HLZEW
EDITING SYSTEM

by

DAVID BARTLETT AARCHNSON

B.S., Troy State University, 1977

A MASTER'S REPORT

submitted in partial fulfiliment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Sclence

FANSAS STATE UNIVERSITY
Maphattan, KS

1982

Approved by:

SPEL -

o g s : :
LD FLIEUD 1849059 |

Dbl ¥

R4

198 &

A;); ACKNOWLEDGEMENT
.

I would like to take this opportunity to thank Dr., David Gustafson

for the many hours of guidance, support, and review rendered,

Also, I want to extend thanks to my wife, Barbara, and daughter,

Heather, without who's love and patience this report could never have

been done,

TABLE OF CONTENTS

Lhapter

1.

II.

Iil.

Iv.

V.

-

INTRUDUCTION LI BN B B B TR B NN D B BN N N O BN BRI B B N BN B N BN R RE N BRI BN BN AN N BN BTN BN S N N RN]

Scope and Purpose L IE B BB B B OE IR B AN 2N BN BE O B BN R B BN BN RE IR B BN B BN AN B AL BN BE OE BN BN BN BN BT BL B BN J
Constraints (B R EE R R R R A A L L R R R R RN N RN AN]

Hevia’ Of Other‘ Approaches .t.lI.l.lll..l'.!..‘.ﬁl'lll...l...
DESIGN [SC B B R B BE BE BRI BN B BN L B N BE BN N BB BN B B A BN N O N B BN BT BE BN BE RN RN R BN IR BN B BN R RE N R N N NN NN]

Preliminary Consideraltions sesvesscesceccsssessvenssncsnnnes
The Line EGIfOr seecensavasasaaunsasuncarsassnnscssssnnesnnsans
THE Screen Baitor sevenvvminiss oiiaemissiaved s § S9eeaSaees ¥
Command Interpreter sceincesccannsanescctcascsnsssesacoaannnn

IMPLEMENTATION IE RN R R E R E R NN NN NN R ENENEREENNENEE NN NEE N

The Line Editor‘ Upit A8 ¢ st dsarTdSsASIEEe Aeasdsed s neneddnn
The Sereen EditOP 8 S E S AN SN AP PP NET TN NP RGP ER ST ARV
Thﬁ CDmmand Iﬂterpreter R R R R R R R R R R R E R NN RN

TESTIIJG S 0848498830890 8Ad0dIFESePFISITEA ISR T TSR R et

mHmCEMENTS AND EXTEHSIDNS LEE I B B B B B R B BN B B BRI BN B IR IR N B I B RN BN AN

APPENDIX A. }n‘sm USEP'S Man‘lal P F AR ST REBTTIIN RN BB PB NGRS

APFENDIX B. Screen Editor Source Code eccscsasnssesnsssvssnscnsse

APPENDIX c. Line Editor Source Code 288 AR ST espdteddbsdaguatias

APPENDIX DI Program Test Data L B B L B B B BEE B B O I B B IR O B B B AL BB B BN B B LB

RHERENCES I EE RN ERENEENEREERNENEERENEERNENERSESENRMNENINEZJZNE-NIEIRIJHRNENNNIESNNER]

ii

&= -

P R
g e |

17

17
29
29

30

32

A-1

B-1

C=~1

R=1

Eigure

1.
2
3.
5,

10.
11.

12.

A Screen Editor Front End tc a Line Editor scavecesesencensa
Line Editor Design seeevcvecccsssesssccsssnnansssincannssrcs
Scresn Editor DesSign sceevesesrscsscvccranssssoscsanncensansee
HLSEW High Level Design;...............
Logical Organization of Line Fdifol secessncvescecsnsssrosnse
Line Editor Flow of Control .;............................;.
INSERT TEXT Flow of Control seieecascenasoonsssversacssansnsn
Logical DIviSion of Screen EQitOr eusesesecssressossscensens
The Screen Handler ..eccicessssssstascscssassssssncrsnasanas
Editing Procedure ProCeSS6ES8 seeversscnsessssnsrscssnsasnsaans

Erhanced Terminal ACCESS isesascscnsnsssassassssotsssssnasnas

Enhanced Module Communications seeeccecessscvtosscorssnscnnsnse

iii

10
12
15
16
19
21
22
25
26
28

34

CHAPTER I

INTRODUCTION

furpose

The Computer Sclence Department of FKanesas 3State University is

currently in the process of developing a High Level Software Engineering
.Workstation (HLSEW). This interactive workstation will be the software

implementation of an "intelligent terminal®, designed to aid in program
development, It willi consist of fife modulea: (15 The Command
interpreter, (2} The Softwaré Engineering Anslyzer, (3} The
Translator, (4) The Storage System and (5) The Editor.

The command interpreter serves as the wmain driver for the program
and provides user access to the other modules. The analyzer provides
the preogrammer with Halstead's and McCabe's software metrics throughout
the develovment of his program. These metrics consist of information
such as the anticipated volume, the complexity, and the implemantation
level, The programmer will be 1ssued these measures at the completion
of every block or can request them at any time during program use. The
translator converts a program written in a program design language
(PDL), which supports CASE statements, DO WHILE, and REPEAT UNTIL
syntax, into compilable CCBOL source code, The stopage system servas as
the data filer, All information i3 mapped and zccessed to secondary
storage ty the storage system on a line by line basis. The editor
serves as the tool which the programmer utilizes to create and edit
text, The purpose of this report is to describe the design and
implementation of the editor for the HLSEW.

4 ocustom editor is required because the HLSEW specification

2
dictated that text be handled by the storage system in a very particular
manner. FEach line of text, as it is entered would alsec be stored. This
allows the stcorage syster to maintain a reference point within the
brogram and provides the capability tc analyze each line of c¢ode as it
is entered. Most editors do not handle text in this manner and would
require modification, Modifying the UCSD Editor to handle text on a

iine by line basis required the source code which was not available.

Lonstraints

Initial constraints on the Editor included size of the program,
portability, power of the editor, user interface, extensibility, and
flexibility. Giving consideration to each of these areas was
essential.

Cne of the primary considerations is size, because the system has
to be run on a microcomputer. It is anticipated that the Editor, the
Storage System, the host operating system and portions of the user's
pregram will have to reside in wmain mepmery simultarecusly. As many of
today's microcomputers are limited to 64 K bytes of main memory, each
module has to be as compact as possitble.

The design process has to take into account the desirability of
moving the software from one machine to another. Although complete
portability is very unlikely, because of the great disparity in existing
hardware, portabiiity has to be kept in mind and as many portable
features, as possible utilized.

The user interface is also of utmost importance., The Editor, which

serves as the wuser's window to the system, has to be "friendly". A

3
"friendly™ interface is defined as one which allows the work to get done
with the least amount of strain and annoyance to the user. The user
should be gulded into correcet actions, politely prevented from incorrect
actions, and never made to feel lost or abandoned.

A consideration which usually conflicts with the friendliness of
the interface 1s the pewer of the editor. To get the ™most for your
money™ is always desirable and in this case, to pick the most powerful
set of instructions to fit in the limited size memory availlable became a
primary consideration.

Extensibility 1s also important. As the picrccomputer industry
grows, an increasing number of machines are becoming available with
larger main memories, If the restricticon of size were lifted, it is
desirable to be able to extend the Editor's power by adding additional
procedures which would utilize the primitives designed into the system,

The comstraint which i1s often ignored i1is flexibility. It is
anticipated that many, and varied, types of equipment may be
enccuntered. DBecause of this fact, the editor has to be flexible encugh
to operate in most any enviromment. For example, it has to be able to
operate with either hard copy output devices (e.g., teletypwriters) or
CRT type displays.

Some additional concerns are understandability and modifilability.
it is important that the code be understandable and modular so that
future modifications can be made with minimal effort. Understandability

and modifiability go hand in hand and are essential to a good product,

In addition, consideration has to be given to efficiency and

reliabiliy.

deview of Other Approaches

The baslie approach to editeors i1s usually from either of tvwo
directions, the line oriented editor or the screen criented editor. The
line oriented editor, which is more or 1less the traditional editor, is
primarily designed for hard copy devices, Lines of text are often
referred to by 1line numbers and commards are issued to perform
manipulations on text 1lines wusing a notaticnal syntax (e.g., DELETE
23,30, indicating the deletion of 1lines 23 through 30). On the other
hand, a screen editor is designed for use with CRT type displays, and
provides the user with a windew dinto his text file., Changes are made
directly on the screen with immediate feecback and the user always ﬁiews
the current version of the text. This reduces the charnce of error and
spares the user the overhead of explicit requests to view lines.

The Department of Computer Science at Kansas State University
utilizes a program called PEDIT on its Interdata 8/32 computer. PEDIT
i3 a line oriented editor written in approximately 3300 lines of PASCAL
code [KANST9]. Although this editor is very powerful, the commands are
somewhat clumsy, Also, the user 1is usually tied to some sart of hard
copy (printout) for reference, Examples of commands include: UP, DCWN
followed by an integer, indicating relative movement within the text
file; INSERT, DELETE, and CHANGE, wusually followed by a set of
arguments; and COPY, which is used to move blocks of text. There is
currently an effort to design a screen editor for this system, the size
of which, should exceed 4000 lines of PASCAL code.

A very powerful screen editor and one which is becoming the de
facto standard for microccmputers, is part of the UCSD P-System. The

UCSL P-System consists of & filer, editor, compiler and operating

5
system, UC3D Pascal is compiled to P=Code, which is in turn either
interpreted by the operating System or run directly on the specific
microcomputer. This allows the compiled P-Code to be transported to any
machine with the UCSD System. The editor is a full scoreen editor which
provides great flexibiity and power, It's user interface is excellent,
Prompt lines are always displayed, 1indicating the opticns availlable to
the user and the commands are almest all sipgle keystroke commands
[BOWL8O]. |

Intel Corporation developed an edlitor called CREDIT. CREDIT is a
screen text editor and line text editor reclled into one [GRAPB0O}., The
screen is divided into two parts. One part uses cursor positioning and
you perform the operations normally associated with a scrsen editor,
The other part is a line oriented, scrolling displsy. The user can move
between the two windews at will, facilltating both types of editing.
Example screen commands dineclude: REPLACE, which types over existing
text with replacement new tfext; DELETE, which either deletes one
character or can delete all characters betiween two specified boundries;
znd PAGE, which gets the next screenful of text. Example line orlented
commands are PRINT, FIND, DELETE and SUBSTITUTE, which are each
followad by a set of arguments.

A novel design for an editor was implemented by the Department of
Computer Science at The University of Arizona [FRASTY9]. It consists of
a line editor and a screen editor front end. The screen editor front
end manages the information on the screen, interprets the commands from
the user and passes them, in appropriate form, to the line editer to do
the actual editing. This approacn offers all the advantages of a screen

editor without the normally large volume of code associated with their

)
implementation. It also enhances the portability of the system because
the terminal specific code (the screen front end) is kept $o a minimum.
In addition, development time for a screen front end, which utilizes a
host line editor, is much less than for a complete =creen editor,

All of these editors have one thing in common that would not be
acceptable to the HLSEW Editor. They manipulate their text files as
whole units and when there i3 a file to be edited or read, the entire
file is loaded into main memory. On the other hand, each c¢ffers some

ideas which were useful in designing the HLSEW Editor.

CHAPTER II

DESIGN

Breliminary Considerations

The dilemma encountered when starting to design this editor was
whether to cheoose a small, powerful line oriented editor or a big,
pewerful screen orientad editor,. To resolve this problem several
questions had to be addressed,

What ccostitutes a good editor? A good editor should be both easy
to learn and easy to use (or powerful). These terms are difficult to
define, Generally, the editor is easy to 1learn if the interface is
friendly, and it is easy to use 1if it is sufficiently powerful enough to
accomplish desired tasks with a minimum of labor.

Mary criteria are important to a good user interface. Simplilcity
deserves speclal attention because insufficient attention in designing a
simple user interface is the most common cause of bad interfaces
{SNEET8]. A simple interface provides only the minimal set of
operations required to accomplish the mission and doeas not confuse the
1ssue with extransous or seldom wused operations. In addition to being
simple, the editor must give the user feedback and prompt the next
command, especially if the wuser 1s not secure in his knowledge of the
editor. Commands should cutput enough text to identify all changes that
have been made and precisely indicate source text position. The user
needs protection from common mistakes, The editor should be able to
prevent typos in commands from destroying the file or parts of it,
Finally, for a good interface the user muat be able to access any part

of the source text anytime during the edit session, This may seem

8
trivial, but anyone who has had to bounce back and forth editing among
twe or more files knows the value of this featurs,

The goal of ease of use often conflicts wilth ease of learning. The
power of an editor is usually directly propertional to its difficulty to
learn, therefore some tradeoffs are required. At a minimum, the editer
has to handle the creation of text, movement through a text fille, and
insertions and deletions on a line by line basis. Any addition to this
ninimal set has to be welghed against the impact to the interface. As
the power of the editor can be significantly increased by a command
which can find target strings of text and replace them with new strings,
without diminishing the dinterface, it was also included. With this
mirimal set of features in mind, the next problem had to be tackled,

How can the goals of the I{mplementation be accomplished and yet
remalno within the constraints specified in Chapter 17 Many c¢f the
features mentioned above indicate a screen orienfed editor, yet the faat
that text has to be handled one line at a time indicates that a line
oriented editor would be more suitable, Another factor which points ©o
a line oriented editor is the flexibility required to run on different
types of output devices. 4 full screen editor is of little use if your
terminal i1s a hard copy device, The limited =size of main memory
available lends itself to a line orilented editer (since screen editors
are usually more voluminous than line editors), as does the requirement
for portability. Screen editors are usually more tied to the hardware
than are line oriented editors because of terminal dependent features
which must be exploited by the editor. It became evident at this point
that some compromise had to be made,

The idea of a line editor with a screen front end, as described in

2
Chapter 1 became an intriguing possibility and deserved more
investigation., Utilizing a line oriented editor as the base for the
system allows it to meet the requirements of flexibility, allows it to
deal with the storage system one line at a time, and hopefully keeps the
size of the project down. A screen handler used as a front end to the
line editor enables the interface with the user to be as friendly as
possible, and at the sane time increases the power of the editor. This,
in fact, is the route that was taken; a screen editor front snd designed
to manage the information on the screen, interpret commands from the
users and pass them to the line editor to do the editing, Figure 1 iz a
conceptualized drawing of a line editor with a scereen front end, Joined

to form an editing "System®,

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

LINE EDITOR FILE SYSTEM
SCREEN UPDATES RESPONSES RESPONSES

— -~ -

SCREEN
SCREEN LINE
EDITOR EDITOR
KEYBOARD
\\\\\“**—%h- — ——— -
SCREEN EDITOR LINE EDITOR FILE SYSTEM
COMMANDS COMMANDS COMMANDS

Figure 1. A Screen Editor front end to a Line Editor

11
Ihe Line Editor

The Line Editor portion of the System was designed first. In
addition to the minimal set of‘activities (Insert, Delete, List, Find &
Replace), that were stated earlier, acme additional goals were
established, The ability to verify changes made during fird and replace
operations should be avaliable as an option to the user. Because of the
sensitivity to column changes in COBOL, some sort of tab setting
function is necessary and along with this tab setting function, the
ability to change the tab c¢haracter 1is required. Error messages are
required and should be written from a central procedure. Finally, some
help to the inexperienced user should be availsble., Procedures to
accomplish these capabilities were included in the design.

The requirement for flexibility dictates that this Line Editor has
to 5e able to stand alone {withkcut the screen fropt end), in the event
it were to be used on a hard copy device., This caused the design o¢f the
Line Editor to include some rprocedure which reads commarnds from the
keyboard and controls the editing procedures., The Line Editor alsc has
to commurnicate with the Storage System and the Screen Editor. It must
be able to fetch and store 1lines of text from the File System and
receive commands from the 3creen Editor. All output from the Line
Editor has to be in the normal scrolling fashion, characteristic of line
criented devices, Figure 2 represents the initial design of the Line

Editor.

