ 6- R 
2 

, 
01 

pc) exp [ R3. 

2 
)- A 0 

(R1R2 

A 

where r is a distance between the points (xl, yl) and (x2, y2). 

(22) 
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Average Received Power Scattered from the Terrain 

Figure 1A. Geometry of the Problem. 

BC = r 

O'A = O'B = R 

O'C = R' 

GA0B = 0, LAOC = 0' 

LBO°0 = e, Lcoto = 8' 

LAOB , LAWC =Ye' 

The electric field E at the receiver 0' due to reflection from a finite 

conductivity ground in Figure lAcan be obtained by using the Kirchhoff- 

Huygens principle 

E = if il(Isy)Y2V cos& exp(-j2kR) dA (Hayre, 1961) (23) 

where Is = PT G/(4 
TC 
R2) 

= intrinasic impedance of free space 

dA = area element on the terrain ( = RdRdYr/sin&) 

P 
T 

= power transmitted 
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R = range 

G = antenna gain 

A.= wavelength 

V = reflection coefficient of area element dA 

k = 211/A.. 

The following assumptions have been made in applying Huygens' principle 

to the problem of the geometry shown in Figure 1A. 

i) The terrain has a randomly varying resistive impedance, which 

yields the same attenuation as would the various points of a 

rough surface at randomly varying elevations. 

ii) The radiation from a particular small area on the terrain is 

isotropic. 

iii) The antenna gain is essentially uniform for -90 < 9 < +90, and 

zero outside of this range. 

The expression for E in Eq. (23) is modified for pulse radar using a 

pulse width of T seconds to yield 

E - 
cot9 PTG7 
R 

( 2/1 

) exp(-j2kR) dR dye 

47/11 

where c = velocity of propagation 

IC= pulse width 

2& = beam width of the antenna 

(24) 

The reflection coefficient V may be expressed as a function of the 

terrain admittance r as 

V 
cos 9 - r 
cos e + T 

(25) 



If T is replaced by the impedance of the terrain Z = 

V - 
Z cos & - 1 
Z cos A + 1 

8 

Eq. (25) becomes 

(26) 

The received power P 
r 

can be calculated using Poynting's vector defini- 

tion as 

1 [E E* G 7\..2 

r 2 e -4-77- (27) 

where E* is complex conjugate of E, and Re represents "Real part of". From 

Eqs. (23) and (26) one obtains 

E* - if 
(i iy) Y2 

cos EP (Z, 1) s cos EP + 1 

exp(+j2kR') dA' (28) 

On substitution of Eqs. (24) and (28) into Eq. (27), the received power be- 

comes 

2 

P 
PTG 
321t2 

fiff cot : 
R' 

(7)t A'(Z cos & - 1) 
r= 

3211 
Z cos & + 1 

cos A' + 1 
1) exp f -j2k(R dR dR' dlf d'' 

where the primed quantities refer to a point at (R', A', 11,1). 

The average received power can now be expressed as 

2 
p G 

1:-) T 

2 R fill' 
cot A cot A',Z cos A - 1. 

l 
r R R' Z cos A + 1 

) 

327T 
e 

(29) 

cos A' + 1 

Z1 COS el \ 

1) exp -j2k(R-R1)} dR dR' d (30) 



Z cos A - 1) (Z' cos Al - 1) Let ( 
Z cos A + 1 ) ( 

Z' cos A' +l 

9 

(31) 

The expression (30) yields the average received power provided that W is 

averaged over Z and Z' using their probability density functions, assuming 

e 2-r 60 for near vertical incidence. Now W can be expressed as, 

2 2 2 2 
W 

r 

(t2 

(32) 

(33) 

(34) 

= 1 - 
vt 
1 

+ 11) t 
1 

+ 1 
- 

t 
2 

+ 1 -t 

2 

where t1 = Z cos A, and t2 = Z' cos A. 

The resistance Z is assumed to have Rayleigh 

2 
Z 

+ 

probability density, 

q(Z) = exp(- 2), Z 0. 
Cr- 2 0- 

The conditional probability density of Z' at (x2, y2) given Z at (xi, yl) 

where (x2 - xl, y2 - yl) =ir is obtained from Eq. (22) as 

2 0.2 n72 
f(zy/z1--p.) (Z ZI " 

Z2(-2-- /64-) exp ) =-- ZI 
0 A 

2 
072 - 2A - - 2A 

(35) 

where A = a- 
4 -it 2 / bLis autocorrelation function which is a function of 

distance r. 

First, W is averaged over Z' using the Eq. (35), as 

(w)z, W f(Z' / 

Co 

2 2 1 
= 1 - f(ZI / Z,I)dZI (36) 

t 
1 

+ 1 
+ 2( 

t 
1 

+ 1 - I) t 
2 

+ 1 

0 



az) 

1 1 t + 1 
Let I = f(ZI / Z, 

0 2 

Now solving for Iv one obtains 

2 
OD 

72( 1 0- f 
I0(q1/44) exp( --g- ZI 0- 

2 
2 
)dZI 

1 
. 

2 

exp 
- 2 - 2A ' t 

2 
+ 1 

0 

00 

exp (Z2( 
U 0- 1 

157cos e 2a- 2 2A 
0 

u+ 
cos e 

2 

Z I 
0 
(---- udAL) exp(- 2) du, 

r- 
0- TA 

where u = 
NT 

exp(----u !L) 
G-Iri 1 

Since 10 (-----u k) 

aThri 
.12 71 --1-117 

for Z u /A. >> 1 and <1 for all u, 
o-11A u+ 

1,57 cos 6 

10 

(37) 

(38) 

(39) 

(40) 

u2 
exp(- 7.0 will more rapidly converge to zero than I0 does. Therefore, the 

integrand of the last integral approaches zero as u gets larger. If I0(x) 

is approximated as below 

or 

00' x 
2k 

N1 
7-"-r X 

2k 

I (x) = 
0 ; 

k=0 
22k(k02 

k=0 
// 

-h )2 

I0(Mu) = 
M 
2k 

u 
2k 

where M = 
12. 

