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CHAPTER 1
INTRODUCTION
1.1 Introduction
This thesis details the procedure for automatic

classification of rotational parts into part families using
an artificial neural network. The classification is based
on geometric features and tolerances. The neural network
paradigm employed belongs to a class of Adaptive Resonance
Theory Models [15,16,17]. The training of the network was

done on a commercially available software package [8].

1.2 Group Technology

Group Technology is a technique used in the small and
medium batch manufacture of discrete components. A
reduction in the setup time, throughput time, and Work in
Process inventory are a few of many tangible advantages of
Group Technology. Small batches and a large variety of
components have prohibited the extensive use of automation.
The primary prerequisite for implementing Group Technology
is the grouping of parts into part families, and machines
into machine cells. Many grouping techniques have been
developed ranging from simple ocular techniques to complex
pattern recognition techniques. The most recent work on
part family groupings appear in the work of Ham et al. [44]
and Grum [37]. These and other techniques will be discussed

in Chapter 2.



There are several drawbacks to the existing grouping
techniques. A few important drawbacks are listed below:

1. These techniques are application dependent. This
means that separate algorithms have to be created for
specific application domains.

2. The coding and classification of parts is the most
time consuming process in implementing Group Technology.
All the popular classification schemes require complicated
coding procedures.

3. The number of groups into which the parts are to be
classified are predetermined by the user. This requires
expert knowledge of the company parts database.

4. A composite component must be created for every part
family formed. The composite may not always give the best
representation of a group.

5. Knowledge based classification techniques employ a
time consuming process of knowledge acquisition and coding.
The above stated drawbacks provided the impetus to

devise a classification scheme that would be free of the

same.

1.3 Neural Networks

Neural networks are simplified models of the human
brain, capable of learning, generalization, and abstraction.
They are suited for achieving human like performance in

fields such as speech processing, image cognition, machine



vision, autonomous navigation, and sensor processing. This
research is concerned with pattern recognition. Adaptive
Resonance Theory or ART2 is used as a pattern classifier in
the present research. ART2 is an unsupervised learning
paradigm and hence does not require a teacher to classify
parts. Parts are automatically classified into part
families based on geometric features and tolerances. The
input to the network is a coded binary matrix of geometrical
features and tolerances. The use of a simulated parallel
process speeds up the task of pattern recognition

considerably.

1.4 Advantages of the proposed approach

A few of the more important advantages of the proposed
technique are given below:

1. The use of parallel processing (neural networks)
speeds up the classification process.

2. The number of part families formed does not have to
be predetermined by the user.

3. A composite or a reference component is created
automatically within the system. This representative
component automatically updated as learning proceeds.

4, An algorithm need not be created for every new
application domain. That is, the system is application
independent.

5. The system pbssesses the ability to learn from past



experiences.

1.5 Outline of Chapters

The next Chapter contains a detailed history and
literature review of Group Technology. It also further
explains the inadequacies of the existing methods of part
family classification. A Literature review and the history
of neural networks is covered in Chapter 3. The proposed
technique and its advantages will be discussed in Chapter 4.
The results, conclusion and recommendations for future work

are given in Chapter 5.



Chapter 2

Group Technology

2.1 Introduction

In 1937, Sokolovski of Russialsuggested that parts of
similar features and configuration should be manufactured in
the same way by a standardized technological process [79].
The definition of Group Technology: "Group Technology is a
technique for manufacturing small to medium lot size batches
of parts of similar process, of somewhat dissimilar
materials, geometry, and size, which are produced in a
committed small cell of machines which have been grouped
together physically, specifically tooled, and scheduled as a
unit" [79].

Group Technology is applicable to small and medium
batch production. It endeavors to group together parts
which require similar machines and manufacturing operations.
The result is the formation of machine cells and part
families. A large number of parts may be grouped into a
smaller number of part families. A large number of machines
may be grouped into a smaller number of machine cells. The
application of Group Technology has many tangible and
intangible benefits. The tangible benefits are

quantifiable.



2.2 Advantages of Group Technology

Grouping in a manufacturing system enables the
production of parts more economically than would be possible
in a corresponding functional manufacturing facility. This
is because of the following advantages of Group Technology
over functional and job shop type manufacturing:
1) Group Technology simplifies the flow of parts and tools
since the managing task is simplified at the cell 1level due
to the reduction in the amount of information handled.
2) It reduces setup time, throughput time and work-in -
process inventory. The setup time is reduced for individual
parts. This is because a setup is not performed for each
individual component but for all the parts under a specific
group. The throughput time is reduced as a result of the
reduction in the cycle time of individual parts in a part
family. The work-in-process inventory is reduced because
parts are manufactured on a dedicated group of machines
which reduces cycle time, which in turn reduces
work-in-process inventory.
3) It maximizes design and manufacturing efficiencies of
parts, which are similar to those previously developed. The
grouping of parts and the formation of part families avoids
design duplication of new parts which are similar to the
existing parts. The process plans for similar parts will in
many cases be similar. This helps in solving process

planning problems.



2.3 Approaches to Group Technology

There are two main approaches to Group Technology
implementation. They are the classification approach and
the clustering approach [79]. The difference between the
classification and clustering approach is the criteria used
for forming part families or machine cells. In the
classification approach, parts are coded using numbers or
letters or a combination of both, based on a classification
system. Each number, letter or a combination represents a
specific attribute such as shape and dimension, material or
tolerance. In the clustering approach, clusters of parts
and machines are determined based on specific attributes
such as part design and routing information. The clustering
techniques use a clustering algorithm to cluster parts.
Most of the clustering techniques simultaneously form part
families and machine cells. There are a variety of
clustering and classification techniques available for

implementing Group Technology.

2.3.1 The classification approach

Classification is a technique to organize specific data
relating to the relevant component element(s) of a business
or an institution in a logical and systematic hierarchy. It
is an approach whereby like things are brought together by
virtue of their similarities, and then separated by their

essential differences [13].



Three rules must be adhered to strictly while applying
classification to any population of parts.
1) It must be all-embracing

The classification scheme must embrace all existing
parts in the database and must be able to accept necessary
new items into the defined population of items. There must
be scope to accommodate inclusions in the future.

2) It must be mutually exclusive

The classification must be such that all parts are
mutually exclusive. There must be one and only one place
for each item.

3) It must be based on permanent characteristics

The classification must be based upon visible
attributes or easily confirmed permanent and unchanging
characteristics of the parts.

Parts are coded using numbers or letters or a
combination of both, based on a classification system [11].
All parts are classified on the basis of one or more of the
following four characteristics:

1) The number and types of operations required.

2) The shape and dimensions of the parts.

3) The material of the part.

4) The tolerance requirement on the part.

Each part is assigned a ten-to thirty-digit code where each
digit represents a specific attribute of the part [11]. The

classification and coding schemes differ by the type of
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Figure 1(c). Hybrid Code.
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information provided by the above mentioned characteristics.
The part characteristics are coded using a variety of coding
formats. Since each manufacturing system warrants a
different classification criterion there are over 50
commercial classification and coding systems in operation
worldwide. Some of the popular schemes are BIRSCH, DCLASS,

TOYODA, MICLASS, TEKLA, OPITZ and NITMASH [11].

2.3.1.1 Coding formats

The coding format indicates the types of code and code
structure that is used to code parts. There are three types
of code formats. They are the hierarchical,
non-hierarchical, and hybrid code. The hybrid code, as
suggested by the name, is a combination of the hierarchical
and non-hierarchical codes.

1) Hierarchical code.

In the hierarchical code the meaning of any digit
depends upon its predecessor digits [11]. The coding
pattern follows a hierarchy as shown in Figure 1(a). The
presence of lines between digits indicates the existence of
a hierarchical relationship among the digits. The absence
of a line indicates the absence of a hierarchical
relationship.

The hierarchical code (monocode) permits a large volume

of information to be stored in a few digits [11].
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Table 1. Clustering Approaches [27]

METHOD COEF. SEQ* COM.+ LANGUAGE
I. DESIGN-ORIENTED APPROACH.
0 Multiobjective Clustering ] Y Y (M) FORTRAN
Analysis D N Y (S) BASIC
0 Matrix Formulation - - = =
o Dutta et al. Heuristic D N Y(=) =
II. PRODUCTION-ORIENTED APPROACH.
A. Array-Based Techniques:
o Rank Order Clustering . - N Y(-) -
Method (ROC) - N Y(-) -
o ROC2 Algorithm - N Y(-) -
o MODROC Algorithm s N Y (M) FORTRAN
o Direct Clustering Algorithm - N Y(=) -
o Jacobs’ Algorithm - b'4 Y(S) BASIC
o Modified Bond Energy Algorithm S Y Y(S) FORTRAN
0 Occupancy Value Method - N Y(-) =
B. Hierarchical Clustering:
o Single Linkage Method s N = 2
s,D N ¥Y(-)  CLUSTAN
S N = -
s N Y(S) BASIC
: s Y Y(-)  FORTRAN
o Average Linkage Method s N Y(=) -
o Complete Linkage Method S N =" =
s,D N Y(-) CLUSTAN
o Centroid Method s N = =
s,0 N Y(-)  CLUSTAN
o Median Method s,0 N Y(-) CLUSTAHN
S N - =
0 Ward’s Algorithm s,D N Y(=) CLUSTAN
o Lance & Williams Flexible S N - -
s,D N Y(=) CLUSTAN
o0 McQuitty’s Similarity Analysis S,D N Y(-) CLUSTAN
C. Non-hierarchical Clustering:
o Modified MacQueen’s Method D N Y (L) FORTRAHN
o A Divisive Procedure - N Y (=) - :
D. Mathematical Programming:
o Zero-One Integer - - - -
Programming S N Y(L) LINDO
o Dynamic Programming Based s Y Y (=) -
E. Graphic Theoretic Methods:
o R & B Algorithm s N Y(L)  FORTRAN
o De Witte’s Algorithm s Y - -
o Purcheck = 4 - - .
o V & R Algorithm - N Y(L) FORTRAN
o C & R Algorithm - N - =
F. Heuristic & Others:
o WUBC - N Y (=) -
o ICRMA s N Y (L) FORTRAN
o 0DC D N Y(=) -
o MACE : S N Y (M) FORTRAN
o Cluster Identification Algorithm - N Y (L) FORTRAN
o Cost Analysis Algorithm - N Y (L) FORTRAN
o Polyhedral Dynamics - N Y(-) -
o Mathematical Classification S N Y(-) -

* Considered operating sequence or not
+ L: Mainframe; M: Minicomputer; S: Microcomputer.

12
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2) Non-hierarchical code.

In the non-hierarchical code (polycode) the meaning of
each digit is independent of any other digit (see Figure
1(b)). This code requires a large number of digits to store
the required information, because each digit represents only
a small part of the total information.

3) Hybrid code.

The hybrid coding system combines the hierarchical and
non-hierarchical schemes as shown in Figure 1(c). The first
digit in the figure may or may not have a relationship with
the other digits as indicated by the line. In short, the

digits n-1 and n may or may not be related.

2:3:2 CIustering_Approagb

In the clustering approach, clusters of parts and
machines are determined based on design, manufacturing and
routing information. Diverse clustering algorithms have
been employed as an effective tool to solve the cell
formation problem (refer Table 1).

There are a myriad of clustering approaches. The two
most important ones are the design oriented and the
production oriented approaches. The design oriented
approach relies on the design information and design
characteristic of parts. The production oriented approach
is based on the routing information of parts. The two

approaches are discussed here.

13
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1) Design oriented approach.

The design oriented approach relies on the design
features of parts to perform the necessary analyses.
Grouping is done using part design information. The design
information can be taken from a part blueprint or a CAD
database. This approach ignores the routing and
manufacturing information of parts. Techniques range from
from the ocular approach to CAD driven or feature based
models [14,29].

2) The production oriented approach.

The production oriented approach uses routing
information to group parts into part families or machines
into machine cells. This method predominantly uses a Binary
Matrix called the Machine Component Matrix (MCM). The
Machine Component Matrix has either a 1 or a blank in every
cell. A 1 is entered in the cell C;; 1f the part j uses
machine-i. The created matrix has a 1 or a blank in every
cell (refer Figure 2(a)). The clustering techniques tries
to rearrange the columns and rows of a machine component
matrix according to an index until some diagonal blocks are
formed (refer Figure 2(b)). Every cluster in the Machine
Component Matrix represents a grouping in terms of part
families and machine cells. The cell entries for all values
of the i row and j™ column are x;; = 1 or X;; = 0 (shown as
a blank entry in the matrix). A hierarchical clustering

technique computes the similarity or dissimilarity between

15



each pair of parts or machines in order to produce a linkage

or a relationship diagram for final judgment.

2.3.2.1 Clustering Criteria

Clustering is based on the calculation of a similarity
or a dissimilarity index derived from binary or gray scale
data. A similarity coefficient is used to measure the
degree of similarity between parts or machines. The larger
the coefficient the higher the degree of similarity between
each pair of parts or machines. Conversely a dissimilarity
coefficient measures the degree of dissimilarity between
parts or machines. Most methods use the similarity

coefficient.

2.4 Literature review

El-Essaway and Torrance [29], McAuley [62],'Carrie
[18], Rajgopalan [68,69], 1976, De Witte [28], King [45],
King and Nakornchai [46], and many others have proposed
different approaches for cell formation in Group Technology
based on the concept of production flow analysis.
El-Essaway and Torrance [29] proposed component flow
analysis for machine component cell formation in Group
Technology [29]. Their paper presents a detailed analysis
of components which is used for flow analysis. The
components are analyzed for routing information and process

plans. The flow pattern of components between machines is

16



used as a criterion for grouping. The drawback of the
technique is that the formation of cells depends on
heuristics and judgment [29]. In the same vein McAuley [62]
used the technique of single linkage cluster analysis to
form groups of machines having mutually high similarity
coefficients. The difference was that machines are used as
a criterion rather than components. The method however
gives machine disjoint cells which are not compatible with
the real life situation [69]. A part may need to be
processed in more than one machine cell. A new approach was
suggested by Carrie [18)]. He applied a numerical taxonomy
to Group Technology and plant layout. A numerical taxonomy
is a method of analysis rather than a formula to be
executed. In this approach, selection of the minimum
cluster size or groups at a particular similarity level are
arbitrarily decided [18].

The use of similarity coefficients has numerous
drawbacks. Rajgopalan and Batra [69] proposed a graph
theoretic approach for the design of cellular production
systems. The selection of the threshold value for the
similarity coefficient was arbitrary and required a certain
amount of human judgment. De Witte [28] proposed the use of
three types of similarity coefficient in production flow
analysis. These coefficients showed the absolute relations
and mutual interdependence among the parts. The selection

of threshold values for these similarity coefficients is

17



arbitrary [14] and based on heuristics and human judgement.
Moreover, this approach requires categorization of machines
as primary, secondary and tertiary.

Algorithms developed by King [45] and King and
Nakornchai [46] are computationally straightforward and do
not use the concept of a similarity coefficient. On the
other hand, King's algorithms consider binary positional
weights (binary ranking) of the elements of the
machine-component matrix. The positional weights are
subject to variation if the position of matrix elements are
changed. Under a non-pure diagonal block structure of cell
formation, if these renumbered machines and components are
serially placed, King's algorithms may not always give the
minimal number of exceptional elements [62].

Thus the appraisal of the above mentioned methods
indicate that the use of similarity coefficients in Group
Technology have the following deficiencies.

1) They require almost arbitrary decisions.

2) They do not always give consistent results.

3) They do not always give the minimal number of
exceptional elements.

An attempt to develop an algorithm which would yield
the minimum number of exceptional elements was used by
Waghodekar and Sahu [78]. The method is named "The Machine
Component cell formation in Group Technology". This

approach does not use arbitrary selection of the threshold

18



value for the similarity coefficient. It provides three
outputs based on three different definitions of the
similarity coefficient. The three different definitions of
the similarity coefficient provides a cross check for
consistent results. This approach is computationally
straightforward and conceptually easy to understand.
However it also has its drawbacks in that it cannot alone
give foolproof solutions for all problems associated with
machine component cell formation. This is because the use
of three arbitrary similarity coefficient does not overcome
the deficiencies of previous methods as mentioned earlier.

Many heuristic and nonheuristic methods are in practice
for concurrent classification of parts and machines. An
algorithm for the concurrent formation of part families and
machine cells was advocated by M.P. Chandrashekharan and R.
Rajagopalan [26]. In most of these approaches the primary
input data is the machine component incidence matrix in
which the columns represent the components and the rows
represent machines. The Zero One Data: Ideal Seed Algorithm
for Clustering (ZODIAC) elicits the best block diagonal form
and computes its efficiency [26]. This enables the
comparison of the results with any other solution. The
drawback of this technique is that the choice of ideal seed
is arbitrary.

The use of heuristics and human judgement led to the

use of artificial intelligence to group parts into part

19



families and machines into machine cells. Andrew Kusiak
[52] developed an expert system which evaluated partial
solutions generated by a clustering algorithm and has an
impact on its search directions. This approach takes
advantage of the developments in expert systems and
optimization techniques. Two basic components of the
knowledge based system are the expert system and a heuristic
clustering algorithm. All of the above mentioned techniques
did not consider bottleneck machines and user specified
constraints.

Y. Lemoine and B. Mutel [55] proposed automatic
determination of production cells and part families based on
a dynamic cluster algorithm. The method takes into account
the capacity and the load of the machines and other user's
constraints if required. The main characteristic of this
method are:

1) It can analyze large data sets.

2) It takes into account past experience in the
initialization procedure.

3) It defines a partition in K cells depending on
constraints such as, similar machine tools and load capacity
of the machine.

4) It can test the stability of the result.

5) It does not consider the user's point of view in the
classification.

6) This method does not build hierarchical

20



classification and does not proceed by the exchange between
rows and columns of the Machine Component Matrix (MCM).

The concept of design of components by variational
geometry led to classification of components by variational
geometry. David C. Gossard and Vincent Lin described a
method to represent part families through variational
geometry. It used a single representation to describe the
entire family of geometries which share a generic shape. A
shape model of a three dimensional component is defined with
respect to a set of characteristic points. The positions of
the characteristic points are fixed by a set of nonlinear
algebraic equations which describe constraints imposed by
dimensions. A modified form of the Newton-Raphson method is
used to solve the set of constraint equations for the
geometry.

The present trend in manufacturing technology indicates
strong tendencies to integrate CAD/CAPP/CAM activities. It
should also be based on similarity of tooling and routings
of parts. These conditions require highly flexible Computer
Integrated Manufacturing (CIM) processes. An important
prerequisite for the realization of such an integrated
system is the organization of parts in the database. It
represents the basic information of parts, scheduling of
operations, production and quality control of parts. A part
identification number has been in use for a long period of

time for efficient database management. Usually the

21



information content of an identification number is very
limited and does not give information about the part
characteristics, relevant to the design, planning and pro-
duction of parts.

The part classification number contains coded
information about the geometrical and technological
information of parts. Grum and Pelenik [37] used the part
identifier and geometric primitives to classify parts by a
pattern recognition technique. The efficiency of the whole
procedure is based on the development of a potential
function and the coding of the part matrix.

The advantage of this approach is that it is not
necessary to develop a classification system with fixed
class numbers; the information for the classification is
extracted by the designer directly and put into a matrix
with black and white fields.

Inyong Ham et al. [44] published a working paper on an
automatic classification scheme based on a supervised
learning algorithm in neural networks. The network was used
for design data retrieval and classification. There are
several serious drawbacks of this neural network based
classification technique:

1) The word "Automatic Classification" is a misnomer in
Ham's work. This is because an omniscient user decides the
number of groups the parts should be grouped under which is

difficult in a real world situation.
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2) The use of a supervised learning paradigm like a
two-layer feed forward perceptron limits the number of
exemplars that can Be learned by the system. The network
architecture has to be configured for the specific
application.

3) The use of a new tool (neural networks) does not
indicate its superiority over existing techniques. Ham's
technique uses the concept of a potential function which is
widely used by other pattern recognition techniques today.
Moreover the development of a potential function is a time
consuming process. It also implies that Ham's approach is
not different from existing pattern recognition approaches.

4) Real time network models must do more than learn an
associative map. The paper by Ham et al. is solely based on
the principle of associative mapping. Real network models
must do more than store distributed codes for a. carefully
controlled environment.

5) The architecture of popular supervised learning
algorithms are often inadequate because they cannot
self-organize.

6) Learning models which cannot adaptively cope with
unpredictable changes in a complex input environment have an
unpromising future as models of the mind and brain. They
provide little hope for solving the outstanding problems in
engineering which are not already handled by traditional

methods of artificial intelligence.
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2.5 Conclusions

In the 1970's the techniques developed for Group
Technology were oriented around component flow analysis and
production flow analysis. The drawback of these methods was
that formation of cells depends on heuristics and personal
judgement. This is useful if used in conjunction with an
expert system which can deal with heuristic decision
making. Further, the application of numerical taxonomy is
not practicable for the classification problem because the
selection of the minimum cluster size at a particular
similarity level is arbitrary. This is not a analytical way
to group parts or machine cells. The graph theoretic
approach developed in the mid 1970's made use of the
similarity coefficient. The threshold value for the
similarity coefficient was again chosen arbitrarily and was
based on judgement. Toward the late 1980's, algorithms were
suggested for the concurrent formation of part families and
machine cells. Later artificial intelligence was
incorporated into this field and expert systems were used
to evaluate the partial solutions obtained from clustering
algorithms. Artificial intelligence techniques are based on
heuristics and are suitable only for a specific application.
Dynamic cluster algorithms were proposed to overcome this
drawback.

The concept of modeling through variational geometry
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Chapter 3

NEURAL NETWORKS

3.1 Introduction

Neural networks are an evolution of computing. At the
inception of mechanized computing, programming was done
using flip flop switches and plugging wires. With advances
in computer hardware and software, computing advanced to
machine code, assembly language and first generation
FORTRAN. As time went by, fifth generation languages and
tools such as LISP, Prolog, C++ and expert systems were
developed. Now neural networks are increasingly being used
because of their parallel processing capability. The
evolution of neural network dates back to the early 19%
century. The commercial success of neural networks was
realized only in the mid 1980's. Neural networks have been
employed for tasks ranging from simple pattern recognition
to complex explosive detection techniques at airline

terminals and navigation of an Autonomous Land Vehicle.