Line Editor

Read Commancl

+

Execute Command

L L1 Ji 1

Insert Delete Find & Replace|l{List] [Tab Character] lHelp

L L

Set Tabs|{| Verify Error
Changes Massages

~>_

Call to Storage
Systenm

Figure 2. Line Editor Design

13
Ihe Screen Editor

Since the Line Editor is going to do most of the editing work, all
that is required of the Screen Editor is to manage the output to the
acreen, interpret commands from the keyhoard, and make calls to the Line
Editor. These functions essentizlly provide the friendly interface,
which i3 one of the primary goals. However, there are additional
functions which the 3Screen Editor can accomplish because of its unique
properties,

Besides providing a friendly interface to the user, the screen
display adds another dimension which should be exploited. The user sees
his text as it appears in the fille. Ee is now able to move a cursor
among the text characters and perform operations as required, In order
to take advantage of this, several capabilities were added to the Screen
Editor design, whkich would extend the power of the System, First, the
user l1s able to exchange text on the screen with new text. The ability
to position the cursor and replace the character on which the cursor i3
sitting is a valuable tool. Second, the user is able to insert not only
lines of text, but insert text within a line, That is, to position the
cursor someplace on the screen and insert characters in alline causing
characters to the right of the insertion to be moved, as new ones are
entered, Finally, the extension of character deletes, rather than only
line deletes, is very useful. Agailn, moving the cursor to the
eppropriate position and deleting characters, causing the remainder of
the line to shift as deletes are made, adds to the power of the System,
All of these extensions to the Line Editor allow the user to visualize
his changes within the context of the surrounding text and decide on

their acceptance prior to causing the changes to be stored. This

14
reduces errors and improves performance. Figure 3 portrays the initial

design of the Screen Editor.

Command Interovreter

In order for either the Screen Editor or the Line Editor to be
invoked upon entry inte the system, another layer of sof'tware is needed,
This ocuter 1layer initially greets the user and determines the type
editing to be done. By specification, it wouldlalso act as the driving
routine for the other modules in_the HLSEW. Figure 4 shows the complete.

HLSEW high level design.

Sere

en Editor

I

Read Command

|

-+

Insert

I

l

Delete

!

~

1

i
L

Excha

nge Find & HReplace

|

[

!

Set Tabs

Figure 3.

—
Tab Character

____chre

en pdates

Lin

e Editor
Calls

Screen Editor Design

15

Command
Interpreter

l

+

+

-

~

Screen
Editor

__*

Line
Editor

Analyzer

Translater

Figure 4.

HLSEW High Level Deaign

16

17
CHAPTER III

IMPLEMENTAT ION

The Editing System for the HLSEW is implemented on the PIQ/3
Microcomputer in UCSD Pascal, It consists of approximately 1800 linss
of source code, which includes some internal documertation and 10,500
bytes of object code. UCSD Pascal supports the separation of procedures
and functions, or groups of them, from thke main program. This is useful
when creating programs too large for the edit buffer. These groups are
compiled separately and ars known as "Units". They are linked with the
main program prior to execution. Because this implementation exceeded
the size of the editing buffer, the Line Editor was implemented as a

unit to be used by the Screen Editor.

Ihe Line Editor Unit

The Line Editor Unit is the foundation of the HLSEW Editing System.
It is approximately 1000 1lines of code end contains the core editing
procedures. IU communicates with +the Storage System and has the
capablity to stand on its own as sn Editor.

All the global variables which are used by the Editing System are
contained in the Line Editor Unit. The basic global data structure used
by the Line Editor is of type LINE, which is an array of 80 characters.
This reprecents a line of text and is used in two insteances. The first
instance serves as the data structure that text is placed into for
shipment tc¢ the Stcrage System. As text is entered from the keyboard it

is stored, ore character at a time, in the data structure. The second

18
instance 1s used to store Editor commands as they are entered from the
keyboard. These two data struectures zre implemented globally to
facilitate their passage between procedues, Although a meore structured
appreach might have been to pass them among each procedure as a
parameter, it is felt the overhead to do this would have been excessive,
Operations ocn this data structure are insert and delete. The other
global variables used are minimal in number, Several integer variables
are needed. One holds the current line number and the other two are
pointers, for each data structure, A few booleans are also needed to
determine such things as whether or not the user was finished editing,
whether or not the Line Editor was being used in the stand alone mods,
and a flzg to determine whether or not all changes should be verified.
&lso, a character variable, to house t{he tab character, and a set of
integers for the tab settings are needed.

The Line Editor Unit consists of eight procedures which do the core
operations of insert, delete, find and replace text, list, change the
tab character, change the tab settings, write help messages, ancd end the
edit session, These corse procedures are then supported by several
utility procedures which provide services such as find a token, find a
string, read a command, build a line of text, get characters from the
keyboard, put out error messages, and communicate with the Storage
System. Figure 5 represents the logical organization of the Line

Editor.

Core Editing Procedures

(Fipd & Beplaég)

(Change Tab Char‘acter) @hanse Tab Setti@
Help User End Edit

B e e e T T I A I T e T

Read a Command Build a Line
Find a String Find a Token
Get Characters
Send Error Messages

Call Storage System

Line Editor Utilities

Figure 5, Logical Organization of Line Editor

— o — — o e i o oy m— ——

20

In general, the Line Editor wailis fcr commands to be entered from

the keyboard. The commands, as they are read, are placed into the data
structure, INPUT_LINE, by the utility procedure, READ COMMAND. This
procedure also determines wihich core operation would be called by
interpreting the first two characters of the command lins. Control is
then transferred to the <core procedure, The core procedure must
interpret the rest of the command lire. To accomplish this, it utilizes
the utility, FIND _TOKEN, which scans the command line znd returns the
next token., The core procedure then matches this token with what is
allowed and either oontinues the parse of command line or 2alls the
error message utility. Orce the parse of the command line i3 ccmpleted,
the core procedure then performs the operations directed., Im most
cases, this involves calls to the utilities which desl with the EStorage
System and either fetch, store or delete lines. Once the operations are
complete, control is autcmatically returned to the driver cof the
program, which awaits another command. Figure 6 shows the flow of

program contreol for a general command,

Find a Token}

Determine the Command

Core Editing Procedure

Command Complete

1‘

User Input

Read Command

Error in Parsing

Errcor Message

Editing Operation Complete

— /

Call to Storage Utility

Figure 6. Line Editor Flow of Control

21

22

Of notable exception to this general form of operation is the
rrocedure INSERT_TEXT. This procedure takes control of the program and
calls to the utility BUILE_A_LINE. BUILD A LINE gets input from the
kevboard and stores it in the data structure, TEMP_LINE, until a
carriage return is encountered or the data structurs {s full. When
BOILD_A _LINE 1s finished, a call to the storage utility is made t¢ make
the line permanent. Control is maintained by INSERT_TEXT and this cycle'
is repeated until the user indicates he wishes to leave this mode by
entering a special control character. Figure T shows the flow of

control of INSERTI_TEXT.

Store =z Line

User Input

o’

Insert H‘=~,h“__”____‘,’f’d Build a Line
/7(\\\ Until User Done

" et

User Input ‘
Until Line Complete

Read a Command Get a Character

Figure 7, INSERT TEXT Flew of Control

23
The only procedwre which manipulates c¢haracters within the data
structure, TEMP_LINE, is the core editing procedure CHANGE TEXT. This
procedure is responsible for exchanging a t%arget string of text with a
substitute string, It first parses the command line to determine the
target and substitute strings, and the number of changes tec be made,
Then a utility procedure i1s called to find the target string in the
current line. If the target string iz not found, CHANGE TEXT continues
to fetch a2 line from the Storage System and call the FIND STRING utllity
tc examine it. When a target string is found, it is replaced by the
substitute string and the new line is then stored,
A source code listing of the Line Editor is provided at Appendix

C.

24
Ihe Sgreen Editor

The Screen Editor extends the Line Editor by providing 2 means teo
handle information on the screen, allow manipulations of text to be done
within lines, and portray a "friendly"™ interface to the user. It is
implemented in approximately 800 lines of =ource code and communicates
with the Line Editor to perform core editing operations.

The Screen Editor utilizes the same global variables and data
structures as the Line Editor. The only global variables added by the
Screen Editor are two integers, ROW and COLUMN, which keep track of the
position of the cursor.

The Screen Editor is divided 1logically into two sections, one to
handle the screen and the other to extend the core editing operations.
Figure 8 shows this relationship. The "screen handler"™ secticn includes
procedures to move the cursor right, left, up and down, display menus on
the screen, and page text to the screen. In additicn, the screen
handler must interpret commands, as they are entered from the keyboard,
and call the appropriate screen editing procedures. The editing section
contairs procedures which parallel the Line Editor and make calls to its

core editing operations.

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH THE ORIGINAL
PRINTING BEING
SKEWED
DIFFERENTLY FROM
THE TOP OF THE
PAGE TO THE
BOTTOM.

THIS IS AS RECEIVED
FROM THE
CUSTOMER.

Sereen Handling Procedures

Move
Right Left
Up Down

Display Menu Page Text

Interpret Commands

A

Insert Delete
Find & Replace
Exchange

Change Tab Setting Change Tab Character

Parallel Editing Procedures

Line Editor
Calls

Figure 8. Logical Division of Screen Editor

25

26

The screen handler section provides the "friendly" interface to the

user in several different ways. First, the screen handler displays
command menus. Theée menus are layered, so that a resronse toc one will
cause ancther to appear, if appropriate, This serves to guide the user
through the editing steps. The acreen handler ™watches"™ the keyboard
for a response to the menus, It expects only a discrete set of inputs
from the user and inputs outside of this set is ignored. This acts z2s a
filter to eliminate bad input and prevents many editing errors, The
responses are mnostly single keystroke commands, which reduces the
overhead to the user. The curscr can be positioned anywhere in the text
and when the screen limits are reached the cursor is either moved to the
successive line or a new screenful of text is displayed. This allows
the user access to any part of his text file. Figure 9 1s a

representaticn of the screen handler,

Keybtoard Screen

Input Screen Updates

Screen Handler L
-

Calls to Screen Editing Procedures

Figure 9., The Screen Handler

27

The section which interfaces with the Line Fditor is responsible
for determining the editing changes that are being wade on the screen
and "packaging™ a command line which the Line Editor will recognize.
Cenerally, this 1is accomplished in the two manners, operations on
complete text 1lines and operations within a given text line, The
particular editing procedure called, sends to the screen handler the
discrete set of input that it is willing to accept. Initially, when the
screen handler returns valid input to the ediﬁing procedure, the screen
is updated and the mode of editing {complete line or within a line) is
established. If the editing mode is complete lines then a counter is
initiated to determine the number of 1lines concerned. The number or
range of lines is placed in the global data structure, INPUT_LINE, which
houses commands for the Line Editor. The appropriate core editing
procedure is then c¢alled via the Line Editor t¢ perform the required
werk.

If the editing is to be done within a line, then the line on which
the cursor is sitting is retrieved from the Storage System via the Line
Editor., As input is received, the screer 1is updated and temporary
changes are made to the data structure contalning the line of text.
Upon completion of operation, the user issues a special coatrol
character and the 1line of text 1s shipped to the Line Editer for

storage. Figure 10 illustrates both modes of editing,.

User Input

Line Mode

Editing Procedurs r~—-\\\\\\\

User Input

Character Mode

Build Command Line

Call Line Editcr

Figure 10,

Update Data Structure
{Line)

Update Screen

Call Line Editeor

Storage System

Editing Procedure Processes

28

29

At any time during the editing process, if the user wishes to abort

the ourrent operation, he uses the ESC key. All changes made to that
peint are ignored and the file, as it was before initiaticn of the
oreration, 1s displayed. A4 complete source code listing of the Screen

Editer 1s in Apperndix B,

Jhe Comgand Interpreter

The Command Interpreter was implemented as the driving routine for
the entire HLSEW. It uses the 3creen handler to display its command
prompt line. The responses to the prompt line are filtered in the same
manner as that which is used by Screen Editor., The additional function
of the Command Interpreter is to determine which flle the user wishes to
utilize, This response is loaded into a string variable and issued to
the appropriate module, The source c¢ode listing for the Command

Interpreter is included with the Screen Editor in Appendix B.

30

CHAPTER IV

TESTING

The BLSEW Editing System i1s highly dependent on the Storage Systenm
which is currently not in executable form. This prevents the "complete"
testing of the Editing System, as of the date of this report, however
several methods have been utilized to verify its consistency,
completeness, and correctness and examine its behavior during
execution., These methods were both static and dynamic,

The program was statically checked for c¢cnsistency by the UCSD
Pascal compiler which insures proper syntax, ccmpatible types, and
parameter matching, Other static methods such as code inspection, desk
checking and peer review are used throughout program development to
determine that the code was consistent with the design.

Dypamic testing could be accomplished by instrumenting the program
to calculate statement coverage. Each program point, into which control
can be transfered, 1s identified and an array is established with as
nany positions as there are transfer points. At each transfer point a
statement to increment the appropriate position in the array is
inserted. The final values of this array are then printad at program
termination. This technique provides an indication of test coverage and
also shows the portions of the program with the heaviest use.

A set of test data was designed to exercise the prcgram both
structurally and functionally. This test data will be uvsed to cause
execution of each feasible statement, The test data also includes input
to functionally test the domain of the program. Random values were

chosen to cover demain boundries, extremes and special cases, Test data

chosen is in Appendix D.

31

32

CHAPTER V

ENHANCEMENTS AND EXTENSIONS

Az in most programs, there are several changes in the design of the
HLSEW Editor System that would improve it. These enhancements were
recognized during the implementation and debugging phases of the
software life cycle, Primarily, there are two areas of interest; the
manner in which the program addresses the specific terminal being used;
and the inter- communication of the Lire Editor and the Screen Editor.

Currently, the program accesses the CRT terminal through direct
calls requesting operations such as erase the rest of the page, delete a
line on the screen or insert &z character, Although this works
adequately, it reduces the portability of the program by making the
transition to a new terminal more difficult. To change terminals, the
program would have to be modified at each instance where it azddresses a
screen fuction of the terminal, A much nicer way to accomplish this
cperation would be to establish a table of terminal dependent
information arnd assign a variable to each function, Subsequent porting
of the software would then only require an update tc the table.

Another approach to this problem can be found through the UCSD
Cperating System., A terminal that is used with the UCSD FPascal P=System
must be "set up® for the System. This involves executing a "sset up"
program which maps terminal dependent features into the COperating
System., The HLSEW Editing System could have been designed to make
Operating System calls to accomplish specific terminal functions,

Figure 11 shows both approaches.

33

Video
Terminal

Terminal UCsD

Funetion Operating
Table Syatem
Screen Editor| Sereen Editor

Figure 11. Enhanced Terminal Access

The second area of interest involves communication between the Line
Editor and the Screen Editor. Presently, the Screen Editor makes calls
directly to the Line Editcr. (Figure 4) This is not necessarily a tad
condition, however an enhancement could be made by requiring the Screen
Editor to send its commands through the Command Interpreter. (Figure
12) If this was implemented the Command Interpreter would have to be
"smarter®™, that is it would have to translate commands from the Screen
Editor into a format recognized by the Line Editor. This would improve
the portability of the System by making the Screen Editor independent of
the Lipne Editor, If the System were moved and a new Line Editor used as
the foundation, then the only changes required would be modiflecations to

the Command Interpreter's Translator.

34

Command Interpreter

Screen Editor Line Editor

Figure 12. Enhanced Module Communication

The design of the program facilitates extensions. One which would
add to the power of the Editing System, and is now considered necessary,
is the addition of a T"ecopy" command, designed to move blocks of text
within a file., This was not originaliy included in the design, because
of the restriction in dealing with text on a line by line basis. It
could be implemented in the following manner.

When the copy mcde is entered, e variable, FIRST _LINE, containing
the current line number is saved. The curscr is then moved to the end
of the block of text being repositioned and that line number is saved in
a variable, LAST _LINE. The curscr is then relocated to the desired new
location of the text. From that point, repeated calls to the Line
Editor are made to fetch a line, store the line and delete the old line,
over the range of line numbers, FIRST LINE to LAST_LINE. This allows a
line of text, referred to by its original line number, to be retrieved
from the Storage System and loaded into the data structure, TEMP_LINE,
TEMP_LINE is then inserted in its new location, causing it to be
renumbered by the Storage System. Once it is stored then the old line

is deleted.

