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Abstract 

The overall aim of this dissertation is to further understand sex differences in the 

cardiopulmonary responses during exercise in younger and older individuals.  Emphasis is 

directed towards the influence of sex in modulating respiratory muscle blood flow and the 

inspiratory muscle metaboreflex.  The first investigation of this dissertation (Chapter 2) 

demonstrated that sex differences do not alter respiratory muscle blood flow at rest or during 

exercise.  The second investigation (Chapter 3) demonstrated that sex differences exist in the 

cardiovascular consequences of the inspiratory muscle metaboreflex.  Specifically, pre-

menopausal women, compared to age-matched men, exhibited attenuated increases in mean 

arterial pressure and limb vascular resistance as well as decreases in limb blood flow during 

inspiratory muscle metaboreflex activation.  In Chapter 4, we demonstrated that post-

menopausal, compared to pre-menopausal, women exhibit greater increases in mean arterial 

pressure and limb vascular resistance and decreases in limb blood flow during activation of the 

inspiratory muscle metaboreflex.  Furthermore, no differences in the cardiovascular 

consequences were present between older men and women or younger and older men with 

activation of the inspiratory muscle metaboreflex.  These data suggest that the tonically active 

inspiratory muscle metaboreflex present during maximal exercise will result in less blood flow 

redistribution away from the locomotor muscles in pre-menopausal women compared to post-

menopausal women, as well as younger and older men.  In conclusion, sex differences in young 

adults incur a major impact in the cardiovascular consequences during inspiratory muscle 

metaboreflex activation, while not modifying respiratory muscle blood flow.   
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Chapter 1 - Introduction 

The respiratory muscles are structurally (high mitochondrial volume density, rich 

vascular network) and functionally (great oxidative potential and vascular flow capacity) 

designed to resist fatigue and failure (2, 17-19, 20, 21).  From rest to maximal exercise, the cost 

and work of breathing increases with progressive increases in ventilation during incremental 

exercise, which are met by increases in respiratory muscle blood flow (15).  During exercise, the 

respiratory muscle blood flow response is heterogenous, such that diaphragm blood flow 

increases to a greater extent than accessory respiratory muscle (e.g., intercostal, transversus 

abdominis) blood flow (20).  The high ventilatory demand and work of breathing during 

maximal exercise commands that 14-16% of the total cardiac output be distributed to the 

respiratory muscles (10).   

 Sex differences exist in airway caliber and respiratory mechanics during exercise.  For 

example, women have smaller airways compared to men matched for lung size (24), which is 

associated with the development of expiratory flow limitation during exercise (25).  

Consequently, women have a higher cost and work of breathing for a given ventilation during 

exercise (4, 7).  These latter studies suggest that women compared to men will have a greater 

respiratory muscle blood flow response during exercise.  In this context, we developed the 

investigation described in Chapter 2 to examine if sex differences exist in respiratory muscle 

(diaphragm, intercostals, and transversus abdominis) blood flow during moderate and near-

maximal intensity exercise.  

High inspiratory muscle work and the concomitant accumulation of metabolites is 

associated with neural and cardiovascular consequences (3).  Specifically, fatiguing 

diaphragmatic contractions lead to increased group IV afferent discharge (12) and stimulation of 
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the phrenic afferents leads to vasoconstriction and decreased blood flow to the periphery (13).  

Furthermore, lactic acid infusion into the phrenic artery resulted in increased mean arterial 

pressure (MAP) and decreased limb blood flow (Q̇L) at rest and during exercise in canines (22).  

In young men, high inspiratory muscle work activated the inspiratory muscle metaboreflex 

leading to time-dependent increases in muscle sympathetic nerve activity (MSNA), MAP, and 

leg vascular resistance (LVR), such that the increase in LVR was greater than MAP resulting in 

decreased Q̇L (23, 26).  There is also evidence that the inspiratory muscle metaboreflex is 

tonically-active during severe-intensity exercise in young men.  Harms et al (1997) found that 

unloading the inspiratory muscles (via a proportional assist ventilator) during maximal cycling 

exercise decreased LVR by ~7% compared to control (9).  Therefore, the inspiratory muscle 

metaboreflex leads to neural and cardiovascular consequences during maximal exercise. 

 Due to the greater cost and work of breathing in women compared to men (4, 7), it has 

been suggested that women have an exaggerated inspiratory muscle metaboreflex, consequently 

leading to greater redistribution away from the exercising locomotor muscles.  However, sex 

differences have also been found in the skeletal muscle metaboreflex-induced neural and 

cardiovascular responses (5, 14).  Specifically, the skeletal muscle metaboreflex elicits 

attenuated increases in MSNA and MAP in women compared to men (5, 14).  In addition, sex 

differences exist in the peripheral transduction of sympathetic outflow to the peripheral 

vasculature (11).  In Chapter 3, we determined if sex differences exist in the cardiovascular 

consequences of the inspiratory muscle metaboreflex.  Identifying sex differences in the 

inspiratory muscle metaboreflex represents the initial step towards determining if high 

inspiratory muscle work will lead to sex differences in the redistribution of locomotor Q̇L during 

maximal exercise. 
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Based on these data, we investigated if the cardiovascular consequences of the inspiratory 

muscle metaboreflex were modified in older adults (Chapter 4).  Aging is associated with 

decreases in respiratory muscle strength (8) and endurance (1), loss of elastic recoil (16) and 

stiffening of the chest wall (15).  Consequently, dynamic compliance is lower in older adults, 

such that the cost and work of breathing for a given ventilation is higher compared to younger 

adults (15).  Moreover, post-menopausal women compared to pre-menopausal women 

demonstrate greater sympathetic vasoconstriction during exercise (6) and more transduction of 

sympathetic outflow to the peripheral vasculature (11).  In this context, we developed the 

investigation in Chapter 4 to determine the influence of age on sex differences in the 

cardiovascular consequences of the inspiratory muscle metaboreflex.  

Taken together, the studies included in this dissertation were designed to extend the 

existing literature by examining the roles of sex and age on respiratory muscle blood flow as well 

as the inspiratory muscle metaboreflex.  Significant focus is given to sex differences in the 

inspiratory muscle metaboreflex and if these sex differences are present in older adults.  Each 

chapter in this dissertation is self-contained following standard journal article format and a 

comprehensive conclusion is included for this series of studies (Chapter 5). 
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Chapter 2 - Respiratory muscle blood flow during exercise: 

effects of sex and ovarian cycle 
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 Summary 

Sex and ovarian cycle have been speculated to modify respiratory muscle(s) blood flow 

control during exercise, but the findings are inconclusive.  We tested the hypotheses that females 

would have higher respiratory muscle blood flow and vascular conductance (VC) compared to 

males during exercise and that this difference would be accentuated in proestrus versus 

ovariectomized (OVA) females.  Mean arterial pressure (carotid artery catheter) and respiratory 

muscle blood flow (radiolabeled microspheres) were measured during moderate-intensity 

(24m/min, 10% grade) exercise in male (n=9), female (n=9), and OVA female (n=7) rats and 

near-maximal (60m/min, 5% grade) exercise in male (n=5) and female (n=7) rats.  At rest, 

diaphragm, intercostal, and transversus abdominis blood flow were not different (p=0.33) among 

groups.  During moderate-intensity exercise, diaphragm (M: 124±16; F: 140±14; OVA: 

140±20mL/min/100g), intercostal (M: 33±5; F: 34±5; OVA: 30±5mL/min/100g), and 

transversus abdominis blood flow (M: 24±4; F: 35±7; OVA: 35±9mL/min/100g) significantly 

increased in all groups compared to rest, but were not different (p=0.12) among groups.  From 

rest to moderate-intensity exercise, diaphragm (p<0.03) and transversus abdominis (p<0.04) VC 

increased in all groups, while intercostal VC increased only for males and females (p=0.01).  No 

differences (p>0.13) existed in VC among groups.  During near-maximal exercise, diaphragm 

(M: 304±62; F: 283±17mL/min/100g), intercostal (M: 29±8; F: 40±6mL/min/100g), and 

transversus abdominis (M: 85±14; F: 86±9mL/min/100g) blood flow and VC were not different 

(p>0.27) between males and females.  These data demonstrate that respiratory muscle blood flow 

and vascular conductance at rest and during exercise are not affected by sex or ovarian cycle in 

rats. 
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 Introduction 

Respiratory muscle failure portends morbidity and mortality and thus the respiratory 

muscles are structurally (high mitochondrial volume density, rich vascular network) and 

functionally (great oxidative potential and vascular flow capacity) designed to resist fatigue and 

failure (7, 32-34, 47, 48).  A key aspect of respiratory muscle function during exercise is that, as 

befitting their importance to overall exercise capacity, increased respiratory muscle work can 

command a redistribution of cardiac output from the locomotory to the respiratory muscles in 

healthy (20) and diseased (37, 43) populations.   

Although not possible in humans, respiratory muscle blood flow has been directly 

measured in rats (37, 47), dogs (39), swine (2), and ponies (32-34).  From rest to maximal 

exercise, blood flow increases heterogeneously to the respiratory muscles, with greater 

diaphragm than intercostal and transversus abdominis blood flow (34, 37, 47).  Whereas 

diaphragm paralysis decreases peak oxygen uptake ~20% in rats (18), the large increases in its 

blood flow during exercise suggest that the diaphragm is an important inspiratory muscle in rats 

as for humans.   

Accumulating evidence suggests that sex differences in respiratory muscle blood flow 

during exercise may exist.  Specifically, women have been shown to have a higher cost of 

breathing compared to men at submaximal and maximal ventilations (8).  In addition, 

hyperthermia-induced increases in ventilation lead to greater increases in diaphragm blood flow 

in resting female rabbits compared to male rabbits (31).  These data suggest that females will 

have higher respiratory muscle blood flow than males during exercise; however, this has not 

been investigated.  
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Several studies have investigated if sex differences exist in the regulation of limb muscle 

blood flow during exercise; however, the results are inconclusive.  For example, pre-menopausal 

women have been reported to have higher forearm and knee extensor muscle blood flow and 

vascular conductance compared to men during handgrip (17, 28, 51) and knee extension exercise 

(39), respectively.  In contrast, several other studies have found no sex differences in muscle 

blood flow and vascular conductance during handgrip exercise (5, 25, 29, 30, 58).   

Animal models allow for experimental designs that can mechanistically elucidate 

differences in blood flow regulation between sexes.  Rogers and Sheriff (2004) reported that sex 

differences were not present in terminal aortic blood flow during treadmill running in rats.  

However, chronically supplementing ovariectomized female rats with estrogen resulted in 

greater terminal aortic blood flow and vascular conductance during exercise compared to males 

(50).  Thus, females tested during the proestrus stage of their ovarian cycle may exhibit greater 

respiratory muscle blood flow and vascular conductance during exercise compared to males.  

