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ABSTRACT

Graph Theory is a widely studied topic. A graph is defined by two important features:

nodes and edges. Nodes can represent people, cities, variables, resources, products, while

the edges represent a relationship between two nodes. Using graphs to solve problems

has played a major role in a diverse set of industries for many years.

Integer Programs (IPs) are mathematical models used to optimize a problem. Of-

ten this involves maximizing the utilization of resources or minimizing waste. IPs are

most notably used when resources must be of integer value, or cannot be split. IPs

have been utilized by many companies for resource distribution, scheduling, and conflict

management.

The node packing or independent set problem is a common combinatorial optimiza-

tion problem. The objective is to select the maximum nodes in a graph such that no two

nodes are adjacent. Node packing has been used in a wide variety of problems, which

include routing of vehicles and scheduling machines.

This thesis introduces several new graph structures, cliqued hole, odd bipartite hole,

and odd k-partite hole, and their corresponding valid inequalities for the node packing

polyhedron. These valid inequalities are shown to be new valid inequalities and condi-

tions are provided for when they are facet defining, which are known to be the strongest

class of valid inequalities. These new valid inequalities can be used by practitioners to

help solve node packing instances and integer programs.
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Chapter 1

Introduction

Graphs have played a major role in a diverse set of industries for centuries. Leonard

Euler’s paper [15], Seven Bridges of Königsberg, is commonly understood to be the first

example of utilizing a graph to solve a problem. Euler, in his pursuits, established the

basic principles of graph theory. Graphs naturally simplify abstract ideas into a physical

representation of nodes and edges. This enables a streamlined system for arriving at

quality solutions.

When modeling a problem as a graph, the vertices of the graph can represent the

problem’s variables. Examples include people, machines, or resources. An edge exists

between any two nodes when there is a conflict or relationship between them.

Another possibility is for the edges to represent variables and the nodes to represent

locations. Commonly, this kind of graph is used for transportation problems, where the

edge represents a cost of shipping between two locations, each being represented by a

node.
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One prime example of a graph being implemented by industry is a study performed

by Proctor & Gamble. Using a combination of transportation problem modeling and

node packing, P & G redesigned and improved their operations. Through graph theory

and network redesign, P & G reduced the number of North American plants by 20%

and saved $200 million per annum [43].

Other successful examples of applications in graph theory have shown not only their

flexibility, but also their effectiveness. Graphs are used for transportation optimization

in deliveries [33, 36, 65, 80, 81, 82, 86], scheduling problems [26, 47, 48, 66], resource

dedication in manufacturing [14, 68], forecasting [53, 67, 74], even crime prevention

[4, 73].

1.1 Node Packing Problem

The graph problem that this thesis focuses on is the the Node Packing problem. Node

packing, also referred to as vertex packing or the independent set problem, is a common

combinatorial optimization technique in which the objective is to select the maximum

nodes in a graph such that no two are adjacent. Node packing is an extremely popular

technique in optimization used in a wide variety of problems.

An interesting application of node packing involves determining where to place probes

on a testing fixture for printed circuit boards. These probes are the nodes, and the edges

exist wherever two nodes cannot be placed in order to prevent a short circuit. By utilizing

a node packing algorithm, it was found that the probe placement was improved by
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5%, and therefore improved this company’s standard. Also, by utilizing node packing,

software could generate a near optimal probe placement much more quickly than an

experienced operator [1].

Since node packing inherently aligns with many real world problems, it has been

implemented in a diverse set of areas. Whether it be routing trains through a train

station in Denmark [87], scheduling machines [75], or sensor coverage [52], node packing

has proven its usefulness consistently.

A feasible solution to the node packing problem is simple to achieve, but the optimal

solution can be extremely difficult and computationally exhausting. This results from

the fact that these problems are NP-Complete [49]. Often, IPs are utilized in order to

help solve the node packing problem.

1.2 Integer Programs

Graphs are also commonly utilized when attempting to solve Integer Programs (IPs).

IPs are mathematical models that are used when resources must be of integer value, or

cannot be split. This gives the user of such a tool feasibility when operating within such

constraints. IPs have been utilized by many companies for resource distribution [14, 68],

scheduling [3, 31, 48, 64, 70], and conflict management [27].

IPs inherent weakness is that they are NP-complete [49], meaning that many IPs

require exponential time to solve with the current computers. Consequently, much
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research has focused on improving the solution time of integer programs.

The most common IP solution method is branch and bound. Branch and bound

begins by solving the linear relaxation, which is basically solving the integer program

without the integer constraint. Cutting planes are another method used to solve IPs.

First introduced by Gomory [34], cutting planes remove parts of the linear relaxation

without removing any feasible integer solutions. The valid inequalities generated by the

cutting plane method are useful only if they eliminate significant areas of the linear

relaxation.

The theoretically strongest cutting planes are facet defining. One method to create

facet defining cutting planes is to utilize lifting. There are various types of lifting and

this thesis focuses on simultaneous lifting for the node packing problem.

1.3 Motivation

Recently, a substantial amount of research has been performed on simultaneous lifting

at Kansas State University [41, 44, 45, 51, 54, 71]. Simultaneous lifting is an integer pro-

gramming technique used to generate strong cutting planes. One of the most commonly

studied IPs has been the node packing problem. The motivating question for this thesis

was whether or not these two topics could be integrated. Hence, this research tried to

discover graphic structures that allow for simultaneous lifting.
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1.4 Research Contributions

In attempting to find graphic structures to allow simultaneous lifting, this research

discovered two new classes of graphs that define valid inequalities. These structures are

called cliqued holes and odd bipartite holes. Of these structures, the odd bipartite hole

and its generalization to odd k-partite holes have implications to simultaneous lifting.

The first structure, the cliqued hole, begins with an odd hole. Each of the nodes

is exploded into cliques. This structure generates a valid inequality, which is called a

cliqued hole inequality. Conditions for these inequalities to be facet defining are pre-

sented along with arguments for why these inequalities are not just a natural derivation

of existing inequalities, but are indeed new and useful.

The odd bipartite hole consists of two odd holes, such that every vertex in one odd

hole is adjacent to every vertex in the other odd hole. This characteristic displays as

a complete bipartite graph between the two odd holes. The odd bipartite inequality

is a valid inequality and is generated from this structure. The details for when this

inequality becomes facet defining are explored. This structure is visually very stunning,

and can be expanded to become a k-partite odd hole.

These structures offer new cutting planes to enable practitioners to implement in

software in order to help solve the node packing problem and even general integer pro-

grams faster. It is also evident that these inequalities are stronger than many of the

commonly used inequalities, which leads to the belief that these inequalities will be

extremely useful.
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1.5 Outline

Chapter 2 gives the background necessary to understand this thesis. First, graph the-

ory is discussed, along with some common graph structures. Then integer programs

and polyhedral theory are explained. This is followed by cutting planes, facet defining

inequalities, the node packing problem, and lifting.

Chapter 3 introduces three new structures for the node packing polytope: cliqued

holes, odd bipartite holes, and odd k-partite holes. Definitions and their respective

valid inequalities are thoroughly discussed. Simultaneous lifting in the node packing

polyhedron is also introduced.

Chapter 4 gives a conclusion of research contributions and results. This includes the

major advancements of this thesis as well as areas of interest for future research.
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Chapter 2

Background Information

This chapter introduces some definitions and background information necessary to un-

derstand this thesis. Various topics provide a foundation for this research, including

graph theory, integer programming, polyhedral theory, node packing, cutting planes,

facet defining inequalities, and lifting.

2.1 Graph Theory

A brief review of some fundamental definitions and concepts of graph theory is presented

in this section. Only a minimal amount of graph theory is covered here and [2, 15, 32]

provide a more detailed perspective and additional topics.

