HEAT TRANSFER
IN THE THERHAL EMTRANCE REGION
OF AN ATHULUS

$$
763
$$

by

SUN-NAN HONG
 B.S., National Taiwan University, 1963
 Taipei, Taiwan

A MASTER'S THESIS
submitted in partial fulfillment of the requirements for tho degree

MSTER OT SCIENCE

Department of Chemical Enginoering

KAHSAS STATE UKIVERSITY Nanhattan, Kansas

1967

Approved by:

Page No.

1. Introduction 1
2. Iiteraturo Survey 3
3. The Velocity Profile 6
4. Heat Transfer to Power Law Fluids in Laminar Flow through
an Annulus 12
4.1 Case I: Heat Transfer in an Annulus with Uniform Heat Input at the Inner Wall and Insulation at tho Outor Wall . 12
4.1.1 Mathomatical Statement of the Problem 12
4.1.2 Solution of the Problem 13
4.1.3 Expression for the Iusselt Number 17
4.1.4 Asymptotic Solution by the WKB Nethod 19
4.2 Case II: Hoat Transier in an Annulus with Equal Tall Tempera- tures at Both Valls; also Constant Temperature at the Inner Nall, Insulation at the Outer Nall 35
4.2.1 Solution of the Problem 35
4.2.2 Exprossions for the llusselt Numbor 37
4.2.3 Asymptotic Solution by the WFB Method 41
4.3 Case III: Heat Transfer in an Annulus with Different but Constant Wall Tomperatures at the Inner and the Outer Wall 54
4.3.1 Nethod of Superposition 54
4.3.2 Solution of tho Problem 58
4.3.3 Expressions for tho Nussolt Number 60
4.3.4 Asymptotic Solution by the WKB Method 62
5. Discussion of Results 75
6. Nomenclaturo 79
7. Acisnowlodgments 82
8. Bibliography 83
9. Appendix 85
9.1 The Rethod of Berry and de Prima for Determining theEigenfunctions and Eigenvalues 859.2 Computer Flow Sheet and Computer Program for Calculationof the G Function and the Nusselt Number of Problem I86
9.3 Dorivation of the Constants and the Bigenvalues by the
iris liethod 93

LIST OF TABLES

Table 1. Functions in the solution of problem I for $n=0.5$
Page No. 20
Tablo 2. Functions in the solution of problem I for $n=0.8$ 21
Table 3. Constants in tho asymptotic solution 30
Tablo 4. Functions in the solution of problem II by tho iterativemothod for $n=0.5$. 38
Table 5. Functions in the solution of problem II by the itorativo
mothod for $n=0.8$ 38
Tablo 6. Functions in the solution of problem III by the iterative metiod for $n=0.5$ 39
Table 7. Functions in the solution of problom III by the iterative mothod for $n=0.8$ 39
Table 8. Functions in the solution of problem II by the WKB
method for $n=0.5$ 52
Table 9. Functions in the solution of problem II by the HK
method for $n=0.8$ 52
Table 10. Functions in the solution of problem III by the WKB
method for $n=0.5$ 53
Table 1l. Functions in the solution of problem III by the WiB
mothod for $n=0.8$ 53
Table 12. Functions in the solution of problom IV, stop chanceat the inner rall, by the itorative method for $n=0.5$. . 63
Table 13. Functions in the solution of problem IV, step changeat tho outor wall, by the iterativo mothod for $n=0.5$. . 63

Table 14. Functions in the solution of problem IV, step change Page No. at the inner vall, by the iterative mothod for $n=0.8$. . 64
Table 15. Functions in the solution of problem IV, step chance at the outer ivall, by tho iterative mothod for $n=0.8$. . 64
Table 16. Functions in the solution of problom IV, step change at the innor wall, by the WB method for $n=0.5$. . . . 73
Table 17. Functions in the solution of problem IV, step change at the outer wall, by the WKB method for $n=0.5$. . . . 73
Tablo 18. Functions in the solution of problem IV, stop change at tho inner wall, by the TKB mothod for $n=0.8$ • • . . 74
Table 19. Funotions in the solution of problem IV, step change at the outer wall, by the WKB method for $n=0.8$. . . . 74
Fig. 1. Diagram of the ccordinate system
Page No.Fig. 2. Velecity prefile for $\mathrm{K}=0.2$11
Fig. 3. Temperature profilo develepment, problem $I, K=0.5, n=0.5$. 22
Fig. 4. Nusselt number versus axial distance, problem $I, \mathrm{~K}=0.5$ 23
Fis. 5. Nusselt number versus axial distance, problem $I, K=0.2$ 24
Fig. 6. ilusselt number versus axial distance, preblem I, $n=0.5$ 25
Fiç. 7. Musselt number versus axial distance, problem I, $n=0.8$ 26
FiE. 8. Average tomperature versus axial distance, preblem I, $n=0.5$ 27
Fig. 9. Temperature prefilo development, problem II, $\mathrm{K}=0.5, \mathrm{n}=0.5$ 42
Fis. 10. Nusselt number versus axial distance, problem II, $n=0.5$ 43
Fiš. 11. Nusselt number vorsus axial distance, problem II, $n=0.8$ 44
Fig. 12. Average temporature versus axial distance, problem II, $n=0.545$
Fig. 13. Temperature profile development, problem III, $\mathrm{K}=0.5, \mathrm{n}=0.5$ 46
Fig. 14. Nusselt number versus axial distance, preblem III, $n=0.5$ 47
Fig. 15. ITusselt number versus axial distance, preblem III, $n=0.8$ 48
Fig. 16. Averase temperature versus axial distance, problem III,
$n=0.5$ 49
Fig. 17a. Step change at the inner wall 56
Fig. 17b. Step change at tho cutor rall 56
Fig. 18a. Temperature profile development, problom IV, step change
at the inner wall, $K=0.5, n=0.5$ 65
Fig. 18b. Temperature prefile develepmont, problem IV, step changeat the outer ioll, $\mathrm{r}=0.5, \mathrm{n}=0.5$ - 66
Fig. 19. Husselt number versus axial distance, problem IV, stepchange at tho innor wall, $n=0.5$67

Fig. 20. Nusselt number versus axial distance, problem IV, step Page No. change at the outer wall, $n=0.5$. 68

Fis. 21. Nusselt number versus axial distance, problem IV, step change at the inner wall, $n=0.8$. 69
Fis. 22. Nusselt number versus axial distanco, problem IV, step change at the outer wall, $n=0.8$. 70
Fis. 23. Average temperature versus axial distance, problem IV, $\mathrm{n}=0.5$ • • 71

Fig. 24. Computer flow sheet for solving Eq. (4.1-15) and Eq. (4.1-16) • • • • • • • • • 87
Fig. 25. Computer flow sheet for solving Eq. (4.1-24) 89

1. Introduction

The processing of non-Nowtonian fluids is important in many industries. Among theso industries are nuclear onerey, minerals, potroloum, rockot propollants, plastics and tho synthetic fibor industry. Non-Newtonian fluids are characterized by a non-linear shearing stressstrain rate relationship. Suspensions such as thorium oxide in water, omulsions, molten polymers, high molecular weight polyatomic and polymeric iluids and solutions of polymors are, for examplo, often nonNewtonian. The shear stress-rate of strain relationship for many fluids can offen by represented by the power-law model. This model has proved to be a vory usefful two paranctor model for a wide variety of nonNowtonian fluids. The model, in complex éoometry, is expressed as

$$
\begin{equation*}
\tau_{i j}=-\left\{n\left|\sqrt{\sum_{k I} \sum_{k I} \Delta_{i k} \Delta_{I k}}\right|^{n-1}\right\} \Delta_{i j} \tag{1-1}
\end{equation*}
$$

where $\tau_{i j}$ is the shear stress and $\Delta_{i j}$ is tho symmetrical rate of deformation tensor with components $\Delta_{i j}=\frac{\partial V_{i}}{\partial X_{j}}+\frac{\partial V_{j}}{\partial X_{i}}$. Tho parameters m and n are constants for a particular fluid at a given tomperature and pressuro. Then $n<1$ the 1 luid is called psoudoplastic, when $n>1$ the fluid is called dilatant, and when $n=1$ tho cxprossion reduccs to the Newtenian relation:

$$
\begin{equation*}
\tau_{i j}=-\mu \Delta_{i j} \tag{1-2}
\end{equation*}
$$

Studies of tho heat transfor to these non-Nowtonian fluids have been rostricted alnost oxclusively to tubular flow. Other geometrios are of engincoring importanco also. Tho concentric annulus is an ospecially
useful geometry to analyze because flow betwoen parallol plates and in a tubc are limiting forms of the annular problem. When the ratio of the inner to the outer radius approaches zero, the tubular flow problem is approached, while the parallcl plate problom is approached as the ratio noars one. Tho concentric annular heat transfor problom is also of direct intorest in concentric tube hoat exchancer design.

In the analysis below, it is assumod that the fluid with constant physical propertios entors the annulus with a uniform temperature and a fully doveloped laminar velocity proifile and, up to some point ($z=0$) the fluid is isothermal. Four distinct problems with difforent values of the ratio of the inner to the outer radius and different indices of the power law model are considered hero:
I. For $z>0$, uniform heat input at the inner wall and insulation at the outer mall.
II. For $z>0$, equal wall temperatures are prescribed at both the inner and the outer walls.
III. For $z>0$, tho outer mall is insulated and a temperature is prescribed at the inner wall.
IV. For $z>0$, different wall tomperatures are prescribed at both the inner and outer walls.

The purpose of this work is to dotormino tho variation of the ivussclt number :rith distance from the inlot. The analytical treatment of the probloms utilizes tho tochnique of separation of variables. This technique reduces the onergy cquation to a Sturm - Liouvillo problem and a first ordor ordinary differential equation. After tho eigenvalues and corresponding eifenfunctions of the Sturm - Liouville problem have beon determined,
the heat transfor parameters of interest can be readily calculated. The accuracy of the results depends on tho number and accuracy of the eigenvalues. An increasine number of eigenvalues is required to obtain accurate rosults as tho distance from the ontrance is docroasod. The limiting ITussolt number as the distance from $z=0$ aporoachos infinity requires only ono eiconvalue. An itorative mothod and an asymptotic solution are introduced to solve tho Sturm - Liouville problom. The asymptotic method usod is lonom as the WKB method arter G. Wentzel, H.A. Kramers and L. Brillouin who independently discoverod tho procedure.

2. Literaturo Survey

Though there are no solutions or data with which this work can be comparea, there are soveral papors which are especially portinent to the work. In the discussion bolow theso aro divided into four groups which are concermed with (i) the velocity profile, (ii) non-Newtonian heat transfor in a tube, (iii) Newtonian heat transfor in annuli, and (iv) mathematical mothods.

Fredrickson and Bird (1) presented the analytical solutions of the equation of motion for stoady axial flow of Bingham and power law fluids in a long cylinderical annulus. From their solutions, they prepared tables siouring values of the dimensionless radial coordinate for which tho shear stress is zero and values of the ratio of maximum velocity to averase velocity. This solution was attacked by Metzner (2). He noted that powor law solutions required that the paramoters bo constant over tho entire rance of shoar stross undor consideration. Metzner showed that this could
not occur for non-Nowtonian fluids and that the power law solution will, at bost, be an approximation. Thc power lair model prodicted infinite apparont viscosity at zoro shoar stress; howovor, real non-Nowtonian fluids oxhibitod a finito and constant viscosity at zoro shear stross. Vaughn and Bergman (3) prosentod exporimental data confirming the failure of the power law model to prodict pressurc loss and flow ratc in concentric amuli. Recently though, RoEachom (4) has demonstratod that tho solution oi the annulus problem given by Fredrickson and Bird (1) to estimato flow curves for tinc annulus can bo used in the power lair paramoters are cvaluated in the range of shoar stresscs found at tho outside wall of the amulus.

Laminar inloit heat transfor for the cases of the circular tube and of infinito parallol planes ropresent limiting forms of the annulus. Those simple cascs have recoived considerable attention, but only a few publications have troatod non-Nowtonian fluids. Motzner et al, (5) prescnted tho first theorotical analysis combinod with an experimental study of the variables controlling hoat trensfor ratos to non-Newtonian fluide in the laminar flow recion. A reviow on the laminar flow work has also been given by Hetzner (6). Lyche and Bird (7) showed how the Gractz - Mussclt problcm in heat trensicr theory may be extended to poser law fluids. Temporature profilcs iocre obtainod and used to calculate average outict temperature as well as Nussclt numbers for several degrocs of non-NTortonian bchavior. Schenk and Van Laar (8) usod the Prandtl Dyring formula to calculato the hoat transfor paremeters which were then compared with those obtaincd by other workers assumine tho power law model. Christiansen (9) (10), using tho same model, prosontcd genoralized
plots of the Nusselt number versus the Graetz number. The temperature dependency of the viscosity was also included.