Therefore, the effects of sex and the ovarian cycle on respiratory muscle blood flow regulation 

and vascular conductance during exercise remain unresolved.  We hypothesized that females 

would exhibit greater respiratory muscle blood flow and vascular conductance compared to 

males during exercise and that these differences would be accentuated in proestrus versus 

ovariectomized females.  
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 Methods 

Ethical approval:  Age-matched male (n=14; 388-421 g), female (n=16; 263-291 g), and OVA 

female (n=7; 355-436 g) Wistar rats (Charles River Laboratories, Portage MI) were maintained 

at accredited animal facilities at Kansas State University on a 12:12-h light-dark cycle with food 

and water provided ad libitum.  All procedures were approved by the Institutional Animal Care 

and Use Committee of Kansas State University.  Vaginal smear cytology (35) was used to 

confirm females were tested in the proestrous phase and the OVA females were devoid of the 

ovarian cycle.  All rats were familiarized with running on a custom-built, motor-driven treadmill 

for two weeks consisting of exercising 5-10 min/day at 20m/min, 10% grade.  The speed of the 

treadmill was gradually increased to 28 m/min while exercise duration was reduced to <5 

min/day to ensure a training effect was not incurred (42). 

Surgical instrumentation: The ovariectomy procedure consisted of administration of anesthesia 

(5% halothane oxygen mixture) followed by bilateral midventral incisions to locate the ovaries.  

The junction between the uterus and each ovary was ligated followed by ovary resection, closure 

of incisions, and a minimum 4 weeks of recovery.  On the day of the experiment, rats were 

anesthetized with a 5% halothane oxygen mixture and maintained subsequently on a 2% 

halothane/oxygen combination.  One catheter (PE-10 connected to PE-50, IntraMedic 

polyethylene tubing, Clay Adams, Becton, Dickinson, Sparks, MD) was placed in the ascending 

aorta via the right carotid artery for the measurement of mean arterial pressure (MAP) and heart 

rate (HR) (model 200, DigiMed BPA, Louisville, KY) and the infusion of radiolabeled 

microspheres.  A second catheter was placed in the caudal (tail) artery for arterial blood sampling 

(42).  Both catheters were tunneled subcutaneously through the dorsal aspect of the cervical 
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region and exteriorized through a puncture in the skin.  The incisions were then closed, 

anesthesia was terminated, and the rats were given >60 min to recover (13).   

Measurement of respiratory muscle blood flow:  Following recovery, each rat was placed on the 

motor-driven treadmill and the carotid artery catheter was connected to the pressure transducer 

(model P23ID, Gould Statham, Valley View, OH).  After the stabilization period, the caudal 

artery was connected to a 1-mL syringe chambered in an infusion/withdrawal pump (model 907, 

Harvard Instruments).  Rats were given a 2-min warm-up period followed by a gradual increase 

in grade and speed of the treadmill to 24 m/min, 10% grade (~60%V̇O2max, moderate-intensity 

exercise) for males (n=9), females (n=9), and OVA females (n=7) or 60 m/min, 5% grade (near-

maximal exercise) for males (n=5) and females (n=7).  The rat was then required to exercise at 

the speed and grade for 3 min.  During this time, radiolabeled microspheres (46Sc, 85Sr, 141Ce, or 

113Sn in random order; New England Nuclear, Boston, MA) were mixed by a vortex agitator 

(Fishers Scientific, Waltham, MA).  At the 3 min exercise mark, the carotid artery catheter was 

disconnected from the pressure transducer and 0.5-0.6 x 106 microspheres with a 15-µm diameter 

were injected into the aortic arch to determine respiratory muscle blood flow.  Simultaneously, 

the pump connected to the caudal artery catheter was activated and blood withdrawal was 

initiated at a rate of 0.25 mL/min. Blood withdrawal was terminated 30 s following the 

microsphere infusion and then exercise was terminated. 

 After >30 min of recovery, a second microsphere infusion was performed (radiolabeled 

different from the first microsphere infusion) while the rat sat quietly on the treadmill for 

determination of resting respiratory muscle blood flows, MAP and HR.  This experimental 

protocol minimizes the potential influences of the pre-exercise anticipatory response on resting 

muscle blood flows, MAP and HR measurements (3). 
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Determination of blood flow and vascular conductance:  Following the completion of the 

exercise protocols, rats were euthanized with an overdose of sodium pentobarbital (>50 mg/kg 

body wt.) via the right carotid artery catheter and placement of each catheter was verified by 

anatomic dissection.  The diaphragm, intercostals, and transversus abdominis of each rat were 

dissected out.  The tissues were blotted, weighed, and placed immediately into counting vials.  

Tissue blood flows were determined using the radionuclide-tagged microsphere technique that 

has previously been used in the exercising rat (42).  Before each injection, the microspheres were 

thoroughly mixed and agitated by sonication to prevent clumping.  Each group of microspheres 

(0.6-0.7 x 106 in number) was injected into the ascending aorta of the rat in a 0.15-0.20 mL 

volume.  The radioactivity of each tissue was determined with a gamma scintillation counter 

(model 5230, Auto Gamma Spectrometer, Packard, Downers Grove, IL).  The radioactivity of 

the tissues was then analyzed by computer, taking into account the cross-talk fraction between 

the different isotopes.  Absolute muscle blood flow was then calculated by the reference sample 

method (26) and expressed in milliliters per min per 100g of tissue.  Vascular conductance was 

then calculated by normalizing blood flow to MAP measured at the time of the microsphere 

infusion and expressed as mL/min/mmHg/100g. 

Statistical analyses:  Values are reported as mean ± standard error (SE).  All statistical analyses 

were performed by using SigmaStat 2.0 (Jandel Scientific, San Rafael, CA).  MAP, HR as well 

as respiratory muscle (diaphragm, intercostal, and transversus abdominis) blood flows and 

vascular conductances were compared within (rest vs 24 m/min, 10% grade) and among (males 

vs females vs OVA females) groups using mixed factorial ANOVAs and Student-Newman-

Keuls post-hoc tests when appropriate.  Unpaired t-tests were used to compare MAP, HR, and 

respiratory muscle (diaphragm, intercostal, and transversus abdominis) blood flows and vascular 
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conductances between males and females.  Two-tailed p values were reported and statistical 

significance was set at p<0.05. 
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 Results 

Cardiovascular responses:  At rest, there were no significant differences in MAP (M: 137±5; F: 

131±4; OVA: 140±5 mmHg; p=0.23) or HR (M: 453±9; F: 439±16; OVA: 429±19 beats/min; 

p=0.35) between groups (Table 1).  During moderate-intensity exercise, HR significantly 

increased (p<0.01) in each group, but was not different (p=0.12) between groups (M: 536±5; F: 

544±13; OVA: 509±6 beats/min).  During moderate-intensity exercise, MAP was not different 

(p=0.08) compared to resting values or among groups (p=0.38).  During near-maximal exercise, 

MAP was not significantly different (p=0.09) between males (137±4 mmHg) and females 

(145±2 mmHg), but HR was significantly higher (p<0.01) for females (550±5 beats/min) 

compared to males (514±5 beats/min). 

Respiratory muscle blood flow:  At rest, diaphragm (Fig. 1A), intercostal (Fig. 1B), and 

transversus abdominis (Fig. 1C) blood flows were not different (p=0.33) among groups.  From 

rest to moderate-intensity exercise, diaphragm, intercostal, and transversus abdominis blood flow 

significantly increased in males, females, and OVA females, but no differences (p=0.12) existed 

among groups.  Individual male and female diaphragm blood flow responses from rest to 

moderate-intensity exercise are shown in Figure 3A.  No differences were present in resting 

diaphragm (M: 0.60±0.07; F: 0.58±0.06; OVA: 0.73±0.06 mL/min/mmHg/100g; p=0.38), 

intercostal (M: 0.12±0.03; F: 0.09±0.02; OVA: 0.14±0.04 mL/min/mmHg/100g; p=0.42), or 

transversus abdominis (M: 0.08±0.01; F: 0.09±0.02; OVA: 0.12±0.02 mL/min/mmHg/100g; 

p=0.53) vascular conductance among males, females, and OVA females.  From rest to moderate-

intensity exercise, diaphragm (M: 0.87±0.11; F: 1.02±0.10; OVA: 0.99±0.13 

mL/min/mmHg/100g; p<0.03) and transversus abdominis (M: 0.17±0.03; F: 0.25±0.05; OVA: 

0.25±0.06 mL/min/mmHg/100g; p<0.04) vascular conductance increased in all groups, while 
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intercostal vascular conductance significantly increased only for males (0.23±0.04 

mL/min/mmHg/100g; p=0.01) and females (0.25±0.04 mL/min/mmHg/100g; p<0.01).  There 

were no significant differences among groups in diaphragm (p=0.39), intercostal (p=0.67), or 

transversus abdominis vascular (p=0.13) conductance during moderate-intensity exercise.  

 Similarly, there were no sex differences in diaphragm (p=0.71), intercostal 

(p=0.27), or transversus abdominis (p=0.95) muscle blood flow (Fig. 2A) during near-maximal 

exercise.  Figure 3B shows individual male and female diaphragm blood flows during near-

maximal exercise.  There were also no sex differences in diaphragm (p=0.52), intercostal 

(p=0.42), or transversus abdominis (p=0.88) vascular conductance (Fig. 2B) during near-

maximal exercise. 

  



 

17 

 Discussion 

Major findings:  The primary novel findings of this investigation are that respiratory muscle 

blood flow and vascular conductance were neither significantly different between (1) male and 

female rats at rest or during moderate- or near-maximal-intensity exercise nor (2) females tested 

during the proestrus phase and ovariectomized females during moderate-intensity exercise.  

These results suggest that respiratory muscle blood flow responses and vascular conductance 

during exercise are not modulated by sex or the ovarian cycle in rats. 

Sex differences in respiratory muscle blood flow:  Blood flow control differs between men and 

women.  For example, women exhibit attenuated increases in muscle sympathetic nerve activity 

during exercise (9, 27) as well as less peripheral transduction of sympathetic outflow to the 

peripheral vasculature than men (23).  Moreover, elevated estrogen levels as seen during the 

proestrus phase lead to greater synthesis of prostacyclin and nitric oxide (24, 44) coincident with 

greater endothelium-dependent vasodilation (21).  These data suggest women may have greater 

exercise-induced muscle vasodilation and blood flow responses compared to men.  

The literature investigating sex differences in blood flow during exercise is equivocal.  

For example, Parker et al (2007) found that women had higher femoral artery blood flow 

(normalized for muscle mass) compared to men during knee extension exercise (46).  In contrast, 

several studies report no sex differences in blood flow responses during handgrip exercise (5, 17, 

25, 29, 30, 58).  Furthermore, Rogers and Sheriff (2004) could found no sex differences in 

terminal aortic blood flow during treadmill exercise in rats.  However, ovariectomized female 

rats with chronic estrogen supplementation had higher terminal aortic blood flow and vascular 

conductance compared to males.  Therefore, we reasoned that females tested during the proestrus 

stage of their ovarian cycle would have higher exercising respiratory muscle blood flow and 
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vascular conductance compared to males.  In contrast, we found no sex differences in respiratory 

muscle blood flow, vascular conductance, or heterogeneity in blood flow among respiratory 

muscles during moderate-intensity or near-maximal exercise.  Importantly, our near-maximal 

exercise respiratory muscle blood flows, specifically diaphragm blood flow (i.e., 283-304 

mL/min/100g), are in line with maximal-intensity exercise values previously reported in ponies 

(265-325 mL/min/100g; 32, 34), while lower than those reported in rats exercising supra-

maximally (360 mL/min/100g; 47) and maximal-intensity human knee-extensor blood flow (385 

mL/min/100g; 49).  In addition, the heterogeneity in respiratory muscle blood flow and vascular 

conductances during exercise is consistent with previous studies in male (37) and female (47) 

rats as well as ponies (34).  A likely explanation for the discrepancy between our findings and 

those using the chronic estrogen supplementation stated above (50) stems from their 

implementation of supra-physiologic estrogen levels.  Furthermore, our results are in-line with 

studies showing no differences in exercising brachial artery blood flow between men and women 

tested in the late follicular or luteal phases (30, 58).  This may reflect a substantial redundancy of 

blood flow control mechanisms that regulate sex differences at rest and during exercise.   