22k(m) 
(42) 



Then, after some manipulation, I, becomes 

exp [ Z2( 

oo 

1 

1 
2 

Cr2A 
20' 

- 

I0 (Mu) 

u+ 
0 

0- 

cos 

oo 
2 

I (Mu) exp(- ir)du 
(I 0 

01- 

- 

IT cos & 
1 

IP: cos 

11 

2 

exp(- 110)du] (43) 

The first part of Eq. (43) is integrated by parts and by use of the ap- 

proximate expansion for 10(x) of Eq. (41); this yields 

oo 
2 in- (2k): M 

2k 
I = I Wu) exp( - u2 )du /=-,f 

2 - 0 2 23k(k03 
0 k=0 

if(2k)! /42k 
z 
2k 

if 23k(k036_2kAk 
k=0 

The second integral of Eq. (43) can be calculated if ( 
1 

u + 

IT cos 9 

is expanded into Taylor series about u = of as follows, 

00 

F(x) = F(h) c( )(x" h ( 
) 

le 

h=0 

h 

00 

(44) 

(45) 

g(u) = 
1 1 co( u 

)h (46) 
G- 

n + 0( + ÷ 
= 

ose I 
h 0 

rT cos& TA- cose 

The convergence condition for the series is 

- u 

+ 

TP: cos& 

< 1 . (47) 



Since ( 04+ ) > 0, this condition can be written as 
'oos& 

lja-cos& VA-cos& 

If /3 is assumed to be a sufficiently large number, then one part of Eq. 

(43) becomes 

12 

(48) 

oo 

1 

u 
IrA- cos& 

2 

Io(Mu) exp(- lir)du 

2 4 IOW) exp(- ir)du. 
0 

u + 
ig-cos& 

(49) 

0- 
) Now for the value of 0( such that (20( + ) is much 

greater than the upper limit /3 in the above integral, the Eq. (46) may be 

substituted in Eq. (49), and the series will then converge for u in the 

closed interval (0, /3). Hence Eq. (49) becomes 

2 
1 ( 1 

0- 
) 

h 
ji (0( - u )hI 

o 2 
(Mu) exp(- )du 

0( + 
h=0 

' 0( + 0 

4A- cos& la- co.& 
(50) 

Here again the same approximation is employed for Io(Mu) in order to reduce 

the infinite sum to a finite sum up to h = N2, as was done previously. On 

expanding ((X - u) 
h 
by means of binomial expansion and substituting the 



result into Eq. (50), it becomes 

00- 
= 

NA cos& 
h0 g cos& 

N,2, 

1 

0( + > >n=0, 
k =0 

$0( 

costa 
.0 

h 

i = 0 

13 

I3 
c1.1 

2 

uiI0 (Mu) exp (-U-2 ) du 

0 

1 2 
) 

2m 
C 
2m 

0c 
n 

2(m-n) 
(_ 1)2n 

0- 

TA cos& 

2k A 
u2 ( k+n) 

2 
M 

exp( -i) du 
22k(k 

N' in N1 

+ 
1 \ ' 1 A 2m+lc 2m+1 nd 2 (m-n) (..1)2n+1 

04 + a- \1 ' 1/ ' ( ' ( 0( + 
0- I 2n+1 -' 

2m+1 n=0 k=0 
1/7 cos& ir cos& 

=1 

2k 2 

( 2k 
2) 

u2 
(k+n) +1 

exp ( - 2 ) du 
2 (k!) 0 

After the evaluation of the integrals by parts, Eq. (51) becomes 

(51) 

+ 

N ' 2 

1 

2m 

C 
' ( 1 2m 2 (m-n) 

0( 
3 

) 
- 2n cr- 

0( + 
u 

_% 

2m n=0 k=0 - _r- 
VA cos& yA cos& 

=0 

2(k+n)1 
lia2k 

Z 
2k 

23k+n(k1)2 (k+n)Ic2kAk 

N' 

5E7T 
; 

2m+1 n =0 k=0 
NA cos& 

+ 

1 2m+1 c( 2 (m-n) 

cr 

TA cone 



2n (k+n)! 
)42k 

Z 
2k 

2k 
(k!)2 

cr2k Ak 

Equation (36) gives 

2 2 
(w) 

Z1 
- 

t 
1 

+ 1 
2(t 

1 
+ 1 

- 1) I 
1 

2 2 0- 
= 1 - - 1) 

t + 1 
+ 2( 

t 
1 

+ 1 
c ose 

(52) 

2 
2 1 

exp [Z ( - 
(1-) 

1 (I 
2 

- I 
3 

) (53) 2A ) 
2 a- fA-cose 

The following notation is employed in order to simplify calculation; 

I 
2 

= D 
1 
Z 
2k 

cose 
1 
3 

= D 
2 
Zak - D 

3 
Zak = (D 

2 
- D 

3 
) Zak 

(54) 

(55) 

where D 
1, 

D 
2 

and D 
3 

are appropriate factors in Eqs. (44) and (52). 

Next, (W) is averaged over Z using its Rayleigh probability density. 

Z 

2 

2 

' 

q(Z) = --7 exp(- 
T 2p-' 

oo 

(W) =.1 (W) 
Z 
Ici(Z)dZ 

0 

00 

2 ir Z 
2 

= 1 - 
2 t + 

exp(- 
Z2 

)dz 
a- 0 1 2 0-- 

ao 

z 
2k+1 

4 0.- 
2 

2 
+ (D 

1 
- D 

2 
+ D 

3 
),JC 

t + 1 
exp( Z )dZ 

rircosa 0 1 
2A 



15 

00 

2 
(D1 - D + D ) Z 

2k+1 0- 
2 

2 
(56) 

1 2 3 exP(= z )dz 
irA co.& 

0 

Let 14, I 
5 

and 16 denote the first, second, and third integral in Eq. (56). 

Now simplifying 149 it becomes 

00 

f t 

z 
exp(- 

2 

Z2 
14 = 

2 
)dZ 

oo oo 
2 

= 
cos& 

Jr . 

0 
X - 

Z 
2 

2 
) 

\ 

dZ - 
1 jr 1 

2_ 17-77;75 
ep(- 

2 
)dZ 

Z, 

2 0- cos or 0 2 0- 

n 

1 1 ih 

cosCrs& 1F-1 
cos-2 

2 
& 

( 0( + 1/cose) 
0(4. 

1 

cos& 

72 
IV(c(-Z)h exp(- " )dZ (57) 

2 0-` 

In order to obtain the last expression, the expansion similar to Eq. (44) 

is used. The expression (2(X + (1/cos&)) is assumed to be larger than 

After lengthy evaluation 14 can be expressed as 

"1 1 
( 

1 
4 - cos& 2 cos& 0(cose+1 

) 

n m 
1 )2m 

o(+ 
2m j=0 cos& 
=0 

2m ce(m-j) 02j+1(2:0! 

1 
2j j! 