Until recently the annulus problem, evon for Nowtonian fiuids, had received much less attention than tho tubular and infinite parallel plate problems. Reynolds et al. (II) and Hattonfet al. (12) have prosented the rosults of an extensivo four year study of annular heat transfor to Noatonian fluids. Included in their study is a bibliography of pertinent cublications. Jakob and Rees (13) obtained the temperature distribution as axial distance tends to infinity for the solution of problem II in this work. Murakawa (14) (15) presented an intogral equation formulation as well as some exporimental results for vater heated from the inside wall with the outsido wall of the annulus being insulated. The case whore arbitrary peripheral variations vore allowod was also considerod. He oxpanded the boundary conditions in a Fourier series and comparod the coefficionts of both sides of the enorey oquation. Unfortunately a Eeneral recurrence formula could not be obtained, so the coefficients had to be evaluatod individually. Rurakava carried his solutions to the point of numorical calculation only for problem III and for one valuo of the radius ratio. Viskanta (16) (17) has presentod complote thermal entry lensth solutions of the last throe problems. He utilized tho mothod of superposition to dotomino the tomperature distribution for problen IV. Somo numorical results for heat iluxes, mixing cup tomperatures and Iusselt numbers woro presented sraphically. Analog computation seomed to be ratior convonient, but of limited accuracy. Lundbers ot al. (18) (19) havo also presonted thomal entry length solutions. This included ovaluation 0 tho four fundanental solutions, which are basically tho same
as in this work, by a solution of the eigenvalue problem. The analytical predictions were also substantiated by their agreement with caroiful experimental measurements. Hatton and Quarmby (20) gave the solutions to problems I and III. Tho case of parallel plates with one side insulated was included for comparison.

Siegel ot al. (21) suggested the method of making the boundary conditions homogeneous by subtraction of the fully doveloped solutions. Berry and de Prime (22) developed tho simplo iterative method used for the determination of the eigenvalues and cigenfunctions of the Storm Liouville problem. Their method is particularly useful when the coefficionts of tho differential equation are not expressed in analytical form. Sellars, Tribus and Kicin (23) first applied the WKB method of evaluating the higher eigenvalues to heat transfer problems in tubes. This method also has been applied by Lundberg et al. (18) (19) and by Zicrenhagen (24) to the annular problem.
3. The Velocity Profile

The equations describing tho motion of the fluid are the equations of continuity and motion:

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+(\nabla \cdot \rho \bar{V})=0 \tag{3-1}\\
& \rho\left[\frac{\partial \bar{V}}{\partial t}+(\vec{V} \cdot \nabla) \vec{V}\right]=-\nabla p-(\nabla \cdot \bar{\tau})+\rho E \tag{3-2}
\end{align*}
$$

In the developments which follow, the flow between two coaxial cylinders using the coordinate system and notation show in Pi cure 1 is considered. The solution of this problem ias first given by Fredrickson

Fig. 1 Diagram of the coordinate system
and Bird (1). Tho Sollowing assumptions are mado:
(1). The fluid is incompressiole,
(2). The illow is in steady-state,
(3). Tho flow is laminar,
(4). The cylinders are sufficiently long that end eifects may bo noglected.

For tho specific system under consideration, Equations (1-1), (3-1) and (3-2) may be riritten in cylindrical coordinates as

$$
\begin{align*}
& \tau_{r z}=-m\left|\frac{d V_{z}}{d r}\right|^{n-l} \frac{d V_{z}}{d r} \tag{3-3}\\
& \frac{d}{d z}\left(\rho V_{z}\right)=0 \tag{3-4}\\
& V_{z} \frac{d V_{z}}{d z}=-\frac{d D}{d z}-\frac{I}{r} \frac{d}{d r}\left(r \tau_{r z}\right)+\rho g_{z} \tag{3-5}
\end{align*}
$$

Combinins and simplifyins Equations (3-4) and (3-5) leads to

$$
\begin{equation*}
\frac{1}{r} \frac{d}{d r}\left(r T_{r z}\right)=\frac{p_{0}-p_{L}}{L}+\rho E_{z} \tag{3-6}
\end{equation*}
$$

in which p_{0} and p_{L} are the static pressure at $z=0$ and $z=I$, respectively, and \mathcal{E}_{z} is the component of gravitational acceleration g in the direction of flow. This first order differontial equation, valid over the entire annular region for any fluid, may bo integrated to give

$$
\begin{equation*}
\tau_{r z}=\frac{P}{2}\left[r-\frac{(\lambda R)^{2}}{r}\right] \tag{3-7}
\end{equation*}
$$

in which λ is the constant of intorration and P is the sum of forces per unit volumo on the right hand sido of Equation (3-6). Tho radial position $r=\lambda R$ roprosonts that position at ihhich $\tau_{r z}=0$.

Suostituting Equation (3-3) into Equation (3-7) and introducing the dimonsionless variablo $\zeta=\frac{r}{R}$, yiolds

$$
\begin{equation*}
\frac{P R^{n+1}}{2}\left(\zeta-\frac{\lambda^{2}}{\zeta}\right)=-m\left|\frac{d V_{z}}{d \zeta}\right|^{n-1}\left(\frac{d V_{z}}{d r}\right) \tag{3-8}
\end{equation*}
$$

For $\mathrm{K} \leq \zeta \leq \lambda, \frac{\mathrm{dV}_{Z}}{\mathrm{~d} \zeta}$ is positive and

$$
\begin{equation*}
\frac{\mathrm{PR}^{\mathrm{n}+1}}{2}\left(\zeta-\frac{\lambda^{2}}{\zeta}\right)=-\mathrm{m}\left(\frac{\mathrm{~d} V_{z}}{\mathrm{~d} \zeta}\right)^{n} \tag{3-9}
\end{equation*}
$$

For $\lambda \leq \zeta \leq 1, \frac{d V_{z}}{d \zeta}$ is nogative and

$$
\begin{equation*}
\frac{p R^{n+1}}{2}\left(\zeta-\frac{\lambda^{2}}{\zeta}\right)=m\left(-\frac{d v_{z}}{d \zeta}\right)^{n} \tag{3-10}
\end{equation*}
$$

setting $s=\frac{1}{n}$, integrating Equations (3-9) and (3-10), and rearranging leads to

$$
\begin{align*}
& V_{z}=R\left(\frac{P R}{2 m}\right)^{s} \int_{K}^{\zeta}\left(\frac{\lambda^{2}}{\zeta}-\zeta\right)^{s} d \zeta, K \leq \zeta \leq \lambda \tag{3-11}\\
& V_{z}=R\left(\frac{P R}{2 m}\right)^{5} \int_{\zeta}^{1}\left(\zeta-\frac{\lambda^{2}}{\zeta}\right)^{s} d \zeta, \lambda \leq \zeta \leq 1 \tag{3-12}
\end{align*}
$$

The boundary conditions $V_{z}=0$ at $\zeta=K$ and $\zeta=1$ have been used. Obviously, the above tiro equations must give the same value of the velocity at $\zeta=\lambda$ whore the shear stress is zero and tho velocity is a maximum. Then

$$
\begin{equation*}
\int_{K}^{\lambda}\left(\frac{\lambda^{2}}{\zeta}-\zeta\right)^{s} d \zeta=\int_{\lambda}^{1}\left(5-\frac{\lambda^{2}}{\zeta}\right)^{s} d \zeta \tag{3-13}
\end{equation*}
$$

and

$$
V_{\max }=R\left(\frac{P R}{2 m}\right)^{s} \int_{K}^{\lambda}\left(\frac{\lambda^{2}}{\zeta}-\zeta\right)^{s} d \zeta
$$

From Equation (3-13), values of λ at different values of K and s cen bo determined. These values have boon tabulated by Fredrickson and Bird (1). In order to eliminate $R\left(\frac{P R}{2 m}\right)^{s}$ from tho volocity profile, Equation (3-14) may bo rowititen as

$$
\begin{equation*}
R\left(\frac{p R}{2 m}\right)^{s}=\frac{V_{a v_{\delta}}\left(\frac{V_{\max }}{V_{\text {avg }}}\right)}{\int_{K}^{\lambda}\left(\frac{\lambda^{2}}{\zeta}-\zeta\right)^{s} d \zeta} \tag{3-15}
\end{equation*}
$$

Therefore, the expression for the velocity is

$$
\begin{align*}
& \bar{V}_{z}=\frac{V_{z}}{V_{a v G}}=\frac{\left(V_{\max } / V_{a v g}\right)}{\int_{K}^{\lambda}\left(\frac{\lambda^{2}}{\zeta}-\zeta\right)^{5} d \zeta} \cdot \int_{K}^{\zeta}\left(\frac{\lambda^{2}}{\zeta}-\zeta\right)^{s} d \zeta, \tag{3-16}\\
& K \leq \zeta \leq \lambda \\
& \bar{V}_{z}=\frac{V_{z}}{V_{\text {avg }}}=\frac{\left(V_{\max } / V_{a v g}\right)}{\int^{\lambda}\left(\frac{\lambda^{2}}{\zeta}-\zeta\right)^{s} d \zeta} \cdot \int_{\zeta}^{1}\left(\zeta-\frac{\lambda^{2}}{\zeta}\right)^{s} d \zeta, \tag{3-17}
\end{align*}
$$

where \bar{V}_{z} is the dimensionless velocity, which may be calculated numerically. Results for values of n of $0.2,0.5$, and 0.8 are shown in Figure 2.

4. Heat Transier to Power-Law Fluids in Laminar Flow through an Annulus

> 4.1 Case I: Heat Transfer in an Annulus with Uniform Heat Input at the Imner Wall and Insulation at the Outor Wall
> 4.1.1 Nathematical Statement of the Problem

The non-Newtonian fluid flows with a fully-developed laminar velocity profile in the $+z$ direction in a concentric annulus. The coordinates and geometry of the system are shom in Fig. I. In the region $z<0$, the fluid and both walls are maintained at a uniform temperature T_{e}. In the region $z>0$, the inner nall is prescribed with a uniform heat flux, $-q$, and the outer wall is insulated. The problem is to find the temperature distribution and the variation of the heat transfor coofficient on the inner surface with distance down the duct.

Subject to the limitations montioned belor, the energy equation describing the problem is

$$
\begin{equation*}
\rho C_{p} V_{z} \frac{\partial T}{\partial z}=k \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right) \tag{4.1-1}
\end{equation*}
$$

and the boundary conditions are

$$
\begin{array}{rc}
T=T_{\theta} & \text { for } z \leq 0 \\
\left.\frac{\partial T}{\partial T}\right|_{Y=R}=0 & \text { for } z>0 \tag{4.1-2}\\
--\left.k \frac{\partial T}{\partial T}\right|_{Y=K R}=q & \text { for } z>0
\end{array}
$$

The following assumptions are made.
(1) Steady state has beon obtained.
(2) Heat conduction in the z-direction is negligible in comparison with hoat transport in the z-direction by the bulk fluid motion.
(3) The physical properties ρ, C_{p}, and k are constant.
(4) Viscous dissipation is negligible.
4.1.2 Solution of the Problem

With the introduction of the following dimensionless variables,

$$
\begin{align*}
& \zeta=\frac{T}{R} \\
& \overline{V_{z}}=\frac{V_{z}}{V_{a V g}} \\
& \theta=\frac{T-T_{e}}{q R / k} \tag{4.1-3}\\
& \bar{\zeta}=\frac{z}{z_{\alpha}} \\
& z_{d}=\frac{R e P_{r} R}{2(I-\bar{K})}
\end{align*}
$$

the energy equation and the boundary conditions become

$$
\begin{align*}
& \overline{\mathrm{V}}_{z} \frac{\partial \theta}{\partial \zeta}=\frac{1}{\zeta} \frac{\partial}{\partial \zeta}\left(\zeta \frac{\partial \theta}{\partial \zeta}\right) \tag{4.1-4}\\
& \theta(0, \zeta)=0 \\
& \left.\frac{\partial \zeta}{\partial \zeta}\right|_{\zeta=1}=0 \quad \text { for } \xi>0 \\
& \left.\frac{\partial \theta}{\partial \zeta}\right|_{\zeta=\mathrm{K}}=-1 \quad \text { for } \xi>0
\end{align*}
$$

