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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

This thesis details the procedure for automatic 

classification of rotational parts into part families using 

an artificial neural network. The classification is based 

on geometric features and tolerances. The neural network 

paradigm employed belongs to a class of Adaptive Resonance 

Theory Models [15,16,17]. The training of the network was 

done on a commercially available software package [8]. 

1.2 Group Technology 

Group Technology is a technique used in the small and 

medium batch manufacture of discrete components. A 

reduction in the setup time, throughput time, and Work in 

Process inventory are a few of many tangible advantages of 

Group Technology. Small batches and a large variety of 

components have prohibited the extensive use of automation. 

The primary prerequisite for implementing Group Technology 

is the grouping of parts into part families, and machines 

into machine cells. Many grouping techniques have been 

developed ranging from simple ocular techniques to complex 

pattern recognition techniques. The most recent work on 

part family groupings appear in the work of Ham et al. [44] 

and Grum [37]. These and other techniques will be discussed 

in Chapter 2. 
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There are several drawbacks to the existing grouping 

techniques. A few important drawbacks are listed below: 

1. These techniques are application dependent. This 

means that separate algorithms have to be created for 

specific application domains. 

2. The coding and classification of parts is the most 

time consuming process in implementing Group Technology. 

All the popular classification schemes require complicated 

coding procedures. 

3. The number of groups into which the parts are to be 

classified are predetermined by the user. This requires 

expert knowledge of the company parts database. 

4. A composite component must be created for every part 

family formed. The composite may not always give the best 

representation of a group. 

5. Knowledge based classification techniques employ a 

time consuming process of knowledge acquisition and coding. 

The above stated drawbacks provided the impetus to 

devise a classification scheme that would be free of the 

same. 

1.3 Neural Networks 

Neural networks are simplified models of the human 

brain, capable of learning, generalization, and abstraction. 

They are suited for achieving human like performance in 

fields such as speech processing, image cognition, machine 
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vision, autonomous navigation, and sensor processing. This 

research is concerned with pattern recognition. Adaptive 

Resonance Theory or ART2 is used as a pattern classifier in 

the present research. ART2 is an unsupervised learning 

paradigm and hence does not require a teacher to classify 

parts. Parts are automatically classified into part 

families based on geometric features and tolerances. The 

input to the network is a coded binary matrix of geometrical 

features and tolerances. The use of a simulated parallel 

process speeds up the task of pattern recognition 

considerably. 

1.4 Advantages of the proposed approach 

A few of the more important advantages of the proposed 

technique are given below: 

1. The use of parallel processing (neural networks) 

speeds up the classification process. 

2. The number of part families formed does not have to 

be predetermined by the user. 

3. A composite or a reference component is created 

automatically within the system. This representative 

component automatically updated as learning proceeds. 

4. An algorithm need not be created for every new 

application domain. That is, the system is application 

independent. 

5. The system possesses the ability to learn from past 
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experiences. 

1.5 Outline of Chapters 

The next Chapter contains a detailed history and 

literature review of Group Technology. It also further 

explains the inadequacies of the existing methods of part 

family classification. A Literature review and the history 

of neural networks is covered in Chapter 3. The proposed 

technique and its advantages will be discussed in Chapter 4. 

The results, conclusion and recommendations for future work 

are given in Chapter 5. 
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Chapter 2 

Group Technology 

2.1 Introduction 

In 1937, Sokolovski of Russia suggested that parts of 

similar features and configuration should be manufactured in 

the same way by a standardized technological process [79]. 

The definition of Group Technology: "Group Technology is a 

technique for manufacturing small to medium lot size batches 

of parts of similar process, of somewhat dissimilar 

materials, geometry, and size, which are produced in a 

committed small cell of machines which have been grouped 

together physically, specifically tooled, and scheduled as a 

unit" [79]. 

Group Technology is applicable to small and medium 

batch production. It endeavors to group together parts 

which require similar machines and manufacturing operations. 

The result is the formation of machine cells and part 

families. A large number of parts may be grouped into a 

smaller number of part families. A large number of machines 

may be grouped into a smaller number of machine cells. The 

application of Group Technology has many tangible and 

intangible benefits. The tangible benefits are 

quantifiable. 
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2.2 Advantages of Group Technology 

Grouping in a manufacturing system enables the 

production of parts more economically than would be possible 

in a corresponding functional manufacturing facility. This 

is because of the following advantages of Group Technology 

over functional and job shop type manufacturing: 

1) Group Technology simplifies the flow of parts and tools 

since the managing task is simplified at the cell level due 

to the reduction in the amount of information handled. 

2) It reduces setup time, throughput time and work-in 

process inventory. The setup time is reduced for individual 

parts. This is because a setup is not performed for each 

individual component but for all the parts under a specific 

group. The throughput time is reduced as a result of the 

reduction in the cycle time of individual parts in a part 

family. The work -in -process inventory is reduced because 

parts are manufactured on a dedicated group of machines 

which reduces cycle time, which in turn reduces 

work -in -process inventory. 

3) It maximizes design and manufacturing efficiencies of 

parts, which are similar to those previously developed. The 

grouping of parts and the formation of part families avoids 

design duplication of new parts which are similar to the 

existing parts. The process plans for similar parts will in 

many cases be similar. This helps in solving process 

planning problems. 
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2.3 Approaches to Group Technology 

There are two main approaches to Group Technology 

implementation. They are the classification approach and 

the clustering approach [79]. The difference between the 

classification and clustering approach is the criteria used 

for forming part families or machine cells. In the 

classification approach, parts are coded using numbers or 

letters or a combination of both, based on a classification 

system. Each number, letter or a combination represents a 

specific attribute such as shape and dimension, material or 

tolerance. In the clustering approach, clusters of parts 

and machines are determined based on specific attributes 

such as part design and routing information. The clustering 

techniques use a clustering algorithm to cluster parts. 

Most of the clustering techniques simultaneously form part 

families and machine cells. There are a variety of 

clustering and classification techniques available for 

implementing Group Technology. 

2.3.1 The classification approach 

Classification is a technique to organize specific data 

relating to the relevant component element(s) of a business 

or an institution in a logical and systematic hierarchy. It 

is an approach whereby like things are brought together by 

virtue of their similarities, and then separated by their 

essential differences [13]. 
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Three rules must be adhered to strictly while applying 

classification to any population of parts. 

1) It must be all -embracing 

The classification scheme must embrace all existing 

parts in the database and must be able to accept necessary 

new items into the defined population of items. There must 

be scope to accommodate inclusions in the future. 

2) It must be mutually exclusive 

The classification must be such that all parts are 

mutually exclusive. There must be one and only one place 

for each item. 

3) It must be based on permanent characteristics 

The classification must be based upon visible 

attributes or easily continued permanent and unchanging 

characteristics of the parts. 

Parts are coded using numbers or letters or a 

combination of both, based on a classification system [11]. 

All parts are classified on the basis of one or more of the 

following four characteristics: 

1) The number and types of operations required. 

2) The shape and dimensions of the parts. 

3) The material of the part. 

4) The tolerance requirement on the part. 

Each part is assigned a ten -to thirty -digit code where each 

digit represents a specific attribute of the part [11]. The 

classification and coding schemes differ by the type of 
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Figure 1(a). Hierarchical Code. 
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1 2 3 
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n-1 n 

Figure 1(b). Non -Hierarchical Code. 
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1 2 3 

Figure 1(c). Hybrid Code. 
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information provided by the above mentioned characteristics. 

The part characteristics are coded using a variety of coding 

formats. Since each manufacturing system warrants a 

different classification criterion there are over 50 

commercial classification and coding systems in operation 

worldwide. Some of the popular schemes are BIRSCH, DCLASS, 

TOYODA, MICLASS, TEKLA, OPITZ and NITMASH [11]. 

2.3.1.1 Coding formats 

The coding format indicates the types of code and code 

structure that is used to code parts. There are three types 

of code formats. They are the hierarchical, 

non-hierarchical, and hybrid code. The hybrid code, as 

suggested by the name, is a combination of the hierarchical 

and non-hierarchical codes. 

1) Hierarchical code. 

In the hierarchical code the meaning of any digit 

depends upon its predecessor digits [11]. The coding 

pattern follows a hierarchy as shown in Figure 1(a). The 

presence of lines between digits indicates the existence of 

a hierarchical relationship among the digits. The absence 

of a line indicates the absence of a hierarchical 

relationship. 

The hierarchical code (monocode) permits a large volume 

of information to be stored in a few digits [11]. 
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Table 1. Clustering Approaches [27] 

METHOD COEF. SEQ* COM.+ LANGUAGE 

I. DESIGN -ORIENTED APPROACH. 

o Multiobjective Clustering 
Analysis 

o Matrix Formulation 
o Dutta et al. Heuristic 

II. PRODUCTION -ORIENTED APPROACH. 

A. Array -Based Techniques: 
o Rank Order Clustering . 

Method (ROC) 
o ROC2 Algorithm 
o MODROC Algorithm 
o Direct Clustering Algorithm 
o Jacobs' Algorithm 
o Modified Bond Energy Algorithm 
o Occupancy Value Method 

B. Hierarchical Clustering: 
o Single Linkage Method 

o Average Linkage Method 
o Complete Linkage Method 

o Centroid Method 

o Median Method 

o Ward's Algorithm 
o Lance & Williams Flexible 

o McQuitty's Similarity Analysis 

C. Non-hierarchical Clustering: 
o Modified MacQueen's Method 
o A Divisive Procedure 

D. Mathematical Programming: 
o Zero -One Integer 

Programming 
o Dynamic Programming Based 

E. Graphic Theoretic Methods: 
o R & B Algorithm 
o De Witte's Algorithm 
o Purcheck 
o V & R Algorithm 
o C & R Algorithm 

S 

D 

D 

S 

S,D 
S 

S 

S 

S 

S 

S,D 
S 

S,D 
S,D 
S 

S,D 
S 

S,D 
S,D 

F. Heuristic & Others: 
o WUBC 
o ICRMA 
o ODC 
o MACE 
o Cluster Identification Algorithm 
o Cost Analysis Algorithm 
o Polyhedral Dynamics 
o Mathematical Classification 

D 

S 

S 

S 

S 

S 

D 

S 

S 

N 

N 

N `1(-) 
N Y(-) 
N Y(-) 
N Y(M) 
N Y(-) 

Y(S) 
Y Y(S) 
N Y(-) 

N - 

Y(-) 
N - 

Y(S) 

Y(-) 
N Y(-) 
N - 

Y(-) 
N - 

Y(-) 
N I(-) 
N - 

Y(-) 
N - 

(-) 
N Y(-) 

N Y(L) 
N Y(-) 

N Y(L) 

1(-) 

N Y(L) 

Y - 

Y(L) 
N - 

N I(-) 
N Y(L) 
N Y(-) 
N Y(M) 
N Y(L) 
N Y(L) 
N Y(-) 
N Y(-) 

FORTRAN 
BASIC 

FORTRAN 

BASIC 
FORTRAN 

CLUSTAN 

BASIC 
FORTRAN 

CLUSTAN 

CLUSTAN 
CLUSTAN 

CLUSTAN 

CLUSTAN 
CLUSTAN 

FORTRAN 

LINDO 

FORTRAN 

FORTRAN 

FORTRAN 

FORTRAN 
FORTRAN 
FORTRAN 

Considered operating sequence or not (Y/N) ? 

L: Mainframe; M: Minicomputer; S: Microcomputer. 
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2) Non-hierarchical code. 

In the non-hierarchical code (polycode) the meaning of 

each digit is independent of any other digit (see Figure 

1(b)). This code requires a large number of digits to store 

the required information, because each digit represents only 

a small part of the total information. 

3) Hybrid code. 

The hybrid coding system combines the hierarchical and 

non-hierarchical schemes as shown in Figure 1(c). The first 

digit in the figure may or may not have a relationship with 

the other digits as indicated by the line. In short, the 

digits n-1 and n may or may not be related. 

2.3.2 Clustering Approach 

In the clustering approach, clusters of parts and 

machines are determined based on design, manufacturing and 

routing information. Diverse clustering algorithms have 

been employed as an effective tool to solve the cell 

formation problem (refer Table 1). 

There are a myriad of clustering approaches. The two 

most important ones are the design oriented and the 

production oriented approaches. The design oriented 

approach relies on the design information and design 

characteristic of parts. The production oriented approach 

is based on the routing information of parts. The two 

approaches are discussed here. 
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1) Design oriented approach. 

The design oriented approach relies on the design 

features of parts to perform the necessary analyses. 

Grouping is done using part design information. The design 

information can be taken from a part blueprint or a CAD 

database. This approach ignores the routing and 

manufacturing information of parts. Techniques range from 

from the ocular approach to CAD driven or feature based 

models [14,29]. 

2) The production oriented approach. 

The production oriented approach uses routing 

information to group parts into part families or machines 

into machine cells. This method predominantly uses a Binary 

Matrix called the Machine Component Matrix (MCM). The 

Machine Component Matrix has either a 1 or a blank in every 

cell. A 1 is entered in the cell Cu if the part j uses 

machine.i. The created matrix has a 1 or a blank in every 

cell (refer Figure 2(a)). The clustering techniques tries 

to rearrange the columns and rows of a machine component 

matrix according to an index until some diagonal blocks are 

formed (refer Figure 2(b)). Every cluster in the Machine 

Component Matrix represents a grouping in terms of part 

families and machine cells. The cell entries for all values 

of the ith row and j° column are xu = 1 or xu = 0 (shown as 

a blank entry in the matrix). A hierarchical clustering 

technique computes the similarity or dissimilarity between 
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each pair of parts or machines in order to produce a linkage 

or a relationship diagram for final judgment. 

2.3.2.1 Clustering Criteria 

Clustering is based on the calculation of a similarity 

or a dissimilarity index derived from binary or gray scale 

data. A similarity coefficient is used to measure the 

degree of similarity between parts or machines. The larger 

the coefficient the higher the degree of similarity between 

each pair of parts or machines. Conversely a dissimilarity 

coefficient measures the degree of dissimilarity between 

parts or machines. Most methods use the similarity 

coefficient. 

2.4 Literature review 

El-Essaway and Torrance [29], McAuley [62], Carrie 

[18], Rajgopalan [68,69], 1976, De Witte [28], King [45], 

King and Nakornchai [46], and many others have proposed 

different approaches for cell formation in Group Technology 

based on the concept of production flow analysis. 

El-Essaway and Torrance [29] proposed component flow 

analysis for machine component cell formation in Group 

Technology [29]. Their paper presents a detailed analysis 

of components which is used for flow analysis. The 

components are analyzed for routing information and process 

plans. The flow pattern of components between machines is 

16 



used as a criterion for grouping. The drawback of the 

technique is that the formation of cells depends on 

heuristics and judgment [29]. In the same vein McAuley [62] 

used the technique of single linkage cluster analysis to 

form groups of machines having mutually high similarity 

coefficients. The difference was that machines are used as 

a criterion rather than components. The method however 

gives machine disjoint cells which are not compatible with 

the real life situation [69]. A part may need to be 

processed in more than one machine cell. A new approach was 

suggested by Carrie [18]. He applied a numerical taxonomy 

to Group Technology and plant layout. A numerical taxonomy 

is a method of analysis rather than a formula to be 

executed. In this approach, selection of the minimum 

cluster size or groups at a particular similarity level are 

arbitrarily decided [18]. 

The use of similarity coefficients has numerous 

drawbacks. Rajgopalan and Batra [69] proposed a graph 

theoretic approach for the design of cellular production 

systems. The selection of the threshold value for the 

similarity coefficient was arbitrary and required a certain 

amount of human judgment. De Witte [28] proposed the use of 

three types of similarity coefficient in production flow 

analysis. These coefficients showed the absolute relations 

and mutual interdependence among the parts. The selection 

of threshold values for these similarity coefficients is 
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arbitrary [14] and based on heuristics and human judgement. 

Moreover, this approach requires categorization of machines 

as primary, secondary and tertiary. 