2 



16 

+ 
1 , 1 ' , 1 

2m+1 
2m+1 2 (m-j 2j+22ji 

cose 0( cose+1) c< . , 1 C2j+1 
2m+1 j=0 cose 
=1 

(58) 

r°OZ2k 
+1 

Similarly in 15 = 
t + 1 exp(- 2A 

Cr2 
Z2)dZ 9 the expression may be 

0 1 
t 
1 

+ 1 

expanded as follows: 

2k+1 
1 - Z 

)h z 
2k+1 

tl + 1 a cose + 1 
+ 

1 

h=0 cose 

n 

z 
2k+1 

n h 

1 ( 1 \ )h ch t.4 z21c+i+1 

0( cose + 1 / 1 1 . 
h =0 cose i=0 

(59) 

Using this result 15 becomes, 

8 n h 

5 si 0( cose + 1 , / 
°(+ 

1 
= 

1 ( 1 h h-i i 21c+i+1 
(C 0( -1) Z 

0 h=0 i=0 cos& 

0_2 

exp(- 2A z )dz 

n' p 

1 1 2p ...2p 2(p-Da)2(k+j+1)2k+j,,..N, 
) U2a 0( 

2(p-J) 
4 - COS& + 1 1 cr 

2p j=0 cose 
=0 

n" 

1 

( 

1 )P CP 
1 

2 +1 2 +1 2(p-j), \2(k+j)+3 

2j +1 
ok cr cose + 1 

. ÷ 2J 

2p+1 j=0 cose 
=1 

(2k+21+2): 7T (60) 
k+j+1 
2 (k+j+1): 

2 



oo 

2k+1 0- 
2 

2 Aak+2 2k(10) 
Z exp(----- Z )4aZ = (-2C) 16 - 

2A 
O G- 

Since (W) = 1 - 
2 , 4 

(D - D + D 
3 5 

) 1 

0- 
2 J-4 

0-4Tcos& 1 2 

2 
(D 
1 

- D 
2 

+ D 
3 

) 1 
6 0-15 cose 

17 

(61) 

the ....14bstitution of Eqs. (58), (60) and (61) into the above relation results 

in the final expression for (Wiz . 

n' 

(WiZ= 1 - 
1E F 1 , 1 

Or cosh cosh cose + 1 
F 2m c-, 

m c,2(m-J) 
1 2j 

2m j =0 
0(+ 

cose 
=0 

0-2J-1 (2.)! 

2j-1 j! 

n" 

112 

1 1 ) ; ( 1 )2m+1 02m+1 
cose o( cose + 1 / 1 2j+1 

2m+1 j=0 cos& 
=1 

2j j+1 . 

Q,-2j 2 3! 

j) 

n' p 

4 1 1 2p , 
+ (D1 - D2 + D3) 

cose + 1 
( 

0( 

) 

Q" IR cos& ' ' + 
1 

2p=0 j=0 cose 

c2p «2(p -j)( 47)2(k+j+1) 2k+j 
23 `" 0- 



n u p 4 1 \ ' ( v 
1 ,2p+1 

0-(5 cos& 
(D 

1 
D2 + D3) 

Ix cose + 1 ) / c< 1 

2p+1 j=0 cos& 
=1 

c2p+1 2(p -j)( 4.2(k+j)+3 (2k +2j +2)! 
2j+1 cr.) 

2 
(k+j+1) 

(k+j+1)1 
2 

2 2k+2 
(D 
1 

- D 
2 

+ D3) ( --- ) 2. 
k 

ki 
o- v-A- co.& 

where D 
1 

= 

N1 

k=0 

(2k)! 
iu2k 

23k (k03 cr2k 

(62) 

(63) 

0- N'2 m Idl 

cos& 

2 2 

7C cos ' 
/ 

1 2m 2(m -n) 
C 
2n 0- 

(k=0 (X + 

a- 
+ , 

2m 
0 

n=0 11 VA cos& 
= 

{2 (k + n)} 
!/442k 

23k+n (k!)2 (k41.01 
2k 

Ak (64) 

0- N" 
P 

m N1 
Tit- A cos & 1 )2m+1 

c 
2m+1 D3 = 

3 2 
0( + > , > . ) 

k =0 
( 2n+1 

ITcose 

a- 

2m+1 n=0 k=., (X+ 
a- 

777376 
=1 

_,2(m-n) 2n (k + n) /442k 
c; 2k (k1)2 0_2k Ak 

(65) 

Substitution of Eq. (62) in Eq. (30) results in the expression for the 

average received power: 

PrG 
2 

-0 cote' rwl exp[-j2k(R - RI)) P 
r 

32 
1r2 _efiff R R' k 

dR dR' d)fr dr . (66) 
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Extension to Complex Impedance Case* 

Calculations in the previous section can be extended to random complex 

impedance variation case, because in reality, the randomly varying heights 

cause both amplitude and phase attenuation, and these may be appropriately 

represented by an equivalent complex impedance. 

First, Z's in the expressions for 14, 15 and 16 should be replaced by 

aZ = R + j X where a = exp(j04). aZ represents a complex impedance. Next 

these integrals will be averaged over e4 using its uniform density function 

for 0 < oC < 27t as 

aZ Z 
2 

I =1. exp ) 1 dZ d oC 4 aZ cose + 1 
0 0 2 0- 

2 2 
7c 

2W 00 ,2k+1 
(a Z) 

6 

2 

15 7)r aZ cos& + 1 2A 
z2 1 ) 

exp( - dZ 
2 TC 0 0 

(67) 

(68) 

16 =gx 
010 

0-2 

Z 
2 1 I f (a Z)2k+1 exp(- ) 

0 0 
2A 2 

dZ d . (69) 

Substitution of new 14, 15 and 16 into the expression (56) for [14)z 

gives a new reflection coefficient which accounts of the complex impedance 

variation. 

As it is clear from the simple geometry of Figure 1B, the magnitude of 

Ro 
impedance can be approximated as /3Z where = 1 + 

0 
and R 

0 
= X 

0 
(assumed), (70) 

* The material on pages 19 through 21 is included at the request of the 
Major Professor and is not concurred in by members of the committee in the 
Electrical Engineering Department. 



R is a real component of the impedance and Ro is its mean value. Since 

Ri = R - R0 and X, = X - X0 have normal probability density of the form 

p(111) - 
1 

exp(- 
2 

0...2 

TC 0-2 

a probability density pl(p) for the quantity /3 can be expressed as 

R2 R2 
1 

2 2 a- 
exp(- .1"2) . 

i 

pad la 

(R) 

-a RI N271: g- /10 

Then, f31W) 
Z 
p 
1 
(f3)dp 

gives the final value of the reflection coefficient function, (W)z. 