Because of the nature of the boundary conditions in this problem, the general method of the separation of variables cannot be used. The procedure used in this work was first introduced by Siegal et al. (21). The solution is divided into trio parts, a fully-dcveloped solution and a solution valid near the entrance which disappears far downstream from the entry. As will be show, this procedure results in homogeneous
boundary conditions.
Thus,

$$
\theta(\xi, \zeta)=\theta_{\infty}(\xi, \zeta)+\theta_{d}(\xi, \zeta)
$$

in which θ_{∞} is the asymptotic solution for large ξ, and θ_{d} is the solution which is valid near the entrance and which will be damped out exponentially with ξ. Thus, Equations $(4.1-4)$ and (4.1-5) are divided into tiro parts,

$$
\bar{v}_{z} \frac{\partial \theta}{\partial \xi}=\frac{1}{\zeta} \frac{\partial}{\partial \zeta}\left(\zeta \frac{\partial \theta}{\partial \zeta}\right)
$$

with boundary conditions

$$
\begin{align*}
& \left.\frac{\partial \theta}{\partial \zeta}\right|_{\zeta=1}=0 \tag{4.1-8}\\
& \left.\frac{\partial \theta}{\partial \zeta}\right|_{\zeta=\bar{z}}=0
\end{align*}
$$

and

$$
\overline{\mathrm{V}}_{z} \frac{\partial \theta_{\infty}}{\partial \xi}=\frac{1}{\zeta} \frac{\partial}{\partial \zeta}\left(\zeta \frac{\partial \theta_{\infty}}{\partial \zeta}\right)
$$

with boundary conditions

$$
\begin{aligned}
& \left.\frac{\partial \theta_{\infty}}{\partial \zeta}\right|_{\zeta=1}=0 \\
& \left.\frac{\partial \theta_{\infty}}{\partial \zeta}\right|_{\zeta=K}=-1
\end{aligned}
$$

$$
(4.1-10)
$$

and

$$
\begin{equation*}
\theta(0, \zeta)=\theta_{\infty}(0, \zeta)+\theta_{d}(0, \zeta)=0 \tag{4.1-11}
\end{equation*}
$$

In order to solve Equations (4.1-7) and (4.1-8) by the method of separation of variables, we set

$$
\begin{equation*}
\theta(\xi, \zeta)=z(\xi) \pm(\zeta) \tag{4.1-12}
\end{equation*}
$$

Where Z and E arc, respectively, functions of ξ and ζ only.
Substituting Equation (4.1-12) into Equation (4.1-7) and rearranging
yields

$$
\begin{equation*}
\frac{1}{Z} \frac{d Z}{d \xi}=\frac{1}{\bar{V}_{z} E} \frac{1}{\zeta} \frac{d}{d \zeta}\left(\zeta \frac{d E}{d \zeta}\right) \tag{4.1-13}
\end{equation*}
$$

Because the right hand side is a function of ζ only and the left hand side is a function of ξ only, both must be equal to a constant, say $-\alpha^{2}$. Thus,

$$
\begin{align*}
& \frac{d \bar{Z}}{d \zeta}=-\alpha^{2} Z \tag{4.1-14}\\
& \frac{d}{d \zeta}\left(\zeta \frac{d E}{d \zeta}\right)+\alpha^{2} \zeta \bar{V}_{z} E=0 \tag{4.1-15}
\end{align*}
$$

with boundary conditions

$$
\begin{align*}
& E(\zeta) Z(0)=1 \\
& \left.\frac{\partial I}{\partial \zeta}\right|_{\zeta=1}=0 \tag{4.1-16}\\
& \left.\frac{\partial I}{\partial \zeta}\right|_{\zeta=K}=0
\end{align*}
$$

Equation (4.1-15) with the last two boundary conditions of Eq. (4.1-16) belongs to the well known class of differential equations of the Sturm Liouville type. It. can be show (25) that there is a countable infinity of values $\alpha_{1}^{2}, \alpha_{2}^{2}$. . . Of the parameter α^{2} for each of which the Sturm Liouville problem, Eq. (4.1-15), has a solution that is not identically zero. The numbers α_{n}^{2} are the eigenvalues of the problem and the corresponding solutions $E_{n}^{\prime}(\zeta)$ are the oigenfunctions. By exploitation oi Berry and do Prime's (22) iterative method, Eq. (4.1-15) can bo solved. A discussion of the method of Berry and de Prime is provided in Appendix 9.1.

Combination of the solutions of Eqs. (4.1-14) and (4.1-15) yields

$$
\begin{equation*}
\theta_{a}(\xi, \zeta)=\sum_{n=1}^{\infty} C_{n} E_{n} \exp \left(-\alpha_{n}^{2} \xi\right) \tag{4.1-17}
\end{equation*}
$$

For the solution of Rqs. (4.1-9) and (4.1-10), it is expected intuitively that after the fluid is far downstream from the beginning
of the heated section the constant heat flux through the wall will result in a rise in the fluid temperature that is linear in ξ. Furthermore, the shape of the radial temperature profile will ultimately undergo no further change with increasing 5. Honco, a solution of the following form is quite reasonable for large ξ.

$$
\begin{equation*}
\theta_{\infty}(\xi, \zeta)=C_{\xi} \xi+G(\zeta) \tag{4.1-18}
\end{equation*}
$$

in wich C_{G} is a constant to be determined presently and G is a function of the variable ζ only.

By an energy balance between the inlet and an arbitrary distance from the conduit, it is found that

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{K R}^{R} \rho C_{p} V_{z}\left(T-T_{e}\right) r d r d S=2 \pi K R z q \tag{4.1-19}
\end{equation*}
$$

Introducing the dimensionless variables and simplifying yields

$$
\int_{0}^{2 \pi} \int_{K}^{1} \theta \bar{V}_{z} \zeta d \zeta d 3=2 \pi K 5
$$

$$
(4.1-20)
$$

Therefore, $\int_{0}^{2 \pi} \int_{K}^{I}\left[C_{\tilde{S}} \zeta+G(\zeta)\right] \bar{V}_{Z} \zeta d \zeta d B=2 \pi K \xi$ (4.1-21).

Sottins

$$
\begin{equation*}
\int_{K}^{I} G(\zeta) \vec{V}_{z} \zeta d \zeta=0 \tag{4.1-22}
\end{equation*}
$$

gives

$$
\begin{align*}
C_{\mathcal{E}} & =\frac{2 \pi K}{\int_{0}^{2 \pi} \int_{K}^{1} \bar{V}_{z} \sigma d \zeta d \beta} \\
& =\frac{2 K}{1-K^{2}} \tag{4.1-23}
\end{align*}
$$

Equation (4.1-9) and its boundary conditions noit bccome

$$
\begin{equation*}
\frac{d^{2} G}{d \zeta_{G}^{2}}+\frac{1}{\zeta} \frac{d G}{d \zeta}-C_{E} \bar{V}_{z}=0 \tag{4.1-24}
\end{equation*}
$$

and

$$
\begin{array}{ll}
\left.\frac{d G}{d \zeta}\right|_{\zeta=1}=0 & \text { for } \xi>0 \\
\left.\frac{d G}{d \zeta}\right|_{\zeta=K}=-1 & \text { for } \xi>0 \tag{4.1-25}\\
\int_{K}^{1} \bar{V}_{Z} G \zeta d \zeta=0 & \text { for } \xi>0
\end{array}
$$

which may be solved numerically. The computer flow sheet and program for this solution are provided in Appendix 9.2.

The complote solution may noil be written

$$
\begin{align*}
\theta & =\theta_{\infty}(\xi, \zeta)+\theta_{d}(\xi, \zeta) \\
& =C_{\varepsilon} \xi+G(\zeta)+\sum_{n=1}^{\infty} C_{n} B_{n} \exp \left(-\alpha_{n}^{2} \xi\right) \tag{4.1-26}
\end{align*}
$$

 to G from K to 1 , and utilizing Eq. (4.1-11) yields

$$
\begin{equation*}
\int_{K}^{1} \sum_{n=1}^{\infty} C_{n} \zeta \bar{V}_{z} D_{n} E_{m} d \Gamma=-\int_{K}^{I} \zeta \bar{V}_{z} G E_{m} d \zeta \tag{4.1-27}
\end{equation*}
$$

For $n \neq m$,

$$
\begin{equation*}
\int_{K}^{I} C_{n} \zeta \bar{V}_{z} E_{n} E_{m} d \zeta=0 \tag{4.1-28}
\end{equation*}
$$

because of the orthogonality of the eigenfunctions, and Eq. (4.1-27)
reduces to

$$
\begin{equation*}
\int_{K}^{1} c_{n} \zeta \bar{V}_{z} S_{n}^{2} d \zeta=-\int_{K}^{I} \zeta \bar{V}_{z} G Z_{n} d \zeta \tag{4.1-29}
\end{equation*}
$$

Thereiore,

$$
\begin{equation*}
c_{n}=-\frac{\int_{K}^{1} \zeta \bar{V}_{z} \operatorname{cez}_{n} d \zeta}{\int_{K}^{1} \bar{V}_{z} \zeta \Xi_{n}^{2} d \zeta} \tag{4.1-30}
\end{equation*}
$$

4.1.3 Exprossion for the Nusselt Number

The doternination of the variation of the Nusselt number with
distance from the inlet is the main purpose of this work. But before the expression for the IJssel number can be derived, the mixing-cup temperature must first be determined. By definition

$$
\begin{aligned}
& \theta_{a v \delta}=\frac{\int_{0}^{2 \pi} \int_{Z}^{I} \theta \vec{V}_{z} \zeta d \zeta d \beta}{\int_{0}^{2 \pi} \int_{K}^{I} \bar{V}_{z} \zeta d \zeta d \beta} \\
& =\frac{2}{1-X^{2}} \int_{K}^{1} \theta \bar{V}_{z} \zeta d \zeta \\
& =\frac{2}{1-K^{2}}\left[\int_{K}^{I} C_{\sigma} \zeta \bar{V}_{z} \zeta d \zeta+\int_{K}^{I} G \bar{V}_{z} \zeta d \zeta\right. \\
& \left.+\sum_{n=1}^{\infty} C_{n} \exp \left(-\alpha_{n}^{2} \bar{\xi}\right) \int_{K}^{1} E_{n} \bar{V}_{z} \zeta \alpha \zeta\right](4.1-31) .
\end{aligned}
$$

Furthermore, from Eq. (4.1-15), it can be show that

$$
\begin{equation*}
\int_{K}^{1} \zeta \bar{V}_{z} E_{n} d \zeta=-\left.\frac{I}{\alpha_{n}^{2}}\left(\zeta \frac{\partial \Xi_{n}}{\partial \zeta}\right)\right|_{K} ^{I}=0 \tag{4.1-32}
\end{equation*}
$$

Substituting into Eq. (4.1-3I) leads to

$$
\begin{align*}
& G_{a v \delta}=\frac{2}{I-K^{2} X} \int_{0}^{1} C_{0} \overline{V_{2}} 5 d \zeta \\
& =c_{c} 5 \frac{2 \int_{5}^{1} V_{z} \zeta d \zeta}{\left(1-K^{2}\right) V_{\text {ave }}} \\
& =C_{8} \xi \tag{4.1-33}
\end{align*}
$$

The Nusselt number is defined as

$$
\begin{equation*}
W_{u}=\frac{D_{0} h_{i}}{k} \tag{4.1-34}
\end{equation*}
$$

where

$$
\begin{equation*}
n_{i}\left(T-T_{a v g}\right)=-k \frac{\partial T}{\partial r} \quad r=K R \tag{4.1-35}
\end{equation*}
$$

Thus,

$$
\begin{align*}
N u_{i} & =-\frac{D_{\theta} \frac{\partial T}{\partial I T} r=K R}{T-T_{a v g}} \\
& =-\frac{2(1-K) \frac{\partial \theta}{\partial \zeta} C=K}{\theta-\theta} \\
& =\frac{2(1-K)\left[G^{\prime}(K)+\sum_{n=1}^{\infty} C_{n} \exp \left(-\alpha_{n}^{2} \bar{S}\right) E_{n}^{\prime}(K)\right]}{G(K)+\sum_{n=1}^{\infty} C_{n} E_{n}(K) \exp \left(-\alpha_{n}^{2} \bar{S}\right)} \\
& =\frac{2(1-K)}{G(\mathbb{K})+\sum_{n=1}^{\infty} C_{n} I(K) \exp \left(-\alpha_{n}^{2} \bar{S}\right)} \tag{4.1-36}
\end{align*}
$$

This completes the solution of the problem. Results are presented in Tables 1 and 2 and in Figs. 3-8.
4.1.4 Asymptotic Solution by the NKB Kethod Tho computation of tho higher modes of Eq. (4.1-15) becomes increasingly difficult due to the fact that the eigenfunctions oscillato (undergo a sign chanse) n times in the interval $K \leq \zeta \leq 1$. To follow these oscillations the soacing of the net for the numerical calculations, either by the method of Runge - Kutta or finite differencos, must be reủuced. This ontails considerablc time expense for many eigenvalues and functions oi differont boundary conditions. In addition, it is desired to check tho solutions obtained from the iterative method. Accordincty, it is advantarcous to dovolop an asymptotic solution valid as α_{n} becomos larce. Follorins tho method of Sellars, Tribus and Ylein (22), the so-called itKB method solution of Eq. (4.1-15) can be obtained.