APPENDIX A

HLSEW

USER'S MANUAL

A=1

A=-2

ZABLE QF CONTENIS

SECTION '1 INTEODUCTION IR R RN NN RN R A B A RN B RN N A"B

IntrodUCtion LN IO B O B B BRI B B B BN BN BE R I B A BEEEY B SR B BN B I N BN NI NN R A-S
The command Level PR R E R NN E BN SRR E NS R N AN AN RN SN EE R NN A-6

SECrIONa THE SCF.EEN EDITOR ."I...I'..l--.‘.-'.'l"'.l.l....C‘-lt A-B

Insert A RN N N R N R N NN R N RN] A—B
Leletl cuisecctscssornssiaatesnvtsasnsncoancosarasssossetssssssnas A—g
EXChalNZe cenesnsevavettsatosvsotnsssonsetssssstotstonsnsnsasaninss A-9
RePlat® sevsacesssrevsssescssnttssnnsracsssrssssassscssnsassas A=i0
Other saesssnsnevrasassesvsacnsaneansasatsstavassnssnssnsssasansa A=-11
Quit R AR R R R R R R R N R E N RN NN RN RN A-13

SECTION 3 THE TRANSI.‘ATOR A RS d T SRS E BN dESb TSI IAT AN A-1u

SECI'ION” THE ANALYZER IER AR E R R R NN N R RN R N N R R E NN NS RN A‘?S

SECTIONS THE LINE EDITOR I BN E RN AR R EEE RSN R RN NN A-16

INSErt sessscesrnonasssrssassinsansasetasstsstssnsnsnssesvsnes A=16
Delete LiNesS sveevescsctsssrsrcosssasrssnatscsonscssnsesresnaas A=17
List A4 2+ e PR A UEEd B I AT AERER dTIAT SNSRI NTNNN NI ESASREERESEO DRSS A”18
Change TEXL. 44 wawpamaaansseasspeeysrasssere s s eresmeesee s s ofew 0
Tah CharaCter soerssevscsascecsssnessssitassseststssssassrsrenne A-Tg

SEt Tabs [EE R N R R R R N R RN NN NN NN NN EN] A-19
Ve!‘if}' Text [(EREEEEE N EEREEEEEEE RN ENEENEREEERE NN ENENERENERERRSEN] A-zo
End Edit [EN R N R N R RN N RN E RN NN N] A—-ZO

F-‘ig‘-lr‘e 1. HLSEW Hierarehy (IR IR BN BB B RE O BE I B B B B B O R ORI BN B BN BN BN O BN BN BE B BN IR L IR B B AR R J A-l‘

F.Lgure 2- The "Command Tree“ I EEEERNENNEEEERNEENNERENENENERNINERNRENNIEN] A"S

SECTICN 1. INTRODUCTION
datroduction

The High Level Software Engineering Workstation (HLSEW) includes a
Translator, which converts a program written 4in the Program Design
Language (PDL) intec a compilable COBCL code program, aninalyzer that
computes McCabe's and Halstead's c¢omplexity measures for the PDL
program, a Line Editor and a Screen Editor for writing and editihg
programs. These tools make up the HLSEW and a detailed discussion of
each tool is included in the following sections of this manual, Figure
1 shows the hierarchy of the System.

Most of the time you will see a "prompt line™ which shows the

command cptions available, For example:

COMMAND: S)creen edit T)ranslate A)nalyze L)ine edit Q)uit

In response to this prompt line, you can use the Line Editor,
Translate, Analyze, or use the Screen Editor just by pressing a single
letter, PFressing S, for example, will invoke the Screen Editor. The
Screen Editor will show another prompt line that allows you to choose
command optiors appropriate to the S8creen Editor. The "Command Tree”
(Figure 2) will help you find your way around the various levels of the
System.

Some entrles are longer than a single character. These entries are
termirated by pressing the carriage return (CR) key. If you make a
mistake before pressing the CR key, you can backspace over the error by

pressing the backspace key (left point arrow) or CNTRL H.

Command

Interpreter

il

i

e

L

Screen
Editor

Line

"* Editor

Analyzer

Transiator

Figure 1.

Disk I/0

HLSEW Hierachy

COMMAND:

[SCREEN EDIT:]

Character

EXCHANGE:

FIND & REPLACE:|

Tab Character

Figure 2.

TRANSLATE:

:mmmml

[‘LINE EDIT:|
M INSERT (IN)

DELETE (DL

LIST (L&)

f CHANGE {(CH)

| SET TABS (ST)

TAR CHARACTER (TC)

l

VERIFY (VE

END EDIT (&N)

The Command Tree

A-5

A=6
Jhe Command Level

The Command Level of the System acts as the "controller™ for the
HLSEW. It is responsible for determining which module of the System you
wish to utilize,

The Command Level of the System is reached whenever you boot or
reset the System (by any means), when you Q)uit either the Screen or
Line Editor, and when you finish T)ranslating ord)naiyzing. The Ccmmanq
Level options are: S)creen edit, T)ranslate,A)nalyze, L)ine edit, or
Quit,

The Screen Editor is specifically designed for use with displays.
{in entering any file, the Screen Editor displays the start of the file
on the second line of the =screen. If the file is too long for the
sereen, only the first 21 lines are displayed, This is the concept of a
";indow", The whole file is accessable by Screen Editor commands, but
at any time only a portion of the file can be seen through the "window"
of the screen. When any Screen Editor command would move o a position
in the file which i1s not displayed, the ™window" is moved to show that
portion of the file.

The Screen Editor is reached by pressing S from the Commard Level,
You will be asked ™What file?" to edit. You may either specify an
existing file by typing the name of the file followed by a CR or just
presg CR to begin editing a new file. New files will be named at the
completion of the editing session., After you press CR the Screen Editor

prompt line will appear.

EDIT: Ijnsert D)elete E{X)change R)eplace U0)ther Q)uit

=T

In the edit prcmpt lines, a word enclosed between angle brackets,
<like this>, specifies that a particular key 1s to be pressed. For
example, <CR> means that the carriage return key should be pressed, and
<EEC> means to press the ESC key.

The cursor marks 2 position in the file and can be moved to any
position on the screen, The window shows a pertion of the file near the
curscr. In order to edit, it iIs necessary to move the cursor. On the
kéyboard the "arrcw-keys" move the cursor up, down, right, and left,
Tou can move the cursor only when the EDIT. prompt line 1s at the top of
the screen, Vertical motion is made by using the up and down arrows,
When the cursor reaches the bottom of the screen, pressing the down
arrow once more will cause the next 21 lines of text to be "paged"™ to
the screen. When the cursor reaches the top of the screen, pressing the
up arrow once more will cause the prior 21 lines to be "paged" to the
screen, pressing the right arrow zgain will cause the cursor Lo move to
the first columr of the next row. When the cursor reaches the left
limits of the screen, pressinrg the left arrow will cause the cursor to

move to the last column of the prior line.

A-8
SECTION 2. THE SCREEN EDITOR
Ilnzert
The EDIT prompt line shows the command option I)nsert of which
there are two submodes, C)haracter or B)lock. To insert in either mode
position the cursor to the correct location and then press I. You must
always move the cursor to the correct position BEFCRE pressing I. After

pressing I, the following prompt line will appear cn the screen:
INSERT: C)haracter B)lock <esc) aborts

The C)haracter option allows you to insert information within a

given text line. Pressing C will cause another prompt line to appear:
CHAR INSERT: <entrl C> accepts <esc> aborts

The characters that you type in this mode are insertaed between the
character on which you placed the c¢urser and the character that was
immediately to the cursors left. If you make a mistake while typing in
I)nsert mode, Just use the left arrow to delete your inserted
characters, At any time during an insertion, you can cause the Screen
Editor to accept the insertion as it stands and make it part of your
file by pressing CNTRL C. Until you press CNTRL C, you can cause the
Screen Editor to forget everything you have typed since entering I)nsert
mode by pressing the ESC key.

The E)lock option allows you to insert a block of text. Pressing B

will cause this prompt line to appear:

BLOCKX INSERT: <cntrl C> and <CR> accepts

Upon enterirg the B)lock mode the cursor will be moved to column 12
of the next line and the rest of the screen erased. Column twelve is
selected as a COBOL default. Text is entered normally from this point.
If a mistake is made while typing in this mode, just use the left arrow
to backspace over the inserted characters. At any time during an
insertion you tan cause the Screen Editor to accept the insertion as it
stands and make it part of your file by pressing CNTRL C followed by a

CR.

DELETE: <down arrow> line, <right arrow> char,
<entrl C> accepts, <esc) aborts

BEFORE D is pressed the curser must be in the correct position,
Place the ocursor directly on the first character to be deleted,
Pressing the right arrow causes the character under the cursor to bs
deleted and all characters to the right are moved one space to the left,
Notice that the cursor does not move, but appesars to Teat™ the text
being fed from the right. Pressing the down arrow causes the entire
line under the cursor to be deleted and all lines below the cursor are
noved up one,

To accept the deletion at any point, press CNTRL C. To undo the

entire deletion at any time before pressing CNTRL C, use ESC,

E{X)change

The E(X)change mode is reached by pressing ¥ while at the EDIT

A~10

level. On entering the exchange mode the following prompt line appears:

EXCHANGE: <entrl C> accepts <esc’> aborts

The exchange mode is used to replace the character on which the
cursor 1s sitting., As you type in the exchange mcde, the cursor moves
to the right along the line of text, replacing one character in the line
aach time you press a key. Thé left arrow key can be used to move the
cursor back one character erasing any mistakes,

As with many other commands, a text exchange is made final by
pressing CNTRL C. Pressing the ESC key leaves the exchange mode without

making any of the changes indicated since entering the mode.

Ileplace
Replace mode is reached by pressing R while at the EDIT level, On

entering the replace mode the following prompt line appears:
REPLACE: delim <target> delim <substitute> delim <count>

The replace command searches through a file to find occurrences of
the specified target string of characters and replaces each of those
occurrences with the specified substitute string. It will de this for
the number of occurrences specified by the <cocunt>. The default is the
first occurrence. An asterisk, %, replaces all occurrences of the
target string. When finished, it places the cursor at the end of the

last string substituted and pages the next 21 lines to the =screen., An

A=11
occurence of the target string will be found only if it appears in that
portion of the text which liea Dbetween the cursor and the end of the
file, If the end of the file i1s reached btefore the number of

replacements specified can he carried cut, this message appears:
#% STRING NOT FCUND ## press space to continue...

The replace mdode has two string storage variables, The first
string called <target?> contains the ™target string®". The second string
i3 called <substitute> and is the "substitute string". The substitute
string is the sequence of characters which will replace the target
atring when it 1s found. To allow the target and substitute strings to
contain any characters, each string must be typed using special rules,
In particular, each string must be set off by characters called
"delimiters™, Both delimiters of a string must be the same character.
One delimiter must precede the first character of the string and the
same delimiter must follow the last character of the string. Almost any
normal printiag character which is not a letter or a number may be used.
The most common choice is the slash (/) because it is a lower case

character that is normally not found in the text and is easy to type.

Qither

Pressing O at the EDIT level invokes the O)ther mode. On entering

the 0)ther mode the following prompt line appears:

OTHER: S)et tabs T)ab character R)eturn

A-12
The O)ther mode allows you to make the tab settings you desirs,
view the current tab settings, choose a tab character, or view the

current tab character,

Pressing S at this point will cause this prompt to appear:
SET TABS: {er» displays current tabs

The cursor will be positioned at the end of the prompt line. You
can either press a CR, at which point the current tab settings will be
diaplayed, or lyou can enter the tab settings you desire., This is
accomplished by typing integers between 1 and 80 (separated by a comma
or a space) and pressing the CR. The System, when initialized, defaults
to standard COBOL tabs (8,12,16,24,32,26,40,56,73). To zero the current
tab settings type '0' and CR. In the event that you do not enter the

tab settings correctly you will get an error nessage like this:
#¥ JILEGAL CCMMAND ¥* press space to continue,..

If you see this message you will know that no changes to the tabs
have been made and you must try again,
Pressing T while in the Other mode will cause this prompt line to

appear:
TAB CHARACTER: <e¢r> displays current character

The cursor will again be positioned at the end of the prompt 1line,

You can enter a new character followed by a CR or you can press only CR

A=-13
to view the current tab character. The defasult tab character is 7!,

Pressing R from the Other mode returns you to the EDIT level.

Qluit

Quit mode 1s reached by pressing Q while at the EDIT level, ©On
entering the Quit mode your edit file will automatically be written to
the disk. If it iz a new file you will be asked "File name?", Entar
the name follewed by a CR. Should any preblem occur during this

operation you wiil be given the message:
#% ERROR IN WRITING #* press space to continue,..

At the completion of your edit sessicn you will be returned to the

Command Level and it's prompt line will appear.

A-1%4
SECTION 3. THE TRANSLATOR

To be completed at a later date.

A~15
SECTION 4. THE ANALYZER

To be completed at a later date.

A-16
SECTION 5. THE LINE EDITOR
The Line Editor is a Line Oriented Text Editor designed for use in
e System having hard copy devices (e.g., teletypewriter) for terminals
or for use by those who prefer Line Oriented Editors.
The Line Editor is entered from the Command Level by pressing L.
You will first be asked "What file?"™ you wish tc edit, You may either
specifly an existing fille fcllowed by a CR or just press the CR to begin
editing a new file. After you specify the file to be édited the

following message should appear:

HLSEW EDITOR
TYPE HELP (HE)} FOR A SUMMARY OF COMMANDS

At any time during your edit session, typing HE will give you a
summary of available commands. The Line Editer gives you the capability
to perform most normal editing functions., You can insert lines of text,
delete lines of text, list lines of text ete.. All Line Editor commands
are two character commands followed by =some set of arguments or a CR.
All arguments must be separated by a comma or a space. In the following
sections, arguments enclosed between angle brackets, <like this)>, are
mandatory. Arguments enclosed between square brackets, [like this], are
optional, Commands which are not in the proper format will cause the

error message:

#% TLLEGAL COMMAND ¥#

INSERT (IN)
This ccmmand allows you to insert lines into the file following the

A=17

current line, This command deoes not have any arguments, only a CR.

IN <CR>

When this command is 1ssued the System 15 placed in the insert
mode, Notice that the cursor will default to column 12 after each CR.
To start before column 12 the cursor must be manually backspaced. After
the desired text is entered, vou can exit by typing CNTRL C followed by
a CR. The cursor should then move to its normal position indicating

that the insert mode has been exited.

DELETE LINES (DL)

This command deletes lines from your file. Without an argument
this command deletes the current line, 4 1line number given as an
argument after DL will delete that specific line. A range of line
numbers given as arguments will delete 1lines from argument one through

argument two.

DL [LINENUMBER], [LINENUMBER] <CR>

If any line number specified is not found you will be issued the

error message.:

LINENUMBER #% NQOT FOURD ##

for each unsuccessfull attempt.

A-18
LIST (LS)

This ccmmand allows you to print lines of text to the terminal,
Three arguments are valid for this command. If the argument is null
(CR) then the next 23 lines of text will be printed from your file. If
the argument is a valid line number, then that line becomes the current
line and is printed. If the argument 1s a fange cf line numbers, then
they will be printed from the first argument through the secord and the

last line printed will be the current line,

LS [LINENUMBER], [LINENUMBER] <CR>

Attempting to list invalid line numbers causes the error message:

LINENUMBER ##% NOT FOUND ##

CHANGE TEXT (CH)

This command allows an existing string to be changed to a new
string, where the new string may be a null, The text file is searched
from your current location to the end of the file for the target string.
Onee found, it is replaced by the substitute string., Three repeat
options can be issued as the third argument in this command. If the
third argument is omitted, then the default 1is one, If the third
argument is an integer, then no more than that number of changes will be
made between the current 1line and the end of the file, If the third
argunent is an asterisk, %, then all occurrences in the string between
the current line and the end of the file are changed. A delimiter must

be inserted between each argument. Any printable character not in the

A=19
string and not a letter or a number will do. The slash (/) is commonly

used.,

CH/<TARGET> /<SUBSTITUGTE>/[REFPEAT FACTOR]

Should the target string not be found you will get the error

message:

#% STRING NOT FOUND *#

JAE CHARACTER (TC)

This command allews you to change or display the tab character.
The default tab character is the up arrow, '"', To change the tab
character, simply type the new desired character as a argument to this

command. A null argument (CR) displays the currant tab character.

TC [TAB CHARACTER] <CR>

SET JABS (ST)

This command allows you to set or display the tab settings. If the
argument is a null (CR) then the current tab settings are printed. The
default tabs are the COBOL settings 8, 12, 16, 24, 32, 36, 40, 56, T3.
If the argument is 0, then all tab setting positions are deleted., If
the argument is a string of numbers, then these positions are added to
the current tab settings. Each argument (tab setting) should be

separated by a comma or a space,

4=20
ST [TABSETTING], [TABSETTING], ... [TABSETTING] <CR>

YERIFY TEXT (VE)
This command toggles a flag which controls the printing of text
after a change has been made, Issuing this command with no argument

will print the current state of the flag. Initial state is verify on.