The findings of the current investigation also contribute to our understanding of the 

redistribution of blood flow from the locomotory muscles to the respiratory muscles during 

severe-intensity exercise.  Specifically, high inspiratory muscle work and concomitant 

accumulation of metabolites lead to an inspiratory muscle metaboreflex (52, 55) redistributing 

blood flow to the respiratory from the locomotory muscles during exercise (20).  Recently, we 

have found that women have an attenuated inspiratory muscle metaboreflex (53) and less 

exercise-induced diaphragmatic fatigue development compared to men (19).  Currently, it is not 

possible to measure diaphragm blood flow directly in humans; however, it has been suggested 
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that women have a greater portion of cardiac output directed to the inspiratory muscles (8).  In 

the current study, we found that sex differences were not present in diaphragm blood flow or 

vascular conductance during near-maximal running.  It is important to note that respiratory 

mechanics differ between rats and humans.  At rest, rats have greater lung and chest wall 

compliance as well as less lung resistance compared to humans (6).  It remains to be determined 

whether altering the work of breathing via stimuli other than exercise or in addition to exercise 

exposes sex differences in cardiac output redistribution during exercise. 

Ovarian cycle and respiratory muscle blood flow:  Previous studies investigating the effects of 

the ovarian cycle on neural and blood flow control have been conflicting.  While not a consistent 

finding (27), muscle sympathetic nerve activity has been reported to be higher during menses 

compared to late follicular phase in women during handgrip exercise (10).  In addition, 

endothelium-dependent flow mediated dilation is also greater during late follicular and luteal 

phase compared to menses possibly due to the high circulating estrogen levels (21).   

To date, few investigations have studied the influence of the ovarian cycle on muscle 

blood flow responses during exercise.  A recent study reported that brachial artery blood flow 

and vascular conductance were not altered across the menstrual cycle during dynamic handgrip 

exercise at 15% and 30%MVC (30).  In the present study, we found that respiratory muscle(s) 

blood flow and vascular conductance were not different between ovariectomized females and 

females tested in the proestrus phase.  To our knowledge, this is the first study to compare 

muscle blood flows during large muscle mass exercise (i.e. running) in ovariectomized females 

and females tested in the proestrus phase.   

In contrast to our findings, chronic estrogen supplementation leads to higher resting 

femoral artery blood flow and vascular conductance (36) and attenuated limb vasoconstriction in 
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post-menopausal women (11) as well as increased blood flow and vascular conductance during 

exercise in ovariectomized female rats (12, 50).  Furthermore, estrogen has been shown to 

upregulate nitric oxide (22, 56), suppress α1-aderngergic receptor expression (59) and decrease 

sympathetic innervation (60).  While not a consistent finding (15), it is possible the high 

progesterone levels, which also occur during the proestrus phase, may have attenuated the 

vasodilatory effects of estrogen in the current study (14).  Future studies are warranted to 

elucidate the mechanisms responsible for the divergent effect of the ovarian cycle versus chronic 

estrogen supplementation on blood flow responses during exercise.  Collectively, our findings in 

addition to previous studies suggest that the ovarian cycle does not modulate conduit artery or 

muscle blood flow during whole-body exercise. 

Experimental considerations:  We recognize that the lack of respiratory muscle blood flow 

differences either between male and female rats or between intact and OVA rats at rest and 

during exercise may conceal disparities in respiratory mechanics, muscle recruitment, and/or 

work and control of breathing.  Moreover, demonstration that there are no male/female 

differences in V̇O2, V̇CO2, or PaCO2 between male and female rats at moderate and near-

maximal-intensity exercise would have helped alleviate these concerns.  In this regard, the 

literature demonstrates that, despite significant differences in body mass with females being 

smaller (herein by 124 g on average), female and male rats during treadmill exercise do not 

differ with respect to mass-specific V̇O2 or V̇CO2 (4, 16, 38, 40, 41).  Moreover, because there 

are no differences in PaCO2 (38, 40, 41), alveolar minute ventilation is not expected to be 

different between males and females.  While we recognize that sex-related differences in airway 

size and dead-space as well as respiratory mechanics and thus work of breathing may not be the 

same, we consider it unlikely that these considerations would coincidentally summate with 
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alterations of respiratory muscle vascular control to nullify differences in vascular conductance 

and blood flow in the respiratory muscles should they exist. 

 With respect to females being lighter than males; whereas across orders of body mass 

larger animals move more efficiently (e.g., lower V̇O2 or J per m per kg (1)), within a given 

species the literature supports that there is an invariance of body mass-adjusted V̇O2 during rest 

or running among both animals (1) and humans (57).  Furthermore, the energetic cost of running 

was not different between male and female middle-distance (1500-3000 m) runners (45).  

Finally, whereas it is obvious that locomotory energetics differ between bipedal and quadrupedal 

running, the metabolic cost per kg lifted is not different in bipeds versus quadrupeds (54). 

Conclusion:  This is the first investigation to resolve that there is no influence of sex and ovarian 

cycle on respiratory muscle blood flow and vascular conductance at rest and during exercise in 

rats.  However, this does not address the important question as to whether altering the work of 

breathing during exercise might expose sex differences in respiratory muscle blood flow and if 

progesterone is attenuating the vasodilatory effects of estrogen during exercise.  It would also be 

pertinent to determine if sex differences are present in hindlimb blood flow and vascular 

conductance during exercise. 
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         Table 2-1 MAP and HR at rest and during moderate-intensity exercise. 

   
                  

    

MAP 

(mmHg) HR (beats/min)   

  Male               

       Rest 137 ± 5 453 ± 9   

       Exercise 142 ± 2 536 ± 5*   

  Female               

       Rest 131 ± 4 439 ± 16   

       Exercise 137 ± 4 544 ± 13*   

  OVA Female             

       Rest 140 ± 5 429 ± 19   

       Exercise 142 ± 3 509 ± 6*   

                  

  Values are mean ± SE. MAP, mean arterial pressure; HR, heart 

rate. * p<0.05 vs. rest 
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Figure 2-1 Respiratory muscle blood flows at rest and during moderate-intensity exercise. 

Diaphragm (top), intercostal (middle), and transversus abdominis (bottom) blood flow at rest and 

during moderate-intensity exercise in males (black bar), females (white bar), OVA females (gray 

bar).  Diaphragm, intercostal, and transversus abdominis blood flow increased (p<0.05) from rest 

to moderate-intensity exercise, but no differences (p>0.05) existed among groups.  *, 

significantly different compared to rest 
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Figure 2-2 Respiratory muscle blood flows and vascular conductances at near-maximal 

exercise. 

Diaphragm, intercostal, and transversus abdominis blood flow (top) and vascular conductance 

(bottom) during near-maximal exercise in males (black bar) and females (white bar).  There were 

no sex differences (p>0.05) in respiratory muscle blood flows or vascular conductances. 
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Figure 2-3 Individual diaphragm blood flows at rest and during exercise in males and 

females. 

Male and female individual diaphragm blood flow responses at rest and during moderate-

intensity exercise (top) and near-maximal exercise (bottom). 
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Chapter 3 - Sex differences in the cardiovascular 

consequences of the inspiratory muscle metaboreflex 
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 Summary 

It is currently unknown if sex differences exist in the cardiovascular consequences of the 

inspiratory muscle metaboreflex.  We hypothesized that the activation of the inspiratory muscle 

metaboreflex will lead to less of an increase in mean arterial pressure (MAP) and limb vascular 

resistance (LVR) and less of a decrease in limb blood flow (Q̇L) in women compared to men.  

Twenty healthy men (n=10, 23 ± 2 yrs) and women (n=10, 22 ± 3 yrs) were recruited for this 

study.  Subjects performed inspiratory resistive breathing tasks (IRBTs) at 2% or 65% of their 

maximal inspiratory mouth pressure (PIMAX).  During the IRBTs, the breathing frequency was 20 

breaths min-1 with a 50% duty cycle.  At rest and during the IRBTs, MAP was measured via 

automated oscillometry, Q̇L was measured via Doppler ultrasound, and LVR was calculated.  

EMG was recorded on the leg to ensure no muscle contraction occurred.  The 65% IRBT led to 

attenuated increases (p<0.01) from baseline in women compared to men for MAP (W: 7.3±2.0 

mmHg; M: 11.1±5.0 mmHg) and LVR (W: 17.7%±14.0%; M: 47.9±21.0%) as well as less of a 

decrease (p<0.01) in Q̇L (W: -7.5±9.9%; M: -23.3±10.2%).  These sex differences in MAP, Q̇L, 

and LVR were still present in a subset of subjects matched for PIMAX.  The 2% IRBT resulted in 

no significant changes in MAP, Q̇L, or LVR across time or between men and women.  These data 

indicate pre-menopausal women exhibit an attenuated inspiratory muscle metaboreflex compared 

to age-matched men. 
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 Introduction 

Fatiguing inspiratory muscle work and the concomitant accumulation of metabolites is 

associated with neural and cardiovascular consequences (7).  For example, Hill (17) reported that 

fatiguing diaphragmatic contractions lead to increased type IV afferent discharge in the 

anaesthetized rat.  In addition, lactic acid infusion into the phrenic circulation leads to increases 

in mean arterial pressure (MAP) and decreases in limb blood flow (Q̇L) at rest and during 

exercise in canines (28).  In young men, high inspiratory muscle work activates the inspiratory 

muscle metaboreflex leading to time-dependent increases in muscle sympathetic nerve activity 

(MSNA), MAP, and leg vascular resistance (LVR), as well as decreases in Q̇L (29, 37).  There is 

also evidence that the inspiratory muscle metaboreflex is tonically-active during severe-intensity 

exercise in young men.  Harms et al (1997) showed that by unloading the inspiratory muscles 

(via a proportional assist ventilator) during maximal cycling exercise, LVR decreased ~7% and 

V̇O2leg/V̇O2tot increased ~10% compared to control (13).  Therefore, the inspiratory muscle 

metaboreflex leads to neural and cardiovascular consequences during severe-intensity exercise. 

Sex differences exist in airway size and respiratory mechanics during exercise.  For 

example, women have smaller airways compared to men matched for lung size (31), which is 

associated with the development of expiratory flow limitation during exercise (12, 36).  

Consequently, women have a higher work and cost of breathing for a given ventilation (8, 12).  