Table 1. Functions in the solution of problem I for $n=0.5$

Iterative Method			
Radius ratio	$\begin{gathered} \text { Eigenvalue } \\ \alpha_{n} \end{gathered}$	$\begin{gathered} \text { Expansion Coeff. } \\ C_{n} \end{gathered}$	$C_{n} E_{n}(\mathrm{~K})$
0.2	4.5254	0.02716686	-0.07568741
	8.5177	0.00860408	-0.02700806
	12.4744	0.00429905	-0.01461511
	16.4744	0.00260579	-0.00933038
	20.3522	0.00172230	-0.00642637
	24.2753	0.00125292	-0.00482587
	28.1888	0.00091030	-0.00359735
	32.0880	0.00072802	-0.00294076
0.5	7.1455	0.02662257	-0.07248851
	13.7433	0.00779512	-0.02301125
	20.2084	0.00381384	-0.01200757
	26.66138	0.00228768	-0.00751367
	33.09439	0.00150830	-0.00512679
	39.51390	0.00109488	-0.00382661
	45.91941	0.00080289	-0.00287281
	52.30940	0.00064127	-0.00234039
Radius ratio	WKB Nethod		
	$\begin{gathered} \text { Eisenvalue } \\ \alpha_{n} \end{gathered}$	$\frac{\text { Expansion Coeff. }}{C_{n}}$	$C_{n} E_{n}(X)$
0.2		-0.1343204	
	8.5689715	-0.04787027	-0.03118655
	12.523882	-0.02543207	-0.01656850
	16.523882	-0.01609675	-0.01048672
	20.433702	-0.01124695	-0.00732717
	24.388612	-0.00837468	-0.00545594
	28.345220	-0.00651850	-0.00424667
	32.298432	-0.00524378	-0.00341622
0.5	7.515493	-0.09639799	-0.62394420
	13.957344	-0.03435518	-0.02223669
	20.399196	-0.01825191	-0.01181370
	26.841048	-0.01155220	-0.00747726
	33.282899	-0.00807164	-0.00522444
	39.724751	-0.00601028	-0.00389021
	46.166602	-0.00467861	-0.00302827
	52.608454	-0.00376332	-0.00243584

Table 2. Functions in the solution of problem I for $n=0.8$

Iterative Method			
Radius ratio	$\begin{gathered} \text { Eigenvalue } \\ \alpha_{n}^{\prime} \end{gathered}$	$\begin{gathered} \text { Expansion Coefi. } \\ C_{n} \end{gathered}$	$C_{n} \mathrm{E}_{\mathrm{n}}(\mathrm{K})$
0.2	4.62768	0.02567792	-0.07086307
	8.63452	0.00855808	-0.02734728
	12.60923	0.00433102	-0.01512950
	16.57412	0.00266460	-0.00986245
	20.53212	0.00177207	-0.00685938
	24.47825	0.00130180	-0.00521646
	28.41486	0.00095422	-0.00393300
	32.33733	0.00076834	-0.00324259
0.5	7.33398	0.02545143	-0.06969242
	13.91432	0.00779740	-0.02367462
	20.41371	0.00388651	-0.01261984
	26.90379	0.00231617	-0.00787358
	33.52579	0.00155049	-0.00546708
	39.83944	0.00113102	-0.00410468
	46.28813	0.00081306	-0.00302409
	52.72142	0.00068791	-0.00261042
Radius ratio	TKB Ifethod		
	$\begin{gathered} \text { Eiscovalue } \\ a_{n}^{\prime} \end{gathered}$	$\begin{gathered} \text { Expansion Coesㄹ. } \\ C_{n} \end{gathered}$	$C_{n}^{2} n_{n}(K)$
0.2	4.645519	-0.14156713	-C.09778348
	8.627392	-0.05048862	-0.03484896
	12.609266	-0.02682312	-0.01851423
	16.591140	-0.01697718	-0.C1171823
	20.573014	-0.01186213	-0.00818764
	24.554888	-0.00883275	-0.006c9667
	28.536760	-0.00687572	-0.00474586
	32.518635	-0.00553060	-0.00381741
0.5	7.569564	-0.10012111	-0.06762953
	14.057762	-0.03568206	-0.02410242
	20.545960	-0.01895684	-0.01280492
	27.034159	-0.01199837	-0.00810463
	33.522357	-0.00838338	-0.00566278
	40.010555	-0.00624241	-0.00421661
	46.498753	-0.00485931	-0.00328236
	52.986951	-0.00390867	-0.00264022

Fig. 3 Temperature profile development, problems, $K=0.5, n=0.5$

$k=0.5$

$$
\begin{equation*}
\text { Let } E_{n}=e^{\delta(5)} \tag{4.1-37}
\end{equation*}
$$

and an asymptotic solution is sought in the form

$$
g(\zeta)=\alpha_{n} \delta_{0}+g_{1}+\alpha_{n}^{-1} g_{2}+\ldots
$$

Substituting Eqs. (4.1-37) and (4.1-38) into Eq. (4.1-15) and equating powers of α_{n} gives

$$
\begin{align*}
& \left(\varepsilon_{0}^{12}+\bar{v}_{z}\right) \alpha_{n}^{2}+\left(2 \varepsilon_{0}^{1} s_{1}^{1}+\varepsilon_{0}^{11}+\frac{1}{\zeta} \varepsilon_{0}^{1}\right) \alpha_{n}+\left(\varepsilon_{1}^{12}+2 s_{0}^{1} g_{2}^{1}\right. \\
& \left.+\varepsilon_{1}^{\prime \prime}+\frac{E_{1}}{\zeta}\right)+\ldots=0 \tag{4.1-39}
\end{align*}
$$

Where the primes indicate differentiation with respect to 5 . Since α_{n} is assumed to be large, only the first two terms of Eq. (4.1-38) are retained. Thereごore,

$$
\begin{align*}
& \delta_{0}= \pm i \sum_{K}^{\zeta} \sqrt{T_{z}} d \Gamma_{5} \tag{4.1-40}\\
& E_{1}=-\ln \sqrt{\tilde{S}_{0}^{1} \zeta}
\end{align*}
$$

Substituting the above ti: 0 equations into $\mathrm{Eq} .\left(4.1-15\right.$) gives for \mathbb{E}_{n},

$$
\begin{aligned}
& E_{n}=e^{E(\zeta)}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{A^{\prime} \operatorname{cov}\left\{i \lambda_{n} \cdot \int_{K}^{\zeta} \sqrt{\bar{V}_{z}} d \zeta\right\}+B^{\prime} \operatorname{cxp}\left\{-i \lambda_{n} \int_{Z}^{\zeta}{ }_{\bar{V}_{z}} d \zeta\right\}}{\sqrt{\zeta} \bar{V}_{z}} \\
& =\frac{1}{\sqrt{\zeta} \bar{V}_{z}}\left\{A \cos \left(\lambda_{n} \int_{L^{5}}^{\zeta} \sqrt{\vec{V}_{z}} d \zeta-\sigma\right)\right\} \text {. } \tag{4.1-42}
\end{align*}
$$

Equation (4.1-42) is tho so-callod wm solution. It must bo patched to
the regular solution of Eq. (4.1-15) for $K<\zeta<1$ for sufficiently large G_{n}.

If it is assumod that very near the rails tho velocity profile can bo exprossed as a Iincar equation, Eq. (4.1-15) can bo roducod to trio simpler equations. Let

$$
\begin{equation*}
n_{1}=\alpha_{n}^{2 / 3}(\zeta-K) \tag{4.1-43}
\end{equation*}
$$

Then

$$
\begin{array}{r}
\bar{V}_{z}=\frac{\left(V_{\max } / V_{\text {avg }}\right)}{\int_{K}^{\lambda}\left(\frac{\lambda^{2}}{\zeta}-\zeta\right)^{s} a \zeta} \cdot \int_{0}^{\eta_{1}}\left[\frac{\lambda^{2}}{\frac{\eta_{1}}{\alpha_{n}^{2 / 3}}+\pi}-\left(\frac{\eta_{1}}{\alpha_{n}^{2 / 3}}+K\right)\right]^{s} \tilde{n}_{1} \rightarrow D_{i} n_{1} \\
\text { as } n_{1} \rightarrow 0
\end{array}
$$

where

$$
\begin{equation*}
D_{i}=\frac{\left(V_{\max } / V_{\mathrm{avg}}\right)}{\int_{K}^{\lambda}\left(\frac{\lambda^{2}}{5}-\zeta\right)^{s} a \zeta} \cdot\left[\frac{\lambda^{2}}{K}-K\right]^{s} \tag{4.1-44}
\end{equation*}
$$

Equation (4.1-15) then becomes

$$
\begin{equation*}
\frac{d^{2} S_{n}}{d n_{1}^{2}}+\frac{1}{\alpha_{n}^{2 / 3}\left(\frac{m_{1}}{\alpha_{n}^{2 / 3}}+\pi\right)} \frac{d \sum_{n}}{d n_{1}}+D_{i} \Pi_{1} I_{n}=0 \tag{4.1-45}
\end{equation*}
$$

When α_{n} is largo, Iq. (4.1-45) reduces to

$$
\begin{equation*}
\frac{d^{2} E_{n}}{d r_{1}^{2}}+D_{i} r_{1} Z_{n}=0 \tag{4.1-46}
\end{equation*}
$$

which is a form oi Bessel's equation. The solution is

$$
E_{n}=n_{1}^{\frac{1}{2}}\left\{G_{1} J_{1} / 3\left[\frac{2 \sqrt{D_{i}}}{3} r_{1}^{3 / 2}\right]+H_{1} J-1 / 3\left[\frac{-2 / D_{i}}{3} n_{1}^{3 / 2}\right]\right\} \text { (4.1-47). }
$$

Dy a similar procedure, the solution near tho outer wall is found to be

$$
E_{n}=m_{2}^{1}\left\{G_{2}^{J} 1 / 3\left[\frac{2 / D_{0}}{3} n_{2}^{3 / 2}\right]+H_{2}^{J}-1 / 3\left[\frac{2 \sqrt{D_{0}}}{3} n_{2}^{3 / 2}\right]\right\} \quad(4.1-48)
$$

Where

$$
\begin{equation*}
D_{0}=\frac{\left(v_{\max } / v_{a v g}\right)}{\int_{k}^{\lambda}\left(\frac{\lambda^{2}}{\zeta}-\zeta\right)^{s} d \zeta} \cdot\left[1-\lambda^{2}\right]^{s} \tag{4.1-49}
\end{equation*}
$$

The patching of Eq. (4.1-42) - (4.1-47) and (4.1-48) can be performed by appropriately linearizing the velocity profile in Eq. (4.1-42) and by noting that, for large values of the argument, tho Bessel functions appearing in Eos. (4.1-47) and (4.1-48) can be expressed as cosine functions. This results in the following equations for the constants G_{2}, H_{2}, G_{2}, and $H_{2} ;$

$$
\begin{align*}
& G_{1} \cos \frac{5}{12} \pi+H_{1} \cos \frac{\pi}{12}=\cos \sigma \\
& G_{1} \sin \frac{5}{12} \pi+H_{1} \sin \frac{\pi}{12}=\sin \sigma \\
& G_{2} \cos \frac{5}{12} \pi+H_{2} \cos \frac{\pi}{12}=\mathbb{K}^{2} \cos \left(\alpha_{n} \gamma-\sigma\right) \tag{4.1-50}\\
& G_{2} \sin \frac{5}{12} \pi+H_{2} \sin \frac{\pi}{12}=K^{\frac{1}{2}} \sin \left(\alpha_{n} \gamma-\sigma\right)
\end{align*}
$$

where

$$
\begin{equation*}
\gamma=\int_{\underline{I}}^{1} \sqrt{\bar{V}_{z}} d \zeta \tag{4.1-51}
\end{equation*}
$$

