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Abstract 

Determining the effective permeability (keff) of geological formations has broad 

applications to site remediation, aquifer discharge or recharge, hydrocarbon production, and 

enhanced oil recovery. However, due to the presence of heterogeneity across scales, accurate 

calculation of keff requires precise characterization of reservoirs. In the literature, stochastic, 

theoretical, and numerical methods have been proposed to determine the value of keff. In this 

study, we propose applications from critical path analysis (CPA), an upscaling technique from 

statistical physics. More specifically, we postulate that permeability at the mode of permeability 

probability function should represent the effective permeability of a reservoir. To validate this 

hypothesis, we construct two- and three-dimensional random (uncorrelated) geologic formations 

based on permeability measurements from the Borden site and assume that the permeability 

distribution conforms to the log-normal probability density function. The log-normal distribution 

with different geometric means (4.5×10-12≤ 𝑘𝑔 ≤1.0×109 m2) and standard deviations (0.05≤

𝜎 ≤6) is used to generate 10 different formations. We apply the COMSOL platform to 

numerically simulate 2 and 3D flow and determine the keff in such formations. We also calculate 

the keff using several other approaches proposed in the literature, such as perturbation theory, 

renormalization group theory, and effective-medium approximation. Comparing the numerically 

determined keff values with the theoretically estimated ones demonstrates that the CPA provides 

accurate estimations in both two and three dimensions. Although the CPA estimates the keff with 

RMSLE = 0.50 more accurate than the other approaches in two dimensions, the renormalization 

group theory with RMSLE = 0.90 provides slightly better estimations than the CPA with 

RMSLE = 1.14 in three dimensions. Results show that although perturbation theory and the 



 

 

effective-medium approximation provide reasonable keff estimations in formations with 𝜎 < 2, 

they substantially overestimate the effective permeability in highly heterogeneous formations. 

We found that CPA provided a powerful platform to estimate effective permeability at the 

reservoir scale in uncorrelated formations. However, further investigations are still required to 

evaluate its predictability in formations with spatial correlations. 

Keywords: Critical path analysis, Effective permeability, Log-normal permeability distribution, 

Spatial heterogeneity, Upscaling 
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Chapter 1 - Introduction 

1.1. Background 

Investigating flow and transport in geological formations, such as aquifers and reservoirs, is 

essential in numerous areas of geology and engineering: for CO2 sequestration, site remediation, 

groundwater hydrology, and enhanced oil recovery. Under fully saturated conditions, one key 

parameter is effective permeability (keff), which indicates the overall capability of a formation to 

allow the passage of fluid through it. Geological formations are heterogeneous and typically 

composed of zones of various materials with different permeabilities spanning several orders of 

magnitude (Freeze and Cherry, 1979; Akpoji and De Smedt, 1993; Oladele et al., 2019).                       

Experimental studies (Bjerg et al., 1992; Rehfeld et al., 1992; Sudicky, 1986) show that the 

histogram of permeability values measured on core samples approximately follows the log-

normal probability density function. In fact, the log-normal permeability distribution has been 

widely used to study flow and transport at large scales (Colecchio et al., 2020; Edery et al., 2014; 

Hristopulos, 2003; Zarlenga et al., 2018). This means the spatial heterogeneity of a formation can 

be captured by truncated log-normal distribution parameters, i.e., mean and standard deviation as 

well as its lower and upper cutoffs. 

An active subject of research in geosciences has been determining the effective value of 

permeability (Dagan, 1993; Masihi et al., 2016; Rasaei and Sahimi, 2009). Various techniques, 

including theoretical and numerical methods, have been proposed to calculate the value of keff in 

geological formations (Renard and de Marsily, 1997; Sanchez-Vila et al., 2006). Although 

numerical methods are suitable for any type of aquifers and reservoirs, they are computationally 

demanding, particularly for three-dimensional (3D) simulations. As a result, theoretical models 

have been frequently utilized for the estimation of keff. 
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These models include the simple averaging techniques (Deutsch, 1989), perturbation theory 

(Stepanyants and Teodorovich, 2003), self-consistent approximation (Dagan, 1979), effective 

medium approximation (Fokker, 2001), renormalization group theory (King, 1989), wavelet 

transformation (Rasaei and Sahimi, 2009), and information theory (Wood and Taghizadeh, 

2020). As most of the models applied to the estimation of keff are based on perturbative methods 

(Sanchez-Vila et al., 2006), we will briefly review several perturbation theory-based models used 

in the hydrology literature in what follows. 

1.2. Perturbative models  

Within the framework of perturbation theory, the pressure head in the Darcy equation is first 

expanded in a power series in terms of permeability fluctuations (Sanchez-Villa et al., 2006) 

after which a solution for velocity is constructed by the application of Darcy’s law (Sanchez-

Villa et al., 2006; Renard and de Marsily, 1997; Stepanyants and Teodorovich, 2003). Using 

these methods, Matheron (1967) and Gutjahr (1978) proved that the quantities of the equation 

popularly known in hydrogeology as Matheron’s conjecture are the first two terms of the Taylor 

series expansion of an exponential function. Although not sufficiently proven to be exact in 3D 

flow, the conjecture is known to give the effective permeability in log-normally distributed 

permeability fields as the harmonic mean (𝑘eff=𝑘h) in one-dimensional (1D) flow and geometric 

mean (𝑘eff=𝑘g) in two-dimensional (2D) flow (De Wit, 1995). Gelhar and Axness (1983) also 

used a perturbation theory-based approach to derive expressions to link the effective 

permeability to the variance 𝜎2 in the case of a log-normally distributed anisotropic medium 

with arbitrary orientation of the stratification. Later, Dagan (1993) extended their result for log-

normal permeability fields through the 𝜎4 order. 
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Indelman and Abramovich (1994) proved that the 𝑘eff expression through order 𝜎4 for an 

anisotropic permeability field depends not only on the anisotropic ratios, variance, and space 

dimensions but also on the shape of the permeability distribution function. Importantly, their 

work highlighted major inconsistencies in Matheron’s conjecture for anisotropic and 3D 

permeability systems. Their expression, which we denote here as the anisotropic perturbation 

theory (ANPT), is given below: 

𝑘eff (𝑖) = 𝑘𝑔 {1 + (
1

2
− 𝛼𝑖) 𝜎𝑌

2 +
1

2
[(

1

2
− 𝛼𝑖)

2

+ 𝛾𝑖] 𝜎𝑌
4}     (1)  

where 𝜎𝑌 is the standard deviation of the natural logarithm of the permeability (Y = ln(k)), 𝑖 

indicates the principal hydraulic conductivity direction (𝑖 =1,2,3 in three dimensions), and 𝛼1 =

𝛼2 = (1 − 𝜒)/2 and 𝛼3 = 𝜒. 𝜒 depends on the anisotropic ratio of the permeability field and 𝛾𝑖 

depends on the permeability correlation function. In the case of isotropy, 𝜒 = 1/3 and 𝛾𝑖 = 0.  

With the aim of further proving the dependence of the 𝑘eff expression on the permeability 

distribution function, De Wit (1995) derived the terms for the 𝑘eff expression up to the order 𝜎𝑌
6. 

His work exposed some of the underlying inaccuracies of Matheron’s conjecture as the 𝜎𝑌
6 order 

terms of his derivation contained parameters and factors that are not available in the 𝜎𝑌
6 order 

terms of Matheron’s conjecture expansion. The expression, here referred to as the simple 

perturbation theory (SPT), is: 

𝑘eff = 𝑘𝑔  [1 + (
1

2
−

1

𝑑
) 𝜎𝑌

2 +
1

2
(

1

2
−

1

𝑑
)

2 𝜎𝑌
4

2
+ (

1

2
−

1

𝑑
)

3 𝜎𝑌
6

2
+ 𝜀]       (2) 

where 𝜀 is a term that depends on the permeability distribution function and vanishes for d 

(formation dimension) = 1 and 2. For three-dimensional flow, however, it was numerically found 

that 𝜀 is approximately equal to −0.0014𝜎𝑌
6 for a Gaussian log permeability field (De Wit, 1995; 

Sanchez-Villa, 2006).  
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More recently, Stepanyants and Teodorovich (2003) used a different perturbative approach 

for constructing a perturbation series to calculate effective permeability. Rather than applying 

perturbation expansions to pressure head or variance as in earlier works, they performed their 

expansions on velocity and used Feynman diagrams for the derivation of terms of perturbative 

series. Their approach led to a solution presented in the form of a power series for the inverse 

coefficient of permeability, which we refer to as the alternative perturbation theory (ALPT) and 

is given by 

𝑘eff = 𝑘𝑔 exp (−
𝜎𝑌

2

2
) [1 −

𝑑−1

𝑑
𝜎𝑌

2 +
1

2
(

𝑑−1

𝑑
)

2

𝜎𝑌
4]

−1

      (3) 

Although the derivation of most perturbative models requires advanced mathematical and 

computational skills, the inability of these methods to accurately estimate keff in heterogeneous 

formations where permeability fluctuations become very large (King, 1989; Sanchez-Villa et al., 

2006; Dagan et al., 2013) is well known in the literature. 