X- 

1-rnalinary 

l 

0 R-Ro R Rea 

Figure 1B. Geometry of impedance 
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( 71) 

(72) 

(73) 

This is a crude approximation based on the fact that R 
0 

and X 
0 

are equal but 

an exact solution is discussed in the following paragraph. 

First of all the equivalent surface impedance must be angle of incidence 

dependent but this makes the problem far more complex, and hence this approach 

is not followed. Secondly the real R and imaginary X components of Z are 
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assumed to be independent and noramlly distributed with (R0, Cri) and 

(X0, 017i) respectively. Furthermore, it is assumed that = 40-x = 0- 

and X0 may or may not be equal to R0. Then the probability density function 

of Z is obtained as follows: 

2 
1 (R-o) - oo < R 4: + oo p(R) - exp I- (74) 

2 (I- 
2 j ' 

42 IL 0-2 

(X-Xo) 
p(X) = 1 (75) exp (- - oo < x < + oo 

2 
2 ) ' 

112 TC0-2 

and p(Z, of )dZ d o( = p(R, X)dR dX, (76) 

where p(R, X) = p(R) p(X), (77) 

and dR dX = Z dZ do(. (78) 

2 

Hence, p(Z, 0() exp [- (R R0)2 + (X - Xn)2 

2 Cr- 2 0-2 

where R = Z cos o( 

X = Z sin o(. 

(79) 

Then, the quantity W should be integrated over Z, Z1 and 0( , using 

a modified conditional density function f(Z' / Z97.) which can be derived in 

the same way as Eq. (35). 

Conclusions 

The quantity (W)z has dimension of the square of reflection coefficient 

and varies with a, a-, andit, which are the angle of incidence, standard 

deviation, and autocorrelation function respectively. 

A proper assumption of the form of autocorrelation function will be 

needed before a reduced final expression for the average received power is 
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obtained. The radiation from a particular small area on the terrain was 

assumed to be isotropic, without which this problem would be quite complex. 

There will be no significant error due to the assumption of isotropic radia- 

tion, as it can be intuitively justified from wave optic reflection mechanism. 

The reflection of a plane wave from the terrain with randomly varying 

equivalent impedance cannot be calculated using classical theory of geometri- 

cal optics, and therefore the use of statistical theory is necessary. 

AN ELECTRONIC SAMPLER FOR THE ACOUSTIC SIMULATION FACILITY 

In an acoustic simulator, shown in Figure 2A, the sound waves of a parti- 

cular frequency are used to simulate the electromagnetic wave in radar systems. 

A pulsed oscillator generates a carrier frequency ranging from 10 kc to 25 me 

either in a pulse or continuous wave (cw) form. This signal is converted into 

an acoustic wave by the transducer A, and the resulting wave travels through 

water and eventually becomes incident on the target surface. Since the tar- 

get surface roughness can be described statistically, the reflected wave con- 

tains sufficient information about the surface roughness in its amplitude 

and phase variations. 

The reflected acoustic wave is converted into an electric signal by the 

acoustic-electro-transducer B. The signal is envelope-detected and amplified. 

Then it is necessary to sample the envelope for statistical analysis in order 

to obtain an estimate of target surface roughness. 

Sampling can be accomplished either manually or electronically. This 

part describes an electronic sampler which will perform the sampling task. 
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Figure 2A. The Acoustic Simulator System for Radar Return. 
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Design Criterion 

The output envelope waveform in the case of pulsed operation has been 

specified as below by previous experimentation (Hayre, 1962). 

(1) The highest frequency component of interest is 20 kc. 

(2) Maximum pulse width, Tmax, is approximately 100 microseconds. 

(3) Pulse repetition frequency is 3 kc. 

(4) Amplitude varies from zero to a maximum of + 25 mV. The sampler 

is required to process such pulses with the following constraints. 

1. The first sample (at t1) should be at 1 to 3 microseconds from the 

start of the signal. 

2. Each pulse must be sampled at six or fewer equally spaced points as 

shown in Figure 2B. These six sampled pulses per each original pulse are to 

be separated a time-division multiplex circuit which will be 

placed between the sampler and the recorder. 

3. The desired output level is to be of the order of a few volts. 

Circuit Diagram 

A block diagram of such a system is shown in Figure 3. The wave-front 

of input pulse must first be detected, and consequently a sampling pulse must 

be generated. 

An input amplifier, a Schmitt circuit and a multi-vibrator connected in 

cascade would realize the desired objectives. For instance, if an input 

pulse arrives, the Schmitt circuit produces a square wave whose duration is 

made as nearly equal to that of the input signal as possible. The time delay 

which exists is determined by a steepness of front edge of input pulse to 

the first Schmitt trigger and is reduced by use of the input amplifier. 
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The multi-vibrator is controlled by the square wave, and it continues 

to produce sampling pulses as long as the positive square wave maintains the 

multi-vibrator out of cut-off region. The output pulses of the multi- 

vibrator are amplitude-modulated by the input signal in a modulator circuit. 

These amplitude modulated pulses represent exactly the sampled values of 

the input signal with a sampling interval equal to the period of output 

pulses of the multi-vibrator. The modulated pulses are then amplified 

by the output amplifier and are passed to gate #2 which is normally open. 

A part of the output of the multi-vibrator goes to a normally open 

gate #1 in order to trigger the Schmitt circuit whose output is applied to 

a counter with a scale of six. The counter is designed to receive six 

negative pulses before producing an output pulse. It is provided with a 

reset circuit to correct any miscounting. One-shot multi-vibrator which 

follows the counter produces a negative square wave with a prescribed time 

duration when triggered by the counter output pulse. The negative square 

wave in turn closes both gates so as to block the incoming pulses during the 

presence of the control signal. Consequently, as soon as the counter finishes 

counting six, the closing of both gates blocks the sampled pulses number 

seven and higher, and likewise no more than six trigger pulses will be 

applied to the counter for each input pulse. The system described above is 

realized using the circuits of Figure 4. This system was built, tested, and 

the resulting corrections are incorporated in Figure 4. 

Analysis of the Actual Circuits 

Some detailed discussion and analysis of the actual circuits will be 

given. 
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1. The Input Amplifier (V1; 7199) 

The input amplifier is essentially a pulse amplifier for 3 kc square 

wave, and its response can be specified by its percentage tilt and rise time. 