Algorithms developed by King [45] and King and 

Nakornchai [46] are computationally straightforward and do 

not use the concept of a similarity coefficient. On the 

other hand, King's algorithms consider binary positional 

weights (binary ranking) of the elements of the 

machine -component matrix. The positional weights are 

subject to variation if the position of matrix elements are 

changed. Under a non -pure diagonal block structure of cell 

formation, if these renumbered machines and components are 

serially placed, King's algorithms may not always give the 

minimal number of exceptional elements [62]. 

Thus the appraisal of the above mentioned methods 

indicate that the use of similarity coefficients in Group 

Technology have the following deficiencies. 

1) They require almost arbitrary decisions. 

2) They do not always give consistent results. 

3) They do not always give the minimal number of 

exceptional elements. 

An attempt to develop an algorithm which would yield 

the minimum number of exceptional elements was used by 

Waghodekar and Sahu [78]. The method is named "The Machine 

Component cell formation in Group Technology". This 

approach does not use arbitrary selection of the threshold 
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value for the similarity coefficient. It provides three 

outputs based on three different definitions of the 

similarity coefficient. The three different definitions of 

the similarity coefficient provides a cross check for 

consistent results. This approach is computationally 

straightforward and conceptually easy to understand. 

However it also has its drawbacks in that it cannot alone 

give foolproof solutions for all problems associated with 

machine component cell formation. This is because the use 

of three arbitrary similarity coefficient does not overcome 

the deficiencies of previous methods as mentioned earlier. 

Many heuristic and nonheuristic methods are in practice 

for concurrent classification of parts and machines. An 

algorithm for the 

machine cells was 

Rajagopalan [26]. 

input data is the 

which the columns 

concurrent formation of part families and 

advocated by M.P. Chandrashekharan and R. 

In most of these approaches the primary 

machine component incidence matrix in 

represent the components and the rows 

represent machines. The Zero One Data: Ideal Seed Algorithm 

for Clustering (ZODIAC) elicits the best block diagonal form 

and computes its efficiency [26]. This enables the 

comparison of the results with any other solution. The 

drawback of this technique is that the choice of ideal seed 

is arbitrary. 

The use of heuristics and human judgement led to the 

use of artificial intelligence to group parts into part 

19 



families and machines into machine cells. Andrew Kusiak 

[52] developed an expert system which evaluated partial 

solutions generated by a clustering algorithm and has an 

impact on its search directions. This approach takes 

advantage of the developments in expert systems and 

optimization techniques. Two basic components of the 

knowledge based system are the expert system and a heuristic 

clustering algorithm. All of the above mentioned techniques 

did not consider bottleneck machines and user specified 

constraints. 

Y. Lemoine and B. Mutel [55] proposed automatic 

determination of production cells and part families based on 

a dynamic cluster algorithm. The method takes into account 

the capacity and the load of the machines and other user's 

constraints if required. The main characteristic of this 

method are: 

1) It can analyze large data sets. 

2) It takes into account past experience in the 

initialization procedure. 

3) It defines a partition in K cells depending on 

constraints such as, similar machine tools and load capacity 

of the machine. 

4) It can test the stability of the result. 

5) It does not consider the user's point of view in the 

classification. 

6) This method does not build hierarchical 
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classification and does not proceed by the exchange between 

rows and columns of the Machine Component Matrix (MCM). 

The concept of design of components by variational 

geometry led to classification of components by variational 

geometry. David C. Gossard and Vincent Lin described a 

method to represent part families through variational 

geometry. It used a single representation to describe the 

entire family of geometries which share a generic shape. A 

shape model of a three dimensional component is defined with 

respect to a set of characteristic points. The positions of 

the characteristic points are fixed by a set of nonlinear 

algebraic equations which describe constraints imposed by 

dimensions. A modified form of the Newton-Raphson method is 

used to solve the set of constraint equations for the 

geometry. 

The present trend in manufacturing technology indicates 

strong tendencies to integrate CAD/CAPP/CAM activities. It 

should also be based on similarity of tooling and routings 

of parts. These conditions require highly flexible Computer 

Integrated Manufacturing (CIM) processes. An important 

prerequisite for the realization of such an integrated 

system is the organization of parts in the database. It 

represents the basic information of parts, scheduling of 

operations, production and quality control of parts. A part 

identification number has been in use for a long period of 

time for efficient database management. Usually the 
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information content of an identification number is very 

limited and does not give information about the part 

characteristics, relevant to the design, planning and pro- 

duction of parts. 

The part classification number contains coded 

information about the geometrical and technological 

information of parts. Grum and Pelenik [37] used the part 

identifier and geometric primitives to classify parts by a 

pattern recognition technique. The efficiency of the whole 

procedure is based on the development of a potential 

function and the coding of the part matrix. 

The advantage of this approach is that it is not 

necessary to develop a classification system with fixed 

class numbers; the information for the classification is 

extracted by the designer directly and put into a matrix 

with black and white fields. 

Inyong Ham et al. [44] published a working paper on an 

automatic classification scheme based on a supervised 

learning algorithm in neural networks. The network was used 

for design data retrieval and classification. There are 

several serious drawbacks of this neural network based 

classification technique: 

1) The word "Automatic Classification" is a misnomer in 

Ham's work. This is because an omniscient user decides the 

number of groups the parts should be grouped under which is 

difficult in a real world situation. 
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2) The use of a supervised learning paradigm like a 

two -layer feed forward perceptron limits the number of 

exemplars that can be learned by the system. The network 

architecture has to be configured for the specific 

application. 

3) The use of a new tool (neural networks) does not 

indicate its superiority over existing techniques. Ham's 

technique uses the concept of a potential function which is 

widely used by other pattern recognition techniques today. 

Moreover the development of a potential function is a time 

consuming process. It also implies that Ham's approach is 

not different from existing pattern recognition approaches. 

4) Real time network models must do more than learn an 

associative map. The paper by Ham et al. is solely based on 

the principle of associative mapping. Real network models 

must do more than store distributed codes for a carefully 

controlled environment. 

5) The architecture of popular supervised learning 

algorithms are often inadequate because they cannot 

self -organize. 

6) Learning models which cannot adaptively cope with 

unpredictable changes in a complex input environment have an 

unpromising future as models of the mind and brain. They 

provide little hope for solving the outstanding problems in 

engineering which are not already handled by traditional 

methods of artificial intelligence. 
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2.5 Conclusions 

In the 1970's the techniques developed for Group 

Technology were oriented around component flow analysis and 

production flow analysis. The drawback of these methods was 

that formation of cells depends on heuristics and personal 

judgement. This is useful if used in conjunction with an 

expert system which can deal with heuristic decision 

making. Further, the application of numerical taxonomy is 

not practicable for the classification problem because the 

selection of the minimum cluster size at a particular 

similarity level is arbitrary. This is not a analytical way 

to group parts or machine cells. The graph theoretic 

approach developed in the mid 1970's made use of the 

similarity coefficient. The threshold value for the 

similarity coefficient was again chosen arbitrarily and was 

based on judgement. Toward the late 1980's, algorithms were 

suggested for the concurrent formation of part families and 

machine cells. Later artificial intelligence was 

incorporated into this field and expert systems were used 

to evaluate the partial solutions obtained from clustering 

algorithms. Artificial intelligence techniques are based on 

heuristics and are suitable only for a specific application. 

Dynamic cluster algorithms were proposed to overcome this 

drawback. 

The concept of modeling through variational geometry 
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Chapter 3 

NEURAL NETWORKS 

3.1 Introduction 

Neural networks are an evolution of computing. At the 

inception of mechanized computing, programming was done 

using flip flop switches and plugging wires. With advances 

in computer hardware and software, computing advanced to 

machine code, assembly language and first generation 

FORTRAN. As time went by, fifth generation languages and 

tools such as LISP, Prolog, C++ and expert systems were 

developed. Now neural networks are increasingly being used 

because of their parallel processing capability. The 

evolution of neural network dates back to the early 19th 

century. The commercial success of neural networks was 

realized only in the mid 1980's. Neural networks have been 

employed for tasks ranging from simple pattern recognition 

to complex explosive detection techniques at airline 

terminals and navigation of an Autonomous Land Vehicle. 

3.2 Literature review 

Neural network technology is a subset of Parallel 

Distributed Processing (PDP) Technology. Some of the 

earliest roots of the PDP approach can be found in the work 

of the neurologists, Jackson [42] and Luria [57]. Jackson 

was a forceful and persuasive critic of the simplistic 
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localizationist doctrines of the late nineteenth century 

neurology, and he argued convincingly for distributed, 

multilevel conceptions of multilevel processing systems. 

Luria, the Russian psychologist and neurologist, put forward 

the notation of the dynamic functional system. In his view, 

every behavioral or cognitive process resulted from the 

coordination of a large number of different components, each 

roughly localized in different regions of the brain, but all 

working together in dynamic interaction. A rough 

characterization of the kind of parallel distributed 

processing system of today is seen in their ideas. 

Two other contributors to the deep background of PDP 

were Hebb [38] and Lashley [54]. Hebb introduced the 

concept of cell assemblies a concrete example of a limited 

form of distributed processing and discussed the idea of 

reverberation of activations within neural networks. 

Lashley's contribution was to insist upon the idea of 

distributed representation. Lashley insisted that "there 

are no special cells reserved for special memories". 

In the 1950's, there were two major figures whose ideas 

have contributed to the development of their approach. One 

was Rosenblatt [70,71] and the other was Selfridge [75]. In 

his Principles of Neurodynamics [71], Rosenblatt articulated 

clearly the concept of a neurally inspired approach to 

computation and he developed the perceptron convergence 

procedure, an improvement over the Hebb rule for changing 
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synaptic connections. Rosenblatt's vision of the human 

information processing system as a dynamic, interactive, 

self -organizing system lies at the core of the PDP approach. 

Selfridge's contribution was his insistence on the 

importance of interactive processing, and the development of 

Pandemonium, an explicit computational example of a dynamic, 

interactive mechanism applied to computational problems in 

perception. 

In the late 1960's and 1970's, serial processing and 

von Neumann computers dominated both psychology and 

artificial intelligence. Grossberg's mathematical analysis 

of the properties of neural networks led him to many 

insights which other researchers have only come to 

appreciate through extensive experience with computer 

simulation. He deserves credit for seeing neurally inspired 

mechanisms in many areas of perception and memory well 

before the field was ready for these kinds of ideas. 

Grossberg [35] was one of the first to analyze properties of 

competitive learning mechanisms. Anderson's [3] work 

differed from Grossberg's and insisted upon distributed 

representation, and in showing the relevance of neurally 

inspired models for theories of concept learning [4,5]. 

Anderson's work also played a crucial role in the 

formulation of the cascade model [63,64], a step away from 

serial processing down the road to PDP. Longuet-Higgins and 

his group at Edinburgh were also pursuing distributed memory 
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models during the same period. David Willshaw, a member of 

the Edinburgh group, provided some very elegant mathematical 

analysis of the properties of various distributed 

representation schemes [80]. His insights provided one of 

the sources for the idea of coarse coding. Many of the 

contributions of Anderson, Willshaw, and other parallel 

distributed processing modelers may be found in Hinton and 

Anderson [39]. Others who have made important contributions 

to learning in PDP models include Amari [2,3], Bienenstock, 

Cooper, and Munro [12] , Fukushima [32,33], Kohonen [48,49], 

and von der Malsburg [77]. 

Toward the middle of 1970s, the idea of parallel 

distributed processing began to have something of a 

renaissance in computational circles. The HEARSAY model of 

speech understanding played a prominent role in the develop- 

ment of neural networks. Unfortunately HEARSAY's 

computational architecture was too demanding for the 

available computational resources and so the model was not a 

computational success. But its parallel interactive 

character inspired the interactive activation model of 

reasoning [72,73], and the interactive model of word 

recognition [63,64]. 

The ideas represented in the interactive activation 

model had other precursors as well. Morton's logogen model 

[67], was one of the first to capture concretely the 

principle of interaction of different sources of 
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information, and Marlsen-Wilson [59] provides important 

empirical demonstrations of interaction between different 

levels of language processing. Levin's [73] Proteus model 

demonstrated the virtues of activation -competition 

mechanisms, and Glushko [73] helped display how 

conspiracies of partial activations could account for 

certain aspects of apparently rule -guided behavior. 

Carpenter and Grossberg [15,16,17] developed the Adaptive 

Resonance Theory Models (ART1, ART2) of Human Memory. 

Grossberg proved the models with rigorous mathematical 

analysis and proofs. Grossberg's work was truly the first 

in the area of unsupervised learning. Kohonen [51] also 

proposed a model of unsupervised learning. Research and 

application has shown that the Kohonen models are biased in 

favor of the winning element. Thus true classifications are 

not possible to model. Conversely Carpenter and Grossberg 

proposed the more practicable model. ART -1 accepts only 

binary inputs and ART -2 accepts both binary as well as gray 

scale. Moreover the ART models represents the human brain 

model very closely. The concept of functional link nets was 

introduced by Yoh -Han Pao [81]. His approach tries to use a 

flat net to store representation. One of the advantages of 

flat net is that both supervised and unsupervised learning 

can be carried out using the same net architecture. This 

facility avoids the need to shuffle the data in moving it 

from one paradigm to the next. Neural networks have a high 
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application potential in the manufacturing environment. 

Specifically, research has been done in applying this 

technology to process control, work flow control, and 

inspection. In process control they are used for real time 

monitoring of machining centers. The parameters monitored 

are the tool condition, tool temperature, etc [19,32]. The 

network can be trained to learn associations between 

situations and the appropriate feedback or conclusions. In 

the flow control application the network acts as a 

communication device between the machines and the controls. 

Here again the same property of association is used. Neural 

networks work on the principle of parallel processing. This 

characteristic is useful in the inspection task in defects 

are simultaneously detected and causes determined. 

Inspection can also be possible in real time by continuous 

monitoring. There have been no known applications of ART2 

to manufacturing in the existing literature. 

3.3 Neural Networks Technology 

Dr. Robert Hecht -Nielsen, the inventor of one of the 

first neurocomputer defined a neural network as a computing 

system made up of a number of simple, highly interconnected 

processing elements, which process information by dynamic 

state response to external inputs [20]. In its most basic 

form, a serial computer is a single, central processor that 

can address an array of memory locations. Data and 
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instructions are stored in the memory locations. The 

processor fetches the instruction and any data required by 

the instruction, executes the instruction and saves any 

results in the specified memory location. A serial system 

(even a standard parallel one) is essentially sequential: 

everything happens in a deterministic sequence of 

operations. In contrast, a neural network is neither 

sequential nor even necessarily deterministic. It has no 

separate memory array for storing data. The processors that 

make up a neural network are not highly complex central 

processing elements. Instead a neural network is composed 

of many simple processing elements that typically do little 

more than take a weighted sum of all the inputs. The neural 

network does not execute a sequence of instructions; it 

responds, in parallel, to the inputs presented to it. The 

result is not stored in a specific memory location, but 

consists of the overall state of the network after it has 

reached some equilibrium condition. Knowledge within a 

network is not stored in a particular location. It is not 

possible to look at a memory address to retrieve the current 

value of any variable. Knowledge is more a function of the 

network's architecture or structure than the contents of a 

particular location. 

Neural networks technology is a statistically based 

mapping technique. It has been mathematically proven that 

neural networks (of arbitrary complexity) can produce a 
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continuous mapping from an n -dimensional space to an 

m -dimensional space [21]. Examples include mapping from 

historical loan application to loan profitability data, from 

sonar signals to friend -or -foe identification, and from 

video input to a pass/fail on an assembly line. Since 

neural networks can produce these mapping without a human 

having to analyze the data algorithmically. They are 

economically appealing. Neural networks require a 

statistically valid representation of the solution to the 

problem. 

3.4 Neural Network Architecture 

The inspiration behind neural network architecture came 

from studies of the mammalian brains, particularly the 

cerebral cortex. 

There are eight major aspects of a neural network 

architecture [73]. 

1) A set of processing units. 

2) A state of activation. 

3) An output function for each unit. 

4) A pattern of connectivity among processing elements. 

5) A propagation rule for propagating patterns of activities 

through the network of connectivity. 