Let G = (V, E) be a graph, where V is a set of nodes and E is a set of edges

e = {u, v} ∈ E where u, v ∈ V . A network is a graph with weights on either the nodes or

edges. A directed graph provides an ordering to the edges. Thus, E = {(u, v) : u, v ∈ V }.
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A graph is bipartite if, and only if, there exists a partition of the nodes into V1 and V2

such that every {u, v} ∈ E has u ∈ V1 and v ∈ V2.

Subgraphs have been critical in graph theory research [18, 85]. A graph G′ = (V ′, E ′)

is a subgraph of G = (V, E) if and only if V ′ is a subset of V and E ′ is a subset of E.

A subgraph is induced if, and only if, it contains all the same edges as G over the same

vertex set V ′. A subgraph is spanning if V ′ = V .

A path is a set of nodes (v1, v2, ..., vp) such that {vi, vi+1} ∈ E for all i = 1, ..., p− 1.

A cycle is a path with v1 = vp and all other nodes are unique. A graph is acyclic if, and

only if, it contains no cycles. An acyclic graph is called a forest.

A clique on p nodes, Kp, or complete graph, is a specific graph type that is of great

importance to this research. A clique is a graph structure in which an edge exists between

every set of two nodes. A clique is named by the number of nodes involved, therefore a

K5 is a clique with five nodes and has (5
2) = 10 edges.

A hole on p vertices, Hp, is a cycle (v1, v2, ..., vp) without any chords where a chord

is an edge {vi, vj} where |i− j| ≥ 2 or an edge between vp and any node other than vp−1

or v1.

A fan on p vertices, fp, consists of a center node and a set of nonadjacent perimeter

nodes. Thus, the induced subgraph {v1, ..., vp} is a fan if, and only if, the edges take the

form {v1, vj} for all j = 2, ..., p.

One useful way to solve graph problems is by modeling the problem as an integer

program. Some relevant topics in integer programming are discussed next.
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2.2 Integer Programs

Integer programs are often solved with the help of graph theory concepts. This nature

of IPs being used to solve graphs, and vice versa, has led to a vicious cycle of each

area building upon the other. Some basic definitions are sufficient and more detailed

information can be found in [58].

Integer Programs contain an objective function that is either maximized or mini-

mized. They also contain constraints in order to limit the solution space, and decision

variables which must be integer. An IP takes the following form: Maximize cTx, subject

to Ax ≤ b, x ∈ Zn
+, where c ∈ Rn, A ∈ Rm×n and b ∈ Rm. As an example, consider

the following IP.

Maximize 5x1 + 3x2,

Subject to 3x1 + x2 ≤ 7

2x2 ≤ 5

x1, x2 ≥ 0 and integer

The solution to this particular IP is x1 = 2, x2 = 1, as it maximizes the objective

function to a value of 13 while satisfying all of the constraints.

A common technique for solving IPs is to consider the linear relaxation. This is done

by removing the integer constraint on the problem. Thus, the linear relaxation takes the

form: Maximize cT x, subject to Ax ≤ b, x ∈ Rn
+, where c ∈ Rn, A ∈ Rm×n and b ∈

Rm. As an example, the linear relaxation of the above IP is
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Maximize 5x1 + 3x2,

Subject to 3x1 + x2 ≤ 7

2x2 ≤ 5

x1, x2 ≥ 0

The most common technique used to solve an integer program is called branch and

bound. The algorithm begins by solving the linear relaxation with solution ZLR and

xLR. If the solution is not integer, then two child nodes are created. Take any xLR
i that

isn’t integer and one child node adds the inequality xLR
i ≤ bxLR

i c; while the other adds

the inequality xLR
i ≥ dxLR

i e. This continues until all nodes are fathomed. A node is

fathomed if it is infeasible, an integer solution or if ZLR ≤ ZIP where ZIP is the best

found integer solution thus far.

It is easy to see that branch and bound has an exponential running time. So re-

searchers naturally try to restrict the space of the linear relaxation. The tool used to

analyze a problem’s linear relaxation is called polyhedral theory.

2.2.1 Polyhedral Theory

Many optimization methods utilize polyhedral theory. Polyhedral theory is the math-

ematical understanding of all feasible solutions of Linear Programs (LPs). Important

definitions and background information are presented in this section.

A convex set S is a set in which every point on the line segment connecting any two
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points in the set is also in the set. The set S is convex if, and only if, λs1 + (1− λ)s2 ∈

S ∀ s1, s2 ∈ S and λ ∈ [0, 1]. A convex hull of the set S, denoted by SCH , is the

intersection of all convex sets containing S.

A half-space is the solution space for a single linear inequality. That is, all x ∈ Rn

such that
∑n

j=1 αjxj ≤ β. A half-space is convex and a polyhedron is the intersection

of a finite number of half-spaces. This leads to the conclusion that the feasible region of

an LP {x ∈ Rn : Ax ≤ b} is both convex and a polyhedron. A polytope is a polyhedron

that is bounded.

Let P be the set of feasible solutions to an integer program. That is, P = {x ∈ Zn
+ :

Ax ≤ b}. The set P is comprised of a countable set of points and is therefore not convex.

The convex hull of P , denoted as PCH = conv(P ), is both convex and a polyhedron.

For convenience, define N = {1, ..., n} as the set of variable indices in an IP.

To understand the importance of this thesis, it is vital to consider the linear relaxation

of an integer program. The linear relaxation is the difference found between an integer

program and a linear program of congruent form except for the lack of the integer

constraint. Given an integer program, Maximize cT x, subject to Ax ≤ b, x ∈ Zn
+, the

linear relaxation is known as IPLR and is Maximize cT x, subject to Ax ≤ b, x ∈ Rn
+.

Define PLR to be the feasible region of the linear relaxation or equivalently, PLR = {x ∈

Rn
+ : Ax ≤ b}. Clearly, PLR is convex and a polyhedron.

The dimension of a polyhedron can be found by the number of linearly independent

vectors contained within the polyhedron. Since PCH is derived from a number of points,
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affine independence should be used to determine its dimension.

A set of points x1, x2, ..., xd ∈ Rn
+ are affinely independent if, and only if,

∑d

j=1 λjxj =

0 and
∑d

j=1 λj = 0 is solved uniquely by λj = 0 ∀j = 1, 2, ..., d. The dim(PCH) is the

maximum number of affinely independent points in PCH minus one.

2.2.2 Cutting Planes and Facet Defining Inequalities

Now that a polyhedron and linear relaxation have been discussed, it is helpful to define

cutting planes, valid inequalities, and facets, as these are the focus of this research. This

section introduces these topics and describes their importance to integer programming

research.

An inequality (α, β) takes the form αT x ≤ β and is a valid inequality of PCH if,

and only if, it is satisfied for all points in P . Formally, the inequality (α, β) is a valid

inequality if, and only if, P lies in the half-space {x ∈ Rn : αT x ≤ β}. Equivalently,

∑n

j=1 αjxj ≤ β is a valid inequality for PCH if, and only if,
∑n

j=1 αjx
′
j ≤ β is satisfied

for every x′ ∈ P .

The goal of a cutting plane is to eliminate an area of PLR without eliminating any

feasible integer points, points in P . Therefore, a cutting plane manages to remove

non-integer solution space of PLR while keeping all integer points; P that are in PLR.

Every valid inequality induces a face of a polyhedron and the face consists of the

points in the polyhedron that meet the inequality at equality. Let
∑n

j=1 αjxj ≤ β be a

valid inequality, then the corresponding face F of PCH is F = {x ∈ PCH :
∑n

j=1 αjxj =
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β}.

Facet defining inequalities are the most restrictive of all valid inequalities. Thus,

the theoretically strongest valid inequalities are facet defining and can remove a large

amount of the linear relaxation space and greatly reduce the time required to solve an

integer program. Formally, let
∑n

j=1 αjxj ≤ β be a valid inequality, then F is a facet if,

and only if, the dimension of F is the dimension of PCH minus one.