3.2 Literature review

Neural network technology is a subset of Parallel
Distributed Processing (PDP) Technology. Some of the
earliest roots of the PDP approach can be found in the work
of the neurologists, Jackson [42] and Luria [57]. Jackson

was a forceful and persuasive critic of the simplistic
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localizationist doctrines of the late nineteenth century
neurology, and he argued convincingly for distributed,
multilevel conceptions of multilevel processing systems.
Luria, the Russian psychologist and neurologist, put forward
the notation of the dynamic functional system. In his view,
every behavioral or cognitive process resulted from the
coordination of a large number of different components, each
roughly localized in different regions of the brain, but all
working together in dynamic interaction. A rough
characterization of the kind of parallel distributed
processing system of today is seen in their ideas.

Two other contributors to the deep background of PDP
were Hebb [38] and Lashley [54]. Hebb introduced the
concept of cell assemblies a concrete example of a limited
form of distributed processing and discussed the idea of
reverberation of activations within neural networks.
Lashley's contribution was to insist upon the idea of
distributed representation. Lashley insisted that "there
are no special cells reserved for special memories".

In the 1950's, there were two major figures whose ideas
have contributed to the development of their approach. One
was Rosenblatt [70,71] and the other was Selfridge [75]. In
his Principles of Neurodynamics [71], Rosenblatt articulated
clearly the concept of a neurally inspired approach to
computation and he developed the perceptron convergence

procedure, an improvement over the Hebb rule for changing
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synaptic connections. Rosenblatt's vision of the human
information processing system as a dynamic, interactive,
self-organizing system lies at the core of the PDP approach.
Selfridge's contribution was his insistence on the
importance of interactive processing, and the development of
Pandemonium, an explicit computational example of a dynamic,
interactive mechanism applied to computational problems in
perception.

In the late 1960's and 1970's, serial processing and
von Neumann computers dominated both psychology and
artificial intelligence. Grossberg's mathematical analysis
of the properties of neural networks led him to many
insights which other researchers have only come to
appreciate through extensive experience with computer
simulation. He deserves credit for seeing neurally inspired
mechanisms in many areas of perception and memory well
before the field was ready for these kinds of ideas.
Grossberg [35] was one of the first to analyze properties of
competitive learning mechanisms. Anderson's [3] work
differed from Grossberg's and insisted upon distributed
representation, and in showing the relevance of neurally
inspired models for theories of concept learning [4,5].
Anderson's work also played a crucial role in the
formulation of the cascade model [63,64], a step away from
serial processing down the road to PDP. Longuet-Higgins and

his group at Edinburgh were also pursuing distributed memory
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models during the same period. David Willshaw, a member of
the Edinburgh group, provided some very elegant mathematical
analysis of the properties of various distributed
representation schemes [80]. His insights provided one of
the sources for the idea of coarse coding. Many of the
contributions of Anderson, Willshaw, and other parallel
distributed processing modelers may be found in Hinton and
Anderson [39]. Others who have made important contributions
to learning in PDP models include Amari [2,3], Bienenstock,
Cooper, and Munro [12] , Fukushima [32,33], Kohonen [48,49],
and von der Malsburg [77].

Toward the middle of 1970s, the idea of parallel
distributed processing began to have something of a
renaissance in computational circles. The HEARSAY model of
speech understanding played a prominent role in the develop-
ment of neural networks. Unfortunately HEARSAY's
computational architecture was too demanding for the
available computational resources and so the model was not a
computational success. But its parallel interactive
character inspired the interactive activation model of
reasoning [72,73], and the interactive model of word
recognition [63,64].

The ideas represented in the interactive activation
model had other precursors as well. Morton's logogen model
[67], was one of the first to capture concretely the

principle of interaction of different sources of
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information, and Marlsen-Wilson [59] provides important
empirical demonstrations of interaction between different
levels of language processing. Levin's [73] Proteus model
demonstrated the virtues of activation-competition
mechanisms, and Glushko [73] helped display how
conspiracies of partial activations could account for
certain aspects of apparently rule-guided behavior.
Carpenter and Grossberg [15,16,17] developed the Adaptive
Resonance Theory Models (ART1, ART2) of Human Memory.
Grossberg proved the models with rigorous mathematical
analysis and proofs. Grossberg's work was truly the first
in the area of unsupervised learning. Kohonen [51] also
proposed a model of unsupervised learning. Research and
application has shown that the Kohonen models are biased in
favor of the winning element. Thus true classifications are
not possible to model. Conversely Carpenter and Grossberg
proposed the more practicable model. ART-1 accepts only
binary inputs and ART-2 accepts both binary as well as gray
scale. Moreover the ART models represents the human brain
model very closely. The concept of functional link nets was
introduced by Yoh-Han Pao [81]. His approach tries to use a
flat net to store representation. One of the advantages of
flat net is that both supervised and unsupervised learning
can be carried out using the same net architecture. This
facility avoids the need to shuffle the data in moving it

from one paradigm to the next. Neural networks have a high
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application potential in the manufacturing environment.
Specifically, research has been done in applying this
technology to process control, work flow control, and
inspection. In process control they are used for real time
monitoring of machining centers. The parameters monitored
are the tool condition, tool temperature, etc [19,32]. The
network can be trained to learn associations between
situations and the appropriate feedback or conclusions. 1In
the flow control application the network acts as a
communication device between the machines and the controls.
Here again the same property of association is used. Neural
networks work on the principle of parallel processing. This
characteristic is useful in the inspection task in defects
are simultaneously detected and causes determined.
Inspection can also be possible in real time by continuous
monitoring. There have been no known applications of ART2

to manufacturing in the existing literature.

3.3 Neural Networks Technology

Dr. Robert Hecht-Nielsen, the inventor of one of the
first neurocomputer defined a neural network as a computing
system made up of a number of simple, highly interconnected
processing elements, which process information by dynamic
state response to external inputs [20]. In its most basic
form, a serial computer is a single, central processor that

can address an array of memory locations. Data and
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instructions are stored in the memory locations. The
processor fetches the instruction and any data required by
the instruction, executes the instruction and saves any
results in the specified memory location. A serial system
(even a standard parallel one) is essentially sequential:
everything happens in a deterministic sequence of
operations. In contrast, a neural network is neither
sequential nor even necessarily deterministic. It has no
separate memory array for storing data. The processors that
make up a neural network are not highly complex central
processing elements. Instead a neural network is composed
of many simple processing elements that typically do little
more than take a weighted sum of all the inputs. The neural
network does not execute a sequence of instructions; it
responds, in parallel, to the inputs presented to it. The
result is not stored in a specific memory location, but
consists of the overall state of the network after it has
reached some equilibrium condition. Knowledge within a
network is not stored in a particular location. It is not
possible to look at a memory address to retrieve the current
value of any variable. Knowledge is more a function of the
network's architecture or structure than the contents of a
particular location.

Neural networks technology is a statistically based
mapping technique. It has been mathematically proven that

neural networks (of arbitrary complexity) can produce a
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continuous mapping from an n-dimensional space to an
m-dimensional space [21]. Examples include mapping from
historical loan application to loan profitability data, from
sonar signals to friend-or-foe identification, and from
video input to a pass/fail on an assembly line. Since
neural networks can produce these mapping without a human
having to analyze the data algorithmically. They are
economically appealing. Neural networks require a
statistically valid representation of the solution to the

problem.

3.4 Neural Network Architecture

The inspiration behind neural network architecture came
from studies of the mammalian brains, particularly the
cerebral cortex.

There are eight major aspects of a neural network
architecture [73].
1) A set of processing units.
2) A state of activation.
3) An output function for each unit.
4) A pattern of connectivity among processing elements.
5) A propagation rule for propagating patterns of activities
through the network of connectivity.
6) An activation rule for combining the inputs impinging on
a unit to produce a new level of activation for the unit.

7) A learning rule whereby patterns of connectivity are

32



was advocated in early 1983. The creation of a composite
component was also used to describe the entire family that
share a common shape. The introduction of artificial
intelligence techniques sparked a new way of looking at
problems. Methods based on heuristics were employed.
Pattern recognition was also investigated for this purpose.
Grum and Pelenik [44] introduced the concept of coding
features into a matrix. Ham et al. used a supervised
learning paradigm to perform component data retrieval and
grouping. Each of these methods has drawbacks which have

inspired this research.
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modified by experience.

8) An environment within which the system must operate.
Figure 3 illustrates the schematic representation of the
network functioning. The set of processing elements are
generally represented by circles.

At any instant each processing unit PE, (i =
1,2,3....n) has an activation value. This value is denoted
in Figure 3 by ACT; (t) corresponding to each processing
element. This activation value is passed through a function
f(ACT;) to produce an output value OUT;(t). The output
value can be seen as passing through a set of unidirectional
connections to other processing elements in the system.
Every connection has a weight or a strength associated with
it, denoted as WGT,;;, which determines the degree by which
the first unit will effect the second unit (] represents the
number of processing elements in the output layer). The
higher the connection weight, the stronger the effect.

All the connection ends impinging on a particular
processing element are then combined by an operator (usually
addition). Therefore the combined input to a unit is
z;(WGT”*OUTi(t)). This combined input to the unit along
with its current activation value is passed through a
function to determine the new activation value ACT;(t) of
the output processing element PE; (J =1,2,3....m). These
systems are viewed to be plastic in the sense that patterns

of interconnections are not fixed for all time; rather, the
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weights can undergo modification as a function of experience
[1]. In this way the system can evolve. What a unit might
represent after experience may be entirely different from
what it might represent at the beginning. Therefore the
system dynamically changes to perform in different ways.

The elements of a typical neural network architecture are
explained below.

1) A set of processing units.

Any parallel activation model begins with a set of
processing units or processing elements also known as
artificial neurons [73]. Specifying the set of processing
elements and what they represent is the first stage of
specifying a neural network model. 1In some models these
processing elements may represent conceptual objects such as
features, letters, words or concepts, or even feature
detectors; in others they are simply abstract elements for
which meaningful patterns can be defined. In this case it
is the pattern as a whole that is the meaningful level of
analysis. This can be contrasted to a one-one concept
representational system in which single processing elements
represent entire concepts or large entities.

The processing elements in all the layers are ordered
arbitrarily. The if unit in the input layer is denoted by
PE;. The j, element in the output layer is denoted by PE; A
unit's job is to simply receive input from its neighbors and

to compute an output value as a function of the input it
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receives, which it sends to its neighbors. The system is
inherently parallel in that many processing elements can
carry out their computations at the same time. Within any
system to be modeled, three types of processing elements are
included: input, output and hidden. Input processing
elements receive inputs from sources external to the system
under study. These inputs may be either sensory inputs or
inputs from other parts of the processing system in which
the model is embedded. The output processing elements send
signals out of the system. The hidden processing elements
are those inputs and outputs which are constrained to be
within the system. They are not visible to the outside
environment or system. These hidden units are responsible
for storing features and knowledge in many supervised
learning paradigms. These hidden units also represent the
computational capability of the network. The next important
part of the architecture is the state of activation of the
network.

2) The state of activation.

In addition to the set of processing elements, the
representation of the state of the system at time t is
important. This is specified by a vector N, the number of
processing elements in the spectrum of real numbers. Thus
ACT, (t) represents the pattern of activation of the set of
pProcessing elements. Each element of the vector represents

the activation for one of the processing elements at time t.
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The activations of unit PE, at time t is designated as

ACT, (t). It 1is the pattern of activation of the set of
processing elements that captures what the system is
representing at any time. Different models make different
assumptions about the permissible activation values.
Activation values may be continuous or discrete. If they
are continuous they may be bounded or unbounded. TIf they
are discrete they usually take binary values. A digit 1
means that the unit is active, and a 0 means that the unit
is inactive.

3) Output of the processing elements.

Processing elements interact by transmitting signals to
their neighbors via the axon and the synapse. The strength
of each signal depends on the degree of activation of the
signal emitting unit. Associated with each input unit there
is an output function f(ACT;) which maps the current state
of activation ACT,(t) to an output signal OUT,(t). 1In some
of the models the output level is the same as the
activation level. 1In this case, function f(ACT;) is the
identity function, f(ACT,(x)) = x. More often x is some
sort of a threshold function, so that a unit has no effect
on the other unit unless its activation exceeds a certain
value. Sometimes the function f is assumed to be a
stochastic function in which the output of the unit depends
in a probabilistic fashion on its activation level.

4) The pattern of connectivity.
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Processing elements are connected to one another. The
pattern of connectivity determines what the system knows and
how it will respond to an input. In many cases each unit
provides an additive contribution to the input of the other
processing elements to which they are connected. 1In such a
case the total input to the unit is simply the weighted sum
of the separate inputs from each of the individual
processing elements. In this case the total pattern of
connectivity can be represented by merely specifying the
welghts for each of the connections of the system. A
positive input represents an excitatory input and a negative
input represents an inhibitory input. Some more complex
excitation/inhibition combination rules are required.

5) The rule of propagation.

There is a need for a rule which takes the output
vector and combines it with the connectivity matrices to
produce a net input for each type of input. There are two
types of connections in the connectivity matrix. Let TOT (i)
be the net input of type i to a unit, and TOT(e) be the net
input of type e to a unit. The propagation rule is
generally straightforward. The net excitatory input is
usually the weighted sum of the excitatory inputs to the

unit PEJ from unit PE: .

This is given by the vector product
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TOT (e),; = ZiWGT(e)ij*OUTi(t)

where

TOT(e);; = The total net excitatory input from unit
PE; to unit PE;.

WGT(e)ij = The excitatory weight of the connection from
unit PE, to unit PE;.

OUT;(t) = The output function of the unit PE; at time t.

Similarly the net inhibitory input is the weighted sum of

the inhibitory inputs to unit PE; from unit PE;, i.e.

TOT(i);; = L WGT(i),*0UT, (t)
where
'I'O'I‘(i)ij = The total net inhibitory input from unit PE; to
unit PE;.

WGT(J‘.)ij = The weight of the connection from unit PE. to
unit PEV

OUT,(t) = The output function of the unit PE; at time t.
6) Activation Rule.

A rule is needed whereby the net inputs of each type
impinging on a particular unit are combined with one another
and with the current state of the unit to produce a new
state of activation. We need a function which takes the
current activation of the units and the net vector TOT (e) or
TOT (i) for each different type of connection and produces a
new state of activation. If the function is an identity
function and if all the connections are of a similar type

the new state of activation can be represented by.
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ACT, (t+1) = % WGT;; = TOT(N)

where

TOT(N) = The net combined activation of the each unit.
In many real application situations the function F is a type
of a threshold function which allows the unit to contribute
only if the activation exceeds the threshold value.
7) Modifying patterns of connectivity as a function of
experience

Modifying the patterns of connectivity implies changing
the knowledge structure in a parallel distributed processing
system. There are principally three kinds of possible
modifications:
1) The development of new connections.
2) The loss of existing connections.
3) The change in strength of a connection that
already exists.
Very little work has been done on 1 and 2. 1 and 2 can
however be considered a special case of 3. Whenever we
change the strength of a connection away from 0 to some
positive value, it has the same effect as growing a new
connection. Whenever we change the strength of a
connection to 0, it has the same effect as losing an
existing connection. There are several rules to modify
connection strengths as a function of experience. Virtually
all supervised learning paradigms follow the Hebbian rule or

a variant of it.
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8) Representation of the environment:

It is crucial in the development of any model to have a
clear model of the environment in which this model is to
exist. Software that defines these aspects of neural
network architecture to generate a network and solve a
specific problem is called netware. The next section will
contrast neural network technology with conventional

computing technology.

3.5 Contrasting Neural Networks with Conventional Computing
A netware programmer does not specify an algorithm to
be executed by each processing element as a programmer of a
more traditional machine would. Instead the programmer
specifies the interconngctions, transfer functions, and
training laws of the network. The network programmer then
applies appropriate inputs to the network and lets it react.
If the netware is correctly written, the overall state of
the network after it has reacted to the input will be the
desired response pattern. 1In short, neural network
programming differs fundamentally from standard programming
techniques. Neural networks really are a completely
different way of looking at computer systems. Neural
networks do not execute programs as would a conventional
computer application. They react, self organize, learn and
forget. Why is there a need to build such odd systems?

Over the past two years, interest in neural networks has
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surged from a whisper to a roar. Why? Frequently,
traditional computing and conventional Artificial
Intelligence have found themselves on the rocks of
computationally explosive problems and unbounded searches.
They have run into the von Neumann bottleneck because many
problems are naturally parallel. Neural networks are good
at solving the kinds of problems people can solve easily.
They are also poor at solving the kinds of problems that
traditional computers do well. In general, neural networks
do not do well at precise numerical computations. On the
other hand this kind of computation is not a natural
application for people either. Neural networks can,
however, be taught to determine whether or not a wvisual
image of the face is that of a man or a woman, or recognize
a person's face, even with a different expression or hairdo.
The role of neural networks is to be a partner to
conventional computing systems, not a replacement for them.
The neurocomputers that have been introduced have mainly
been designed as co-processors working in conjunction with
other sequential computing systems. They are operated by
calling subroutines or procedures when a network application
is encountered.

The Feigenbaum bottleneck compounds even the
programmer's bottleneck not only must we wait for programs
to be written, but we must also wait as Knowledge Engineers

extract knowledge from domain experts. Recently researchers
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focussing their efforts on neural networks have produced
impressive results. Consequently, interest in the field has
increased exponentially. An unusual characteristic of
neural network is its interdisciplinary nature. Neural
networks conferences are attended by engineers,
neurophysiologists, psychologists, optical specialists, and
even philosophers. Such catholic interest reflects a
growing conviction in academia, government and industry that
neural networks are not just another computational
technique, but instead represent a major breakthrough a
fundamentally different mode of computation with major
advantages and wide applications.

It is easy to anthropomize neural networks beyond
rational justification but not even the most ambitious
advocates of neural networks are synthesizing human brain

functions.

3.6 Training Methodologies

A neural network can learn either under the supervised
training mode or unsupervised training mode. The particular
type of training mode to be used depends on the specific
application. For example, consider the task of
classification of parts into part families based on
geometric features and tolerances. The supervised training
mode is applicable if the number of groups into which the

parts are to be classified is known. Also the part database
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is assumed to remain the same without any changes in the
parts. 1In a real life situation these assumptions are not
valid. This is because the fixing of the number of groups
is an arbitrary choice. The parts database is bound to
change in this competitive and rapidly advancing world.
Thus a decision was made to use the unsupervised training

mode for the proposed application.

3.6.1 Supervised Training

A set of training pairs of patterns are required in
order to train a neural network with supervised training.
Each training pair consists of an input pattern and a
corresponding desired output pattern. During the training
period an input pattern is presented and the network
responds with some output pattern which may be different
from the expected output pattern. The difference between
the actual and the expected output pattern is called error.
This error is fed to a predetermined training algorithm
which modifies the network parameters to minimize the error.
The training continues until the error for all training
pairs is an acceptable value. The completion of the
training phase signals that the network is ready to perform
the desired function. 1In real life situations it is not
possible to have a prior knowledge of the desired output for
every input to the network. In such cases unsupervised

training is useful.
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3.6.2 Unsupervised Training

Unlike supervised training, the desired output for each
training input pattern is not required. Whenever an input
pattern is presented, the neural network does two things.
First, it will respond with a certain output. Secondly, it
will modify the network parameters so that the chance of
responding to similar input patterns is reinforced. Thus
the training process extracts the statistical properties of
the training set and groups similar input patterns or parts
into classes or families. This type of training is a
biologically more plausible training mechanism than the
other well known supervised training algorithms such as

backpropagation.

3.7 Characteristics of neural networks.

There are four salient features of neural networks that
make it an interesting technology for real world
applications. They are generalization, abstraction, speed

and multiprocessing.

3.7.1 Generalization

A frustrating characteristic of conventional computers
is the literal, precise inputs required to produce the
desired output. Neural networks can accommodate variations
in their input and still produce the correct output. For

example, a system trained to recognize printed letters did
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so even when noise corrupted 40% of the input characters
[33] That is, the system recognized letters despite never
having seen anything like them before much as humans
understand incomplete and partially incorrect input.
Studies show that most people can read text in which more
than half the letters are obliterated [33].

The real world rarely presents information with the
precision required by a computer program. Of course
conventional computers have been programmed to tolerate
noisy input, but the computational load often precludes
using these algorithms in practical applications. Neural
networks accomplish the needed generalizations by virtue of
their structure rather than through elaborate programming
(which tend to be application dependent). As such, neural
networks provide a far more naturél interface to the real

world a world including human users.

3.7.2 Abstraction

Neural networks can abstract the "ideal" from a non-
ideal training set. Such abstracting ability dates back to
Plato's Republic and the Platonic concept of ideals. How do
we determine that a given animal is a dog when every dog we
have seen is different? Do we have an internal model an
ideal dog to which we compare all instances?

3.7.3 Speed

One can view neural networks as associative memory,
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associating input patterns with desired output patterns.
When new patterns are presented to the input, associated
output patterns are produced at the output. In neural
networks the time required to produce outputs is independent
of the number of associations stored. Thus nothing
corresponds to a search time; the only time required is that
associated with network stabilization a constant in most
architectures. A given network storing ten million
associations is just as fast as one storing ten thousand.

Speed is achieved through multiprocessing.

3.7.4 Multiprocessing

Many computer architects feel that today's fastest
computers operate within a factor of 10 of a single
processor's theoretical speed limits. For this reason, a
major effort toward multiprocessing exists. The effort is
based on dividing problems into sub-problems, each of which
can be assigned to separate processors. Inherently, neural
networks schedule themselves, that is, each node can be
viewed as a processor operating on its inputs independently
of all other processors in the system. Thus while the
network converges to a solution, all processors are busy,
hence no expensive silicon remains idle. Furthermore
processors can be added in a modular fashion to suit problem

size without restructuring the systenm.
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3.8 8trengths of the PDP approach

The PDP approach offers a very distinctive counter
approach to conventional computing. It is an adaptive
system, continually trying to configure itself so as to
match the arriving data. It works automatically to adjust
its own parameters so as to accommodate the input presented
to it. It is a system that is flexible, yet rigid. That
is, although it is always trying to mirror the arriving
data, it does so by means of existing knowledge, existing
configurations. It never expects to make a perfect match,
but instead simply tries to get the best match possible at
any time. The closer the match the more stable the system.
The result is that although the system develops neither
rules of classifications nor generalizations, it acts as if
it had these rules. Thus, the system really mirrors
experience; the regularities of its operation results from
the regularities of the inputs and partially from the
interpretations of the beholder. It is a system that
exhibits intelligence and logic, yet has no explicit rules
of intelligence or logic. The way by which these systems
try to accommodate themselves to the data by minimizing the
energy or maximizing harmony results in preferred states or
interpretations, where the preferences reflect the
particular events the system has experienced. This leads to
categorization and classification of the input signals by

distance from the prototypes. It is a system which
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incorporates learning as a fundamental and essential aspect
of its behavior. It makes no attempt to make categories or
rules, yet it acts as if it were a prototype-matching or a
categorization system that has explicit rules and
strategies.