Despite the greater work of breathing, women exhibit less diaphragmatic fatigue compared to 

men (11).  Due to the greater work/cost of breathing in women compared to men, it has been 

suggested that women have an exaggerated inspiratory muscle metaboreflex, consequently 

leading to greater Q̇L redistribution away from the exercising locomotor muscles.   
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Importantly, sex differences also exist in the cardiovascular and neural response to acute 

stress (38).  For example, studies investigating the skeletal muscle metaboreflex (i.e. static 

handgrip) have found that pre-menopausal women exhibit an attenuated development of 

metabolites and increase in MSNA and MAP compared to men (9, 21).  Furthermore, sex 

differences exist in peripheral transduction of sympathetic outflow to the peripheral vasculature 

(14, 18), with women exhibiting less vasoconstriction for a given MSNA compared to men (18).  

However, it is not known if the activation of the metaboreflex in women leads to less of an 

increase in LVR and decrease in Q̇L compared to men.  The purpose of this study, therefore, was 

to determine if sex differences exist in the inspiratory muscle metaboreflex.  Based on the sex 

differences in inspiratory muscle fatigue resistance and metaboreflex-induced increases in 

metabolites, MSNA, and MAP, we hypothesized that the activation of the inspiratory muscle 

metaboreflex will lead to (1) attenuated increases in MAP and LVR as well as (2) an attenuated 

decrease in Q̇L in pre-menopausal women compared to age-matched men. 
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 Methods 

Subjects: Physically-active adults between the ages of 18-35 years were recruited for this project 

(n=20; 10 men, 10 pre-menopausal women).  All subjects completed a detailed medical health 

history questionnaire prior to entering the study and had normal pulmonary function as assessed 

by pulmonary function tests (PFTs). Exclusion criteria included smoking history and/or existence 

of acute and/or chronic cardiovascular, pulmonary, or metabolic diseases.  Pre-menopausal 

women were tested during the follicular phase (days 0-7) of their menstrual cycle as reproductive 

hormones have been shown to influence cardiovascular function and autonomic control (27).  All 

women were normally menstruating for at least the past 6 months.  All subjects refrained from 

exercise 12 hours and food and caffeine ingestion 2 hours prior to testing. All testing protocols 

for human subjects were approved by the Kansas State University Institutional Review Board.   

Experimental design: Subjects visited the laboratory on three different occasions. On the first 

visit, subjects were familiarized with all procedures and measurements. The next two visits were 

randomized and subjects performed inspiratory resistive breathing tasks (IRBTs) at 2% or 65% 

of their maximal inspiratory mouth pressure (PIMAX). The 65% IRBT has previously been shown 

to induce the inspiratory muscle metaboreflex (29, 30).  Q̇L, LVR, MAP, systolic blood pressure 

(SBP), diastolic blood pressure (DBP) and heart rate (HR) were measured at baseline and during 

the IRBTs.  Surface electromyography (EMG) sensors were placed on the leg to ensure no 

muscle contractions occurred during the IRBTs. To determine day-to-day variability in the 

cardiovascular responses during the 65% IRBT, a subset (n=3) of subjects performed three trials 

of the 65% IRBT on different days at least 24 hours apart. 

Inspiratory resistive breathing tasks: First, subjects were seated for >15 min to ensure baseline 

cardiovascular measurements.  Subjects breathed through a custom made inspiratory resistive 
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breathing device set at 2% or 65% PIMAX.  For the custom made inspiratory resistive breathing 

device, the subjects maximally inhaled through the device and the resistance was increased until 

it equaled 2% or 65% PIMAX.  The custom made inspiratory resistive breathing device consisted 

of a mouthpiece attached to a step down adapter which allowed for the connection of various 

diameter tubes used to achieve the desired resistance.  Throughout both IRBTs, subjects 

maintained a breathing frequency of 20 breaths min-1 and a prolonged duty cycle (TI/TTOT= 0.5; 

1.5 s inspiration and 1.5 s expiration).   Termination of the 65% IRBT was based upon the 

presence of a plateau in the increase in MAP as previously reported (39).  A plateau was defined 

as ≤2 mmHg absolute increase in MAP over three measurements.  MAP was measured every two 

min throughout the 65% IRBT.  Previously, the 65% IRBT has been shown to decrease 

inspiratory muscle blood flow in canines (3), induce the inspiratory muscle metaboreflex (29, 30, 

37, 39), and predict the onset of task failure (inspiratory muscle fatigue) in humans (1, 2, 10, 29, 

30).  The subjects performed the 2% IRBT for 10 min and it served as the control condition with 

the same breathing frequency and duty cycle as the 65% IRBT.  Expiration was passive during 

the IRBTs.  The investigators visually monitored the subject during the IRBTs to ensure proper 

timing, breathing technique, and effort.  End-tidal carbon dioxide was monitored (SensorMedics 

229 Metabolic Cart, SensorMedics Corp., Yorba Linda, CA) each min to determine whether 

hypocapnia occurred.  From pilot work, we expected a slight hypocapnic state to occur during 

the IRBTs; however, it is unlikely this influenced our results because moderate hypocapnia (~30 

mmHg) has been reported to not alter LVR or MAP (15).   

Doppler ultrasound: Doppler ultrasound (Vivid 3; GE Medical Systems, Milwaukee WI, USA) 

was used to measure superficial femoral artery velocity.  The gate of the Doppler was set to the 

full width of the superficial femoral artery to ensure complete insonation.  Measurements in the 
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superficial femoral artery were made approximately 3 cm distal to the bifurcation of the deep and 

superficial femoral artery. Mean blood velocity (VMEAN; cm x s-1) was defined as the time-

averaged mean velocity over each complete cardiac cycle.  VMEAN was averaged over the last 15 

s of consecutive cardiac cycles for each min.  Q̇L was calculated as the product of vessel cross-

sectional area and VMEAN.  Two-dimensional sonography was used to measure vessel diameters 

and calculate cross-sectional area (CSA=πr2).  Because this ultrasound does not allow for 

simultaneous measurements of velocity and diameter, the timing of the image capture occurred 

during diastole and one vessel diameter was used at each time point to calculate blood flow as 

previously done (34, 35).  Q̇L was calculated at baseline and every min during the IRBTs. 

Blood pressure: SBP, DBP and HR were measured at baseline and during the IRBTs via 

automated blood pressure oscillometry and 3-lead ECG, respectively (S/5 Light Monitor; GE 

Healthcare; Madison WI).  During the IRBTs, HR was recorded each min and SBP and DBP 

were measured every 2 min. MAP was calculated as 1/3(SBP-DBP) + DBP.  LVR was 

calculated as MAP divided by Q̇L. 

Pulmonary function:  PFTs were assessed according to American Thoracic Society/European 

Respiratory Society guidelines.  Maximum flow-volume loops were used to establish normal 

pulmonary function and give measures of forced vital capacity (FVC), forced expiratory volume 

in 1 s (FEV1), and peak expiratory flow (PEF) (SensorMedics 229 Metabolic Cart, SensorMedics 

Corp., Yorba Linda, CA) and these values were expressed as percent predicted (24).  PIMAX was 

used to determine inspiratory muscle strength and was measured from residual volume as 

previously reported (5, 25). 

Statistics: SigmaStat (Janel Scientific Software, Chicago, IL) was used for statistical 

analysis.  Data are expressed as mean±SD.  Subject characteristics and resting cardiovascular 
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variables (MAP, SBP, DBP, Q̇L, LVR, and HR) were compared for sex differences via 

unpaired t-tests.  During the IRBTs, MAP, SBP, DBP, HR were reported as an absolute 

change from baseline and Q̇L and LVR were reported as a percent change from baseline.  For 

the 2% IRBT, the cardiovascular variables were compared at baseline, min 2, min 4, min 6, 

min 8, and min 10 via a two-way mixed factorial measures analysis of variance (ANOVA) 

(sex x time).  For the 65% IRBT, the cardiovascular variables were compared at baseline, min 

2, min 4, min 6, and the final min via a two-way mixed factorial ANOVA (sex x time).  A 

Tukey’s post hoc analysis was performed to determine where significant differences existed.  

To compare MAP, Q̇L and LVR between men and women matched for PIMAX (n=5), one-tailed 

unpaired t-tests were performed.  Statistical significance was set at p<0.05 for all analyses.  

  



 

42 

 Results 

Subject characteristics: Table 1 shows subject characteristics.  Women were shorter (p<0.01) 

and had a lower body weight (p=0.01) compared to men.  In addition, women had a lower PIMAX 

(p=0.05), FVC (p<0.01), FEV1 (p<0.01), and PEF (p<0.01) compared to men.  Percent predicted 

FVC, FEV1, PEF, and PIMAX were not significantly different (all p>0.10) between men and 

women.  SBP (p<0.01) and MAP (p=0.01) were lower for women, while DBP (p=0.08) and HR 

(W: 68.0±9.6 bpm; M: 69.8±12.2 bpm; p=0.72) were not different compared to men.  Resting Q̇L 

was also lower (p=0.04) for women compared to men (W: 73.1±14.2 mL/min; M: 91.9±23.3 

mL/min); however, no sex differences existed (p=0.87) in QL when scaled to body weight (W: 

1.17±0.25 mL/kg/min; M: 1.19±0.34 mL/kg/min).  LVR was not significantly different (p=0.10) 

between men and women (W: 1.23±0.23 mmHg/mL/min; M: 1.03±0.27 mmHg/mL/min). 

Cardiovascular measures during 2% IRBT:  Figure 1 shows the mean absolute change in MAP 

(1A), SBP (1B), and DBP (1C) from baseline during the 2% IRBT.  MAP was not significant as 

a main effect of time (F=0.45; p=0.81), sex (F<0.01; p=0.99), or as an interaction (F=0.77; 

p=0.58).  For SBP, there was no significant main effect of time (F=0.46; p=0.94), sex (F<0.01; 

p=0.80), or as an interaction (F=1.49; p=0.20).  There was not a significant main effect of time 

(F=1.51; p=0.20), sex (F<0.01; p=0.96), or as an interaction (F=0.86; p=0.51) for DBP.  HR was 

not significant as a main effect of time (F=0.36; p=0.88), sex (F=0.02; p=0.90), or as an 

interaction (F=0.79; p=0.56).  Figure 2 shows the mean percent changes from baseline in Q̇L 

(2A) and LVR (2B). For Q̇L, there was not a significant main effect of time (F=0.65; p=0.66), 

sex (F=0.03; p=0.86), or as an interaction (F=0.18; p=0.97).  There was not a significant main 

effect of time (F=0.56; p=0.73), sex (F=0.02; p=0.90), or as an interaction (F=0.25; p=0.94) for 

LVR.  End-tidal CO2 was not different as a main effect of time (F=0.97; p=0.44), sex (F=0.74; 
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p=0.40), or as an interaction (F=0.38; p=0.86) during the 2% IRBT.  During the 2% IRBT, no 

muscle contraction was measured via EMG. 