With PCH , the only inequalities required to describe the polyhedron are the facet

defining inequalities. Thus, if all facet defining inequalities are included to the linear

relaxation, all basic feasible linear relaxation points are integer. Therefore, branch and

bound can be reduced to solving a single linear relaxation since its solution is integer.

2.3 Node Packing

This thesis focuses on the node packing polyhedron by identifying cutting planes and

facet defining inequalities. As previously mentioned, node packing is also referred to as

vertex packing and the independent set problem. Numerous researchers have focused on

the node packing polyhedron for a wide variety of research [17, 20, 37, 55, 56, 57, 59].

The input to the node packing problem is a graph G = (V, E). The node packing

problems seeks the largest set of vertices V ′ ⊆ V such that for all {u, v} /∈ E for all

u, v ∈ V ′. In other words the solution to a node packing instance is the maximum

number of nonadjacent nodes.
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The integer programming model of the node packing polyhedron can be defined by

letting xi = 1 if i ∈ V ′, and 0 if not, for all i ∈ V . The objective function is to maximize

∑
i∈V xi. The constraints are xi + xj ≤ 1 for all {i, j} ∈ E and xi ∈ {0, 1} for all

i ∈ V . Denote PNP as the set of feasible points to this problem, PNP = {x ∈ {0, 1}n :

xi + xj ≤ 1 for all {i, j} ∈ E}. Now, define PNPCH as the convex hull of PNP .

A conflict graph is a particular IP application associated with the node packing

problem. Conflict graphs are a good example of how theory can translate to practice

[6, 23, 30, 46, 61, 79]. They are often used by professionals in industry and academia to

improve the solution time of IPs.

Formally, a conflict graph G = (V, E) can be a defined by a set of vertices V and

a set of edges E where e = {u, v} ∈ E. Every variable xi in the IP is represented by

a node i ∈ V . An edge e = {i, j} exists if setting both xi and xj to 1 is infeasible.

An example of a conflict graph is shown to better illustrate this concept. Consider the

following integer program.

Maximize 5x1 + 3x2, +x3 + 2x4 + 4x5

Subject to 3x1 + 3x2 + 5x3 ≤ 7

2x2 + x4 + 2x5 ≤ 3

x3 + x5 ≤ 1

x1, ..., x5 ∈ {0, 1}.

The conflict graph for this integer program would contain several nodes, one for each
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variable. The edges exist between two nodes if setting both variables to 1 is infeasible.

In this example, {1, 3} ∈ E since setting x1 = 1 and x3 = 1 violates the first constraint.

The edge {2, 3} ∈ E as setting x2 = 1 and x3 = 1 also violates the first constraint.

The edge {5, 2} ∈ E because setting x5 = 1 and x2 = 1 violates the second constraint.

Finally, the edge {3, 5} ∈ E because setting x3 = 1 and x5 = 1 violates the third

constraint. The conflict graph for this example is shown in Figure 2.1.

Figure 2.1: Conflict Graph

The inequalities for this conflict graph are trivial to arrive at. If an edge exists

between two nodes xi, xj, then xi + xj ≤ 1 is a valid inequality. The constraints for this

conflict graph are: x1 + x3 ≤ 1, x2 +x3 ≤ 1, x2 +x5 ≤ 1, and x3 +x5 ≤ 1. Observe that

these constraints are precisely the node packing constraints.

Notice that the constraints x2 + x3 ≤ 1, x2 + x5 ≤ 1, and x3 + x5 ≤ 1 are all valid.

Now recall that a clique is a graph structure in which an edge exists between every
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set of two nodes. Thus, the structure created by {2, 3, 5} is a K3. Now notice that

x2 + x3 + x5 ≤ 1 is a valid inequality to the above IP. This calss of inequalities is called

a clique inequality.

A few common subgraph structures in node packing are presented as subgraphs in

Figure 2.2. Given the graph G = (V, E), denote V ′′ as the set of vertices in V that form

the subgraph being discussed. The basic idea is to use the graph structure to create a

valid inequality for PNPCH .

Figure 2.2: Example Graph

A clique, as defined earlier, is a set of nodes i ∈ V ′′ that are all adjacent to each other.

In Figure 2.2, the nodes {13, 14, 15, 16, 17} form a K5. Since every node is adjacent to

every node, at most one node can be chosen in a node packing. Thus, a clique has a valid
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inequality of the form
∑

i∈Kn
xi ≤ 1. In this case, x13 + x14 + x15 + x16 + x17 ≤ 1 is the

valid inequality. If the clique is maximal, then this inequality becomes facet defining.

In Figure 2.2, {1, 2, 3, 4, 5, 6, 7} forms a fan, f7. The valid inequality for a fan is

∑n

i=2 xi + (n − 1)x1 ≤ (n − 1). For this example, the valid fan inequality is 6x1 + x2 +

x3 + x4 + x5 + x6 + x7 ≤ 6. This inequality is valid since if the center node, x1, is in the

node packing, then none of the peripheral nodes, x2, ..., x7, can be in the node packing.

Conversely, if all the peripheral nodes are in the node packing, then the center node

cannot.

A hole is a cycle with no chords, and is denoted as Hn, where n is the number of

nodes in the hole. In Figure 2.2, the nodes {8, 9, 10, 11, 12} form an H5. Since n is

an odd number, this is an odd hole. Clearly, an odd hole has a valid inequality of the

form
∑n

i=1 xi ≤ bn
2
c and can be facet defining. For this example, the valid inequality is

∑5
i=1 xi ≤ 2.

For node packing, perfect graphs are considered to be of great importance. A perfect

graph can be defined in terms of its fractional node-packing polytope. That is, given

a graph G = (V, E), its fractional node-packing polytope is given by P = {x ∈ Rn
+ :

Kx ≤ 1}, where the clique matrix K of graph G is the (0, 1) incidence matrix whose

rows correspond to all the cliques in G and columns correspond to the nodes of G. The

graph G is perfect if, and only if, its fractional node-packing polytope is integral [58].

The motivation of this research focuses on finding valid inequalities that are strong

and of high dimension for PNPCH . One method to obtain such an inequality is called
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lifting.

2.4 Lifting

First introduced by Gomory [35], lifting is a common method used to increase the dimen-

sion of a cut. Lifting takes a valid inequality and, by altering some of the coefficients and

possibly the right hand side, strengthens the inequality. Lifting is also used to determine

cutting planes with potential to be facet-defining inequalities. In fact, lifting typically

increases the dimension of the face of an inequality. Other researchers have made many

advancements in lifting [7, 11, 12, 13, 19, 21, 22, 24, 25, 29, 38, 39, 41, 50, 60, 63, 69, 84].

Three categories of lifting exist; exact versus approximate, up versus down, and

sequential versus simultaneous. Given the three categories and the two choices, there

are a total of 8 (23) different ways to lift an inequality.

The restricted space is vital when considering a lifting technique. Define the re-

stricted space of P conv on the set of D ⊆ N as P conv
D,K = conv{x ∈ P : xj = kj for all j ∈

D} where kj ∈ Z and K = (k1, k2, ..., k|D|). Instead of observing the entire polyhedron,

only a subset of variables is considered. This implies that xj = kj for all j ∈ D. In other

words, the variables with indices in D have fixed values.

The basic procedure to lift is to begin with a lifting set D ⊂ N , a set K, and a

valid inequality
∑

i∈N\D αixi +α
∑

i∈D αixi ≤ β over PCH
D,K . The general form for a lifted

inequality is
∑

i∈N\D αixi + α
∑

i∈D α′
ixi ≤ β ′, which is valid over PCH .
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Exact lifting requires calculating the coefficients with complete accuracy. Thus, exact

lifting should increase the dimension of the inequality, as there must exist a point not

in the restricted space that meets the exact lifted inequality at equality [11, 28, 71].

Since exact lifting typically requires solving an integer program, a common practice is

to reduce the accuracy of the lifting coefficient in hopes of obtaining the coefficient in a

more timely manner. This method is called approximate lifting [25].

Sequential lifting changes the coefficients for one variable at a time, so |D| = 1.