Neural networks can be arbitrarily categorized by
topology, neuron model and training algorithm. Figure 4
shows one method of classifying neural networks. There are
two main subdivisions of neural networks models:

1) Feedback

2) Feedforward

Feedback models can be constructed or trained. 1In a
constructed model the weight matrix is created by taking the
outer product of every input pattern vector with itself or
with an associated input, and adding up all the outer
products. After construction, a partial or inaccurate input
pattern can be presented to the network, and after a time
the network converges so that one of the original input
patterns is the result. Hopfield and BAM are two well known
constructed feedback models. The Hopfield network is a
self-organizing, associative memory network. It consists of
a single layer of neurons. This single layer acts both as
an input as well as an output. The neurons can only take
two values, -1 and +1. Hopfield networks can recognize
patterns by matching new inputs with the closest previously

stored pattern. These networks are used in applications
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requiring some form of content addressable memory. A
serious limitation of this network is the maximum number of
memories which caﬁ be stored. In addition the hardware
efficiency is poor. A variation of this is the Hamming
network. The Bidirectional Associative Memory (BAM) network
is a generalization of the Hamming network.

A trained feedback model like ART2 is much more
complicated because the adjustment of the weights affects
the signals as they move forward as well as backward. The
ART model is a complex trained feedback paradigm. It is
powerful but the number of patterns that can be stored is
limited by the number of processing elements in the storage
layer. No production application has been published to
date. ART2 is presently considered to be a research tool.

The second division of neural networks is the feed
forward category. The earliest neural network models were
linear feedforward. The linear associator uses the simple
delta rule. The system works very well if the maximum
number of patterns to be stored is 10-20% of the number of
neurons. There are two main types of training algorithms:
supervised and unsupervised. Supervised learning is the
most elementary form of adaptation. It requires prior
knowledge of what the results should be. During training
the network's output is compared to the ideal response, and
any error is used to correct the network. Unsupervised

learning differs in that it does not have specific
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corrections made by comparison to ideal results. Supervised
and unsupervised learning arelmethods which are mutually
exclusive.

Backpropagation is useful because it provides a
mathematical explanation for the dynamics of the learning
process. The biggest limitation is the size of the network.
A popular unsupervised feed-forward model is the Kohonen
model. The basic system is a one or two dimensional array
of threshold type logic units with short range lateral
connections between neighboring processing elements. The
neuron whose weight vector generates the largest dot-product
with the input vector is the winner and is permitted to
output. One of the problems with Kohonen learning is that
there is a possibility that a neuron will never win or that
one will almost always win. The weight vector gets stuck in
isolated regions. One of the ways out of this is to give
the neurons a conscience. If the neurons realize that they
are winning a lot, they will step out of the competition for
a while.

A special case of the feed-forward model is the
Neocognitron. The original model was unsupervised, but a
more recent model uses a teacher. After learning is
completed, the final Neocognitron system is capable of
recognizing handwritten numerals presented in any visual
field location, even with considerable distortion. The

major drawback of the Neocognitron is that it is highly
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specialized and requires a large number of neurons and

connections.

3.9 Weakness of the PDP approach

The Parallel Distributed Processing System has some
weaknesses. In part, it is hard to apply it exactly to many
of the difficult issues in study and research. In general
the closer to perception or to motor output, the easier it
is to apply. Thus there seems to be no question about its
application to pattern recognition, vision, speech
understanding, or categorization. The PDP models have the
power to generalize. But the complimentary skill of
keeping individual instances separate seems much harder.
Researchers worry, and say that PDP processing elements
cannot compute and analyze without variables. Aren't
variables necessary? How about thought? If a problem is
solved mentally a person has to postulate hypothetical
situations, evaluate them and make decisions. How does a
person compose music? Doesn't the person need to have
mental variables, symbols that he can manipulate? This is
the major deficiency of the PDP approach. Researchers argue
that this problem can be solved by having several levels of
the systems, each specialized in a specific domain. The PDP
system is fine for perception, categorization and motor
control. It is possibly the sort of system that models our

automatic, subconscious reasoning. But at this stage more
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research is required to handle problems of conscious,
deliberate thought, planning, and problem solving.

When it comes to learning it is frequently the case
that something has to watch over the operations and act as a
trainer. But this trainer is different from learning
mechanisms. It has to be able to evaluate the quality of
performance. How does this take place? What is this
second overseeing mechanism? And how did it get started?
How did the trainer know what task to train, and when. And
how did it acquire the knowledge of what is good performance
if it was a task the person had never performed before?
Even in the competitive learning mechanism where the
learning can take place without an overseer, evaluatory
mechanism, it is often advantageous to train the system by
careful presentation of the items that are to be classified.

The PDP system is highly parallel and very fast when
viewed at the level of computational operations. Conversely
it is highly serial and relatively slow when viewed at the
higher level of interpreting and analyzing the resulting
state changes in the system. This dual virtue is similar to
human cognition. People interpret the world rapidly,
effortlessly. But the developments of new ideas, or
evaluation of current thoughts proceeds slowly, serially and
deliberately. People seem to have at least two ﬁodes of
operation, one rapid, efficient, subconsciousness, the other

slow, serial and conscious. The problem, however, is that
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people can do multiple activities at the same time, some of
them quite unrelated to one another. So researchers say
that a PDP model of the entire human information processing
system is going to require multiple processing elements.
That is, the complete model requires that the brain consist
of several independent PDP-like systems, each of which can

only settle into a single state at a time.

3.10 The Future of Neural Networks

Neural networks are a rediscovered field experiencing
an explosive growth in research and application interest.
Algorithms and architecture proliferate. Claims and counter
claims fill the literature. Despite its longevity, neural
network theory and technology is rudimentary. There are
more questions than answers, as technical knowledge remains
narrowly disseminated. The situation resembles the Laser
when it was introduced. The laser had such unique
properties that many people felt it must be of immense
value. Nevertheless, even to develop a small percentage of
its commercial potential required nearly a decade. If this
analogy is valid, some time will pass before neural networks
find applications where their unique characteristics make
them the clear method of choice. Meanwhile all parties
researchers, commercial firms, and the press must understand
the risk of promising more than can be delivered. A few

industrial and military applications have been found.
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Researchers and industry experts foresee an explosive growth
in the use of neurocomputers in image and signal processing,
recognition, and expert systems for financial, medicai, and
scientific uses. Industrial use would include quality
control and process control. In the field of neurobiology,
neurobiologists use neurocomputers to model imbalances in
neuro transmitters and thus seek explanations for
psychiatric disorders and the effects of psychoactive drugs.
Researchers at a Pharmaceutical company are using neuro-
computers to screen tertiary structures of proteins so that
potentially useful structures can be found and synthesized.
Neurocomputers and conventional computers will have a
continued symbiotic association. At present it is a host-
resident relationship, but in the future it mighf result in
shared processing in Database Management Systems (DMS) .
Patterns of information could be more easily found by
neurocomputers than conventional computers. This could be
of use inlscientific literature databases, medical record
systems, and of course numerous government databases.
Another example of cooperation between the two types of
computers is a true electronic secretary: a neurocomputer
which recognizes speech and uses a conventional word
processing program to format, spell check and so forth. At
an even higher level one can envisage a master operating
system which determines which kind of computer is most

appropriate for the task at hand.
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Chapter 4

The Proposed Approach

4.1 Introduction

This thesis uses neural networks to automatically
classify rotational parts into part families. Adaptive
Resonance Theory (ART2) was used as a pattern classifier. A
simulation experiment was performed on seventy different
rotational parts to verify the applicability of neural
networks to the part family formation problem. The results
were encouraging and showed promise of application in the

real world domain.

4.2 Problem Statement

The task is to use neural networks (ART2) to classify
parts into part families based on geometrical features and
tolerances. The problem can be subdivided into three sub-
statements.
1) The system must be able to classify a given set of parts
into a set of part families.
2) Whenever a new part enters a system, the system must be
able to classify the part as belonging to an existing part
family.
3) The classification system must be able to classify novel

parts into a new part family.
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4.3 Proposed Technique

The proposed technique uses an unsupervised neural
network paradigm (ART2) to classify rotational parts into
part families. Information on geometric features and
tolerances is used as a classification criterion. The
proposed technique was tested with a hypothetical set of 70
parts. Refer to Appendix A for sketches of these
components. The broad objective of this thesis was to prove
the applicability of neural networks in general, and ART2 in
particular to the classification problem. The
classification procedure will be explained later in this

chapter.

4.4 Introduction to ART2

The Adaptive Resonance Theory (ART2) model is used for
the proposed application to automatically classify parts
into part families in a Group Technology manufacturing
environment. Adaptive Resonance Theory is a mathematical
model of an unsupervised neural network architecture. The
network architecture is unique among existing paradigms.
The architecture detects and remembers statistically
predictive configurations of featural elements which are
derived from the input part patterns. The main advantage in
using ART is the scope of learning any kind of configuration
of part families or other patterns. In ART2 the learned

part patterns undergo self-organization and
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self-stabilization as training progresses.

Self-organization is said to have occurred when the
network classifies the input part patterns into different
part families automatically without external help. This
process of self-organization avoids the use of a teacher to
decide the size of the part family.

Self-stabilization is said to have occurred when the
learned history is not washed away by the more recent
learning. This is true even if the inputs are presented in
any arbitrary order and in any arbitrary complexity. The
search strategies are dynamically modified and updated as
new part patterns are learned. The learned part patterns
result in the formation of critical feature patterns for
each individual part family in the network. The critical
feature patterns are concepts which the network develops and
cannot be physically accessed by the user. The methodology

and working of ART2 are given in Appendix F.

4.5 Justification for using the ART2 Paradigm

Several neural network models offer themselves to the
classification task. There were broadly two training
strategies which were investigated during the course of this
research. They are the supervised and unsupervised training
strategies. 1In the supervised training mode three types of
network architectures were examined. They were the

back-propagation, bidirectional associative memory and
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counter propagation. It was found that these network
architectures do not permit any arbitrary pattern as an
input. Moreover the very purpose of automatic
classification is defeated if an expected output is
provided. The creation of a representative part was a
determining factor in deciding the number of groups in which
the network would classify the parts. Several unsupervised
training paradigms and network architectures were explored
for the proposed application. The paradigms investigated
were the Kohonen Feature Map, the Adaptive Resonance

Theory - 1 and Adaptive Resonance Theory - 2. The Kohonen
Feature Map was said to provide good results in pattern
recognition literature [47,48,49,50,51]. The proposed
classification when performed with a Kohonen feature
resulted in a very large single group of parts. It was
found on furthep study that the drawback of the Kohonen
Feature Map is the bias or tendency of the network to
classify all parts under the first group formed. This
results in a very small number of groups to be formed for a
very large number of parts. The Adaptive Resonance Theory -
1 was experimented with next. ART1 accepts strictly binary
inputs. The experiment did not provide the right results.

It was later found that ART1 is not yet modeled perfectly
and therefore gives erratic results. The ART2 paradigm gave
good results and was used as a classification tool. ART2

accepts gray scale inputs ranging from 0.0 to 1.0. The next
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section will enumerate the salient features of ART2.

4.6 Properties of ART2

There are four important properties of ART2. Each
property is necessary in understanding the working of the
proposed application. The four subsections below will

explain them.

4.6.1 Critical feature patterns

Part pattern context enters the definition so that
input features which are treated as irrelevant noise when
they are embedded in a given input pattern may be treated as
informative signals when they are embedded in a different
input pattern. The systems learning history must also enter
the classification criteria. This is necessary sincé,
portions of an input pattern which are treated as noise when
they perturb the system at one stage of its self-
organization may be treated as signals when they perturb the
system at a different stage in its self-organization. The
proposed system automatically self-scales its computational
units to embody context and learning dependent definitions
of signal and noise. The critical feature patterns of the
parts are the computational units of the code learning
process. The term critical features indicate that not all
features are treated as signals by the system. The learned

units are patterns of critical features. This is because
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the perceptual context in which the features are embedded
influences which features will be treated as signals and
which will be processed as noise. Thus a part feature may
be a critical feature in one pattern and an irrelevant noise

element in a different pattern.

4.6.2 Self-adjusted Memory Search

In the proposed application the knowledge structure
evolves due to learning. A search algorithm is needed to
classify the parts into an existing or a new part family.
It is impossible for a prewired search algorithm to maintain
its efficiency as the knowledge structure evolves due to
learning. A search order that is optimal in one knowledge
domain may become extremely inefficient as the knowledge
domain becomes more complex due to learning. The ART2
system is capable of parallel memory search that adaptively
maintains its search order to maintain efficiency as part
learning progresses. The self-adjusted search mechanism is
part of the network design whereby the learning process
self-stabilizes by engaging the orienting mechanism. None
of these mechanisms is akin to the rules of the serial
computer program. Once the ART2 architecture is developed,
a little randomness in the initial values of its memory
traces, rather than a carefully wired search tree, enables
the search to continue until the recognition code self-

stabilizes.
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4.6.3 Direct Access to Learned Codes

One of the most important features of the proposed
approach is the rapidity with which familiar part patterns
can be recognized. The existence of many learned part
patterns for alternative experiences does not necessarily
interfere with rapid recognition of familiar part patterns.
This type of rapid recognition is difficult to implement
using models wherein trees or other serial algorithms must
be searched for longer and longer periods as learned
recognition codes become larger and larger. 1In the proposed
approach, as the recognition codes of the part patterns
become globally self-consistent and predictively accurate,
the search mechanism is automatically disengaged. Familiar
input part patterns directly access their learned code or
part family no matter how large and complex the learned
codes may become. The critical feature patterns act as a
prototype for the entire part family. Unfamiliar part
patterns which cannot stably access a learned category
engage the self-adjusting search process in order to
discover a new network substrate for a new part family.
After this new part pattern is learned, the search process

is directly disengaged and direct access ensues.

4.6.4 Attentional vigilance
As mentioned earlier the ART2 system self-organizes its

recognition codes. The environment can also modulate the
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learning process and thereby carry out a teaching role.

This teaching role allows a system with a fixed set of
representative parts or critical features to function
successfully in an environment which imposes variable
performance demands. In our case the environment may demand
either a coarse or a fine discrimination to be made among
the same set of part patterns. This environment is the cost
analysis which would dictate the number of groups that could
be formed. The system becomes more vigilant and forms finer
categories as the value of the vigilance parameter is
increased and vice versa. The ability of a vigilance
parameter to alter the course of a pattern recognition
illustrates a theme that is common to a variety of neural

processes.

4.7 Advantages of ART2

The heart of the proposed approach was the Adaptive
Resonance Theory Model (ART2) developed by Stephen Grossberg
(1988). This network architecture self-stabilizes and
self-organizes in response to a stream of input patterns.
Self-organization is said to have occurred when the network
classifies the input part patterns automatically without the
help of a teacher. This unique feature of self-organization
avoids the need to employ an omniscient teacher to decide
the size of the part family. Self-stabilization occurs when

prior learning is not washed away by more recent learning.
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In the case of other architectures, learning becomes
unstable due to simple changes in the input environment.
Changes in the probability of inputs or deterministic
sequencing of inputs can also affect the network.

The learning system in an ART2 architecture is designed
to remain plastic in response to significant new input part
patterns. It also simultaneously remains stable in response
to previously learned part patterns. The characteristic of
self-organization is central to the classification process.

The ART2 system generates recognition codes adaptively
and without a teacher, in response to a series of input part
patterns. As learning proceeds, the interaction between the
inputs and the systems generate new steady states, or
equilibrium points. The steady states are formed as the
system discovers and learns the critical features of part
patterns. These critical feature patterns of parts or
prototypes represent invariant features in the set of all
experienced inputs. The ART2 system is sensitive to
novelty. It is capable of distinguishing between familiar
and unfamiliar part patterns without a teacher.

Multiple interacting memory systems are needed to
monitor and react adaptively to the novelty of events
without an external teacher. Within ART2, interactions
between two functionally complementary subsystems are used
to process familiar and unfamiliar events. Familiar part

patterns are processed within an attentional subsystem. The
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attentional subsystem continues to develop more precise
internal representation of responses to familiar part
patterns. As described above the attentional subsystem is
incapable of simultaneously maintaining stable
representation of familiar categories and also creation of
new part families for unfamiliar part patterns.

An isolated subsystem can become too rigid for creating
new families for unfamiliar part patterns or conversely it
might also become unstable and would ceaselessly recode the
categories for familiar part patterns. The second subsysten
is an orienting subsystem that resets the attentional
subsystem when an unfamiliar part pattern is presented to
the system. Interaction between the attentional and
orienting subsystem helps to express whether a novel part
pattern is familiar and well represented by an existing
recognition code, or is unfamiliar and in need of a new

recognition code.

4.8 Classification Procedure

The procedure consists of five steps. To begin, the
parts are coded into a binary matrix for input to the
network. The network parameters are then tuned and set.
This involves observing the specific effect of each of the
network parameters. Once the network parameters have been
set, simulation runs are made. The results of the

simulation are obtained in a separate output file. The
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One lure of neural networks research is that the field
is still in its infancy. Time will tell whether the
enthusiasm is justified. As the network and their learning
rules become more sophisticated, other fields will exploit

the technology to improve information processing.
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results are evaluated and conclusions presented to support
the validity of the proposed approach. Each one of these

steps is a detailed procedure which requires explanation.

4.8.1 Coding of The Binary Matrix

The binary matrix is the input to the network. The
matrix is coded manually by the user. The idea of creating
the binary matrix was taken from Grum and Pelenik [37].
They introduced the concept of part representation by a
unique matrix, where each cell represents a specific
feature. The binary matrix was coded from a reference
matrix of geometric primitives (refer to Figure 5). Every
cell in the reference matrix represents a particular
geometrical feature like a hole, taper or a threaded
feature. The reference matrix contains information on the
following geometrical primitives.
1) Basic outside geometrical features
2) Auxiliary outside geometrical features
3) Basic inside geometrical features
4) Auxiliary inside geometrical features
5) Geometrical features on flat surfaces
6) Auxiliary bores with or without threads
7) Dimension and accuracy
In the proposed approach the part information is coded into
the binary matrix by using the reference matrix developed by

Grum and Pelenik [37] as explained above. The coding
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procedure is a manual process. The user looks at the part
blue print or in this case the component sketch. The
reference matrix is next observed. A cell entry of 1 is
made in the binary matrix wherever a feature on the part is
indicated by a specific cell in the reference matrix. For
example consider part 6 (see Figure 6). The part has a
step. A step feature is indicated in the reference matrix
by cell C,,. Thus the binary matrix has cell entry of 1 in
cell C,,. A chamfer is indicated by cell C, in the
reference matrix. The binary input part pattern has cell
entry 1 in cell Cy,. The specific type of step is
represented by cell Cj,. Thus the binary matrix has cell
entry 1 in cell C,. A step hole is given by cell Cgz in the
reference matrix. Thus the binary matrix has a cell entry 1
in cell Cg. Internal threading is indicated by cell Cy in
the reference matrix. Thus the binary matrix has a cell
entry 1 in cell Cyes- The part has circumferential holes and
is indicated in the reference matrix by cell Cg. Thus the
binary matrix has a cell entry of 1. The part is less than
5" in length. This is indicated in the reference matrix by
cell C,, in the reference as well as the binary matrix. The
specific type of internal step is indicated by cell C. in
the reference as well as the binary matrix. The tolerance
on the part is less than +- 0.001". This is indicated by
the cell C, in the reference and the binary matrix.

Similarly the remaining part features are coded and the
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binary matrix is completely coded.

Seventy binary matrices, one for each component, were
created and stored in an input ASCIT file. The matrix has
to be created in an ASCII file in order for it to be
compatible with ANSim [8]. The input sample file of six
parts is as shown in Appendix C. Once the input binary
matrices are created the next step is to construct and

specify the network parameters.

4.8.2 Network definition

Network definition specifies and define the
architecture of the network. This definition is stored and
defined in a network definition file as shown in Appendix B.
There are two issues to be addressed under this section.

The first is that the network architecture has to be
specified. The second is that £he parameters which control
the network function have to be tuned and fixed. An example
problem will be used to demonstrate this step.

The number of processing elements in node 1 has to be
of the same size as that of the input binary matrix. In the
example problem the input node is a 10 x 10 array of
processing elements, i.e. 100 processing elements. The
number of processing elements in the output layer represents
the number of part families formed by the network. 1In the
example problem the output node is a 10 x 7 matrix, i.e. 70

processing elements.
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Many parameters have to be tuned in order to train the
network successfully. ART2 is sensitive to a combination of
parameters such that degraded performance or instabilities
can arise. Therefore tuning ART2 by progressive adjustment
of these parameters controls the functioning of the network.
1) Vigilance Parameter

This parameter gives the degree of specificity in
distinguishing part patterns. Higher vigilance will
discriminate part patterns more specifically than with lower
vigilance values. It can take values ranging from 0.1 to
0.99. It was concluded from experiments that a vigilance
value below 0.90 and above 0.96 had no effect on the
classification. This means that the number of classes
formed remained a constant beyond the defined limits. The
example problem was tested withrfive values of vigilance to
observe its effect on the grouping. The values were 0.92,
0.93, 0.94, 0.95, 0.96.