Numerical simulations of Dykaar and Kitanidis (1992) as well as the renormalization 

calculations of Attinger et al. (2002) seemed to confirm the validity of Matheron’s conjecture for 

multi-Gaussian permeability fields with 𝜎𝑌
2 as large as 7. However, accurate numerical 

simulations by Jankovic et al. (2003A; 2003B) showed that the well-known self-consistent 

approximation (see e.g., Dagan, 1989) led to excellent agreement with numerical results while 

Matheron’s conjecture largely overestimated 𝑘eff for 𝜎𝑌
2 > 1 in a medium made of a dense 

ensemble of inclusions of independent log-normal k. De Wit (1995) also showed that the SPT, 

and most perturbative methods, estimates 𝑘eff with an error less than 1% when 𝜎𝑌 < 1.7 for the 

Gaussian distribution of 𝑘 and 𝜎𝑌 < 2 for the exponential 𝑘 distribution. In another study, Sarris 

and Paleologos (2004) showed that there is good agreement between 𝑘eff Monte Carlo 

simulation results and ANPT estimations for 𝜎𝑌
2 < 2.  
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Such results demonstrate the inability of perturbative methods to accurately estimate the 

effective permeability in statistically heterogeneous formations. Consequently, we propose a 

powerful technique for estimating effective permeability and apply it to ten different 

uncorrelated formations. We also show its reliability by comparing its estimations to other model 

estimations (including the perturbative methods described here) in this study. 

1.3. Objectives 

Critical path analysis (CPA) is a promising upscaling technique from statistical physics. 

Although CPA has been widely applied to estimate keff at the core scale (Ghanbarian, 2020; 

Ghanbarian et al., 2016; Katz and Thompson, 1986), to the best of our knowledge its 

applications to the reservoir scale are very limited (Hunt and Idriss, 2009). Therefore, the 

objectives of this project are to: (1) develop a novel approach for applying the concept of CPA to 

the estimation of effective permeability at the reservoir scale, and (2) evaluate the performance 

of the CPA approach by comparing effective permeability estimated by CPA with that 

determined by numerical simulations, and (3) compare the accuracy of the CPA to other 

theoretic models, such as perturbation theory, the effective-medium approximation, and 

renormalization group theory. To achieve our objectives, the proposed research focuses on a 

wide range of aquifers/reservoirs with different levels of heterogeneity. In the next chapter, we 

briefly describe the critical path analysis, renormalization group theory, and the effective-

medium approximation.  
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Chapter 2 - Theory 

2.1. Critical path analysis 

CPA was originally proposed in the physics literature to scale up conductivity in random 

(uncorrelated) and heterogeneous systems with large fluctuations in local conductivity 

(Ambegaokar et al., 1971; Pollak, 1972). Based on the CPA, fluid flow in a heterogeneous 

formation with a broad distribution of permeabilities is controlled by permeabilities whose 

magnitudes are greater than some critical permeability (Hunt, 2001). In other words, transport is 

dominated by high-permeability zones, while low-permeability ones have trivial contribution to 

the overall transport (Hunt et al., 2014).  

Imagine a reservoir constructed of grid blocks of various permeabilities. To calculate the 

value of critical permeability, we should first remove all the grid blocks from the reservoir. We 

then replace them in their original locations in a decreasing order from the largest to the smallest 

permeability. As the first largest permeabilities are replaced, there is still no percolating cluster. 

However, after a sufficiently large fraction of grid blocks is replaced within the reservoir, a 

sample-spanning cluster forms and the system starts percolating. The critical permeability is 

defined as the smallest permeability required to form a conducting sample-spanning cluster. 

Fluid flow and transport take place through the sample-spanning cluster which is composed of 

two components: (1) the dead-end part that does not contribute to flow, and (2) the backbone, the 

multiply-connected part of the cluster, through which fluid flow occurs. The grid blocks in the 

backbone can be divided to two groups: (i) those in the blobs that are multiply connected and 

make flow paths very tortuous, and (ii) those that would split the backbone into two parts, if 

removed, that are called red grid blocks (Pike and Stanley, 1981). 
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At the core scale, Katz and Thompson (1986) argued that the effective permeability is 

controlled by the critical pore-throat radius corresponding to the mode of the probability density 

function of pore throats. Analogously, we postulate that critical permeability corresponding to 

the mode of permeability distribution should represent the effective permeability (keff) of a 

formation. An example of how this concept can applied at the reservoir scale (to the permeability 

distribution of a formation) is shown in Figure 2-1. 

 

Figure 2-1. Application of the CPA approach to estimate keff in geological formations 

 

2.2. Renormalization group theory 

Renormalization group theory (RGT) is another powerful upscaling technique from statistical 

physics (Reynolds et al., 1977; Stinchcombe and Watson, 1976). Using the analogy between fluid 

flow through a porous medium and flow of current through an electric circuit, King (1989) mapped 

a block of cells of different permeabilities into an equivalent resistor network and ultimately to a 

single resistor. Using this terminology, the effective permeability of a 2 × 2 block of isotropic 

cells was obtained in two dimensions as follows (King, 1989): 

𝑘eff 2D =
4(𝑘1+𝑘3)(𝑘2+𝑘4)[𝑘2𝑘4(𝑘1+𝑘3)+𝑘1𝑘3(𝑘2+𝑘4)]

[𝑘2𝑘4(𝑘1+𝑘3)+𝑘1𝑘3(𝑘2+𝑘4)][𝑘1+𝑘2+𝑘3+𝑘4]+3(𝑘1+𝑘2)(𝑘3+𝑘4)(𝑘1+𝑘3)(𝑘2+𝑘4)
  (4) 

where 𝑘1, 𝑘2, 𝑘3, 𝑘4 are permeability values of neighbouring cells used in the 2D 

renormalization. 
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In three dimensions, the process of renormalization is more complicated. The 

fundamental structure is a 2 × 2 × 2 cube, with uniform pressure on two parallel faces and no 

flow boundary conditions on the remaining four faces. Several transformations must be 

performed in order to obtain an equivalent resistance. Green and Patterson (2007) used the idea 

of splitting a 2 × 2 × 2 cube into four components, treated each as a two-dimensional block and 

calculated the effective permeability as follows (Green and Paterson, 2007): 

𝑘eff 3D(𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6, 𝑘7, 𝑘8) =
1

4
[𝑘eff 2D(𝑘1, 𝑘2, 𝑘3, 𝑘4) + 𝑘eff 2D(𝑘5, 𝑘6, 𝑘7, 𝑘8) +

𝑘eff 2D(𝑘5, 𝑘6, 𝑘1, 𝑘2) + 𝑘eff 2D(𝑘7, 𝑘8, 𝑘3, 𝑘4)]       (5) 

 2.3. Effective medium approximation 

In the effective medium approximation (EMA), developed by Kirkpatrick (1973), a 

heterogeneous formation is replaced by a homogeneous one of permeability keff, which is the 

same as the permeability of the actual heterogeneous formation. The spatial dependence of 

permeability in the heterogeneous formation results in local perturbations about the effective 

permeability of the homogeneous formation. The effective permeability can then be calculated 

by setting the average perturbation to be zero (Kirkpatrick, 1973) 

∫
𝑘−𝑘eff

𝑘+(
𝑧

2
−1)𝑘eff

𝑓(𝑘)𝑑𝑘 = 0         (6) 

where f(k) is the probability density function of permeability, and z is the coordination number 

equal to 4 and 6 respectively in two and three dimensions. We should note that Eq. (6) with z = 4 

in two dimensions and 6 in three dimensions reduces to the self-consistent approximation.  
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Chapter 3 - Materials and Methods 

3.1. Heterogeneity due to spatial variation in permeability 

In geological formations and reservoirs, permeability spatially varies. Measurements on cores 

sampled at different locations in geologic formations from various studies indicate that 

permeability measurements should approximately conform to the log-normal distribution 

(Haneberg, 2012; Wainwright and Mulligan, 2013) 

𝑓(𝑘) =
1

√2𝜋𝜎𝑘
𝑒𝑥𝑝 [− (

ln (
𝑘

𝑘g
)

√2𝜎
)

2

],   𝑘𝑚𝑖𝑛 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥     (7) 

where 𝜎 is the standard deviation, and kmin and kmax are the minimum and maximum permeability 

values in the formation, respectively. According to Fogg (2010), 𝜎2 value can be as large as 10 

to 15 in natural geological formations.  

In Figure 3-1, we show Eq. (7) and its fit to permeability measurements from the Borden site 

(Sudicky, 1986).  

 

Figure 3-1. The log-normal distribution, Eq. (8), with 𝒌𝒈 = 1.5×10-11 m2, 𝜎 = 0.56, kmin = 

6.1×10-14 m2, and kmax = 3.2×10-11 m2 fitted with R2 = 0.80 to the permeability histogram. 