Simultaneous lifting alters the coefficients of a group of variables at the same time,

therefore |D| ≥ 2. Sequential lifting is by far the most commonly used [9, 10, 42, 62,

76, 77]. Albeit, a substantial amount of research has recently been performed on more

efficient methods of simultaneous lifting [8, 40, 41, 72, 78].

Uplifting assumes that there is a valid inequality of P conv
D,K where K = (0, 0, ..., 0).

Uplifting leaves the right hand side of the valid inequality consistent and seeks to increase

the coefficients associated with variables in D. Whereas, down lifting assumes a valid

inequality of P conv
D,K where K = (uj1, uje , ..., uj|D|

) where uj is the upper bound for variable

j. Down lifting, on the other hand, often decreases the values of both the right hand

side of the valid inequality and the coefficients for the variables in D. There is also a

middle lifting, which is roughly a combination of both up and down lifting [77].
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2.4.1 Sequential Lifting

The most commonly used lifting method is sequential uplifting [9, 10, 42, 62, 76, 77].

Sequential uplifting a binary variable begins by formulating an IP. In this case, the valid

inequality is the objective function of the IP, and the constraints are those given. The

variable to be lifted is set to 1, thus another constraint is created to represent this.

Next, the IP is solved and the objective value, Z∗, is computed. To determine the lifting

coefficient α, it follows that α = β−Z∗. Every time a new variable is lifted, a constraint

is substituted to set that variable to 1, and the objective function is updated and α is

recalculated. The process repeats for each variable that is to be lifted. It is clear that

the order of lifting is important, as different orders result in different coefficients.

An example of sequential lifting is demonstrated next. Consider the structure shown

in Figure 2.3 and consider PNPCH . To begin lifting, note that x1, x2, x3, x4, x5 form an

odd hole. This example begins with the odd hole inequality
∑5

i=1 xi ≤ 2 = bm
2
c and lifts

from there.

Figure 2.3: Lifting Example
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To sequentially lift x6 into this inequality, solve the following integer program.

Maximize x1 + x2, +x3 + x4 + x5

Subject to xi + xj ≤ 1 for all {i, j} ∈ E

x6 = 1

x1, ..., x6 ∈ {0, 1}.

The solution to this IP is 0. Thus, the coefficient given to x6 is α6 = β−Z∗ = 2−0 =

2. Thus the new valid inequality is x1 + x2, +x3 + x4 + x5 + 2x6 ≤ 2. This is commonly

referred to as a wheel inequality and it takes the general form bm
2
cxn+1 +

∑n

i=1 xi ≤ bm
2
c

where xn+1 is the central node and the peripheral nodes xi form a hole of size n.

Figure 2.4: An Odd Hole Lifted to a Wheel

To lift in x7, solve the following updated IP.

Maximize x1 + x2, +x3 + x4 + x5 + 2x6

Subject to xi + xj ≤ 1 for all {i, j} ∈ E

x7 = 1

x1, ..., x7 ∈ {0, 1}.
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The solution to this IP is 2. Thus, the coefficient given to x7 is α7 = β − Z∗ =

2 − 2 = 0. Thus the new valid inequality is x1 + x2, +x3 + x4 + x5 + 2x6 + 0x7 ≤ 2.

Clearly, either 2 nonadjacent nodes from the original odd hole, or both x6 and x7 can

be selected into our solution and still satisfy feasibility.

Note that had x7 been lifted in first, the weights on x6 and x7 would be reversed. This

demonstrates the importance of order when performing a lift, as the resulting inequality

can be affected.

Figure 2.5: Final Lift

2.4.2 Simultaneous Lifting

Simultaneous lifting is another approach to generate cutting planes. This method orig-

inated in 1978 by Zemel [83]. Zemel’s method only lifted integer programs with binary

variables, and still involved solving exponentially many IPs. Although this method is

accurate, it cannot be applied in practical instances, so it is only useful in theory.

In the 1990s, research was spurred and has continued in simultaneous lifting. One

such research developed sequence independent lifting [8, 40, 72]. Sequence independent
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lifting ignores the order in which the variables are lifted and does not require solving any

integer programs. Utilizing a super-additive function for a cover inequality and setting

a lower bound for every coefficient allows for all variables being lifted simultaneously

from one simple expression. While sequence independent lifting is a faster technique to

create cutting planes, it is only approximate, and the valid inequalities formed are not

guaranteed to be facet defining. These lifting coefficients can therefore be strengthened.

Exact simultaneous lifting tries to work efficiently and with precision. In simultane-

ous lifting, a set of variables is added to the inequality. This method has the bonus of

lifting multiple variables at the same time, while reducing the number of optimization

problems that need to be solved. These inequalities are often stronger cuts. Once the

lifted inequality is formed, it can be utilized as a cutting plane to reduce the solution

space of the IP.

As mentioned before, simultaneous lifting has been a focus of much research at

Kansas State University. Dr. Easton and Hooker worked on the background concepts

regarding simultaneous lifting research [44]. They presented a linear time algorithm

to simultaneously lift a set of variables into a cover inequality for a binary knapsack

problem.

Later, Sharma built upon this Easton and Hooker by performing additional theoreti-

cal research and computational studies [71]. Sharma’s technique presents the advantage

of assisting in selecting which sets of variables to lift. The algorithm generates numer-

ous inequalities and runs in quadratic time. Sharma showed impressive computational
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results.

Gutierrez [41] developed a lifting technique to exactly lift sets of bounded integer

variables simultaneously by solving a single IP. Gutierrez’s algorithm sets α high, such

as α = M . An integer program is solved where the objective is the left hand side of

the proposed simultaneously lifted inequality, with the α value. If Z ≤ β, then the

algorithm terminates and reports α as the lifting coefficient. If Z > β, then the x∗ from

the IP is used to solve for a new α and the process repeats.

Now reconsider Figure 2.3. Implementation of simultaneous lifting can result in a

different inequality than sequential lifting. Recall that with sequential lifting, order has

an effect on the resulting inequality. To lift in x6 and x7 simultaneously, let α = M and

solve the following IP.

Maximize x1 + x2, +x3 + x4 + x5 + M(x6 + x7)

Subject to xi + xj ≤ 1 for all {i, j} ∈ E

x1, ..., x7 ∈ {0, 1}.

The solution to this IP is Z = 2M > 2 from the solution x1 = ... = x5 = 0 and

x6 = x7 = 1. Now this x point is used to solve x1 + x2, +x3 + x4 + x5 + α(x6 + x7) = 2,

which implies 0 + α(2) = 2. Thus, α = 1. Now the following IP is solved.

Maximize x1 + x2, +x3 + x4 + x5 + 1(x6 + x7)

Subject to xi + xj ≤ 1 for all {i, j} ∈ E

x1, ..., x7 ∈ {0, 1}.
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The solution is now Z = 2 and so the simultaneous lifting terminates and reports

the simultaneously lifted inequality x1 + x2, +x3 + x4 + x5 + x6 + x7 ≤ 2. This is clearly

a different inequality than obtained by sequential lifting. One problem is that the face

of this inequality only has dimension 5, which is not facet defining. To create structures

that enable this process to be facet defining is the motivation for this research.
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Chapter 3

Facet Defining Structures for the Node

Packing Polytope

This chapter introduces the cliqued hole, odd bipartite hole, and the odd k-partite

hole. These structures and their valid inequalities are the basis of advancements in this

research. Implementation of simultaneous lifting in the node packing problem is also

discovered. These structures all present valid inequalities that can be facet defining.

The first structure discussed is the cliqued hole.