6) An activation rule for combining the inputs impinging on 

a unit to produce a new level of activation for the unit. 

7) A learning rule whereby patterns of connectivity are 
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was advocated in early 1983. The creation of a composite 

component was also used to describe the entire family that 

share a common shape. The introduction of artificial 

intelligence techniques sparked a new way of looking at 

problems. Methods based on heuristics were employed. 

Pattern recognition was also investigated for this purpose. 

Grum and Pelenik [44] introduced the concept of coding 

features into a matrix. Ham et al. used a supervised 

learning paradigm to perform component data retrieval and 

grouping. Each of these methods has drawbacks which have 

inspired this research. 
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modified by experience. 

8) An environment within which the system must operate. 

Figure 3 illustrates the schematic representation of the 

network functioning. The set of processing elements are 

generally represented by circles. 

At any instant each processing unit PE1 (i = 

1,2,3....n) has an activation value. This value is denoted 

in Figure 3 by ACTi(t) corresponding to each processing 

element. This activation value is passed through a function 

f(ACTi) to produce an output value OUTS (t) . The output 

value can be seen as passing through a set of unidirectional 

connections to other processing elements in the system. 

Every connection has a weight or a strength associated with 

it, denoted as WGTu, which determines the degree by which 

the first unit will effect the second unit (j represents the 

number of processing elements in the output layer). The 

higher the connection weight, the stronger the effect. 

All the connection ends impinging on a particular 

processing element are then combined by an operator (usually 

addition). Therefore the combined input to a unit is 

Ei(WGTii*OUTi(t)). This combined input to the unit along 

with its current activation value is passed through a 

function to determine the new activation value ACT.(t) of 

the output processing element PE. (j = 1,2,3....m). These 

systems are viewed to be plastic in the sense that patterns 

of interconnections are not fixed for all time; rather, the 
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weights can undergo modification as a function of experience 

[1]. In this way the system can evolve. What a unit might 

represent after experience may be entirely different from 

what it might represent at the beginning. Therefore the 

system dynamically changes to perform in different ways. 

The elements of a typical neural network architecture are 

explained below. 

1) A set of processing units. 

Any parallel activation model begins with a set of 

processing units or processing elements also known as 

artificial neurons [73]. Specifying the set of processing 

elements and what they represent is the first stage of 

specifying a neural network model. In some models these 

processing elements may represent conceptual objects such as 

features, letters, words or concepts, or even feature 

detectors; in others they are simply abstract elements for 

which meaningful patterns can be defined. In this case it 

is the pattern as a whole that is the meaningful level of 

analysis. This can be contrasted to a one -one concept 

representational system in which single processing elements 

represent entire concepts or large entities. 

The processing elements in all the layers are ordered 

arbitrarily. The it unit in the input layer is denoted by 

PE1. The jt element in the output layer is denoted by PEJ A 

unit's job is to simply receive input from its neighbors and 

to compute an output value as a function of the input it 
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receives, which it sends to its neighbors. The system is 

inherently parallel in that many processing elements can 

carry out their computations at the same time. Within any 

system to be modeled, three types of processing elements are 

included: input, output and hidden. Input processing 

elements receive inputs from sources external to the system 

under study. These inputs may be either sensory inputs or 

inputs from other parts of the processing system in which 

the model is embedded. The output processing elements send 

signals out of the system. The hidden processing elements 

are those inputs and outputs which are constrained to be 

within the system. They are not visible to the outside 

environment or system. These hidden units are responsible 

for storing features and knowledge in many supervised 

learning paradigms. These hidden units also represent the 

computational capability of the network. The next important 

part of the architecture is the state of activation of the 

network. 

2) The state of activation. 

In addition to the set of processing elements, the 

representation of the state of the system at time t is 

important. This is specified by a vector N, the number of 

processing elements in the spectrum of real numbers. Thus 

ACTN (t) represents the pattern of activation of the set of 

processing elements. Each element of the vector represents 

the activation for one of the processing elements at time t. 
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The activations of unit PEi at time t is designated as 

ACTi(t). It is the pattern of activation of the set of 

processing elements that captures what the system is 

representing at any time. Different models make different 

assumptions about the permissible activation values. 

Activation values may be continuous or discrete. If they 

are continuous they may be bounded or unbounded. If they 

are discrete they usually take binary values. A digit 1 

means that the unit is active, and a 0 means that the unit 

is inactive. 

3) Output of the processing elements. 

Processing elements interact by transmitting signals to 

their neighbors via the axon and the synapse. The strength 

of each signal depends on the degree of activation of the 

signal emitting unit. Associated with each input unit there 

is an output function f(ACTO which maps the current state 

of activation ACTS (t) to an output signal OUTS (t) . In some 

of the models the output level is the same as the 

activation level. In this case, function f(ACTO is the 

identity function, f(ACTi(x)) = x. More often x is some 

sort of a threshold function, so that a unit has no effect 

on the other unit unless its activation exceeds a certain 

value. Sometimes the function f is assumed to be a 

stochastic function in which the output of the unit depends 

in a probabilistic fashion on its activation level. 

4) The pattern of connectivity. 
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Processing elements are connected to one another. The 

pattern of connectivity determines what the system knows and 

how it will respond to an input. In many cases each unit 

provides an additive contribution to the input of the other 

processing elements to which they are connected. In such a 

case the total input to the unit is simply the weighted sum 

of the separate inputs from each of the individual 

processing elements. In this case the total pattern of 

connectivity can be represented by merely specifying the 

weights for each of the connections of the system. A 

positive input represents an excitatory input and a negative 

input represents an inhibitory input. Some more complex 

excitation/inhibition combination rules are required. 

5) The rule of propagation. 

There is a need for a rule which takes the output 

vector and combines it with the connectivity matrices to 

produce a net input for each type of input. There are t:10 

types of connections in the connectivity matrix. Let TOT(i) 

be the net input of type i to a unit, and TOT(e) be the net 

input of type e to a unit. The propagation rule is 

generally straightforward. The net excitatory input is 

usually the weighted sum of the excitatory inputs to the 

unit PE. from unit PE- 

This is given by the vector product 
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TOT(e)ij = EWGT(e)ii*OUTi(t) 

where 

TOT(e)ij = The total net excitatory input from unit 

PEi to unit PEj. 

WGT(e)ij = The excitatory weight of the connection from 

unit PEi to unit PEj. 

OUTi(t) = The output function of the unit PEi at time t. 

Similarly the net inhibitory input is the weighted sum of 

the inhibitory inputs to unit PEj from unit PEi, i.e. 

TOT(i) = EWGT(i)ii*OUTi(t) 

where 

TOT(i)1j = The total net inhibitory input from unit PEi to 

unit PEj. 

WGT(i)ij = The weight of the connection from unit PEi to 

unit PEj. 

OUT1(t) = The output function of the unit PEi at time t. 

6) Activation Rule. 

A rule is needed whereby the net inputs of each type 

impinging on a particular unit are combined with one another 

and with the current state of the unit to produce a new 

state of activation. We need a function which takes the 

current activation of the units and the net vector TOT(e) or 

TOT(i) for each different type of connection and produces a 

new state of activation. If the function is an identity 

function and if all the connections are of a similar type 

the new state of activation can be represented by. 
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ACTT (t+1) E WGTu = TOT(N) 

where 

TOT(N) = The net combined activation of the each unit. 

In many real application situations the function F is a type 

of a threshold function which allows the unit to contribute 

only if the activation exceeds the threshold value. 

7) Modifying patterns of connectivity as a function of 

experience 

Modifying the patterns of connectivity implies changing 

the knowledge structure in a parallel distributed processing 

system. There are principally three kinds of possible 

modifications: 

1) The development of new connections. 

2) The loss of existing connections. 

3) The change in strength of a connection that 

already exists. 

Very little work has been done on 1 and 2. 1 and 2 can 

however be considered a special case of 3. Whenever we 

change the strength of a connection away from 0 to some 

positive value, it has the same effect as growing a new 

connection. Whenever we change the strength of a 

connection to 0, it has the same effect as losing an 

existing connection. There are several rules to modify 

connection strengths as a function of experience. Virtually 

all supervised learning paradigms follow the Hebbian rule or 

a variant of it. 
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8) Representation of the environment: 

It is crucial in the development of any model to have a 

clear model of the environment in which this model is to 

exist. Software that defines these aspects of neural 

network architecture to generate a network and solve a 

specific problem is called netware. The next section will 

contrast neural network technology with conventional 

computing technology. 

3.5 Contrasting Neural Networks with Conventional Computing 

A netware programmer does not specify an algorithm to 

be executed by each processing element as a programmer of a 

more traditional machine would. Instead the programmer 

specifies the interconnections, transfer functions, and 

training laws of the network. The network programmer then 

applies appropriate inputs to the network and lets it react. 

If the netware is correctly written, the overall state of 

the network after it has reacted to the input will be the 

desired response pattern. In short, neural network 

programming differs fundamentally from standard programming 

techniques. Neural networks really are a completely 

different way of looking at computer systems. Neural 

networks 

computer 

forget. 

Over the 

do not execute programs as would a conventional 

application. They react, self organize, learn 

Why is there a need to build such odd systems? 

past two years, interest in neural networks has 
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surged from a whisper to a roar. Why? Frequently, 

traditional computing and conventional Artificial 

Intelligence have found themselves on the rocks of 

computationally explosive problems and unbounded searches. 

They have run into the von Neumann bottleneck because many 

problems are naturally parallel. Neural networks are good 

at solving the kinds of problems people can solve easily. 

They are also poor at solving the kinds of problems that 

traditional computers do well. In general, neural networks 

do not do well at precise numerical computations. On the 

other hand this kind of computation is not a natural 

application for people either. Neural networks can, 

however, be taught to determine whether or not a visual 

image of the face is that of a man or a woman, or 

a person's face, even with a different expression 

The role of neural networks is to be a partner to 

conventional computing systems, not a replacement 

The neurocomputers that have been introduced have 

recognize 

or hairdo. 

for them. 

mainly 

been designed as co -processors working in conjunction with 

other sequential computing systems. They are operated by 

calling subroutines or procedures when a network application 

is encountered. 

The Feigenbaum bottleneck compounds even the 

programmer's bottleneck not only must we wait for programs 

to be written, but we must also wait as Knowledge Engineers 

extract knowledge from domain experts. Recently researchers 
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focussing their efforts on neural networks have produced 

impressive results. Consequently, interest in the field has 

increased exponentially. An unusual characteristic of 

neural network is its interdisciplinary nature. Neural 

networks conferences are attended by engineers, 

neurophysiologists, psychologists, optical specialists, and 

even philosophers. Such catholic interest reflects a 

growing conviction in academia, government and industry that 

neural networks are not just another computational 

technique, but instead represent a major breakthrough a 

fundamentally different mode of computation with major 

advantages and wide applications. 

It is easy to anthropomize neural networks beyond 

rational justification but not even the most ambitious 

advocates of neural networks are synthesizing human brain 

functions. 

3.6 Training Methodologies 

A neural network can learn either under the supervised 

training mode or unsupervised training mode. The particular 

type of training mode to be used depends on the specific 

application. For example, consider the task of 

classification of parts into part families based on 

geometric features and tolerances. The supervised training 

mode is applicable if the number of groups into which the 

parts are to be classified is known. Also the part database 
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is assumed to remain the same without any changes in the 

parts. In a real life situation these assumptions are not 

valid. This is because the fixing of the number of groups 

is an arbitrary choice. The parts database is bound to 

change in this competitive and rapidly advancing world. 

Thus a decision was made to use the unsupervised training 

mode for the proposed application. 

3.6.1 Supervised Training 

A set of training pairs of patterns are required in 

order to train a neural network with supervised training. 

Each training pair consists of an input pattern and a 

corresponding desired output pattern. During the training 

period an input pattern is presented and the network 

responds with some output pattern which may be different 

from the expected output pattern. The difference between 

the actual and the expected output pattern is called error. 

This error is fed to a predetermined training algorithm 

which modifies the network parameters to minimize the error. 

The training continues until the error for all training 

pairs is an acceptable value. The completion of the 

training phase signals that the network is ready to perform 

the desired function. In real life situations it is not 

possible to have a prior knowledge of the desired output for 

every input to the network. In such cases unsupervised 

training is useful. 
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3.6.2 Unsupervised Training 

Unlike supervised training, the desired output for each 

training input pattern is not required. Whenever an input 

pattern is presented, the neural network does two things. 

First, it will respond with a certain output. Secondly, it 

will modify the network parameters so that the chance of 

responding to similar input patterns is reinforced. Thus 

the training process extracts the statistical properties of 

the training set and groups similar input patterns or parts 

into classes or families. This type of training is a 

biologically more plausible training mechanism than the 

other well known supervised training algorithms such as 

backpropagation. 

3.7 Characteristics of neural networks. 

There are four salient features of neural networks that 

make it an interesting technology for real world 

applications. They are generalization, abstraction, speed 

and multiprocessing. 

3.7.1 Generalization 

A frustrating characteristic of conventional computers 

is the literal, precise inputs required to produce the 

desired output. Neural networks can accommodate variations 

in their input and still produce the correct output. For 

example, a system trained to recognize printed letters did 
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so even when noise corrupted 40% of the input characters 

[33]. That is, the system recognized letters despite never 

having seen anything like them before much as humans 

understand incomplete and partially incorrect input. 

Studies show that most people can read text in which more 

than half the letters are obliterated [33]. 

The real world rarely presents information with the 

precision required by a computer program. Of course 

conventional computers have been programmed to tolerate 

noisy input, but the computational load often precludes 

using these algorithms in practical applications. Neural 

networks accomplish the needed generalizations by virtue of 

their structure rather than through elaborate programming 

(which tend to be application dependent). As such, neural 

networks provide a far more natural interface to the real 

world a world including human users. 

3.7.2 Abstraction 

Neural networks can abstract the "ideal" from a non - 

ideal training set. Such abstracting ability dates back to 

Plato`s Republic and the Platonic concept of ideals. How do 

we determine that a given animal is a dog when every dog we 

have seen is different? Do we have an internal model an 

ideal dog to which we compare all instances? 

3.7.3 Speed 

One can view neural networks as associative memory, 
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associating input patterns with desired output patterns. 

When new patterns are presented to the input, associated 

output patterns are produced at the output. In neural 

networks the time required to produce outputs is independent 

of the number of associations stored. Thus nothing 

corresponds to a search time; the only time required is that 

associated with network stabilization a constant in most 

architectures. A given network storing ten million 

associations is just as fast as one storing ten thousand. 

Speed is achieved through multiprocessing. 

3.7.4 Multiprocessing 

Many computer architects feel that today's fastest 

computers operate within a factor of 10 of a single 

processor's theoretical speed limits. For this reason, a 

major effort toward multiprocessing exists. The effort is 

based on dividing problems into sub -problems, each of which 

can be assigned to separate processors. Inherently, neural 

networks schedule themselves, that is, each node can be 

viewed as a processor operating on its inputs independently 

of all other processors in the system. Thus while the 

network converges to a solution, all processors are busy, 

hence no expensive silicon remains idle. Furthermore 

processors can be added in a modular fashion to suit problem 

size without restructuring the system. 
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3.8 Strengths of the PDP approach 

The PDP approach offers a very distinctive counter 

approach to conventional computing. It is an adaptive 

system, continually trying to configure itself so as to 

match the arriving data. It works automatically to adjust 

its own parameters so as to accommodate the input presented 

to it. It is a system that is flexible, yet rigid. That 

is, although it is always trying to mirror the arriving 

data, it does so by means of existing knowledge, existing 

configurations. It never expects to make a perfect match, 

but instead simply tries to get the best match possible at 

any time. The closer the match the more stable the system. 