Permeability measurements are from the Borden site (Sudicky, 1986). 
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As can be seen, the log-normal distribution with 𝑘𝑔 = 1.5 × 10−11m2, 𝜎 = 0.56, kmin = 

6.1×10-14 m2, and kmax = 3.2×10-11 m2 characterize the permeability histogram reasonably well 

with R2 = 0.80. Based on the results shown in Figure 3-1, we designed nine other formations 

using the same truncated log-normal distribution but different values of 𝑘𝑔 and 𝜎 as reported in 

Table 3.1 and shown in Appendix A.  

 

Table 3.1. Ten different geological formations constructed in this study. 𝑘𝑔 is the geometric 

mean and 𝜎 is the standard deviation from the log-normal permeability distribution. kmin and kmax 

are the minimum and maximum permeability values in each formation. (ln𝑘)𝑎𝑣𝑔 is the average 

of the natural logarithm of permeability and 𝜎𝑌 is the standard deviation of the log-transformed 

permeability distribution (Y = ln(k)). keff represents the effective permeability simulated by 

COMSOL in two and three dimensions.  

Formation 𝒌𝒈(m2) 𝝈 kmin/kmax (𝐥𝐧𝒌)𝒂𝒗𝒈 𝝈𝒀 

keff (m2) 

(2D) 

keff (m2) 

(3D) 

1 1.5×10-11 0.56 6.1×10-14/3.2×10-11 -25.24 0.56 1.05×10-11 1.12×10-11 

2 1.5×10-12 0.56 6.1×10-14/3.2×10-11 -27.54 0.56 1.11×10-12 1.16×10-12 

3 1.9×10-11 0.25 6.1×10-14/3.2×10-11 -24.76 0.25 1.73×10-11 1.76×10-11 

4 4.5×10-12 0.40 6.1×10-14/3.2×10-11 -26.29 0.40 3.92×10-12 4.02×10-12 

5 2.6×10-11 0.05 6.1×10-14/3.2×10-11 -24.37 0.05 2.62×10-11 2.61×10-11 

6 5.0×10-11 2.0 6.1×10-14/3.2×10-5 -27.72 2.0 1.26×10-12 2.28×10-12 

7 1.0×10-6 3.0 6.1×10-14/3.2×10-5 -22.81 3.0 1.67×10-10 5.13×10-10 

8 1.0×10-3 4.0 6.1×10-14/3.2×10-5 -22.9 4.0 2.03×10-10 1.20×10-09 

9 1.0×103 5.0 6.1×10-14/3.2×10-5 -18.10 5.0 1.46×10-08 1.09×10-07 

10 1.0×109 6.0 6.1×10-14/3.2×10-5 -15.25 6.0 5.81×10-8 3.94×10-07 
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Formation 1 is based on the actual measurements from Sudicky (1986) with 𝑘𝑔 =

1.5 × 10−11𝑚2 and 𝜎 = 0.56 as presented in Figure 3-1. Formation 2 is similar to Formation 1, 

however, its 𝑘𝑔 value is one order of magnitude smaller. All other formations were designed so 

that a wide range of 𝑘𝑔, 𝜎 and kmin/kmax values can be examined. As can be deduced from Table 

3.1, 𝑘𝑔 and 𝜎 values span nearly 21 and 2 orders of magnitude, respectively, covering a wide 

range of formations with various levels of heterogeneity. Furthermore, the kmin/kmax ratio is 

6.1×10-14/3.2×10-11
 in Formations 1 to 5, while 6.1×10-14/3.2×10-5 in Formations 6 to 10, which 

indicates broader permeability distributions and, thus, higher levels of heterogeneity in the latter. 

3.2. Numerical simulations via COMSOL 

COMSOL provides a powerful computational platform for simulations of flow and transport. 

The Multiphysics package of COMSOL is capable of generating both two- and three-

dimensional geometries on which the simulations can be performed. Figure 3-2 shows a 3D 

domain composed of cells of the same size, where the number of cells along each side of the 

domain represents the domain size. For example, Figure 3-2a plan shows a domain size of 20. 

 

 

Figure 3-2. (a) A 3D domain of size of 10 m with 20 cells along each side (domain size = 20), 

and (b) random spatial distribution of permeability values in the same domain. 
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It is well documented in the literature that numerical simulations are scale-dependent (Sahimi, 

2011), which means that the numerically simulated permeability is expected to vary with the 

domain size. Accordingly, the fluid flow simulations need to be carried out at various domain 

sizes to find the representative elementary volume (REV), the smallest domain size above which 

the effective permeability does not vary with size. There exist two approaches to study the scale 

dependence of permeability: (1) fixing the domain size and decreasing the cell size, or (2) 

increasing the domain size by increasing the cell size. In the former, the number of cell increases 

while in the latter the number of cells does not vary. In this study, we applied the first approach. 

For the 2 and 3D simulations of flow, respectively, square and cubic domains of length 10 m 

were created. The physical length of 10 m is arbitrary, and any other value can be used without 

affecting our simulations and results. Each cell in the domain was then randomly assigned a 

specific value of permeability from the log-normal probability density function. Fig. 3-2b 

presents the spatial distribution of permeability for the same domain depicted in the same figure. 

We should point out that our focus is on geologic formations with an uncorrelated distribution of 

permeability.  

Flow was simulated through the 2- and 3-D formations by COMSOL, which solves the 

pressure form of Darcy’s law together with the mass conservation equation. For all the 

simulations, hydraulic head boundary conditions were applied along the flow direction with no-

flow conditions applied in the perpendicular directions. The hydraulic head was set equal to 2 m 

at one side of the flow direction and to 0 at the other side, while the dynamic viscosity and the 

water density were set equal to 8.9 × 10−4 𝑃𝑎. 𝑠 and 1000 𝑘𝑔/𝑚3, respectively.  

To find the REV, different domain sizes were used. At each domain size, the effective 

permeability was computed by running simulations 60 times and then averaging over all the 



13 

iterations to remove the bias in the simulations. The effective permeability was plotted against 

the domain size to determine the 𝑘eff above the REV. 

3.3. Estimating keff via theoretical models 

In this study, we evaluate several theoretic models for estimating effective permeability by 

applying them to the permeability distributions corresponding to 10 different formations with 

different levels of heterogeneity (Table 3.1). To estimate the 𝑘eff via the perturbative methods 

i.e., ANPT, Eq. (1), SPT, Eq. (2), and ALPT, Eq. (3), we used the log-normal permeability 

distribution parameters given in Table 1. For the ANPT model, we set 𝜒 = 1/3 and 𝛾𝑖 = 0 for 

isotropic formations as described by Sanchez-Villa et al. (2006) and Indelman and Abramovich 

(1994).  

To estimate the 𝑘eff using the CPA, we determined the value of permeability corresponding 

to the mode of the log-normal permeability distribution by the following expression: 𝑘eff =

exp [ln(𝑘g) − 𝜎2].  

For the RGT, we constructed two- and three-dimensional matrices in MATLAB whose 

elements were randomly selected from the log-normal permeability distribution. The dimensions 

of such matrices were determined based on the REVs. To compute the effective permeability in 

two and three dimensions, permeability was scaled up at the 2 × 2 block and 2 × 2 × 2 cube 

levels using Eqs. (4) and (5), respectively. For each geologic formation, we iterated these 

computations 1000 times and averaged over all to calculate the 𝑘eff. The MATLAB code used 

for the implementation of RGT in both two- and three- dimensions, including a step-by-step 

explanation, is presented in Appendix B. 

To estimate the effective permeability within the EMA framework, we numerically solved 

Eq. (6) in MATLAB. In two and three dimensions, we set z = 4 and 6, respectively. In Appendix 
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C, the MATLAB code for implementing the EMA for all formations are presented and explained 

for both the two- and three- dimensional cases. 

3.4. Models evaluation criteria 

To evaluate the accuracy of each model, the root mean square log-transformed error 

(RMSLE) and the relative error (RE) values were calculated as follows 

𝑅𝑀𝑆𝐿𝐸 =  √
1

𝑁
 ∑[loge(𝑥est)  

𝑁

𝑖=1

− loge(𝑥sim)]2 (8) 

 

𝑅𝐸 =
𝑥est − 𝑥sim

𝑥sim
× 100 (9) 

where 𝑁 is the number of samples, and 𝑥est and 𝑥sim are, respectively, the estimated and 

simulated values.  
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Chapter 4 - Results and Discussion 

In this chapter, we present the obtained results. The REV plots based on which the 

representative permeability value for each formation was determined are given in Figures 4-1 

and 4-2 for two and three dimensions, respectively. To determine the value of REV and the 

corresponding permeability, the effective permeability numerically computed via COMSOL was 

plotted against the domain size for both two- and three-dimensional simulations. Recall that the 

domain size indicates the number of cells along each side of domain. The representative 

elementary volume (REV) was accordingly determined for each formation based on these plots. 

Comparing Figure 4-1 with Figure 4-2 shows that the REV values in three dimensions are 

greater than those in two dimensions. The obtained results are consistent with those reported by 

Marafini et al. (2020). This is because the number of cells within the formation in two 

dimensions (i.e., 𝑛 × 𝑛 in which n represents the number of cells) is less than that in three 

dimensions (i.e., 𝑛 × 𝑛 × 𝑛) by a factor of the number of cells. This leads the cell arrangement 

even at random to have a substantial impact on flow simulations.   