VE <CR>

END EDIT (EN)
This command causes the edit seasion to be terminated and your edit
file to be written to the disk, 1If this is a new file, then you will be

asked to name it prior to the save., Control will be transferred toc the

Command Level,

APPENDIX B

SCREEN EDITOR

SOURCE CODE

B-1

APPENDIX B SCREEN EDITOR SOURCE CODE

G add i A Al SR AR AR ERIEL ARSI REREERSRRARLERARRRRRRRRRLRiRRadlsadlddls)

|

]

. DDDDDDD EEEEEEEE DDDDDDD IIITII TTILTTIT
* DDDDDDDD EEEEEEEE DDDDDDDD IIIIII TTTTTTTT
* DD DD EE D ID II T eT T
' DD DD EE DD ID IT T

* DD DD EEEEEE DD DD IT TT

* D0 DD EEEEEE DD DD 11 TT

. DD DD EE Db DD 11 T

' DD DD EE DD DD b T

s DDDDDDDD 00 EEEEEEE DDDDDDDD III1II TT

* DDDDDDD 00 EEEEEEE DDDDDDD IIII1I TTTT
*

#

. INTERACTIVE SCREEN EDITOR DESIGNED BY DAVID B. AARONSON

* IN PARTIAL FULFILLMENT OF A MASTERS OF SCIENCE IN CS,

' FALL 1981 VERSION 1 KANSAS STATE UNIVERSITY

#*

#

lll!lll!*!ll!llliiIllillll!l!llll!ll!llllllilllllllliillll!lilll*lli!lll)

PROGRAM HLSEW;
{ %40 EDITOR.CODE®)
USES EDITOR; (® calls line editor unit #)

PROCEDURE SCREEN_EDIT; FORWARD;

PROCEDURE MOVE_RIGHT; FORWARD;

PROCEDURE MOVE_LEFT; FORWARD;

PROCEDURE EDITOR_MENU; FORWARD;

PROCEDURE EDITQR_COMMAND_INTERPRETER; FORWARD;
PROCEDURE COMMAND_ INTERPRETER; FORWARD;

(ll"IllIﬁllll!'IIIIIIillilIlllllilillilllllIllllilllliillilllllllIi')

PROCEDURE CLEAR SCREEN;
(FEAE SRR R RN RE RN AR R AR E RN AN RN RSN R TN

Clears entire screen of all text.
L e T R T L e L e R It I s e b e qip ey Ive sy fesasessy sy

BEGIN
WRITE (CHR(27)); WRITELN (CHR(43));
END; (* CLEAR SCREEN ¥)

(SRR R R R RN NN R DR RGN BN S IR NN RO F R RN
PROCEDURE BELL;
(F AR RN R R AR RN AR RN SR N A SR AN RN TN AN RN

Sounds bell when called.
BRI NN AR R R AR RN RSN RS SN RN RNNAE)

BEGIN
WRITE (CHR(7));
END; (® BELL %)

ok B ¥ B O ok ok & N R R K N R

#*

(HERERR SRR SRR SRR RN RN R RN SRR SRR RGN RU NSRRI BERERREEERE)

PROCEDURE ERASE_REST QF PAGE;
(FRRR SRR RGN R SRR AN RN NI RN AN TR IR VRPN B E R NN R AR AN

Erases remainder of page from current cursor position,
llllllllll!*lIlll!lil"l‘l*llllllllllllllIIlllIlllllllllllllillliilll)

BEGIN
WRITE (CHR(27)); WRITE (CHR{121));
END; (% ERASE REST OF PAGE %)

(MR N RN EONAN AN NN R RS R R RN R PSR AN
PROCEDURE CONVERT_INTEGER (INT_IN : INTEGER);

(RO AR R R RN AR SRR R E NGRS R RN AR AR RN
This procedure converts ilntegers into characters and inserts them
into an array of characters for processing by the line editor, An
integer is parsed into individual digits using the DIV and MOD
funections and these digits are converted to charactera and inserted

into the array.
LLi R e i e A PR R R R AR IR R RS A SRR AR RS AR ERITRERITEARRZER 22T 22 3

VAR I, INDEX. NUMBER : INTEGER;
TEMP : ARRAY [1..5] OF CHAR;

BEGIN
NUMBER := INT_IN;
INDEX := 0;
FOR I := 1 T0 5 DO
TEMP[I] := ' ';
REPEAT
INDEX := SUCC(INDEX);
TEMP[INDEX] := CHR(NUMBER MOD 10 + GRD ('0'));
NUMBER := NUMBER DIV 10
UNTIL NUMBER = 0;
FOR I := INDEX DOWNTO 1 DO
IF TEMP[I] <> ' * THEN
BEGIN
INPUT_LINE[LINE_INDEX] := TEMP[I];
LINE_INDEX := SUCC(LINE_INDEX);
END;
END; (* CONVERT INTEGER M)

(FABBARRAERANERRFRRRURFARNS DS HHF PR E R RN AR BN R R AR SRR RO NT RS

PROCEDURE PAGE;
(AR AR RSN AN RN RN RN RN AR AR AR SRR D NGB NN Y

List 20 lines of text to the screen by calling the line editor

procedure LIST_IT.
HRAEE AN RN NN AR R RN AR AR RN R E RN RSN AN RN RNA)

BEGIN
GOTOXY (0,2);
LINE_INDEX := 3;
INPUT_LINE [LINE_INDEX] := NL;
LINE_EDIT(LIST);
GOTOXY (0,2};
ROW := 2; COLUMN := 0}

END; (¥ PAGE ¥)

(*lil{IlIﬂiIQiillii'I'ﬂﬂliillllllillllllﬁllllIIIil"!lll*!lllll'iilll)

PROCEDURE PAGE_BACK;
(R AN S BRI IR S S SN E R RN TR NAANANN RO RN H R
List the prior 23 lines of text to the screen by calling the line

editor procedure LIST_IT.
IR R I e A R T PEST e TRTA LSRR PE I R2RRASTTRASRTINL 222222 3Y

BEGIN
LINE_NUMEER := LINE_NUMBER - 207
IF LINE_NUMBER < 1 THEN LINE_NUMBER := 1;
GOTOXY (0,2);
LINE_INDEX := 3;
INPUT_LINE [LINE_INDEX] := NL;
LINE_EDIT(LIST);
GOTOXY (COLUMN,22);
LINE NUMBER := LINE_NUMBER + 20;
END; (% PAGE BACK #)}

('lllllllllllI!IIIII!GIll!II.lllilll!!!llllilIlIIIICIIIIII‘II"**IIIII)

PROCEDURE READ_SCREEN_COMMAND;
Rt e R I P AL LRI RS EE s set b sititits e ae ittt tadiss)

Interpretes commands given to the screen editor and converts them to
the format recognized by the line editer. All commands are placed in
a data stucture called irput line which is then parsed by the line

editor.
('lil'l'lllIIIIIIl!illllllIl!IlllI!!l!lIlllll!lilllllli!llllllillllllll)

VAR C : CHAR;
I : INTEGER;
ALL DONE, ESCAPE : BOOLEAN;
VALID_SET_OF_CHAR : SET_OF VALID;

BEGIN
VALID_SET_OF CHAR := [CHR(1)..CHR(9),CHR(13}..CHR(12T)];
INPUT_LINE[3] := ' *;

LINE_INDEX := U4;
GET_CHARACTER(VALID_SET_OF CHAR,C,ALL DONE.ESCAPE);
INPUT_LINE [LINE_INDEX] := C;
WRITE (C);
WHILE (NOT EOLN (KEYBOARD)) AND (LINE INDEX <> LINELENGTH)
AND (NOT ESCAPE) DO
BEGIN
GET_CHARACTER(VALID_SET_OF CHAR.C,ALL_DONE.ESCAPE);
LINE_INDEX := SUCC(LINE_INDEX);
IF C = CHR(8) (¥ backspace ¥*)
THEN BEGIN
LINE_INDEX := PRED (LINE INDEX =1);
IF LINE_INDEX <= 2 THEN LINE INDEX := 2;
END
ELSE BEGIN
WRITE(C);
INPUT_LINE[LINE_INDEX] := C;
END
END; (" whils #)
READLN (KEYBOARD);
WRITELN;
IF ESCAPE THEN BEGIN
EDITOR_MENU;
EXIT (EDITOR_COMMAND_ INTERPRETER);
END;
FOR I := LINE_INDEX TO LINE_LENGTH DO
INPUT_LINE[I] := CHR(13);
LINE_INDEX := 3;
END; (* READ SCREEN COMMAND ¥#)

{.llillll!l*!lillllll*iIIO'Iiill!llllilllllllllllllllilllllill'l!ﬁii)

PROCEDURE SCREEN INSERT;

(RSN IR NS BN R RN NS R B AR RRERARCO NP RN A NN DAN TN a R
This procedure allows the user to insert text into his file. It

can be done on a charagter by character basis within a line or on

a block basis, If inserting a block the screen is erased from the
curscr position and text is entered normally utilizing the line editor.
If entering characters then each time a charscter is entered from

the keyboard all other characters to the right of the cursor are

moved one space and the character 1s entered under the cursor. Both

modes are exited by CNTL C followed by a CR.
RSN R R R R R AR RO RN RN AN N RN RA R RN AR RS

VAR CH : CHAR;
ALL DONE, ESCAPE, FOUND : BOOLEAN;
VALID_SET_OF CHAR : SET_OF VALID;
I : INTEGER;

BEGIN
ND SCREEN_PUT('INSERT: C)haracters Bj}leck <esc) aborts');
VALID_SET OF CHAR := ['C', 'B', CHR(27}];
GET_CHARACTER{ VALID_SET_OF CHAR. CH, ALL DONE. ESCAPE);
CASE CH QF
'C' : BEGIN
VALTD_SET_OF_CHAR := [CHR(1)..CHR(9),CHR{13)..CHR(127)];

ND_SCREEN_PUT('CHAR INSERT: <cntrl C> accepts <esc> aborts');

GOTOXY (COLUMN, ROW) ;
GET_CHARACTER(VALID_SET_OF CHAR, CH, ALL_DONE. ESCAPE);
WHILE (NOT ALL DONE) AND (NOT ESCAPE) DO BEGIN
IF COLUMN = 79 THEN BELL
ELSE
IF CH = CHR(8) THEN MOVE_LEFT
ELSE BEGIN
FOR I := (COLUMN +1) TO (LINE_LENGTH -1} DO
TEMP_LINE[I + 1] := TEMP_LINE(I];
WRITE{CHR(27)); WRITE{CHR(B1)); (¥ insert *)
TEMP_LINE[COLUMN + 1] := CH;
WRITE (CH);
MOVE_RIGHT;
END; (% elze ¥)
GET_CHARACTER{VALID_SET OF CHAR, CH, ALL DONE. ESCAPE);
END; (® while %)
IF ALL DONE THEN LINE_ EDIT(STORE_IT);
IF ESCAPE THEN
BEGIN
LINE_EDIT(FETCH_IT);
GOTOXY (0,ROW); (* beginning of row %)
PRINT_TEMP_LINE;
END;
END; (* W ¥)
'BY ; BEGIN
ND_SCREEN_ PUT{ 'BLOCK INSERT: <cntrl C> and <CR> accepts');
GOTOXY (Q,ROW + 1);
ERASE_REST_OF PAGE;
LINE_INDEX := 3;
INPUT_LINE[LINE_INDEX] := NL;
LINE_EDIT(INSERT);
LINE_NUMBER := LINE_NUMBER - 10;
PAGE;
END; (®* B ¥)
END; (® Case ®)
IF ESCAPE THEN EXIT(SCREEN INSERT);
END; (¥ Screen Insert ¥)

GLEER S LR R AR L bRt il e i dadidtetat dli iR iid it dilettssdlst

PROCEDURE SCREEN_DELETE;

L P eI IR e e e e e LS R IR R i R E e b RS aa el st
This procedure allows the user to delete either entire lines or
characters within a line by using the curser arrows. The down arrow
deletes the current line and the right arrow deletes the character
under the cursor, Once it is determined how many lines or characters
are to be deleted, a call to the line editor is made to do the

deletion.
BOERSEE RN RS ER R RO NN NN R A RN R SRR SRR N AR AR RN

VAR CH : CHAR;
ALL DONE, ESCAPE, FOUND : BOOLEAN;
VALID _SET_CF CHAR : SET_OF VALID;
I, LAST_LINE, FIRST_LINE : INTEGER;

BEGIN
ND_SCREEN_PUT
('DELETE: <down arrow> line, <right arrow> char, <Cntrl C> accepts');
WRITE(', <esc> aborts'};
GOTOXY (COLUMN, ROW);
VALID_SET_OF CHAR := [CHR(10), CHR(12), CHR(27), CHR(3)];
FIRST_LINE := LINE_NUMBER;
GET_CHARACTER(VALID_SET_OF CHAR, CH, ALL_DONE. ESCAPE);
IF CH = CHR(10) THEN
BEGIN
WHILE (NOT ALL DONE) AND (NOT ESCAPE) DO
BEGIN
VALID_SET_OF CHAR := [CHR{10), CHR(27), CHR{(3)];
LINE_NUMBER := SUCC(LINE NUMBER);
COLUMN := 03
WRITE(CHR(27)}; WRITE(CHR(&)); (®* Delste line #)
GET_CHARACTER(VALID SET OF CHAR, CH, ALL_DONE. ESCAPE);
END; (% while ®)
IF ESCAPE THEN PAGE;
END; (% if chr(10) *)
IF CH = CHR(12) THEN
BEGIN
WHILE (NOT ALL. DONE) AND (NOT ESCAPE) DO
BEGIN
VALID_SET_OF CHAR := [CHR(12), CHR{3), CHR(27)1;
LINE_EDIT(FETCH_IT);
FOR I := (COLUMN + 1) TO (LINELENGTHE - 1) DO
TEMP_LINE [I] := TEMP_LINE [I + 11;
WRITE(CHR{27)); WRITE(CHR(87)); (® Delete character #)
GET_CHARACTER(VALID_SET_OF CHAR. CH, ALL_DONE. ESCAPE);
END; (* while %)
IF ESCAPE THEN
BEGIN
LINE_EDIT (FETCH_IT);
GOTOXY (0,ROW); (® beginning of row %)
PRINT_TEMP_LINE
END; (® if escape #)
END; (% if chr (12) #)

END;

IF ALL DONE THEN BEGIN
LAST_LINE := LINE_NUMBER - 1;
IF FIRST_LINE = LAST LINE + 1
THEN LINE_EDIT(STORE_IT)
ELSE BEGIN
LINE_INDEX := Ui;
CONVERT_INTEGER(FIRST LINE);
LINE_INDEX := SUCC(LINE_INDEX);
CONVERT_INTEGER(LAST_LINE);
FOR I := (LINE_INDEX + 1) TO LINE_LENGTH DO
INPUT_LINE[I] := NL;

LINE_EDIT(DELETE);
LINE_NUMBER := LINE_NUMBER - 11;
PAGE;

END; (% else ¥)
END; (# if all done ¥)
(* DELETE *}

(TN R AT N SRR R RS RN RS A R R RS R NI RN RE)
PROCEDURE EXCHANGE;

(RN NSRRI RN AR RN R R RN R AR RN AR BN NS AN
This procedure allow the user to make literal changes within a line,
It brings inte the line buffer the line asscciated with the cursor
position and takes input from the keyboard on a character by character

basis. If the exchange 1s desired it stores the line in its new format.
AR SRR RN RN RN RN RSN BN AN RN

VAR CH : CHAR;

ALL DONE, ESCAFPE, FOUND : BOOLEAN;
VALID_SET_OF CHAR : SET_OF VALID;

BEGIN

END;

LINE_EDIT{FETCH_IT);
ND SCREEN PUT('EXCHANGE: <esc> to abort <cntrl C> to accept'};
GOTOXY (COLUMN,ROW); (* returns cursor to original position #)
VALID_SET_OF CHAR := [CHR(3),CHR(27),CHR(B),CHR(32)..CHR(127}I;
GET_CHARACTER(VALID SET_OF. CHAR. CH, ALL_DONE. ESCAPE);
WHILE (NOT ALL DONE) AND (NOT ESCAPE) DO
BEGIN
IF COLUMN = 79 THEN BELL
ELSE
IF CH = CHR(8)
THEN MOVE_LEFT
ELSE BEGIN
TEMP_LINE[COLUMN + 1] := CH;
WRITE (CH};
MOVE_RIGHT;
END;
GET_CHARACTER(VALID_SET_OF CHAR. CH, ALL_DONE. ESCAPE);
END; (¥ while %)
IF ALL DONE THEN
LINE_EDIT(STORE_IT);
IF ESCAPE THEN
BEGIN
LINE_EDIT(FETCH_IT)};
GOTOXY(0,ROW); (* Beginning of row #)
PRINT_TEMP_LINE
END
(* EXCHANGE *)

CALLELLE LA R AAd ol bl i i al i il s tat ot it bt il ot i iilislabidhlhl

PROCEDURE REPLACE;

(L LTITATEERREETE I 2 ittt tet ettt e b iRt i st tissiosllil]
This procedure expects to get a target string and a proposed change
to that string. It then call the line editor and passes the proposed
change. Upon completion it pages text to the screen starting at the

line number where the change was made.
EO AN RIS RIS R AR NSRRI RN RN TR R NRERS)

BEGIN
ND SCREEN_PUT
("REPLACE: delim <target> delim <substitute)> delim [repeat factor]'};
GOTOXY (0,1);
READ_SCREEN_COMMAND;
ERASE_REST OF PAGE;
LINE_EDIT (CHANGE);
ND SCREEN_PUT(' Press space bar te continue.,...');
READ (INPUT, SPACE_BAR):;
GOTOXY (0,1);
CLEAR TQO_EQLN;
PAGE;
END; (% REPLACE #)

(llllllll!lii!il'i!illllilllllIlilliililill'liill!lllIOII.lillllI*iliii)

PROCEDURE SET_THE TABS;
(IiIIIliIll!llll!iill!Illilllliﬁliiliiillllll!illillllillillll!l!i!ii‘l

Calls line editor procedure to set the tabs,
lliﬂ*'liill.lllllilllilillllllIIIIIIIIIIlll.lllllll!llI!II!!IIIIIIIII!)