Cardiovascular measures during 65% IRBT: The mean time for the 65% IRBT was 802±247 s 

and was not different (p=0.80) between men (816±258 s) and women (787±248 s).  Figure 3 

shows the mean absolute change during the 65% IRBT and the individual data at the final min 

for MAP (3A,B), SBP (3C,D), and DBP (3E,F).  For MAP, there was a main effect of time 

(F=14.61; p<0.01) and sex (F=12.71; p<0.01), but not an interaction (F=1.17; p=0.33).  Both 

men (p<0.01) and women (p<0.01) exhibited an absolute increase in MAP from baseline to the 

final min.  Women showed less of an absolute increase in MAP at min 2 (p=0.02), min 6 

(p=0.01), and the final min (p=0.05) compared to men.  For SBP, there was a main effect of time 

(F=10.84; p<0.01), but not sex (F=2.16; p=0.16) or interaction (F=0.29; p=0.88).  SBP increased 

for men (p<0.01) and women (p<0.01) from baseline to the final min.  For DBP, there was a 

main effect of time (F=9.84; p<0.01) and sex (F=11.25; p<0.01), but not an interaction (F=1.44; 

p=0.23).  The absolute DBP increased from baseline to the final min for men (p<0.01), but not 

women (p=0.16).  Women exhibited less of an absolute increase in DBP at min 2 (p=0.04), min 6 

(p<0.01), and the final min (p=0.04) during the 65% IRBT compared to men.  There was a 

significant main effect of time (F=12.22; p<0.01), sex (F=7.17; p=0.02), and an interaction 

(F=3.48; p=0.01) for HR.  HR significantly increased from baseline to the final min in men 

(p<0.01), but not women (p=0.10).  Furthermore, women had less of an increase in HR at min 2 

(p=0.05), min 4 (p<0.01), min 6 (p=0.05) and the final min (p<0.01) compared to men.  At the 

final min, the absolute change in HR in men was 9.7±3.1 bpm and in women was 4.0±3.7 bpm. 

Figure 4 shows the mean percent change during the 65% IRBT and the individual data at 

the final min for Q̇L (4A,B) and LVR (4C,D).  There was a main effect of time (F=9.47; p<0.01), 
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sex (F=13.21; p<0.01), and interaction (F=4.99; p<0.01) for the percent change of Q̇L.  There 

was a significant decrease in Q̇L from baseline to the final min for men (p<0.01), but not women 

(p=0.53).  Women had less of a decrease in Q̇L at min 2 (p<0.01), 6 (p<0.01) and the final min 

(p=0.01) of the 65% IRBT compared to men.  For LVR, there was a main effect of time 

(F=12.88; p<0.01), sex (F=9.69; p=0.01), and interaction (F=5.51; p<0.01).  There was a 

significant increase in LVR from baseline to the final min of the 65% IRBT in men (p<0.01), but 

not women (p=0.27).  Women showed less of an increase in LVR at min 2 (p<0.01), min 6 

(p<0.01), and the final min (p=0.01) of the 65% IRBT.  For the superficial femoral diameter, 

there was a main effect of time (F=3.69; p=0.01), but not sex (F=1.77; p=0.20) or as an 

interaction (F=1.98; p=0.11).  For men, superficial femoral diameter at the final min was 

significantly smaller (p=0.03) compared to baseline.  Final min superficial femoral diameter was 

not different (p=0.93) compared to baseline for women.  No relationships (p>0.05) existed 

between PIMAX and the changes in MAP, Q̇L or LVR at the final min of the 65% IRBT for all 

subjects, men or women.  There was no main effect of time (F=2.16; p=0.08), sex (F=0.24; 

p=0.63), or interaction (F=0.41; p=0.80) for end-tidal CO2 during the 65% IRBT.  During the 

65% IRBT, no muscle contraction was measured via EMG.  Across the three trials of the 65% 

IRBT performed by the subset of subjects (n=3; 2M/1W), the mean coefficient of variation 

across time (i.e. min 2, min 4, min 6, and the final min) for MAP was 3.5%, Q̇L was 13%, and 

LVR was 14%. 

Sex comparisons when matched for PIMAX: Figure 5 shows the mean absolute change in MAP 

and mean percent change in Q̇L and LVR at the final min of the 65% IRBT in a subset of men 

(n=5) and women (n=5) matched for PIMAX.  PIMAX (5A) was not different (p=0.67) between men 

and women in this subset.  At the final min, women had less of an absolute increase in MAP 
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(5B) (p=0.03) and percent change increase in LVR (5D) (p=0.01) from baseline compared to 

men.  In addition at the final min, women exhibited less of a percent decrease in Q̇L (5C) 

(p=0.01) from baseline.  These results were similar to those of the entire groups, as well. 

 

  



 

46 

 Discussion 

Major findings:  The major findings of the current study are that with the activation of the 

inspiratory muscle metaboreflex pre-menopausal women exhibit less of a(n) 1) increase in blood 

pressure (MAP and DBP) and LVR as well as 2) decrease in Q̇L compared to men.  Furthermore, 

these sex differences in MAP, Q̇L, and LVR were still present when PIMAX was matched.  These 

findings suggest pre-menopausal women have an attenuated inspiratory muscle metaboreflex 

compared to age-matched men. 

Inspiratory muscle metaboreflex:  Increased inspiratory muscle work leads to time-dependent 

neural and cardiovascular consequences.  Specifically, high inspiratory muscle work (above 

60%MIP (30)) leads to time dependent increases in MSNA leading to increases in MAP and 

LVR as well as decreases in Q̇L (29, 30, 37).  The magnitudes of change of MAP, Q̇L, and LVR 

in men in the present study are in excellent agreement with these previous studies.  We and 

others (4, 29, 37) have shown that maintaining the same breathing frequency and duty cycle 

without the high inspiratory muscle load does not lead to changes in MAP, Q̇L, LVR or MSNA 

suggesting the high inspiratory muscle work-induced metabolic accumulation is responsible for 

these cardiovascular and neural responses.  In support of this, fatiguing diaphragmatic 

contractions in the anesthetized rat leads to increased type IV (metabosensitive) afferent 

discharge (17).  Furthermore, stimulation of the phrenic afferents leads to vasoconstriction and 

decreases in blood flow (19).  Other sources such as central command and mechanoreflex may 

also contribute to the neural and cardiovascular responses observed in the current study.  

Regarding central command, it has previously been shown that performing the IRBT at near 

maximal inspiratory pressures (without inducing fatigue) does not elicit increases in MSNA, 

MAP, LVR, or decreases in Q̇L until after three min (29, 37).  In addition, the 2% IRBT did not 
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lead to increases in MAP suggesting the mechanoreflex was not activated.  However, metabolite 

accumulation has been shown to increase type III (mechanosensitive) afferent activity (33) 

suggesting that it is possible the mechanoreflex may have contributed to the MAP response 

during the 65% IRBT. 

Sex differences in the inspiratory muscle metaboreflex:  Cardiovascular and neural sex 

differences have previously been reported (22).  For example, women generally have a lower 

resting blood pressure and MSNA compared to men (22).  In regards to the current study, pre-

menopausal women have been reported to have an attenuated skeletal muscle metaboreflex 

compared to age-matched men (9, 21).  Specifically, women have less metabolite accumulation 

(H+ and H2PO4
-) as well as an attenuated increase in MSNA and MAP during static handgrip 

exercise and post-exercise circulatory occlusion (9, 21).  In contrast to these studies, it has been 

speculated that women may have a greater inspiratory muscle metaboreflex because of their 

greater work and cost of breathing for a given ventilation (8, 12).  In the present study, we found 

that women exhibited an attenuated MAP response compared to men consistent with previous 

findings (9, 21).  Furthermore, we found that the activation of the inspiratory muscle 

metaboreflex in women led to an attenuated rise in LVR and decrease in Q̇L compared to men.  

Importantly, these sex differences were still present when maximal inspiratory pressure was 

matched, consistent with previous investigations of the skeletal muscle metaboreflex (9).   

What are potential mechanisms for this attenuated inspiratory muscle metaboreflex in 

women?  Possibilities include sex differences in substrate utilization, muscle morphology, and 

vascular transduction.  To date, sex differences in inspiratory muscle fiber types have not been 

investigated; however, it has previously been shown that women have a greater percentage of 

type I muscle fibers compared to men in other skeletal muscles (32).  Although the diaphragm is 
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composed of mainly oxidative muscle fibers (76% highly oxidative fibers and 24% low oxidative 

fast-twitch fibers (26)), it is possible that women exhibit a greater percentage of type I/IIa muscle 

fibers in the diaphragm.  In addition, women have been suggested to have a greater reliance on β-

oxidation of fatty acids (16).  Both of these mechanisms would contribute to the attenuated 

metabolite production as well as the greater inspiratory muscle fatigue resistance previously 

reported in young women compared to young men (10, 11).  In addition, sex differences exist in 

the peripheral transduction of sympathetic outflow to the peripheral vasculature (14, 18).  

Specifically, the same degree of MSNA leads to greater limb vasoconstriction in men compared 

to women (18).  The sex differences in the transduction of MSNA to the peripheral vasculature 

are thought to be influenced by blunted α-adrenergic vasoconstriction due to greater β-adrenergic 

vasodilation in pre-menopausal women (14).  It is possible the arterial baroreceptors also 

contributed to the attenuated blood pressure response in women.  The arterial baroreceptors have 

been shown to interact with the skeletal muscle metaboreflex for control of neural and 

cardiovascular changes (6, 20).  Previously, the baroreflex-mediated depressor response to 

carotid hypertension was shown to be greater in women compared to men suggesting the arterial 

baroreceptors may have contributed to the attenuated MAP response (23).  It is currently not 

known if sex differences are present in the baroreflex sensitivity during metaboreflex activation.   

Limitations: Several potential limitations may have influenced our results.  First diaphragmatic 

fatigue was not directly assessed in the current study.  However, this protocol (i.e. 65%PIMAX, 

breathing frequency, duty cycle) has previously been shown to elicit inspiratory muscle fatigue 

in men (10, 29, 30, 37) and women (10) thus inspiratory muscle fatigue likely occurred in the 

current study during the 65% IRBT.  Future studies are needed to further evaluate the degree of 

diaphragmatic fatigue in women following IRBTs.  Second, inspiratory mouth pressure was not 
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directly measured during the IRBTs.  However, the magnitudes of change of MAP, Q̇L, and LVR 

in the men of the current study are in excellent agreement with previous studies (4, 29, 30, 37) 

suggesting the protocol was sufficient to activate the inspiratory muscle metaboreflex.   