We also compare the estimated effective permeability values by different models including 

the ANPT, Eq. (1), SPT, Eq. (2), ALPT, Eq. (3), CPA, RGT, Eq. (4) and (5), and EMA, Eq. (6) 

with the numerically simulated ones from COMSOL in Figures 4-3 and 4-4 for the 2 and 3D 

formations, respectively. In Formations 1 through 5, permeability spans about three orders of 

magnitude (6.1×10-14 ≤ 𝑘 ≤ 3.2×10-11), and 𝜎 ranges between 0.05 and 0.56. In Formations 6 to 

10, however, permeability spans close to eight orders of magnitude (6.1×10-14≤ 𝑘 ≤ 3.2×10-5), 

and 𝜎 varies between 2 and 6. Formations 1 to 5 represent relatively heterogeneous reservoirs, 

while Formations 6 to 10 denote heterogeneous systems. In what follows, we address the 

reliability and accuracy of each model based on its performance in this study. 
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Figure 4-1. Plots of effective permeability against domain size to determine the representative 

elementary volume (REV) for each of the 2D formations.  
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Figure 4-2. Plots of effective permeability against domain size to determine the representative 

elementary volume (REV) for each of the 3D formations. 
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4.1. Perturbative methods 

In two dimensions, all of the perturbative models i.e., ANPT, SPT, and ALPT estimated the 

effective permeability accurately in Formations 1 to 5 (𝜎 ≤ 0.56). However, they substantially 

overestimated the keff in Formations 6 to 10 (𝜎 ≥ 2) as shown in Figures 4-3a-4-3c. A summary 

of the RE values calculated for each model estimation is shown in Tables 4.1 and 4.2. We found 

RMSLE = 15.32, 15.32, and 5.49 respectively for the ANPT, Eq. (1), SPT, Eq. (2), and ALPT, 

Eq. (3), models. We should note that in two dimensions both the ANPT, Eq. (1), with 𝛾𝑖 = 0 and 

𝜖 = 0, and SPT, Eq. (2), models reduce to Matheron’s conjecture (Matheron, 1967) in which 𝑘eff 

= 𝑘g. As a result, the ANPT and SPT models resulted in the same estimations with RMSLE and 

average RE values of 15.32 and 1.72×1017% respectively for all the formations. The ALPT 

returned an average RE value of 1.81×107% for all formations. Among the three perturbative 

methods studied here, the ALPT, Eq. (3), provided the most accurate estimations of keff in two 

dimensions. 

We also investigated the models’ accuracy within Formations 1 to 5 and 6 to 10. For the 

ANPT model we found RMSLE = 0.22 and 21.66, and average RE values of 20% and 3.4×1017 

% for the 𝑘eff estimations, in Formations 1 to 5 and 6 to 10, respectively. The RE values range 

from 0.14 (Formation 5) to 1.72 × 1018% (Formation 10). Same results were obtained for the 

SPT model. For the ALPT model RMSLE values of 0.22 and 7.76 were found with average 

relative error values of 20% and 3.6 × 107% respectively for Formations 1 to 5 and 6 to 10.  

Similar results were obtained in three dimensions; the three perturbative methods 

overestimated the effective permeability in Formations 6 to 10, while they provided accurate 

estimations in Formations 1 to 5 (Figures 4-4a-4-4c).  
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Table 4.1 RE (%) of comparisons between keff estimations and numerical simulation results of 

keff for the 2D Formations. 

 

 

Table 4.2 RE (%) of comparisons between keff estimations and numerical simulation results of 

keff for the 3D Formations. 

 

Formation 𝒌𝒈(m2) 𝝈 ANPT SPT ALPT CPA RGT EMA 

1 1.5×10-11 0.56 43.47 43.47 43.40 4.41 -0.81 35.70 

2 1.5×10-12 0.56 35.35 35.35 35.30 -1.49 -2.08 34.40 

3 1.9×10-11 0.25 8.04 8.04 8.04 1.49 0.1 7.36 

4 4.5×10-12 0.40 14.63 14.63 14.60 -2.32 -1.45 14.80 

5 2.6×10-11 0.05 0.14 0.14 0.14 -0.11 -0.30 0.02 

6 5.0×10-11 2.0 3858 3858 437 -27.50 -12.88 -95.2 

7 1.0×10-6 3.0 6.00×105 6.00×105 904 -25.97 -49.92 4.96×105 

8 1.0×10-3 4.0 4.93×108 4.93×108 6510 -44.51 -63.48 2.23×106 

9 1.0×103 5.0 6.83×1012 6.83×1012 3.83×1012 -5.20 -71.71 6.80×104 

10 1.0×109 6.0 1.72×1018 1.72×1018 1.81×108 299.21 -68.66 2.00×104 

Formation 𝒌𝒈(m2) 𝝈 ANPT SPT ALPT CPA RGT EMA 

1 1.5×10-11 0.56 41.6 34 41.40 -2.18 4.72 26.30 

2 1.5×10-12 0.56 36.2 29 35.90 -5.94 4.54 36.50 

3 1.9×10-11 0.25 7.3 6 7.30 -0.24 1.07 58.80 

4 4.5×10-12 0.40 14.8 12 14.80 -4.76 2.675 15.00 

5 2.6×10-11 0.05 0.37 0.33 0.37 0.08 0.06 0.21 

6 5.0×10-11 2.0 2090 2095 57.20 -59.80 36.05 -97.30 

7 1.0×10-6 3.0 1.95×105 1.95×105 66.50 -75.96 63.54 2.66×105 

8 1.0×10-3 4.0 8.37×107 8.37×107 495.00 -90.58 78.17 5.03×105 

9 1.0×103 5.0 9.13×1011 9.13×1011 2.75×104 -87.32 80.03 1.03×104 

10 1.0×109 6.0 2.54×1017 2.54×1017 1.46×107 -41.05 74.80 3.20×103 
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Figure 4-3. Comparison of effective permeabilities calculated from 2D numerical simulations 

and those estimated from models including (a) ANPT, Eq. (1), (b) SPT, Eq. (2), (c) ALPT, Eq. 

(3), (d) CPA, (e) RGT, Eq. (4), and (f) EMA, Eq. (6). 
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Figure 4-4. Comparison of effective permeabilities calculated from 3D numerical simulations 

and those estimated from models including (a) ANPT, Eq. (1), (b) SPT, Eq. (2), (c) ALPT, Eq. 

(3), (d) CPA, (e) RGT, Eq. (4), and (f) EMA, Eq. (6). 
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We found RMSLE = 15.77, 14.30, and 4.21 and average RE values as 2.54 × 1016%, 

2.54 × 1016%, and 1.46 × 106% respectively for the ANPT, Eq. (1), SPT, Eq. (2), and ALPT, 

Eq. (3), models. While the accuracy of the ANPT model estimations in three dimensions reduced 

compared to the case in two dimensions, the SPT model performed slightly better. The accuracy 

of the ALPT model also improved from two to three dimensions (RMSLE = 4.21 vs. 5.49). 

We also compared the performance of the perturbative methods within Formations 1 to 5 and 

6 to 10. Comparison of the estimations by the ANPT with the simulations by COMSOL in 

Formations 1 to 5 and 6 to 10 showed that this model reasonably estimated 𝑘eff in the former 

(relatively heterogeneous formations) with RMSLE of 0.22, while it overestimated the keff with 

RMSLE = 20.18 in the latter (heterogeneous formations). Furthermore, the average RE values of 

20% and 5.08 × 1016% respectively in Formations 1 to 5 and Formations 6 to 10 confirm that 

the ANPT estimates keff efficiently in relatively heterogeneous formations but breaks down in 

very heterogenous formations. Although this model might estimate effective permeability with a 

higher degree of accuracy in anisotropic formations (Sarris and Paleologos, 2004), it essentially 

reduces to a form similar to the SPT in case of isotropy. This could be a reason for the substantial 

overestimations by this model especially for the very heterogeneous formations. 

For the SPT model, we found RMSLE values of 0.18 and 20.18 and average RE values of 

16% and 5 × 1016% respectively, similar to those reported in two dimensions. For the ALPT 

model, however, RMSLE = 0.22 and 5.94, values were less, particularly in Formations 6 to 10, 

compared to the SPT and ANPT models. The ALPT model underestimated keff with an average 

RE of 19.9% in Formations 1 to 5, and overestimated the effective permeability values with an 

average RE of 2.93 × 106%, about ten orders of magnitude smaller than that obtained from the 

SPT in Formations 6 to 10. Our results demonstrate that the ALPT model estimates the effective 
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permeability accurately in three-dimensional formations with 𝜎 ≤ 4. This model performs better 

than the other perturbative methods probably because of the inverse nature of its formulation, 

which clearly reduces the amount of overestimations in heterogeneous porous media. 