The time constants of cathode and screen grid circuits are chosen to be suf- 

ficiently large for the input signal frequency. Hence, the rise time and per- 

centage tilt are affected by coupling networks and input capacitances of the 

tubes only. The percentage tilt due to the first coupling network composed 

of C 
cl 

and R 
gl 

is calculated. 

P 
1 

= 100 7U x 
f 
2 

3.3 (°6), 

where 
1 - 

f = 3000 cps, 
2 2 n 

1 

Rgi C 
c 

Rg, = 470 kg2 , cc1 = 0.01)4 F, 

whereas that due to the second coupling network, (Cc2, Rg2) is 

1 1 
P2 = 100 x (3555 x 2 R C 

) 

g2 o2 

(80) 

(81) 

.1o.6 

The percentage tilt for PRF of 3 kc will be less than 14.6 of the calculated 

values. The rise time of the first stage tr, is 

where 

t 
rl 

= 2.2 R C 

= 2.2 x 47 x 103 x 3o x 10 
-12 

= 3.1 x 10 
-6 

= 3.1 /6 Sec. 

R Ria = 47 KO, C =C out 1 + C in 1 + Cgp3. (1 +A) 30 
pF 

(82) 
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A is a gain of the second triode stage, whereas that of the second stage 

t 
r2 

is 

tr2 = 
2.2xR2x{Cout2 + C in2 + Cgp2 (1+A')} 

= 2.2 x 47 x 10 3 x 25 x 10 
-12 

= 2.5 Sec. 

where A' is a gain of V2. The total rise time tr can be expressed as 

AY 
t 
r 

= 
r 

2 

l 
+ t 

r2 2 
= 13.1 

2 
+ 2.5 

2 
x 10 

-6 
= 4 /4 Sec. (83) 

The static operating conditions of the pentode and triode stages of the 

amplifier are summarized below. 

(i) Pentode stage 

plate supply voltage = 205 volts 

zero signal plate voltage = 75 volts 

zero signal plate current = 3.2 mA 

zero signal screen grid voltage = 150 volts 

zero signal screen grid current = 1.3 mA 

cathode voltage = 3 volts 

gain (at midband) = 36 db 

(ii) Triode stage 

plate supply voltage = 250 V 

zero signal plate voltage = 50 volts 

zero signal plate current = 3.7 mA 

cathode voltage = 1.0 volt 

gain (at midband) = 23 db 

(iii) Total gain (at midband) = 59 db 
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2. Input Cathode Follower (V2; 12AT7) 

A cathode follower is employed to provide the modulating signal with a 

low source impedance to the modulator. The quiescent operating point is 

defined by 

ik = 3.25 mA 

e 
k 

= 109 volts 

= -1.65 volts Vgk 

and its gain is 

g rk 
A 11' m 

1 + gm Tic 
(2.5 x 10-3) x (12 x 10) 22 .2. 0.97 

1 + (2.5 x 10-3) x (12 x 103) - 31 

where T 
k 

is ac circuit resistance between the cathode and the ground. Its 

output impedance is given by 

R - 
1 1 

'Y 390 ohms. 
o 1/1"; + 

-M 1/(12 x 103) + 2.5 x 10-3 

Time constants of coupling networks and bypassing network are so chosen that 

the input signal is not distorted by this amplifier. 

3. The Schmitt Circuit (V3; 12AT7) 

For v = 0 in Figure 7, the potential at P1 is essentially 250 volts. 

R 
The attenuator ratio a = is so selected that the grid-to-cathode 

+ R 
2 

voltage of T2 is -1 volt. It may then be verified from the tube characteris- 

tics that i 
2 

= 5 mA and therefore cathode voltage is 75 volts and hence T 
1 

is indeed cut off. The voltage at G2 is 75 - 1 = 74 volts and a = /IL 
= "3" - - 

250 
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Now, as the input voltage v is increased, the circuit will not respond until 

T 
1 

comes out of cut-off. Note that the plate-to-cathode drop of T 
1 

is 

250-75 = 175 volts, for which cut-off occurs at a bias of -2.2 volts. Hence, 

when v = -2.2 + 75 = 72.8 volts, T1 starts to conduct. Then P1 and G2 

potential will drop. The signal at G2 is transferred to T1 through the 

cathode circuit and reappears at P1 with the same polarity as at G2. The 

signal at P1 is now transferred again to G2, and if the loop gain exceeds 

unity a regenerative action will take place driving T2 to cut-off. Assuming 

then that T 
2 

is cut-off and v = 72.8 volts, i 
1 

is found to be approximately 

4.92 mA. The voltage at G2 is (250 - 4.92 x 10) x a = 60.24 volts, while 

the cathode voltage is 4.92 x 15 = 73.9. The grid-to-cathode voltage of T2 

is 60.2 - 73.9 = -13.7 volts, which verifies that T2 is cut off. The output 

signal from P2 consists of a positive step of amplitude i2 RL = 50 volts. 

After the circuit has been triggered, further increase in v has no effect 

on the voltage at P2. This circuits exhibits hysteresis or in other words, 

the value of voltage at which triggering occurs depends upon whether v is 

increasing or decreasing. However, this hysteresis does not have any un- 

desirable effect on the present usage of the circuit. Typical wave-forms 

of input and output signal are illustrated in Figure 8 and Figure 9. 

4. The Multi-vibrator (V4; 12AT7) 

When the output voltage vin keeps T1 out of cut off, the equivalent 

circuit of the multi-vibrator Figure 10 can be reduced as shown in Figures 

11, 12 and 13. 



From Figure 13 (b), ER1 is 

L2 
R 
1 

ER1 = (Ebb Rb 
2 

+ R 
2) 

( 
R exp 

I (- 
1 

t 

R' 
1 

) 
1 

= - k2Ebb exp (- O(, t), 

1 
where k 

2 = 
( 1) 

1 , Rt2 RL2N 
1 + 

2 
1 +R 1 

L2 
R1 Rb2 + RL2 

and RI 
1 

= R 
1 

+ 
b2 L2 

-b2 RL2 

1 
and 0( = . 

When T 
1 

is first driven into cutoff (t=0), its grid voltage is equal to 

35 

(84) 

(85) 

(86) 

(87) 

-k2 Ebb. As time elapses, the grid voltage increases exponentially toward 

zero. When ER1 reaches the cutoff value 
(-Ecol), 

the tube begins to conduct. 