BEGIN
ND_SCREEN_PUT ('SET TABS: <cor) displays current tabs');
READ_SCREEN_COMMAND;
LINE_EDIT{SETTABS);

END; (® SET THE TABS ¥)

(lllllIiilll!llllllli"lllllllIlillllliliiilﬁllIIIIIllllilll'll*'liiﬁ'ﬁ)

PROCEDURE ESTABLISH_TAB_CHAR;
LI e e T I T E T R i e P e T R b RS E R b I et e it s
Displays menu and calls the line editor procedure the establish the

tab character.
AR IR RN NN OB RN SRR RN B RSB E RN NRS)

BEGIN
ND_SCREEN PUT ('SET TAB CHARACTER: <cerd displays current character!');
READ_SCREEN_COMMAND ;
LINE_EDIT(TABCHAR);

END; (® ESTABLSH TAB CHAR *)

QA PR SR g i d Rttt a i i TR a i il iliisll sl s lodhlyn

PROCEDURE OTHER;
(RAR RN RN R SR NN NSRS AR RN R

Interprets secondary menu of additiocnal functions that can be
performed by the line editor and makes calls to appropriate screen

handler procedures.
L A T AR R P RS LR E YR LR R edd bRt DR R LR ARd st adat o tedadatillstll

VAR CH : CHAR;

BEGIN
ND_ SCREEN. PUT('OTHER: S)et tabs T)ab character R)eturn'};

REPEAT READ (REYBOARD, CH) UNTIL CH IN ['8', 'T', 'R'];
CASE CH CF
St : SET_THE TAES;
'T' : ESTABLISH TAB_CHAR;
'R ; EXIT(QTHER);
END; (" CASE %)
END; (* OTHER %)

(lllllillllllllllllllll!llll.illllllllllIIII‘I.I‘.'l'l!llllll!lli'ﬁl')

PROCEDURE MOVE_UP;
(PR R R RSN R NS N O I N R RN SRR RN RN R R R

Keeps track of the row and current line number when serolling through

a file.
*'i.ﬁi‘lill"lllllI!IIIlﬂﬁlllllll'l!lll!lIIill!ll"*llliili'."l*iil)

BEGIN
ROW := PRED{ROW);
GOTOXY (COLUMN, ROW);
LINE_NUMBER := PRED (LINE_NUMBER);
IF ROW < 2 THEN
BEGIN
ROW := 22;
PAGE_BACK;
END
END; (* MOVE UP %)

{Illlllilillillllil!!l.iilIIIIIIIIIIIIIlllill.iIll.ililillll'*llll*li)

PROCEDURE MOVE_DCWN;
(R RN RO R N RN RN TSRO NN NN SN DR AN RN

Keeps track of row number and line number when scrolling forward in

a file.
ﬁi'li!ili*ililllllllllllilliilllillIllllllllillIllill!!lllll!lllliii)

BEGIN
ROW := SUCC(ROW);
LINE_NUMBER := SUCC (LINE NUMBER};
GOTOXY (COLUMN, ROW);
IF ROW > 22 THEN PAGE
END; (* MOVE DOWN *)

(l'llliililllliilllIIIIIIIl!IIIIlIlIIIII!IIIlll!Illlllliillllilllllll)
PROCEDURE MOVE_RIGHT;

(SRR RN SRR NN RN AR NN NN AR NN R NN R AR NN
Keeps track of column while moving through row.

SETRSEENGNT T ER RN RN R RN R AN R AR R RSN RN RN A RN NN

BEGIN
COLUMN := SUCC (COLUMN);
IF COLOMN = 75 THEN BELL;
IF COLUMN > 79 THEN
BEGIN
COLUMN := 0;
MOVE_DOWN
END;
GOTOXY (COLUMN, ROW);
END; (®* MOVE RIGHT *)

(RN N N R RN S E R RN SR IN TN TSRS S NN
PROCEDURE MOVE_LEFT;
(llilIIlii#iilliiiliiiillllililIlllllilllIlll!!lil{llllll!iiillllil!i
Keeps track of column when moving through a row.

BN TR RN R RN R RN RN RSN R RO

BEGIN
COLUMN := PRED(COLUMN);
IF COLUMN < 0 THEN
BEGIN
COLUMN := 79;
MOVE_UF;
END;
GOTOXY (COLUMN, A0W);
END; (™ MOVE LEFT #)

(SRR R RN R NS RN A NN NN R R AN RN R R R E R RS E RN NIRE)
PROCEDURE EDITOR_MENU ;

(R A RSN AR RN NS SN AN NN AR RN NN NS R H S
Displays editor menu on screen.
LLCI LI LT LA R L E LR R L R T E R T I e b L LR L s et 1))

BEGIN
ND_SCREEN_PUT

{'EDIT: I)nsert D)elete E(X)change R)eplace O)ther QJuitf):
END; {* EDITOR_COMMAND_MENU #)

(IIIillliililiii!lIlllI*Iﬁiiiillilll‘*'llllliliillllllllllll**llii'i)

PROCEDURE EDITOR_COMMAND_INTERPRETER ;
(IlI**iii'illlllllillliilllIllllIllilll!!lI!illllilll!llllll&llillll
Interprets commands from the keyboard within a legal set of values.
Handles movement of the cursor arrows and the screen editor menu

items.
AR R AN AN SRR NN RN N RN R SR NN RS BRAREAY)

VAR INPUT : CHAR;

BEGIN
REPEAT READ(KEYBOARD, INPUT)
UNTIL INPUT IN
grrr, 'D*, tR*, 'Q*', 'X', '0', CHR(10), CHR(1%), CHR{12), CHR(8)]:

IF INPUT = CHR(10) THEN MOVE_DOWN;
IF INPUT = CHR(11) THEN MOVE UP ;
IF INPUT = CHR(B) THEN MOVE_LEFT;

IF INFUT = CHR(12) THEN MQVE_RIGHT;
CASE INPUT QF
*I' : SCREEN_INSERT;
D : SCREEN DELETE;
‘X' : EXCHANGE;
*R' : REPLACE;
to* : OTHER;
Q' : BEGIN
CLEAR SCREEN; EXIT (SCREEN_EDIT);
END;
END; (% CASE ¥)
IF INPUT IN [*I', 'X", 'Dv, 'R, 10Q']
THEN BEGIN
EDITOR_MENU;
GOTOXY (COLUMN, ROW)
END;
END; (¥ EDITOR_COMMAND INTERPRETER #)

{EESAHAENATRINETERRRRRRRREED ﬂlllllllllilll“lllllillll!iI"IIII!!'IIIiil)

PROCEDURE SET_UP_SCREEN EDITOR;
(HERERAARRNAS AT AR IR R R SRR E AR AR RN AN RN RS

Initializes the Screen Editor,
HNNREHE SR AR SRR R R RN R RN R RN)

BEGIN
TABS := [8, 12, 16, 2%, 32, 36, 40, 56. 73};
TAB_CHARACTER :=z '"1;
LINE_NUMBER := 1;

NL := CHR{13);
COMMAND := BADCOMMAND;
EDITING_FRCM SCREEN := TRUE;
CLEAR SCREEN;
EDITOR_MENU;
LINE_INDEX := 3;
PAGE;
END; (® SET_UP_SCREEN_EDITOR #)

(SEERERBRER AN TR DT FENUNA NN TS AT AR AR BB AR AR AR BRRERRINRD)

PRCCEDURE SCREEN_EDIT;
T e T e L L L P e R L L e PE s R L R e el

Functions as the driver procedure for the Screen Editor. It makes
repeated calls on the editor command interpreter until the user 1s

finished.
i T R L TR e R R IR PP R EA T ORISR ARSI RS2 ERE2L 2L 23 81 0

BEGIN
SET_UP_SCREEN_EDITOR;
EDITOR_COMMAND INTERPRETER;
REPEAT
EDITOR_COMMAND INTERPRETER;
UNTIL FINISHED;
END; (% EDITOR *)

(IIIIl!l!Ill!ll!l!ilfliiﬁ'lil'ii'lIllllIllllllilllllllllll'l'l‘l'lll)

PROCEDURE QUTER_COMMAND_MENU ;
(Illlliﬂililli"llllllllII.llllIIIIIIlIlIIiiIIIiIIIIIIIllIlEI!'.IIll

Displays the outer command menu for the HLSEW Command Interpreter.
lllllliIQlI'I!l'lIIIIIl!llIlil'ilillll!llllill!liillilllil!llllllll)

BEGIN

ND_SCREEN_PUT

{'COMMARD: S)creen edit T)ranslate A)nalyze Qluit L)ine edit?)
END; (% QUTER_CCMMAND_MEN(#)

(EHERER RS RGN NN ANEN RN NN RN RSN NN R TR BN RN AR R A TR RRRREE)

PROCEDURE GET_FILE;
AL L e Iy IR T L IR R T EER TR stz td]
Procedure establishes the file that the user wants and passes the

name t¢o the appropriate procedure.
LT R I A PRI TR SRR SRR IR LR RR AL R R RS AT RS RRASZS2 E22 8 28 2 31

VAR FOUND : BOOLEAN;
FILE NAME : STRING;

BEGIN
ND_SCREEN PUT (' What file ?7%);
READLN (FILE _NAME);

READ_FILE {FOUND, FILE_NAME);
IF NOT FOUND THEN
BEGIN
ERROR(NOT_FOUND);
EXIT(COMMAND. INTERPRETER) ;
END:
END; (* GET FILE %)

Qi aaadit it as 2l il 2a i it tidlitis e tRtietl elitsdisls)

PROCEDURE COMMAND_INTERPRETER ;
(IlllIIl!llllllllilllll!llllllIIIllllllil!illlilllllllll*lililillll
Interprets commands for the HLSEW system. Accepts only a limited

set of input from the keyboard and ecalls the appropriate module,
SRR RN RSN RN R SRR RN R SRR R E RSN AR DRSO AORE)

VAR CH : CHAR;
0K : BOOLEAN;

BEGIN
REPEAT
READ (KEYBOARD, CH)
UNTIL CH IN ['A', fT', tS*, tQ', 'L'];
CASE CH OF
'S' ; BEGIN
GET_FILE ;
SCREEN EDIT;
WRITE_FILE (OK);
IF NOT OK THEN
ERROR({WRITING);
END;
'TY : BEGIN
GET_FILE;
TRANSLATOR (OK};
IF NOT 0K THEN
ERROR(TRANS_ERROR}
END;
th' : BEGIN
GET_FILE;
ANALYZER(OK)
IF NOT QK THEN
ERRQR(UPDATING)
END;
‘L' : BEGIN
GET_FILE;
CLEAR SCREEN;
LINE_EDIT{EDIT_IT);
WRITE_FILE(OK);
IF NOT OK THEN
ERROR({WRITING);
END;
tQr : BEGIN
CLEAR SCREEN;
GOTOXY (25.,12);
WRITELN ('END HLSEW SESSION'};
EXIT (PROGRAM);
END;
END ({®CASE#)
END; (® COMMAND INTERPRETER¥)

G A T S RS LR I DRl s ERERRAT LA bR sst it it sdts tlzaditatiat)l

PROCEDURE INITIALIZE ;
(SRR RN AN RS RN NN AR RN AR DA R RN

Initializes the HLSEW system.
AN RN RN R E R R A RN RSN AR RS F RN

BEGIN
EDITING_FROM_SCREEN := TRUE;
CLEAR_SCREEN;
GOTOXY(25,12);
WRITELN ('WELCOME TO HLSEW!);
GOTOXY(22.50);
WRITE('copywrite pending @1981');
QUTER_COMMAND_ MENU ;
NL := CHR(13);
FINISHED := FALSE;
VERIFY_CHANGES := TRUE;

END; (% INITIALIZE ¥)

(R R RN AR IR RS AN AR N R DN AN NS S TN NN AR R AR
MAIN PROGRAM

L T L R R R R R RS R R TR P IS E s R]

Drives the outer command menu and the command interpreter of the

HLSEW system until the user is finished.
LA RIS E R R AR R Rl R YRR RS LT aER I sl otadigs]] !Illllli)

BEGIN
INITIALIZE;
COMMAND_INTERPRETER;
REPEAT
OQUTER_COMMAND._MENU;
COMMAND_INTERPRETER;
UNTIL FINISHED
ERD. (% HLSEW ¥)

LPPENDIX C

LINE EDITOR

SQURCE CODE

C-1

APPENDIX C LINE EDITOR SOURCE CODE

(SAA A A s R A T AR EELIALEAL LARREE IR ERR L EREERARERER SR o it il il

& *
B DpDDDDD EEEEEEEE DDDDDDD IIITII TTTTTTTT *
* DDDDDDDD EEEEEEEE phDDDDDD IIIIIX TTTTTTIT *
2 DD DD EE oD DD I1 T 7T T b
. DD DD EE oo DD I T *
* DD DD EEEEEE DD DD I T *
. DD DD EEEEEE DD DD II TT *
L DD DD EE DD DL i1 TT *
% DD DD EE oD oo I1 TT *
. DDDDDDDD QG EEEEEEEE poppppDD IIIXII TT *
* DDDPRDD Q0 EEEEEEEE DDDDDDD IIIrIz TTTT *
* 4
* L]
¥ LINE EDITOR UNIT DESIGNED BY DAVID B. AARONSON IN *
* PARTIAL FULFILLMENT OF A MASTERS OF SCIENCE IN CS. bl
* FALL 1981 VERSION 1 KANSAS STATE UNIVERSITY *
* L]
» *
U B R RN AN N SR A N SRR A RS AN FF S NSRRI RN NS H RN BN G NN NN)

UNIT EDITOR;

{(ANARBRANE)

INTERFACE
RLIETITET Y

CONST
LINELENGTH = 50;
LOG_ON_MSG = ' ELSEW EDITOR';
HELP_MSG = 'TYPE HELP (HE) FOR A SUMMARY OF COMMANDS';

TYPE
LINE = ARRAY [1,.LINELENGTH] OF CHAR;
TABSETTING = SET OF 1.,80;
COMMAND TYPE = (INSERT, DELETE, CHANGE, SETTABS, TABCHAR, VERIFY, LIST.
FETCH_IT, STORE_IT, REPEAT_IT, HELP, ENDEDIT,
APPEND, BADCOMMAND, EDIT_IT);
ERROR_TYPE = (COMMAND ERROR, NOT_FOUND, STRING_NOT_FOUND, WRITING,
LONGLINE, OTHER. ERROR, CHAR. ERROR, TRANS_ERRCOR, UPDATING);
TOREN_TYPE = {NILTOK, LINENCTOK, .OTHERTOK);
TOKEN = RECORD
TOKEN_KIND : TOKEN TYPE;
VALUE : INTEGER
END;
MODE_TYPE = (DELETE_MODE, CHANGE_MODE, INSERT_MODE);
SET_OF VALID = SET OF CHAR;

VAR
COMMAND : COMMAND. TYPE;
INPUT_LINE, TEMP LINE : LINE;
LINE_INDEX. TEMP_LENGTH, LINE NUMBER : INTEGER;
VERIFY_CHANGES, FINISHED, .EDITING_FROM_SCREEN : EOOLEAN;
TAB_CHARACTER, NL, SPACE BAR : CHAR;
TABS : TABSETTING;
ROW, COLUMN, SAVE_ROW, SAVE_COLUMN : INTEGER;

(I!Q*ll*!i*ill!ll!Illillllil‘lill*lIIIlI‘Illilllll!llllllilll*lllllll!"