4.2. Critical path analysis 

Two-dimensional results from the CPA are presented in Figure 4-3d. As can be seen, the 

CPA with RMSLE = 0.50 estimated the keff in all formations accurately (with data points 

distributed around the 1:1 line indicating well agreement between the numerical simulations and 

the CPA estimations). We found an average RE value of 19.8% for all formations. Although in 

most formations the CPA slightly underestimated the effective permeability, it overestimated keff 

in Formation 10 with the relative error of 299.21%. Further analysis showed that the CPA 

estimated 𝑘eff with RMSLE = 0.02 and 0.70 within Formations 1 to 5 and 6 to 10, with average 

RE values of 0.4% and 39.21%, respectively. It is worth pointing out that the average RE for 

each of the estimations for the relatively heterogeneous formations are all significantly less than 

10%, with the highest error of 4.41% in Formation 1.  

In three dimensions, CPA also estimated 𝑘eff accurately with an RMSLE of 1.14 and average 

RE of -36.8%. Plots of the estimated effective permeability values against the simulated ones are 

shown in Figure 4-4d for the three-dimensional formations. We should point out that the CPA 

estimations are the same in two and three dimensions since the mode of the permeability 

distribution does not vary with formation dimensionality. Generally speaking, the CPA tended to 

underestimate the keff in most 3D formations.  

The CPA estimated 𝑘eff within Formations 1 to 5 with RMSLE = 0.04 and average relative 

error of -2.61%. From Formations 6 to 10, the values of RMSLE and average RE were 1.61 and -

70.94%, respectively.  
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4.3. Renormalization group theory  

The RGT estimated the effective permeability in 2D formations accurately with RMSLE = 

0.67 and average relative error = -27% (Figure 4-3e). It can be deduced from the average RE that 

the RGT model, Eq. (5), on average, underestimated the keff. Similar to the CPA, the RGT 

estimated keff more accurately in Formations 1 to 5 (RMSLE = 0.012 and average RE = -0.9%) 

than in Formations 6 to 10 (RMSLE = 0.94 and average RE = -53%).  

In three dimensions, the RGT estimated the effective permeability for all ten formations with 

RMSLE = 0.90 (Figure 4-4e) and average RE = -35% (slightly more accurate than the CPA). 

Comparison of the estimated keff values with the simulated values resulted in RMSLE = 0.03 for 

Formations 1 to 5 and 1.27 for Formations 6 to 10. The average RE values were -3 and -67% in 

Formations 1 to 5 and 6 to 10, respectively. Similar to the results of CPA, the RGT model tended 

to underestimate the effective permeability in most formations studied here. 

 4.4. Effective medium approximation 

A plot of the 𝑘eff estimations via the EMA against the 𝑘eff simulations by COMSOL for the 

two-dimensional formations is shown in Figure 4-3f. We found RMSLE = 5.03 and average 

relative error = 2.81× 105%. As can be visually confirmed from the data points lay on the 1:1 

line in Figure 4-3f, the EMA accurately estimated the effective permeability in Formations 1 to 5 

with RMSLE = 0.20 (similar to the perturbative methods) and average RE = 18%. Although the 

EMA underestimated keff in Formation 6 with 𝜎 = 2, it overestimated the effective permeability 

in Formations 7 to 10 (𝜎 ≥ 3). For Formations 6 to 10, however, we found RMSLE = 7.11 and 

average RE = 5.6 × 105 %.  

Results of the EMA model and its keff estimations in three dimensions are presented in Figure 

4-4f. We found RMSLE = 4.27 and average relative error = 7.8 × 104%. Comparing the 

RMSLE values from two- and three-dimensional results (5.03 vs. 4.27 respectively) shows that 
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the EMA provided more accurate estimations in three dimensions. Further comparison rendered 

RMSLE = 0.19 and average RE = 17% in Formations 1 to 5 (similar to the perturbative methods) 

and RMSLE = 6.03 and average RE = 1.6 × 105%. in Formations 6 to 10. Results (RMSLE and 

RE values) show that the EMA provides accurate results in relatively heterogenous media 

(Formations 1 to 5) in both two and three dimensions. However, it mostly overestimates the keff 

in formations with 𝜎 ≥ 2. 

4.5. Models performance 

King (1989), Renard and de Marsily (1997), and Sanchez-Vila et al. (2006) amongst others 

noted that the perturbative methods accurately estimate the effective in media with small 

variations in permeability but breaks down in heterogeneous ones. Similar results were obtained 

by Dykaar and Kitanidis (1992), Neuman et al. (1992) and Hristopulos and Christakos (1999) 

who showed that Matheron’s conjecture and many of the perturbative methods can be 

successfully applied to permeability distributions with 𝜎 values up to 2.65. Similarly, evidence 

from this study showed substantial effective permeability overestimations by several perturbative 

methods in the statistically heterogeneous permeability distributions (𝜎 ≥ 2). 

Most perturbative methods reduce to the exact form of the conjecture (𝑘eff=𝑘g) in two-

dimensions. Although the ANPT and SPT models include terms in their expressions other than 

the permeability variance, these models essentially reduce to Matheron’s conjecture when 

applied to two-dimensional isotropic geologic formations. Therefore, it is not surprising that the 

perturbative methods used in this study substantially overestimated the effective permeability in 

the statistically heterogeneous geologic formations (𝜎 ≥ 2). However, the ALPT does not reduce  

to the exact form of the conjecture and this, in addition to the inverse form of its 𝑘eff expression, 

could account for the higher accuracy of this model.  
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Applying the conjecture to 3D formations did not result in accurate estimations of  𝑘eff 

(results not shown), as expected. While the keff estimations by the SPT model improved from 2D 

to 3D (see RMSLE values), the ANPT model deteriorated in 3D. Also, the inclusion of the 𝑘eff 

dependence on the permeability distribution function in the ANPT, SPT, and ALPT models 

made no positive impact on the effective permeability estimations in the heterogeneous 

formations (large 𝜎). Except in few cases, the perturbative methods resulted in substantial 

overestimations of the effective permeability in the statistically heterogeneous geologic 

formations. Among the perturbative methods studied here, the ALPT provided the best 

estimations in 2 and 3D. This model performs almost as accurate as the EMA; see the reported 

RMSLE values in Figures 4-3 and 4-4 as well as the relative errors in Table 4.1.  

CPA has been successfully applied to estimate the 𝑘eff at the core scale ( Katz and 

Thompson, 1986; Ghanbarian et al., 2016; 2017; Ghanbarian, 2020;). However, its applications 

at the field scale are very limited. Hunt and Idriss (2009) applied concepts from CPA to 

determine the effective permeability in correlated and random systems with bimodal 

permeability distributions in terms of the arithmetic mean of 𝑘𝑚𝑖𝑛 < 𝑘 < 𝑘𝑚𝑎𝑥  and harmonic 

mean of 𝑘𝑐 < 𝑘 < 𝑘𝑚𝑎𝑥 in which 𝑘𝑐 is the critical permeability. They showed that the CPA 

provided reasonable estimations above the percolation threshold in correlated systems. From our 

findings, the CPA estimated the effective permeability of the geologic formations in two and 

three dimensions with a high degree of accuracy. Although for the log-normal permeability 

distribution the value of keff is determined from 𝑘g and 𝜎, our proposed CPA approach is quite 

general and applicable to any unimodal distribution, which makes its application general and 

independent of the shape of the permeability distribution. In addition, CPA estimations are 
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dimension independent, in contrast to the perturbative methods and the other models applied in 

this study.  

While CPA estimated the 𝑘eff with the highest degree of accuracy compared to all other 

methods in the 2D geologic formations (as seen from RMSLE values), it estimated 𝑘eff with an 

RMSLE value smaller than all but the RGT in three dimensions. We found that the CPA 

underestimated the 𝑘eff in the geologic formations with average RE that are orders of magnitude 

smaller than those produced by most of the other models applied in this study. This is in stark 

contrast to the results derived from the perturbative methods, which generally tended to 

overestimate 𝑘eff with high error values, especially in the statistically heterogeneous formations. 

A possible reason for the success of this technique could be its inherent dependence on the flow 

paths of the porous medium rather than the statistical parameters that describe the permeability 

distribution.   

Several studies in the literature have highlighted the success of the RGT in estimating the 

effective permeability of homogenous and heterogeneous formations including King (1989); 

Hristopulos and Christakos (1999); Green and Paterson (2007); Sadeghnejad and Masihi (2017) 

and many others. Hristopulus and Christakos (1999) applied concepts from RGT and 

surprisingly provided 𝑘eff estimations that were closer to experimental results than numerical 

simulation results by a factor of eight.   

King (1989) also showed good agreement between 𝑘eff estimations by RGT and numerically 

simulated 𝑘eff in synthetic and real datasets. In his work, which was performed on uniformly and 

log-normally distributed permeability fields, he found that the RGT estimated 𝑘eff within 1% of 

direct simulation result. He also pointed out that perturbative methods and geometric mean did 
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not provide reliable estimations of 𝑘eff at large variance values but the agreement of 

renormalization with simulation results within 3% for the large variances. 