2) The number of Learning Cycles

This gives the number of cycles during which the input
part pattern will persist. This parameter can be set to any
value greater than 1. It controls the time taken to train
the network. 1In the example problem this parameter was
fixed empirically by observing when a part is completely
learned by the network. This is determined when the
processing element in node 2 representing the part family

exceeds an activation value of 1. The parameter was fixed
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at 100 for the example problem.
3) Input Adjustment Gain

The Short Term Memory (STM) part pattern at the output
of node 1 is used to adjust the input part pattern "BM" as
it is presented at node 1 of the network. This parameter
determines the degree to which the input pattern "BM" is
adjusted by the STM pattern at node 1. The value ranges
from 0.0 to 1.0. A parameter value of 1 adjusts the input
pattern completely with the STM pattern. A value of 0
ignores the STM value. In the example problem a middle
value of 0.5 was used. This value was decided as a result
of several simulation runs.
4) STM Adjustment Gain

The STM pattern also is updated as the network
progressively learns the part patterns. There are two
factors that affect the STM updating or learning. They are
the input pattern "BM" and the Long Term Memory (LTM)
pattern. This parameter determines the degree to which the
STM pattern should be effected by the LTM pattern. The LTM
pattern is essentially the prediction of what the input
pattern should be. The STM Adjustment gain range is 0.0 to
1.0. The value of 1 equally weighs the input and LTM
pattern values when updating the STM pattern. A value of 1
equally weighs the input and LTM values when updating the
STM pattern. A value of 0 ignores or gives a zero weight to

the updating done by the LTM value. A large value makes the
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network insensitive to variation in the input part pattern.
This results in reducing the discriminating capability of
the network. A variety of STM values were investigated and
a value of 0.35 was fixed for the example problem.
5) Predicted Gain

During network training and learning the top down
pattern "PVn" is compared to the input pattern "BM". The
top down or recalled vector is represented by the LTM. The
difference between the input pattern "BM" and learned
pattern "PVn" is applied to update the resonating vector
between node 1 and node 2. A value of 1 applies the total
difference to the update. A setting of 0 makes the
resonating vector turn off LTM recall and reset mechanism.
The smaller the value of this gain parameter the slower the
rate of learning of the input pattern "BM". This was
concluded by conducting experiments with various values of
this parameter. The value of predicted gain was fixed at
0.5.
6) LTM Adjustment Gain

This parameter determines the learning rate of the Long
Term Memory (LTM) traces of the network. The learning rate
for the LTM traces is typically small as compared to that of
Short Term Memory (STM) traces. This parameter can take
values ranging from 0.0 to 1.0. The value 0 stops the LTM
learning process and a value 1.0 changes LTM traces at a

rapid pace resulting in a faster rate of learning. A value
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of 0.90 was first experimented with and then steadily
decreased till the network gained stability. The rapid rate
of change of the learning can destabilize the network by
preventing a select set of LTM traces to learn the pattern.
A low value of this parameter slows down the learning
process to a point where the time to train the network is on
the order of several days. This means that there is a
specific value for this parameter which determines the
optimum learning rate for the LTM. An experiment was
conducted at a value of 0.20 and the network stabilized
after three days. This parameter was fixed at 0.4.
7) Excitation Bias

This biasing parameter takes care of the noise
component in the input vector "BM". It is the level of
sensitivity to noise in the STM generated by the input. It
is used for non-specific normalization of the STM vectors.
It ranges from 0.0 to 1.0. The value investigated were 0.1,
0.50, 0.70, 0.001, 0.002, 0.004. The value of 0.004 was
selected since the noise was very low in the data.
8) Excitation Threshold

The activation function of a processing element can be
a sigmoid or any other function depending on the
application. The function employed for this application was
the sigmoid. The sigmoid function had an excitation
threshold above which the processing elements could fire.

The sigmoid may take on values ranging from 0.0001 to
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0.9999. It was found that if the threshold level was low
i.e. 0.01 or 0.08, the network did not learn meaningful
patterns. This is because the network tried to consider
every input from the part pattern that it experienced. A

value of 0.5 was selected for the example problem.

4.8.3 Run Simulation

Simulations were conducted on an IBM PC Compatible,
80386, 25mhz machine. The software used was ANSim
(Artificial Neural Network Simulation) from SAIC (Scientific
Applications International Corporation). The ASCII input
file of parts matrices was converted to ANSim compatible
format. This file was then presented to the ART2 network
with all the parameters discussed above. Each part was
presented to the network 100 times. The network was trained
at different vigilance values; 0.92, 0.93, 0.94, 0.95, 0.96.
The training time for each simulation was approximately 20
hours. The simulations resulted in outputs from the

networks, which gave the various part families.

4.8.4 Simulation Outputs

The output is printed to an ANSim file by the process
file option once the network was trained (refer Appendix D).
This option presents all the trained parts for 1-5
iterations to the already trained network. The result is an

output file containing all the part families or groupings.
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The output file is still in an unreadable ANSim format and
has to be converted to an ASCII file to analyze parts
grouping data. This procedure is carried out by using the
standard ANSim Convert utility. The ASCII output file is

scrutinized for the resulting group data.

4.8.5. Interpreting simulation outputs

The processing elements in the output node (Node 2) are
numbered 1 to 100 starting from the left extreme and
continuing down until the right bottom processing element.
For example, the cell C,; will be indicated by the number 8
and the processing element C;, will be denoted by the number
24. All the processing elements in the rest of the work
will be referred by this unique cell or part family
identifier.

Every input part pattern file generates an output file
aé a result of executing the process file option. The
output matrix indicates the part family for the specific
part. The first matrix titled "Input Vector n" (n =
1,2...70) is the input matrix and represents the original
inputs to the system. The matrix following this input
matrix is titled "Output Vector n" (n = 1,2...70). It is
seen that only one processing element in the output vector
is greater than 0, the rest are all 0. This unique positive
processing element is the part family or group number. This

matrix is of interest to the user in analyzing the
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groupings. It was observed that the magnitude of the
activation does not indicate a specific trend within or
outside the groups. This means that the magnitude did not
effect the way the network classified parts into groups.
Parts which activate the same part family identifier are
grouped under same part family. Consider for example the
output matrix of parts 58, 59 and 60 at a vigilance of 0.94
(refer to Figure 7 for the output matrix of parts). The
part family identifier for parts 59 and 60 is cell C,,.
This means that both these parts belonged to the same part
family C,,. Part 58 has a part family identifier Cyq-
4.9 Comparison of Proposed Approach with Grum and Pelenik
[37] Approach

There are many advantages of the proposed technique
over the technique proposed by Grum and Pelenik (see Figure
8). The Grum and Pelenik Approach will be explained first
and then compared and contrasted with the proposed
technique. The first step is the representation of the part
in a form suitable for input to the system. The geometric
matrix from which the parts are coded contains information
as discussed in the section 4.4.1. 1In correspondence with
this geometric matrix Grum and Pelenik described featural
elements on the parts with yes (black) or no (white). As a
code example refer to Figure 9. Classification in a part

family is carried out on the basis of pattern recognition.
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A vision system is used as a pattern recognition tool. For
this purpose, a matrix of geometric characteristics of all
the representatives of the part families are created and
named the reference or the reference matrices. These are
compéred with the given parts matrix that are to be
classified in a certain part family. The procedure is
conducted on the basis of a potential function. This
permits finding out the relative degree of similarity among
the parts that are to be classified into part families.

On comparing and contrasting Grum and Pelenik [37]
technique with the proposed technique, we see that:
1) The number of groups formed is not predetermined by the
user in the proposed technique. Grum and Pelenik used a
fixed number of representative part families which already
existed or were created by an omniscient user.
2) A potential function is the heart of Grum's procedure.
The potential function is the decision making aid to decide
whether a part belongs to a particular part family. The
proposed approach does not use the concept of a potential
function. The potential function is a time consuming
procedure. A canned formulae for a potential function may
not necessarily satisfy all the classification criteria.
The potential function is the decision making aid which
decides whether a part belongs to a particular part family.
3) A decision algorithm is not necessary to classify parts

by the proposed technique. A decision algorithm is the
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decision aid in Grum's work. Moreover the decision
algorithm has to be written for every new application
domain.

4) The coarseness/fineness of the groups can be controlled
by changing the vigilance parameter in the proposed
technique. Grum's technique cannot accommodate changes in
the size of the groups. This is because a new set of
reference components will have to be defined which is a time
consuming task.

5) The search time to determine the group or part family is
trivial due to the parallel search scheme in neural
networks. The search time in Grum's technique increases as
the parts database becomes more complex. This is true of
any prewired search algorithm.

6) The proposed technique can accommodate future inclusions
of a set of novel components without modifying the system.
In Grum's technique novel parts cannot be handled. This is
because the system is rigid and any inclusion would mean
reprogramming the system to accommodate the novel component.
7) The proposed system possesses learning capability and
reacts as a function of experience. Grum's technique does
not learn and hence the system is not updated automatically

and is not intelligent.

4.10 Comparison of proposed approach with Ham [44] Approach

Ham et al. used a two layered backpropagation neural
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net model in neural networks to classify parts into
representative part families. The neural network is trained
with all representative parts in the initially available n
part families P1, P2, P3,...Pn (these representative parts
are called exemplars). Each part family has a set of one or
more representative parts or exemplars. When the system
encounters a new part it responds by identifying the
exemplar that is the closest match to the new part. The
next step is to check to see if the two parts are similar to
the desired extent. Ham et al. used Tanimoto's Coefficient
to determine the degree of similarity. Thus the
classification is then done for all other new components
presented to the system. If the new part does not belong to
any existing part family a new part family is formed. The
input to the neural network was from a vision system. The
part was represented by a vector of pixels which represents
a two-dimensional view of the part's diagram.

Contrasting and comparing Ham's work with the proposed
technique, we see that:
1) The proposed technique does not employ the concept of a
potential function. Ham's technique uses a potential
function to decide the size of the groups. This means that
the neural network is not used as an intelligent decision
tool, but merely as a heuristic rule-based system. The
purpose of automatic classification is defeated when the

potential function is developed and employed.
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2) The number of parts that can be learned by the network is
not limited by the network architecture in the proposed
approach. In Ham's approach the network architecture needs
to be modified as more parts are incorporated into the
systemn.

3) In the proposed approach the parts are represented by a
binary matrix of geometrical primitives. Ham used a two-
dimensional view of the part as input to the vision system.
A two-dimensional view does not represent all the features
on the parts. Moreover, only symmetrical rotational parts
can be classified. The proposed approach does not have
these restrictions.

4) The proposed system uses an unsupervised training
algorithm (ART2) to classify parts automatically. The
system therefore truly models automatic classification. The
use of a backpropagétion (supervised learning algorithm)
neural network closely models a rule-based system rather

than a automatic classification system.
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Chapter 5

Results Conclusions and Recommendations

5.1 Introduction

The results, conclusions and recommendations were an
interesting aspect of this research. The results were
encouraging. There are many important conclusions drawn as
a result of this research effort. Many improvements and

refinements can be implemented on the proposed system.

5.2 Results

The classification simulation was conducted for five
values of the vigilance parameter. The part families are
identified by a unique part family or Group Number. The
cells are numbered 1 to 100 starting at the top left corner
of the output matrix. Part families with a singular part in
the par: family are not shown in the analysis. This
assumption was based on the fact that a part family should
consist of at least two parts to be recognized as a part
family. Moreover the analysis of part families with
singular parts showed that they had some features which were
not common to other part families, i.e. were unique and did
not belong to any other part family. The analysis of all
the outputs obtained are given in Appendix D.

Simulation runs were conducted for five values of the

vigilance parameter. The vigilance values, 0.92, 0.93,
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0.94, 0.95, 0.96 were used in the experiments. The concept
of a vigilance parameter is contrary to the concept of a
potential function where the higher the value of the
potential function the more similar are the parts. The
results are tabulated as Shown in Appendix E.

The grouping analysis was done in two stages. 1In the
first stage, parts were tabulated into their respective
groups or part families. This analysis indicates that as
the vigilance parameter increased from 0.92 to 0.96 the
number of groups or part families increased. In the second
stage the analysis was conducted for finding the basis on
which parts were classified into a specific part family.
There were certain parts features which were assumed to be
the defining criteria for forming groups. Every grouping is
analyzed for the absence and presence of these features. It
is concluded that the absence or presence of a particular
feature on parts within a particular part family were
instrumental in defining the classification procedure. It
is to be noted that for every value of the vigilance
parameter the groups need not have the same part family
identifier (Group Number). This is because the LTM weights
are randomized at the beginning of every simulation. The
results will be explained for one value of vigilance.
Consider the part families formed at the vigilance value of
0.94. Please refer to Table 2. There are eight groups

formed, 24, 26, 29, 30, 39, 51, 66. This is shown in the
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/* Output vector 58

*f

0.00, 0.00, 0.00, '0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 59

P %/

0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 2.20, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 60

i

0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 2.13, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00),

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

Figure 7. Output Matrix
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0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
2.05,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,



Table 2. Grouping Anaysis: Vigilance Parameter:- 0.94

f—

Group PARTS
No.

24 4,6,9,10,11,12,13,14,24,25,26,39,41,42,44,45,46,

48,50,52,53,54,59,60,61,65,66,68,70

26 7, 18,21,27,67

29 17,28

30 1,2,8,15,22,23,32,33,34,35,36,40,43,49,57,58, 69

39 19,20

51 16,29,30,37,38,62,63,64

66

31,51,56
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Table 3. Grouping Analysis: Vigilance Parameter:- 0.94

Group No. 24 | 26 | 29 | 30 | 39 51

Geometric Features
Straight Outside P| O P P P | O P
Taper Outside O| O | A P A 0] 0]
Groove Outside (O o) A 0] A (o} A
Pulley (0] A A 0 A (0] A
Circumferential Holes o A A A A A A
Keyway Outside 0 o) A (0] A 0 (@]
Threading Outside 0 o] A 0 A A o}
Threading Inside o} A 0 o} @] A o]
Cross hole A 0 A 0] O (0] A
Straight hole 0| O P (o] P 0 P
Taper hole 0] A A 0 A A A
Blind hole A (0] A ) A A P
Step Hole o] A (0] 0 A A A
Hole olo|r|lofr|o]er

Key:-

A - Denotes absence of a feature.

P - Denotes presence ' . of a feature.

O - Denotes either the presence or absence of a feature



first column titled Group No. The number of part families
formed are 7. The number of parts in each part family are
30, 6, 3, 17, 2, 9 and 3 respectively. This was the first
stage of analysis. The second stage is to analyze the
groupings obtained earlier for the absence and presence of
geometrical features. Please refer to Table 3 for this
analysis. Consider Group No. 24 in the second column. A P
in a cell indicates the presence of a geometrical feature
(indicated by the row) in all parts within a group. An A in
a cell indicates the absence of a geometrical feature on all
parts within a group. An O indicates either the presence or
absence of a feature within a group. Therefore Group No. 29
has the following features present on all parts: Straight
Outside Edge, Straight Hole, Hole. It has following
features absent from each part in Group No. 29 Taper
Outside, Groove Outside, Pulley, Circumferential Hole,
Keyway outside, Threading outside, Cross Hole, Taper Hole,
Blind Hole. Group No. 29 also has the following features
either present or absent: Threading inside, Step Hole.
Similarly all the other part families are analyzed and
evaluated for reasons of their association to a particular
part family. Is is observed that no two part families have
the same features absent or present. This means that the
patterns of "A" and "P" are different for all part families.
The conclusions of these analysis are:

1) As the vigilance parameter increased from 0.92 to 0.96

92



12

w
- @
Q
<
- o
a

U

E

o

>

u

o

=4

- o

2

>
o
- @
Q
5
[ .
1 | | I ] | | o

11

10 —

sdnoug Jo Jequinp

93



29, 30, 37, 38, 62, 63 and 64 belonged to one part family.
The test was performed to test the validity of the
groupings. The experiment was performed at only one value
of vigilance parameter. This is because the network
architecture remains unchanged for all values of vigilance
parameter. Therefore the classification of novel parts into
new groups should be true at every level of the vigilance

parameter.

5.3 Conclusions

The proposed technique is the first of its kind in the
application of ART2 (unsupervised learning) to a Group
Technology application. It opens new avenues for
classification procedures in manufacturing as well as non-
manufacturing procedures.

Thefe are some outstanding features of the proposed
method that overcome the deficiencies of the present method.

These salient features are explained below.

1) The number of groups is not predetermined by the user in
the proposed approach. This actually represents and models
automatic classification. 1In all existing methodologies the
user has to decide the number of part families the parts
will be grouped under. This is not a natural and
justifiable way of grouping parts if the groups do not

already exist. If the groups already exist then the user
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has to determine the validity of the grouping. If the user
has to decide the number of groups beforehand, the user will
have to thoroughly study the parts database before making a
decision on the number of part families to form. The
proposed method allows the user to dynamically alter the

number of part families by varying the vigilance parameter.

2) The classification in ART2 is based on the formation of a
composite component. The composite component or critical
feature pattern, is formed automatically as the system
learns and evolves. The formation and the number of
composite components is not determined by the user as is the
existing techniques. The development of a composite
component by the user casts doubt to whether it truly

represents all the parts in the database.

3) Extensive and complicated programming has to be done to
accomplish classification by the existing methods. The
development of algorithms for every new application is a
time consuming process. In the proposed method only
training, tuning, and setting of learning parameters is done
by the user to classify data successfully. For a very large
database of parts the program development and testing time
would be enormous.

4) The knowledge acquisition task in a classification

performed by a conventional artificial intelligence
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technique is a time consuming process. In the proposed
approach there is no stage of knowledge acquisition,
therefore there is no time for this process. The knowledge
acquired by the system is the result of all the learning
experienced by the system. The proposed method is
application independent. This means that the same network
architecture can be applied to any other application. The
number of feature detectors have to be changed depending
upon the size of the database. The learning and vigilance

parameters have to be reset.

5) The ART2 neural network architecture speeds up processing
time as the network is inherently parallel in nature.
Moreover the simultaneous interaction of two memory

mechanisms speed up the process even more.

6) The use of ART2 assures that there is a trivial amount of
time for search (3 to 5 seconds). This is because parallel
interactions are modeled on a sequential computing machine.
On a parallel machine the search time would be nearly zero.
In all conventional artificial intelligence applications to
the problem of part family formation the search time is
proportional to the number of components in the database.
The larger the database the longer it will take to search
the database. 1In the proposed application the search time

remains constant irrespective of the number of parts in the
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database. 1In the present time of intense global competition
a product is either launched before the competitor or it
faces doom. The proposed application will ensure that user
has an edge in rapidly producing his/her product.

The proposed approach has some weaknessess.

1. It was observed during the analysis that some parts
within a group were not intuitively obvious. As an example
parts 58, 59 and 60 were classified into two groups one with
part 58 and other with part 59 and 60. This classification
was true for every value of the vigilance parameter.
Intuitively part 58 should belong to the same group. This
suggests that the reference matrix should be altered since
the grouping of parts is completely outside the user
control.

2. It was observed that parts which were grouped together at
a higher value of vigilance were not necessarily grouped
together at a lower value of vigilance. Thus the results
prove to be counter intuitive.

3. Prelimnary results were encouraging but not entirely
successful.

The major conclusions of this research are:

1) The ART2 is not entirely successful for the proposed
approach as is observed from the above mentioned results.

2) The order in which the parts are input to the system has
no effect on the classification procedure.

3) The number of part families formed changes with a change
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in the vigilance. As the vigilance increases the number of
part families formed also increase. The lowering of

vigilance decreases the number of part families formed.

5.4. Future Research Directions

The scope for future research in this field is immense.
There are various avenues that could be explored. A few
important ones are listed below.
1) The proposed technique is restricted to rotational
components. Further development can be done on this
application to prismatic components. The basic input form
will remain the same but the binary matrix for prismatic
components will have to be used instead of the binary matrix
for rotational components.
2) The present classification scheme takes into
consideration only the geometric feature of parts. This is
not the best way to perform classification. Classification
based on routing information was also attempted, and showed
good results.
3) An integration of the two classification schemes i.e.
based on both geometric features and routing information is
proposed. Future research should be undertaken to
investigate other forms of manufacturing information that
can be best used to best classify parts.
4) The binary matrix can be changed to a gray scale matrix.

Weights can be allocated to every cell so that the
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importance of certain parts information is emphasized. This
weight allocation will vary from organization to
organization and can be based on heuristic judgement.
5) The input at present is a manually coded binary matrix.
An attempt should be made to read and decipher parts
information directly from a CAD database or a picture of a
part using a vision system.
6) The development of a mathematical model to select the
vigilance parameter is also a challenging area to investi-
gate. It can be expected that the vigilance parameter can
be determined as a function of cost.

The conclusion of this research is that neural networks
are indeed an appropriate tool to classify rotational parts

automatically into part families.

99



References

(1]

(2]

(31

(4]

[5]

(6]

(7]

(8]

(9]

(10]

[11]

Adam, Blum., "Bidirectional Associative Memory Systems
in C++: Recent innovation makes associative memory
practical for real world problems", Dr. Dobb's

journal, April 1990.

Amari, S.A., "A Mathematical approach to neural
systems", In J. Metzler (Ed.). Systems Neuroscience
pp 67- 117, New York Academia Press, 1977.

Amari, S.A., "Neural Theory of Association and

Concept formation", Biological Cybernetics, 26,
pp 175-185, 1977.

Anderson, J.A., "A theory for the recognition of items
from short memorized lists", Psychological Review, 80,
417-428, 1977.

Anderson, J.A., "Neural Models with cognitive
implications", In D. LaBerge And S.J Samuels (Eds.),
Basic properties in reading perception and
comprehension, pp 213-236, Hillsdale, NJ: Earlbaum,
1977.

Andrew, J., Czuchry, Jr., "A Network Instantiation
environment: Dynamically creating neural nets lets you
concentrate on network response characteristics", Dr.
Dobb's Journal, April 1990.

Anderson, J.R., The architecture of cognition,
Cambridge, MA: Harvard University Press, 1983.

ANSim: "Artificial Neural Network Simulation Software",
Science Applications International Corporation (SAIC),
1989.

Arn, E.A., Group Technology An Integrated Planning
and Implementation Concept for small and Medium Batch

Production, Springer-Verlag, Berlin Heidelberg New
York, 1975.

Auckley, D.H., Hinton, G.E., and Sejnowski, T.J., "A
learning algorithm for boltzmann machine", Cognitive
Science, 9, pp 147-169, 1985.