Now, Eq. (84) can be written as 

ER1 
= exp (- C)( t). 

-k 
2 

E 
bb 

1 
(88) 

Substituting the specific values (- Ecol) for ER, an d `7. 
1 

for t, Eq. (88) 

becomes 

E 
col 

k 
2 
E 

- exp (- 0(1 1-C1), 
bb 

E 
or e-C = - 1 In (k2 

col 
1 

1 

(89) 

k2 Ebb must be greater than E 
col 

and therefore, a minimum value for Ebb is 

fixed at Eco1 /k2. The portion T2 of the multi -vibrator is calculatedbyusing 

Eq. (90). 
E 

- 

cot 1 
In (------) 

2 
49C 

k 
1 Ebb 

(90) 
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The period of the multi-vibrator is then expressed as the sum of T., and it 
2. 

= 4. T2 ( 91 ) 

In the present case -1(1 = '7(2, and 00(1 = 0(2, ki = k2, 
Ecol = Eco2, 

and 

therefore -C is calculated as shown below. 

Ebb = 200 volts, Hi., = 4.7 kg2 RI) = 10 kga , 

R 
1 

= 470kg C 
1 co = 6.5 pf, E = 5.0 volts. 

1 
'.`..' 0.32 

1 
k - 10 i 1 flO x 4.7) 

1 + 77 1 + 47 TT77177 

k Ebb = 64 volts. 

1 /o( = 6.5 x 10-12 (4.7 x 105 
10 x 4.7 

x 103) t' 3.07 x 10 6 
10 4. .7 

ln = -6.14 x 10-6 ln 15.7 x 10 
-6 

K Ebb 

= 15.7 14-Sec. 

However, the actual period of the multi-vibrator is less than the cal- 

culated value, and its numerical value is approximately 10 microseconds. This 

discrepancy is presumably caused by the loading of the plate circuit by input 

impedances of the following stages and stray capacitances at both grids and 

these attenuate the plate voltage swing. From the tube characteristics when 

the grid is clamped at 0 volt, the plate current i = 13 mA. Hence, output 

swing is 

13 m A x 4.7 K Sz Sf- 60 volts. 

The wave-forms at P 
1 

and G 
1 

are shown in Figures 14 and 15 respectively. 
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5. The Modulator Circuit. 

The modulator circuit shown in Figure 16 can be redrawn as the equivalent 

circuit shown in Figure 17. 

In Figure 17, Rf and Rr stand for forward and inverse diode resistances 

respectively, and Vin represents the sampling pulse voltage from the preceding 

multi-vibrator. V 
s 

is the signal voltage taken from the input amplifier. 

In the present case Vin > V 
s 
> 0 and R 

r 
>> R 

f' 
so the diode may be 

replaced by its forward resistance and the output voltage may be written as 

R 
1 

R 
f 

+ R 
2 V - ' 

o R1 + Rf + R2 
V 
s 

+ 
R1 + Rf + R2 

V 
in 

Rewriting Eq. (92), it becomes 

R 
1 

R + R 
2 Vin In 

Vo R1 + Rf + R2 
Vs (1 + 

R 
1 

V 
s 

(92) 

(93) 

The term inside the parenthesis in Eq. (93) represents the desired out- 

put plus a proportional error term. The error in the equation includes the 

ratio of the signal producing the undesired transmission to the signal pro- 

ducing the desired transmission. Actually the duration of Vs is slightly 

longer than that of Vin and the following undesirable situation occurs. 

Vin 
= O 

s 
0 

In this case V 
o 

may be expressed as 

R1 
v 
o R1 + Rr + R2 

vs (94) 

However, since R 
r 
>> R 

1, 
the magnitude of this undesired output is negligible. 
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Now, Vo is calculated by substituting the following numerical values 

in Eq. (93), 

R1 = 30 Kg2 , R2 = 390 Q 

Rf = 300 Q , V! = 15 volts, 

Vs = 1.5 volts, 

as y 30 

0 
= 

30.69 
x 1.5 (1 + 21.22 

1 5 
) 

30 1.5 

= 1.47 (1 + 0.23) 

The error term is appreciable and it causes the modulated signal to have 

some dc pedestal whose amplitude is inversely proportional to the amplitude 

of the modulating signal Vs. However, Vs contains some dc component, so that 

it is possible to reduce the level of the pedestal by clipping off the d c 

component of the pedestal in the following output amplifier stage. This 

results in a fairly reasonable amplitude-modulated pulses. 

6. The Output Amplifier (V5; 12AT7) 

The output amplifier stage of Figure 18 is composed of two cascaded 

amplifiers. Each unit has an un-bypassed cathode circuit. The negative- 

feedback effect of the cathode resistor results in a fairly linear input- 

output characteristic, as shown in Figure 19. The quiescent operating points 

are chosen as follows. 

1st stage e 
k 

= 2 volts, i = 2 m A, 

2nd stage e 
k 

= 4.6 volts, i = 4.6 m A. 

The gain of each amplifier is six, resulting in the total gain of 36. A 

clipper circuit is placed between the amplifiers to remove the dc component 

or the undesired pedestal. 
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7. The Gate Circuit 

The gate of Figure 20 is used in the output circuit of the output ampli- 

fier. A similar gate is also used to process the input pulses to the counter. 

The positive going input pulses can go through the input-output branch 

without any significant loss of amplitude in the absence of a control signal, 

which is a negative polarity rectangular waveform obtained from the one-shot 

multi-vibrator 

When the amplitude of the gate voltage is larger than that of the input 

signal, the diode is heavily back-biased and there is essentially no output. 

During gating pulse duration, a highly attenuated version of the input 

appears at the output as shown in Figure 21, but it does not affect the over- 

all performance of the sampler. 

8. Schmitt Circuit (V6; 12AT7) 

The same Schmitt circuit as V3 is used to amplify and shape (increase 

the steepness of) input pulses to the counter. This circuit produces trigger 

pulses with an amplitude of 50 volts for the succeeding counter circuit. 

9. The Counter of Scale 6. 

The counter of Scale 6 consists of 3 binaries, as shown in Figure 22. 

Each binary has two stable states (bistable). The binaries under considera- 

tion are two-tube devices and the section from which the output is obtained 

is called the output tube. For convenience the state in which current is 

flowing in the output tube is called 0. Then the state 1 is the one in which 

the output tube is cut off. 