In the same way, RGT estimated 𝑘eff with a high degree of accuracy for all two- and three-

dimensional formations in this work. Among all the models applied in this work, the RGT 

estimated 𝑘eff with the highest degree of accuracy in the 3D geologic formations. Similar to 

CPA, the RGT also mostly underestimated the effective permeability of the geologic formations 

as seen from the RE values. Although fluid flow in heterogeneous porous media is neither 

perfectly in series nor parallel as assumed in the 3D RGT, the analogy of this method to the flow 

of current in electrical resistors seem to result in accurate estimations. 

The EMA model is not based on perturbation theory expansions, but is derived by setting an 

average perturbation of a heterogeneous system equal to zero, and this could be a reason why it 

mostly overestimated 𝑘eff. However, the model estimated 𝑘eff with a high level of accuracy, 

particularly in Formations 1 to 5 (based on RMSLE values). 

It is well documented in the literature that the EMA returns accurate estimations for 

permeability distributions with small variance values (Adler and Berkowitz, 2000; Ghanbarian 

and Daigle, 2016). For example, Adler and Berkowitz (2000) evaluated the accuracy of electrical 

conductivity estimations by EMA in two- and three-dimensional media with local conductances 

that followed the lognormal distribution with various standard deviations. They concluded that, 

“... the analytical expressions [the effective-medium approximations] provide good agreement 

to the simulations in 2D systems, but are in significant error in 3D systems when the standard 

deviation of the local conductivities is large.” 

Ghanbarian and Daigle (2016) also showed that the EMA overestimated the 𝑘eff significantly 

when log(𝑘max/𝑘min) > 0.8. For the relatively heterogenous formations (Formations 1 to 5) in 
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this study, log(𝑘max/𝑘min) = 2.7, while the value is equal to 8.6 in the heterogeneous formations 

(Formations 6 to 10). Therefore, the EMA performed robustly in estimating the 𝑘eff values in 

Formations 1 to 5. 

In summary, the CPA and RGT models estimated the effective permeability in relatively 

heterogeneous (Formations 1 to 5) and heterogeneous (Formations 6 to 10) reservoirs with the 

smallest RMSLE values. Although the RGT estimated 𝑘eff for all the geologic formations more 

accurately in three dimensions (based on RMSLE values) than any other model in this work, the 

CPA estimations were closest to numerical simulation results in two dimensions. However, it 

should be noted that RGT is a recursive algorithm (Renard and de Marsily, 1997) that is 

determined by a series of successive aggregations. In contrast, CPA requires no calculation, 

computation, nor computer programming, etc. In fact, CPA saves a substantial demand in 

computations and time with precise estimations in two and three dimensions. 

4.6. 2D versus 3D simulations 

Results showed that the keff values from two- and three-dimensional simulations were highly 

correlated. More specifically, we found (𝑘𝑒𝑓𝑓)
3𝐷

= 234.14(𝑘𝑒𝑓𝑓)
2𝐷

1.2
 with R2 = 0.99. In all 

formations except Formation 5 the value of keff in three dimensions was greater than that in two 

dimensions (Table 1). This is consistent with the results of King (1989) and Adler and Berkowitz 

(2000). More specifically, King (1989) simulated the keff in two- and three-dimensional systems 

with uniform and log-normal permeability distributions and reported keff in three dimensions 

greater than that in two dimensions. 

4.7. Long-range correlation and anisotropy 

It is well documented in the literature that there might exist long-range correlation at the 

aquifer/reservoir scale (Clark et al., 2020; Sahimi, 2011; Sahimi and Mukhopadhyay, 1996). 
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Correlation means that heterogeneity e.g., permeability in one zone of a geologic formation is 

not fully independent of that in other zones.  Correlation often presents at all length scales. 

Sahimi (1994) stated that natural porous media are not necessarily random and may exhibit some 

correlation. For instance, core-scale porous media may contain only short-range correlations, 

while heterogeneous field-scale formations, such as aquifers and reservoirs, may be long-range 

correlated. 

Geologic formations might also be anisotropic at such scales. In general, there might be three 

types of anisotropy in geological structures: (I) A formation may consist of randomly oriented 

anisotropic permeability blocks, (II) the distribution of permeability may be direction-dependent, 

and (III) anisotropy due to the presence of permeability zones of different orientations with 

different probabilities of being available to flow (Mukhopadhyay and Sahimi, 2000). In type I, 

the effective permeability of such formations is always isotropic. In type II, the anisotropy may 

vanish under certain circumstances, while in type III anisotropy always remains (Mukhopadhyay 

and Sahimi, 2000). 

In this study, we evaluated the CPA approach in isotropic and uncorrelated (random) 

formations. Further investigations are required to assess the reliability and predictability of the 

CPA in anisotropic and correlated large-scale porous media.    
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Chapter 5 - Conclusions 

Using concepts from critical path analysis (CPA), we presented a novel, simple, and 

robust approach to estimate the effective permeability at the reservoir scale. Based on the CPA, 

lower permeability zones in a geologic formation contribute little or nothing to the overall 

permeability, while higher permeability zones provide the paths through which fluid flows. We 

postulated that permeability at the mode of permeability density function should represent the 

effective permeability of a reservoir. The reliability of the proposed CPA approach was 

evaluated by comparing with two- and three-dimensional simulations in ten geologic formations 

with different levels of heterogeneity. The truncated log-normal permeability distribution with 

different geometric means (4.5×10-12≤ 𝑘𝑔 ≤1.0×109 m2) and standard deviations (0.05≤ 𝜎 ≤6) 

was used to generate such formations. In addition to the CPA, other theoretic approaches, such as 

perturbation theory-based methods, effective medium approximation, and renormalization group 

theory, were applied to estimate the 𝑘eff. Results showed that the CPA estimated the keff with 

RMSLE = 0.50 more accurate than the other approaches in two dimensions. However, 

renormalization group theory with RMSLE = 0.90 estimated the keff slightly more accurate than 

the CPA with RMSLE = 1.14 in three dimensions. We also found that both perturbation theory 

and the effective-medium approximation provided reasonable estimations of keff in formations 

with permeability standard deviation 𝜎 < 2. However, these two approaches substantially 

overestimated the effective permeability in highly heterogeneous formations with 𝜎 > 2. Further 

investigations are required to evaluate the reliability of the CPA approach in correlated and 

anisotropic geologic formations. 
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Figure A-1: Permeability probability density function (pdf) for Formations 1-10 
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Appendix B 

The MATLAB code developed to estimate the effective permeability using Renormalization 

Group Theory (RGT) in ten formations studied here.  

RGT in two-dimensional formations 

% This code estimates the effective permeability of a 2D permeability distribution based on RGT 

 

clear all 

clc 

 

% The number of times the code will be iterated 

numm=1000; 

result=zeros(numm,1); 

 

% Using a for loop for the iteration 

for count=1:numm 

% nnn=number of steps 

nnn=8; 

LL=6^nnn;   %total number of boxes 

 

r=sqrt(LL);          % r indicates rows in the permeability matrix for RGT 

c=sqrt(LL);          % r indicates columns in the permeability matrix for RGT 

N=r*c; 
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% Writing a function to define the RGT expressions for estimating effective permeability of a 2D 

formation 

 

funn=@(x1,x2,x3,x4) 

4*(x1+x3)*(x2+x4)*(x2*x4*(x1+x3)+x1*x3*(x2+x4))/((x2*x4*(x1+x3)+(x1*x3)*(x2+x4))*(x1

+x2+x3+x4)+3*(x1+x2)*(x3+x4)*(x1+x3)*(x2+x4)); 

 

% importing the input permeability data for RGT 

k1=import permeabilitydata.txt 

 

% Reshaping the permeability into a row matrix of N elements 

Perm1=reshape(permeabilitydata,[N,1]); 

 

% Randomizing the permeability values 

Perm2=Perm1(randperm(numel(Perm1))); 

 

% reshaping the random Perm2 row matrix into a matrix with size [r,c] 

k_renorm=reshape(Perm2,[r,c]); 

 

% initializing the size of the k_renorm matrix 

[nx,ny]=size(k_renorm); 
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% defining the new permeability matrix derived from first step of renormalization 

k2=zeros(64,64); 

% using a for loop to invoke the RGT expression in the first step of renormalization 

for i=1:2:c-1 

    for j=1:2:r-1    

        k2(i,j)=funn(k1(i,j),k1(i,j+1),k1(i+1,j), k1(i+1,j+1));       

    end 

end 

% Removing all elements of the matrix equal to zero 

k2=nonzeros(k2'); 

% Reshaping the final matrix derived from renormalization first step 

k2=reshape(k2,64,64)'; 

 

% defining the new permeability matrix derived from first step of renormalization 

k3=zeros(32,32); 

% using a for loop to invoke the RGT expression in the second step of renormalization 

for i=1:2:c/2-1 

    for j=1:2:r/2-1    

        k3(i,j)=funn(k2(i,j),k2(i,j+1),k2(i+1,j), k2(i+1,j+1));       

    end 

end 

% Removing all elements of the matrix equal to zero 

k3=nonzeros(k3'); 
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% Reshaping the final matrix derived from renormalization second step 

k3=reshape(k3,32,32)'; 

 

% defining the new permeability matrix derived from second step of renormalization 

k4=zeros(16,16); 