The result is that although the system develops neither 

rules of classifications nor generalizations, it acts as if 

it had these rules. Thus, the system really mirrors 

experience; the regularities of its operation results from 

the regularities of the inputs and partially from the 

interpretations of the beholder. It is a system that 

exhibits intelligence and logic, yet has no explicit rules 

of intelligence or logic. The way by which these systems 

try to accommodate themselves to the data by minimizing the 

energy or maximizing harmony results in preferred states or 

interpretations, where the preferences reflect the 

particular events the system has experienced. This leads to 

categorization and classification of the input signals by 

distance from the prototypes. It is a system which 

49 



N
e
u
r
a
l
 
N
e
t
w
o
r
k
s
 

1 

F
e
e
d
 
b
a
c
k
 

C
o
n
s
t
r
u
c
t
e
d
 

1 

H
o
p
f
i
e
l
d
 

T
r
a
i
n
e
d
 

U
n
s
u
p
e
r
v
i
s
e
d
 

1 

F
e
e
d
 
F
o
r
w
a
r
d
 

L
i
n
e
a
r
 

1 

L
i
n
e
a
r
 

A
s
s
o
c
i
a
t
o
r
 

N
o
n
-
l
i
n
e
a
r
 

U
n
s
u
p
e
r
v
i
s
e
d
 

K
o
h
o
n
e
n
 

N
e
o
c
o
g
n
i
t
r
o
n
 

(
1
9
8
0
)
 

I 

S
u
p
e
r
v
i
s
e
d
 

B
a
c
k
 -
p
r
o
p
 

F
i
g
u
r
e
 
4
.
 
C
l
a
s
s
i
f
i
c
a
t
i
o
n
 
o
f
 
N
e
u
r
a
l
 
N
e
t
w
o
r
k
 
P
a
r
a
d
i
g
m
s
 
[
6
]
 

N
e
o
c
o
g
n
i
t
r
o
n
 

(
1
9
8
3
)
 



incorporates learning as a fundamental and essential aspect 

of its behavior. It makes no attempt to make categories or 

rules, yet it acts as if it were a prototype -matching or a 

categorization system that has explicit rules and 

strategies. 

Neural networks can be arbitrarily categorized by 

topology, neuron model and training algorithm. Figure 4 

shows one method of classifying neural networks. There are 

two main subdivisions of neural networks models: 

1) Feedback 

2) Feedforward 

Feedback models can be constructed or trained. In a 

constructed model the weight matrix is created by taking the 

outer product of every input pattern vector with itself or 

with an associated input, and adding up all the outer 

products. After construction, a partial or inaccurate input 

pattern can be presented to the network, and after a time 

the network converges so that one of the original input 

patterns is the result. Hopfield and BAM are two well known 

constructed feedback models. The Hopfield network is a 

self -organizing, associative memory network. It consists of 

a single layer of neurons. This single layer acts both as 

an input as well as an output. The neurons can only take 

two values, -1 and +1. Hopfield networks can recognize 

patterns by matching new inputs with the closest previously 

stored pattern. These networks are used in applications 
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requiring some form of content addressable memory. A 

serious limitation of this network is the maximum number of 

memories which can be stored. In addition the hardware 

efficiency is poor. A variation of this is the Hamming 

network. The Bidirectional Associative Memory (BAM) network 

is a generalization of the Hamming network. 

A trained feedback model like ART2 is much more 

complicated because the adjustment of the weights affects 

the signals as they move forward as well as backward. The 

ART model is a complex trained feedback paradigm. It is 

powerful but the number of patterns that can be stored is 

limited by the number of processing elements in the storage 

layer. No production application has been published to 

date. ART2 is presently considered to be a research tool. 

The second division of neural networks is the feed 

forward category. The earliest neural network models were 

linear feedforward. The linear associator uses the simple 

delta rule. The system works very well if the maximum 

number of patterns to be stored is 10-20% of the number of 

neurons. There are two main types of training algorithms: 

supervised and unsupervised. Supervised learning is the 

most elementary form of adaptation. It requires prior 

knowledge of what the results should be. During training 

the network's output is compared to the ideal response, and 

any error is used to correct the network. Unsupervised 

learning differs in that it does not have specific 
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corrections made by comparison to ideal results. Supervised 

and unsupervised learning are methods which are mutually 

exclusive. 

Backpropagation is useful because it provides a 

mathematical explanation for the dynamics of the learning 

process. The biggest limitation is the size of the network. 

A popular unsupervised feed -forward model is the Kohonen 

model. The basic system is a one or two dimensional array 

of threshold type logic units with short range lateral 

connections between neighboring processing elements. The 

neuron whose weight vector generates the largest dot -product 

with the input vector is the winner and is permitted to 

output. One of the problems with Kohonen learning is that 

there is a possibility that a neuron will never win or that 

one will almost always win. The weight vector gets stuck in 

isolated regions. One of the ways out of this is to give 

the neurons a conscience. If the neurons realize that they 

are winning a lot, they will step out of the competition for 

a while. 

A special case of the feed -forward model is the 

Neocognitron. The original model was unsupervised, but a 

more recent model uses a teacher. After learning is 

completed, the final Neocognitron system is capable of 

recognizing handwritten numerals presented in any visual 

field location, even with considerable distortion. The 

major drawback of the Neocognitron is that it is highly 
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specialized and requires a large number of neurons and 

connections. 

3.9 Weakness of the PDP approach 

The Parallel Distributed Processing System has some 

weaknesses. In part, it is hard to apply it exactly to many 

of the difficult issues in study and research. In general 

the closer to perception or to motor output, the easier it 

is to apply. Thus there seems to be no question about its 

application to pattern recognition, vision, speech 

understanding, or categorization. The PDP models have the 

power to generalize. But the complimentary skill of 

keeping individual instances separate seems much harder. 

Researchers worry, and say that PDP processing elements 

cannot compute and analyze without variables. Aren't 

variables necessary? How about thought? If a problem is 

solved mentally a person has to postulate hypothetical 

situations, evaluate them and make decisions. How does a 

person compose music? Doesn't the person need to have 

mental variables, symbols that he can manipulate? This is 

the major deficiency of the PDP approach. Researchers argue 

that this problem can be solved by having several levels of 

the systems, each specialized in a specific domain. The PDP 

system is fine for perception, categorization and motor 

control. It is possibly the sort of system that models our 

automatic, subconscious reasoning. But at this stage more 
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research is required to handle problems of conscious, 

deliberate thought, planning, and problem solving. 

When it comes to learning it is frequently the case 

that something has to watch over the operations and act as a 

trainer. But this trainer is different from learning 

mechanisms. It has to be able to evaluate the quality of 

performance. How does this take place? What is this 

second overseeing mechanism? And how did it get started? 

How did the trainer know what task to train, and when. And 

how did it acquire the knowledge of what is good performance 

if it was a task the person had never performed before? 

Even in the competitive learning mechanism where the 

learning can take place without an overseer, evaluatory 

mechanism, it is often advantageous to train the system by 

careful presentation of the items that are to be classified. 

The PDP system is highly parallel and very fast when 

viewed at the level of computational operations. Conversely 

it is highly serial and relatively slow when viewed at the 

higher level of interpreting and analyzing the resulting 

state changes in the system. This dual virtue is similar to 

human cognition. People interpret the world rapidly, 

effortlessly. But the developments of new ideas, or 

evaluation of current thoughts proceeds slowly, serially and 

deliberately. People seem to have at least two modes of 

operation, one rapid, efficient, subconsciousness, the other 

slow, serial and conscious. The problem, however, is that 
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people can do multiple activities at the same time, some of 

them quite unrelated to one another. So researchers say 

that a PDP model of the entire human information processing 

system is going to require multiple processing elements. 

That is, the complete model requires that the brain consist 

of several independent PDP-like systems, each of which can 

only settle into a single state at a time. 

3.10 The Future of Neural Networks 

Neural networks are a rediscovered field experiencing 

an explosive growth in research and application interest. 

Algorithms and architecture proliferate. Claims and counter 

claims fill the literature. Despite its longevity, neural 

network theory and technology is rudimentary. There are 

more questions than answers, as technical knowledge remains 

narrowly disseminated. The situation resembles the Laser 

when it was introduced. The laser had such unique 

properties that many people felt it must be of immense 

value. Nevertheless, even to develop a small percentage of 

its commercial potential required nearly a decade. If this 

analogy is valid, some time will pass before neural networks 

find applications where their unique characteristics make 

them the clear method of choice. Meanwhile all parties 

researchers, commercial firms, and the press must understand 

the risk of promising more than can be delivered. A few 

industrial and military applications have been found. 
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Researchers and industry experts foresee an explosive growth 

in the use of neurocomputers in image and signal processing, 

recognition, and expert systems for financial, medical, and 

scientific uses. Industrial use would include quality 

control and process control. In the field of neurobiology, 

neurobiologists use neurocomputers to model imbalances in 

neuro transmitters and thus seek explanations for 

psychiatric disorders and the effects of psychoactive drugs. 

Researchers at a Pharmaceutical company are using neuro- 

computers to screen tertiary structures of proteins so that 

potentially useful structures can be found and synthesized. 

Neurocomputers and conventional computers will have a 

continued symbiotic association. At present it is a host - 

resident relationship, but in the future it might result in 

shared processing in Database Management Systems (DMS). 

Patterns of information could be more easily found by 

neurocomputers than conventional computers. This could be 

of use in scientific literature databases, medical record 

systems, and of course numerous government databases. 

Another example of cooperation between the two types of 

computers is a true electronic secretary: a neurocomputer 

which recognizes speech and uses a conventional word 

processing program to format, spell check and so forth. At 

an even higher level one can envisage a master operating 

system which determines which kind of computer is most 

appropriate for the task at hand. 
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Chapter 4 

The Proposed Approach 

4.1 Introduction 

This thesis uses neural networks to automatically 

classify rotational parts into part families. Adaptive 

Resonance Theory (ART2) was used as a pattern classifier. A 

simulation experiment was performed on seventy different 

rotational parts to verify the applicability of neural 

networks to the part family formation problem. The results 

were encouraging and showed promise of application in the 

real world domain. 

4.2 Problem Statement 

The task is to use neural networks (ART2) to classify 

parts into part families based on geometrical features and 

tolerances. The problem can be subdivided into three sub - 

statements. 

1) The system must be able to classify a given set of parts 

into a set of part families. 

2) Whenever a new part enters a system, the system must be 

able to classify the part as belonging to an existing part 

family. 

3) The classification system must be able to classify novel 

parts into a new part family. 
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4.3 Proposed Technique 

The proposed technique uses an unsupervised neural 

network paradigm (ART2) to classify rotational parts into 

part families. Information on geometric features and 

tolerances is used as a classification criterion. The 

proposed technique was tested with a hypothetical set of 70 

parts. Refer to Appendix A for sketches of these 

components. The broad objective of this thesis was to prove 

the applicability of neural networks in general, and ART2 

particular to the classification problem. The 

classification procedure will be explained later 

chapter. 

in this 

in 

4.4 Introduction to ART2 

The Adaptive Resonance Theory (ART2) model is used for 

the proposed application to automatically classify parts 

into part families in a Group Technology manufacturing 

environment. Adaptive Resonance Theory is a mathematical 

model of an unsupervised neural network architecture. The 

network architecture is unique among existing paradigms. 

The architecture detects and remembers statistically 

predictive configurations of featural elements which are 

derived from the 

using ART is the 

of part families 

input part patterns. The main advantage in 

scope of learning any kind of configuration 

or other patterns. In ART2 the learned 

part patterns undergo self -organization and 
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self -stabilization as training progresses. 

Self -organization is said to have occurred when the 

network classifies the input part patterns into different 

part families automatically without external help. This 

process of self -organization avoids the use of a teacher to 

decide the size of the part family. 

Self -stabilization is said to have occurred when the 

learned history is not washed away by the more recent 

learning. This is true even if the inputs are presented in 

any arbitrary order and in any arbitrary complexity. The 

search strategies are dynamically modified and updated as 

new part patterns are learned. The learned part patterns 

result in the formation of critical feature patterns for 

each individual part family in the network. The critical 

feature patterns are concepts which the network develops and 

cannot be physically accessed by the user. The methodology 

and working of ART2 are given in Appendix F. 

4.5 Justification for using the ART2 Paradigm 

Several neural network models offer themselves to the 

classification task. There were broadly two training 

strategies which were investigated during the course of this 

research. They are the supervised and unsupervised training 

strategies. In the supervised training mode three types of 

network architectures were examined. They were the 

back -propagation, bidirectional associative memory and 
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counter propagation. It was found that these network 

architectures do not permit any arbitrary pattern as an 

input. Moreover the very purpose of automatic 

classification is defeated if an expected output is 

provided. The creation of a representative part was a 

determining factor in deciding the number of groups in which 

the network would classify the parts. Several unsupervised 

training paradigms and network architectures were explored 

for the proposed application. The paradigms investigated 

were the Kohonen Feature Map, the Adaptive Resonance 

Theory - 1 and Adaptive Resonance Theory - 2. The Kohonen 

Feature Map was said to provide good results in pattern 

recognition literature [47,48,49,50,51]. The proposed 

classification when performed with a Kohonen feature 

resulted in a very large single group of parts. It was 

found on further study that the drawback of the Kohonen 

Feature Map is the bias or tendency of the network to 

classify all parts under the first group formed. This 

results in a very small number of groups to be formed for a 

very large number of parts. The Adaptive Resonance Theory - 

1 was experimented with next. ART1 accepts strictly binary 

inputs. The experiment did not provide the right results. 

It was later found that ART1 is not yet modeled perfectly 

and therefore gives erratic results. The ART2 paradigm gave 

good results and was used as a classification tool. ART2 

accepts gray scale inputs ranging from 0.0 to 1.0. The next 
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section will enumerate the salient features of ART2. 

4.6 Properties of ART2 

There are four important properties of ART2. Each 

property is necessary in understanding the working of the 

proposed application. The four subsections below will 

explain them. 

4.6.1 Critical feature patterns 

Part pattern context enters the definition so that 

input features which are treated as irrelevant noise when 

they are embedded in a given input pattern may be treated as 

informative signals when they are embedded in a different 

input pattern. The systems learning history must also enter 

the classification criteria. This is necessary since, 

portions of an input pattern which are treated as noise when 

they perturb the system at one stage of its self - 

organization may be treated as signals when they perturb the 

system at a different stage in its self -organization. The 

proposed system automatically self -scales its computational 

units to embody context and learning dependent definitions 

of signal and noise. The critical feature patterns of the 

parts are the computational units of the code learning 

process. The term critical features indicate that not all 

features are treated as signals by the system. The learned 

units are patterns of critical features. This is because 
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the perceptual context in which the features are embedded 

influences which features will be treated as signals and 

which will be processed as noise. Thus a part feature may 

be a critical feature in one pattern and an irrelevant noise 

element in a different pattern. 

4.6.2 Self -adjusted Memory Search 

In the proposed application the knowledge structure 

evolves due to learning. A search algorithm is needed to 

classify the parts into an existing or a new part family. 

It is impossible for a prewired search algorithm to maintain 

its efficiency as the knowledge structure evolves due to 

learning. A search order that is optimal in one knowledge 

domain may become extremely inefficient as the knowledge 

domain becomes more complex due to learning. The ART2 

system is capable of 

maintains its search 

learning progresses. 

parallel memory search that adaptively 

order to maintain efficiency as part 

The self -adjusted search mechanism is 

part of the network design whereby the learning process 

self -stabilizes by engaging the orienting mechanism. None 

of these mechanisms is akin to the rules of the serial 

computer program. Once the ART2 architecture is developed, 

a little randomness in the initial values of its memory 

traces, rather than a carefully wired search tree, enables 

the search to continue until the recognition code self - 

stabilizes. 
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4.6.3 Direct Access to Learned Codes 

One of the most important features of the proposed 

approach is the rapidity with which familiar part patterns 

can be recognized. The existence of many learned part 

patterns for alternative experiences does not necessarily 

interfere with rapid recognition of familiar part patterns. 

This type of rapid recognition is difficult to implement 

using models wherein trees or other serial algorithms must 

be searched for longer and longer periods as learned 

recognition codes become larger and larger. In the proposed 

approach, as the recognition codes of the part patterns 

become globally self -consistent and predictively accurate, 

the search mechanism is automatically disengaged. Familiar 

input part patterns directly access their learned code or 

part family no matter how large and complex the learned 

codes may become. The critical feature patterns act as a 

prototype for the entire part family. Unfamiliar part 

patterns which cannot stably access a learned category 

engage the self-adjusting search process in order to 

discover a new network substrate for a new part family. 