3.1 Cliqued Hole

The basic idea of a cliqued hole is to generate a valid inequality by combining both a

clique and an odd hole. Briefly, each node in an odd hole can be expanded into a clique

structure in the obvious way. Formally, let a graph with q nodes be a cliqued hole of
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size m if, and only if, the nodes can be partitioned into m sets, P1, P2, ..., Pm, such that

E = ∪m
i=1{{u, v} : u, v ∈ Pi}

⋃
∪m

i=1{{u, v} : u ∈ Pi, v ∈ P(i mod m)+1}. Denote such a

cliqued hole by CHm,P where P = (p1, p2, ..., pm) and
∑m

i=1 pi = q, pi ≥ 1 and pi ∈ Z for

all i = 1, ..., m. For convenience denote the vertices in Pi as vij for j = 1, ..., |Pi| for all

i = 1, ..., m.

In order to better understand the cliqued hole structure and its definitions several

diagrams are shown regarding how to create a CH5,P where P = (2, 2, 2, 2, 2). Consider

an odd hole of size five as shown in the first stage in Figure 3.1, so m = 5. The

next step shows that each node is exploded into a clique of size 2. This means that

p1 = 2, p2 = 2, p3 = 2, p4 = 2 and p5 = 2, so the size of the clique for each node in the

hole is 2. The last stage in the diagram shows that since an edge existed between each

hole in the original structure, there must exist an edge between each node in each clique

and every node in every adjacent clique. Also, q = 2 + 2 + 2 + 2 + 2 = 10, as there now

exist a total of 10 nodes and 2*2+2*2+2*2+2*2+2*2=20 edges.

Figure 3.1 shows that the basic centering structure is a hole. Each node on the hole

is a node that is then exploded into cliques, in this case uniform size of 2. Each node is

then cliqued with the adjacent nodes. This cliquing of neighbors is what provides the

valid inequality, which is to say that the overall structure follows the constraints set up

by the underlying hole structure.
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Figure 3.1: Cliqued Hole Transition

Figure 3.2 presents a more complex cliqued hole, a CH5,P where P = (3, 2, 3, 4, 1).

This means that p1 = 3, p2 = 2, p3 = 3, p4 = 4, and p5 = 1 as well as q = 13. This

graph has 3*2+2*3+3*4+4*1+1*3=31 edges. The size of m and P are of no importance

until we consider the inequality of interest. Once a facet-defining cliqued hole inequality

is desired, it will be important only to note that m must be an odd hole in order to

generate sufficient points to prove it is facet defining.

Now that the cliqued hole has been defined, it is relevant to show that there exists a

valid inequality called the cliqued hole inequality. Formally,

Theorem 3.1.1. Given a graph G = (V, E) with an induced cliqued hole of the form

CHm,P with P = (p1, ..., p|p|), then
∑

i∈CHm,P
xi ≤ bm

2
c is a valid inequality for the node

packing polyhedron.

Proof: Assume that G = (V, E) has an induced cliqued hole of the form CHm,P in any
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Figure 3.2: Non-uniform Cliqued Hole Transition

node packing. There can be at most one node selected from any Pi structure due to

Pi forming a clique for i = 1, ..., m. Since every node in Pi is adjacent to every node

in P(i mod m)+1 and also adjacent to each node in P(i−2) mod m+1 for i = 1, ..., m. Thus,

there can exist at most bm
2
c nodes selected in this substructure in a node packing and

the result follows.

2

Returning to the CH5,P where P = (3, 4, 3, 2, 1), the valid inequality would be x11 +

x12 +x13 +x21 +x22 +x31 +x32 +x33 +x41 +x42 +x43 +x44 +x51 ≤ b5
2
c = 2. This means

that at most two nodes can be selected into the solution space. Similarly, the CH5,P

when P = (2, 2, 2, 2, 2) valid inequality would be x11 +x12 +x21 +x22 +x31 +x32 +x41 +

x42 +x51 +x52 ≤ 2. Thus, the size of the clique doesn’t change the right hand side, only

the number of variables in the left hand side.Therefore, all variables in the clique can be
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simultaneously lifted with a coefficient of 1.

The question remains as to whether or not this structure is a new structure or just

a collection of existing structures. Finding one linear relaxation point that satisfies all

inequalities from known structures, but violates this cliqued hole inequality is sufficient

to show that these inequalities are a new class of inequalities for PNPCH . This linear

relaxation point is formed by using the CH5,P with P = (3, 2, 3, 4, 1).

When looking at a cliqued hole, several known structures are easily recognizable.

First, there are numerous cliques. The induced subgraph of each Pi is a clique. There

are also cliques between any two adjacent Pis. Recall a Kn clique inequality takes the

form
∑

i∈Kn
xi ≤ 1. Thus, adding all of the clique inequalities in a cliqued hole would

result in adding the following constraints.

x11 + x12 + x13 ≤ 1.

x21 + x22 ≤ 1.

x31 + x32 + x33 ≤ 1.

x41 + x42 + x43 + x44 ≤ 1.

x11 + x12 + x13 + x21 + x22 ≤ 1.

x21 + x22 + x31 + x32 + x33 ≤ 1.

x31 + x32 + x33 + x41 + x42 + x43 + x44 ≤ 1.

x41 + x42 + x43 + x44 + x51 ≤ 1.

x51 + x11 + x12 + x13 ≤ 1.
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Lastly, there are a number of odd holes of size five. In fact this cliqued hole has

3 ∗ 2 ∗ 3 ∗ 4 ∗ 1 = 72 induced odd holes. The number of odd holes can be computed

by multiplying the pis. Recall the odd hole Hn inequality is
∑

i∈Hn
xi ≤ bn

2
c. Thus, 72

more constraints can be added. The first four and the final constraint are listed below.

x11 + x21 + x31 + x41 + x51 ≤ 2

x12 + x21 + x31 + x41 + x51 ≤ 2

x13 + x21 + x31 + x41 + x51 ≤ 2

x11 + x22 + x31 + x41 + x51 ≤ 2

.

.

.

x13 + x22 + x33 + x44 + x51 ≤ 2

Comparing the benefit of the cliqued hole inequality to the standard linear relaxation

of the node packing problem is trivial. Assigning each variable to 1
2

results in a valid

relaxation point. Clearly, this point violates this cliqued hole inequality as 6.5 > 2.

Thus, the cliqued holed inequality is vastly superior to the standard formulation.

Now if all 9 clique inequalities and all 72 odd hole inequalities are added to the

standard linear relaxation of the node packing problem, then the following point is in

the linear relaxation. For each variable xij assign a value of 1
2
∗ 1

pi
for each j ∈ Pi and all

i ∈ {1, ..., m}. Thus, the variables are assigned as follows x11 = x12 = x13 = 1
3
∗ 1

2
= 1

6
,

x21 = x22 = 1
2
∗ 1

2
= 1

4
, x31 = x32 = x33 = 1

3
∗ 1

2
= 1

6
, x41 = x42 = x43 = x44 = 1

4
∗ 1

2
= 1

8
,
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x51 = 1 ∗ 1
2

= 1
2
. This point clearly satisfies each of the 81 inequalities and all edge

constraints for the node packing problem. However, this point violates the cliqued hole

inequality as 2.5 > 2. Since none of these known cuts eliminate this point, the cliqued

hole inequality is a previously undiscovered class of valid inequalities.

Figure 3.3: CH(5, P ) with P = (3, 2, 3, 4, 1)

Since the cliqued hole inequality is a new class of inequalities, it is important to

determine if it is a proper face for the node packing polyhedron, and determine under

what conditions it is facet defining. To achieve this let ei be defined as the ith identity

point. Clearly, if x = ei, then the corresponding node packing solution is vertex i as the

lone vertex in a node packing problem. The following theorem provides a lower bound

on the dimension of a cliqued hole inequality.

Theorem 3.1.2. Given a graph G = (V, E) with an induced cliqued hole of the form

CHm,P , then
∑

i∈CHm,P
xi ≤ bm

2
c defines a face of dimension at least q − 1 for the node
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packing polyhedron.

Proof: Given a node packing problem, let CHm,P be an induced subgraph. From The-

orem 3.1.2
∑

i∈Cm,P
xi ≤ bm

2
c is a valid inequality. It suffices to find |CHm,P | affinely

independent points that meet this inequality at equality.