Batra, J.L., and Rajgopalan, R., "Composite Component
through Graphs and Fuzzy Clusters", Proceedings of the

Eighteenth International Machine Tool Design and
Research Conference, UK, pp 801-807, 1975.

LOO



(12]

[(13]

(14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

Bienstock, E.L., Cooper, L.N., and Munro, P.W., "Theory
for the development of neuron activity: Orientation
Specificity and binocular interaction in visual
cortex", Journal of Neuroscience, 2, pp 32-48, 1978.

Brankamp, K., "Objectives, Layout and Possibilities of
the Opitz workpiece classification system", Proceedings
of the International Seminar on Group Technology,

International Center for Advanced Technical and
Vocational Training, Turin, pp 127, 1970.

Burbidge, J.L., The Introduction of Group technology,
Heinemann, London, 1975.

Carpenter, G.A., Grossberg, S., "Neural Dynamics of
Category learning and recognition: Atttention, Memory
Consolidation, and Amnesia, Brain, Structure, and
Memory", (Davis, J., Newburgh, R. and Wegman, E., eds),

AAAS Symposium Series, 1986.

Carpenter, G.A., Grossberg, S., "A Massively parallel
Architecture for a Self-Organizing Neural Pattern

Recognition Machine", Computer Vision, Graphics, and
Image Processing, Vol. 37, pp 54-115, 1987.

Carpenter G.A., Grossberg, S., "ART-2:
Self-Organization of Stable Category recognition Codes:
for Analog Input Patterns", Applied Optics, Vol. 26,
No. 23, pp 4919-4930, December 1987.

Carrie, A.S., "Numerical Taxonomy applied to group
technology and plant layout", International Journal of
Production Research, v 11, n 4, pp 399-416, 1973.

Casimir, C. klimasaukas., "Neural Networks and image
Processing: Finding edges only a human can see", Dr.

Dobb's journal, April 1990.

Caudill, Maureen., "Neural Networks Primer Part 1", AI
Expert, December 1987.

Caudill, Maureen., "Neural Networks Primer Part II", AI
Expert, February 1988.

Caudill, Maureen., "Neural Networks Primer Part III",
ATl Expert, June 1988.

Caudill, Maureen., "Neural Networks Primer Part IV", AI
Expert, August 1988.

101



[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]

Caudill, Maureen., "Neural Networks Primer Part V", AT
Expert. November 1988.

Caudill, Maureen., "Neural Networks Primer part VI", AT
Expert, February 1989.

Chandrasekharan, M.P., and Rajgopalan, R., "An ideal
seed non-hierarchical clustering algorithm for cellular
manufacturing”, Interantional Journal of Production
Research, v 24, n 2, pp 451-464, 1986.

Chao-Hsien, Chu., Pieching, Pan., "The Use of
Clustering Techniques in Manufacturing Cellular

Formation", Institute of Industrial Engineers,
Industrial Engineering Conference Proceedings, 1988.

De Witte, J., "The use of similarity coeffecient in
production flow analysis", Proceedings of the 5th
International Conference on Production

Research (Amsterdam) , August 1979.

El-Essaway, I.G.K., and Torrance, J. "Component flow
analysis-an effective approach to production systems
design", Production Engineer, pp 165-170, May 1972.

Feldman, J.A., "Connectionist models and their
applications", Cognitive Science, 9, pp 1-2, 1985.

Filho, E.V.G., "Computer-Aided Group Technology Part
Family Formation Based on pattern Recognition

Techniques", Ph.D. Thesis, Department of Industrial and
Management Systems Engineering, Pennsvlvania State ’

University, 1988.

Fukishima, K., Miyake, S. and Ito, T., "Neocognitron: A
neural network Model for a Mechanism of Visual Pattern

Recognition., IEEE Transactions on System, Man and
Cybernitics, SMC-13, pp 826-834, 1983.

Fukushima, K. "Neocognitron: A self organizing neural
network model for a mechanism of pattern recognition
unaffected by a shift in position", Biological
Cybernetics, 36, pp 193-202, 1980.

Ginsburg, H.P., The development of mathematical
thinking, New York: Academic Press, 1983.

Grossberg, S., "Adaptive pattern classification and
universal recoding: Part I. Parallel development and
coding of neural feature detectors", Biological
Cybernetics, 23, pp 121-134, 1976.

102



[36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Grossberg, S., "How does the brain build a cognitive
code?", Psychological Review, 87, pp 1-51, 1980.

Grum, J., Logar, B., Hlebanja, G., and Pelinik, J.,
"Design of Database for CAD based on Group Technology",
Robotics and Computer Integrated Manufacturing, Vol.
4., No. 1/2, pp 49-62, 1988.

Hebb, D.O., The organization of behavior, New York:
Wiley, 1949.

Hinton, G.E., Anderson J.A., Parallel Models of
Associative Memory, Hillsdale, NJ: Earlbaum, 1981.

Hopfield, J.J., "Neural Networks and physical systems
with emergent collective computational abilities",
Proceedings of the National Academy of Sciences, USA,
79, pp 2554-2558, 1982.

Hopfield, J.J., "Neurons with graded response have
collective computational properties like those of two

state neurons", Proceedings of the National Academy of
Sciences, USA, 81, pp 3088-3092, 1984.

Jackson, J.H., On Localization. Selected Writings (Vol
2), New York, Basic Books (1985), (Original work
published, 1869.

Jeannette, Lawerence., "Untangling Neural Nets: Why is
one model better than the other?", Dr. Dobbs Journal,
April 1990.

Kamarathi, V. Sagar., Sounder, R., Kumara, T., Francis
T.S.Yu., Inyong, Ham., "Neural Networks and Their
Applications in Component Design Data Retreival", IMSE
Working Paper, pp 89-135, College of Engineering,
Department of Industrial and management Systems
Engineering, Pennsylvania State University, April 1990.

King, J.R., "Machine-Component grouping in production
flow analysis: an approach using a rank order
clustering algorithm", International Journal of
Production Research, v 18, n 2, pp 213-232, 1980.

King, J.R., and Nakornchai, V., "Machine-Component
group formation in Group Technology: review and
extension", International Journal of Production
Research, v 20, n 2, pp 117-133, 1982.

Kohonen, T., Self-Organization and Associative Memory,
Springer Verlag, New York, 1984.

103



(48] Kohonen, T., "An adaptive associative memory
principle", IEEE Transactions, c23, pp 444-445, 1974.

[49] Kohonen, T., Associative memory: A system theoretical
approach, New York: Springer Verlag, 1977.

[50] Kohonen, T., "Clustering, taxonomy, and topological
. maps of patterns", In M.Lang (Eds), Proceedings of the

Sixth International Conference on Pattern Recognition,
1982, pp 114-125, Silver Spring, MD: IEEE Computer

Society Press.

[51] Kohonen, T., Self organization and associative memory,
Berlin, Springer-Verlag, 1984.

[52] Kusiak, Andrew., and Heragu, S.S., "Group Technology
State-of-the-Art", Computers in Industry, v 9, n 2, pp
83-91, Oct 1987.

[53] Kusiak, Andrew., "A generalized group technology
concept", International Journal of Production Research,
v 25, n 4, p 561-569, 1987.

[54] Lashley, K.S., "In search of the engram", Society of
Experimental Biology Symposium no. 4: Psychological
mechanisms in animal behavior, pp 478-505, London:
Cambridge University Press, 1950.

[55] Lemoine, Y., amd Mutel, B., "Automatic Recognition of
Production Cells and Part Families", Advances in

CAD/CAM, Proceedings of the 5th International IFIP/IFAC
conferance on Programming Research and Operation

Logistics in Advanced Manufacturing Technology,
PROLAMAT 82, T.M.R. Ellis and 0.I. Semenkov (editors),

North Holland Publishing Company, IFIP 1983.

[56] Lindsay, P.H., Norman, D.A., Human information

processing: An introduction to Psycholoqgy, New York:
Academic Press, 1972.

[57] Luria, A.R. Higher Cortical functions in Man, New York:
basic Books, 1966.

[58] Luria, A.R., The working brain. London: Penguin, 1982.

[59] Marslen-Wilson, W.D., Welsh, A., "Processing
interactions and lexical access during word recognition

in continuous speech", Cognitive Psychology, 10, pp
29-63, 1978.

104



[60]

[62]

[63]

[64]

[65]

[66]

[67]

(e8]

(69]

[70]

(71]

(72]

McCarthy, J., "Comments. In Mechanization of thought

processes", Proceedings of the Symposium held at the

National Physical laboratory, November 1958, Vol. I, pp
464-466, London, Her Majesty's Stationary Office.

McAuley, J., "Machine grouping for effecient
production", Production Engineer, pp 51-53, 1972.

McClelland, J.L., "On the time relations of mental
processes: An estimation of systems of processes in
cascade", Psychological Review, 86, pp 287-330, 1979.

McClelland, J.L., "Retrieving general and specific
information from stored knowledge of specifics",

Proceedings of the Third Annual Meeting of the
Cognitive Science Society, 170-172, 1981.

Minsky, Marvin., "Neural nets and the brain-model

problem", Unpublished Doctoral Dissertation, Princeton
University, 1974.

Minsky, Marvin., And Paret, S., Perceptrons, Cambridge
MA", MIT Press 1969.

Morton, J., "Interaction of information in word
recognition", Psychological Review, 76, 165-178, 1969.

Rajgopalan, R., "Design of Cellular production System-A
graph theoritic approach", International Journal of
Production Research, 16, pp 577-580, 1976.

Rajgopalan, R., and Batra, J.L., "Design of cellular
production systems: A graph-theoritic approach",
International Jounal of Production Research, v 13, n 6,
PP 567=579, 1975.

Rosenblatt, F., "Two theorems of statistical
separatibility in the perceptron. In the Mechanization

of thought process", Proceedings of a symposium held at

the National Physical Laboratory, November 1959, Vol I,
pPp 421-456, London, HM Stationery Office.

Rosenblatt, F. Principles of Neurodynamics, New York,
Spartan 1962.

Rumelhart, D.E., "Schemata: The building blocks of
cognition", In R. Spiro, B. Bruce, and W. Brewer (Eds).

Theoretical Issues in reading comprehension, pp 33-58,
Hillsdale, NJ: Earlbaum, 1980.

105



(73]

[74]

[75]

[76]

[77]

[78]

(79]

(80]

(81]

Rumelhart, David E., McClelland, James., and the PDP
research group., "Parallel Distributed Processing
Explorations in the Microstructure of Cognition, Vol 1
and 2", Institute for Cognitive Science, University of
California, San Diego. The MIT Press, Cambridge, Mass,
London, England, 1988.

Sejnowski, T.J., "Skeleton filters in the brain", In
G.E Hinton and J.A. Anderson (Eds.), Parallel models of
associative memory, pp 49-82, Hillsdal, NJ: Earlbaum,
1981.

Selfridge, 0.G., "Pattern recognition in modern

computers", Proceedings of the Western joint computer
conference, 1955.

Simpson, P.K., "Associative Memory Systems",

Proceedings of the International Joint Conference on
Neural Networks, January 1990.

Von der Malsberg, C., "Self organizing of orientation
sensitive cells in the striate cortex", Kybernitik, 14,
pp 85-100, 1973.

Waghodekar, P.H., and Sahu, S., "Machine-component cell
formation in group technology: MACE", International
Journal of Production Research, v 22, n 6, pp 37-948,
1984.

William, F Hyde., "Improving Productivity by
classification, coding, and data base standardization,
The Key to Maximizing CAD/CAM and Group Technology",

Manufacturing Engineering and Material Processing.
Marcel Dekksr, Inc. New York and Basel 1981.

Willshaw, D.J., "Holography, associative memory, and
inductive generalization", In G.E. Hinton and J.A.

Anderson (Eds), Parallel models of associative memory ,
pp 83-104, Hillsdale NJ:Earlbaum, 1982.

Yoh-Han Pao., "Functional Link Nets: Removing hidden
layers", AI Expert, April 1989.

106



APPENDIX A

COMPONENT PART SKETCHES

107



PART 1 PART 2
PART 3 PART 4 PART 5

_________ - ==

il S—

P
11
[

aOr=m
[ |
| —-
E
L =
Il
I
|
|
1
|
I
I
I
I
T

PART 6 = PART 7 PART 8

m
L}
ni
n
L}

-

!
/
!
|

PART 9 PART (o PART 11 PART 12

¢

PART 13 PART 14 PART 15 PART 16

i
|
[

|
L

HE
!
|

|
1

7
I

PART 17 PART 18 PART 19

______ fla-- -h'_—[% r
x _J”_/

108




PART 20

PART 21

PART 24 PART 25

B, D —
PART 26 PART 27

PART 31

- —

- -

- -
—

— == — -
\_-.‘\ f—l —— 7 - X o
I \ 4 ] —_—
e

:__ \_ﬁ L 1 = =g A 1| Y | i

-_ = oy — = - 3 b = e
. % 1o et - e

7’ od
|
—

PART 28

PART 33

”
-~
”~
-
-
~
~
N

PART 34

109

PART 35

-
—r—pr— -
-
-
-
i & o -
SRS o
-~
-
b o =
~
-~
4 - -




PART 36

PART 37

PART 38

| — :4_____ = it Bt fill rote e
5 Y
PART 39
PART 40 PART !
s ([, _____
i T - -
.{ 5 e s ] e - _
T ThERETTC] R
2 ]
PART 42 PART 43 PART 44
I--__ | p—
----- ! IR | VORI wosy
i T il s =1 B o p— =
O ol iy P - I il RS ety i
]

PART 45

PART 46

PART 47

PART 51

- - ! - - — - -
y-\_/
PART 48 PART 49 PART 50
T i———r, ————— |
1 3 E=z=z=== or
- | = ™ = X
=™ = N
‘N\ E=====

l




PART 52 PART 53 PART 54

eI

. e ]

PART 55 PART 56

& [
- - 1 - - = =
- LN It
U e
L

PART 57 PART 58 PART 59

—_—
I~
e -
-~ -
-~ -
e S T B . [I——|
_,r N = = =
- =
= -~
- -
= -

1l
"
[}
[}
]
[}
1}
]

1
n
L}
il
L}
n
I
]

PART 62 PART 63
PART 64

e

111




PART 65

PART 66

PART 67

(

“,-.
""" 7P
- - - — -1 - - I
—————— \—
PART 68 PART 69
_] B m=m =
HI r—l Lt === ~ |
|
1
PART 70

112

)



APPENDIX B

DETAILED COMPONENT PART SKETCHES

i



6ap 2/1 -+ dvinony

20'0 -/+ 'J30 'J7d OML
100°0 -/+ '330 "J7d 33sHL
0314103dS ISIMSIHLO SSTINM
SIHINI NI SNOISNIWIO TV
=M

by ¢

¢S

F

I LdVd

114



bap 2/1 -/+ avInony

20’0 -/+ "J30 "J7d OML
100°0 -7+ 'J30 " J7d IFHL
0314123dS 3ISIMIFHLO SSIINM
SFHONI NI SNOISNIWIO T¥
:310N

J

I
AN

I

1

¢S 6771

L B

I
1
|
I
[
1
|
I
I
1
I
I
|
I

-

o

:
L.

115



bap z/1 -7+ v INONY

20'0 -/+ 130 "7d DMl
100°0 -7+ '230 "J1d IFHL
0314173dS ISTAIFHLO SSTINM
SIHINI NI SNOISNIWIO TV

10N Ve o —e=—fhe=——_fl =

90°0 X 20°0 x 0'1 AomAay

s M e o f

- -~ —BEg 034 = =

=l
1
1
1
1

Bl Gl 8o

¥y10 £2°0 =194

t Ldvd

116



6ap 2/1 —/+ dvInony

20°0 -/+ "330 "J1d DML
100°0 -/+ "230 "J7d FHL
03141J3dS ISIMYIHLO SSIIM
SIHINI NI SNDISNIWIO ¥

-JLON

It B

17

86" | R VA - - _
I

]
J

o

=

A

i

I

11

11

11

11
g 1 |

1

(@ 0]
o

\

P3| Ct-Of STSNNIY [L} (SS— T .

b LdVd




Bap 2/1 -7+ SvINONV

20°0 -/+ 'J30 "1d OML
100°0 -7+ 230 'J7d ML
0314123dS ISIMIIHLO SSIMM
SIHINI NI SNOISN3WIO TV

310N
-~ P ] ——
PodJy| cE-0l#
ﬂ & llllllllll - A
: ¢S hﬁ et ety ettt \vm /B
T — — i
Y .
-~ 86 —=
£S 86 -

G Ldvd

118



= 20" | ==— [G'] —=f
O
poadyl ¢e-9f | ;
S {
S~ &
F/M’nnnunuun.lm ﬂ
00y VE'E O - — - - - 201 a0
$|l ||||||||| Jm“nnnnuunuuuunuu *
T
™ Hr T
40’0 X B'0 X Q' 1 AowAay
| \ ......
SI|0H ¥ VIO OF' 0
—) (G b 1B | e

9 LdVd

119



bap 2/1 -7+ dv NNV

20'0 -/+ 330 "Jd OMl
100°0 -/+ "J30 'J7d J3aHL
0314173dS ISINYFHLO SSI NI
SIHINI NI SNOISNIWIO T1¥
‘310N

gby

=3

A —
e

e - — — —— - — ]

PoaJy] ct-L#

—— Gl —=

886 "€

L LdVd

120



bap /1 -7+ dv nony

c0'0 -+ 330 "11d DMl
100°0 -7+ 230 "J1d 3L
0314173dS ISIMAIHIO SSTN
STHINT NI SNOISNIWIO TV

310N
— — &l d~
= 825151
- -
W'z 8p ] 0By —f —— i s 5 el 166
‘s
el L 7 ) — e (B e

g LdVd

121



c0S'E

bap /1 -7+ dvIMmONY

20°0 -/+ 330 "Jd OML
100°0 -+ 230 "31d 33HL
0314103dS ISIMFHIO SSTINM
SIHINT NI SNOISNIWIO TV
P10

—= 1BV =
|..|L.|..|1
1
= =
— o }
N
|
e e i e
I
]
I
L00'E ElIE'¢ 166" __|_ L
I
]
|
L k=== — -
]
1
{
i =l |
- P — 1
- 1]
o =T
e
S2|0H ¥ VIO O0¥'0
— G101

10 m———-=

6 LdVd

122



0S

6ap z/1 -7+ Sy NNy
20°0 -/t 230 "J7d OML

— B pe—
100°0 -7+ "230 "J1d 3339H1
0914179dS ISIMIFHLIO SSIINM
SIHINT NI SNOISNAWIO 17V
IS :310N
]
] e
-
i 3\
R, | SN R (S S e ]
]
I
I
10°E 1g£'¢ 66" | 1. - = H - S
1
]
u 1
e v R i i e
] )
_ prd
"y |
L _ | O_ W_
—__a 0llg=
A
S2|0H VIO 0¥ 0
=— 70" | 00'¢
01 LAVd

123



bap 2/1 -7+ dvInony

20°0 -7+ "230 "27d DML
100°0 -7+ "J30 “37d ML
0314133dS ISTMIIHLD SSTINM
SIHINI NI SNOISNIWIO 1Y
H310N

c0'¢ b6’

_—— e = b e o = = = -

~—="52"¢

LT Ldvd

124



bap 2/1 -/ VTNV

c0'0 -/+ 130 ")7d OMl
100°0 -/+ 330 "27d 33!
03141 J3dS ISIMIIHI0 SSTNN
SIHINT NT SNOLSNIWIO T¥ —= 67 = 66| -
}J10N

i
By | g1 1 - = “ 2 = - -
_

125

&N

El'd~

ol Ldvd



Bap 2/1 -7+ SvImony

20°0 -/+ '130 'J1d OML
[00°0 -/+ "J30 "21d 3FHL
0314103dS ISIMNIHLO SSIINM
SIHINI NI SNOISN3WIO 17¥
=y

861 —@'4

i = T

e

t.

et G)" | ——- G e e

_

(5

LAVd

126



Bap 2/1 -/+ d¥IMONY
20°0 -/+ 230 "2d DML
100°0 -7+ 230 "27d 3FHL

0314123dS 3ISIMITHIO SSTIN = P2 | S
SIHINI NI SNOISNIWIO 1TV
‘310N
)
1
|||||| N
5 el s Al i s Yy [
]
L e gy
52 86" I bY'1 . —66 — = . - e = -—B5L—20'2
“
1
L o e e e o Wl - | [N——
1
| D
¥
—E1°Y
€17y
= By le——— G| ——=  £Gelapp e

1 1dvd

127



6ap 2/1 -+ dvInoONY

20°0 -/+ 390 " J1d Okl
[00°0 -/+ 330 "31d 33l
0314173dS ISIAIFHIO SSTNN
SIHINI NI SNOISNIWIO TV
131N

[— CQ o= [ffe— c[ =

58

A

/
P

/
|
|
|

/

A

= = - =

]

()]
m
i p]

\______-....