INTERFACE PROCEDURES
LRI IR AR R R AR AL PRSI s R X a s bR R 22828 RR 222223
Those procedures that are used by both the line editor and the screen

editor.
LLLELE LA T LR It et e Rt b sy a st ia et Eat T e b aastiaastssats)

PROCEDURE STORE_A_LINE (LINE IN : LINE; LINE NO : INTEGER; MODE_IN :
MODE_TYPE);
PROCEDURE EXIT_STORE_A_LINE;

PROCEDURE DELETE_A_LINE (LINE_NO : INTEGER ;VAR FOUND_IT : BOOLEAN);
PROCEDURE FETCH_A_LINE {INPUT_LINE NC : INTEGER; VAR LINE OUT : LINE;
FOUND_IT : BOOLEAN);

PROCEDURE ANALYZER (VAR OK : BOOLEAN);
PROCEDURE TRANSLATCR (VAR OK : BOOLEAN);
PROCEDURE BUILD_A_LINE (VAR DONE : BOOLEAN);
PROCEDURE FIND TOKEN (VAR NEXT_TOKEN : TOKEN);
PROCEDURE FIND STRING (STRING : LINE; STRING_LENGTH : INTEGER;
VAR START :; INTEGER; VAR FOUND: BOOLEAN);
PROCEDURE FETCH_CURRENT_LINE (INPUT_LINE_NO : INTEGER;
VAR LINE FOUND : BOOLEAN};
PROCEDURE GET_CHARACTER (LEGAL_CHAR : SET_OF VALID; VAR CH_OUT : CHAR;
VAR ALL DONE. ESCAPE : BOOLEAN);
PROCEDURE PRINT_TEMP_LINE;
PROCEDURE STORE_CURRENT_LINE (MODE : MODE_TYPE);
PROCEDURE CHANGE_TEXT;
PROCEDURE MAKE_TAB_SETTING:
PROCEDURE SET_TAB_CHAR;
PROCEDURE INSERT_TEXT;
PROCEDURE DELETE_LINES;
PROCEDURE LIST_IT;
PROCEDURE LINE_EDIT (COMMAND_IN : COMMAND_TYPE);
PROCEDURE ND SCREEN_PUT (INPUT_STRING : STRING);
PROCEDURE CLEAR TO_EOLN;
PROCEDURE READ FILE(VAR FQUND : BOOLEAN ; FILE_NAME : 3TRING);
PROCEDURE WRITE FILE(VAR OK : BOOLEAN);
PROCEDURE ERROR (ERROR_KIND : ERROR_TYPE};

(!Illilllllliiij

IMPLEMENTATION
(UnsaenRasnns)

GALLLAA R Rt Rt il bl il it i Rl it iRl ilit il it tediodlsl

PROCEDURE HELP_IT;
et e e T R T e e e e R L e LR L e T e BRI T]
This procedure provides the user with a summary of the commands

avallable to him,
FRASEEREEE NN R R RN R RN R NS RN A SRR RN

BEGIN;
WRITELN ('THE FOLLOWING IS A SUMMARY OF THE EDITOR COMMANDS');
WRITELN ;WRITELN;WRITELN
('"IN® PROVIDES FOR THE INSERTION OF TEXT STARTING AT THE CURRENT!);
WRITELN
(*LINE NUMBER, TYPE CNTRL "C" AND A <CR> TO EXIT THE INSERT MADE.');
WRITELN; WRITELN;WRITELK
(trpL®™ DELETES LINES FROM YOUR FILE. IT MUST BE FOLLOWED BY & ');
WRITELN
('LINENUMBER OR A RANGE OF LINENUMBERS. E.G. DL ARG, [ARG}');

WRITELN ;WRITELN;WRITELN
{"MCH" CHANGES AN EXISTING STRING WITH A NEW STRING AT THE CURRENT'};

WRITELN

('"LINENUMBER. E.G CH/OLD TEXT/NEW TEXT/ (ARG} THE THIRD ARGUMENT®);
WRITELN

('HAS THREE OPTIONS. IT MAY BE NULL (DEFAULT IS 1), IT MAY BE AN');
WRITELN

{ YINTEGER SPECIFING THE NUMBER OF OCCURANCES TO CHANGE, OR IT MAY');
WRITELN

(*BE AN "™#n WHICH WILL MAKE THE SPECIFIED CHANGES THROUGHQUT THE');
WRITELN

{'THE ENTIRE FILE');

WRITELN;

WRITELN ('Press space bar to continue..... D

READ (INPUT, SPACE_BAR);
WRITELN;WRITELN;WRITELN;
WRITELN
(*"LS" LIST THE LINENUMBER AHEQUESTED, WHEN FOLLOWED BY A SECOND');
WRITELN
("ARGUMENT A RANGE OF LINES ARE DISPLAYED. E.G. LS ARG, {ARG}");
WRITELN;WRITELN;WRITELN .
(t*"TCT" ALLOWS YOU TO SET THE TAB CHARACTER TO ANY CHARACTER QTHER');
WRITELN
('THAN A NUMBER OR LETTER. TC FOLLCWED BY A CR WILL DISPLAY CURRENT');
WRITELN
('TAB CHARACTER. E.G TC {ARG}');
WRITELN3;WRITELN;WRITELN
(*mST" ALLOWS YOU TO SET TABS. THIS COMMAND FOLLOWED BY A CR WILL');
WRITELN
{ 'DISPLAY THE CURRENT TAR SETTINGS. OTHERWISE THIS COMMAND SHOULD');
WRITELN
('FOLLOWED BY THE TAB SETTING ARGUMENTS YOU DESIRED SEPARATED BY');
WRITELN
('A COMMA OR A SPACE. E.G ST {ARG} {ARG} {ARG} OR {ARG},{ARG} EIC');
WRITELN
('THIS COMMAND FOLLOWED BY "C"™ WILL SET THE STANDARD COBOL TABS');
WRITELN;WRITELN;WRITELN
(t"EN" WILL EXIT THE EDIT MODE');
WRITELN;WRITELN;WRITELN
(*"YE" TOGGLES VERIFY ON AND OFF. UPON EXECUTION YOU WILL BE NOTIFIED!'};
WRITELN
(*OF THE CURRENT SELECTION');

END;

(IIIIIIII!!‘.!!Illilllli!lll'lii!IIIIiilllIﬂ...lill!lll*ll!iil'*'!lllil}

PROCEDURE ND. SCREEN_PUT (INPUT_STRING : STRING);
(TR AN D R R R R RS S SR SR IR RN R SR ¥
Nen destructive write routine which places lines on the top line

of the screen,
HE AR IR AR EAR AR AR RN RN R RN RN B RN RN NN R AR RN

BEGIN

GOTOXY (0,0);

CLEAR TQ_ECLN;

GOTOXY (0,0);

WRITE (INPUT_STRING};
END; (* ND SCREEN PUT ¥)

(IllilIIilﬂ!IlllI|IIil*i!il*llllliillllil*l*ill'llillil“lllll!lllllll!i)

PROCEDURE CLEAR TOQ_EOLN;
(lll!iilIII.!illlilllli'llliliiﬂilﬁliliillliil!ill!llllIIII'.I.I"IIIII

Erases sereen to end of current line.
ERRARR RN AR RSN RN RN IR ST NI R R RN E RN N RN AR AN

BEGIN
WRITE(CHR(2T7)); WRITE(CHR(84}};
END; (® CLEAR TO ECLN ¥)

(AR R RN DI N E S N NA RN RN N SRR RAS NN SRR RN D)

PROCEDURE GET_CHARACTER {(LEGAL_CHAR : SET_OF VALID; VAR CHAR QOT :
CHAR; VAR ALL_DONE. ESCAPE ; BOCLEAN);

I IR T Y R L et e LI R AR e E DRI R R EEEE TR EaR et et ittty

I/0 procedure which recieves as input a set of valid characters whick

are acceptable. It then reads until one of those charactersz is found

and returns it to the calling routine. Special cases such as the ESC

key and CNTRL C set flags which are returned aiseo.
AARRENARAN AR SNSRI AR R RN AR

VAR CH : CHAR;

BEGIN
ESCAPE := FALSE;
ALL_DONE := FALSE;
REPEAT READ (KEYBOARD, CH) UNTIL CH IN LEGAL_CHAR;
IF CH = CHR(8) THEN BEGIN
WRITE{CHR(8)); WRITE(® '); WRITE(CHR(B)); END; (¥ destroys char %)
IF CH = CHR(3) THEN ALL_DONE := TRUE;
IF CH = CHR(27) THEN ESCAPE := TRUE;
CH_QUT := CH
END; {® GET CHARACTER ¥)

(RREERAR R RN RN IR NN TR R AR R BB RN

PROCEDURE ERROR (ERROR_KIND : ERROR_TYPE);

(RO ISR N NN NN SRR T S R RN SRR R R
Preocedure Error is a centralized means of providing error messages.

If the user is in screen edit mode the the error messages are written
to the top of the screen so as not to destroy any text on the screen.

If the user is in the line edit mode, then the messages are written

normally to the screen.
SRR RN AR SRR R AN R E RN TR SN A RN R RN R RN

BEGIN
IF EDITING_FROM_SCREEN THEN BEGIN
CASE ERROR_KIND OF
LONGLINE : ND_SCREEN_PUT ('## LONG LINE ##'};
COMMAND_ERROR :ND_SCREEN_PUT ('8% ILLBEGAL COMMAND ®#v).
NOT_FOUND :ND_SCREEN PUT ('#% NOT FOUND #ur}.
QTHER. ERROR :ND_SCREEN_PUT ('#% ERRQR ##1);
STRING_NOT_FQUND :RD_SCREEN PUT ('®#% STRING NOT FQUND ##r):
WRITING : ND_SCREEN_PUT ('®* ERROR IN WRAITING ##7);
TRANS. ERRQR : ND_SCREEN_PUT ('¥% ERROR IN TRANSLATING ##1);
UPDATING : ND_SCREEN PUT ('#% ERROR IN UPDATING ##!);
END; (* CASE ®)
WRITE(' Press space bar to continue.....');
READ (INPUT, SPACE_BAR);
END (% THEN #)
ELSE
CASE ERROR_KIND OF
COMMAND_ERROR : WRITELN ('## ILLEGAL COMMAND ®dv),
NOT_FOUND : WRITELN ('## NOT FOUND ##%'});
OTHER_ERROR : WRITELN ('#® ERRQOR ##1):
WRITING : WRITELN ('## ERROR IN WRITING ##1};
TRANS_ERROR : WRITELN ('®#® ERROR IN TRANSLATING ##1};
UPDATING : WRITELN ('#* ERROR IN UPDATING ¥##t);
STRING_NOT_FQUND : WRITELN ('#® STRING NOT FQUND ##t);
LONGLINE : WRITELN ('## LONG LINE ¥#1);
END (® CASE %) ;
END; (* ERROR %)

(LA ERT R PR R RA SR LR d e Rt ea it it i tstastz otz iatistiistllyl

DUMMY RQUTINES
FREARR R R AR RN R RN RN RN RN IR RSN N RN)

PROCEDURE STORE_A_LINE ; BEGIN END;
PROCEDURE EXIT_STORE_A_LINE;BEGIN END;
PROCEDURE DELETE A_LINE ; BEGIN END;
PROCEDURE FETCH_A_LINE ; BEGIN END;
PROCEDURE ANALYZER; BEGIN END;
PROCEDURE TRANSLATOR; BEGIN END;
PROCEDURE WRITE FILE; BEGIN END;
PROCEDURE READ_FILE; BEGIN END;

(FR AR RN PR RRAN TIPS NN ANV R NN RN RN A AR R RN RO

PROCEDURE BUILD_A_LINE (VAR DONE : BOOLEAN);

(R R RN RN RN NN R NN E AR DA RN RN RN R BN RN RO RA Y
This procedure i1s the primary procedure for creating text. The cursor
is postioned to column 12 and characters are repeatedly retrieved from
the key board until an EOLN condition or the maximum line length is
encountered. The data structure utilized is TEMP_LINE, which is an
array of characters. The pointer to the present posticn in the array
is LINE_INDEX. When a tab character is encountered the procedure fills

the data structure with the appropriate number of blanks,
!lll!l!ii.!III'IIII'I'Ill-ll'llIvlIliililiiIIllIlIlIIliiIl!lIIIII!I!I!II!III)

VAR
C : CHAR;
I : INTEGER;
ALL DONE. ESCAPE : BOOLEAN;
VALID_SET_OF CHAR : SET OF CHAR;

BEGIN
VALID_SET_OF_CHAR := [CHR(32)..CHR(127).CHR{13).CHR(8),CHR{27),
CHR(3), TAB_CHARACTER];
FOR I := 1 TO 1t DO BEGIN (* position cursor to column 12 ¥}
€=t
WRITE (OUTPUT,C)
END;
LINE_INDEX := 12}
GET_CHARACTER(VALID SET OF CHAR.C,ALL DONE.ESCAPE);
WHILE (NOT EOLN (KEYBOARD)) AND (LINE INDEX <> LINELENGTH)
AND {NOT ALL_DONE) DD BEGIN
IF C = CHR (8) (* backspace ¥)
THEN BEGIN
LINE_INDEX := PRED (LINE INDEX);
IF LINE_INDEX <= O THEN LINE INDEX := 1
END
ELSE IF C = TAB_CHARACTER (¥ tabsetting #)
THEN
REPEAT

am 1 I
Hd

TEMF_LINE [LINE INDEX] := C;
LINE_INDEX := SUCC (LINE INDEX);
UNTIL (LINE_INDEX IN TABS) OR (LINE_INDEX > 79)
ELSE BEGIN
TEMP_LINE [LINE INDEX] := C;
LINE_INDEX := SUCC (LINE_INDEX):
WRITE (CUTPUT,C);
END;
GET_CHARACTER{ VALID_SET_OF_CHAR, C,ALL DONE.ESCAPE);
END; (® while ®)
READLN (KEYBOARD);
WRITELN;
LINE_INDEX := PRED (LINE INDEX);
FOR I := LINE_INDEX TC LINE LENGTH DO
TEMP_LINE [I] := NL;
DONE := ALL DONE;
END; (® BUILD A LINE 8)

(illllllllllIIl"IlIlIIIIIIIi.iIiIIIlII!I!I!lilIIllI!ll*Ii'*ll*lli!!Il)

PROCEDURE FIND TOKEN (VAR NEXT_TOKEN : TOKEN);
(IliiliilllllillﬂlIIIIlIl!IIIil!ll!II!llIl!liIlIllll‘i!iﬁlll!lllil!i.l
This procedure is desighed to parse tokens from the global data
structure called INPUT_LINE. It successively scans the data stucture
until it finds a character which is not a blank and then determines
what type of token it is. It sets the flelds in the record NEXT_TOKEN
according to the type of teoken, its location in the data structurs,

and i{ts value if it is a number.
ARNSRAREESRRRRERR NIRRT R RN RN N R RN R NRN RN TR

VAR
C : CHAR;
I : INTEGER;

BEGIN
WITH NEXT_TCOKEN DO

€ :z INPUT_LINE [LINE INDEX);
LINE_INDEX ;= SUCC (LINE INDEX)
UNTIL C <> 't '3
VALUE := PRED (LINE INDEX); (® sets position where token found#)
IF C = CHR(13}
THEN TOKEN_KIND := NILTOK
ELSE IF (C < '0') QR (C > '9') (® not a number #*)
THEN TOKEN_KIND := OTHERTOK
ELSE BEGIN
TOKEN_KIND := LINENOTOX:
VALUE := C;
HEPEAT
(* change character to integer %)
VALUE := 10 * VALUE + QRD(C) - QRD{'Q");
C := INPUT LINE [LINE INDEX];
LINE INDEX := SUCC (LINE INDEX)
UNTIL (C < '0') OR (C > '9');
END;
IF TOKEN_KIND = GTHERTOK
THEN LINE_INDEX := PRED (LINE INDEX)
END
END; (* FIND TOXEN *)