Let the first set of m points be the standard odd hole points for each of the first

vertices in each Pi. Thus, the points are given by ei1 +
∑bm

2
c−1

j=1 e[(i+2j−1)mod m+1]1 for

each i = 1, ..., m. These points are well known to be affinely independent.

For each vertex vij ∈ V (CHm,P ) where j ≥ 2 and any i ∈ {1, ..., m}, include the point

eij +
∑bm

2
c−1

j=1 e[(i+2j−1)mod m+1]1 . Clearly, these points meet the cliqued hole inequality at

equality and are affinely independent. Thus the dimension of any cliqued hole inequality

is at least q − 1 in PNPCH .

2

To illustrate Theorem 3.1.2, consider again the CH5,P where P = (3, 2, 3, 4, 1). The

affinely independent points for Figure 3.3 are as follows:
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x11 1 0 0 1 0 0 0 0 0 0 0 0 0
x21 0 1 0 0 1 0 0 0 0 0 1 1 1
x31 1 0 1 0 0 1 1 0 0 0 0 0 0
x41 0 1 0 1 0 0 0 1 0 0 0 0 0
x51 0 0 1 0 1 0 0 0 1 1 0 0 0
x12 0 0 0 0 0 1 0 0 0 0 0 0 0
x13 0 0 0 0 0 0 1 0 0 0 0 0 0
x22 0 0 0 0 0 0 0 1 0 0 0 0 0
x32 0 0 0 0 0 0 0 0 1 0 0 0 0
x33 0 0 0 0 0 0 0 0 0 1 0 0 0
x42 0 0 0 0 0 0 0 0 0 0 1 0 0
x43 0 0 0 0 0 0 0 0 0 0 0 1 0
x44 0 0 0 0 0 0 0 0 0 0 0 0 1

It is also of great interest to determine if the cliqued hole inequality not only defines

a high dimension face, but also can define a facet of PNPCH . Thus, what conditions on

nodes not in the cliqued hole must exist for this to be facet defining. Formally,

Theorem 3.1.3. Given a graph G = (V, E) with an induced cliqued hole of the form

CHm,P , then
∑

i∈V (CHm,P ) xi ≤ bm
2
c defines a facet of the node packing polyhedron if for

any node vk not contained within the CHm,P , vk is non-adjacent to at least bm
2
c nodes

in CHm,P that are not adjacent to each other.

Proof: Assume that CHm,P is an induced subgraph of G = (V, E) such that for any

node vk ∈ V \ V (CHm,P ), vk is non-adjacent to at least bm
2
c nodes in V (CHm,P ) that

are not adjacent to each other. Denote these bm
2
c nodes as V ”k.

The cliqued hole inequality
∑

i∈V (CHm,P ) xi ≤ bm
2
c from Theorem 3.1.1 defines a face

of dimension at least q − 1. To these q points include the point ek +
∑

l∈V ”k
el for each

vk ∈ V \ V (CHm,P ). Each of these points is feasible, meets the inequality at equality,

and are clearly affinely independent.
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2

Figure 3.4: Facet Defining CH5,P

To illustrate the conditions described in Theorem 3.1.3, consider Figure 3.4. Note

that 3 new nodes have been added to the graph from Figure 3.3. The affinely independent

points are as follows:
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x11 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
x21 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0
x31 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0
x41 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0
x51 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0
x12 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
x13 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
x22 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
x32 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
x33 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
x42 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
x43 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
x44 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
x6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
x7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
x8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Note that for x6 = 1, it is relevantly trivial to find a point that meets the cliqued

hole inequality at equality. This involves picking up e21 and e41, as they are two non

adjacent nodes in the hole. The point for x7 = 1 is slightly more demanding, as more

edges exist. Note that the point includes e31 and e12, which shows that a point for the

hole and a peripheral node can be used to meet the facet defining conditions.

Finally, x8 = 1 is a very interesting case. Since x8 is adjacent to every node in

the original odd hole, it forms a wheel. It may be assumed that the wheel inequality

mentioned earlier would lift in, but in fact this violates the cliqued hole inequality, and

x8 would indeed lift in with a 0. Thus, it is feasible to select any two non-adjacent

peripheral nodes, in this case e22 and e43 to create the point needed for facet defining.

It may seem that such a structure as shown in Figure 3.3 would be a rare occurance

in most graphs. However, there are more likely forms of the cliqued hole, such as shown

in Figure 3.5. This structure is a much simpler example of a cliqued hole and would be
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expected to occur much more frequently in a graph.

An interesting concept is that odd holes have been some of the least useful cutting

planes [5]. Notice that the cliqued odd holes would greatly strengthen an odd hole

inequality and may assist in fixing this problem. In this example, the hole inequality is

x11 + x21 + x31 + x41 + x51 ≤ 2 and the cliqued hole inequality is x11 + x12 + x21 + x31 +

x32 + x41 + x51 ≤ 2. Again, this adds in two more variables without increasing the right

hand side value, thus it is a much stronger inequality.

Figure 3.5: A Simple Cliqued Hole

It is recommended that the cliqued hole inequalities should be implemented in future

software to help solve the node packing problem. Even more exciting is that these

inequalities can be implemented in conflict graphs as a general class of cutting planes

for binary integer programs.
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3.2 Odd Bipartite Hole

The odd bipartite hole is another new graphic structure that can generate previously

undiscovered valid inequalities for PNPCH . The general concept of the structure is that

there exist two odd holes, Hp and Hq such that every vertex in Hp is adjacent to every

vertex in Hq . The odd bipartite hole is notable in that it allows for simultaneous lifting

in the node packing problem.

Formally, a graph G = (V, E) is an odd bipartite p, q hole (OBPp,q) if, and only if,

the following conditions hold. The nodes can be partitioned into Hp and Hq such that

Hp and Hq form induced odd holes. Additionally, E contains {vi, vj} for every vi ∈ Hp

and vj ∈ Hq. Figure 3.6 shows an OBP5,7.

Figure 3.6: Odd Bipartite Hole

An OBP is basically a complete bipartite graph, but instead of just being adjacent

to the nodes in the other partition, each node is also adjacent to two neighbors in the
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same partition, and each partition contains an odd number of nodes. This generates a

very interesting inequality and the physical depiction can be quite stunning, see Figure

3.7. This representation better illustrates the bipartite nature of the structure. How the

structure came to fruition stemmed directly from looking at an example of a bipartite

graph and inserting the additional edges to form the two odd holes Hp and Hq .

Figure 3.7: Odd Bipartite Hole Alternate

To generate a valid inequality, observe that since every vertex in Hp is adjacent to

every vertex in Hq , a node packing can only have vertices in one of the holes. Thus, the

valid inequality is a combination of the two odd hole inequalities.

Theorem 3.2.1. Given a graph G = (V, E) with an induced odd bipartite hole of the

form OBPp,q, then
∑

i∈V (Hp) xi +
∑

i∈V (Hq)
p−1
q−1

xi ≤ bp

2
c is a valid inequality for PNPCH .

Proof: Assume that G = (V, E) has an odd bipartite hole of the form OBPp,q, with the
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odd holes denoted as Hq and Hp. Since every node in Hq has an edge to every node

in Hp and vice versa, every node packing can contain vertices from only one of the odd

holes.

If only vertices in Hp are considered, then the
∑

i∈V (Hp) xi +
∑

i∈V (Hq)
p−1
q−1

xi ≤ bp

2
c re-

duces to
∑

i∈V (Hp) xi ≤ bp

2
c, which is just the odd hole inequality, and is valid. Whereas,

if only vertices in Hq are considered, then this inequality reduces to
∑

i∈V (Hq)
p−1
q−1

xi ≤

bp

2
c. Due to Hq being an odd hole, at most q−1

2
vertices can be selected in any node

packing. Thus,
∑

i∈V (Hq)
p−1
q−1

xi ≤
p−1
q−1

q−1
2

= p−1
2

= bp

2
c and the result follows.