M
\
et

<l

cl

|88
A

Ly

i
N\
N

a1l

GI Ldvd

128



Bap z/1 -/+ SvIMONY

200 -/+ '330 "J7d Ol
100°0 -/+ "230 "J1d 3aHL
0314103dS ISIMIFHLO SSTINN
SIHINI NI SNOISNIWIO TW
‘310N

bE

9¢'¢

90’0 X G0 X GL 0 AomAay
\

e

ke —~

/

P

c0'¢ bbb — -B&

o

m__miw,

A"}

|
L

/)

90’0 % G'0 X G.'0 AomAay

e B¢ | =

91 1dvd

ag— mm.‘ —

129



6ap /1 -7+ v INONY

20°0 -/+ 230 "07d OmML
100°0 -7+ 330 "J7d 33HL
0314103dS ISIASFHLO SSIINN
SIHINI NI SNOISNIWIO TV
‘310N

- GrG'E -

0251 ye20'1 96v -

poaJy] ce-0l#

_— [$C' | =Ig0g = 8e0"¢

L1 LdVd

130



6ap 2/1 -7+ sy INoNy

20°0 -/+ '330 "3d OML
100°0 -7+ "J30 "J1d 3L
0314103dS ISIAIFHLIO SSTIN
SIHINI NI SNOISNIWIO TV
110N

poad] ce-LK

51

BIL'1  1BB- - = = =

51628

e ]

~¥GE =

8r0°¢

¢eS’

pE0'0 % 02'0 * EG'Q AomAay

Pcb' ¢

g1 Ldvd

CES =

131



bap 2/1 -7+ avIMONY = £G/ —e=— £G/ -
c0°0 -/+ 130 "J1d DML
100°0 -7+ 330 "I1d 3L
0314173dS ISIMIFHLIO SSTINN
SIHINT NI SNOTSNAWIO TV}
310N

[15°¢  DesH : = =

—

J|0H ¥IO 0S'Q0 —

e T R

61 LdVd

Poa.Jy) CE-8#

132



6ap 2/1 -7+ Sy IMONY

20°0 -+ 330 "27d Ol
[00°0 -7+ 330 *27d 33aH)
0314113dS ISIMIIHLO SSTINN
SIHINI NI SNOISNIWIO 1%
‘310N

—— e e e e = = =

' ——=

¢S 1y

78" vy

66 d

0c Livd

133



6ap 2/1 -+ avnony

¢0'0 -/+ "J30 "J7d OML
100°0 -7+ 330 "J7d 33ML
031410348 ISIMIFHLO SSINN
SIHINI NI SNDISNIWIQ T

i 2z
310N == ™
; N\
foafammén.u-;;wsll-ul--m--l,u,--w--l-u---m----HM%Wraw
* f e e s e T SN U SR D B |
ﬂw, A el S
21y~ N cz1°y o~
90°0 X G2'0 * €40 Aomkay
0922 =007 b b 2/ o

e Ldvd

134



6ap /1 -+ dvIoNy et e B
20°0 ~/+ 330 "21d DAL
100°0 ~/+ “330 "Jd I3ML
(314173dS ISTAIIHLO ST
SIHINT NI SNOISNIWID TV -
= e
ILON P
"
— / |
2l _
\\ :
00€ 86 L6 _ Z . e 8 ez W57 L00°€
== rridiras I
\ 1
N _
v B :
AN |
S R |
BRI S |
N
AY
(8" 11 -4 P [ DA,

e Ldvd

135



Bap /1 -/+ v MONY

20°0 -/+ 'J30 '01d OMl e B1Q" [ ==
100°0 -/+ 230 "J1d 33aHL
0414173dS ISTAYIHIO SSTINN — S
SIHINI NI SNOISNIWIO TV o
'J1ON Fﬂi...iiili

!
£6h'c /00— — [T GR) D9G|

A N g8y

A

te LdVid

136



Bap /1 -/+ dvInaNy

20°0 -7+ 330 "J1d OML
100°0 -/+ "230 "J7d 33l
0314103dS ISIMIFHLO SSINN
SIHINI NI SNOISNIWIO TV

-~ 055 | ——

o b -] 5a|0H b Y10 05’
.......... \m«\\\\\
M A=
086' EEP'Z  VED |—LBY- i - g _0Bek LB
i
.|N---|u ™S o1
a0 4 vI0 150 7
—l 0eS B8P 0EST b

v Ldvd

137



6ap 2/1 -4 v IIONY

c0'0 -7+ 130 "J1d Oml P |
100°0 -7+ 330 "J1d 3F3aHL
03741203dS 3SIMgIHIO SSTINM
SIHINT NI SNOTSNIWIO TV e ]
310N - ||| e
- y
- — - ]
- A
|
T llllllll IS [ 1 [y i _—
c86' 1 BIL' | [8F HBE—FHSF——7~ - - - - - -84 —-LH-—H8 ¢
O SRR I | .
|
o J/ = W i
w N X S
00l o — oE.mV b ) oo o o
=— G/ —et=—BI0" | —== < Byt =

c0S'E

138

S910H ¥ VIO G5 0



bap z/1 -7+ gvINony
200 -7+ 330 21d Oml

100°0 -7+ "130

"J1d 33aHl

0314123dS 3SIMIIHLO SSTINM
SIHINI NI SNOISNIWIO TV

7c0'1 4899— —

-31ON

————— V66 |

4899-

S10°¢

066"t

f¢

LdVd

IO [ —=

139



6ap z/1 -/+ J¥IMONY

20'0 -/+ 330 "Jd OML
1000 -7+ 230 "27d 33!
0314123dS ISIMITHLO SSI I
SIHONI NI SNDISNIWIO T
‘10N

il

220

=——[¥C" |

BIO" [ —=r=——1[PC | —=

Le LdVd

poaJy| cE-Ol#

140



Bap 2/1 -7+ dvMONY

20°0 -+ 130 '01d DAL
[00°0 -/+ 330 'J1d 33HL
0314103dS ISTMIIHLO SSIINM
SIHINI NI SNOISNIWIO 1
{310N

\ 00y 1D

~=— (10" | —=~=—BI0" | —=+=—7CG/[h —=

8¢ Ldvd

S48

— 000 &

141



6ap 2/1 -7+ v INONY

20'0 -7+ 130 “1d OMl
1000 -7+ "330 "J7d 331
0314123dS ISIMAFHLD SSINM
SIHINI NI SNDISNIWIO 1V
310N

—i [BP" e

866t

L0551
“...I - I— S Pe——]
001 o
J—
I (U S SR W
O¥0' € — 186 — USy- _ . S _
N\ T
001 P L —
|
— 001
A
187" 610 | 18
6 Ldvd

3|04 vIO [E°0

142



bap z/1 -/+ v IMONY

—e3 QLS pe—= BLG

¢0'0 -7+ "330 "I1d OmMl
100°0 -7+ "J30 "J7d 333HL
0314123dS 3STAI3HLO SSFINN
SIHINT NI SNOISNIWIO 717V
+310N

- - = -
——— =

I —— [ ——

['0 X G2'0 X pp'0 Aomhay —]

bo——— 905" | ———

S

c0S't

0t Ldvd

143



Bap 2/1 -7+ dvInony

20°0 -7+ 330 "J7d DMl
100°0 -/+ "230 'J7d 33aHL
0314103dS ISIMIFHLO SSTINM
SIHINI NI SNOISNIWIO TV
}310N

poaJy| Ce-Gk

= i ] —————

|~ oor:

—+H5 e—05d— - = = =

001 d —

e——— 905" | el

e Ldvd

= [BF

144



6ap 2/1 -/+ v NONY

20°0 -/+ 330 J1d DMl
100°0 -/+ 730 " J1d Fe
0314103dS ISIMIFHLO SSTINM

et =

~—— 582 | —=

o Tt i —
SIHINI NI SNOISNIWIO 17 00€ " § /
10N "
- |
i /
_— —— e Ok ¢ = < | - - 5 8Ly 2 L0QE
B jluu _
I
DOE"Y =" m
/Ammv,.. ........ o
00€ "3 — —=
WO, . [ SR I— -, O —
=~ (s
ot LdVd

145




6ap 2/1 -/+ ¥ INONY
20°0 -/+ 'J30 "27d OML
100°0 -/+ "33 "27d 33HL

~— €6/ =

(314123dS ISIMI3HIO SSIINIM
SIHONT NI SNOISNIWIO T
310N

[16=<-

~

180 ¢ = = - % =

o

- 98k BSE' cic']

]

0cS’ 1

—e (B Fe——F0"] = - ECe

te Ldvd

GeS)

146



bap 2/1 -7+ SvINONY

20°0 -/+ 330 "27d OMl
100°0 -/+ 330 "21d F3HL
0314103dS ISIMY3HLO SSIINM
SIHINI NI SNOISNIWIO TV
=Y

eh" |

c0’

66 1cY

lae—————— /' ———— fe——— |G ——= G l=

ve Liavd

147



10070 -7+ "H0 "2 ld i

HT A4S ASTRAH T S5 N
- ER AN e

ONT NE SNOTSNAR T T
fLIN m
ﬂ 001 "¢ — _
||||||||| - _
7 _
|||||||||||||||| u
= = = - — — Ly
| o
) rai= §G)," —== oAy 26 Rl
- = RN U L -

148



Bap ¢/1 -/+ v NONY

c0°0 -7+ 140 “Jd OMl
1000 -/+ 330 "J7d 3L
(314129dS ISTMITHLO SSTINN
SIHINT NT SNOISNIWIO TV

zz - B9 ¢ e 007
+310N
q Y —
=In _ ) B
510°¢ - - - - - - - - - £9¥"  16b
£ (9]
7 - 5 A s
\ T I
‘ a00ds jonba saui|ds ¢
886 ¥
= 2L e (G hOf 2 ~ /8p

Ot LV



bap z/1 -4 5 — 001 d
¢0'0 -7+ )0 ' //f:\\\ . . )
100°0 -/+ 340 )ld J9aH] N [

0914104dS IS TMgIHID S84
SAHINT NI SNOTSNSWIO T1¥

J1ON e E SR R Bt

o = = - = . - - LBf 410°¢ 8Ly ¢ L00°t

g0 0 X £1°0 X 650 Aomhay o

T, o

4%c d

= [BF r=—G(l0 ] -—= [BF *=-

Lo LdVd

150



bap 2/1 -7+ v ONY

20°0 -/+ 140 "J1d OAl
[00°0 -+ 730 "J1d FdH!
0314103dS ISIMIIHIO SSTINN
SIHINT NI SNOLSNIWIO T1¥
310N

- 2F0 Y ————

— ]

3 3 Bodkal gt plughok- sl adde Rt 4K
ez y—1 2566
e /20" | = 8BV ke— (00| —ete 905" | ——e

=
=
L&l




Bap z/1 -+ gy nony

20°0 -7+ 330 "Jd OM)
100°0 -+ 030 "J1d 3HL
0314103dS ISIAS3HLO SSIINN
SIHINI NI SNDISNIWIO T

JLON g
PO3JY] ZE-GH
r A
a = LT O -
||||||||| ]
e il e
51 66 - . = . T 8 . . S NS -, B <
................... q
1
5 e L B, I )
O =, [ e L e 0
= \
90°0 X €1°0 X 01 Aomkay — | 01y
01°d 1\\\\\kw
\
20" —etes G b B0 el G

6¢ LdVd

152



BI0" 1 —»

6ap /1 -7+ AYIONY e IBp'?
20°0 -7+ 730 "2d OML

100°0 -7+ "330 "Jd 33aHL
0314133dS ISIMIIHLO SSTINM
SIHINT NI SNOISNIWIO T
310N

PoaJyl ce-v#

N RSN SESSN USRS

-186—0c¢5" 1

0251— €9 | we - _

e L

- = = = =

Ry [

\lﬂ N
L0°0 X E1°0 X €0 [ AomAay
-— g6L°

001" d

¢St

pe——— OOG ' | ——— (B} lo———— G| ——

07 Ldvd

153



Bap 2/1 -/+ SV IMONY o Y6 | ———= CEG’

¢0'0 -7+ "330 "J7d OML
100°0 -7+ "230 "J1d 33aHL

031312348 3SIMIHLO SSIINM
SIHINI NI SNOISNIWIO T =

310N

e e

= \\
SI|0H ¥ X VIO [¥#°0

IV Ldvd

LB

N 00E"y

~— 610" |

154



Bap 2/1 -/+ v InoNy

20'0 -7+ 'J30 "21d Onl
100°0 -7+ 330 "J7d 33HL
031413dS ISIMIFHLO SSTNM
SIHONI NI SNOISNIWIO TV

‘310N
< €6/ —et= 029~ 029" =
-
i P, A A
WS¢ B¢ - w01 - - o = = 4 - = _ - —£0p' _ 188"
||||||||| - - —-—— -
i Emiy k
h e 9 B 4
L£0F €9
\
001"
G0'0 X 2I[0 X [¥'0 AomAay
e——— 090G | —el=e— £G/ ' -=iggg le——— 05" | ——— =

¢ Ldvd

155



GHE" | ——=p= ("1

Gap 2/1 -7+ dvIMONY 2 =

20°0 -7+ '330 '27d DML
100°0 -7+ "J30 "J1d 33HL
0314113dS 3SIMIFHIO SSIINN o
SIHINI NI SNOISNIWIO T

131N EEDEREN S| ) B
|
1
1
1
8Lz 2. - 0251 - = IO - - k01 - BBEZ  [00'E
1
1
OOm.ml/ “ 590" 9
)
00€ fy
/

. g6." —=— 187

o E IO [ ——

t¥ Ldvd

156



6ap z/1 -/+ Y IMONY

c0°0 -7+

30 " J7d OML

100°0 -7+ "330 "J1d 33aHL

0314123dS JSTAdIHLO SSIINM

SFHINT NI SNOISNIWIO TV
+310N

GI0°¢

166

£9v’

<~ Gl —=

LBY

il

I

=—BI10" | —=

by Ldvd

CES’

~— G/f —

157



Bap z/1 -/+ dvIMONY

20'0 -/+ "230 '07d OML
100°0 -/+ "330 " 27d IFHL
0314173dS ISINYFHLO SSTIINM

9cL'd

SIHONL NI SNOISNIWIO TW
*310N

=1

99 = =

see ¥ OF

4

0" 1

2L | ————= = G b=

Gy LdVd

158



Bap ¢/1 -+ v INONY

20°0 -+ "230 "07d OML
[00°0 -/t 230 '21d 331
0314103dS ISIMITHLID SSINN
SIHONI NI SNOISNIWIO T

L8y 1

310N
gc> =
mmhm UGMLF: NMIM_%
[
e : - - ~ . X - sl RS
r— EGL" e p19°¢ - a— (5" -

97 Ldvd

0cS’ |

159



6ap 2/1 -7+ dVINONV

20°0 -/+ 330 'J1d DML
100°0 -7+ "330 "11d 331
0314123dS ISIAYFHLO SSI NN
SIHINI NI SNOISNIWIO T EC I +=etS’ =
130N

LO0" & 8L <o~ HLY—+—

] Y PR Ry

0

L

m

|

| J
|

—=/8V [0 [—=9c5"

LY ldvd

e

160




bap z/1 -7+ avInony

20°0 -/+ "230 "Jd Oml
100°0 -7+ "J30 "J1d ML
0314103dS ISIMIFHIO SSTINN
S3IHINI NI SNOISNIWIO TV
P10

S9|0H ¥ X ¥IO 1E°0

EI0°E

8lp 2. 206"

Oty

= [BY = ¥B9" |

gy Ldvd

000" 1d

161



6ap z/1 -/+ SV IMONY

=— 610" | —=—=—610"1 —=

00 -7+ 330 "J1d DMl
100°0 -7+ "330 "J71d 33aHL
0314I23dS 3SIMIIHLO SSIINF
STHINT NI SNOISNIWIO TV
+310N

L00"€

86’1

bc0" | Gl0'¢

—e CEGT b———— 05" ——=

6V LdVd

B

PoaJdyl ce-0l4

162



Bap 2/1 -/+ SVINONY - rals

163

20°0 -/+ '230 "21d OAL doauu] ZE-01#

100°0 -+ 330 "21d 33HI

0314103dS ISIMYTHLO SSIN o =

SIHONI NI SNOISNIWIO 1w | | |7~

ET N _ -
[00E —HGZ— - = “ s N - - 166 025" |
R 0013 poaJy| ze-GH
, AR
sajod p VIO €50 — |
ol 266 e pB | ————

06 Ldvd



6ap 2/1 -/+ v ININY
200 -/+ 230 "2d DML

10070 -7+ 30 "27d 33HL = W'l - 905 [ ——=
03141734S ISIMITHLO SSTNN
SIHINI NI SNOISNIWIQ TV
=Y
o 610" | —o
\\
HHHHV\\\\Lf 001" 4
Brr 0d
\l llllllllll —
O0E  WSZ I8l - SI0E - “ i volbis = - o5y 166
001"y il
»
;a/;f;;f;,m_oz V10 070
_m 7= hmv r——
/.-.
;::;;:;“u”,, 001§
4030 | 3aAag
o €61 /6 2EG b

16 Ldvd

164



6ap 2/1 -/+ dvINONy
20’0 -7+ 'J30 J7d OMl

100°0 -7+ "240 "J1d 33aHL 11" = Ci8 o
0314103dS 3ISTMITHLO SS3TNM
SFHINI NI SNOISNIWIO TV
310N
AR R R e ﬁ

70’1

— ol e—— 5| ———e—(Bl0" | —m

cb Ldvd

165



Bap 2/1 -/+ v INONY

20°0 -/+ 330 "11d DML j——
[00°0 -/+ 230 "J7d 3L puaq} ce-LA
0314133dS ISIAYFHIO SSIINN (—
SIHINI NI SNOISNIWIO T1¥ L

*3L0N b essbsnims .\l\ ==

c0S't 115°¢ . - - - - - - k0| 0c5'

0019

\\

/

S3|0H ¥ VIO 1570

s CEG’ 8e0°¢

€6 Ldvd

166



6ap 2/1 -/+ v ININY

[AR R

Les Le 200 ~/+ 330 ' I7d OAL
100°0 -/+ 330 '77d 33HL
..//\\1 031410348 ISIAYFHID SSITNT
SIHINI NI SNOISNIWIO TV
310N
% ! }
® 3 < = - i E o 5 90'
- | }
SET 224
N\\// .69°9¢
- J ]
B ey b 0E'¢ IL pirota—GY ' e

167



99¢ &

Bap 2/1 -/+ v Inony

20°0 -/+ "330 'J1d OML
100°0 -/+ 330 "J1d 33HL
0314123dS ISIMIFHIO SSIINN

»

SFHINI NI SNOISNIWIO TV
-310N

T
|

l
EERTY CYPIRIR STNSEpHENS (IS

005" Id Uo7 3204JNS

GG LdVd

>L

[ G&eld

LBY"

G0 "] —et———— 158" ——

168



Bap 2/1 -7+ gvInany

20°0 -7+ 230 "J7d OAL

100°0 -/+ '230 "J1d 33HI

0314103dS 3ISIMYFHLO SSTINN
SIHINI NI SNOISNFWIO Ty POl ce=cl

310N ;/f///frfmf

LBV | 526

BE0'e — =

220" |

G10°¢

,a///// ] i —,

4/V £C°1 X9H

v66 " |

95

o= L8 | —

PoE"

Ldvd

90°0 X 02°0 X [1'1 Aowhay

169



LBy

6ap 2/1 -/+ 3vINONY

L00°E

20°0 -/+ 'J30 ' 77d OAL
100°0 ~/+ 330 '71d F3ML
0314173dS ISIAYIHIO SSTINM
SIHINI NI SNOISNIWIO TV
131N
poaUy| 2£-G4
\/ﬂlw..
i - _ ] - 5 - _ , 6250251  8¥0°2
. = |
P D128~~~ _ | .
PEEEPPEEEEEE
[ 71"y
21y w
] ———e | - o' g Q.

LG Ldvd

170



63p ¢/1 -/+ 3¥MNINY

20°0 -/+ "230 ")7d Onl
100°0 -+ "J30 "J7d 33ML
0314103dS ISIMIFHLO SSIINN
SIHINI NI SNOISNIWIQ TV
F310N

Va1 - - 4 il

vl v =

........................ 1t

- - - - - =

Fo—— G/’ —e1=m PEG > [BY' te— EGL'—~ [BF" =—"008 [ ——=

Gel'd

Gl@"¢

86 Ldvd

171



6ap 2/1 -/+ SV INONY

20°0 -7+ 'J30 "0d DMl
1000 -/+ '230 'J1d 3FHL
0314173dS 3SIMSIHIO SSTNM
SIHONI NI SNOISNTWIO T
1310N

680 "=

£90" —|

vc0’

LEL’

4

96y’

J

Gl0°¢

99¢ " —=

— 088" —= = [BV=

66 Ldvd

1772



Bap 2/1 -7+ dAVINONY

20°0 -+ "230 '27d OML
100°0 -7+ "J30 "27d 33HL
0314173dS ISIAYIHLO SSTNM
SIHINI NI SNOISNIWIO T
:310N

9c0°9

S g b 5

et 177 74

09 Ldvd

4
—BEE " E9Y 025 ' |

AR

=lf Gl e

173



Bap /1 -/+ v IMONY

20°0 -/+ 230 '00d OML
100°0 -/+ "330 "J7d 33HL
03141J3dS ISIMIHLO SSIINM
SIHINI NI SNOISNIWIO 1V

el

0°€

156——86" |

115°¢

ELO'E

pooJy| CZE-9k _

1310N o

el .
\\\\\ \lllu
| 1
I I |
TR - - | |- SIS ., 1
e e G G B |
I 1
! I
96" 1. —£8kd = = 5 = = “ ——

L
! 1
S s S e L e E S e e s = = 1

! &1 g
e o I 1
1
el

8868 — 21y mum =i

le————— 20" | ——e+=—— B0 ] —ete—— GG | ——=

19 1dvd

<
B
=



6ap /1 -/+ SV INONY
20'0 -/+ 'J30 "J7d OML

1000 -/+ "330 "J1d 33MHL EEH 2L cq
031413dS ISTMIFHLD SSTNN | s
SIHINI NI SNOTSNIWIO 1T e M
; I
‘310N ol
I
l I
L 1A L
- = - = ~ | 925+ #9C-| 286
L}
s ﬂ--m.- ik
i
o I/
1 I
1 1 L
\
3104 Y10 £2'0
0SH Ak 050"

¢9 Ldvd

175



6ap z/1 -+ dvInONy

20'0 -+ '130 'J7d OML
100°0 -+ 330 *27d F3aHL
0314103dS ISIMNIHLO SSIINN
SIHINI NI SNOISNIWIO TV
}310N

£l'd

£1°d ]../// w

L0220 — Q5 -

L0°0 X 020 % 1 AomAay

¢9 LdVd

c0’

£S

tld

176



6ap 2/1 -/+ v IMONY

20°0 -7+ 230 "27d OMl
100°0 -7+ 'J30 "27d FFHL
0314103dS ISIMIFHLD SSTINM
SIHINI NI SNOISNIWIO T
:310N

992" —= - 99 =

\\\Q‘ 1

G0'0 X 02'() x 9.'0 AomAay

—— 27 | ——

LL] e

L0

0°0 % B6°0 % 8L°0

=1 o_mN:ﬂJ .Au/mm.m@\..@q,

F=—009 "~ pGf "o— BBL" =e——GBC | —=

AomA3y

177




Bap 2/1 -/+ dvInony

20°0 -7+ 330 "J7d OML
100'0 -7+ "230 "J1d JHL
0314103dS ISIMSTHLO SSTNN
SIHINI NI SNOISNIWIO 1
=Y

\w\\\ poaJy) 2€-Gf
N

86" 1

AW/ffff/l.mm_

eee —=

~—— 610"

61—

G9 Ldvd

178



Bap 2/1 -/+ gvInony

20°0 -/+ 230 "07d OML
100°0 -/+ 230 '27d 3L
0314103dS ISIMSTHIO SSTINM
SIHINI NI SNOISNIWIO TV
'310N

< B0L" =

3A004T |02 Jayds /

vid #0°0 2104 10

4

91G"d

beo————— BFE’ |

99 Ldvd

|||||mwff/ffff/

S9|0H ¥ VIO ES'0

LBV

179



Bap 2/1 -/+ Y INONY

20°0 -/+ 390 "07d OmL

100°0 -7+ 230 "27d 33HL

0314103dS ISIMIIHLO SSIINMT
SIHINI NI SNOISNIWIO T1¥ :

1310

J03Y UJOp —=

e

I

\\\W‘LJ
90’0 X 21°0 x 0L'0 Aomhal

180

El'd

le—— 1§ —ete—— 0 [ —==— LB’ . c0'1 ¢’ | —=

§




bap 2/1 -7+ gvInony

20°0 -/+ 330 "27d OML
100°0 -7+ 290 "27d 33eHL
0314173dS ISIMIFHLO SSTINM
SIHINI NI SNOISNIWIO TV
:310N

Siiy

801

T

LE" ==  fe———C]

89 Ldvd

el d

~—t]

181



6ap z/1 -7+ v INONY

20°0 -7+ 330 "21d OmL
100°0 -/+ '330 "27d 3L
03141J3dS ISIASTHLO SSTINM

~—088" —— <99¢ pe—— 906" | ———=
SIHONI NI SNOISNIWIO TV
a7 %9 T
e Ui
— N "
m\Im,.m__m_ g Spe—
\.
- |
| _nnnnnnnuunnnu“L 4
qagz . goergl £ J SR I S (S
! L P I [ N
_--ﬂ.ﬂ.l---|,_, !
I / ////./
a -6¢1'd DaJY| 2E-Of
~ I
EEl e b= 1 902" te-etw Lcl'e et k= 0QC°

0" 1

69 LdVd

182



6ap 2/1 -/+ dvINONY

20°0 -/+ 'J30 '2d OML
100°0 -/+ "230 "J1d ML
0314173dS ISIMIFHLO SSIINM
SIHINI NI SNOISNIWIO TT¥

310N
= 260' b -
poaUY| ZE-h :
....................... . Y
llllllllllllllllllllll AIIIll.nlllll.ll.l.ll
e | = . Halls = ———— B
012'81
o 905 | ———ete— G[f" —eba———— 1G5’ | ———

0L LdVd

8v0'¢

183



APPENDIX C

SAMPLE NETWORK DEFINITION FILE
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Sample Network Definition File.