After this new part pattern is learned, the search process 

is directly disengaged and direct access ensues. 

4.6.4 Attentional vigilance 

As mentioned earlier the ART2 system self -organizes its 

recognition codes. The environment can also modulate the 
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learning process and thereby carry out a teaching role. 

This teaching role allows a system with a fixed set of 

representative parts or critical features to function 

successfully in an environment which imposes variable 

performance demands. In our case the environment may demand 

either a coarse or a fine discrimination to be made among 

the same set of part patterns. This environment is the cost 

analysis which would dictate the number of groups that could 

be formed. The system becomes more vigilant and forms finer 

categories as the value of the vigilance parameter is 

increased and vice versa. The ability of a vigilance 

parameter to alter the course of a pattern recognition 

illustrates a theme that is common to a variety of neural 

processes. 

4.7 Advantages of ART2 

The heart of the proposed approach was the Adaptive 

Resonance Theory Model (ART2) developed by Stephen Grossberg 

(1988). This network architecture self -stabilizes and 

self -organizes in response to a stream of input patterns. 

Self -organization is said to have occurred when the network 

classifies the input part patterns automatically without the 

help of a teacher. This unique feature of self -organization 

avoids the need to employ an omniscient teacher to decide 

the size of the part family. Self -stabilization occurs when 

prior learning is not washed away by more recent learning. 
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In the case of other architectures, learning becomes 

unstable due to simple changes in the input environment. 

Changes in the probability of inputs or deterministic 

sequencing of inputs can also affect the network. 

The learning system in an ART2 architecture is designed 

to remain plastic in response to significant new input part 

patterns. It also simultaneously remains stable in response 

to previously learned part patterns. The characteristic of 

self -organization is central to the classification process. 

The ART2 system generates recognition codes adaptively 

and without a teacher, in response to a series of input part 

patterns. As learning proceeds, the interaction between the 

inputs and the systems generate new steady states, or 

equilibrium points. The steady states are formed as the 

system discovers and learns the critical features of part 

patterns. These critical feature patterns of parts or 

prototypes represent invariant features in the set of all 

experienced inputs. The ART2 system is sensitive to 

novelty. It is capable of distinguishing between familiar 

and unfamiliar part patterns without a teacher. 

Multiple interacting memory systems are needed to 

monitor and react adaptively to the novelty of events 

without an external teacher. Within ART2, interactions 

between two functionally complementary subsystems are used 

to process familiar and unfamiliar events. Familiar part 

patterns are processed within an attentional subsystem. The 
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attentional subsystem continues to develop more precise 

internal representation of responses to familiar part 

patterns. As described above the attentional subsystem is 

incapable of simultaneously maintaining stable 

representation of familiar categories and also creation of 

new part families for unfamiliar part patterns. 

An isolated subsystem can become too rigid for creating 

new families for unfamiliar part patterns or conversely it 

might also become unstable and would ceaselessly recode the 

categories for familiar part patterns. The second subsystem 

is an orienting subsystem that resets the attentional 

subsystem when an unfamiliar part pattern is presented to 

the system. Interaction between the attentional and 

orienting subsystem helps to express whether a novel part 

pattern is familiar and well represented by an existing 

recognition code, or is unfamiliar and in need of a new 

recognition code. 

4.8 Classification Procedure 

The procedure consists of five steps. To begin, the 

parts are coded into a binary matrix for input to the 

network. The network parameters are then tuned and set. 

This involves observing the specific effect of each of the 

network parameters. Once the network parameters have been 

set, simulation runs are made. The results of the 

simulation are obtained in a separate output file. The 
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One lure of neural networks research is that the field 

is still in its infancy. Time will tell whether the 

enthusiasm is justified. As the network and their learning 

rules become more sophisticated, other fields will exploit 

the technology to improve information processing. 
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results are evaluated and conclusions presented to support 

the validity of the proposed approach. Each one of these 

steps is a detailed procedure which requires explanation. 

4.8.1 Coding of The Binary Matrix 

The binary matrix is the input to the network. The 

matrix is coded manually by the user. The idea of creating 

the binary matrix was taken from Grum and Pelenik [37]. 

They introduced the concept of part representation by a 

unique matrix, where each cell represents a specific 

feature. The binary matrix was coded from a reference 

matrix of geometric primitives (refer to Figure 5). Every 

cell in the reference matrix represents a particular 

geometrical feature like a hole, taper or a threaded 

feature. The reference matrix contains information on the 

following geometrical primitives. 

1) Basic outside geometrical features 

2) Auxiliary outside geometrical features 

3) Basic inside geometrical features 

4) Auxiliary inside geometrical features 

5) Geometrical features on flat surfaces 

6) Auxiliary bores with or without threads 

7) Dimension and accuracy 

In the proposed approach the part information is coded into 

the binary matrix by using the reference matrix developed by 

Grum and Pelenik [37] as explained above. The coding 
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procedure is a manual process. The user looks at the part 

blue print or in this case the component sketch. The 

reference matrix is next observed. A cell entry of 1 is 

made in the binary matrix wherever a feature on the part is 

indicated by a specific cell in the reference matrix. For 

example consider part 6 (see Figure 6). The part has a 

step. A step feature is indicated in the reference matrix 

by cell C10. Thus the binary matrix has cell entry of 1 in 

cell C10. A chamfer is indicated by cell C91 in the 

reference matrix. The binary input part pattern has cell 

entry 1 in cell C91. 

represented by cell 

entry 1 in cell Cu. 

The specific type of step is 

Cu. Thus the binary matrix has cell 

A step hole is given by cell C83 in the 

reference matrix. Thus the binary matrix has a cell entry 1 

in cell C83. Internal threading is indicated by cell C95 in 

the reference matrix. Thus the binary matrix has a cell 

entry 1 in cell C95. The part has circumferential holes and 

is indicated in the reference matrix by cell C87. Thus the 

binary matrix has a cell entry of 1. The part is less than 

511 in length. This is indicated in the reference matrix by 

cell C19 in the reference as well as the binary matrix. The 

specific type of internal step is indicated by cell C55 in 

the reference as well as the binary matrix. The tolerance 

on the part is less than +- 0.001". This is indicated by 

the cell C69 in the reference and the binary matrix. 

Similarly the remaining part features are coded and the 
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Keyway 1.0 x 0.8 x 0.0 

1 

2.015 1.024 

PART 6 

1.994 1 .532--- 

0.40 DIA 4 Holes 

1.506 

.4633.337 3.998 

1.019 

116-32 Thread 

NOTE: 

ALL DIVENSICHS IN INCHES 

111,LESS OTHER VISE SPECIFIED 

TWEE R.C. DEC. +1- 0.001 

PLC. DEC. +/- 0.02 

AlCULAR +/- 1/2 deg 

/* INPUT PART PATTERN: 6 */ 
0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
1.00,1.00,0.00,0.00,0.00,0.00,0.00,1.00,0.00,1.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,1.00,0.00,0.00,0.00,1.00,0.00,0.00 
0.00,1.00,0.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00 

Figure 6. Completed Binary Matrix 
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binary matrix is completely coded. 

Seventy binary matrices, one for each component, were 

created and stored in an input ASCII file. The matrix has 

to be created in an ASCII file in order for it to be 

compatible with ANSim [8]. The input sample file of six 

parts is as shown in Appendix C. Once the input binary 

matrices are created the next step is to construct and 

specify the network parameters. 

4.8.2 Network definition 

Network definition specifies and define the 

architecture of the network. This definition is stored and 

defined in a network definition file as shown in Appendix B. 

There are two issues to be addressed under this section. 

The first is that the network architecture has to be 

specified. The second is that the parameters which control 

the network function have to be tuned and fixed. An example 

problem will be used to demonstrate this step. 

The number of processing elements in node 1 has to be 

of the same size as that of the input binary matrix. In the 

example problem the input node is a 10 x 10 array of 

processing elements, i.e. 100 processing elements. The 

number of processing elements in the output layer represents 

the number of part families formed by the network. In the 

example problem the output node is a 10 x 7 matrix, i.e. 70 

processing elements. 
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Many parameters have to be tuned in order to train the 

network successfully. ART2 is sensitive to a combination of 

parameters such that degraded performance or instabilities 

can arise. Therefore tuning ART2 by progressive adjustment 

of these parameters controls the functioning of the network. 

1) Vigilance Parameter 

This parameter gives the degree of specificity in 

distinguishing part patterns. Higher vigilance will 

discriminate part patterns more specifically than with lower 

vigilance values. It can take values ranging from 0.1 to 

0.99. It was concluded from experiments that a vigilance 

value below 0.90 and above 0.96 had no effect on the 

classification. This means that the number of classes 

formed remained a constant beyond the defined limits. The 

example problem was tested with five values of vigilance to 

observe its effect on the grouping. The values were 0.92, 

0.93, 0.94, 0.95, 0.96. 

2) The number of Learning Cycles 

This gives the number of cycles during which the input 

part pattern will persist. This parameter can be set to any 

value greater than 1. It controls the time taken to train 

the network. In the example problem this parameter was 

fixed empirically by observing when a part is completely 

learned by the network. This is determined when the 

processing element in node 2 representing the part family 

exceeds an activation value of 1. The parameter was fixed 
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at 100 for the example problem. 

3) Input Adjustment Gain 

The Short Term Memory (STM) part pattern at the output 

of node 1 is used to adjust the input part pattern "BM" as 

it is presented at node 1 of the network. This parameter 

determines the degree to which the input pattern "BM" is 

adjusted by the STM pattern at node 1. The value ranges 

from 0.0 to 1.0. A parameter value of 1 adjusts the input 

pattern completely with the STM pattern. A value of 0 

ignores the STM value. In the example problem a middle 

value of 0.5 was used. This value was decided as a result 

of several simulation runs. 

4) STM Adjustment Gain 

The STM pattern also is updated as the network 

progressively learns the part patterns. There are two 

factors that affect the STM updating or learning. They are 

the input pattern "BM" and the Long Term Memory (LTM) 

pattern. This parameter determines the degree to which the 

STM pattern should be effected by the LTM pattern. The LTM 

pattern is essentially the prediction of what the input 

pattern should be. The STM Adjustment gain range is 0.0 to 

1.0. The value of 1 equally weighs the input and LTM 

pattern values when updating the STM pattern. A value of 1 

equally weighs the input and LTM values when updating the 

STM pattern. A value of 0 ignores or gives a zero weight to 

the updating done by the LTM value. A large value makes the 
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network insensitive to variation in the input part pattern. 

This results in reducing the discriminating capability of 

the network. A variety of STM values were investigated and 

a value of 0.35 was fixed for the example problem. 

5) Predicted Gain 

During network training and learning the top down 

pattern "PVn" is compared to the input pattern "BM". The 

top down or recalled vector is represented by the LTM. The 

difference between the input pattern "BM" and learned 

pattern "PVn" is applied to update the resonating vector 

between node 1 and node 2. A value of 1 applies the total 

difference to the update. A setting of 0 makes the 

resonating vector turn off LTM recall and reset mechanism. 

The smaller the value of this gain parameter the slower the 

rate of learning of the input pattern "BM". This was 

concluded by conducting experiments with various values of 

this parameter. The value of predicted gain was fixed at 

0.5. 

6) LTM Adjustment Gain 

This parameter determines the learning rate of the Long 

Term Memory (LTM) traces of the network. The learning rate 

for the LTM traces is typically small as compared to that of 

Short Term Memory (STM) traces. This parameter can take 

values ranging from 0.0 to 1.0. The value 0 stops the LTM 

learning process and a value 1.0 changes LTM traces at a 

rapid pace resulting in a faster rate of learning. A value 
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of 0.90 was first experimented with and then steadily 

decreased till the network gained stability. The rapid rate 

of change of the learning can destabilize the network by 

preventing a select set of LTM traces to learn the pattern. 

A low value of this parameter slows down the learning 

process to a point where the time to train the network is on 

the order of several days. This means that there is a 

specific value for this parameter which determines the 

optimum learning rate for the LTM. An experiment was 

conducted at a value of 0.20 and the network stabilized 

after three days. This parameter was fixed at 0.4. 

7) Excitation Bias 

This biasing parameter takes care of the noise 

component in the input vector "BM". It is the level of 

sensitivity to noise in the STM generated by the input. It 

is used for non-specific normalization of the STM vectors. 

It ranges from 0.0 to 1.0. The value investigated were 0.1, 

0.50, 0.70, 0.001, 0.002, 0.004. The value of 0.004 was 

selected since the noise was very low in the data. 

8) Excitation Threshold 

The activation function of a processing element can be 

a sigmoid or any other function depending on the 

application. The function employed for this application was 

the sigmoid. The sigmoid function had an excitation 

threshold above which the processing elements could fire. 

The sigmoid may take on values ranging from 0.0001 to 
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0.9999. It was found that if the threshold level was low 

i.e. 0.01 or 0.08, the network did not learn meaningful 

patterns. This is because the network tried to consider 

every input from the part pattern that it experienced. A 

value of 0.5 was selected for the example problem. 

4.8.3 Run Simulation 

Simulations were conducted on an IBM PC Compatible, 

80386, 25mhz machine. The software used was ANSim 

(Artificial Neural Network Simulation) from SAIC (Scientific 

Applications International Corporation). The ASCII input 

file of parts matrices was converted to ANSim compatible 

format. This file was then presented to the ART2 network 

with all the parameters discussed above. Each part was 

presented to the network 100 times. The network was trained 

at different vigilance values; 0.92, 0.93, 0.94, 0.95, 0.96. 

The training time for each simulation was approximately 20 

hours. The simulations resulted in outputs from the 

networks, which gave the various part families. 

4.8.4 Simulation Outputs 

The output is printed to an ANSim file by the process 

file option once the network was trained (refer Appendix D). 

This option presents all the trained parts for 1-5 

iterations to the already trained network. The result is an 

output file containing all the part families or groupings. 

78 



The output file is still in an unreadable ANSim format and 

has to be converted to an ASCII file to analyze parts 

grouping data. This procedure is carried out by using the 

standard ANSim Convert utility. The ASCII output file is 

scrutinized for the resulting group data. 

4.8.5. Interpreting simulation outputs 

The processing elements in the output node (Node 2) are 

numbered 1 to 100 starting from the left extreme and 

continuing down until the right bottom processing element. 

For example, the cell C18 will be indicated by the number 8 

and the processing element C34 will be denoted by the number 

24. All the processing elements in the rest of the work 

will be referred by this unique cell or part family 

identifier. 

Every input part pattern file generates an output file 

as a result of executing the process file option. The 

output matrix indicates the part family for the specific 

part. The first matrix titled "Input Vector n" (n = 

1,2...70) is the input matrix and represents the original 

inputs to the system. The matrix following this input 

matrix is titled "Output Vector n" (n = 1,2...70). It is 

seen that only one processing element in the output vector 

is greater than 0, the rest are all 0. This unique positive 

processing element is the part family or group number. This 

matrix is of interest to the user in analyzing the 
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groupings. It was observed that the magnitude of the 

activation does not indicate a specific trend within or 

outside the groups. This means that the magnitude did not 

effect the way the network classified parts into groups. 

Parts which activate the same part family identifier are 

grouped under same part family. Consider for example the 

output matrix of parts 58, 59 and 60 at a vigilance of 0.94 

(refer to Figure 7 for the output matrix of parts). The 

part family identifier for parts 59 and 60 is cell C24. 

This means that both these parts belonged to the same part 

family C24. Part 58 has a part family identifier C30. 