2

Now consider Figure 3.7. In this example, note that OBP7,5 and OBP5,7 are both

valid representations of the structure. For simplicity, denote it as OBP5,7. The inequality

is
∑

i∈V (H5)
xi +

∑
i∈V (H7)

5−1
7−1

xi ≤ b5
2
c, or equivalently x11 +x12 +x13 +x14 +x15 + 2

3
(x21 +

x22 + x23 + x24 + x25 + x26 + x27) ≤ 2.

Comparing the benefit of the odd bipartite hole inequality to the standard linear

relaxation of the node packing problem is trivial. Again, a linear relaxation point that

meets the existing points known valid inequalities, but violates this OBH inequality is

sufficient to show that these inequalities were previously undiscovered.

Observe that the maximum clique in the graph is of size 4, e.g. {11, 12, 21, 22}.

There are 35 such clique inequalities. (Note, any K3 inequalities are dominated by a

K4 inequality.) There are no odd hole inequalities other than the two odd original holes

since any odd hole that contained vertices from both odd holes would have chords. There
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are 12 wheel inequalities generated by including one vertex from one of the holes with

all of the vertices from the other hole. These wheel inequalities clearly dominate the

odd hole inequalities. Thus, the known cutting planes are:

x11 + x12 + x21 + x22 ≤ 1

x11 + x12 + x22 + x23 ≤ 1

.

.

.

x15 + x11 + x27 + x21 ≤ 1

x11 + x12 + ...x15 + 2x21 ≤ 2

.

.

.

x11 + x12 + ...x15 + 2x27 ≤ 2

x21 + x22 + ...x27 + 3x11 ≤ 3

.

.

.

x21 + x22 + ...x27 + 3x15 ≤ 3

For each variable let xi = 1
4

for each i ∈ V (H5) ∪ V (H7). Clearly, this point satifies

all the K4 inequalities and the wheel inequalities. Evaluating this point in the OBP

inequality results in 29
12

> 2. Since none of these known cuts eliminate this point, the
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odd bipartite hole inequality is a new and unique valid inequality.

The obvious question now is how strong of a face is defined by the odd bipartite hole

inequality.

Theorem 3.2.2. Given a graph G = (V, E) with an odd bipartite hole of the form

OBPp,q, then
∑

i∈V (Hp) xi +
∑

i∈V (Hq)
p−1
q−1

xi ≤ bp

2
c defines a face of dimension at least

q + p − 1 for the node packing polyhedron.

Proof: Given a node packing problem, let OBPp,q be an induced subgraph. From The-

orem 3.2.1
∑

i∈V (Hp) xi +
∑

i∈V (Hq)
p−1
q−1

xi ≤ bp

2
c is a valid inequality. It suffices to find

|V (OBPq,p)| = q + p affinely independent points that meet this inequality at equality.

Let the first set of p points be the standard odd hole points for Hp. These points

are given by
∑b p

2
c−1

j=0 e1(i+2j−1) mod p+1
for each i = 1, ..., p. Next, include the standard odd

hole points for Hq. These points are given by
∑b q

2
c−1

j=0 e2(i+2j−1) mod q+1
for each i = 1, ..., q.

Both sets of points are well known to be affinely independent. Clearly, these points

meet the OBP inequality at equality and are affinely independent. Thus the dimension

of any OBP inequality is at least q + p − 1 in PNPCH .

2

To emphasize the implications of Theorem 3.2.2, consider the affinely independent

points for Figure 3.6.
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x11 1 0 0 1 0 0 0 0 0 0 0 0
x12 0 1 0 0 1 0 0 0 0 0 0 0
x13 1 0 1 0 0 0 0 0 0 0 0 0
x14 0 1 0 1 0 0 0 0 0 0 0 0
x15 0 0 1 0 1 0 0 0 0 0 0 0
x21 0 0 0 0 0 1 0 0 1 0 1 0
x22 0 0 0 0 0 0 1 0 0 1 0 1
x23 0 0 0 0 0 1 0 1 0 0 1 0
x24 0 0 0 0 0 0 1 0 1 0 0 1
x25 0 0 0 0 0 1 0 1 0 1 0 0
x26 0 0 0 0 0 0 1 0 1 0 1 0
x27 0 0 0 0 0 0 0 1 0 1 0 1

Now that we have shown the odd bipartite hole inequality is not only valid, but

defines a face, it is of great interest to determine whether it is also facet defining. The

following theorem provides such conditions.

Theorem 3.2.3. Given a graph G = (V, E) with an induced odd bipartite hole of the

form OBPp,q, then
∑

i∈V (Hp) xi+
∑

i∈V (Hq)
q−1
p−1

xi ≤ bp

2
c defines a facet of the node packing

polyhedron if for each vk ∈ V \ V (OBPp,q), there exists a i ∈ {1, ..., p} such that vk is

not adjacent to the nodes v1i
, v1(i+1) mod p+1

, v1(i+3) mod p+1
,.... v1

(i+
p−3
2 ) mod p+1

or there

exists an j ∈ {1, ..., q} such that vk is not adjacent to the nodes v2j
, v2(j+1) mod q+1

,

v2(j+3) mod q+1
,.... v2

(j+ q−3
2 ) mod q+1

.

Proof: Assume that OBPp,q is an induced subgraph of G = (V, E) and that each vk ∈

V \ V (OBPp,q) satisfies the above condition. To find |V | affinely independent points

that meet
∑

i∈V (Hp) xi +
∑

i∈V (Hq)
q−1
p−1

xi ≤ bp

2
c at equality, begin by using the p + q

points used in Theorem 3.2.2. To these points add in either ek + e1i
+ e1(i+1) mod p+1

+

e1(i+3) mod p+1
+...+e1

(i+p−3
2 ) mod p+1

or the point ek+e2i
+e2(i+1) mod q+1

+e2(i+3) mod q+1
+...+

e2
(i+

q−3
2 ) mod q+1

depending upon the above condition. These points clearly are feasible,
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meet the inequality at equality and are affinely independent.

2

Figure 3.8: Facet Defining

To better illustrate the results of Theorem 3.2.3, consider Figure 3.8. Notice that the

graph structure in Figure 3.6 is an induced subgraph. The affinely independent points

for Figure 3.8 are as follows.
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x11 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0
x12 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0
x13 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
x14 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0
x15 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
x21 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1
x22 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0
x23 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1
x24 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0
x25 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1
x26 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0
x27 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0
x3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
x4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
x5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

For this example, notice that x3 is not adjacent to any nodes from H5, thus the point

includes e11 and e13, which meets the odd bipartite hole inequality at equality. Since x4

is adjacent to every node in H7 and two nonadjacent nodes in H5, the obvious solution

involves two remaining non-adjacent nodes, e12 and e14. The simplest point is for x5, as

it is only adjacent to two nodes in H5, thus any 3 non-adjacent nodes in H7.

These odd bipartite holes achieve the motivational goal of this research in that they

are inequalities that can only be achieved by simultaneous lifting. To show this, consider

the odd hole inequality generated by H5, x11 + x12 + x13 + x14 + x15 ≤ 2. There are

7 other variables that could be lifted sequentially into this inequality. Thus, there are

7! = 5, 040 possible inequalities that could be generated.

Without loss of generality, we could lift x21 first. This creates a wheel and as in

section 2.3.1 it would lift in with a 2. Thus, the new sequentially lifted inequality is

x11 + x12 + x13 + x14 + x15 + 2x21 ≤ 2. The variables x23, x24, x25 and x26 would all lift

in with a 0 coefficient. This can be seen since any of these nodes and node 21 can be in
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a feasible node packing and so Z from the lifting IP would be 2 and 2 − 2 = 0.

If x22 is lifted before x27, then it is lifted with a 2 coefficient, because nodes 21, 11, 12, ..., 15

cannot be in a node packing with node 22. Since 22 and 27 can be in a node packing,

x27 lifts in with a 0. Obviously switching the order of lifting x22 and x27 would flip the

2 and 0 coefficients.