The derivation of thess equations may bo found in Appendix 9.3.1 Values of γ for difecront values of K and n are show in Table 3 . Table 3. Constants in the Asymptotic Solution

n	X	γ	n	K	γ
0.5	0.2	0.794354	0.8	0.2	0.788975
0.5	0.5	0.487686	0.8	0.5	0.484202

Astor ovaluatine tho constants, it is found that near the innor wall $D_{n}=\eta_{1}^{2}\left\{\frac{2}{\sqrt{3}} \sin \left(\sigma-\frac{\pi}{12}\right) J_{1} / 3\left[\frac{2 / \sqrt{D_{i}}}{3} \eta_{1}^{3 / 2}\right]-\frac{2}{\sqrt{3}} \sin \left(\sigma-\frac{5 \pi}{12}\right) J_{-1 / 3}\left[\frac{-2 \sqrt{D_{i}}}{3} \eta_{1}^{3 / 2}\right]\right\}$
and near the outcr wall

$$
\begin{align*}
E_{n}= & r_{2}^{\frac{1}{2}}
\end{aligned} \begin{aligned}
& \left\{\frac{2 \pi^{\frac{1}{2}}}{\sqrt{3}} \sin \left(\alpha_{n} \gamma-\sigma-\frac{\pi}{12}\right) J_{1 / 3}\left(\frac{2 \sqrt{D_{0}}}{3} n_{1}^{3 / 2}\right)\right. \\
& \left.-\frac{2 \kappa^{\frac{1}{2}}}{\sqrt{3}} \sin \left(\alpha_{n} \gamma-\sigma-\frac{5 \pi}{12}\right) J_{-1 / 3}\left[\frac{2 \sqrt{D_{0}}}{3} \pi_{2}^{3 / 2}\right]\right\} \tag{4.1-53}
\end{align*}
$$

Using the boundary conditions, Eq. (4.1-16) yiclds

$$
\begin{align*}
& \sin \left(\sigma-\frac{\pi}{12}\right)=0 \tag{4.1-54}\\
& \sin \left(\alpha_{n} \gamma-\sigma-\frac{\pi}{12}\right)=0 \\
& \therefore \alpha_{n}=\left(r+\frac{1}{6}\right) \pi / \gamma \quad . \quad n=1,2,3 \ldots \tag{4.1-55}
\end{align*}
$$

This is the asymptotic exprossion for the eigenvolues. The results arc shom in Tajes 1 and 2 and a dorivation of Eq. (4.1-55) is provided in Appondix 9.3.2.

For computational purposes, particularly to cstablish the asymptotic valuos $0=$ the C_{n}, it is nocossary to provido a more convenient form for tho integrals appoaring in Eq. (4.1-30). It is cosired to evaluate the integral, $\int_{K}^{I} \bar{V}_{z} \sigma E_{n}^{2}$ ar, which is the norm of the oigenfunction. Taking the derivation oI Eq. (4.1-15) with respect to α_{n} yields

$$
\begin{equation*}
\frac{\partial_{1}}{\partial \alpha_{n}}\left[\frac{\partial}{\partial \zeta}\left(\zeta \frac{\partial \Xi_{n}}{\partial \zeta}\right)\right]+2 \alpha_{n} \bar{V}_{z} \zeta E_{n}+\alpha_{n}^{2} \bar{v}_{z} 5 \frac{\partial E_{n}}{\partial \alpha_{n}}=0 \tag{4.1-56}
\end{equation*}
$$

Since the order of partial differentiation may be rovorsed, this may be "ritton as

$$
\begin{equation*}
\frac{\partial}{\partial \zeta}\left[\zeta \frac{\partial}{\partial \zeta}\left(\frac{\partial E_{n}}{\partial \alpha_{n}}\right)\right]+2 \alpha_{n} \bar{V}_{z} \zeta E_{n}+\alpha_{n}^{2} \bar{V}_{z} \zeta \frac{\partial E_{n}}{\partial \alpha_{n}}=0 \tag{4.1-57}
\end{equation*}
$$

Nultiplyire $\mathrm{Iq} .(4.1-57)$ by E_{n} and intograting betwoen K and 1 loads to

Integrating by parts trice yields

$$
\begin{align*}
& \int_{K}^{2} \bar{v}_{z} \zeta z_{n}^{2} \partial \zeta=\frac{1}{\partial \alpha_{n}}\left\{-\left[\zeta D_{n} \frac{\partial}{\partial \zeta}\left(\frac{\partial I_{n}}{\partial \alpha_{n}}\right)\right]_{K}^{1}+\left[\left(\frac{\partial D_{n}}{\partial \alpha_{n}}\right) \cdot \zeta\left(\frac{\partial \sum_{n}}{\partial \zeta}\right)\right]_{K}^{1}\right\} \tag{4.1-59}\\
& =-\frac{1}{\partial \alpha_{n}}\left\{\left.E_{n}(1) \frac{\partial}{\partial \sigma}\left(\frac{\partial E_{n}}{\partial \alpha_{n}}\right)\right|_{\zeta=1}-\left.K E_{n}(\pi) \frac{\partial}{\partial \zeta}\left(\frac{\partial E_{n}}{\partial \alpha_{n}}\right)\right|_{\zeta=K}\right\} \tag{4.1-60}
\end{align*}
$$

Bc. (4.2-15) by $G(\zeta)$ and intograting by parts yields

$$
\begin{equation*}
\int_{K}^{I}\left[\bar{V}_{z} G S_{n} d \zeta=\frac{1}{\alpha_{n}^{2}}\left\{\left[\zeta \frac{d G}{d \zeta} E_{n}\right]_{K}^{1}-\int_{K}^{1} \mathbb{S}_{n} \frac{\partial}{d r}\left(\zeta \frac{\partial G}{d \zeta}\right) d \zeta\right\}\right. \tag{4.1-61}
\end{equation*}
$$

Rociliing Eqs. (4.1-24) and (4.1-15), it is Sound that

$$
\begin{align*}
& \frac{d}{\partial \zeta}\left(\zeta \frac{\partial G}{d \zeta}\right)=c_{S} \zeta \bar{V}_{z} \tag{4.1-62}\\
& \zeta \bar{v}_{z} \Xi_{n}=-\frac{1}{a_{n}^{2}} \frac{d}{\partial \zeta}\left(\zeta \frac{d \Xi_{n}}{d \zeta}\right) \tag{4.1-63}
\end{align*}
$$

Thon

$$
\begin{align*}
\int_{i}^{I} \sum_{n} \frac{d}{d \zeta}\left(\zeta \frac{a G}{d \zeta}\right) a \zeta & =c_{\delta} \int_{i}^{I} \zeta \bar{v}_{z} \mathbb{I}_{n} d \zeta \\
& =-\frac{c_{F}}{a_{n}^{2}}\left[\zeta \frac{a]_{n}}{a \zeta}\right]_{\mathbb{E}}^{I} \\
& =0 \tag{4.1-64}
\end{align*}
$$

Trozoione, $\int_{K}^{2} \delta \bar{v}_{z} G B_{n} a_{\delta}=\frac{1}{a_{n}^{2}}-5 \frac{d G}{d \zeta} B_{n} j_{K}^{-I}$

$$
\begin{equation*}
=\frac{E_{n}(i)}{\alpha_{2}^{2}} \tag{4.2-65}
\end{equation*}
$$

Thus，tho coofincionto 0 ？the infinite series may be written

$$
\begin{equation*}
c_{n}=\frac{2 \omega_{n}(\pi)}{a_{n}\left\{\left.\sum_{n}(I) \frac{\partial}{\partial \zeta}\left(\frac{\partial B_{n}}{\partial \alpha_{n}}\right)\right|_{\zeta_{0}=1}-\left.\operatorname{IS}_{n} \frac{\partial}{\partial \zeta}\left(\frac{\partial \Omega_{n}}{\partial \alpha_{n}}\right)\right|_{\sigma_{0}}\right\}} \tag{4.1-66}
\end{equation*}
$$

Furtion simpliPication can bo mado by substitutinio aypropriato torms derived from Eq．（4．I－47）and（4．I－48）into Pq．（4．1－66）．Differ－ ontiatins Eq．（4．I－52）and introducinc tho condition of Eq．（4．1－54）yiolds

$$
\begin{align*}
\frac{\partial I_{n}}{\overline{i \alpha}} & =-\frac{2}{\sqrt{3}} \sin \left(\sigma-\frac{5}{12} \pi\right) \frac{\lambda}{c \alpha_{n}}\left[n_{1}^{3}-1 / 3\left(\frac{2 / D_{i}}{3} m_{1}^{3 / 2}\right)\right] . \\
& =-\alpha_{n}^{1 / 3} \frac{2}{3} \sqrt{D_{i}}(5-K)^{2} J_{2 / 3}\left[\frac{2 / D_{i}}{3} \alpha_{n}(5-K)^{3 / 2}\right] \tag{4.1-67}
\end{align*}
$$

コミニ゙ニrantiatinc açan with respoot to 5 loads to

$$
\frac{\partial}{\partial i}\left(\frac{\partial I_{i}}{\partial \alpha_{i}}\right)=-\frac{2}{3} \alpha_{n}^{I / 3} \sqrt{D_{i}}\left\{2(\zeta-K) J_{2}\left[\frac{-2 \sqrt{D_{i}}}{3} \alpha_{n}(\zeta-\pi)^{3 / 2}\right]\right.
$$

$$
\begin{equation*}
\left.\left.\div(5-\pi)^{2} \frac{\partial}{\partial \zeta} J_{2 / 3}-\frac{-2 \sqrt{D_{i}}}{3} c_{n}(5-\pi)^{3 / 2}\right]\right\} \tag{4.1-68}
\end{equation*}
$$

as $\zeta \rightarrow K,(\zeta-K) J_{2 / 3} \rightarrow 0 \operatorname{ain}(\zeta-K)^{2} \frac{\partial}{\partial \zeta} J_{2 / 3} \rightarrow 0$.

Diミニ̃rontiating Eq．（4．I－53）and introducinc tho condition of玉ュ．（4．1－ラ4）ソicさえs

$$
\begin{aligned}
& -v \cos \left(c_{n} v-\sigma-\frac{5 \pi}{12}\right) n_{2}^{2} J_{-1 / 3}\left(\frac{2 \sqrt{\nu_{0}}}{3} \pi_{2}^{3 / 2}\right) \\
& -\sin \left(\alpha_{n} \%-\sigma-\frac{5 \pi}{12} ; \frac{\partial}{\partial \alpha_{n}}\left[\pi_{2}^{3} J_{-1 / 3}\left(\frac{2 \sqrt{D_{0}}}{3} n_{2}^{3 / 2}\right)\right]\right\} \quad \text { (4.1-70). }
\end{aligned}
$$

For small π_{2},

$$
\begin{align*}
\frac{\partial \Xi_{n}}{\partial \alpha_{n}}= & \frac{2}{\sqrt{3}} \mathbb{K}^{\frac{1}{2}}\left\{\gamma \cos \left(\alpha_{n} \gamma-\sigma-\frac{\pi}{12}\right) \cdot \frac{D_{0}^{1 / 6}}{\left(\frac{1}{3}\right)!3^{1 / 3}}-\gamma \cos \left(\alpha_{n} \gamma-\sigma-\frac{5 \pi}{12}\right) \cdot \frac{3^{1 / 3}}{\left(-\frac{1}{3}\right)!D_{0}^{1 / 6}}\right. \\
& \left.-\sin \left(\alpha_{n} \gamma-\sigma-\frac{5 \pi}{12}\right) \cdot \frac{\lambda}{\partial \alpha_{n}}\left[\frac{3^{1 / 3}}{\left(-\frac{1}{3}\right)!D_{0}^{1 / 6}}\right]\right\} \tag{4.1-71}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\left.\frac{\partial}{\partial \zeta}\left(\frac{\partial E_{n}}{\partial \alpha_{n}}\right)\right|_{\zeta=1}=(-1)^{n+1} \frac{2 \gamma D_{0}^{1 / \sigma_{\alpha_{n}}^{2 / 3} K^{2}}}{\Gamma\left(\frac{4}{3}\right) \cdot 3^{5 / 6}} \tag{4.1-72}
\end{equation*}
$$