Adaptive Resonance 2 network. Vigilance = 0.94

Input gain = 0.70000

STM gain = 0.20000

Predictive gain = 0.70000

Learn rate = 0.40000

Excitation bias = 0.00400

Excitation threshold = 0.20000

Vigilance = 0.94000

# run cycles = 10

# inputs = 100 (10, 10)

# outputs = 70 (10, 7)

Bottom-up weights:
0.05159 0.02075 0.03763 0.05626 0.07993 0.05817 0.05917 0.08992
0.01052 0.08789 001723 0.07120 0.05603 0.04071 0.08853 0.07438

0.07471 0.03767 0.01276 0.07113 0.06131 0.05276 0.08828 0.04542
0.03247 0.01489 0.04210 0.08269 0.06638 0.06440 0.04931 0.03605

Top-down weights:
0.00000 0.00000 0.00000 0.00000 0.00000 0.01030 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
030172 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00445
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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Sample Input File
TRAIN 10,10,1,1

/* INPUT PART PATTERN: 1 */

0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
1.00,1.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00,1.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,1.00,0.00,0.00,1.00,0.00,0.00,0.00
0.00,1.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00

/* OUTPUT PART PATTERN: 1 */
0.00

/* INPUT PART PATTERN: 2 */

0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
1.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00
0.00,0.00,0.00,1.00,1.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,1.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00

/* OUTPUT PART PATTERN: 2 */
0.00

/* INPUT PART PATTERN: 3 */

0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00,0.00,1.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,1.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00

/* OUTPUT PART PATTERN: 3 */
0.00
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/* INPUT PART PATTERN: 4 */

0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00,0.00,1.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,1.00,0.00,1.00,0.00,1.00,0.00,0.00,0.00,0.00

/* OUTPUT PART PATTERN: 4 */
0.00

/* INPUT PART PATTERN: 5 */

0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00
1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00,0.00,1.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00

/* OUTPUT PART PATTERN: 5 */
0.00

/* INPUT PART PATTERN: 6 */

0.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
1.00,1.00,0.00,0.00,0.00,0.00,0.00,1.00,0.00,1.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
0.00,0.00,0.00,1.00,0.00,0.00,0.00,1.00,0.00,0.00
0.00,1.00,0.00,0.00,0.00,1.00,0.00,0.00,0.00,0.00

/* OUTPUT PART PATTERN: 6 */
0.00
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0.94

Sample Output File: Vigilance

TRAIN 10, 10, 10,
/* Input vector 1 */

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
1.00, 1.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1:60;
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,

O

/% Output vector 1 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.93,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Input vector 2 : */

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
1.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 1.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 2 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.91;
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
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/* Input vector 3 : */

.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 1.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0O.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
60.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 3 : */

0.00, 0.00, 0.00; 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, O
6.o00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, O
.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, O.
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.96, 0.00, 0.00, 0.00, 0.00, O
0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00, O.
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Input vector 4 : */

.00, 0.00, 1.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00,
i1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
6.o0, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
l1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
6.o0, 0.00, 0.00, 0.00, 0,00, 0.00, 0.00, 0.00, 0.00, 0.00,
6.o0, 1.00, 0.00, 1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 4 : */

0.o00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 2.08, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.o00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.o00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.o00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
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/* Input vector 5 : */
0.00, 0.00, 1.00, 0.00,
1.00, 0.00, 0.00, 0.00,
0.00, 0.00, 1.00, 0.00,
1.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 1.00,
0.00, 1.00, 0.00, 0.00,

/* output vector 5 : */
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.21,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,

/* Input vector 6 : */
0.00, 0.00, 1.00, 0.00,
1.00, 1.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0O.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00; 0,00, 1.00,
0.00, 1.00, 0.00, 0.00,

/* Output vector 6 : */
0.00, 0.00, 0.00, 0.00,
0,00, 0.00, 0,00, 0.00,
0.00, 0.00, 0.00, 2.06,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
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0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
1.00, 0.00,
1.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,

0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,

0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
1.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
1.00, 0.00,

0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
100,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,



/* Input vector 7 : */
0.00, 0.00, 1.00, 0.00,
1.00, 0.00, 1.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00,

/* Output vector 7 : */
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,

/* Input vector 8 : */
0.00, 0.00, 1.00, 0.00,
1.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00,

/* Output vector 8 : */
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
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0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
2.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 1.00, 0.00,
0.00, 0.00, 0.00,
0.00, 1.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,

0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,

0.00, 0.00, 0.00,
0.00, 1.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 1.00, 0.00,
0.00, 0.00, 0.00,

0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,

0.00,
0.00,
1.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00;
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
2.08,
0.00,
0.00,
0.00,
0.00,



/* Input vector 9

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

/* Output vector 9

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

/* Input vector 10

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,

1.00;
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

: */
0.00, 0.00,
0.00, 0.00,

-0.00, 0.00,

0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
1.00, 0.00,
0.00, 0.00,
0.00, 1.00,

: */

0.00, 0.00,
0.00, 0.00,
2.20,; 0.00;
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,

s */

0.00, 1.00,
0.00, 1.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,

/* output vector 10 : */

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00, 0.00,
0.00, 0.00,
2.07, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
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0.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,



/* Input vector 11 : */

0.o00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
.00, 1.00, 0.00, 0,00, 0.00, 0,00, 0.00, 1.00, 0.00, 1.00,
1.00, 0.00, 0.00, 0.00, 0.00, 0,00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.o00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.o00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 11 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00O0,
0.00, 0.00, 0.00, 2.06, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, O.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Input vector 12 : */

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
i.00, 0.00, 0.00, 0.00, O.00, 0.00, 0.00, 1.00, 0.00, 1.00,
0.o00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0O.00O0,
i1.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, O0.00, 0.00,
.00, 0.00, 0.00, 0.00, 0.00, 1.00, O.00, 0.00, 0.00, 0.00,
0.o00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0O0.00, 0.00, 0.00, 0.00,
0..009, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, . 1.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 12 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
.00, 0.00, 0.00, 2.13, 0.00, 0.00, 0.00, 0.00, 0.00; 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.o00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0O.00, 0.00, 0.00, 0.00,
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/* Input vector 13 : */

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
i1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0O.00,
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
o.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
0.o00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 13 : */

.00, 0.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0O.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 2.04, 0.00, 0.00, 0.00, 0.00, 0.00, 0O.00,
0.o00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Input vector 14 : */

.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 1.00,
i1.00, 0.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0O.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0O.00O0,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
.00, 0.00, 0.00, 1.00, 0.00, 0.00, O0.00, 0.00, 0.00, O.00O,
.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0O.00O0,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 14 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
.00, 0.00, 0.00, 2.22, 0.00, 0.00, 0.00, 0.00, 0.00, 0O.0O,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0,00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
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/* Input vector 15

0.00, 0.00, 1.00, 0.00,
1.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 1.00,
0.00, 1.00, 0.00, 0.00,

/* Output vector 15

0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,

/* Input vector 16

0.00, 0.00, 1.00, 0.00,
0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0,00, 0.00,

/* Output vector 16

0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
2.26, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,

»
.

i 4

: */

*/

3 &

1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
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0.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
2.19,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,



/* Input vector 17 : */

1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,

/* output vector 17 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2.01, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Input vector 18 : */

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
1.00, 1.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 18 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 2.07, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
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/* Input vector 19 : */

i.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
1.00, 0.00, 0.00, 0.00, 0.00, O.00, O.00, 0.00, 0.00, 0O.00,
0.00; 0.00, 0.00, 0.00, 0,00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 19 : */

0o.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0O0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 2.16, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0O.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Input vector 20 : */

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 1.00, O.00, O0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0,00, 1.00, 0,00, 0.00;, 0.00, 0.00; 0.00, 0.00, 0.00, 0.00,

/* Output vector 20 : */

0.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0O0.00, O.0O0,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2.10, 0.00,
0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0o.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
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/* Input vector 21 : */

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 1.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00, O.00,
1.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
1.00, 0.00, 0.00, O0.00, O0.00, O0.00, 0.00, 0.00, 0.00, 0O.0O,
0o.o00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, O0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* output vector 21 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 2.06, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Input vector 22 : */

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
1.00, 0.00, 1.00, 0.00, 0.00, O0.00, O.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, O0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, O0.00, O0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00;, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 22 : */

0.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0,00, 0,00, 0,00, 0.00, 2.26,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0,00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
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/* Input vector 23 : */
i1.00, 0.00, 1.00, 0.00,
1.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00,

/* Output vector 23 : */
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, O.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,

/* Input vector 24 : */
0.00, 0.00, 1.00, 0.00,
1.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.0O0,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00;

/* Output vector 24 : */
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 2.20,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
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0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
1.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
1.91,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,



/* Input vector 25 : #*/

0.00, 0.00, 1.00, 1.00, 0.00, 0.00,
1.00, 1.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 1.00, 0.00, 0.00,
0.00, 0.00, 1.00, 1.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 25 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 2.28, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Input vector 26 : */

0.00, 0.00, 1.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 1.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 1.00,

/* Ooutput vector 26 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 2.32, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
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0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
000,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,



/* Input vector 27 : */

1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* output vector 27 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 2.21, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Input vector 28 : */

1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 28 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2.24, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
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/* Input vector 29 : */
0.00, 0.00, 1.00, 0.00,
0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 1.00,
0.00, 1.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00,

/* Output vector 29 : */
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
2.29, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,

/* Input vector 30 : */
1.00, 0.00, 1.00, 0.00,
0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00;
.00, 0.00, 0.00, 1.00,
0.00, 0.00, 1.00, 0.00,
0.00, 1.00, 0.00, 0.00,

/* Output vector 30 : */
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00; 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
2.13, 0.00,, 0.00, 0.00;
0.00, 0.00, 0.00, 0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
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0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,



/* Input vector 31 : */

1.00, 0.00, 1.00, 0.00, 0O0.00, 0.00, 0.00, 0.00, 0.00, 0O.00,
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
.00, 0.00, 0.00, 0.00, 0,00, 0.00, 0.00, 0.00, 0.00, O.00O,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.o00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.0O0,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
0.o00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 31 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 1.54, 0.00, 0.00, 0.00, 0.00,

/* Input vector 32 : */

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00,
0.o00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
l1.00, 0.00, 0O0.00, 0O0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 32 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2.08,
0.o00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
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/* Input vector 33

0.00,
1.00,
0.00,
1.00,
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,

1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

s N/
0.00, 1.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0-00, Ooool
0.00, 0.00,
0-00, 00000‘
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,

/* output vector 33 : */

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

/* Input vector 34

0.00,
1.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,

s k/
0.00, 0.00,
0.00, 0.00,
0-00, 0«00}
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0,00, 0.00,
0.00, 0.00,
0,00, 0.00;

/%* output vector 34 : */

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
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0.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, OOOOI
0-00' O'OOI
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,

0:00, 0.00;
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00;, 0.00,
0.00, 0.00,
0.00, 0.00,

0-00; O'OOI'
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0:00,; 0+00;
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,

0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
2.14,
0.00,
0.00,
0.00,
0.00,

0.00,
1. 00
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
2l..18 ,
0.00,
0.00,
0.00,
0.00,



/* Input vector 35 : */

0.00, 0.00, 1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, O0.00,
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, O0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 35 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 2.20,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, O.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Input vector 36 : */

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, O.00,
1.00, 1.00, 0.00, 0.00, 0.00, O0.00, O0.00, 0.00, 0.00, O0.00,
0.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.0O0,

/* Output vector 36 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.98,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
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/* Input vector 37 : */

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0O0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* output vector 37 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
2.22, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Input vector 38 : */

0.00, 0.00, 1.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
i1.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
i.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.0O,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 38 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0O.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, O0.00,
2.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
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/* Input vector 39 : */

o.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, O.00, 0.00, O.O0O,
i1.00, 1.00, 1.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, O.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, O0.00, O0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, O.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, O0.00, 1.00, O.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 39 : */

0.00, 0.00, 0.00, O0.00, 0O.00, 0.00, 0.00, 0.00, 0.00, 0O.00,
0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0,00, 0.00, 0O0.00, 0O.00,
0.00, 0.00, 0.00, 2.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0,00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00O,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Input vector 40 : */

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0,00, O.00, 0.00, 0.00,
0.00, 1.00, 1.00, 0O.00, 0.00, 0.00, 0.00, 1.00, 0.00, 1.00,
i.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00; 0.00, 0.00; 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0:.00;, 0.00; 0.00; 0.00; 0.00, 0,00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0O.00,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 40 : */

¢0.00, 0.00, 0,00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.93,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, O.00, O.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0,00, 0.00, 0.00, 0.00, 0.00, 0O.00,
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/* Input vector 41

0.00,
1.00,
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,

1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

s x/

0.00, 0.00,
1.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,

/* Output vector 41 : */
0.00, 0.00,
0.00, 0.00,
2.02, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

/* Input vector 42

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

1.00,
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

: x/

0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
1.00, 0.00,
0.00, 0.00,

/* Output vector 42 : */
0.00, 0.00,
0.00, 0.00,
1.97; 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
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0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
100,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,



/* Input vector 43

0.00, 0.00, 1.00, 0.00,
1.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00,

/* Output vector 43

0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,

/* Input vector 44

0.00, 0.00, 1.00, 0.00,
1.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00,

/* Output vector 44

0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 2.16;
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,

*/

5 W/

*y

i ey

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
000,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
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0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
1.93,
0.00,
0.00,
0.00,
0.00,

0.00,
100
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,



/* Input vector 45 : */

0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, O0.00, O0.00, 0.00, 0O.00, 0.00, 0.00,
0.o00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0O.00,
i1.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0O.00, 0.00, 0O.0O,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00,
i.00, 0.00, 0.00, 0.00, 0.00, O.00, O.00, O0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, O.0O,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 45 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00; 0.00; 0.00, 2.13, 0.00, 0,00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
.00, 0.00, 0.00, 0.00, O0.00, O.00, 0.00, 0.00, 0.00, 0.0O0,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Input vector 46 : */

0.00, 0.00, 1.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 1.00, O.00, O.00, O.00, O.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.0O,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0O.0O0,
.00, 0.00, 0.00, O0.00, 0.00, 0.00, O0.00, 0.00, O.00, 0O.00O,
0.o00, 0.00, 0.00, 0.00, 0.00, 0.00, O.00, 0.00, O.00, 1.00,
i1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0O.00, O0.00, 0.00, 0O.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

/* Output vector 46 : */

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 2.04, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
.00, 0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0O.00, 0.00,
0.00, 0.00, 0.00, 0.00, O0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
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/* Input vector 47

1.00,
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
100

1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

2 %/
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,

/* Output vector 47 : */

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

/* Input vector 48

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
1.00,

0.00,
0.00,
0.94,
0.00,
0.00,
0.00,
0.00,

1,00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

2 %/
1.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

/* Output vector 48 : */

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
2.04,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
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0.00, 0.00,
0.00, 0.00,
0.00, 1.00,
0.00, 0.00,
0.00, 0.00,
1.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 1.00,
0.00, 0.00,

0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,

0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 1.00,
0.00, 0.00,
0.00, 0.00,

0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,
0.00, 0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1.00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,

0.00,
1. 00,
0.00,
0.00,
0.00,
0.00,
1.00,
0.00,
0.00,
0.00,

0.00,
0.00,
0.00,
0.00,
0.00,
0.00,
0.00,



/* Input vector 49

0.00, 0.00, 1.00,
1.00, 0.00, 1.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 1.00, 0.00,
/* Output vector 49
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
/* Input vector 50
0.00, 0.00, 1.00,
1.00, 0.00, 1.00,
0.00, 0.00, 0.00,;
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 1.00, 0.00,
/* Output vector 50
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,
0.00, 0.00, 0.00,

OOPRrRPOOCOOO0OO0OO0o0 o oNoloelNe o) OFRPO0OO0OO0OO0OO0O0OO0OO0

OO0 OoOMNOO

OO 00000000 oNoNeloNelNolo) OO0OO0OO0O0OO0OO00OO0OK

OO0 0O0O0O0o

.00,
.00,
.00,

.00,
.00,

.00,
.00,

.00,
.00,
.00,
.00,
.00,

.00,
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OO0 O0OO0OKFHOOOOO

O O0OO0OO0O00O0

HPOORFRPOOOOOOo

OO O0OO0O0O0O0o

.00,
.00,
.00,

.00,
.00,

OCO0OO0O00OO0O0O0OO0OO0

OO0 000O0

OO0 00000000

[eNeolNeNeNeoNo Nl

.00,
.00,
.00,

.00,
.00,

OFROO0OO0OO0OO0COKO OCO0OO0OO0O0O0OO0 OO0OO0OO0OO0O0O00O0O0

OO0 00000

.00,
.00,
00

.00,
.00,

[eNeNeloNelNeNelNeNolNe OO0 00000 O000O0O0O0OOO0CO0

OO0 00000

.00,

SO0,
.00,

.00,
.00,

.00,
.00,
.00,

. 00,

00,

.00,
.00,

OO0 O0OPrPOOOORKrOo

OO0 00000

el eNelelVeNe]

OO0OO0ORrRPROOOOHKrHO

.00,
.00,

-00;
.00,
.00,
.00,

.00,
.00,



/* Input vector 51 * /
.00, 0.00, 1.00, 0.00,
1.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 1.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 1.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00,
/* Output vector 51 :

0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
/* Input vector 52 : */
0.00, 0.00, 1.00, 0.00,
1.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
1.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 1.00,
0.00, 1.00, 0.00, 0.00,
/* Output vector 52 :

0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 2.14,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00,

OO0 0O0OO0O00OO OO0OO0OO0O00O0 OO0 00000000

OO0 O0OO0Oo

00, 0.00,
00, 0.00,
00, 0.00,
00, 0.00,
00, 0.00,
00, 0.00,
00, 1.00,
00, 0.00,
00, 0.00,
00, 0.00,
00, 0.00,
00, 0.00,
00, 0.00,
00, 0.00,
00, 0.00,
00, 0.00,
00, 1.40,
00, 0.00,
00, 0.00,
00, 0.00,
00, 0.00,
00, 0.00,
00, 1.00,
00, 0.00,
00, 0.00,
00, 0.00,
00, 1.00,
00, 0.00,
00, 0.00,
00, 0.00,
00, 0.00,
00, 0.00,
00, 0.00,
00, 0.00,
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OO0 O0OO00OO0O0o OO0 0O0O0OO0O0O0OO0

OO0 O0O0OCO0OO0OO0O0OO0

OO0 0000 O0

[eNeNeoloNeNoNe]

[eNeNeNeoNeNeNe]

OO0OO0OO0O0OO0OO0ODOO0OO0O

.00,
.00,
.00,
.00,
.00,

.00,

OO0 O0OO0O0OO0OO0

[eNeoNe oo NeNe]

[eNeNeoloNoNoNaoleNole)

OO0 O000O0O0O0O0

.00,
.00,
.00,
.00,
.00,
.00,
.00,

OO0 00000 OO O0OFrRPROOOORKO

OO0OORFRPOODOOKF O

[eNoNeoNoNeNoNo]

.00,
.00,

.00,
.00,
00,

.00,
.00,

.00,
.00,

.00,
.00,
.00,



APPENDIX F

GROUPING ANALYSIS
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Table 4. Grouping Analysis: Vigilance Parameter:- 0.92

Group PARTS

Nol

2 17,19,20,21,28,29,30, 31

15 5,6,7,18,27,68,69

39 1,2,3,4,8,9,10,11,12,13,14,15,16,22,23,24,25,26
32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,
48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,
64,65,66,70
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Table 5. Grouping Analysis: Vigilance Parameter:- 0.92

Group No. 2 15 | 39

Geometric Features

Straight Outside

Taper Outside

Groove Qutside

Pulley

Circumferential Holes

Keyway Outside

Threading Outside

Threading Inside

Cross hole

Straight hole

Taper hole

Blind hole

Step Hole

T Io|O || |O|2 |2 | |>» |O|O|O|T
ojlo|lo|»|»|o|lo|o|o|o|o|o|o]|o
olo|jlo|lo|lo|lo|o|o|lo|lo|o|lo|o |w

Hole

Key:-

A - Denotes absence of a feature.