% using a for loop to invoke the RGT expression in the third step of renormalization 

for i=1:2:c/4-1 

    for j=1:2:r/4-1    

        k4(i,j)=funn(k3(i,j),k3(i,j+1),k3(i+1,j), k3(i+1,j+1));       

    end 

end 

% Removing all elements of the matrix equal to zero 

k4=nonzeros(k4'); 

% Reshaping the final matrix derived from renormalization third step 

k4=reshape(k4,16,16)'; 

 

% defining the new permeability matrix derived from third step of renormalization 

k5=zeros(8,8); 

% using a for loop to invoke the RGT expression in the fourth step of renormalization 

for i=1:2:c/8-1 

    for j=1:2:r/8-1    

        k5(i,j)=funn(k4(i,j),k4(i,j+1),k4(i+1,j), k4(i+1,j+1));       

    end 
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end 

% Removing all elements of the matrix equal to zero 

k5=nonzeros(k5'); 

% Reshaping the final matrix derived from renormalization fourth step 

k5=reshape(k5,8,8)'; 

 

% defining the new permeability matrix derived from fourth step of renormalization 

k6=zeros(4,4); 

% using a for loop to invoke the RGT expression in the fifth step of renormalization 

for i=1:2:c/16-1 

    for j=1:2:r/16-1    

        k6(i,j)=funn(k5(i,j),k5(i,j+1),k5(i+1,j), k5(i+1,j+1));       

    end 

end 

% Removing all elements of the matrix equal to zero 

k6=nonzeros(k6'); 

% Reshaping the final matrix derived from renormalization fifth step 

k6=reshape(k6,4,4)'; 

 

% defining the new permeability matrix derived from fifth step of renormalization 

k7=zeros(2,2); 

% using a for loop to invoke the RGT expression in the sixth step of renormalization 

for i=1:2:c/32-1 
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    for j=1:2:r/32-1    

        k7(i,j)=funn(k6(i,j),k6(i,j+1),k6(i+1,j), k6(i+1,j+1));       

    end 

   

end 

% Removing all elements of the matrix equal to zero 

k7=nonzeros(k7'); 

% Reshaping the final matrix derived from renormalization sixth step 

k7=reshape(k7,2,2)'; 

 

% defining the new permeability matrix derived from sixth step of renormalization 

k8=zeros(1,1); 

% using a for loop to invoke the RGT expression in the seventh step of renormalization 

for i=1:2:c/64-1 

    for j=1:2:r/64-1    

        k8(i,j)=funn(k7(i,j),k7(i,j+1),k7(i+1,j), k7(i+1,j+1));       

    end 

   

end 

% Removing all elements of the matrix equal to zero 

k8=nonzeros(k8'); 

 

% Writing the effective permeability derived from RGT for each iteration       
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result(count)=k8; 

end 

 

% Exporting the 1000 effective permeability values into an excel file 

RenormPerm=[result]; 

xlswrite('RenormPerm.xlsx', RenormPerm) 

 

RGT in three-dimensional formations 

% This code estimates the effective permeability of a 3D permeability distribution based on RGT 

clear all 

clc 

 

% The number of times the code will be iterated 

numm=1000; 

result=zeros(numm,1); 

% Using a for loop for the iteration 

for count=1:numm 

% nnn=number of steps 

nnn=8; 

LL=8^nnn;   %total number of boxes 

 

r=(LL).^(1/3);          % r indicates rows in the permeability matrix 

c=(LL).^(1/3);          % c indicates columns in the permeability matrix 
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N=r*c*r;  % total number of permeability elements for 3D renormalization  

             

% Writing a function to define the RGT expressions for estimating effective permeability of a 3D 

formation 

funn=@(x1,x2,x3,x4) 

4*(x1+x3)*(x2+x4)*(x2*x4*(x1+x3)+x1*x3*(x2+x4))/((x2*x4*(x1+x3)+(x1*x3)*(x2+x4))*(x1

+x2+x3+x4)+3*(x1+x2)*(x3+x4)*(x1+x3)*(x2+x4)); 

% importing the input permeability data for RGT 

k1=import permeabilitydata3D.txt 

 

 

% Reshaping the permeability into a row matrix of N elements 

Perm1=reshape(permeabilitydata3D,[N,1]); 

 

% Randomizing the permeability values 

Perm2=Perm1(randperm(numel(Perm1))); 

 

% reshaping the random Perm2 row matrix into a matrix with size [r,c,r] 

k_renorm=reshape(Perm2,[r,c,r]); 

 

% initializing the size of the k_renorm matrix 

[nx,ny]=size(k_renorm); 
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% defining the new permeability matrix derived from the first step of 3D renormalization 

k2=zeros(128,128,128); 

% using a for loop to invoke the RGT expression in the first step of 3D renormalization 

for iii=1:2:c-1 

    for jjj=1:2:r-1 

        for kkk=1:2:c-1 

                

k2(iii,jjj,kkk)=0.25*(funn(k1(iii,jjj,kkk),k1(iii+1,jjj,kkk),k1(iii,jjj+1,kkk),k1(iii+1,jjj+1,kkk))+fu

nn(k1(iii,jjj,kkk+1),k1(iii+1,jjj,kkk+1),k1(iii,jjj+1,kkk+1),k1(iii+1,jjj+1,kkk+1))+funn(k1(iii,jjj,k

kk+1),k1(iii+1,jjj,kkk+1),k1(iii,jjj,kkk), k1(iii+1,jjj,kkk))+ 

funn(k1(iii,jjj+1,kkk+1),k1(iii+1,jjj+1,kkk+1),k1(iii,jjj+1,kkk),k1(iii+1,jjj+1,kkk))); 

        end 

    end 

end 

% Removing all elements of the matrix equal to zero 

k2=nonzeros(k2); 

% Reshaping the final matrix derived from the 3D renormalization first step 

k2=reshape(k2,128,128,128); 

 

% defining the new permeability matrix derived from the first step of renormalization 

k3=zeros(64,64,64); 

% using a for loop to invoke the RGT expression in the second step of 3D renormalization 

for iii=1:2:c/2-1 
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    for jjj=1:2:r/2-1 

        for kkk=1:2:c/2-1 

                

k3(iii,jjj,kkk)=0.25*(funn(k2(iii,jjj,kkk),k2(iii+1,jjj,kkk),k2(iii,jjj+1,kkk),k2(iii+1,jjj+1,kkk))+fu

nn(k2(iii,jjj,kkk+1),k2(iii+1,jjj,kkk+1),k2(iii,jjj+1,kkk+1),k2(iii+1,jjj+1,kkk+1))+funn(k2(iii,jjj,k

kk+1),k2(iii+1,jjj,kkk+1),k2(iii,jjj,kkk),k2(iii+1,jjj,kkk))+funn(k2(iii,jjj+1,kkk+1),k2(iii+1,jjj+1,

kkk+1),k2(iii,jjj+1,kkk),k2(iii+1,jjj+1,kkk))); 

            end 

    end 

end 

% Removing all elements of the matrix equal to zero 

k3=nonzeros(k3); 

% Reshaping the final matrix derived from the 3D renormalization second step 

k3=reshape(k3,64,64,64); 

 

% defining the new permeability matrix derived from the second step of 3D renormalization 

k4=zeros(32,32,32); 

% using a for loop to invoke the RGT expression in the third step of 3D renormalization 

for iii=1:2:c/4-1 

    for jjj=1:2:r/4-1 

        for kkk=1:2:c/4-1 

                

k4(iii,jjj,kkk)=0.25*(funn(k3(iii,jjj,kkk),k3(iii+1,jjj,kkk),k3(iii,jjj+1,kkk),k3(iii+1,jjj+1,kkk))+fu
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nn(k3(iii,jjj,kkk+1),k3(iii+1,jjj,kkk+1),k3(iii,jjj+1,kkk+1),k3(iii+1,jjj+1,kkk+1))+funn(k3(iii,jjj,k

kk+1),k3(iii+1,jjj,kkk+1),k3(iii,jjj,kkk),k3(iii+1,jjj,kkk))+funn(k3(iii,jjj+1,kkk+1),k3(iii+1,jjj+1,

kkk+1),k3(iii,jjj+1,kkk),k3(iii+1,jjj+1,kkk))); 

            end 

    end 

end 

% Removing all elements of the matrix equal to zero 

k4=nonzeros(k4); 

% Reshaping the final matrix derived from the 3D renormalization third step 

k4=reshape(k4,32,32,32); 

 

% defining the new permeability matrix derived from the third step of 3D renormalization 

k5=zeros(16,16,16); 