Again Prom Sq. (4.1-47) and (4.1-48),

$$
\begin{align*}
\mathbb{Z}_{n}(K) & =\left.\eta_{1}^{\frac{1}{2}} J_{-1 / 3}\left(\frac{2 \sqrt{D_{i}}}{3} \eta_{I}^{3 / 2}\right)\right|_{\zeta=K} \\
& =\left.\eta_{I}^{\frac{1}{2}} \frac{2^{I / 3}}{\left(-\frac{1}{3}\right)!}\left(\frac{2 \sqrt{D_{i}}}{3} \eta_{I}^{3 / 2}\right)^{-1 / 3}\right|_{\zeta=K} \\
& =\frac{3^{1 / 3}}{\Gamma\left(\frac{2}{3}\right) \cdot D_{i}^{1 / 6}} \tag{4.1-73}\\
Z_{n}(1) & =\frac{(-1)^{n} \cdot 3^{1 / 3} \Gamma^{\frac{1}{2}}}{\Gamma\left(\frac{2}{3}\right) \cdot D_{0}^{1 / 6}} \tag{4.1-74}
\end{align*}
$$

Consequently,

$$
\begin{equation*}
c_{n}=-\frac{3^{5 / 6} \Gamma\left(\frac{4}{3}\right)}{\alpha_{n}^{5 / 3} \cdot \gamma \cdot D_{i}^{1 / 6}} \tag{4.1-75}
\end{equation*}
$$

Eq. (4.1-55) and Eq. (4.1-75) may be solved numerically. Eigenvalues, oxparsion coefficients and combined function, $C_{n} E_{n}$, calculated by the both methods are show in Tables 1 and 2. Temperature profiles and variation of the limassol number and avoraçe temperature with axial distance based on tho data calculated from the iterative mothod are show in Figs. 3-8.

For small. n_{2},

$$
\begin{aligned}
\frac{\partial E_{n}}{\partial \alpha_{n}}= & \frac{2}{\sqrt{3}} K^{1} K^{1}\left\{\gamma \cos \left(\alpha_{n} \gamma-\sigma-\frac{\pi}{12}\right) \cdot \frac{D_{0}^{1 / 6}}{\left(\frac{1}{3}\right): 3^{1 / 3}}-\gamma \cos \left(\alpha_{n} \gamma-\sigma-\frac{5 \pi}{12}\right) \cdot \frac{3^{1 / 3}}{\left(-\frac{1}{3}\right)!D_{0}^{1 / 6}}\right. \\
& \left.-\sin \left(\alpha_{n} \gamma-\sigma-\frac{5 \pi}{12}\right) \cdot \frac{\lambda}{\partial \alpha_{n}}\left[\frac{3^{1 / 3}}{\left(-\frac{1}{3}\right)!D_{0}^{1 / 6}}\right]\right\}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\frac{\partial}{\partial \zeta}-\left(\left.\frac{\partial E_{n}}{\partial \alpha_{n}}\right|_{\zeta=1}=(-1)^{n+1} \frac{2 \gamma D_{0}^{1 / 6} \alpha_{n} 2 / 3 x^{2}}{\Gamma\left(\frac{4}{3}\right) \cdot 3^{5 / 6}}\right. \tag{4.1-72}
\end{equation*}
$$

Again from Eq. (4.1-47) and (4.1-48),

$$
\begin{align*}
I_{n}(K) & =\left.n_{I}^{\frac{1}{2}} J{ }_{-1 / 3}\left(\frac{2 \sqrt{D_{i}}}{3} \eta_{I}^{3 / 2}\right)\right|_{\zeta=K} \\
& =\left.\pi_{I}^{\frac{1}{2}} \frac{2^{1 / 3}}{\left(-\frac{1}{3}\right)!}\left(\frac{2 \sqrt{D_{i}}}{3} \eta_{1}^{3 / 2}\right)^{-1 / 3}\right|_{5=K} \\
& =\frac{3^{1 / 3}}{\Gamma\left(\frac{2}{3}\right) \cdot D_{i}^{1 / 6}} \tag{4.1-73}\\
E_{n}(I) & =\frac{(-1)^{n} \cdot 3^{I / 3} \Gamma^{\frac{1}{2}}}{\Gamma\left(\frac{2}{3}\right) \cdot D_{0}^{1 / 6}} \tag{4.1-74}
\end{align*}
$$

Consequently,

$$
\begin{equation*}
c_{n}=-\frac{3^{5 / 6} \Gamma\left(\frac{4}{3}\right)}{a_{n}^{5 / 3} \cdot \gamma \cdot D_{i}^{1 / 6}} \tag{4.1-75}
\end{equation*}
$$

Iq. (4.1-55) and Iq. (4.1-75) may bo solved numerically. Iisonvalues, expansion coofficionts and combined function, $C_{n} N_{n}$, calculated by the both methods are shoo in Tables 1 and 2. Temperature profiles and variation $0 \approx$ the Musselt number and avoraç temperature with axial distance based on the data calculated from the itorativo method are show in Figs. 3-8.
4.2 Case II: Heat Transfer in an Annulus with Equal wall Temperatures at Both Malls; also Constant Temperatiars at the Inner Vil, Insulation at the Outer Wall

In those two problems, the flow conditions are the same as that in Section 4.I, but the boundary c fiona. nations are different. Instead of having a uniform wow flux or the miner wall, a Sized constant temperature is maintained on it. On the outer wall, the conditions of constant temperature, or annulation, may be treated simultaneously. Since the boundary conditions in these problems can be made homogeneous with respect to the Sturm - Liouville problem, the energy equation is readily solved by the method of separation of variables. 4.2.1. Solution oi the Problem

The energy equation describing the problem is

$$
\rho C_{p} V z \frac{\partial T}{\partial z}=k \frac{I}{r} \frac{\partial}{\partial r}\left(r \frac{\partial m}{\partial r}\right)
$$

The following boundary conditions are considered:
Problem 2

$$
\begin{array}{ll}
T(0, r)=T_{0} & \\
\mathbb{T}(z, k)=T_{0} & \text { for } z>0 \\
\mathbb{T}(z, K R)=T_{0} & \text { for } z>0
\end{array}
$$

Problem 3

$$
\begin{array}{ll}
T(0, I)=T_{e} & \\
\left.\frac{\partial T}{\partial I}\right|_{I=R}=0 & \text { for } z>0 \\
T(z, T R)=T_{0} & \text { for } z>0
\end{array}
$$

Introducing the following dimensionless variables,

$$
\begin{align*}
& \zeta=\frac{r}{R} \\
& \bar{S}=\frac{z}{Z_{Q}} \\
& \bar{\theta}=\frac{T-T_{0}}{T_{e}-T_{0}} \\
& \bar{V}_{z}=\frac{V_{z}}{V_{a v S}} \\
& z_{Z}=\frac{R_{e} I_{r} R}{2(I-K)}
\end{align*}
$$

yields

$$
\bar{V}_{z} \frac{\partial \bar{\epsilon}}{\partial \xi}=\frac{1}{\zeta} \frac{\partial}{\partial \zeta}\left(\zeta \frac{\partial \bar{\theta}}{\partial \zeta}\right)
$$

with boundary conditions
Problem 2

$$
\begin{array}{ll}
\bar{\theta}(0, \zeta)=1 & \\
\bar{\theta}(\xi, 1)=0 & \text { for } \xi>0 \\
\bar{\theta}(\xi, K)=0 & \text { for } \bar{\xi}>0
\end{array}
$$

Problem 3

$$
\begin{array}{ll}
\bar{\theta}(0, \zeta)=1 & \\
\left.\frac{\partial \bar{\theta}}{\partial \zeta}\right|_{\zeta=1}=0 & \text { for } \xi>0 \\
\bar{\theta}(\xi, K)=0 & \text { for } \xi>0
\end{array}
$$

Equation (4.2-4), with the last tiro boundary conditions of each problem, is a disforontial equation with homogeneous boundary conditions on the 5 variable. Using the method of the separation of variables in the same way $a s$ in Soc. 4.1 .2 , sot $\bar{\theta}(\bar{\zeta}, \zeta)=Z(\xi) \cdot Z(\zeta)$, theroby obtaining the tho equations with the boundary conditions show.

$$
\begin{align*}
& \frac{d z_{n}}{d \xi}=-\alpha_{n}^{2} z_{n} \\
& \frac{d}{d \zeta}\left(\zeta \frac{d \xi_{n}}{d \zeta}\right)+\alpha_{n}^{2} \zeta \bar{v}_{z} D_{n}=0
\end{align*}
$$

with boundary conditions
Problem 2

$$
\begin{array}{ll}
E_{n}(I)=0 & \text { for } \xi>0 \\
E_{n}(X)=0 & \text { for } \xi>0
\end{array}
$$

Problem 3

$$
\begin{array}{ll}
\left.\frac{\partial E_{n}}{\partial \zeta}\right|_{\zeta=1}=0 & \text { for } \xi>0 \\
E_{n}(K)=0 & \text { for } \xi>0 \\
\bar{\theta}=E_{n}(\zeta) Z_{n}(0)=1
\end{array}
$$

and

The solution is

$$
\bar{\theta}=\sum_{n=1}^{\infty} B_{n} E_{n} \exp \left(-\alpha_{n}^{2} \overline{5}\right)
$$

With coeミficionts

$$
\begin{equation*}
B_{n}=\frac{\int_{K}^{I} \delta \bar{V}_{z} Z_{n} d \zeta}{\int_{X}^{I} \zeta \bar{V}_{z} Z_{n}^{2} d \zeta} \tag{4.2-11}
\end{equation*}
$$

Eigenvalues ant corresponding expansion coefficients and combined functions are sion in Tables 4-7.
4.2.2 Exprossions for the Nusselt Numbers

The Iusaclt numbers ane defined by Nu $=\frac{D_{C} h^{2}}{L}$
:nero

$$
h_{0}\left(T_{0}-T_{2 v e}\right)=+\left.K \frac{\lambda T}{\partial r}\right|_{r=R}
$$

and

$$
h_{i}\left(T_{i}-T_{i v E}\right)=-\left.k \frac{\partial T}{\partial r}\right|_{r=K R}
$$

Toble 4. Functions in tho solution of problem II by the iterative method for $n=0.5$

Radius ratio	Zigenvalue α_{n}	$\begin{aligned} & \text { Dxpansion } \\ & \text { Cooff., } B_{n} \end{aligned}$	$B_{n} \sum_{n}^{\prime}\left(X^{\prime}\right)$	$\mathrm{B}_{n} \mathrm{~B}_{n}^{\prime}(1)$	$B_{n}\left[E_{n}^{\prime}(1)-K B_{n}^{\prime}(K)\right]$
0.2	3.3749	-0.652722	8.187139	-3.208594	-4.846022
	7.2493	0.083455	-2.023264	-0.772690	-0.368037
	11.1914	-0.161466	5.595233	-2.155558	-3.274605
	15.1376	0.035658	-1.598649	-0.612785	-0.293055
	19.0857	-0.086441	4.730517	-1.808780	-2.754883
	23.0425	0.021799	-1.409237	-0.535454	-0.253607
	26.8886	-0.057558	4.300519	-1.618970	-2.479074
0.5	5.5836	-0.580416	8.935970	-5.033153	-10.501138
	21.8406	0.034367	-1.015515	-0.673411	-0.165653
	18.2576	-0.147369	6.226329	-4.150868	-7.264032
	24.6865	0.014698	-0.801174	-0.532289	-0.131702
	31.1164	-0.079116	5.241128	-3.496911	-6.117475

Mable 5. Punctions in the solution of problem II by tho iterative methoa for $n=0.8$