Conclusion:  In the present study, it was found that women exhibit a blunted inspiratory muscle 

metaboreflex compared to age-matched men.  In addition, the attenuated cardiovascular 

consequences were still present when maximal inspiratory pressures were matched.  Future 

studies should examine if sex differences in the inspiratory muscle metaboreflex occur during 

severe-intensity exercise and if sex differences exist in baroreflex sensitivity with metaboreflex 

activation. 
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Table 3-1 Subject Characteristics 

                    

           

    Men Women p value   

  n 10 10     

  Age (yrs) 23 ± 2 22 ± 3 p=0.71   

  Ht (cm) 179 ± 7 163 ± 5* p<0.01   

  Wt (kg) 77.6 ± 8.3 63.7 ± 12.3* p=0.01   

  SBP (mmHg) 124 ± 6 112 ± 8* p<0.01   

  DBP (mmHg) 76 ± 6 71 ± 6 p=0.08   

  MAP (mmHg) 92 ± 5 85 ± 6* p=0.01   

  FVC (L) 5.8 ± 0.5 4.0 ± 0.5* p<0.01   

  FVC (% predicted) 108 ± 8 109 ± 9 p=0.82   

  FEV1 (L) 4.7 ± 0.5 3.3 ± 0.3* p<0.01   

  

FEV1 

(%predicted) 101 ± 10 103 ± 7 p=0.65   

  PEF (L s-1) 10.6 ± 2.6 6.5 ± 0.9* p<0.01   

  PEF (%predicted) 110 ± 29 95.0 ± 13 p=0.15   

  PIMAX (cmH20) 178 ± 51 137 ± 40* p=0.05   

  

PIMAX 

(%predicted) 142 ± 43 151 ± 41 p=0.62   

                    

  Ht, height; Wt, weight; SBP, systolic blood pressure; DBP, diastolic blood 

pressure; MAP, mean arterial pressure; FVC, forced vital capacity; FEV1, 

forced expiratory volume in 1 s; PEF, peak expiratory flow; PIMAX, maximal 

inspiratory mouth pressure; *, p<0.05 
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Figure 3-1 Blood pressure responses during the 2% IRBT. 

The mean absolute change from baseline for MAP (A), SBP (B), and DBP (C) for men (closed 

circles) and women (open circles) during the 2% IRBT.  There were no significant main effects 

of time (all p>0.20) or sex (p>0.90) for any of the blood pressure responses. 
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Figure 3-2 Q̇L and LVR responses during the 2% IRBT. 

The mean percent change from baseline for Q̇L (A) and LVR (B) for men (closed circles) and 

women (open circles) during the 2% IRBT.  There were no significant main effects of time (all 

p>0.60) or sex (all p>0.80) for Q̇L or LVR during the 2% IRBT.  
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Figure 3-3 Blood pressure responses during the 65% IRBT. 

The mean absolute change from baseline and individual data at the final min for MAP (A,B), 

SBP (C,D), and DBP (E,F) for men (closed circles) and women (open circles) during the 65% 

IRBT.  There were significant (p<0.05) main effects of time for MAP, SBP and DBP and for sex 

for MAP and DBP. * significantly different from men. 
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Figure 3-4 Q̇L and LVR responses during the 65% IRBT. 

The mean percent change from baseline and individual data at the final min for Q̇L (A, C) and 

LVR (B, D) for men (closed circles) and women (open circles) during the 65% IRBT. There 

were significant (p<0.05) main effects of time and sex for QL and LVR.  * significantly different 

from men. 
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Figure 3-5 Cardiovascular comparisons when matched for PIMAX. 

Sex differences in MAP, Q̇L, and LVR when matched for PIMAX.  Men had greater increases in 

MAP (p=0.03) and LVR (p=0.01) and decreases in Q̇L (p=0.01) compared to women when 

PIMAX were not different (p=0.67). 
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Chapter 4 - Cardiovascular consequences of the inspiratory 

muscle metaboreflex: effects of age and sex 
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 Summary 

We hypothesized that, compared to their younger counterparts, older men and women 

would exhibit greater 1) increases in mean arterial pressure (MAP) and limb vascular resistance 

(LVR) and 2) decreases in limb blood flow (Q̇L), but 3) no sex differences would be present in 

older adults.  Sixteen young (8 men (YM), 8 women (YW); 18-24 yrs) and older (8 men (OM), 8 

women (OW); 60-73 yrs) adults performed inspiratory resistive breathing tasks (IRBTs) at 2% 

and 65% of their maximal inspiratory pressure.  During the IRBTs, breathing frequency was 20 

breaths min-1 with a 50% duty cycle.  At baseline and during the IRBTs, MAP was measured via 

automated oscillometry, Q̇L was determined via Doppler ultrasound, and LVR was calculated.  

The 65% IRBT led to significantly greater increases in MAP in OW (15.9±8.1mmHg) compared 

to YW (6.9±1.4mmHg), but not (p>0.05) between OM (12.3±5.7mmHg) and YM (10.8±5.7 

mmHg). OW (-20.2±7.2%) had greater (p<0.05) decreases in Q̇L compared to YW (-9.4±10.2%), 

but no significant differences were present between OM (-22.8±9.7%) and YM (-22.7±11.3%) 

during the 65% IRBT.  The 65% IRBT led to greater (p<0.05) increases in LVR in OW 

(48.2±25.5%) compared to YW (19.7±15.0%), but no differences (p>0.05) existed among OM 

(54.4±17.8%) and YM (47.1±23.3%).  No significant differences were present in MAP, Q̇L, or 

LVR between OM and OW.  These data suggest OW exhibit a greater inspiratory muscle 

metaboreflex compared to YW, while no differences between OM and YM existed.  Lastly, sex 

differences in the inspiratory muscle metaboreflex are not present in older adults. 
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 Introduction 

Fatiguing inspiratory muscle work and the concomitant accumulation of metabolites is 

associated with neural and cardiovascular consequences (10).  Specifically, fatiguing 

diaphragmatic contractions lead to increased type IV afferent discharge in the anaesthetized rat 

(21).  In addition, lactic acid infusion into the phrenic circulation leads to increases in mean 

arterial pressure (MAP) and decreases in limb blood flow (Q̇L) at rest and during exercise in 

canines (40).  In young men, high inspiratory muscle work activates the inspiratory muscle 

metaboreflex, leading to time-dependent increases in muscle sympathetic nerve activity 

(MSNA), MAP, and leg vascular resistance (LVR), as well as decreases in Q̇L (42, 49).  There is 

also evidence that the inspiratory muscle metaboreflex is tonically-active during severe-intensity 

exercise in young men.  Harms et al (1997) showed that by unloading the inspiratory muscles 

(via a proportional assist ventilator) during maximal cycling exercise, LVR decreased ~7% and 

V̇O2leg/V̇O2tot increased ~10% compared to control (18).  Therefore, the inspiratory muscle 

metaboreflex leads to neural and cardiovascular consequences during severe-intensity exercise. 

Aging leads to changes within the pulmonary system such as decreases in respiratory 

muscle strength (17) and expiratory flow rates (28, 48), loss of elastic recoil (28), and stiffening 

of the chest wall (26).  Consequently, dynamic compliance is reduced with aging, leading to a 

higher cost and work of breathing for a given ventilation compared to younger individuals (26).  

Furthermore, older adults have been reported to have less inspiratory muscle fatigue resistance 

compared to younger adults (5). Based on these aging-induced changes to the pulmonary system, 

it is likely that older adults will exhibit an exaggerated inspiratory muscle metaboreflex 

compared to younger adults. 
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We have recently observed sex differences in the inspiratory muscle metaboreflex (47); 

however, the influence of age on the inspiratory muscle metaboreflex was not evaluated in our 

previous study, and is unknown.  Therefore, the purpose of this study was to determine the effect 

of age on sex differences in the cardiovascular consequences of the inspiratory muscle 

metaboreflex.  We hypothesized that compared to their younger counterparts the activation of the 

inspiratory muscle metaboreflex in older men and women would lead to greater increases in 

MAP and LVR resulting in decreases in Q̇L.  In addition, we hypothesized that the inspiratory 

muscle metaboreflex-induced cardiovascular responses would not be different between older 

men and women. 
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 Methods 

Subjects: Young adults (n=16; 8 men (YM), 8 pre-menopausal women (YW)) and older adults 

(n=16; 8 men (OM), 8 post-menopausal women (OW)) were recruited for this project. The young 

adults were between the ages of 18-35 years and the older adults were ≥60 years of age. All 

subjects completed a detailed medical health history questionnaire and signed an informed 

consent prior to entering the study and had normal pulmonary function as assessed by pulmonary 

function tests (PFTs).  Exclusion criteria included existence of acute and/or chronic 

cardiovascular, pulmonary, or metabolic diseases.  Endurance-trained subjects were not recruited 

in the present study because endurance-training results in increased inspiratory muscle fatigue 

resistance (33) and attenuated inspiratory muscle metaboreflex (4, 25).  All pre-menopausal 

women were normally menstruating for at least the past 6 months and were tested during the 

early follicular phase (days 0-7) of their menstrual cycle as reproductive hormones have been 

shown to influence cardiovascular function and autonomic control (35).  All older women were 

post-menopausal.  All subjects refrained from exercise for 12 hours and food and caffeine 

ingestion for 2 hours prior to testing. All testing protocols for human subjects were approved by 

the Kansas State University Institutional Review Board and conformed to the principles in the 

Declaration of Helsinki. 

Experimental design: Subjects visited the laboratory on three different occasions. On the first 

visit, subjects were familiarized with all procedures and measurements. The next two visits were 

randomized and subjects performed inspiratory resistive breathing tasks (IRBTs) at 2% or 65% 

of their maximal inspiratory mouth pressure (PIMAX). The 65% IRBT has previously been shown 

to induce the inspiratory muscle metaboreflex (42, 43, 47).  At baseline and during the IRBTs, 
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Q̇L, LVR, MAP, and heart rate (HR) were measured.  Surface electromyography (EMG) sensors 

were placed on the leg to confirm that no muscle contractions occurred during the IRBTs. 

Inspiratory resistive breathing tasks: First, subjects were seated for >15 min to ensure baseline 

cardiovascular measurements.  Subjects breathed through a custom made inspiratory resistive 

breathing device set at 2% or 65%PIMAX.  For the custom made inspiratory resistive breathing 

device, the subjects maximally inhaled through the device and the resistance was increased until 

it equaled 2% or 65%PIMAX as previously done (47).  The custom made inspiratory resistive 

breathing device consisted of a mouthpiece attached to a step down adapter which allowed for 

the connection of various diameter tubes used to achieve the desired resistance.  Throughout both 

IRBTs, subjects maintained a breathing frequency of 20 breaths min-1 and a prolonged duty cycle 

(TI/TTOT= 0.5; 1.5 s inspiration and 1.5 s expiration).  MAP was measured every two min 

throughout the 65% IRBT.  Termination of the 65% IRBT was based upon the presence of a 

plateau in the increase in MAP (47, 51), which was defined as ≤2 mmHg absolute increase in 

MAP over three measurements (47).  Termination of the 65% IRBT has previously been shown 

to occur following 8-20 min (47).  The data collected during the third MAP measurement to 

confirm the plateau in MAP was reported as the “final min” in the Results.  Previously, the 65% 

IRBT has been shown to decrease inspiratory muscle blood flow in canines (3), induce the 

inspiratory muscle metaboreflex (42, 43, 47, 49, 51), and predict the onset of task failure 

(inspiratory muscle fatigue) in humans (1, 2, 42, 43).  The subjects performed the 2% IRBT for 

10 min and it served as the control condition with the same breathing frequency and duty cycle 

as the 65% IRBT.  Expiration was passive during all IRBTs.  The investigators visually 

monitored each breath of the subject to ensure proper timing and effort.  End-tidal carbon 

dioxide was monitored (SensorMedics 229 Metabolic Cart, SensorMedics Corp., Yorba Linda, 
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CA) each min to ensure subjects were isocapnic during the IRBTs.  We have recently shown that 

the mean coefficient of variation across time for MAP was 3.5%, Q̇L was 13%, and LVR was 

14% during the 65% IRBT (47).   