% using a for loop to invoke the RGT expression in the fourth step of 3D renormalization 

for iii=1:2:c/8-1 

    for jjj=1:2:r/8-1 

        for kkk=1:2:c/8-1 

                

k5(iii,jjj,kkk)=0.25*(funn(k4(iii,jjj,kkk),k4(iii+1,jjj,kkk),k4(iii,jjj+1,kkk),k4(iii+1,jjj+1,kkk))+fu

nn(k4(iii,jjj,kkk+1),k4(iii+1,jjj,kkk+1),k4(iii,jjj+1,kkk+1),k4(iii+1,jjj+1,kkk+1))+funn(k4(iii,jjj,k

kk+1),k4(iii+1,jjj,kkk+1),k4(iii,jjj,kkk),k4(iii+1,jjj,kkk))+funn(k4(iii,jjj+1,kkk+1),k4(iii+1,jjj+1,

kkk+1),k4(iii,jjj+1,kkk),k4(iii+1,jjj+1,kkk))); 

            end 
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    end 

end 

% Removing all elements of the matrix equal to zero 

k5=nonzeros(k5); 

% Reshaping the final matrix derived from the 3D renormalization fourth step 

k5=reshape(k5,16,16,16); 

 

% defining the new permeability matrix derived from the fourth step of 3D renormalization 

k6=zeros(8,8,8); 

% using a for loop to invoke the RGT expression in the fifth step of 3D renormalization 

for iii=1:2:c/16-1 

    for jjj=1:2:r/16-1 

        for kkk=1:2:c/16-1 

                

k6(iii,jjj,kkk)=0.25*(funn(k5(iii,jjj,kkk),k5(iii+1,jjj,kkk),k5(iii,jjj+1,kkk),k5(iii+1,jjj+1,kkk))+fu

nn(k5(iii,jjj,kkk+1),k5(iii+1,jjj,kkk+1),k5(iii,jjj+1,kkk+1),k5(iii+1,jjj+1,kkk+1))+funn(k5(iii,jjj,k

kk+1),k5(iii+1,jjj,kkk+1),k5(iii,jjj,kkk),k5(iii+1,jjj,kkk))+funn(k5(iii,jjj+1,kkk+1),k5(iii+1,jjj+1,

kkk+1),k5(iii,jjj+1,kkk),k5(iii+1,jjj+1,kkk))); 

            end 

    end 

% Removing all elements of the matrix equal to zero 

k6=nonzeros(k6); 

% Reshaping the final matrix derived from the 3D renormalization fifth step 
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k6=reshape(k6,8,8,8); 

 

% defining the new permeability matrix derived from the fifth step of 3D renormalization 

k7=zeros(4,4,4); 

% using a for loop to invoke the RGT expression in the sixth step of 3D renormalization 

for iii=1:2:c/32-1 

    for jjj=1:2:r/32-1 

        for kkk=1:2:c/32-1 

                

k7(iii,jjj,kkk)=0.25*(funn(k6(iii,jjj,kkk),k6(iii+1,jjj,kkk),k6(iii,jjj+1,kkk),k6(iii+1,jjj+1,kkk))+fu

nn(k6(iii,jjj,kkk+1),k6(iii+1,jjj,kkk+1),k6(iii,jjj+1,kkk+1),k6(iii+1,jjj+1,kkk+1))+funn(k6(iii,jjj,k

kk+1),k6(iii+1,jjj,kkk+1),k6(iii,jjj,kkk),k6(iii+1,jjj,kkk))+funn(k6(iii,jjj+1,kkk+1),k6(iii+1,jjj+1,

kkk+1),k6(iii,jjj+1,kkk),k6(iii+1,jjj+1,kkk))); 

            end 

    end 

end 

% Removing all elements of the matrix equal to zero 

k7=nonzeros(k7); 

% Reshaping the final matrix derived from the 3D renormalization sixth step 

k7=reshape(k7,4,4,4); 

 

% defining the new permeability matrix derived from sixth step of renormalization 

k8=zeros(2,2,2); 
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% using a for loop to invoke the RGT expression in the seventh step of 3D renormalization 

for iii=1:2:c/64-1 

    for jjj=1:2:r/64-1 

        for kkk=1:2:c/64-1 

                

k8(iii,jjj,kkk)=0.25*(funn(k7(iii,jjj,kkk),k7(iii+1,jjj,kkk),k7(iii,jjj+1,kkk),k7(iii+1,jjj+1,kkk))+fu

nn(k7(iii,jjj,kkk+1),k7(iii+1,jjj,kkk+1),k7(iii,jjj+1,kkk+1),k7(iii+1,jjj+1,kkk+1))+funn(k7(iii,jjj,k

kk+1),k7(iii+1,jjj,kkk+1),k7(iii,jjj,kkk),k7(iii+1,jjj,kkk))+funn(k7(iii,jjj+1,kkk+1),k7(iii+1,jjj+1,

kkk+1),k7(iii,jjj+1,kkk),k7(iii+1,jjj+1,kkk))); 

            end 

    end 

end 

% Removing all elements of the matrix equal to zero 

k8=nonzeros(k8'); 

% Reshaping the final matrix derived from the 3D renormalization seventh step 

k8=reshape(k8,2,2,2); 

 

% defining the new permeability matrix derived from the eighth step of 3D renormalization 

k9=zeros(1,1,1); 

% using a for loop to invoke the RGT expression in the eighth step of 3D renormalization 

for iii=1:2:c/128-1 

    for jjj=1:2:r/128-1 

        for kkk=1:2:c/128-1 
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k9(iii,jjj,kkk)=0.25*(funn(k8(iii,jjj,kkk),k8(iii+1,jjj,kkk),k8(iii,jjj+1,kkk),k8(iii+1,jjj+1,kkk))+fu

nn(k8(iii,jjj,kkk+1),k8(iii+1,jjj,kkk+1),k8(iii,jjj+1,kkk+1),k8(iii+1,jjj+1,kkk+1))+funn(k8(iii,jjj,k

kk+1),k8(iii+1,jjj,kkk+1),k8(iii,jjj,kkk),k8(iii+1,jjj,kkk))+funn(k8(iii,jjj+1,kkk+1),k8(iii+1,jjj+1,

kkk+1),k8(iii,jjj+1,kkk),k8(iii+1,jjj+1,kkk))); 

            end 

    end 

end 

% Removing all elements of the matrix equal to zero 

k9=nonzeros(k9); 

 

% Writing the effective permeability derived from RGT for each iteration       

result(count)=k9; 

end 

 

% Exporting the 1000 effective permeability values into an excel file 

RenormPerm3D=[result]; 

xlswrite('RenormPerm3D.xlsx', RenormPerm3D) 
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Appendix C 

The MATLAB code developed to estimate the effective permeability using Effective Medium 

Approximation in ten formations studied here.  

 

 

%This code calculates the effective permeability of a permeability distribution of 2D formations 

based on the Effective Medium Approximation 

 

% Specifying the minimum and maximum values of permeability 

clear all 

clc 

 

kmin=6.07488E-14; 

kmax=3.17531E-05; 

 

% Generating 1000 permeability values 

k=linspace(kmin,kmax,1000); 

 

% Specifying the kg and sigma values of the permeability distribution 

kg=1e+9; 

sigma=6; 

 

% Defining the log-normal distribution 
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fun=@(X) 0.0000000000131./(sqrt(2*pi).*X.*sigma).*exp(-1.*((log(X)-

log(kg))./(sqrt(2)*sigma)).^2); 

 

% Defining the pdf according to the log-normal distribution 

f_k=fun(k); 

 

% Initializing the effective permeability 

ke=k; 

 

%coordination number for 2D case 

zz=4; 

 

% Using a For loop to implement the EMA expression 

for i=1:1:1000 

    for j=1:1:1000 

        EMA(i,j)=((k(j)-ke(i))*f_k(j)/(k(j)+(((zz/2)-1)*ke(i)))); 

    end 

% Initializing the solution of the final EMA formula, including the integration 

Sol(i)=abs(trapz(k(:),EMA(i,:)));     

end 

 

% Finding the index of the effective permeability 

ind=find(Sol==min(Sol)); 
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% The effective permeability 

keff=k(ind); 

 

 

%This code calculates the effective permeability of a permeability distribution of 3D formations 

based on the Effective Medium Approximation 

 

% Specifying the minimum and maximum values of permeability 

clear all 

clc 

 

kmin=6.07488E-14; 

kmax=3.17531E-05; 

 

% Generating 1000 permeability values 

k=linspace(kmin,kmax,1000); 

 

% Specifying the kg and sigma values of the permeability distribution 

kg=1e+9; 

sigma=6; 

 

% Defining the log-normal distribution 
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fun=@(X) 0.0000000000131./(sqrt(2*pi).*X.*sigma).*exp(-1.*((log(X)-

log(kg))./(sqrt(2)*sigma)).^2); 

 

% Defining the pdf according to the log-normal distribution 

f_k=fun(k); 

 

% Initializing the effective permeability 

ke=k; 

 

%coordination number for 3D case 

zz=6; 

 

% Using a For loop to implement the EMA expression 

for i=1:1:1000 

    for j=1:1:1000 

        EMA(i,j)=((k(j)-ke(i))*f_k(j)/(k(j)+(((zz/2)-1)*ke(i)))); 

    end 

% Initializing the solution of the final EMA formula, including the integration 

Sol(i)=abs(trapz(k(:),EMA(i,:)));     

end 

 

% Finding the index of the effective permeability 

ind=find(Sol==min(Sol)); 
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% The effective permeability 

keff=k(ind); 
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