P - Denotes presence of a feature.

O - Denotes presence or absence of a feature
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Table 6. Grouping Anaysis: Vigilance Parameter:- 0.93

Group PARTS
No.
8 7,8,18,21,22,27,56,57,58,59,60
26 1,2,3,4,5,6,39,40,41,42,43,44,45,46,47,48,49,50,
52,53
38 17,20,28
50 9,10,22,12,13,14,15,16,23,24,25,26,32,33,34,35,
36,37,38,54,61,62,63,64,65,66,68,69,70
62 19,29,30,31

219



Table 7. Grouping Analysis: Vigilance Parameter:- 0.93

Group No. 8 26 | 38 | 50

Geometric Features

Straight Outside

Taper Outside

Groove Outside

Pulley

Circumferential Holes

Keyway Outside

Threading Outside

Threading Inside

Cross hole

Straight hole

Taper hole

Blind hole

Step Hole

Hole

of|l»|o|» |O|O|»|[O]|O|>» |» |O|O |
o|lo|jo|jo|j]o|jo|jO|O|]O|O |>» |O|O |
v (O |>» |0 |O|O|® |® |2 |> |®» |>|T
o|lo|o|]Oo|Dw|O|O|O|O|O|D|O|O|T

v l|l» (> |»|v|O|O|®» |>» |>» |O]|>» |O|O

Key:-

A - Denotes absence of a feature.

P - Denotes presence of a feature.

O - Denotes the presence or absence of a feature
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Table 8. Grouping Anaysis: Vigilance Parameter:- 0.94

Group PARTS
No.
24 4,6,9,10,11,12,13,14,24,25,26,39,41,42,44,45,46,
48,50,52,53,54,59,60,61,65,66,68,70
26 7,8,18,21,27,67
29 17,28
30 1,2,8,15,22,23,32,33,34,35,36,40,43,49,57,58,69
39 19,20
51 16,29,30,37,38,62,63,64
66 31,51,56
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Table 9. Grouping Analysis: Vigilance Parameter:- 0.94

Group No. 24 | 26 | 29 | 30 | 39 | 51

Geometric Features
Straight Outside P o} P P P o] P
Taper Outside 0] 0] A P A 0 0
Groove Outside O| O | A o] A o A
Pulley 0 A A 0O A 0 A
Circumferential Holes 0O A A A A A A
Keyway Outside 0O 0] A (@) A 0] 0]
Threading Outside 0 0 A (0] Al A 0
Threading Inside 0 A (@) o] 0 A 0
Cross hole A ] A 0 oO| O A
Straight hole 0 0 P O P o] P
Taper hole 0 A A 0 A A A
Blind hole A O A o) A A P
Step Hole 0 A (0] @] A A A
Hole o) 0 P 0 P o) P

Key:-

A - Denotes absence of a feature.

P - Denotes presence of a feature.

O - Denotes either the presence or absence of a feature
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Table 10. Grouping Anaysis: Vigilance Parameter:- 0.95

Group PARTS
No.

8 36,44,45,46,58,65,68,69,70

11 4,32,33,34,35,42,43,61

20 2,8,9;10,11,;12,13,14,15,24,25,26,38;50;52,53;54;

59,60

23 19,28

35 23,48

41 7,18,22

55 1,3,6,39,40,49,55

60 27,67

64 29,30,37,62,63,64

65 16,41,51
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Table 11. Grouping Analysis: Vigilance Parameter:- 0.95

Group No. 8 11| 20 | 23 | 35 | 41 55 65

Geometric Features
Straight Outside P P P P P P P P P
Taper Outside P 0 0 A A 0 A P 0
Groove Outside P A o] A A A A 0 A
Pulley o] A A A A A A P A
Circumferential Holes A A o) A 0 A ) A o)
Keyway Outside A o] A A A o] o} O A
Threading Outside 0 A 0 A A 0 0 A 0
Threading Inside 0 0 0] A A A 0 A A
Cross hole A A 0 0 A (o) (o) 0 A
Straight hole o] P P P A 0 0 0 P
Taper hole A 0 0 A A A 0 o} 0
Blind hole 0 A A A A 0 A O 0
Step Hole A P (0] A A A (0] 0 0
Hole o) P P P A 0 0 0 P

Key:-

A - Denotes absence of a feature. D

P - Denotes presence of a feature.

O - Denotes either the presence or absence of a feature
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Table 12. Grouping Anaysis: Vigilance Parameter:- 0.96

Group PARTS
No.

9 23,48

12 8,9,10,11,12,14,19,24,25,28,50

15 4,13,15,32,33,34,35,45,46,49

20 26,44,59,60,65,68

40 29,37,62,63,64,70

44 18,22

49 36,43,54,69

52 1,3,55

53 16,30

65 6,39,40,42

68 27,67
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Table 13. Grouping Analysis: Vigilance Parameter:- 0.96

Group No.

9 12| 16

20

40

44 | 49

Geometric Features

Straight Outside

Taper Outside

Groove Outside

Pulley

Circumferential Holes

Keyway Outside

Threading Outside

Threading Inside

Cross hole

Straight hole

Taper hole

Blind hole

Step Hole

Hole

> 2| |2 |2 |2 |2 |22 |O|>» |>» |>» |0
2 |O|>» | |O|>» |O|®|>» |O|>» |O|O|T
OlO|»|O|T|(>» |O|O|>» |» |» |>» |T |0

O|>» |»|(» O |»|O]|>» |»|>» |O|O|T

Ol>» || |O|JO|JO|>»|O|>» | |>» |T|T

T (OO |O|O|>» |O|>» ||| |>» |O|T
o|jojojO|jO|» |O|O|>» |»|O|O|T |T

OO |2 |O|O|>» |2 |O|>® |>» |>» |> |0

T | |||V || |>|>|T|>|T

o |O|> |>|TD|> |O|O|T|O|>» |>» |O]|O

> || |2 |2 |>» |>» |O|O|>» |>» |>» |O|T

Key:-

A - Denotes absence of a feature.

P - Denotes presence

of a feature.

O - Denotes either the absence or preence of a feature
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Adaptive Resonance Theory

Introduction

This model was used for the proposed application to
automatically classify parts into part families in a Group
Technology manufacturing environment. Adaptive Resonance
Theory is a mathematical model of a unsupervised neural
network architecture. The network architecture is unique
among all the existing paradigms. The architecture detects
and remembers statistically predictive configuration of
featural elements which are derived from all the input
patterns. The main advantage in using ART is the scope of
learning any kind of configuration of part families or other
patterns. In ART2 the learned part patterns undergo
self-organization and self-stabilization as training
progresses.

Self-organization is said to have occurred when the
network classifies the input part patterns into different
part families automatically without external help. This
process of self-organization avoids the use of a teacher to
decide the size of the part family.

Self-stabilization is said to have occurred when the
learned history is not washed away by the more recent
learning. This is true even if the inputs are presented in
any arbitrary order and in any arbitrary complexity. The

search strategies are dynamically modified and updated as
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new part patterns are learned. The learned part patterns
result in the formation of critical feature patterns for
each individual part family in the network. The critical
feature patterns are concepts which the network develops and

cannot be accessed by the user.

ART2 Methodology and Working

Within ART multiple interacting memory mechanisms are
employed to monitor and adaptively react to the novelty of
part patterns or process familiar and unfamiliar part
patterns. Familiar events are processed by an attentional
subsystem. This system establishes more precise internal
representation of familiar part patterns. The attentional
subsystem by itself is unable to simultaneously maintain
stable representation of familiar part patterns and to
create new part families for novel or unfamiliar part
patterns. The attentional subsystem comprises the whole
system excluding the orienting mechanism.

The second subsystem is an orienting subsystem that
resets the attentional subsystem when a unfamiliar part
pattern is encountered by the network. The orienting
subsystem is capable of identifying whether a new part
pattern is familiar and well represented by an existing part

family or is unfamiliar and in need of a new part family.
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The Attentional subsystem consists of the following
components.

1) Node 1

2) Node 2

3) Attentional Géin Control

4) Attentional Priming

Node 1 and Node 2 consists of processing elements or
"feature detectors". Node 1 and node 2 are interconnected
fully from every processing element in node 1 to each
element in node 2. These interconnections are named the
Long Term Memory (LTM) traces. There also exists two types
of memory in an ART2 architecture, as in human beings. The
Short Term Memory (STM) is the temporary memory which maps
the input pattern to the nodes. The Long Term Memory (LTM)
is the memory in the system resulting from past learning.
The orienting subsystem has no further sub-classification.

The Attentional Priming mechanism primes or sensitizes
the input node to receive a bottom-up input pattern. This
bottom-up input is the input pattern to the network. The
bottom-up input part pattern is compared with the expected
part pattern created by the network. The attentional gain
control mechanism is a test system which enables the network

to distinguish between top-down and bottom-up part patterns.
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ART2 Working

The working of ART2 can be explained by following a
step by step procedure on the flow chart and schematic given
in the following pages. The flow chart is arranged in an
hierarchy of two levels. The first level (see Figure 10(a)
and Figure 10(b)) outlines the working of ART2. This level
explains the overall working of ART2.

The second level explodes and explains each step in
level 1 in a systematic and logical fashion. In this
section each step will be explained in detail and a
reference will be made to the flowchart for better
understanding. Now a description of all the steps under

level 2 will be given.

Step 1:

The input to the network is a file of parts coded as
binary matrices. Refer to Figure 11l(a) and 11(b). Let a
typical binary matrices be named BM. The binary matrix
impinges on the processing elements of node 1 which is part
of an attentional subsystem as described above. The input
pattern BM as it impinges on the node 1 is passed through an
output function of each unit. The propagation and
activation rule are responsible for achieving this output.
The output pattern obtained as a result is an activation
pattern across node 1. Let the pattern of activation be

termed PAn as shown in the Figure 10(a). The pattern
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Stepl

Step 2

SETn=20

i

THE INPUT PART BINARY MATRIX (BM)
AT THE INPUT TO NODE 1 PRODUCES
OUTPUT PATTERN "PSn" AT THE OUTPUT
OF NODE 1. "BM"-> "PAn" -> "pSn"

THE PATTERN "PSn" PRODUCES PRODUCES
PATTERN "PUn" AT THE OUTPUT OF NCDE 2.
“PSnII - Ilprnll - ltPYnll - llPUnn

Step 3

THE PATTERN "PUn" PRODUCES PATTERN "PVn"
AT THE INPUT OF NODE 1. "PUn" -> "PVn"

LEARN TOP-DOWN NO
TEMPLATE "PVn".

IS THERE IS "SIGNIFICANT" MISMATCH BETWEEN

"BM" AND "PVn" AS INDICATED BY THE
VIGILANCE PARAMETER

YES

PART FAMILY DENOTED
BY THE PROCESSING
ELEMENT PEn SELECTED ON
THE nth TRIAL.

"ORIENTING MECHANSIM" ENGAGED

[
INHIBIT THE PEn WITH THE HIGHEST

EXIT

ACTIVITY IN NODE 2

l

REMOVAL OF PATTERN "PYn", "PUn"
AND "PVn" IN MENTIONED SEQUENCE

REMOVAL OF PATTERN "PVn" TERMINATES
THE MATCHING BETWEEN "PVn" AND "“BM"

i

ENDURING INHIBITION OF PEj IN NODE 2
|

n=n+1

—

Step

Step

Figure 11(a). ART2 - METHODOLOGY, ILevel 1
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INPUT FROM INPUT FILE

THE INPUT PATTERN "BM" IMPINGES AT THE
INPUT OF NODE 1

THE PATTERN "BM" GENERATES A STM
PATERN "PAn" OF ACTIVATION ACROSS NODE 1
WBMM ——=> WPAR"

THE STM PATTERN "PAn" PROPAGATES PATTERN
"PSn" AT THE OUTPUT OF NODE 1.
"PAnll —— IIPSnll

GO TO Step 2

Figure 12(a). ART2 - METHODOLOGY, Level 2, Step 1
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obtained is a STM pattern. Every input node has a pattern
of activation. There is a threshold defined by the
propagation rule for every processing element which does not
allow patterns below a certain activation to propagate. The
propagation function used is a sigmoid activation function.
These patterns propagate to node 2. Thus as a result the
pattern PAn results in a selective pattern PSn across the
input node.

Step 2:

The pattern PSn traveling to node 2 is multiplied by
the connection weight or the LTM trace. Refer to Figure
12(a) and 12(b). This multiplied signal reaches node 2.
This signal is added at all the processing elements in node
2. The result of adding all the signals at node 2 generates
the pattern PTn as the input of node 2. The transformation
of pattern PSn to PTn is called an Adaptive Filter. The
pattern PTn is now the input to node 2. At this node an
interesting phenomenon takes place. The processing element
which has the highest activation becomes more and more
active. Also the elements next to it with lesser
activations become more and more inhibited and as a result
become less positive. This results in only one positive
element in the output layer. This process is technically
termed "Contrast Enhancement". The activation pattern
obtained at the output of node 2 is termed PYn. The

choosing of the element having the largest input is a
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CONTINUED FROM STEP 1

THE PATTERN "PSn" IS MULTIPLIED BY
THE LTM TRACE BETWEEN NODE 1 AND NODE 2
TO PRODUCE AN OUTPUT PATTERN "PTn" AT
THE INPUT TO NODE 2.

PSn ---> PIn

THE COMPETITION AMONG NODE 2 PROCESSING
ELEMENTS PRODUCES A PATTERN "PYn" AS THE
STM OF NODE 2.

PIn —=> PY¥n

THE PATTERN "PYn" IN NODE 2 WHOSE ACTIVITY
EXCEEDS THE THRESHOLD SPECIFIED WILL GENERATE
A PATTERN "PUn".

PYn ---> PUn

GO TO Step 3

Figure 13(a). ART2 - METHOPQIOGY, Level 2, Step 2
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special case of the class of Adaptive Resonance Theory
models. The part pattern PYn now stored in the short term
memory (STM) of node 2. The STM contrast enhanced pattern
PYn in node 2 propagates a pattern down to the node 1. This
top-down pattern is termed PUn. Activities above the
threshold generate a pattern PUn.

Step 3:

The pattern PUn is multiplied by the connections
between node 1 and node 2. Refer to Figure 13(a) and 13(b).
These are also termed the LTM traces. The multiplied
signals are now at node 1. The multiplied and summed input
signal node 1 generates a pattern PVn at the input of node
1. The pattern PVn is also an adaptive filter. The pattern
PVn is known as the top-down template or "Learned
Expectation" because this pattern is obtained as a result of
the bottom-up original part pattern. The node 1 is now
acted upon by two patterns. One pattern is BM which is the
original input to the network and which resulted in the STM
pattern PAn at node 1, and the pattern PVn. The second
pattern PVn is as a result of the pattern PYn at node 2.

The two patterns BM and PVn now generate an entirely
different pattern at node 1. Thus initially the input
pattern resulted in the pattern PAn of STM across node 1.
Now the combined effect of the two patterns causes a pattern
PAn". This pattern PAn" is different from pattern PAn. 1In

a conceptual sense node 1 does a matching job. It tries to
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CONTINUED FROM STEP 2

PATTERN "PUn"THE MULTIPLIED BY THE
LTM TRACES BETWEEN NODE 1 AND NODE 2 TO
PRODUCE A PATTERN "PVn" AT THE INPUT OF

NODE 1. PUn ---> FVn

THE PATTERN "PVn" AND PATTERN "BM" NOW
IMPINGE ON NODE 1.

GO TO Step 4

Figure 14(a). ART2 - METHODOLOGY, Level 2, Step 3
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match and compare PVn and BM. The amount of match or
mismatch determines the future course of learning. The
transformation of the pattern from PAn to PVn takes place at
high speed. Conversely the LTM traces and the adaptive
filters change their values very slowly. The second memory
system now comes in use in deciding the future course of
action of the system. This system is the orienting
subsystem. The input pattern BM also excites the orienting
mechanism. The pattern PAn of activation inhibits the same.
If the patterns BM and PVn do not match then this inhibits
the pattern PAn from node 1. The inhibition of the STM
activity across node 1 causes the orienting mechanism to
fire because of less inhibition. The degree of inhibition
is indicated by the difference between the input pattern BM
and the pattern PVn. The higher the mismatch the higher is
the inhibition.

Step 4:

The inhibition of the STM activity causes the orienting
system to become active and trigger a signal to node 2.
Refer to Figure 14(a) and Figure 14 (b). The signal is
inhibitory in nature and selective and inhibits only the
active nodes. In the special case the node with a positive
output. This causes node 2 activity to be reset. This
inhibition is long lasting to ensure that the same
processing element is not selected again for the reinstated

pattern. The inhibition of the STM activity leads to the
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CONTINUED FROM STEP 3

The inhibition of the STM pattern causes
the removal of the inhibition from the
orienting subsystem.

The pattern "BM" also has an excitatory input
to the orienting subsystem.The removal of the
STM activation triggers the orienting mechanism to
fire.

The orienting mechanism fires a inhibitory signal
to the processing elements in the output node.

The result of this firing is the selective
inhibition of the most positive activity in the
output node.

The inhibition of the pattern "PYn" results in
the removal of the pattern "PVn" impinging
on the input node.

" GO TO Srep 5 |
Figure 15(a). ART2 - M?IEODOLOGY, Level 2, Step 4
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inhibition of the STM pattern PYn across node 2. This
removes the template PVn across node 1.
Step 5:

This results in the stopping of the mismatch between
PVn and BM. Refer to Figures 15(a) and 15(b). The
inhibition of node 2 is long lasting. Now again the new
pattern PAn" causes the creation of a new pattern PAn"
across node 2. This pattern as described earlier causes the
creation of the pattern PVn" across node 1. There is again
a pattern matching as explained earlier. Node 2 which was
aroused earlier cannot be aroused now due to the enduring
inhibition. If there is a mismatch again at node 1 then the

orienting subsystem is engaged again.

Vigilance Level Tunes Categorical Coarseness: Disconfirming
feedback

First we need to define the vigilance parameter g.
Let |POS| denote the number of input pathways which receive
positive inputs when the pattern BM is presented. Assume
that each such input pathway sends an excitatory signal of
fixed size E to the orienting mechanism O whenever BM is
presented, so that the total excitatory input to 0 is
E|POS|. Assume that each input node whose activity becomes
positive due to BM generates inhibitory signal of fixed size
I to the orienting mechanism 0. Let |NEG| denote the number

of active pathways from node 1 to the orienting mechanism
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CONTINUED FROM STEP 4

The result of the removal of the
pattern "PVn" results in the termmination
of the mismatch between "PVn" and "BM".

The pattern "BM" is still being imposed at the
at the input.

|
The whole process from step 1 is repeated
till the pattern "BM" finds it's part family.

l

The inhibition from the orienting mechanism
is long lasting and thus the processing element
which was selected in the first iteration is not
selected again till all of them are exhausted.

GO TO Step 1

Figure 16(a). ART2 - METHODOOGY, lLevel 2, Step 5
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that are activated by the STM pattern PAn across node 1.
The total inhibitory signal from node 1 to the orienting
mechanism is I|NEG]|.

When E|POS| > I|NEG|, the orienting subsystem receives
a net excitatory signal and generates a non-specific reset
signal to node 2.

The quantity ¢ = E + I

is called the vigilance parameter of the orienting

subsystem. The STM reset is triggered when

o = |pPos| + |NEG]

The STM reset 1is prevented when

o € |pos| + |NEG|

In short, the proportion |POS| + |NEG| of the input pattern
BM which is matched by the top-down template to generate PX
must exceed @ in order to prevent STM reset at node 2.

While node 2 is inactive, |POS| = |NEG|. Activation of
the orienting subsystem is always forbidden in this case to
prevent an input I from resetting its correct node 2 code.
This constraint is achieved if ¢ < 1.

that is ¢ < I.

In summary, a bad mismatch at node 1 causes a large

247



collapse of the activity of node 2, which leads to the

activation of the orienting mechanism.

Advantages of ART2 over supervised learning models

In this section an attempt is made to compare ART2 to
the popular supervised learning paradigms.

1) Stability.

Supervised learning paradigms become unstable as the
input environment becomes complex. This means that the
network never converges to a optimum value, instead it
fluctuates around some arbitrary unpredictable value. An
omniscient teacher has to decide if the network has learnt
enough in response to an arbitrary input environment.
Conversely ART2 paradigm learns without a teacher and
accepts any arbitrary inputs.

2) Exemplar or Prototypes:

Within a supervised learning paradigm an expected or a
template pattern is imposed on every trial by an external
teacher. The errors are computed by comparing each
component of the expected output with the actual output.
This deficit deviods this paradigm the important

characteristic of creating critical feature patterns.
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ABSTRACT

This thesis details the procedure for automatic
classification of rotational parts into part families using
an artificial neural network. The classification is based
on geometric features and tolerances. The neural network
paradigm employed belongs to a class of Adaptive Resonance
Theory Models. The training of the network was done on a
commercially available software package.

The major conclusions that can be drawn from this
research are: 1) The ART2 paradigm in neural networks is
capable of automatically grouping parts into part families.
2) The number of groups increased with an increase in
vigilance of the system. The number of groups also
decreased with a decrease in vigilance. 3) The order in
which the parts are input to the system has no effect on the
system performance.

Thus the overall conclusion of this thesis is that
neural networks are indeed an appropriate tool to

automatically group rotational parts into part families.