Doppler ultrasound: Doppler ultrasound (Vivid 3; GE Medical Systems, Milwaukee WI, USA) 

was used to measure superficial femoral artery blood velocity.  The gate of the Doppler was set 

to the full width of the artery to ensure complete insonation.  Measurements were made 

approximately 3 cm distal to the bifurcation of the deep and superficial femoral artery. Mean 

blood velocity (VMEAN; cm x s-1) was defined as the time-averaged mean velocity over each 

complete cardiac cycle.  VMEAN was averaged over the last 15 s of consecutive complete cardiac 

cycles for each min.  Q̇L was calculated as the product of vessel cross-sectional area and VMEAN.  

Two-dimensional sonography was used to measure vessel diameters and calculate cross-sectional 

area (CSA=πr2).  Because this ultrasound does not allow for simultaneous measurements of 

velocity and diameter, the timing of the image capture occurred during diastole and one vessel 

diameter was used at each time point to calculate blood flow as previously done (45, 46).  Q̇L 

was calculated at baseline and every min during the IRBTs. 

Blood pressure: MAP and HR were measured at baseline and during the IRBTs via automated 

blood pressure oscillometry and 3-lead ECG, respectively (S/5 Light Monitor; GE Healthcare; 

Madison WI).  During the IRBTs, HR was recorded each min and systolic (SBP) and diastolic 

blood pressure (DBP) were measured every 2 min. MAP was calculated as 1/3(SBP-DBP) + 

DBP.  LVR was calculated as MAP divided by Q̇L.  Rate pressure product (RPP) was determined 

as the product of SBP and HR.  Pulse pressure was determined by subtracting DBP from SBP. 

Pulmonary function:  PFTs were assessed according to American Thoracic Society/European 

Respiratory Society guidelines.  Maximum flow-volume loops were used to establish normal 
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pulmonary function and give measures of forced vital capacity (FVC), forced expiratory volume 

in 1 s (FEV1), and peak expiratory flow (PEF) (SensorMedics 229 Metabolic Cart, SensorMedics 

Corp., Yorba Linda, CA) and these values were expressed as percent predicted (29).  PIMAX was 

used to determine inspiratory muscle strength and was measured at residual volume as 

previously done (6, 31, 33). 

Statistics: SigmaStat (Janel Scientific Software, Chicago, IL) was used for statistical analysis.  

Data are expressed as mean±SD.  Subject characteristics and baseline cardiovascular variables 

(MAP, Q̇L, LVR, HR, RPP, and pulse pressure) were compared between YM and OM, YW 

and OW, as well as OM and OW via unpaired one-way analysis of variance (ANOVA).  

During the IRBTs, MAP, HR, RPP, and pulse pressure were reported as an absolute change 

from baseline and Q̇L and LVR were reported as a percent change from baseline.  For the 2% 

IRBT, the cardiovascular variables were compared within (baseline, min 2, min 4, min 6, min 

8, and min 10) and among (YM, OM, YW, OW) groups via a two-way mixed factorial 

ANOVA (group x time).  For the 65% IRBT, the cardiovascular variables were compared 

within (baseline, min 2, min 4, and the final min) and among (YM, OM, YW, OW) groups via 

a two-way mixed factorial ANOVA (group x time).  A Student-Newman-Keuls post hoc 

analysis was performed to determine where significant differences existed.  To compare 

MAP, Q̇L, and LVR between YM and OM matched for PIMAX (n=5), unpaired t-tests were 

performed.  Statistical significance was set at p<0.05 for all analyses.   
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 Results 

Subject characteristics: Table 1 shows subject characteristics for YM, YW, OM, and OW.  OM 

and OW were older (p<0.01) than YM and YW, respectively.  There were no differences 

(p=0.12) in baseline blood pressure, pulse pressure, or RPP between OM and YM, OW and YW, 

or OM and OW.  OM had lower FVC (p<0.01), FEV1 (p<0.01), and PIMAX (p=0.03) compared to 

YM.  FEV1 (p<0.01) was lower for OW compared to YW.  OM had higher FVC (p<0.01), FEV1 

(p<0.01), and PEF (p<0.01) than OW.  % predicted pulmonary function were not different 

(p>0.19) among groups.  No differences (p>0.49) were present among groups in baseline Q̇L 

(YM: 92.2±26.4 mL/min; OM: 89.5±27.4 mL/min; OW: 81.7±28.9 mL/min; YW: 69.1±11.4 

mL/min) or LVR (YM: 1.02±0.30 mmHg/mL/min; OM: 1.20±0.40 mmHg/mL/min; OW: 

1.23±0.40 mmHg/mL/min; YW: 1.27±0.22 mmHg/mL/min). 

Cardiovascular measures during 2% IRBT:  Figure 1 shows the cardiovascular responses during 

the 2% IRBT.  The change in MAP and HR were not different among groups (p>0.23) or across 

time (p>0.27).  Also, the percent change in Q̇L and LVR were not different among groups 

(p>0.81) or across time (p>0.80).  End-tidal CO2 was significantly lower (p=0.03) during the 2% 

IRBT for OW, but not for any other group (p>0.30).  During the 2% IRBT, no muscle 

contraction was measured via EMG. 

Cardiovascular measures during 65% IRBT: The mean time for the 65% IRBT was not different 

(p=0.73) among YM (12.3±1.3 min), OM (11.4±1.3 min), YW (13.1±1.4 min), and OW 

(11.5±0.6 min).  Figure 2 shows the change in MAP (A) and HR (B) from baseline during the 

65% IRBT.  During the 65% IRBT, MAP increased (p<0.02) from baseline to the final min in all 

groups.  At min 2, the increase in MAP was greater (p<0.01) in OW compared to YW.  At min 4, 

the increase in MAP was greater in both OW (p<0.01) and OM (p<0.01) compared to YW and 
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YM, respectively.  In addition, the increase in MAP was greater (p=0.04) in OW compared to 

OM at min 4.  At the final min, MAP was significantly higher (p<0.01) for OW compared to 

YW, while no other differences (all p>0.15) were present.  HR increased from baseline to the 

final min for YM (p<0.01) and OM (p<0.01), but not YW (p=0.40) and OW (p=0.11).  The HR 

response during the 65% IRBT was not different among groups at min 2 (all p>0.13) or 4 (all 

p>0.10).  At the final min, OM (p=0.02) had a greater increase in HR compared to OW. 

The changes in pulse pressure (A) and RPP (B) during the 65% IRBT are shown in 

Figure 3.  Pulse pressure increased from baseline to the final min in OM (p=0.01) and OW 

(p<0.01), but not YM (p=0.37) or YW (p=0.61).  At min 2, OM (p=0.02) and OW (p<0.01) had 

greater increases in pulse pressure compared to YM and YW, respectively. At min 4, OW had 

greater increases in pulse pressure compared to YW (p=0.03) and OM (p=0.03).  At the final 

min, OW had greater increases (p<0.01) in pulse pressure than YW.  From baseline to the final 

min, RPP increased in YM (p<0.01), OM (p<0.01), and OW (p<0.01), but not YW (p=0.57).  

The increase in RPP was greater for OW (p<0.01) compared to YW at min 2, 4, and the final 

min.  

Figure 4 shows the mean percent change during the 65% IRBT for Q̇L (A) and LVR (B).  

From baseline to the final min, Q̇L decreased (p<0.03) in all groups.  At min 2, YW had a small 

non-significant (p=0.25) increase in Q̇L compared to rest, while OW had greater (p<0.01) 

decreases in Q̇L compared to YW.  In addition, OM had less of a decrease (p=0.01) in Q̇L 

compared to YM.  At the final min, OW had greater (p=0.04) decreases in Q̇L compared to YW.  

From baseline to the final min, LVR increased (p<0.01) in all groups.  At min 2, LVR increased 

greater (p<0.01) for OW compared to YW.  At min 4, OM had greater increases in LVR 

compared to YM (p<0.01) and OW (p<0.01).  At the final min, OW (p<0.01) had greater 
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increases in LVR compared to YW.  OW exhibited greater decreases (p=0.02) from baseline to 

the final min in superficial femoral diameter compared to YW, while not different (p>0.18) than 

YM or OM (data not shown).  End-tidal CO2 was not different across time during the 65% IRBT 

for YM (p>0.37), YW (p>0.51), and OW (p>0.25).  For OM, end-tidal CO2, compared to 

baseline, was higher (p<0.01) at min 2, but not different at min 4 (p=0.14) or the final min 

(p=0.36) (data not shown).  During the 65% IRBT, no muscle contraction was measured via 

EMG. 

YM and OM comparisons when matched for PIMAX:  Figure 5 shows the change in MAP and 

percent change in Q̇L and LVR at the final min of the 65% IRBT in a subset (n=5) of YM and 

OM matched for PIMAX.  PIMAX (p=0.52) was not different between YM and OM.  At the final 

min, MAP (p=0.36), Q̇L (p=0.80), and LVR (p=0.83) were not different between YM and OM. 
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 Discussion 

Major findings:  This study was designed to determine the influences of age on sex differences in 

the inspiratory muscle metaboreflex.  The major findings of the present study were three-fold.  

First, in OW compared to YW, the activation of the inspiratory muscle metaboreflex led to 

greater 1) increases in MAP, LVR, and RPP (an index of myocardial demand) as well as 2) 

decreases in Q̇L at the final min.  Second, inspiratory muscle metaboreflex-induced 

cardiovascular consequences were not different at the final min between YM and OM even with 

matched PIMAX.  Lastly, sex differences were not present in the cardiovascular consequences of 

the inspiratory muscle metaboreflex in older adults.  These findings suggest that OW exhibit 

greater inspiratory muscle metaboreflex-induced cardiovascular consequences compared to YW, 

while no differences occur with age in men. 

 Inspiratory muscle metaboreflex:  High inspiratory muscle work leads to time-dependent neural 

and cardiovascular consequences.  In support of this, fatiguing diaphragmatic contractions in the 

anesthetized rat leads to increased type IV (metabosensitive) afferent discharge (21) and 

stimulation of the phrenic afferents leads to vasoconstriction and decreases in blood flow (23).  

In the current study, we found high inspiratory muscle work led to increases in MAP and LVR 

resulting in decreases in Q̇L in accordance with previous studies (42, 43, 47, 49).  Consistent with 

previous studies (42, 47, 49), we found maintaining the same breathing frequency and duty cycle 

without the high inspiratory muscle load did not lead to changes in MAP, Q̇L, or LVR, 

suggesting the high inspiratory muscle work-induced metabolic accumulation is responsible for 

these cardiovascular responses.  It is important to note that metabolite accumulation has been 

shown to increase Type III (mechanosensitive) afferent activity (44), suggesting that it is 

possible the mechanoreflex may have contributed to the MAP response during the 65% IRBT.  
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Other sources such as central command and arterial baroreceptors may also contribute to the 

neural and cardiovascular responses observed in the current study.  However, it has previously 

been shown that performing the IRBT at near maximal inspiratory pressures (without inducing 

fatigue) does not elicit increases in MSNA, MAP, LVR, or decreases in Q̇L until after three min 

suggesting central command is not contributing to the cardiovascular responses during the 65% 

IRBT (42, 49).   