4.9 Comparison of Proposed Approach with Grum and Pelenik 

[37] Approach 

There are many advantages of the proposed technique 

over the technique proposed by Grum and Pelenik (see Figure 

8). The Grum and Pelenik Approach will be explained first 

and then compared and contrasted with the proposed 

technique. The first step is the representation of the part 

in a form suitable for input to the system. The geometric 

matrix from which the parts are coded contains information 

as discussed in the section 4.4.1. In correspondence with 

this geometric matrix Grum and Pelenik described featural 

elements on the parts with yes (black) or no (white). As a 

code example refer to Figure 9. Classification in a part 

family is carried out on the basis of pattern recognition. 
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A vision system is used as a pattern recognition tool. For 

this purpose, a matrix of geometric characteristics of all 

the representatives of the part families are created and 

named the reference or the reference matrices. These are 

compared with the given parts matrix that are to be 

classified in a certain part family. The procedure is 

conducted on the basis of a potential function. This 

permits finding out the relative degree of similarity among 

the parts that are to be classified into part families. 

On comparing and contrasting Grum and Pelenik [37] 

technique with the proposed technique, we see that: 

1) The number of groups formed is not predetermined by the 

user in the proposed technique. Grum and Pelenik used a 

fixed number of representative part families which already 

existed or were created by an omniscient user. 

2) A potential function is the heart of Grum's procedure. 

The potential function is the decision making aid to decide 

whether a part belongs to a particular part family. The 

proposed approach does not use the concept of a potential 

function. The potential function is a time consuming 

procedure. A canned formulae for a potential function may 

not necessarily satisfy all the classification criteria. 

The potential function is the decision making aid which 

decides whether a part belongs to a particular part family. 

3) A decision algorithm is not necessary to classify parts 

by the proposed technique. A decision algorithm is the 
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decision aid in Grum's work. Moreover the decision 

algorithm has to be written for every new application 

domain. 

4) The coarseness/fineness of the groups can be controlled 

by changing the vigilance parameter in the proposed 

technique. Grum's technique cannot accommodate changes in 

the size of the groups. This is because a new set of 

reference components will have to be defined which is a time 

consuming task. 

5) The search time to determine the group or part family is 

trivial due to the parallel search scheme in neural 

networks. The search time in Grum's technique increases as 

the parts database becomes more complex. This is true of 

any prewired search algorithm. 

6) The proposed technique can accommodate future inclusions 

of a set of novel components without modifying the system. 

In Grum's technique novel parts cannot be handled. This is 

because the system is rigid and any inclusion would mean 

reprogramming the system to accommodate the novel component. 

7) The proposed system possesses learning capability and 

reacts as a function of experience. Grum's technique does 

not learn and hence the system is not updated automatically 

and is not intelligent. 

4.10 Comparison of proposed approach with Ham [44] Approach 

Ham et al. used a two layered backpropagation neural 
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net model in neural networks to classify parts into 

representative part families. The neural network is trained 

with all representative parts in the initially available n 

part families Pl, P2, P3,...Pn (these representative parts 

are called exemplars). Each part family has a set of one or 

more representative parts or exemplars. When the system 

encounters a new part it responds by identifying the 

exemplar that is the closest match to the new part. The 

next step is to check to see if the two parts are similar to 

the desired extent. Ham et al. used Tanimoto's Coefficient 

to determine the degree of similarity. Thus the 

classification is then done for all other new components 

presented to the system. If the new part does not belong to 

any existing part family a new part family is formed. The 

input to the neural network was from a vision system. The 

part was represented by a vector of pixels which represents 

a two-dimensional view of the part's diagram. 

Contrasting and comparing Ham's work with the proposed 

technique, we see that: 

1) The proposed technique does not employ the concept of a 

potential function. Ham's technique uses a potential 

function to decide the size of the groups. This means that 

the neural network is not used as an intelligent decision 

tool, but merely as a heuristic rule -based system. The 

purpose of automatic classification is defeated when the 

potential function is developed and employed. 
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2) The number of parts that can be learned by the network is 

not limited by the network architecture in the proposed 

approach. In Ham's approach the network architecture needs 

to be modified as more parts are incorporated into the 

system. 

3) In the proposed approach the parts are represented by a 

binary matrix of geometrical primitives. Ham used a two- 

dimensional view of the part as input to the vision system. 

A two-dimensional view does not represent all the features 

on the parts. Moreover, only symmetrical rotational parts 

can be classified. The proposed approach does not have 

these restrictions. 

4) The proposed system uses an unsupervised training 

algorithm (ART2) to classify parts automatically. The 

system therefore truly models automatic classification. The 

use of a backpropagation (supervised learning algorithm) 

neural network closely models a rule -based system rather 

than a automatic classification system. 



Chapter 5 

Results Conclusions and Recommendations 

5.1 Introduction 

The results, conclusions and recommendations were an 

interesting aspect of this research. The results were 

encouraging. There are many important conclusions drawn as 

a result of this research effort. Many improvements and 

refinements can be implemented on the proposed system. 

5.2 Results 

The classification simulation was conducted for five 

values of the vigilance parameter. The part families are 

identified by a unique part family or Group Number. The 

cells are numbered 1 to 100 starting at the top left corner 

of the output matrix. Part families with a singular part in 

the par: family are not shown in the analysis. This 

assumption was based on the fact that a part family should 

consist of at least two parts to be recognized as a part 

family. Moreover the analysis of part families with 

singular parts showed that they had some features which were 

not common to other part families, i.e. were unique and did 

not belong to any other part family. The analysis of all 

the outputs obtained are given in Appendix D. 

Simulation runs were conducted for five values of the 

vigilance parameter. The vigilance values, 0.92, 0.93, 
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0.94, 0.95, 0.96 were used in the experiments. The concept 

of a vigilance parameter is contrary to the concept of a 

potential function where the higher the value of the 

potential function the more similar are the parts. The 

results are tabulated as Shown in Appendix E. 

The grouping analysis was done in two stages. In the 

first stage, parts were tabulated into their respective 

groups or part families. This analysis indicates that as 

the vigilance parameter increased from 0.92 to 0.96 the 

number of groups or part families increased. In the second 

stage the analysis was conducted for finding the basis on 

which parts were classified into a specific part family. 

There were certain parts features which were assumed to be 

the defining criteria for forming groups. Every grouping is 

analyzed for the absence and presence of these features. It 

is concluded that the absence or presence of a particular 

feature on parts within a particular part family were 

instrumental in defining the classification procedure. It 

is to be noted that for every value of the vigilance 

parameter the groups need not have the same part family 

identifier (Group Number). This is because the LTM weights 

are randomized at the beginning of every simulation. The 

results will be explained for one value of vigilance. 

Consider the part families formed at the vigilance value of 

0.94. Please refer to Table 2. There are eight groups 

formed, 24, 26, 29, 30, 39, 51, 66. This is shown in the 
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/* Output vector 58 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2.05, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 59 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 2.20, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 60 : 
*/ 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 2.13, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

Figure 7. Output Matrix 
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Table 2. Grouping Anaysis: Vigilance Parameter:- 0.94 

Group 
No. 

PARTS 

24 4,6,9,10,11,12,13,14,24,25,26,39,41,42,44,45,46, 
48,50,52,53,54,59,60,61,65,66,68,70 

26 7, 18,21,27,67 

29 17,28 

30 1,2,8,15,22,23,32,33,34,35,36,40,43,49,57,58,69 

39 19,20 

51 16,29,30,37,38,62,63,64 

66 31,51,56 
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Table 3. Grouping Analysis: Vigilance Parameter:- 0.94 

Group No. 24 26 29 30 39 51 66 

Geometric Features 

Straight Outside P O P P PO P 

Taper Outside 0 0 AP AO 0 

Groove Outside 00 AO AO A 

Pulley 0 A A 0 A 0 A 

Circumferential Holes 0 A A A A A A 

Keyway Outside 0 0 A 0 A 0 0 

Threading Outside 0 0 A 0 A A 0 

Threading Inside 0 A 0 0 0 A 0 

Cross hole A 0 A 0 0 0 A 

Straight hole 0 0 P OP 0 P 

Taper hole 0 A AO A A A 

Blind hole AO A 0 A A P 

Step Hole 0 A 0 0 A A A 

Hole 0 0 P OP 0 P 

Key: - 
A - Denotes absence of a feature. 
P - Denotes presence of a feature. 
0 - Denotes either the presence or absence of a feature 

9. 



first column titled Group No. The number of part families 

formed are 7. The number of parts in each part family are 

30, 6, 3, 17, 2, 9 and 3 respectively. This was the first 

stage of analysis. The second stage is to analyze the 

groupings obtained earlier for the absence and presence of 

geometrical features. Please refer to Table 3 for this 

analysis. Consider Group No. 24 in the second column. A P 

in a cell indicates the presence of a geometrical feature 

(indicated by the row) in all parts within a group. An A in 

a cell indicates the absence of a geometrical feature on all 

parts within a group. An 0 indicates either the presence or 

absence of a feature within a group. Therefore Group No. 29 

has the following features present on all parts: Straight 

Outside Edge, Straight Hole, Hole. It has following 

features absent from each part in Group No. 29 Taper 

Outside, Groove Outside, Pulley, Circumferential Hole, 

Keyway outside, Threading outside, Cross Hole, Taper Hole, 

Blind Hole. Group No. 29 also has the following features 

either present or absent: Threading inside, Step Hole. 

Similarly all the other part families are analyzed and 

evaluated for reasons of their association to a particular 

part family. Is is observed that no two part families have 

the same features absent or present. This means that the 

patterns of "A" and "P" are different for all part families. 

The conclusions of these analysis are: 

1) As the vigilance parameter increased from 0.92 to 0.96 
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29, 30, 37, 38, 62, 63 and 64 belonged to one part family. 

The test was performed to test the validity of the 

groupings. The experiment was performed at only one value 

of vigilance parameter. This is because the network 

architecture remains unchanged for all values of vigilance 

parameter. Therefore the classification of novel parts into 

new groups should be true at every level of the vigilance 

parameter. 

5.3 Conclusions 

The proposed technique is the first of its kind in the 

application of ART2 (unsupervised learning) to a Group 

Technology application. It opens new avenues for 

classification procedures in manufacturing as well as non - 

manufacturing procedures. 

There are some outstanding features of the proposed 

method that overcome the deficiencies of the present method. 

These salient features are explained below. 

1) The number of groups is not predetermined by the user in 

the proposed approach. This actually represents and models 

automatic classification. In all existing methodologies the 

user has to decide the number of part families the parts 

will be grouped under. This is not a natural and 

justifiable way of grouping parts if the groups do not 

already exist. If the groups already exist then the user 
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has to determine the validity of the grouping. If the user 

has to decide the number of groups beforehand, the user will 

have to thoroughly study the parts database before making a 

decision on the number of part families to form. The 

proposed method allows the user to dynamically alter the 

number of part families by varying the vigilance parameter. 

2) The classification in ART2 is based on the formation of a 

composite component. The composite component or critical 

feature pattern, is formed automatically as the system 

learns and evolves. The formation and the number of 

composite components is not determined by the user as is the 

existing techniques. The development of a composite 

component by the user casts doubt to whether it truly 

represents all the parts in the database. 

3) Extensive and complicated programming has to be done to 

accomplish classification by the existing methods. The 

development of algorithms for every new application is a 

time consuming process. In the proposed method only 

training, tuning, and setting of learning parameters is done 

by the user to classify data successfully. For a very large 

database of parts the program development and testing time 

would be enormous. 

4) The knowledge acquisition task in a classification 

performed by a conventional artificial intelligence 
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technique is a time consuming process. In the proposed 

approach there is no stage of knowledge acquisition, 

therefore there is no time for this process. The knowledge 

acquired by the system is the result of all the learning 

experienced by the system. The proposed method is 

application independent. This means that the same network 

architecture can be applied to any other application. The 

number of feature detectors have to be changed depending 

upon the size of the database. The learning and vigilance 

parameters have to be reset. 

5) The ART2 neural network architecture speeds up processing 

time as the network is inherently parallel in nature. 

Moreover the simultaneous interaction of two memory 

mechanisms speed up the process even more. 

6) The use of ART2 assures that there is a trivial amount of 

time for search (3 to 5 seconds). This is because parallel 

interactions are modeled on a sequential computing machine. 

On a parallel machine the search time would be nearly zero. 

In all conventional artificial intelligence applications to 

the problem of part family formation the search time is 

proportional to the number of components in the database. 

The larger the database the longer it will take to search 

the database. In the proposed application the search time 

remains constant irrespective of the number of parts in the 

96 



database. In the present time of intense global competition 

a product is either launched before the competitor or it 

faces doom. The proposed application will ensure that user 

has an edge in rapidly producing his/her product. 

The proposed approach has some weaknessess. 

1. It was observed during the analysis that some parts 

within a group were not intuitively obvious. As an example 

parts 58, 59 and 60 were classified into two groups one with 

part 58 and other with part 59 and 60. This classification 

was true for every value of the vigilance parameter. 

Intuitively part 58 should belong to the same group. This 

suggests that the reference matrix should be altered since 

the grouping of parts is completely outside the user 

control. 

2. It was observed that parts which were grouped together at 

a higher value of vigilance were not necessarily grouped 

together at a lower value of vigilance. Thus the results 

prove to be counter intuitive. 

3. Prelimnary results were encouraging but not entirely 

successful. 

The major conclusions of this research are: 

1) The ART2 is not entirely successful for the proposed 

approach as is observed from the above mentioned results. 

2) The order in which the parts are input to the system has 

no effect on the classification procedure. 

3) The number of part families formed changes with a change 

97 



in the vigilance. As the vigilance increases the number of 

part families formed also increase. The lowering of 

vigilance decreases the number of part families formed. 

5.4. Future Research Directions 

The scope for future research in this field is immense. 

There are various avenues that could be explored. A few 

important ones are listed below. 

1) The proposed technique is restricted to rotational 

components. Further development can be done on this 

application to prismatic components. The basic input form 

will remain the same but the binary matrix for prismatic 

components will have to be used instead of the binary matrix 

for rotational components. 

2) The present classification scheme takes into 

consideration only the geometric feature of parts. This is 

not the best way to perform classification. Classification 

based on routing information was also attempted, and showed 

good results. 

3) An integration of the two classification schemes i.e. 

based on both geometric features and routing information is 

proposed. Future research should be undertaken to 

investigate other forms of manufacturing information that 

can be best used to best classify parts. 

4) The binary matrix can be changed to a gray scale matrix. 

Weights can be allocated to every cell so that the 
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importance of certain parts information is emphasized. This 

weight allocation will vary from organization to 

organization and can be based on heuristic judgement. 

5) The input at present is a manually coded binary matrix. 

An attempt should be made to read and decipher parts 

information directly from a CAD database or a picture of a 

part using a vision system. 

6) The development of a mathematical model to select the 

vigilance parameter is also a challenging area to investi- 

gate. It can be expected that the vigilance parameter can 

be detelmined as a function of cost. 

The conclusion of this research is that neural networks 

are indeed an appropriate tool to classify rotational parts 

automatically into part families. 
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Sample Network Definition File. 

Adaptive Resonance 2 network. Vigilance = 0.94 

Input gain = 0.70000 

STM gain = 0.20000 

Predictive gain = 0.70000 

Learn rate = 0.40000 

Excitation bias = 0.00400 

Excitation threshold = 0.20000 

Vigilance = 0.94000 

# run cycles = 10 

# inputs = 100 (10, 10) 

# outputs = 70 (10, 7) 

Bottom -up weights: 
0.05159 0.02075 0.03763 0.05626 0.07993 0.05817 0.05917 0.08992 

0.01052 0.08789 0.01723 0.07120 0.05603 0.04071 0.08853 0.07488 

0.07471 0.03767 0.01276 0.07113 0.06131 0.05276 0.08828 0.04542 

0.03247 0.01489 0.04210 0.08269 0.06638 0.06440 0.04931 0.03605 

Top -down weights: 
0.00000 0.00000 0.00000 0.00000 0.00000 0.01030 0.00000 0.00000 

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.30172 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00445 

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

185 



APPENDIX D 

SAMPLE INPUT FILE 

186 



Sample Input File 

TRAIN 10,10,1,1 

/* INPUT PART PATTERN: 1 */ 
0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
1.00,1.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00,1.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,1.00,0.00,0.00,1.00,0.00,0.00,0.00 
0.00,1.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00 

/* OUTPUT PART PATTERN: 1 */ 

0.00 

/* INPUT PART PATTERN: 2 */ 
0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
1.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00 
0.00,0.00,0.00,1.00,1.00,0.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,1.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00 

/* OUTPUT PART PATTERN: 2 */ 
0.00 

/* INPUT PART PATTERN: 3 */ 
0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00,0.00,1.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,1.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00 

/* OUTPUT PART PATTERN: 3 */ 
0.00 
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/* INPUT PART PATTERN: 4 */ 
0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00,0.00,1.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00 
0.00,1.00,0.00,1.00,0.00,1.00,0.00,0.00,0.00,0.00 

/* OUTPUT PART PATTERN: 4 */ 
0.00 

/* INPUT PART PATTERN: 5 */ 
0.00,0.00,1.00,0.00,0.00,0.00,0. 
1.00,0.00,0.00,0.00,0.00,0.00,0. 
0.00,0.00,1.00,0.00,0.00,0.00,0. 
1.00,0.00,0.00,0.00,0.00,0.00,0. 
0.00,0.00,0.00,0.00,0.00,0.00,0. 
0.00,0.00,0.00,0.00,0.00,1.00,0. 
0.00,0.00,0.00,0.00,0.00,1.00,0. 
0.00,0.00,0.00,0.00,0.00,0.00,0. 
0.00,0.00,0.00,1.00,0.00,0.00,0. 
0.00,1.00,0.00,0.00,0.00,0.00,0. 