$\begin{aligned} & \text { Radiius } \\ & \text { ratio } \end{aligned}$	Eisenvalue a_{n}	$\begin{aligned} & \text { Mrpansion } \\ & \text { Coein., } 3_{n} \end{aligned}$	$\mathrm{Bn}_{\mathrm{n}} \mathrm{E}(\mathrm{K})$	$B_{n} E_{n}^{\prime}(1)$	$3_{n}\left[2 \cdot n(1)-\operatorname{Sin}_{n}^{\prime}(K)\right]$
0.2	3.3122	-0.656781	7.960136	-3.130316	-4.722344
	7.2652	0.084536	-1.954267	-0.770919	-0.38c066
	11.2477	-0.155744	5.148884	-2.045140	-3.074917
	15.2264	0.035863	-1.531163	-0.606550	-0.300317
	19.2064	-0.083197	4.325253	-1.712811	-2.577862
	23.1919	0.021906	-1.342649	-0.529185	-0.260655
	27.1820	-0.055337	3.912067	-1.529902	-2.312315
0.5	5.4844	-0.582620	8.680105	-5.871877	-10.211930
	11.8880	0.034998	-0.997143	-0.676370	-0.178298
	18.3764	-0.141981	5.800221	-3.919578	-5.819689
	24.8497	0.014852	-0.782219	-0.527490	-0.136480
	32.3333	-0.076107	4.870570	-3.286380	-5.721665

Taible 6. Functions in the solution of problem III by tho iterative mothod for $n=0.5$

Radius ratio	$\begin{gathered} \text { Digenvaluo } \\ \alpha_{n} \end{gathered}$	Expansion Cooif. B_{n}^{n}	$\mathrm{B}_{n}^{\prime \prime} \mathrm{n}^{\prime}(\mathrm{K})$
0.2	1.4 .632	-0.673244	4.80837590
	5.7299	-0.123214	2.49363260
	2.7283	-0.066002	2.04800080
	13.7159	-0.043251	1.78785030
	17.6868	-0.032926	1.69100360
	21.6128	-0.025059	1.53566560
	25.6319	-0.021547	1.53646000
0.5	2.7747	-0.585164	5.26671000
	9.4404	-0.138666	3.45031730
	15.9337	-0.074649	2.82480400
	22.4204	-0.049671	2.50305580
	28.8651	-0.037380	2.32838520

Table 7. Functions in tho solution of problem III by the itorative method ior $n=0.8$

$\begin{aligned} & \text { Radius } \\ & \text { ratio } \end{aligned}$	$\begin{gathered} \text { Eiscivalue } \\ \alpha_{n} \end{gathered}$	$\begin{gathered} \text { Expansion Coef: } \\ B_{n}^{1} \end{gathered}$	$3{ }_{n}^{\prime \prime} n^{\prime}(K)$
0.2	1.4555	-0.675644	4.82575730
	5.7442	-0.117378	2.27100010
	9.7874	-0.062326	1.84624880
	13.8046	-0.040782	1.60756830
	17.8051	-0.030992	1.51375930
	21.8067	-0.023619	1.37338590
	25.8088	-0.020275	1.36893650
0.5	2.7698	-0.587556	5.29570090
	9.5026	-0.132201	3.16349060
	26.0538	-0.071165	2.60591990
	22.5730	-0.047374	2.30801620
	29.0795	-0.035617	2.14290390

Thus,

$$
I u_{0}=+\frac{\left.D_{0} \frac{\partial T}{\partial r}\right|_{r=R}}{T_{0}-I_{\text {avg }}}=-\frac{\left.2(I-K) \frac{\partial \bar{\partial}}{\partial C}\right|_{c=1}}{\bar{\theta}_{\text {aver }}}
$$

and

$$
\begin{equation*}
\lim _{i}=\frac{\left.2(1-K) \frac{\partial \bar{\theta}}{\partial \bar{\zeta}}\right|_{\zeta=K}}{\bar{\theta}_{a v g}} \tag{4.2-14}
\end{equation*}
$$

It can se shown that

$$
\begin{align*}
\bar{\theta}_{a v G} & =\frac{2}{1-K^{2}} \int_{K}^{1} \bar{V}_{z} \bar{\theta} \zeta d \zeta \\
& =\frac{2}{1-\mathbb{K}^{2}} \sum_{n=1}^{\infty} B_{n} \exp \left(-\alpha_{n}^{2} \xi\right) \int_{\mathbb{K}}^{1} \zeta \bar{V}_{z} E_{n} d \zeta
\end{align*}
$$

Integrating Sq. (4.2-7) with respect to ζ from K to I results in

$$
\int_{X}^{I} \zeta \bar{V}_{z} E_{n} d \zeta=-\frac{1}{\alpha_{n}^{2}}\left[E_{n}^{\prime}(I)-E E_{n}^{\prime}(K)\right]
$$

Thoresone, $\bar{\theta}_{\text {ave }}=-\frac{2}{1-K^{2}} \sum_{n=1}^{M} P_{n} \exp \left(-\alpha_{n}^{2} \xi\right) \cdot \frac{1}{\alpha_{n}^{2}}\left[E_{n}^{\prime}(1)-\min _{n}^{\prime}(K)\right] \quad(4 \cdot 2-17)$, and lu can be oxprossed as

$$
\begin{align*}
& i u_{i}=-\frac{(1-K)\left(1-I^{2}\right)_{n=1}^{\infty} B_{n} D_{n}^{\prime}(K) \exp \left(-\alpha_{n}^{2} \xi\right)}{\sum_{n=1}^{\infty} \frac{1}{\alpha_{n}^{2}} B_{n}\left[E_{n}^{1}(1)-\operatorname{KE}_{n}^{1}(K)\right] \exp \left(-\alpha_{n}^{2} \bar{\xi}\right)} \quad \because
\end{align*}
$$

Then $5 \rightarrow 0$, in u $\rightarrow \infty$. For values above a certain $\xi=\xi_{e}$, wu will not differ by none than a fou porcont from tho final asymptotic value of tho liussolt number, Nu ${ }_{a}$. The reckon botiteon 0 and ξ_{e} is called tho thermal entrance region. In this region, ITu decreases from an infinitely
large value at $\xi=0$ to ina for $\xi>\xi_{e}$. For large value of ξ, the first temp or these series for mu dominates, so that

$$
\begin{equation*}
N u_{2,0}=\frac{(1-K)\left(1-K^{2}\right) \alpha_{1}^{2} 1_{1}^{1}(1)}{\left[E_{1}(1)-K \sum_{1}^{1}(K)\right]} \tag{4.2-20}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{a, i}=-\frac{(1-K)\left(I-K^{2}\right) \alpha_{1}^{2} W_{1}(K)}{\left[M_{1}^{1}(I)-K E_{1}^{1}(K)\right]} \tag{4.2-21}
\end{equation*}
$$

are the asymptotic or fully developed Nusselt numbers at the outer and the imo malls, respectively. Tomporaturo profile development and variation of the Nusselt number and average temperature with axial distance arc show in Figs. 9-16.

4.2.3 Asymptotic Solution by the WKB Method

The wi method was presented in Sec. (4.1.4). To solve the present problems, we have only to substitute the boundary conditions of Eq. (4.2-8) into Eq. (4.1-52) and 4.1-53). Thus,

$$
\begin{align*}
& \sin \left(\sigma-\frac{5}{12} \pi\right)=0 \\
& \sin \left(\alpha_{n} \gamma-\sigma-\frac{5}{12} \pi\right)=0
\end{align*}
$$

for problem 2, therefore

$$
\begin{equation*}
\alpha_{n}=\left(n+\frac{5}{6}\right) \pi / \gamma \tag{4.2-23}
\end{equation*}
$$

and

$$
\begin{align*}
& \sin \left(\sigma-\frac{5}{12} \pi\right)=0 \\
& \sin \left(\alpha_{n} \gamma-\sigma-\frac{\pi}{12}\right)=0 \tag{4.2-24}
\end{align*}
$$

for problem 3, therefore

$$
\begin{equation*}
\alpha_{n}=\left(n+\frac{1}{2}\right) \pi / \gamma \tag{4.2-25}
\end{equation*}
$$

Fis.e Temperciure proftle development, problem $11, K=0.5, n=0.5$

Equations (4.2-23) and (4.2-25) are the asymptotic expressions zor the eicenvaluos and aro casy to evaluato. The results are shom in tables 8-11. These results should be compared irith those obtained by the iterative motinod and aro prosented in rebles 4-7.

For the evaluation or tho coefficients of the infinito series, it is necessary to rewrite Eq. (4.2-11) in terms of expressions which are obtainable From the TKB method. Substituting the appropriate boundary conaitions into Zq . (4.1-59) yields

$$
\begin{equation*}
\int_{V}^{1} \overline{V_{z}} \zeta E_{n}^{2} d \zeta=\frac{I}{\partial \alpha_{n}}\left[\frac{\partial E_{n}}{\partial \alpha \alpha_{n}} \cdot \zeta \cdot \frac{\partial E_{n}}{\partial \zeta}\right]_{K}^{I} \tag{4.2-26}
\end{equation*}
$$

for problem 2, and

$$
\int_{\mathbb{K}}^{I} \bar{V}_{z} \zeta \mathbb{E}_{n}^{2} \partial \zeta=-\left\{\left.\frac{1}{2 \alpha_{n}} E_{n}(I) \frac{\partial}{\partial \zeta}\left(\frac{\partial E_{n}}{\partial \alpha_{n}}\right)\right|_{\zeta=1}+\left.\frac{\partial J_{n}}{\partial \alpha_{n}} \zeta \frac{\partial E_{n}}{\partial \zeta}\right|_{\zeta=K}\right\}_{(4.2-27)}
$$

for problom 3.
Furthormoro, from Eq. (4.2-16),

$$
\begin{equation*}
\hat{i}_{1}^{1} \zeta \bar{v}_{z} \sum_{n}^{\alpha} \sigma=-\frac{1}{\alpha_{n}^{2}}\left[\sum_{n}^{\prime}(1)-m_{n}^{\prime}(K)\right] \tag{4.2-28}
\end{equation*}
$$

for problom 2, and

$$
\begin{equation*}
\int_{K}^{1} \zeta \bar{v}_{z} \mathbb{D}_{n} \alpha \zeta=\frac{1}{\alpha_{n}^{2}} K S_{n}^{\prime}(K) \tag{4.2-29}
\end{equation*}
$$

For projiom 3.
Thereione, $B_{n}=-\frac{\left\{\left[B_{n}^{\prime}(I)-K C_{n}^{\prime}(K)\right]\right.}{\alpha_{n}\left[\left.\left(\frac{\partial E_{n}}{\partial \alpha_{n}} \cdot \zeta \cdot \frac{\partial E_{n}}{\partial \zeta}\right)\right|_{\zeta=1}-\left.\left(\frac{\partial E_{n}}{\partial \alpha_{n}} \cdot \zeta \cdot \frac{\partial \xi_{n}}{\partial \zeta}\right)\right|_{\zeta=K}\right]}$
for problem 2, and

$$
B_{n}=-\frac{\sum_{n}(K)}{\alpha_{n}^{2}\left\{\left.\frac{1}{2 \alpha_{n}}\left[E_{n} \cdot \frac{\partial}{\partial \zeta}\left(\frac{\partial E_{n}}{\partial \alpha_{n}}\right)\right]\right|_{\zeta=1}+\left.\left(\frac{\partial \eta_{n}}{\partial \alpha_{n}} \cdot \sigma \cdot \frac{\partial E_{n}}{\partial \zeta}\right)\right|_{\zeta=K}\right\}}
$$

For problem 3.
Simplifications similar to those show in Sec. 4.1.4 can be made yielding

$$
\begin{equation*}
B_{n}=\frac{\left[(-1)^{n} D_{0}^{I / 6}+K^{\frac{1}{2}} D_{i}^{I / 6}\right] \cdot 3^{1 / 6} \Gamma\left(\frac{2}{3}\right)}{\alpha_{n} \gamma K^{R^{2}}} \tag{4.2-32}
\end{equation*}
$$

for problem 2, and

$$
B_{n}=\frac{D_{i}^{1 / 6} \Gamma\left(\frac{2}{3}\right) \cdot 3^{1 / 6}}{a_{n} \gamma}
$$

for problem 3.
Thus, the coer̊eicients are ready to evaluate. Eigenvalues, expansion
 are show in Table 8-11.