Thus, there are only two sequentially lifted inequalities if x21 is lifted first. Of the

6! = 720 possible remaining sequences for lifting, there will only be 2 distinct inequalities.

They are x11 + x12 + x13 + x14 + x15 + 2x21 + 2x27 ≤ 2 and x11 + x12 + x13 + x14 + x15 +

2x21 + 2x22 ≤ 2. Following a similar line of logic, of the 7! = 5040 sequentially lifted

inequalities, there are only 7 unique inequalities. They are

x11 + x12 + x13 + x14 + x15 + 2x21 + 2x22 ≤ 2,

x11 + x12 + x13 + x14 + x15 + 2x22 + 2x23 ≤ 2,

x11 + x12 + x13 + x14 + x15 + 2x23 + 2x24 ≤ 2,

x11 + x12 + x13 + x14 + x15 + 2x2x24 + 2x25 ≤ 2,

x11 + x12 + x13 + x14 + x15 + 2x2x25 + 2x26 ≤ 2,

x11 + x12 + x13 + x14 + x15 + 2x2x26 + 2x27 ≤ 2 and

x11 + x12 + x13 + x14 + x15 + 2x2x27 + 2x21 ≤ 2.

Averaging these sequentially lifted inequalities results in x11 +x12 +x13 +x14 +x15 +

4
7
(x21 + x22 + ... + x27) ≤ 2. The odd bipartite hole inequality is x11 + x12 + x13 + x14 +

x15 + 2
3
(x21 +x22 + ...+x27) ≤ 2, which strictly dominates this average sequentially lifted
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inequality. Furthermore, applying simultaneously lifting to the variables {x21, ..., x27}

would also result in a coefficient of 2
3
, which is the same inequality. Consequently, this

thesis has discovered the first subgraphic structures that would allow unique inequalities

for simultaneous lifting in PNPCH .

3.2.1 Odd k-partite Hole

Since the OBP consists of two odd holes that have a complete bipartite graph between

them, a natural continuation is to add more odd holes to the structure. Denote an

odd k-partite hole with k odd holes H1, ..., Hk as OkPp1, ..., pk where pi is the |Hi|.

A depiction of a OkP5,7,9 is shown in Figure 3.9. This shows 3 odd holes and would

commonly be referred to as a tripartite odd hole.

As expected, the results from the previous section extend trivially. Again, only

vertices from one odd hole can be in the node packing. Thus,

Corollary 3.2.4. Given a graph G = (V, E) with an induced odd k-partite hole of the

form OkPp1,...,pk
, then

∑
i∈V (Hp1) xi +

∑
i∈V (Hp2)

p1−1
p2−1

xi + ... +
∑

i∈V (Hpk
)

p1−1
pk−1

xi ≤ bp1

2
c is

a valid inequality for the node packing polyhedron.

2

Clearly, the face defining results from the odd bipartite hole extend trivially. There

exists many affinely independent points that meet the odd k-partite hole inequality at

equality. Thus,
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Figure 3.9: Odd Tripartite Hole
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Corollary 3.2.5. Given a graph G = (V, E) with an odd k-partite hole of the form

OkPp1,...,pk
, then

∑
i∈V (Hp1) xi +

∑
i∈V (Hp2)

p1−1
p2−1

xi + ... +
∑

i∈V (Hpk
)

p1−1
pk−1

xi ≤ bp1

2
c defines

a face of dimension at least p1 + p2+, ..., +pk − 1 for the node packing polyhedron.

2

Given an odd k-partite hole, it is trivial to find an affinely independent point for

any peripheral point to show it is facet defining, as an extension of the previous section.

Therefore,

Corollary 3.2.6. Given a graph G = (V, E) with an induced odd k-partite hole of the

form OkPp1,...,pk
, then

∑
i∈V (Hp1) xi +

∑
i∈V (Hp2)

p1−1
p2−1

xi + ... +
∑

i∈V (Hpk
)

p1−1
pk−1

xi ≤ bp1

2
c

defines a facet of the node packing polyhedron, if for each vr ∈ V \ V (OkPp1,...,pk
), there

exists a pi for i ∈ {1, ..., k} such that vr is not adjacent to the nodes vis, vi(s+1) modpi+1
,

vi(s+3) modpi+1
,.... vi

(s+
pi−3

2 ) modpi+1
for some s ∈ {1, ..., pi}.

2

In Figure 3.9, the valid facet defining inequality is
∑

i∈V (Hp1) xi +
∑

i∈V (Hp2)
5−1
7−1

xi +

∑
i∈V (Hp3)

5−1
9−1

xi ≤ 2. This simplifies down to x11 + x12 + x13 + x14 + x15 + 2
3
(x21 + x22 +

x23 +x24 +x25 +x26+x27)+
1
2
(x31 +x32+x33 +x34 +x35 +x36 +x37 +x38 +x39) ≤ 2. Observe

that this is an example of simultaneous lifting of multiple sets. Kubik [51] provided a

psuedopolynomial time technique to perform simultaneously lifting over multiple sets,

which is clearly the case for this odd k-partitite hole.
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Chapter 4

Conclusion and Future Research

The goal of this thesis was to develop, present, and investigate several new structures for

the node packing problem. From this stemmed each structure’s facet defining inequality,

as well as interesting conditions in which these structures may exist. Additionally, it was

found that fractional values could be used for some of the structures, which indicates

the possibility for simultaneous fractional lifting for the node packing polytope.

A cliqued hole CHm,P with P = (p1, p2, ..., pm) where
∑m

i=1 pi = q, pi ≥ 1 and pi ∈ Z

for all i = 1, ..., m has the valid inequality
∑

i∈V (CHm,P ) xi ≤ bm
2
c. This inequality is of

great interest, as it combines two structures with known inequalities into one unique,

much stronger inequality. Conditions are also provided for this inequality to be facet

defining.

The odd bipartite hole OBPp,q consists of two odd holes, Hp and Hq such that every

vertex in Hp is adjacent to every vertex in Hq. The valid inequality generated for this

structure is
∑

i∈V (Hq) xqi
+

∑
i∈V (Hp)

p−1
q−1

xpi
≤ 2. This structure is visually very stunning,
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and conditions for these inequalities to be facet defining are provided. Furthermore, this

structure can be expanded upon to become a odd k-partite hole.

4.1 Future Research

Several areas are of great interest for further research. Computational studies should

be performed to determine if the inequalities formed through this thesis provide any

computational advantages. If they do, then the amount of savings should also be deter-

mined.

Much of this research began in the interest of determining whether fractional si-

multaneous lifting was feasible and viable for PNPCH . Section 4.3 provides a partial

answer, but do other fractional simultaneous lifting structures exist?

Indeed, each structure can be modified in order to supply new and intriguing struc-

tures for academic investigation. Some that come to mind include removing a single or

multiple edges in the OBP , and exploding the edges on the CH to a structure other

than cliques, such as wheels or odd holes.

To help spur research in this area, we propose a modification of the odd bipartite

hole. The basic idea is to not have all of the edges between the two holes. Consider the

graph depicted in Figure 4.1. Notice how each vertex of the center hole is adjacent to

six consecutive nodes in the outer hole in a specific manner.

This structure enables two valid inequalities. They are 2
∑

i∈V (H5)
xi+

∑
i∈V (H15) xi ≤
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7 and 3
∑

i∈V (H5)
xi +

∑
i∈V (H15)

xi ≤ 8. Neither of these inequalities are facet defining,

but they still induce fairly large faces. So what edges should be added or removed to

generate facet defining inequalities. Furthermore, this structure begins the idea that one

structure could potentially produce multiple inequalities, which would be a version of

synchronized simultaneously lifting, which is described in Bolton’s master’s thesis [16].

Much research in this area could be beneficial and lead to new structures.

Figure 4.1: Moddified Odd Bipartite Hole
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