/* OUTPUT PART PATTERN: 5 */ 
0.00 

00,0. 
00,0. 
00,0. 
00,0. 
00,0. 
00,0. 
00,0. 
00,0. 
00,0. 
00,0. 

/* INPUT PART PATTERN: 6 */ 
0.00,0.00,1.00,0.00,0.00,0.00,0.00,0. 
1.00,1.00,0.00,0.00,0.00,0.00,0.00,1. 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0. 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0. 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0. 
0.00,0.00,0.00,0.00,0.00,1.00,0.00,0. 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0. 
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0. 
0.00,0.00,0.00,1.00,0.00,0.00,0.00,1. 
0.00,1.00,0.00,0.00,0.00,1.00,0.00,0. 

/* OUTPUT PART PATTERN: 6 */ 
0.00 
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00,0. 
00,0. 
00,0. 
00,0. 
00,0. 
00,0. 
00,0. 
00,0. 
00,0. 
00,0. 

00,0. 
00,0. 
00,0. 
00,0. 
00,0. 
00,0. 
00,0. 
00,0. 
00,0. 
00,0. 

00,0.00 
00,0.00 
00,1.00 
00,0.00 
00,0.00 
00,0.00 
00,1.00 
00,0.00 
00,0.00 
00,0.00 

00,0.00 
00,1.00 
00,0.00 
00,0.00 
00,0.00 
00,0.00 
00,1.00 
00,0.00 
00,0.00 
00,0.00 
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Sample Output File: Vigilance 

TRAIN 10, 10, 10, 7 

/* Input vector 1 */ 

= 0.94 

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 1.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 

0.00, 1.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 1 : */ 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.93, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 2 */ 

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 1.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 1.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 2 : */ 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.91, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 3 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 3 : 
*/ 

0.00, 0.00, 0.00, 0. 00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0. 00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0. 00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0. 00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0. 00, 0.96, 0. 00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0. 00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0. 00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 4 */ 

0.00, 0.00, 1.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0. 00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0. 00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 1. 00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 4 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 2.08, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 5 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 5 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.21, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 6 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 1.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 6 : */ 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 2.06, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 7 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 7 : */ 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 2.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 8 : */ 

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 

0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 8 : */ 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2.08, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 9 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 1.00, 
0.00, 0.00, 0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 9 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 2.20, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 10 : */ 
0.00, 0.00, 1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 1.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 10 : */ 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 2.07, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 11 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 1.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 11 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 2.06, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 12 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 12 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 2.13, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 13 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 13 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 2.04, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 14 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 1.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 14 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 2.22, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 15 : */ 
0.00, 0.00, 1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 15 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2.19, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 16 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 1.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 16 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
2.26, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 17 : */ 

1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 1.00, 0.00, 1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 17 : */ 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 2.01, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, o. 00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, o. 00, 0.00, 0.00, 

/* Input vector 18 : */ 

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 

1.00, 1.00, 1.00, 0.00, 0.00, 0.00, 0.00, o. 00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, o. 00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 

1.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0. 00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 

0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 

/* Output vector 18 : */ 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 2.07, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 19 : */ 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 19 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2.16, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 20 : */ 

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 20 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2.10, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 21 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 21 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 2.06, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 22 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 22 : */ 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2.26, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 23 : */ 

1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 23 : */ 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.91, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 24 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 24 : */ 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 2.20, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 25 : */ 
0.00, 0.00, 1.00, 1.00, 0.00, 0. 00, 0.00, 0.00, 0. 00, 0.00, 
1.00, 1.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 1.00, 0. 00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, o. 00, 0.00, 0.00, o. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1. 00, 0.00, 0.00, o. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, o. 00, 0.00, 0.00, o. 00, 1.00, 
0.00, 0.00, 0.00, 1.00, 0.00, o. 00, 0.00, 0.00, o. 00, 0.00, 
0.00, 0.00, 1.00, 1.00, 0.00, o. 00, 0.00, 1.00, o. 00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, o. 00, 0.00, 0.00, o. 00, 0.00, 

/* Output vector 25 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, o. 00, 0.00, 0.00, o. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, o. 00, 0.00, 0.00, o. 00, 0.00, 
0.00, 0.00, 0.00, 2.28, 0.00, o. 00, 0.00, 0.00, o. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, o. 00, 0.00, 0.00, o. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, o. 00, 0.00, 0.00, o. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, o. 00, 0.00, 0.00, o. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, o. 00, 0.00, 0.00, o. 00, 0.00, 

/* Input vector 26 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0. 00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0. 00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0. 00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0. 00, 1.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0. 00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 1. 00, 0.00, 0.00, 0. 00, 0.00, 

/* Output vector 26 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 2.32, 0.00, 0. 00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0. 00, 0.00, 
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/* Input vector 27 : */ 

1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 27 */ 
0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 

0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 

0.00, 0.00, 0.00, 0. 00, 0.00, 2.21, 0.00, 0.00, 0. 00, 0.00, 

0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 

0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 

0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 

0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 

/* Input vector 28 : */ 

1.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0. 00, 1.00, 

0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0. 00, 1.00, 

0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 

0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 

0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 

0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0. 00, 1.00, 

0.00, 0.00, 0.00, 1. 00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 

0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 

0.00, 1.00, 0.00, 0. 00, 0.00, 1.00, 0.00, 0.00, 0. 00, 0.00, 

/* Output vector 28 : */ 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2.24, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 29 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 29 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 
2.29, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 

/* Input vector 30 : */ 
1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 1.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 1.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 

/* Output vector 30 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
2.13, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 31 : */ 
1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 31 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.54, 0.00, 0.00, 0. 00, 0.00, 

/* Input vector 32 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0. 00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0. 00, 0.00, 

/* Output vector 32 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0 00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0 00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0 00, 0.00, 0.00, 0.00, 2.08, 
0.00, 0.00, 0.00, 0.00, 0.00, 0 00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0 00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 33 : */ 

0.00, 0.00, 1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 33 : */ 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2.14, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 34 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 34 : */ 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2.18, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 35 : */ 
0.00, 0.00, 1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 35 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2.20, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 36 : */ 

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 36 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.98, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 37 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 37 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
2.22, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 38 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 38 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
2.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 39 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 1.00, 1.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 39 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 2.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 40 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 1.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 1.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 40 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.93, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 41 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 0.00, 1.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 41 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0 00, 0.00, 0.00, 
0.00, 0.00, 0.00, 2.02, 0.00, 0.00, 0.00, 0 00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0 00, 0.00, 0.00, 

/* Input vector 42 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 1.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 42 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 1.97, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 43 : */ 

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 43 : */ 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.93, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 44 : */ 

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 

0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 44 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 2.16, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 45 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 45 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 2.13, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 46 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 46 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 2.04, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 47 : */ 

1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 

0.00, 1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 47 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.94, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 48 : */ 

0.00, 0.00, 1.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 48 : */ 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 2.04, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 49 : */ 
0.00, 0.00, 1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 49 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2.14, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 50 : */ 
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 

/ * Output vector 50 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 2.20, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
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/* Input vector 51 : 
*/ 

0.00, 0.00, 1.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 1. 00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 1. 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0. 00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 1.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0. 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 51 */ 
0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0 .00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0 .00, 0.00, 1.40, 0.00, 0.00, 0.00, 0.00, 

/* Input vector 52 */ 

0.00, 0.00, 1.00, 0 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0 00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
1.00, 0.00, 0.00, 0 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0 00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 0 00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 
0.00, 0.00, 0.00, 0 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.00, 0.00, 1 00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 1.00, 0.00, 0 00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 

/* Output vector 52 : */ 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 , 

0.00, 0.00, 0.00, 2.14, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 , 

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 , 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00 
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APPENDIX F 

GROUPING ANALYSIS 
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Table 4. Grouping Analysis: Vigilance Parameter:- 0.92 

Group 
No. 

PARTS 

2 17,19,20,21,28,29,30,31 

15 5,6,7,18,27,68,69 

39 1,2,3,4,8,9,10,11,12,13,14,15,16,22,23,24,25,26 
32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, 
48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, 
64,65,66,70 
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Table 5. Grouping Analysis: Vigilance Parameter:- 0.92 

Group No. 2 15 39 

Geometric Features 

Straight Outside P 0 P 

Taper Outside 0 0 0 

Groove Outside 0 0 0 

Pulley 0 0 0 

Circumferential Holes A 0 0 

Keyway Outside A 0 0 

Threading Outside A 0 0 

Threading Inside A 0 0 

Cross hole 0 0 0 

Straight hole P A 0 

Taper hole A A 0 

Blind hole 0 0 0 

Step Hole 0 0 0 

Hole P 0 0 

Key: - 
A - Denotes absence of a feature. 
P - Denotes presence of a feature. 
0 - Denotes presence or absence of a feature 
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Table 6. Grouping Anaysis: Vigilance Parameter:- 0.93 

Group 
No. 

PARTS 

8 7,8,18,21,22,27,56,57,58,59,60 

26 1,2,3,4,5,6,39,40,41,42,43,44,45,46,47,48,49,50, 
52,53 

38 17,20,28 

50 9,10,11,12,13,14,15,16,23,24,25,26,32,33,34,35, 
36,37,38,54,61,62,63,64,65,66,68,69,70 

62 19,29,30,31 
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Table 7. Grouping Analysis: Vigilance Parameter:- 0.93 

Group No. 8 26 38 50 62 

Geometric Features 

Straight Outside P P P P 0 

Taper Outside 0 0 A 0 0 

Groove Outside 0 0 A 0 A 

Pulley A A A PO 
Circumferential Holes A 0 A 0 A 

Keyway Outside 0 0 A 0 A 

Threading Outside 0 0 A 0 A 

Threading Inside A 0 0 0 0 

Cross hole 0 0 0 0 0 

Straight hole 0 0 P PP 
Taper hole A 0 A 0 A 

Blind hole 0 0 A 0 A 

Step Hole A 0 0 0 A 

Hole 0 0 P 0 P 

Key: - 

A - Denotes absence of a feature. 
P - Denotes presence of a feature. 
0 - Denotes the presence or absence of a feature 
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Table 8. Grouping Anaysis: Vigilance Parameter:- 0.94 

Group 
No. 

PARTS 

24 4,6,9,10,11,12,13,14,24,25,26,39,41,42,44,45,46, 
48,50,52,53,54,59,60,61,65,66,68,70 

26 7,8,18,21,27,67 

29 17,28 

30 1,2,8,15,22,23,32,33,34,35,36,40,43,49,57,58,69 

39 19,20 

51 16,29,30,37,38,62,63,64 

66 31,51,56 
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Table 9. Grouping Analysis: Vigilance Parameter:- 0.94 

Group No. 24 26 29 30 39 51 66 

Geometric Features 

Straight Outside P OP P P 0 P 

Taper Outside 0 0 A P A 0 0 

Groove Outside 0 0 A 0 A 0 A 

Pulley 0 A A 0 A 0 A 

Circumferential Holes 0 A A A A A A 

Keyway Outside 0 0 A 0 A 0 0 

Threading Outside 0 0 A 0 A A 0 

Threading Inside 0 A 0 0 0 A 0 

Cross hole A 0 A 0 0 0 A 

Straight hole 0 OP OP 0 P 

Taper hole 0 A A 0 A A A 

Blind hole A 0 A 0 A A P 

Step Hole 0 A 0 0 A A A 

Hole 0 OP OP 0 P 

Key: - 
A - Denotes absence of a feature. 
P - Denotes presence of a feature. 
0 - Denotes either the presence or absence of a feature 

222 



Table 10. Grouping Anaysis: Vigilance Parameter:- 0.95 

Group 
No. 

PARTS 

8 36,44,45,46,58,65,68,69,70 

11 4,32,33,34,35,42,43,61 

20 2,8,9,10,11,12,13,14,15,24,25,26,38,50,52,53,54, 
59,60 

23 19,28 

35 23,48 

41 7,18,22 

55 1,3,6,39,40,49,55 

60 27,67 

64 29,30,37,62,63,64 

65 16,41,51 
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Table 11. Grouping Analysis: Vigilance Parameter:- 0.95 

Group No. 8 11 20 23 35 41 55 64 65 

Geometric Features 

Straight Outside P P P P P P P P P 

Taper Outside PO 0 A A 0 A P 0 

Groove Outside P A 0 A A A AO A 

Pulley 0 A A A A A A P A 

Circumferential Holes A AO AO AO A 0 

Keyway Outside A 0 A A A 0 0 0 A 

Threading Outside 0 AO A A 0 0 A 0 

Threading Inside 0 0 0 A A A 0 A A 

Cross hole A A 0 0 A 0 0 0 A 

Straight hole OP P P A 0 0 0 P 

Taper hole A 0 0 A A A 0 0 0 

Blind hole 0 A A A AO A 0 0 

Step Hole A P 0 A A A 0 0 0 

Hole O P P P A 000 P 

Key: - 
A - Denotes absence of a feature. 
P - Denotes presence of a feature. 
0 - Denotes either the presence or absence of a feature 
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Table 12. Grouping Anaysis: Vigilance Parameter:- 0.96 

Group 
No. 

PARTS 

9 23,48 

12 8,9,10,11,12,14,19,24,25,28,50 

15 4,13,15,32,33,34,35,45,46,49 

20 26,44,59,60,65,68 

40 29,37,62,63,64,70 

44 18,22 

49 36,43,54,69 

52 1,3,55 

53 16,30 

65 6,39,40,42 

68 27,67 
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Table 13. Grouping Analysis: Vigilance Parameter:- 0.96 

Group No. 9 12 15 20 40 44 49 52 53 65 68 

Geometric Features 

Straight Outside P PP P P P P P P P P 

Taper Outside A OP 0 P OP A A 0 0 

Groove Outside AO AO A A 0 A P A A 

Pulley A A A A P A 0 A A A A 

Circumferential Holes 0 0 A A A A A A A 0 A 

Keyway Outside A A A A 0 A A 0 A PO 
Threading Outside A A 0 0 A A 0 A A 0 0 

Threading Inside A 00 A 0 0 0 A A O A 

Cross hole A A A A 0 A A OP A A 

Straight hole A P P 0 0 0 0 0 P P A 

Taper hole A A 0 A A 0 0 A A A A 

Blind hole A A A A A 0 0 A A A A 

Step Hole A 00 A A 000 A P A 

Hole A P 0 0 0 P 0 0 P P A 

Key: - 
A - Denotes absence of a feature. 
P - Denotes presence of a feature. 
0 - Denotes either the absence or preence of a feature 
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Adaptive Resonance Theory 

Introduction 

This model was used for the proposed application to 

automatically classify parts into part families in a Group 

Technology manufacturing environment. Adaptive Resonance 

Theory is a mathematical model of a unsupervised neural 

network architecture. The network architecture is unique 

among all the existing paradigms. The architecture detects 

and remembers statistically predictive configuration of 

featural elements which are derived from all the input 

patterns. The main advantage in using ART is the scope of 

learning any kind of configuration of part families or other 

patterns. In ART2 the learned part patterns undergo 

self -organization and self -stabilization as training 

progresses. 