Prior to the application of the first input pulse, all binaries are in 

the state 0. The first external pulse when applied to the first binary Bo, 

causes it to make a transition from state 0 to state 1 as shown in Figure 23. 
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Figure 20. The Gate Circuit. 
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This transition results in the symmetrical application of a positive step to 

the second binary B1 through a capacitor. Since the binary is relatively 

insensitive to a positive step, the second binary will not respond to the 

positive step produced by the first binary. The over-all result is that 

binary Bo has changed to state 1, while the other binaries remain in state 

0, as indicated in Figure 23. 

The second externally applied pulse causes binary Bo to return from 

state 1 to state 0. Binary B 
1 

receives a negative step voltage to which the 

binary is sensitive and responds by making a transition from state 0 to 1. 

The binary B2 does not respond to the transition in binary B1 because B2 

receives a positive step. A binary does not respond instantaneously to an 

input step and there is some additional delay before the binary output reaches 

full amplitude. This feature has been incorporated in Figure 23 by drawing 

the binary transitions with a finite slope and by starting the transition 

in a succeeding binary only at the completion of the transition in a pre- 

ceding binary. 

At the fourth pulse, binary B 
1 

responds and returns from state 1 to 0. 

Binary B 
2 

receives a negative step and responds by making a transition from 

state 0 to 1. This positive step voltage produced by B2 is differentiated 

by the coupling network composed of C and R. A negative pulse which results 

when B 
2 

goes from state 1 to 0 is ineffective because the coupling triode 

V10 is held below cutoff by the bias-Eo. The positive pulse is inverted 

and fed back to Pia of B1. Since B1 is in state 0 after the fourth pulse, 

the negative pulse at Pia will cause transition in B1. B1 is forced back to 

state 1 by this fed-back pulse. Thereafter the counting goes on normally and 

at the sixth pulse all binaries are again in state 0 and the counting is com- 

plete. 
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-5c 

Figure 22. A Scale-of-8 binary chain, modified by Feedback to 
make a Scale-of-6. 

State 

Bo it 01 

bit 0 

B2{. 10 

Input pulses 

11 12 13 14 Is 16 17 18 

Figure 23. Waveforms Illustration of the Counter. 
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Now, some detailed analysis of each binary circuit is given. 

The First Binary Bo (V7; 5963) 

First it is assumed that T 
1 

is cut off and T 
2 

is clamped with zero 

grid-to-cathode voltage. The clamped current is found to be 3.4 m A. 

The cathode-to-ground voltage is, therefore, Ek = 12.3 x 3.4 = 42 volts. 

The plate-to-ground voltage of T2 is 

E 
p2 

= 300 - (27 + 42) x 3.4 = 65 volts. 

The grid-to-ground voltage of T1 is 

E 
gl 

= 65 x 
270 

1 00 
100 

- 17.6 volts. 

The grid-to-cathode voltage of T1 is 

Egk 
1 

= 17.6 - 42 = -24.4 volts. 

The cutoff voltage is about - 15 volts so that T1 is well below cutoff, as 

was assumed at the start. In the absence of grid current, the voltage at 

the grid of T2 would be 

100 
E 
g2 

= (300 - 27 x 3.4) 
x 42 + 270 + 100 

00 
= 208 x 

1 
r-- = 50.5 volts. 
412 

Since T2 clamps when Egg = 42 volts, the assumption that T2 is clamped is 

seen to be justified. The plate-to-ground voltage of T1 is 

0 
E 
pl 

= (208 - 42) x 
27 

+ 42 
270 + 42 

= 185 volts. 

Hence, the plate swing is E 
pl 

- E 
p2 

= 120 volts. 
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A number of approximations such as that the loading effect of the 

coupling resistors is negligible, and at clamping the grid-to-cathode voltage 

is nearly zero have been made. Furthermore, the fact that the cathode 

resistor carries not only the plate current but also the grid current has 

been neglected in computing the drop across the cathode resistor. The fact 

that one uses average tube characteristics, hardly warrant a more exact cal- 

culation. 

Input triggers are applied to both the grids symmetrically through 

diodes. The input coupling capacitor (30 p) and the cathode resistor plus 

18 Kg actually constitute a differentiating circuit for the input pulses. 

The Second Binary B1 (V8; 5963) 

First, assume that T1 is cut off and T2 is clamped with a grid-to- 

cathode voltage equal to zero. Then, the voltages at all nodes can be 

computed similarly to those for the first binary Bo. 

The resulting values are 

i 
2 

= 2.6 m A. 

Ek = 12.3 x 2.6 = 32.0 volts. 

E 
p2 

= 300 - (47 + 47) x 2.6 = 56 volts. 

E 
gl 

56 x 
270 

100 
100 = 

15.1 volts. = 
+ 

E g kl 
= 15.1 - 32.0 = -16.9 volts. 

100 
Egg = (300 - 47 x 2.6) x 

47 + 270 + 100 

00 
= 178 x 

1 
717 = 42.7 volts. 

Epa. 
47 + 

= (178 - 32) x + 32 = 156 volts. 
270 

270 

The plate swing = Epl - Ep2 = 100 volts. 



27K +300V 

Figure 24. The First Binary Bo. 

i-rkrut 

o 4-7K 

Figure 25. The Second Binary Bl. 

+300V 

49 



50 

The trigger input is applied to the point A in Figure 25. 

Now, assume that a negative input step of 100 volts is applied and that 

the input step has dropped so rapidly that the commutating capacitors have 

not been able to discharge appreciably. Since the tube T1 is not conducting, 

the plate voltage is equal to the voltage at point A, which is 178 - 100 = 

78 volts. The voltage at G2 is equal to the voltage at P1 minus the drop 

across the commutating capacitor connected between P1 and G2. Hence, G2 

is at -35 volts, and therefore T2 is cut off. The voltage at P2 is now also 

equal to the voltage at point A. As a consequence of T2 being cut off, the 

voltage at G1 rises to a value of 78 - 41 = 37 volts. Since the cathode-to- 

ground voltage is kept at 32 volts, T1 is now clamped with zero grid-to-cathode 

voltage. Hence, a transition has taken place, since T1 was initially cut 

off prior to the application of the negative step. After the transition has 

been completed, the commutating capacitors will interchange voltages. 

The Third Binary B2 (V9; 5963) 

The third binary is identically the same as the second binary. 

The Feedback Amplifier (V10; 12AT7) 

This feedback amplifier shown in Figure 26 is used to differentiate the 

positive step voltage produced by the third binary and to invert the resulting 

positive pulse. The amplitude of the negative pulse at the plate can be ad- 

justed by a variable resistor inserted in the bias circuit. The tube is held 

below cutoff all the time except when the positive pulse is applied. 