(I*l!l**l!*lﬁllllllIlllli**llilIII!llllﬁlil*lllliiiii!'lllﬂlIIIII**II*}

PROCEDURE QUIT;
(Ill!III'IiII**i‘il'llIlﬂiI"*ilillll!lll"*liiliilililiiftlfilliillil

Writes signoff message to the user.
AR BRSNS R N R SRR BN R SRR E RGNS RIS NN

BEGIN
WRITE(CHR(27)); WRITE(CHR(43)); (¥ clear screen &)
GOTOXY (15,12};
WRITELN (' END OF HLSEW SESSION');

END; (® QUIT ¥)

R T R A I T T R AR P PR E R PR R AR A PR AR 22 R 2T 2222)
PROCEDURE FIND_STRING (STRING : LINE; STRING_LENGTH : INTEGER;

VAR START : INTEGER; VAR FOUND : BOCOLEAN);
CRMMMMNRE ST RN IS NI AN BT ARTRRN KNSR
Thia procedure is used for string searches. It recieves as input the
atring to be found and its length. It returns the position within the
array and a boolean FOUND., It proceeds through the data structure
TEMP_LINE looking for the first occurance of the string., If it is

found, then another loop is initlated to count each match.
L e e e T T TR LR R RS B2)

VAR
MATCH : CHAR;
SUB_STRING, I : INTEGER;
DONE : BOOLEAN;

EEGIN
DONE := FALSE;
FOUND := FALSE;
MATCH := STRING [1];
I := STRING_LENGTH - 1;
IF START + I <= TEMP_LENGTH
THEN REPEAT
IF TEMP_LINE [START] = MATCH
THEN BEGIN
FOUND := TRUE;
SUB_STRING := 0;
WHILE (SUB_STRING <= I) AND FOUND
DO BEGIN
FOUND := FOUND AND
(TEMP_LINE [START + SUB_STRING]
= STRING [SUB_STRING + 1]);
SUB_STRING := SUCC (SUB_STRING)
END (% while #)
END;
IF NOT FOUND
THEN START := SUCC (START);:
DONE := FOUND OR (START + I > TEMP_LENGTH);
UNTIL DONE;
END; (* FIND_STRING ¥)

(‘ill.!'II!llIIIHIilliilllllllllIIIH'I!'III*IIII'*'Iﬂilllliﬁiilillll)
PROCEDURE VERIFY_IT;
{!lll{"llll*‘lillii!l"lIlii'*lillll!iii**!Iiiillilﬂ!‘lﬁ!l*ﬁll*l*ll

Toggles the flag VERIFY_CHANGES off and cn.
lillilllllll!lllllllililllIlillﬂ'll!llil'**illilllllllllllllill!lll)

BEGIN
VERIFY_CHANGES := NOT VERIFY_CHANGES;
WRITE ('VERIFY ');
IF VERIFY_CHANGES
THEN WRITELN ('ON')
ELSE WRITELN ('OFF')
END; (® VERIFY IT *®)

(!'Illll****lilill!l!iilllIiII!!ll!lllIﬁiDI!lllll*lll*ll!liiﬂﬁiliﬁ'i)

PROCEDURE FETCH_CURRENT LINE (INPUT_LINE NO : INTEGER;

VAR LINE FOUND : BOOLEAN);
(RN SRR AR NN RN R NN NN NSRRI NN
This procedure calls the storage system with a request for a certain
line number. It recieves back the line of text and a boolean, The line
of text recieved 13 then transfered into a data strucrture called

TEMP_LINE for editing.
e T Tt R A R ST E R R TRt R TR EE PP RS IR RR LELESERLSLA SR 3L 210}

VAR
I : INTEGER;
CURRENT_LINE : LINE;
FCOUKD : BCOOLEAN;

BEGIN
FETCH_A_LINE(INPUT_LINE_NO,CURRENT LINE,FOUND);
LINE_FOUND := FOUND;
IF FOUND
THEN BEGIN
LINE_NUMBER := INPUT_LINE_NO;
TEMP_LENGTE := LINE_LENGTH;
I:=0;
REPEAT
I := SUCC {I);
TEMP_LINE [I] := CURRENT LINE [I];
UNTIL (CURRENT_LINE [I] = NL) CR (I > LINELENGTH);
TEMP_LENGTH := I
END
ELSE BEGIN
WRITE {'LINE ',INPUT_LINE NQ,' ');
ERRCR (NOT_FOUND)
END
END; (* FETCH_CURRENT_LINE #)

(Il!llllllilll**'IiliIillﬁl*'*'!'lililil!lIIIIIIIIQ!I.Illillllllilll}

PROCEDURE PRINT_TEMP_LINE;
LT LI R e T Y e T T A AT LR e S LA e L TR LE e atestl)

Writes the data structure TEMP_LINE to the screen.
llllllll!lllllii!illlIill'III'IlIII-lili*l*il'lilllilll!lii!ilii!lﬂll!l’)

VAR
I : INTEGER;

BEGIN
FOR I := 1 TO TEMP_LENGTH DO
WRITE (TEMP_LINE [I]);
END; (* PRINT_TEMP_LINE %)

(R RN NN R AN AN R NN AR RN
PROCEDURE STORE_CURRENT LINE (MCDE : MODE_TYPE);

L R T R R R R i ISt I eIt a e bbb tiidiietlls)
Transfers the working data structure inte a permenent one and paases

it to the storage systenm.
FRH AR FHASE RN IRRDERABAPEARTS Illlil!lllII!IIllllilll!ﬂlﬁllﬁilliulil)

VAR
I : INTEGER;
MODE_OUT : MODE_TYPE;
CURAENT LINE : LINE;

BEGIN
FOR I := 1 TO LINE_INDEX DO
CURRENT_LINE [I] := TEMP_LINE [I];
MODE_QUT := MODE;
LINE_NUMBER := SUCC (LINE NUMBER);
STORE_A_LINE (CURRENT LINE, LINE NUMBER, MODE_OUT}
EMD; (* STORE_CURRENT_LINE *)

(GAALAAS AL AR AR At et il al il il il ddlididiidssd KFERFRARTNTRBUNETE)

PRCCEDURE CHANGE_TEXT;
(AR RN IR AR AR TN BRSNS RN RN R RN R R R e

This procedure is responsible for exchanging a target string of
text with a substitute string. It first scans the data structure

INPUT_LINE, looking for the proper command strusture., As each pertion

of the command is found it is stored in its own variable. If the
command is in the correct format then the procedure calls FIND_STRING
Lo locate an occurance of the target string. When target string is

found then a swap 1s made with the substitute string.
R R R AT I e A E R R IR ER R AR SRS SRR RERTSEAZER LT L] 1))

VAR
DELIM : CHAR;
MEXT : TOKEN;
NEW_STRING, OLD_STRING : LINE;
MEW_LENGTH, OLD_LENGTH, CHANGE_COUNT. OLD_START : INTEGER;
STRING_START, I, J, INDEX : INTEGER;
FOUND, LINE_CHANGED, SINGLE_CHANGE, LINE FQUND: BOOLEAN;

BEGIN
LINE_CHANGED := FALSE;
STRING_START := 1;
FIND TOKEN (NEXT);
WITH NEXT DO
IF TOKEN_KXIND <> OTHERTOK
THEN ERROR (COMMAND_ERRCRH)}
ELSE BEGIN (% look for a delimiter ®*)

DELIM := INPUT_LINE [VALUE];

OLD_LENGTH :=z 0;

INDEX := SUCC (VALUE);

WHILE (INPUT_LINE [INDEX] <> DELIM) AND

(INPUT_LINE [INDEX] <> KL}
DO BEGIN (* read old string #)
OLD_LENGTH := SUCC (OLD_LENGTH);
OLD_STRING [OLD_LENGTH] := INPUT_LINE [INDEX];
INDEX 3= SUCC (INDEX)
END;
IF INPUT_LINE [INDEX] <> DELIM
THEN ERROR (COMMAND_ERROR)
ELSE BEGIN
INDEX := 3UCC (INDEX);
NEW_LENGTH := 0;
WHILE (INPUT_LINE [INDEX] <> DELIM) AND
(INPUT LINE [INDEX] <> NL)
DO BEGIN (* read new string #)
NEW_LENGTH := SUCC (NEW_LENGTH):

WEW_STRING [NEW_LENGTH] := INPUT_LINE [INDEX];

INDEX := SUucC (INDEX}
END;
IF INPUT_LINE [INDEX] = NL
THEN CHANGE_COUNT := 1
ELSE BEGIN (* find out how many changes *)
LINE_INDEX := SUCC (INDEX);
FIND_TOKEN (NEXT);
CASE TOKEN_KIND OF
NILTOK : CHANGE COUNT :=z 1;
LINENQTOX : CHANGE_COUNT := VALUE;
QTHERTCK :
IF INPUT_LINE [VALUE] = '#!
THEN CHANGE_COUNT :z =1
ELSE CHANGE COUNT := O
END; (¥case®)
END; (*else®)
SINGLE_CHANGE := CHANGE_COUNT = 1;
FETCH_CURRENT LINE(LINE NUMBER.LINE_FOUND);

END;

WHILE (CHANGE_COUNT <> 0) AND (LINE_FOUND)
DO BEGIN
FIND_STRING (OLD_STRING, OLD_LENGTH,
STRING_START. FQUND);
IF NOT FQUND
THEN IF SINGLE_CHANGE
THEN BEGIN
ERROR (STRING_NOT_FOUND);
CHANGE _COUNT := C
END
ELSE BEGIN (* move up and keep locking #)
LINE NUMBER := SUCC (LINE NUMBER);
FETCH_CURRENT LINE{LINE_NUMBER,LINE FOUND)
END
ELSE BEGIN (® found a line to change %)
CHANGE_CCUNT := PRED {CHANGE COUNT);
LINE_CHANGED := TRUE;
IF TEMP_LENGTH - OLD_LENGTH + NEW_LENGTH > 80
THEN ERROR (LONGLINE)
ELSE BEGIN
IF OLD_LENGTH > NEW_LENGTH
THEN FOR I := STRING_START + OLD_LENGTH
TO TEMP_LENGTH
DO TEMP_LINE [I - OLDLENGTH + NEW_LENGTH]
1= TEMP_LINE [I]
ELSE FOR I := TEMP_LENGTH DOWNTO STRING_START
+ OLD_LENGTH
DO TEMP_LINE [I + HEW_LENGTH - OLD_LENGTH]
1= TEMP_LINE [I];
TEMP_LENGTH := TEMP_LENGTH - OLD_LENGTH
+ NEW_LENGTH;
FOR I := 1 TO NEW_LENGTH DO
TEMP_LINE [STRING_START + I - 1] :=
NEW_STRING [I];
STRING_START := STRING_START + NEW_LENGTH;
END; (®else#)
END;
IF LINE CHANGED
THEN BEGIN
START STRING := 1;
STORE_CURRENT LINE (CHAHGE_MQDE);
IF VERIFY_CHANGES
THEN PRINT_TEMP_LINE;
LINE CHANGED := FALSE
END
END (¥while#)
END
END
(® CHANGE_TEXT ¥)

(ill‘lll*il!lil!llIIIll!lIIIIliillilllli!iﬂilllliﬂlI&lliil*llli!i!iﬁ!ll)
PROCEDURE MAKE_TAB_SETTING;

(I-llllllvllllllllll!lll'lllllilllll (FES IR RS R QRS2 R2 1R 2R 20 20
This procedure parses the data structure INPUT_LINE in order to
establish the desired tab setting., If no arguments are found then
then current tab settings are displayed. QOtherwise, the values found

in the array are added to the current set of tab settings,
AN N NN R RN R NN RSN E RN RN)

VAR
I, N : INTEGER;
C : CHAR;
NEAIT : TOKEN;
OUT_STRING : STRING;

BEGIN
FIND_TOKEN (NEXT);
CASE NEXT.,TOKEN_KIND OF
NILTOK :
BEGIN
N = C;
IF EDITING_FRCM_SCREEN THEN
BEGIN
FOR I := 1 TO 80 DO
IF I IN TABS
THEN BEGIN
REPEAT
N 1= SUCC(N);
OUT_STRING[N] := CHR(I MOD 10 + ORD ('01%));
I := I DIV 10;
ONTIL I = 0%
N := SUCC(N);
OUT_STRING[N] := ' *;
END;
ND_SCREEN PUT (OUT_STRING);
END
EL3E BEGIN
FOR I := 1 TO 80 DO
IF I IN TABS THEN
WRITE(I,' ');
WRITELN;
END;
END;
OTHERTOK :
BEGIN
C := INPUT_LINE [4];
IF C = 'C' (% Cobol tab option #)
THEN TABS := [8,12,16,20,24.32,36,40,56,73]
ELSE ERROR (COMMAND ERROR)
END;
LINENOTOK :
IF NEXT.VALUE = Q
THEN TABS := []
ELSE REPEAT
I := NEXT,VALUE;
IF (I > 0) AND (I < 79}
THEN TABS := TABS + [I] (¥ set union ¥)
ELSE ERRCR (QOTHER_ERROR);
FIND TOKEN (NEXT);
UNTIL NEXT.TOKEN _KIND <> LINENQCTOK
END; (¥case¥)
END; (®MAKE_TAB_SETTINGH*)

(RSRERSUNITEF AN BRNB T I R R BN RN E DB E AR
PROCEDURE SET_TAB_CHAR;
(llﬁ!lillliiIillllli!'liiilil!llllii‘ﬂilili*i!!lilillll!llllllliiiil
This procedure parses the INPUT_LINE to determine if the user wishes
to view the current tab character or establish a new one, If the

argument is a null then the current tab character is displayed.
SRERRE RN RRRER RPN RN R RN R R ER RN R

VAR
NEW_TAB_CHAR : TOKEN;
MESSAGE_QUT, TAB_STRING : STRING;
BEGIN

FIND TOKEN (NEW_TAB_CHAR);
WITE NEW_TAB_CHAR DO
CASE TOKEN_KIND OF
NILTOK : BEGIN
IF EDITING_FROM_SCREEN THEN
BEGIN
MESSAGE OUT := ('The Tab Character is ');
ND_SCREEN PUT({MESSAGE_QOUT); WRITE(TAB_CHARACTER):
WRITE(' Press space bar to contimue....');
READ (INPUT, SPACE.BAR);
END
ELSE
WRITELN('THE TAB CHARACTER IS ',TAB_CHARACTER);
END;
OTHERTOKX : TAB_CHARACTER := INPUT_LINE [VALUE];
LINENOTOXK : ERRCR (COMMAND_ERROR)
END; (® case 3¥)
END; (% SET_TAB_CHAR %)

(III!!*‘I'**!I*!II!I!III!IUIIIillllllIII‘ilI!i!IlIllllll*illli'lll!i'l)

PROCEDURE INSERT_TEXT;
(R A RN NS RN SRR AR NN RN AN RN R RN E RN
Parses the command found in INPUT. LINE and repeatedly builds a line

and stores it until a flag indicating done is recleved from the user,
lillllillliil*lIlIIl!Iil!!lﬁIiiII!IllII!lIIIlillll!ll*l*il*l!ll!ﬁil*)

VAR
NEXT : TOKEN;
MODE_QUT : MODE_TYPE;
DONE : BOOLEAN;

BEGIN
FIND TOKEN (NEXT):
IF NEXT.TOKEN_KIND <> NILTOK
THEN ERRQOR (COMMAND_ERROR)
ELSE BEGIN
MODE_OQUT := INSERT MODE;
WHILE KOT DONE DO
BUILD A_LINE (DGNE);
STORE_CURRENT LINE (MCDE_QUT);
END; (¥® while)
EXIT_STORE_A_LINE (* wakes up fille handler ¥)
END; (* INSERT_TEXT %)

{!II!III!I‘!iil!li'!IIII*Ilii!ﬂ!i'llﬂﬂll'i*ili!l*lilll**l*illlllﬂlllil)

PROCEDURE DELETE_LINES;