Self -organization is said to have occurred when the 

network classifies the input part patterns into different 

part families automatically without external help. This 

process of self -organization avoids the use of a teacher to 

decide the size of the part family. 

Self -stabilization is said to have occurred when the 

learned history is not washed away by the more recent 

learning. This is true even if the inputs are presented in 

any arbitrary order and in any arbitrary complexity. The 

search strategies are dynamically modified and updated as 
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new part patterns are learned. The learned part patterns 

result in the formation of critical feature patterns for 

each individual part family in the network. The critical 

feature patterns are concepts which the network develops and 

cannot be accessed by the user. 

ART2 Methodology and Working 

Within ART multiple interacting memory mechanisms are 

employed to monitor and adaptively react to the novelty of 

part patterns or process familiar and unfamiliar part 

patterns. Familiar events are processed by an attentional 

subsystem. This system establishes more precise internal 

representation of familiar part patterns. The attentional 

subsystem by itself is unable to simultaneously maintain 

stable representation of familiar part patterns and to 

create new part families for novel or unfamiliar part 

patterns. The attentional subsystem comprises the whole 

system excluding the orienting mechanism. 

The second subsystem is an orienting subsystem that 

resets the attentional subsystem when a unfamiliar part 

pattern is encountered by the network. The orienting 

subsystem is capable of identifying whether a new part 

pattern is familiar and well represented by an existing part 

family or is unfamiliar and in need of a new part family. 
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The Attentional subsystem consists of the following 

components. 

1) Node 1 

2) Node 2 

3) Attentional Gain Control 

4) Attentional Priming 

Node 1 and Node 2 consists of processing elements or 

"feature detectors". Node 1 and node 2 are interconnected 

fully from every processing element in node 1 to each 

element in node 2. These interconnections are named the 

Long Term Memory (LTM) traces. There also exists two types 

of memory in an ART2 architecture, as in human beings. The 

Short Term Memory (STM) is the temporary memory which maps 

the input pattern to the nodes. The Long Term Memory (LTM) 

is the memory in the system resulting from past learning. 

The orienting subsystem has no further sub -classification. 

The Attentional Priming mechanism primes or sensitizes 

the input node to receive a bottom -up input pattern. This 

bottom -up input is the input pattern to the network. The 

bottom -up input part pattern is compared with the expected 

part pattern created by the network. The attentional gain 

control mechanism is a test system which enables the network 

to distinguish between top -down and bottom -up part patterns. 
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ART2 Working 

The working of ART2 can be explained by following a 

step by step procedure on the flow chart and schematic given 

in the following pages. The flow chart is arranged in an 

hierarchy of two levels. The first level (see Figure 10(a) 

and Figure 10(b)) outlines the working of ART2. This level 

explains the overall working of ART2. 

The second level explodes and explains each step in 

level 1 in a systematic and logical fashion. In this 

section each step will be explained in detail and a 

reference will be made to the flowchart for better 

understanding. Now a description of all the steps under 

level 2 will be given. 

Step 1: 

The input to the network is a file of parts coded as 

binary matrices. Refer to Figure 11(a) and 11(b). Let a 

typical binary matrices be named BM. The binary matrix 

impinges on the processing elements of node 1 which is part 

of an attentional subsystem as described above. The input 

pattern BM as it impinges on the node 1 is passed through an 

output function of each unit. The propagation and 

activation rule are responsible for achieving this output. 

The output pattern obtained as a result is an activation 

pattern across node 1. Let the pattern of activation be 

termed PAn as shown in the Figure 10(a). The pattern 
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LEARN TOP -DOWN 
TEMPLATE "PVn". 

Stepl 

Step 2 

Step 

NO 

SET n= 

THE INPUT PART BINARY MATRIX (BM) 

AT THE INPUT TO NODE 1 PRODUCES 
OUTPUT PATTERN "PSn" AT THE OUTPUT 
OF NODE 1. "BM"-> "PAn" -> "PSn" 

THE PATTERN "PSn" PRODUCES PRODUCES 
PATTERN "PUn" AT THE OUTPUT OF NODE 2. 

"PSn" -> "PTn" -> "PYn" -> "PUn" 

THE PAMRN "PUn" PRODUCES PATTERN "PVn" 
AT THE INPUT OF NODE 1. "PUn" -> "PVn" 

IS THERE IS "SIGNIFICANT" MISMATCH BETWEEN 
"BM" AND "PVn" AS INDICATED BY THE 

VIGILANCE PARAMETER 

PART FAMILY DENOTED 
BY THE PROCESSING 

ELEMENT PEn SELECThD ON 
THE nth TRIAL. 

EXIT 

YES 

"ORIENTING MECHANSIM" ENGAGED 

INHIBIT THE PEn WITH THE HIGHEST 
ACTIVITY IN NODE 2 

REMOVAL OF PATTERN "PYn", "PUn" 
AND "PVn" IN MENTIONED SEQUENCE 

REMOVAL OF PATTERN "PVn" TERMINATES 
THE MATCHING BETWEEN "PVn" AND "BM" 

ENDURING INHIBITION OF PEj IN NODE 2 

= n + 1 

Step 4 

Step 5 

Figure 11(a). ART2 - METHODOLOGY, Level 1 
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INPUT FROM INPUT FILE 

THE INPUT PATTERN 
INPUT OF 

'BM" IMPINGES AT THE 
NODE 1 

THE PATTERN "BM" 
PATERN "PAn" OF ACTIVATION 

"BM" ---> 

GENERATES A STM 
ACROSS NODE 1 

"PAn" 

THE STM PATThRN "PAn" PROPAGATES PATTERN 
"PSn" AT THE OUTPUT OF NODE 1. 

"PAn" ---> "PSn" 

GO TO Step 2 

Figure 12(a). ART2 - METHODOLOGY, Level 2, Step 1 
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obtained is a STM pattern. Every input node has a pattern 

of activation. There is a threshold defined by the 

propagation rule for every processing element which does not 

allow patterns below a certain activation to propagate. The 

propagation function used is a sigmoid activation function. 

These patterns propagate to node 2. Thus as a result the 

pattern PAn results in a selective pattern PSn across the 

input node. 

Step 2: 

The pattern PSn traveling to node 2 is multiplied by 

the connection weight or the LTM trace. Refer to Figure 

12(a) and 12(b). This multiplied signal reaches node 2. 

This signal is added at all the processing elements in node 

2. The result of adding all the signals at node 2 generates 

the pattern PTn as the input of node 2. The transformation 

of pattern PSn to PTn is called an Adaptive Filter. The 

pattern PTn is now the input to node 2. At this node an 

interesting phenomenon takes place. The processing element 

which has the highest activation becomes more and more 

active. Also the elements next to it with lesser 

activations become more and more inhibited and as a result 

become less positive. This results in only one positive 

element in the output layer. This process is technically 

termed "Contrast Enhancement". The activation pattern 

obtained at the output of node 2 is termed PYn. The 

choosing of the element having the largest input is a 
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CONTINUED FROM STEP 1 

THE PATTERN "PSn" IS MULTIPLIED BY 
THE LTM TRACE BETWEEN NODE 1 AND NODE 2 

TO PRODUCE AN OUTPUT PATTERN "PTn" AT 
THE INPUT TO NODE 2. 

PSn ---> PTn 

THE COMPETITION AMONG NODE 2 PROCESSING 
ELEMENTS PRODUCES A PATTERN "PYn" AS THE 

STM OF NODE 2. 
PTn ---> PYn 

THE PATTERN "PYn" IN NODE 2 WHOSE ACTIVITY 
EXCEEDS THE THRESHOLD SPECIFIED WILL GENERATE 

A PArr1RN "PUn". 
PYn ---> PUn 

GO TO Step 3 

Figure 13(a). ART2 - METHODOLOGY, Level 2, Step 2 
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special case of the class of Adaptive Resonance Theory 

models. The part pattern PYn now stored in the short term 

memory (STM) of node 2. The STM contrast enhanced pattern 

PYn in node 2 propagates a pattern down to the node 1. This 

top -down pattern is termed PUn. Activities above the 

threshold generate a pattern PUn. 

Step 3: 

The pattern PUn is multiplied by the connections 

between node 1 and node 2. Refer to Figure 13(a) and 13(b). 

These are also termed the LTM traces. The multiplied 

signals are now at node 1. The multiplied and summed input 

signal node 1 generates a pattern PVn at the input of node 

1. The pattern PVn is also an adaptive filter. The pattern 

PVn is known as the top -down template or "Learned 

Expectation" because this pattern is obtained as a result of 

the bottom -up original part pattern. The node 1 is now 

acted upon by two patterns. One pattern is BM which is the 

original input to the network and which resulted in the STM 

pattern PAn at node 1, and the pattern PVn. The second 

pattern PVn is as a result of the pattern PYn at node 2. 

The two patterns BM and PVn now generate an entirely 

different pattern at node 1. Thus initially the input 

pattern resulted in the pattern PAn of STM across node 1. 

Now the combined effect of the two patterns causes a pattern 

PAn*. This pattern PAn* is different from pattern PAn. In 

a conceptual sense node 1 does a matching job. It tries to 

238 



CONTINUED FROM STEP 2 

PATTERN "PUn"THE MULTIPLIED BY THE 
LTM TRACES BETWEEN NODE 1 AND NODE 2 TO 
PRODUCE A PATTERN "PVn" AT THE INPUT OF 

NODE 1. PUn ---> PVn 

THE PATTERN "PVn" AND PAIrERN "BM" NOW 
IMPINGE ON NODE 1. 

GO TO Step 4 

Figure 14(a). ART2 - METHODOLOGY, Level 2, Step 3 
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match and compare PVn and BM. The amount of match or 

mismatch determines the future course of learning. The 

transformation of the pattern from PAn to PVn takes place at 

high speed. Conversely the LTM traces and the adaptive 

filters change their values very slowly. The second memory 

system now comes in use in deciding the future course of 

action of the system. This system is the orienting 

subsystem. The 

mechanism. The 

If the patterns 

the pattern PAn 

input pattern BM also excites the orienting 

pattern PAn of activation inhibits the same. 

BM and PVn do not match then this inhibits 

from node 1. The inhibition of the STM 

activity across node 1 causes the orienting mechanism to 

fire because of less inhibition. The degree of inhibition 

is indicated by the difference between the input pattern BM 

and the pattern PVn. The higher the mismatch the higher is 

the inhibition. 

Step 4: 

The inhibition of the STM activity causes the orienting 

system to become active and trigger a signal to node 2. 

Refer to Figure 14(a) and Figure 14(b). The signal is 

inhibitory in nature and selective and inhibits only the 

active nodes. In the special case the node with a positive 

output. This causes node 2 activity to be reset. This 

inhibition is long lasting to ensure that the same 

processing element is not selected again for the reinstated 

pattern. The inhibition of the STM activity leads to the 
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CONTINUED FROM STEP 3 

The inhibition of the STM pattern causes 
the removal of the inhibition from the 

orienting subsystem. 

The pattern "BM" also has an excitatory input 
to the orienting subsystem.The removal of the 

STM activation triggers the orienting mechanism to 
fire. 

The orienting mechanism fires a inhibitory signal 
to the processing elements in the output node. 

The result of this firing is the selective 
inhibition of the most positive activity in the 

output node. 

The inhibition of the pattern "PYn" results in 
the removal of the pattern "PVn" impinging 

on the input node. 

GO TO Srep 5 

Figure 15(a). ART2 - MgrDOLOGY, Level 2, Step 4 
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inhibition of the STM pattern PYn across node 2. This 

removes the template PVn across node 1. 

Step 5: 

This results in the stopping of the mismatch between 

PVn and BM. Refer to Figures 15(a) and 15(b). The 

inhibition of node 2 is long lasting. Now again the new 

pattern PAn* causes the creation of a new pattern PAn* 

across node 2. This pattern as described earlier causes the 

creation of the pattern PVn* across node 1. There is again 

a pattern matching as explained earlier. Node 2 which was 

aroused earlier cannot be aroused now due to the enduring 

inhibition. If there is a mismatch again at node 1 then the 

orienting subsystem is engaged again. 

Vigilance Level Tunes Categorical Coarseness: Disconfirming 

feedback 

First we need to define the vigilance parameter Q. 

Let IPOS1 denote the number of input pathways which receive 

positive inputs when the pattern BM is presented. Assume 

that each such input pathway sends an excitatory signal of 

fixed size E to the orienting mechanism 0 whenever BM is 

presented, so that the total excitatory input to 0 is 

EIPOS1. Assume that each input node whose activity becomes 

positive due to BM generates inhibitory signal of fixed size 

I to the orienting mechanism 0. Let INEG1 denote the number 

of active pathways from node 1 to the orienting mechanism 
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CONTINUED FROM STEP 4 

The result of the removal of the 
pattern "PVn" results in the termmination 
of the mismatch between "PVn" and "BM". 

The pattern "BM" is still being imposed at the 
at the input. 

The whole process from step 1 is repeated 
till the pattern "BM" finds it's part family. 

The inhibition from the orienting mechanism 
is long lasting and thus the processing element 
which was selected in the first iteration is not 
selected again till all of them are exhausted. 

GO TO Step 1 

Figure 16(a). ART2 - METHODOOGY, Level 2, Step 5 
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that are activated by the STM pattern PAn across node 1. 

The total inhibitory signal from node 1 to the orienting 

mechanism is IINEGI. 

When EIPOSI ?. IINEG1, the orienting subsystem receives 

a net excitatory signal and generates a non-specific reset 

signal to node 2. 

The quantity Q = E + I 

is called the vigilance parameter of the orienting 

subsystem. The STM reset is triggered when 

Q ?. IPOS1 + 1NEGI 

is prevented when 

Q IPOS1 + INEG1 

In short, the proportion IPOS1 + INEG1 of the input pattern 

BM which is matched by the top -down template to generate PX 

must exceed Q in order to prevent STM reset at node 2. 

While node 2 is inactive, IPOSI = INEGI. Activation of 

the orienting subsystem is always forbidden in this case to 

prevent an input I from resetting its correct node 2 code. 

This constraint is achieved if Q 1. 

that is Q I. 

In summary, a bad mismatch at node 1 causes a large 
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collapse of the activity of node 2, which leads to the 

activation of the orienting mechanism. 

Advantages of ART2 over supervised learning models 

In this section an attempt is made to compare ART2 to 

the popular supervised learning paradigms. 

1) Stability. 

Supervised learning paradigms become unstable as the 

input environment becomes complex. This means that the 

network never converges to a optimum value, instead it 

fluctuates around some arbitrary unpredictable value. An 

omniscient teacher has to decide if the network has learnt 

enough in response to an arbitrary input environment. 

Conversely ART2 paradigm learns without a teacher and 

accepts any arbitrary inputs. 

2) Exemplar or Prototypes: 

Within a supervised learning paradigm an expected or a 

template pattern is imposed on every trial by an external 

teacher. The errors are computed by comparing each 

component of the expected output with the actual output. 

This deficit deviods this paradigm the important 

characteristic of creating critical feature patterns. 
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ABSTRACT 

This thesis details the procedure for automatic 

classification of rotational parts into part families using 

an artificial neural network. The classification is based 

on geometric features and tolerances. The neural network 

paradigm employed belongs to a class of Adaptive Resonance 

Theory Models. The training of the network was done on a 

commercially available software package. 

The major conclusions that can be drawn from this 

research are: 1) The ART2 paradigm in neural networks is 

capable of automatically grouping parts into part families. 

2) The number of groups increased with an increase in 

vigilance of the system. The number of groups also 

decreased with a decrease in vigilance. 3) The order in 

which the parts are input to the system has no effect on the 

system performance. 

Thus the overall conclusion of this thesis is that 

neural networks are indeed an appropriate tool to 

automatically group rotational parts into part families. 