10. The One-shot Multi-vibrator (V11; 12AT7) 

Some calculations show that i2 is 12.2 m A, and hence i2 RL = 6.9 x 12.2 

84 volts, and i2 Rk = 3 x 12.2 = 36.6 volts. The maximum allowable voltage 



In put Sop 

0 

+250 V 

501.< 

30p Output 
O 

Figure 26. The Feedback Amplifier. 

Figure 27. The One-shot Multi-vibrator. 

+250 V 
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for V, V max, is given by 

V max. = i 
2 

Rk + E 
col' 

52 

(95) 

Where E 
col 

is the cutoff voltage corresponding to a plate-to-cathode voltage 

of 250 - 36.6 = 213.4 volts. For E°01 = .5 volts, V max = 36.6 - 5 = 31.6 

volts. In order to calculate the minimum voltage V min., 

i - E 
2 x co2 

o Ri. + Rk (96) 

must be calculated. Assuming that E 
co2 

is approximately equal to - 5.0 volts, 

= 
.'1/ 3.16 m A. 

o .9 + 3 

It appears that E 
co2 

is actually the cutoff voltage corresponding to a plate- 

to-cathode voltage of 250 - 3 x 3.16 = 240.5 volts. Now, from the tube 

36.6 - 
characteristics it is found that a current I0 - 3.3 3.13 m A flows 

when the grid-to-cathode voltage is 
Egkl 

= -2.9 volts. Hence, 

V min = 
Egkl Rk = 

6.5 volts. 

+ 31.6 volts = V max > V > V min = +6.5 volts. 

V max + V min 
19 volts. Therefore let V be V 

2 

(97) 

When T 
2 

is cut off and V = 19 volts, i 
1 

is calculated to be 6.85 m A, and 

it RI,= 47 volts. it Rk = 20.5 volts. 

When a positive pulse is applied to Gi causing V > V max as a result, 

T 
1 

is brought into conduction whereas T 
2 

is cut off. Then, the voltage at 

G2 increases exponentially to Eb. All other voltages remain constant until 



Egg rises to the cutoff voltage of T2, 

At this point the quasi-stable state is 

finally to the quiescent level i2 
k. 

Which occurs 

terminated, 
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when Egg 
= Rk Eco2. 

and the voltage settles 

Next, the overshoot voltages are calculated. At the current correspond- 

ing to grid clamping (i2 = 12.2 m A) and plate voltage of 250 - 84 - 36.6 = 

129.4 volts, = 40, /13 = 7.7 K9 

= 3309 , 

iIRR 
( 1 - o) ( L + k) 

Ric + RL + rp 

0.565. 

The grid current ig can be calculated as 

and 

(il - I0) (RL + Rk) 
i 
g RL + +(1 + 1,)Rk 

'11 3.0 m A, 

i 
2 

= ig 

(99) 

(100) 

(101) 

';=.' 1.7 m A. 

Hence, at the overshoot the cathode voltage rises to (i2 + Lii2 + i )Rk = 

50.7 volts. The calculated waveforms at various electrodes are shown in 

Figure 28. 

Now, the duration of output pulse, T is calculated. The initial value 

of Egg is E. 
I 
=i 

2 
R. 

1 L 
R = -11.4 volts. The final value of Egg for 

Ef = Eb = +250 volts is 
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ep2 (volt) 
A 

ep1 (volt) 

e92 (volt) 
60 

50- 

40- izRK =36.6V 
A 

30 

20- ZiRL 
.48v 

10- 
0 

-10 

-20- 

_ - 

ist's + (i2+ 4i2+ 1.3)RK 

=5"1-7V 

- --- 
{:IRK÷Ecoa15--2v 

t=0 ;t-T 4, t 

6 (volt) 

T= RC 

(b) 

( C ) ( d ) 

Figure 28. Waveforms of the One-shot Multi-vibrator. 
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E = E ( 

g2 f E f - Ei) e- 
cR 

t 

E- cR Ef - ER2 

= C R x 0.11. 

(102) 

(103) 

(IVO 

or 
E 

When t = T, 
Eg2 = 

T = C R in 

f 
- 

Ei 

= 15.2 volts, 
Rk Eco2 

i 
R 

Eb (2 Rk 
) 

(il Rk 
El 

Since C = 5000 P F and R = 100 K , 

T= 5 x 10 -9 x 10 5 x 0.11 = 55 x 10 
-6 

= 55 /4 Sec. 

Operational Features 

An over-all linear gain of approximately 500 was obtained at PRF of 

3 kc as shown in Figure 29. The over-all rise time is approximately 4 micro- 

seconds, and tilt is approximately 3%. The sampled pulses beyond the sixth 

one appear at the output with highly attenuated amplitude and do not affect 

the over-all performance of the sampler. The frequency response of the 

sampler is believed to be essentially flat. The a-c coupling used between 

the first Schmitt circuit and the succeeding multi-vibrator circuit is not 

very suitable. The d-c level of the output pulses would have been constant 

in the case of d-c coupling whereas, in the case of a-c coupling, it is de- 

pendent on the pulse width. The dynamic range of the input amplifier, it is 

believed, can be increased if tubes with higher operating amplitude level 

are used. In order to simplify the circuit, an unbalanced modulator circuit 

was used in this system, although it is desirable to use Cowan modulator 

(balanced type) to eliminate even harmonics of distortion. 



Output (volt) 

Input( mV : at V1 grid ) 

Figure 29. Input-Output Characteristic. 
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A solution of the scattering of plane electromagnetic waves from an 

almost plane inhomogeneous terrain with randomly varying impedance, which 

may be said to represent the amplitude and phase effects of an otherwise 

rough surface on the reflected wave, is attempted in the first part. An 

expression of average received power is obtained using Kirchhoff-Huygens' 

principle and a terrain with Rayleigh distributed impedance, in the sense 

defined above. It is first assumed to be real and then a general discussion 

for its complex value is given. 

An electromagnetic or an acoustic wave reflected from a rough target 

surface contains sufficient information about its roughness. This informa- 

tion can be obtained from a return signal if it is sampled for statistical 

analysis. Use of an electronic sampler results in a great saving of time. 

Therefore an electronic sampling device for the acoustic simulation facility 

for radar return of the Department of Electrical Engineering, Kansas State 

University, is discussed in the second part. This sampler was designed to 

sample the incoming pulse signal one to six times during the signal duration. 

Its design and performance are given in detail. 