(ABRER RSB O NN R R R R R RN T TR
This procedure parses the command line INPUT LINE, to determine
which lines of text to delete. Receipt of a null token will cauae

the current line to be deleted.
AR RSN R R RN AR E TN NN R SRR SRS

VAR
NEXT : TOKEN;
0K, FQUND : BOOLEAN;
FIRST_LINE, LAST_LINE, I : INTEGER;

BEGIN
0K := TRUE;
FIND. TCKEN {NEXT};
WITH NEXT DO
CASE TOKEN_KIND OF
NILTOK : BEGIN
FIRST LINE := LINE_NUMBER;
LAST_LINE := LINE_NUMBER;
END;
OTHERTOK : OK := FALSE;
LINENOTOK : BEGIN
FIRST_LINE := VALUE;
FIND _TOKEN (NEXT);
WITH NEXT DO
CASE TCKEN_KIND OF
NILTOK : LAST LINE := FIRST LINE; (* one line delete ¥)
QTHERTOK : QK := FALSE;
LINENQOTOK : BEGIN
LAST_LINE := VALUE;
FIND TOKEN (NEXT);
IF NEXT,TOKEN_XIND <> NILTDK
THEN OK := FALSE
ELSE (% everythings ok ¥)
END
END (* second case *)
END
END; (® first case #)
IF NOT OK
THEN ERROR (COMMAND ERROR)
ELSE
FOR I t= FIRST_LINE TO LAST_LINE DD
BEGIN
DELETE_A_LINE (I, FCUND);
IF NOT FQUND
THEN BEGIN
WRITE (I,' '};
ERROR (NOT_FCUND)
END
END
END; (®DELETE_LINESH*)

RALLLEA LA RS TS SR 2 ittt a il et il bt il bl ii il Eibls sl

PROCEDURE LIST_IT;
(BRSNS IR NN E RN E TR R R BT RN NN N
This procedure parses thé command line, INFUT_LINE to determine
which lines to 1list. It then makes calls to fetch each line and

print it,
IIII"II'Il"I.!I!ﬂ'llll!lll‘li'll‘lllliilIIll!I!‘IIIIII‘!"'**"'I‘IIII")

VAR
FIRST_LINE, LAST_LINE, I : INTEGER;
OK. .LINE_FOUND : BOCLEAN;
NEXT : TOKEN;

BEGIN
0K := TRUE;
FIND TOKEN (NEXT);
WITH NEXT DO
CASE TOKEN_KIND OF
NILTOK : BEGIN (% default to a screenfull ¥)
FIRST_LINE := LINE NUMBER;
LAST LINE ;= FIRST LINE + 20
END;
OTHERTOK : OK := FALSE;
LINENOTCK : BEGIN
FIRST_LINE := VALUE;
FIND TOKEN (NEXT);
WITH NEXT DO
CASE TOKEN_KIND OF
NILTOK : LAST LINE := FIRST_LINE; (% cone line only #)
OTHERTCK : QK := FALSE;
LINENOTOK ; BEGIN
LAST_LINE := VALUE;
FIND. TOKEN (NEXT);
IF NEXT.TOKEN_ KIND <> NILTOK
THEN OK := FALSE
ELSE (* everythings ok *)
END
END (¥ szecond case #)
END
END; (% first case #)
IF NOT QK
THEN EAROR (CCMMAND_ERROR)
ELSE
FOR I := FIAST_LINE TO LAST LINE DO
BEGIN
FETCH_CURRENT LINE (I, LINE FOUND);
PRINT_TEMP_LINE
END
END; (% LIST_IT *)

("*ﬂ'Ili!IllllilllililiﬁlllllilIill'ﬂl*l!ilﬁiI*l!ll!l!II!*!*“******‘I}

PROCEDURE READ_COMMAND (VAR COMMAND : COMMAND_TYPE);
{lllll!ll!ii!lllllIIIIIII!I!llll!IIII*III*!III*!ﬂlliiil*llil*!i!!lilii
This procedure determines what the command being issued is. It first
gets characters from the keyboard and places them in the data structure
INPUT_LINE, Then the first two letters of the command are placed into
the variable COMMAND_ID, The case statement then determines which

type of command is beling issued.
RRAERARR RN R RN ANNG RN RN RN RA ARG R R E R E RO RN AN

VAR
C : CHAR;
I : INTEGER;
COMMAND_ID : ARRAY [1.,.2] OF CHAR;
ALL DONE, ESCAPE : BODLEAN;
VALID _SET_CF_CHAR : SET OF VALID;
BEGIN

VALID_SET_OF CHAR := [CHR(1)..CHR(9).CHR{13)..CHR{127)];
LINE_INDEX := 1;
REEEAT
GET_CHARACTER({ VALID_SET OF CHAR,C,ALL_DONE.ESCAPE)
UNTIL C <> ' 5
INPUT_LINE [LINE_INDEX] := C;
WRITE(C);
WHILE (NOT EOLN (KEYBOARD)) AND (LINE_INDEY <> LINE_LENGTH)} DO
BEGIN
GET_CHARACTER(VALID_SET QF CHARACTER,C,ALL DONE,ESCAPE);
LINE_INDEX := SUCC (LINE INDEX);
IF C = GHR(8) (*backspace®)}
THEN BEGIN
LINE_INDEX := PRED (LINE INDEX - 1);
IF LINE INDEX <= ¢ THEN LINE INDEX := C
END
ELSE BEGIN
WRITE(C);
INPUT_LINE [LINE INDEX] := C;
END
END; (" while ¥)
READLN{KEYBOARD};
WRITELN;
FOR I := LINE_INDEX TO LINELENGTH DO
INPUT_LINE [I] := CHR(13);
FOR I := 1 TO 2 DO
COMMAND_ID [I] := INPUT_LINE [1];
LINE_INDEX := 3;
COMMAND := BADCOMMAND;
IF COMMAND_ID [1] = NL THEN COMMAND := REPEAT IT;
CASE COMMAND_ ID [1] OF

‘C' : IF COMMAND ID [2] = 'H' THEN COMMAND := CHANGE;
Dt : IF COMMAND_ID [2] = 'L' THEN COMMAND := DELETE;
'E' : IF COMMAND_ID [2] = TN' THEN COMMAND := ENDEDIT;
TH' : IF COMMAND_ID [2} = 'E' THEN COMMAND := HELP;
'I' : IF COMMAND_ID [2] = 'N' THEN COMMAND := INSERT;
'LY : IF COMMAND_ID [2] = 'S' THEN COMMAND := LIST;
TS : IF COMMAND_ID {2] = 'T' THEN COMMAND := SETTABS;
'TY : IF COMMAND _ID [2] = 'C' THEN COMMAND := TABCHAR;
'yt : IF COMMAND_ID [2] = 'E' THEN COMMAND := VERIFY;

END; (%caseh)
END; (®READ COMMANDS®)}

{lll‘ill'll‘lll!lllll.l.IIIIlIIiIlllllllﬂ‘lﬂlllilII!!I*'III**'*!I!I!!)

PROCEDURE EXECUTE_COMMAND (COMMAND_IN : COMMAND TYPE);

(.llllIliIllllll'llllllllililllllliiliiIlliliiiilﬁ*ill&l'lliii'lliilli

This procedure makes calls to the appropriate module to execute the
command. It is required in addition to READ_COMMAND becausea

the screen editor makes calls to the line editor with commands that
do not need to be parsed, but only executed.

liilIIlliI*IilIlll!l!ll!illiilliiliIIIII!IQII!I'IIIIlIIIllillll!*ilil)

VAR LINE_FOUND : BOOLEAN;

BEGIN
CASE COMMAND_IN OF
CHANGE : CHANGE_TEXT;
DELETE : DELETE_LINES;
ENDEDIT : QUIT;
HELP : HELP_IT;
INSERT : INSERT_TEXT;
LIST : LIST_IT;
SETTABS : MAKE_TAB_SETTING;
TABCHAR : SET_TAB_CHAR;
VERIFY : VERIFY_IT;
FETCH_IT : FETCH_CURRENT LINE (LINE NUMBER, LINE_FOUND);
STORE_IT : STORE_CURRENT LNE (CHANGE_MODE);
BADCOMMAND ; ERROR (COMMAND_ERROR});
REPEAT_IT : BEGIN
FETCH_CURRENT LINE(LINE NUMEER,LINE FOUND);
PRINT_TEMP_LINE;
LINE_NUMBER := SUCC (LINE_ NUMBER)
END
END (¥ CASE #)
END; (* EXECUTE_COMMAND #)

(i!iillil!i.lill'li!lllllllllllll!llllllllll'llllllliilllililllil"llIl)

PROCEDURE INIT_LINE ; i

(FREE AR RN RS NN S RSN NN AN AR AN RN F R A R RS AR R F RN ERRENRE

Initializes the line editor.

llII!IIl!lllilIIC‘Illl'IIIIIlllllIIIllll'Iill!lllllllllilillllIIIIGGII)

BEGIN
WRITELN (LOG_ON_ M3G);
WRITELN (HELP_MSG);
T4BS := [8,12,16,20,32,36,40.56,73];
TAB_CHARACTER := '™1;
VERIFY_CHANGES := TRUE;
LINE_NUMBER := O3
NL := CHR{13);
COMMAND := BADCOMMAND;
EDITING_FROM_SCREEN := FALSE;
END; (®* INIT LINE #)

(l*llll"'lllill.l'lIIIII!l.lIIIIII'.IIIII!.iIIIIIII'HIIII!I'IIIIIIIIIII)

PROCEDURE LINE_EDIT (COMMAND_IN : COMMAND_TYPE);
(R AR NPT NIRRT NSRRI TR AN R N A SN N NN AN
Called by the command interpreter and acts as the driver for the line

editor.
ARNRN RN RN R A RN RN RN NN N AR IRA DR EN)

BEGIN
IF COMMAND_IN = EDIT_IT THEN
BEGIN
INIT_LINE;
REPEAT
READ_COMMAND(COMMAND) ;
EXECUTE_COMMAND (COMMAND) ;
UNTIL COMMAND = ENDEDIT
END
ELSE
EXECUTE_COMMAND (COMMAND_IN)
END; (* LINE EDIT %)

END, (® UNIT EDITOR ®)

APPENDIX D

PROGRAM

TEST DATA

APPENDIX D. PROGRAM TEST DATA

D=2

The following set of data is designed to exercise the program both

structurally and functionally, Data points should

sequentially in both Line Editor and Screen Editor modes.

Lins Editor Mode

L
<CR>
CH/AAA/B <CR>
AB <BS> <BS> HE <CR>
AB <BS> <BS> <BS> HE <CR>
CHAA/B <CR>
CH//B <CR>
CH///% <CR>
CH/AA/A/Z <CR>
CH/A/AAAAAA <CR>
CH/A,B <CR>
CX/AA/B <CR>
CH/AA/B/37000 <CR>
DL <CR>
DL* <CR>
DL 100,80 <CR>
DL 80,100 <CR>
DL -80,100 <CR>
DL 8,100/ <CR>

DL 37000,38000 <CR>

be

executed

D~3
HO <CR>
HE <CR>
IN/ <CR>
IN 3 <CR>
IN A <CR>
IN, <CR>
~ ABCDEF <CR>
ABCDE3 <BS> FG <CR>
<ESC> <CR>
IN <CR>
<CNTRL C> <CR>
LS <CR>
LS, <CR>
LS 15,16 <CR>
LS -30,40 <CR>
LS 40, 30 <CR>
LS 40,, <CR>
LS4%0,50 <CR>
LS %0 50,, <CR>
LS 37000,38000 <CR>
LX <CR>
ST <CR>
SX <CR>
STC <CR>
ST=C <CR>
ST,C <CR>

5T1,2,3 <CR>

ST 1,3,5,-6 <CR>
ST 10 20 30 ¥ <CR>
TC % <CR>
TC <CR>
TC& <CR>
TC -4 <CR>
TC 2 <CR>
VE <CR>
VE® (CR>

VE2 <CR>

Sereen Editor Mode

tn

2
UP ARRCM (® move through ¥)
DOWN ARROW (¥ entire #)
LEFT ARROM (¥ screen ¥}
RIGHT ARROW
I

X

D=5

<ESC>
I
¢
ABCDE <CR>
<CR>
<ESC>
ABCDE <CNTRL C>
I
<CNTRL C>
D
A
X
2
/
DOWN ARROW <ESC>
DOWN ARROW <CNTRL C>
RIGHT ARROW <BS> RIGHT ARROW
<ESC>
RIGHT ARROW <CNTRL C>
RIGHT ARROW TO THE END OF LINE
X
ABCDE®2/ <CR>

<ESC>
X

ABCEDEF <BS> <BS>

<CNTEL C>

X

AB <BS> <BS> <BS»

<CNTRL C>

R

/AA/E

<CR>

<ESC>

10,20 <CR>

Q

D-6

REFERENCES

[Bowl80]

[Grap80]

[Gruedi]

[Huds80]

[Hurt76]

[Rans80] "

[Xell77]

[Ledg80]

[M11180]

[NagyT 9]

[RaynNA]

[Shne80]

R-2

REFERENCES

Bowels, K.W. Wmmalmmmm Softuare
Syatem, Byte Publishing Ine., 1980.

Grappel, R.D. and Hemermway, J. "The Credit Goes to Intel."
Mini-Micro Svstems , Vol 13, June 1980 pp. 119=22.

Gruenberg, F. "Making Friend Witk User-Friendly." Datamation
s Vol 27, Jan 1981, pp. 108112,

Hudscn, R. "Text Editor for the 6800." Interface Age , Vol
5, Sep 1980, pp 94=-95.

Hurt, J.J. MEDIT: A4 ZFErogram Lo £dit Computer Source
Programs, NTIS, Springfield VA, [1976].

Kansas State University "OSMANUAL A Guide in Using MTM at
Kansas State University", Manhattan, XS, 1980,

Kelly, J. Guide &Ko NED: 4 New Qn Line Computer Editor,
Santa Montica, Rand Corp., [1977].

Ledgard, H.F. "An Experiment on Human Engineering of
Interactive Software.” JEEE Iransactions, Soffmware
Epgineering, Vol 6, Nov 1980 p. 602,

Miller, A.R. "Work-Master Micropro's Video Editor for
CP/M.", Interface Age Vol 5, Jan 1980, pp. 118,120,122~123,

Nagy, G. and Embley, D.W. Cardinal and Venial Sins in the

Desjien of FProgramming Editors for BRegioning Student Use,
University of Nebraska, [1979] in ™1979 ACM Compuer Science
Conference Proceedings.® New York, 1979.

Rayner, D. Designing User JInterfaces For Friendliness,

Amsterdam, Netherlands, no date.

Shneiderman, B. Software Psychology New York, Winthrop
Publishers Inc., 1980,

R-3

[SneeT 8] Snseringer, J. "User-inerface Design for Text Editing: A

Case Study." Software Practices and Experiences, Vol &
Sep-Oct 1978, pp. 543=-558.

HLSEW
EDITING SYSTEM

by

DAVID BARTLETT AARONSON

B.S., Troy State University, 1977

AN ABSTRACT CF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

The Computer Scilence Department of Kansas State University is
currently in the process of developing a High level Software Engineering
Workstation (HLSEW). This interactive woerkstation will be the software
implementation of an "intelligent terminal®™, designed to aid in program
development, It will consist of five modules: (1) The Command
Interpreter, which serves as the main driver for the workstation; (2)
The Software Engineering Analyzer that provides the programmer with
Halstead's and McCabe's software metries throughout the development of
his program; (3) The Translator, which converts a program written in a
program design language (PDL) into compilable COBOL source code; (4)
The Storage System for mapping and accessing information on secondary
storage; and (5) The Editing System which serves as the tool the
programmer utilized to create and edit text. This projot describes the
design and implementaticn of the BLSEW Editing System.

Intitial constraints required that the design and Iimplementation be
compact, portable, powerful, extensible, flexible and present a friendly
user interface. This imposed conflicts among those constraints which
seemed to advocate a small powerful 2line oriented Editcr, and those
which appeared to call for a blg powerful screen oriented Editor. After
some investigation into other approaches, a novel course was chosen
which satisfied the majerity of conflicta,

A Line Editor with a Screen Editor front end was designed, The
Screen Editor front end manages the information on the screen,
interprets the commands from the wuser and passes them, in appropriate

form, to the Line Editor to do the actual editing. This approach offers

portability of the System because the terminal specific code {the acreen
front end) is kept to a minimum,
The Editing System was implemented on a PDQ/3 Microcomputer in UCSD

Pascal and consistes of approximately 1800 lines of source code.