Effect of age on the inspiratory muscle metaboreflex:  Older age is associated with 

cardiovascular and neural adjustments.  For example, resting blood pressure and MSNA are 

generally higher in older adults compared to their younger counterparts (19).  Previous findings 

regarding the effect of aging on the skeletal muscle metaboreflex have been inconclusive.  

Specifically, the skeletal muscle metaboreflex has been shown to be attenuated (22, 32, 38), 

preserved (41), or augmented (7, 34) in older adults.  Several potential reasons may explain these 

inconsistent findings, such as different exercise modalities, not accounting for sex differences, 

and not matching maximum voluntary contraction (MVC) between groups.  For example, sex 

differences have been reported in the metaboreflex-induced neural and cardiovascular responses 

in pre-menopausal women compared to young men (11, 16).  Furthermore, previous studies that 

matched MVC have found that the increase in blood pressure, MSNA, and calf/renal vascular 

resistance were not different between older and younger adults (15, 30, 37, 41, 50).    

Older age also is associated with changes within the pulmonary system such as loss of 

elastic recoil (28) and stiffening of the chest wall (26).  Consequently, older age is associated 

with a higher work and cost of breathing for a given ventilation (26).  Furthermore, older adults 

have less inspiratory muscle fatigue resistance compared to younger adults (5) suggesting that 

older adults will have a greater inspiratory muscle metaboreflex compared to younger 
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individuals.  In the present study, there was no effect of age on the cardiovascular consequences 

of the inspiratory muscle metaboreflex in men.  Furthermore, no differences were present when 

PIMAX was matched, consistent with the previous findings investigating the skeletal muscle 

metaboreflex when MVC was matched between younger and older men (15, 50).   

In contrast, we found that the activation of the inspiratory muscle metaboreflex led to 

greater increases in MAP, LVR, pulse pressure, RPP as well as decreases in Q̇L in OW compared 

to YW.  What are potential mechanisms for the greater inspiratory muscle metaboreflex-induced 

cardiovascular consequences in women with age?  First, OW demonstrate greater sympathetic 

vasoconstriction during exercise compared to YW (12).  In addition, OW, compared to YW, 

exhibit more transduction of sympathetic outflow to the peripheral vasculature (20).  Both of 

these mechanisms likely contributed to the greater inspiratory muscle metaboreflex-induced 

increases in MAP and LVR as well as decreases in Q̇L in OW compared to YW.  Second, older 

age has been associated with aortic stiffness (36) leading to higher resting systolic and pulse 

pressures.  In addition, the metaboreflex has been shown to increase arterial stiffness, as evident 

by an augmented femoral-tibial pulse wave velocity, in the non-exercising limb in young 

individuals (9).  Recently, Figueroa et al (2015) found that metaboreflex activation led to a 

greater augmentation index, indicative of vascular stiffness, in post-menopausal women 

compared to pre-menopausal women (13).  These previous studies in combination with the 

current findings suggest that inspiratory muscle metaboreflex activation led to greater arterial 

stiffness in OW compared YW subsequently leading to greater increases in pulse pressure and 

RPP.  Third, the arterial baroreceptors interact with the skeletal muscle metaboreflex for control 

of neural and cardiovascular changes (8, 24).  Although the neural interaction between the 

arterial baroreceptors and skeletal muscle metaboreflex is not modulated in men with age (15), it 
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is possible this neural interaction is altered in OW compared to YW.  It is currently not known if 

the arterial baroreceptors interact with the inspiratory muscle metaboreflex.  Future studies are 

required to determine if the neural interaction between the arterial baroreceptors and inspiratory 

muscle metaboreflex is altered with age in men and women.  Collectively, our data suggests that 

inspiratory muscle metaboreflex activation during severe-intensity exercise in women may lead 

to greater redistribution of Q̇L from the locomotor muscles to the inspiratory muscles in OW 

compared to YW.  In addition, the higher RPP in OW with the activation of the inspiratory 

muscle metaboreflex has implications in clinical and subclinical populations.  For example, the 

higher metaboreflex-induced RPP and associated myocardial V̇O2 and blood flow (14, 27) may 

result in earlier onset of angina for a given exercise workload (39). 

Limitations: Several potential limitations may have influenced our results.  First diaphragmatic 

fatigue was not directly assessed in the current study.  This protocol (i.e. 65% PIMAX, breathing 

frequency, duty cycle) has previously been shown to elicit diaphragmatic fatigue in younger 

individuals (42).  However, it is currently unknown if the protocol elicited greater development 

of diaphragmatic fatigue in the older adults compared to the younger adults.  Second, inspiratory 

mouth pressure was not directly measured during the IRBTs.  However, the magnitudes of 

change of MAP, Q̇L, and LVR in the young adults of the current study are in excellent agreement 

with previous studies (42, 43, 49) suggesting the protocol was sufficient to activate the 

inspiratory muscle metaboreflex.  Lastly, measurements of sympathetic activation would have 

provided additional valuable information regarding underlying mechanisms responsible for the 

differences observed between OW and YW. 

Conclusion: Our cross sectional data suggest that older age leads to greater inspiratory muscle 

metaboreflex-induced cardiovascular consequences and consequently greater work of the heart in 
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women, but not men.  Furthermore, sex differences in the cardiovascular consequences of the 

inspiratory muscle metaboreflex are not present in older adults.  Future studies should examine if 

baroreflex sensitivity with metaboreflex activation is altered in women across age and if age 

influences the degree of exercise-induced diaphragmatic fatigue development.   
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Table 4-1 Subject Characteristics 

                         

    YM OM OW YW 

  n 8 8 8 8 

  Age (yrs) 22 ± 2 67 ± 6* 64 ± 4* 22 ± 2 

  Ht (cm) 179 ± 7 174 ± 8† 165 ± 4 163 ± 4 

  Wt (kg) 77 ± 8 80 ± 12 72 ± 7 63 ± 12 

  SBP (mmHg) 124 ± 6 129 ± 14 120 ± 10 111 ± 9 

  DBP (mmHg) 75 ± 6 83 ± 10 77 ± 10 70 ± 5 

  MAP (mmHg) 91 ± 5 98 ± 11 91 ± 9 83 ± 6 

  Pulse pressure (mmHg) 49 ± 7 46 ± 5 44 ± 8 41 ± 7 

  RPP (bpm*mmHg) 85 ± 17 87 ± 15 90 ± 24 74 ± 15 

  FVC (L) 5.8 ± 0.5 4.7 ± 1*† 3.5 ± 0.4 4.0 ± 0.5 

  FVC (% predicted) 110 ± 6 121 ± 19 115 ± 11 108 ± 10 

  FEV1 (L) 4.7 ± 0.6 3.5 ± 0.6*† 2.6 ± 0.3* 3.3 ± 0.3 

  FEV1 (%predicted) 104 ± 10 115 ± 16 107 ± 13 103 ± 8 

  PEF (L s-1) 10.1 ± 1.9 9.0 ± 1.5† 6.2 ± 1.1 6.4 ± 0.9 

  PEF (%predicted) 106 ± 22 108 ± 14 108 ± 20 94 ± 13 

  PIMAX (cmH20) 161 ± 39 119 ± 23* 90 ± 31 124 ± 34 

  PIMAX (%predicted) 130 ± 37 109 ± 23 131 ± 42 138 ± 33 

                            

  Mean±SD. YM, young men; OM, older men; OW, older women; YW, younger women; Ht, height; Wt, 

weight; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; RPP, rate 

pressure product; FVC, forced vital capacity; FEV1, forced expiratory volume in 1 s; PEF, peak expiratory 

flow; PIMAX, maximal inspiratory mouth pressure; *, different (p<0.05) from younger counterpart; †, 

different (p<0.05) from OW 
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Figure 4-1 Cardiovascular responses during the 2% IRBT. 

The change from baseline for MAP (A) and HR (B) and % change from baseline for Q̇L (C) and 

LVR (D) for YM (closed circles), OM (open circles), YW (closed triangles), and OW (open 

triangles) during the 2% IRBT.  There were no significant differences among groups (all p>0.23) 

or across time (all p>0.27) for any of the cardiovascular responses. 
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Figure 4-2 MAP and HR responses during the 65% IRBT. 

The change from baseline for MAP (A) and HR (B) for YM (closed circles), OM (open circles), 

YW (closed triangles), and OW (open triangles) during the 65% IRBT.  At the final min, OW 

had a greater (p<0.01) increase in MAP compared to YW.  OM had significantly greater 

increases in HR at the final min compared to OW.  
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Figure 4-3 Pulse pressure and RPP during the 65% IRBT. 

The change from baseline for pulse pressure (A) and RPP (B) for YM (closed circles), OM (open 

circles), YW (closed triangles), and OW (open triangles) during the 65% IRBT.  At the final min, 

OW had greater increases (p<0.01) in pulse pressure than YW.  The increase in RPP was greater 

for OW (p<0.01) compared to YW at the final min.  
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Figure 4-4 Q̇L and LVR responses during the 65% IRBT. 

The percent change from baseline for Q̇L (A) and LVR (B) for YM (closed circles), OM (open 

circles), YW (closed triangles), and OW (open triangles) during the 65% IRBT.  At the final min, 

OW had greater (p=0.04) decreases in Q̇L compared to YW.  At the final min, OW (p<0.01) had 

greater increases in LVR compared to YW. 
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Figure 4-5 Cardiovascular comparisons between YM and OM when PIMAX was matched. 

Changes in MAP, Q̇L, and LVR between YM and OM when matched for PIMAX.  The increases 

in MAP (p=0.36) and LVR (p=0.83) and decreases in Q̇L (p=0.80) were not different between 

YM and OM when PIMAX were not different (p=0.52). 
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Chapter 5 - Conclusion 

Integrating the investigations described in this dissertation, sex differences between 

young men and women are concluded not to influence respiratory muscle blood flow regulation, 

but have a substantial impact on the inspiratory muscle metaboreflex.  Specifically, our data 

demonstrated that respiratory muscle (diaphragm, intercostal, and transversus abdominis) blood 

flow and vascular conductance were not different between males and females at rest or during 

moderate and near-maximal intensity exercise.  However, sex differences were present in the 

inspiratory muscle metaboreflex.  Specifically, pre-menopausal women, compared to age-

matched men, had attenuated changes in mean arterial pressure (MAP), limb blood flow (Q̇L), 

and limb vascular resistance (LVR) with inspiratory muscle metaboreflex activation.  When we 

examined if sex differences were present in older adults, we found post-menopausal women, 

compared to pre-menopausal, had greater changes in MAP, Q̇L, and LVR with activation of the 

inspiratory muscle metaboreflex such that sex differences were no longer present between older 

men and women.  Taken together, these studies suggest that in populations with high work of 

breathing (e.g. chronic heart failure), the tonically active inspiratory muscle metaboreflex will 

redistribute less Q̇L from the locomotor muscles to the respiratory muscles in pre-menopausal 

women compared to men resulting in less exercise tolerance impairments; while these sex 

differences are no longer present in older adults.   
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