Table 8. Functions in the solution of problom II by the UKB method for $n=0.5$

Radius ratio	Bigenvalue α_{n}	Expansion Cocif., B	3 En	$\mathrm{Bn}_{\mathrm{n}} \mathrm{n}^{\prime}(1)$	$B_{n}\left[\sum_{n}^{\prime}(1)-\operatorname{man}_{n}^{\prime}(\mathbb{X})\right]$
0.2	3.295758	2.969854	8.349079	-3.213493	-4.883309
	7.250668	-0.426731	-2.029270	-0.781049	-0.375195
	11.205578	0.873486	5.552376	-2.137065	-3.247540
	15.160489	-0.204089	-1.586943	-0.610801	-0.293413
	19.115399	0.512043	4.646891	-1.788551	-2.717929
	23.070309	-0.134115	-1.379689	-0.531031	-0.255093
	2\%.025219	0.362177	4.140320	-1.593576	-2.421640
	30.980129	-0.099873	-1.250560	-0.487330	-0.231218
0.5	5.368209	2.384888	9.342101	-5.227518	-10.898567
	11.810061	-0.154816	-1.025828	-0.683825	-0.170911
	18.251912	0.701437	6.212763	-4.141477	-7.247858
	24.693764	-0.074042	-0.802225	-0.534759	-0.133657
	31.235615	0.411187	5.199583	-3.466083	-6.055873
	37.577467	-0.048656	-0.697454	-0.464929	-0.116201
	44.019318	0.290840	4.432671	-3.088235	-5.404614
	50.461170	-0.036233	-0.632178	-0.421415	-0.105326

Table 9. Functions in the solution of problem II by the π mer method for $n=0.8$

Padius ratio	$\begin{gathered} \text { Eigonvalue } \\ \alpha_{n} \end{gathered}$	$\begin{aligned} & \text { Expansion } \\ & \text { Coesi., } B_{n} \end{aligned}$	$B_{n} E_{n}(K)$	$B_{n} E_{n}^{\prime}(I)$	$B_{N}\left[E_{n}^{\prime}(1)-K E_{n}^{\prime}(K)\right]$
0.2	3.3I8228	2.865589	7.638174	-3.039447	-4.567082
	7.30 Cl 101	-0.431171	-1.94.4050	-0.773593	-0.384732
	11. 231975	0.842820	5.079604	-2.021319	-3.037250
	15.263849	-0.206212	-1.520299	-0.604970	-0.300910
	19.245723	0.491067	4.251219	-1.691681	-2.541925
	23.227596	-0.135511	-7.321749	-0.525961	-0.251611
	27.209470	0.349462	3.787781	-1. 507266	-2.264822
	31.191344	-0.100912	-1.198043	-0.476735	-0.237126
0.5	5.106831	2.302810	8.685150	-5.867408	-10.209982
	11.895030	-0.156326	-0.997318	-0.673756	-0.375097
	18.383228	0.677297	5.775834	-3.901994	-6.789930
	24.871426	-0.074764	-0.779930	-0.525895	-0.136930
	31.359624	0.397036	4.833940	-3.265654	-5.682624
	37.847822	-0.049131	-0.678071	-0.458083	-0.119047
	44.330021	0.280830	4.306979	-2.909656	-5.063145
	50.824219	-0.036587	-0.614609	-0.415210	-0.107905

Table 10. Tunctions in the solution of problem III by the MKB method for $n=0.5$

Raむius ratio	$\begin{gathered} \text { Eigenvalue } \\ \alpha_{n} \end{gathered}$	$\begin{gathered} \text { Expansion Coeff. } \\ \text { B } \\ \text { B } \end{gathered}$	$B_{n}^{\prime} \sum_{n}^{\prime}(\mathbb{K})$
0.2	1.977455	1.69253790	3.38487410
	5.932365	0.56417931	2.34694090
	9.837275	0.33850759	1.97948680
	13.842185	0.24179114	1.76947010
	17.797095	0.18805977	1.62727790
	21.752005	0.15386709	1.52198950
	25.705915	0.13019522	1.43955450
	29.661825	0.11283586	1.37249940
0.5	3.220925	1.70357730	4.74723700
	9.662777	0.56785910	3.29153640
	16.104629	0.34071546	2.77618970
	22.545480	0.24336818	2.48164530
	28.988332	0.18928636	2.282224 .20
	35.430183	0.15487067	2.13455900
	41.872035	0.13104441	2.01894580
	48.313886	0.11357182	1.92490240

Table 11. Functions in the solution of problem III by the $\%$ mB method zon $n=0.8$

0.2	1.990936	1.59750970	3.02914450
	5.972810	0.53250324	2.10029150
9.954684	0.31950195	1.77145470	
13.936558	0.22821567	1.58350950	
	17.918431	0.17750109	1.45626090
21.900305	0.14522816	1.35203760	
	25.882179	0.12288535	1.28826620
		0.10650065	1.22825810
	3.244099	1.63240980	4.37974810
	9.732297	0.54413660	3.03674750
	16.220495	0.32648197	2.56129250
	22.708693	0.23320140	2.28954810
	29.196892	0.18137886	2.10556350
	35.685090	0.14840089	1.96932860
	42.173288	0.12556999	1.36266470
	48.661486	0.10882732	1.77590090

4.3 Case III: Hoat Transfor in an Annulus with Difforent but Constant Mall Momporatures at the Innor and Outor Walls

The solutions wich woro presonted in tho prococding section apply only when the trio walls of tho annulus aro hola at the same constant tomperature. In this section, tho problem is Eeneralizod to the situation in wich tho inner and outer ralls of the annulus are at different but constant wall temoeratures. The method used is that of superposition, so that the eiconvalues obtainod in the procooding section can bo usod horo. Tho results obtainod are such that one wall of the annulus can bo at oithor a higher or a lowor tomporaturo then the othor. This technique has becn used by Viskanta (15). The energy equation ana boundary conditions dascribing tho problem are

$$
\begin{aligned}
& 0 C_{V} V_{z \partial I} \frac{\partial T}{Z Z}=k \frac{I}{I} \frac{\partial}{\partial I}\left(r \frac{\partial m}{\partial r}\right) \\
& T(0, I)=T_{0} \\
& m(z, R)=T_{0} \\
& \mathrm{n}(\mathrm{z}, \mathrm{ZR})=\mathrm{Mr} \mathrm{Ti}_{\mathrm{i}} \\
& \text { 4.3.1 Vothod of Suporposition }
\end{aligned}
$$

To solve tho oneryy oquetion, Eq. (4.3-I), it is conveniont to split tho problom into tro simplor ones. Since the enorgy equation is linear, the general solution can bo obtainod by suporposition of tho two simplor ェoIutions.

Lot U donoto tho feneral solution of Eq. (4.3-1) with tho boundary conditions

$$
\begin{align*}
& U(0, r)=T_{0} \\
& U(z, R)=T_{e} \\
& U(z, X R)=T_{i} T_{i}
\end{align*}
$$

and lot V denote the general solution of Iq . (4.3-1) with the boundary conditions

$$
\begin{align*}
& V(0, r)=T_{c} \\
& V(z, R)=T_{0} \\
& V(z, F R)=T_{0}
\end{align*}
$$

Figure 17 provides a seaphicel description of these boundary conditions. Because of tho linearity oi Eq. (4.3-1), any linear combination of solutions is also a solution, and a proper addition of solutions U and V will yicla a temperature distribution satisfying the boundary conditions 0 the sonoral problem. Combining solutions U and V yields

$$
T=U+V-T_{0}
$$

This equation can be rewritten in the form
$Z=\left(\bar{Y}+\frac{5-\zeta_{i}}{I-\zeta_{i}}\right)\left(T_{0}-T \pi_{i}\right)+T \pi_{i}+\left(\dot{\psi}+\frac{I-\zeta}{I-\zeta_{i}}\right)\left(T_{0}-T_{T}\right)+T_{0} T_{0}-T_{0}$ (4.3-5),
where

$$
\bar{D}(\zeta, \zeta)=\frac{U-T T_{i}}{-T_{0}-\sigma_{i}}-\frac{\zeta-\zeta_{i}}{I-\zeta_{i}}
$$

ana

$$
\psi(\Sigma, \zeta)=\frac{V-T_{0}}{T_{0}-T_{0}}-\frac{1-c}{1-5_{i}}
$$

Thc solution $\overline{\underline{W}}(\overline{5}, \bar{\sigma})$ satisfies the energy equation

$$
\bar{T}_{z} \frac{\partial \bar{g}}{\partial \xi}=\frac{1}{\zeta} \frac{\partial n}{\partial \zeta}\left(\zeta \frac{\partial \overline{3}}{\partial \zeta}\right)+\frac{I}{\zeta\left(I-\zeta_{i}\right)}
$$

Fig. 17 a Step change at -the inner wall

Fig. 17b Step change at the outer' wall

With boundary conditions

$$
\begin{align*}
& \bar{L}(0, \zeta)=\frac{1-\zeta}{1-\zeta_{i}} \\
& \bar{\sigma}(\zeta, I)=0 \\
& \bar{\sigma}(\zeta, K)=0
\end{align*}
$$

Similarly, the solution ψ satisfies the energy equation

$$
\overline{\mathrm{V}}_{z} \frac{\partial \dot{\partial}}{\partial \zeta}=\frac{I}{\zeta} \frac{\partial}{\partial \zeta}\left(\zeta \frac{\partial \dot{\partial}}{\partial \zeta}\right)-\frac{I}{\zeta\left(I-\zeta_{i}\right)}
$$

with boundary conditions

$$
\begin{align*}
& \psi(0, \zeta)=\frac{\zeta-\zeta_{i}}{1-\zeta_{i}} \\
& \psi(\zeta, I)=0 \\
& \psi(\zeta, K)=0
\end{align*}
$$

The validity of tho temperature distribution given by Do. (4.3-5) can oe demonstrated as follows:

$$
\begin{aligned}
& T=\left(\frac{I-\zeta}{I-\zeta_{i}}+\frac{\zeta-\zeta_{i}}{I-\zeta_{i}}\right)\left(T_{0}-T_{i}\right)+T_{i}+\left(\frac{\zeta-\zeta_{i}}{I-\zeta_{i}} \div \frac{I-\zeta}{I-\zeta_{i}}\right)\left(T_{e}-T w_{0}\right) \\
& +\mathrm{Tr}_{0}-\mathrm{T}_{0} \\
& =\left(T_{0}-T_{i}\right)+T_{i \pi}+\left(T_{0}-T_{0}\right)+T_{T}-T_{0} \\
& =T_{0} \text {. } \\
& \text { \& } \quad 弓>0, \zeta=\zeta_{i}=K, T=T r_{i} \\
& T=(0+0)\left(T_{0}-T_{i r}\right)+T r_{i}+(0+I)\left(T_{0}-T F_{0}\right) \div T_{0}-T_{0} \\
& =M r_{i} \text {. } \\
& \text { At } \xi>0,5=I, I=T \%
\end{aligned}
$$

$$
\begin{aligned}
T & =(0+I)\left(T_{0}-T_{i}\right)+T_{i}+(0 \div 0)\left(T_{0}-T_{T_{0}}\right)+T_{0}-T_{0} \\
& =T_{0} .
\end{aligned}
$$

Thus，the boundary conditions are satisilod and Eq．（4．3－5）can represent the general problem of Eq．（4，3－1）．
4.3.2 Solution of the Problem

Beごora the method of separation of variables can be used to solve zoos．（4．3－8）and（4．3－10），it is necessary to define now functions to chance the nor－homosencous partial differential equations into a homogeneous partial diaこorontial equations．

To solve Eq．（4．3－8）and its boundary condition，Eq．（4．3－9）， deざinc $\Phi(\zeta, \zeta)=Y(\xi, \zeta)+T(\zeta)$

Suiostitutins Iq．（4．3－12）into Eq．（4．3－8）yields

$$
\bar{V}_{z} \frac{\partial Y}{\partial \bar{\zeta}}=\frac{1}{\zeta} \frac{\partial}{\partial \zeta}\left\langle\zeta \frac{\partial Y}{\partial \zeta}\right)+\frac{1}{\zeta} \frac{d}{\partial \zeta}\left(\zeta \frac{\partial i T}{\partial \zeta}\right)+\frac{1}{\zeta\left(1-\zeta_{i}\right)}
$$

Splitting the above equation into two equations and their corresponding boundary conditions yields

$$
\bar{V}_{z} \frac{\partial Y}{\lambda \zeta}=\frac{I}{\zeta} \frac{\lambda}{\partial \zeta}\left(\zeta \frac{\partial Y}{\partial \zeta}\right)
$$

with boundary conditions
and

$$
\begin{align*}
& Y(0, \zeta)=\frac{2-C}{1-\zeta_{i}}-U(\zeta) \\
& Y(\zeta, I)=0 \tag{4.3-15}\\
& Y(\zeta, \Pi)=0
\end{align*}
$$

$$
\frac{1}{\zeta} \frac{d}{d \zeta}\left(\zeta \frac{d}{d \zeta}\right)+\frac{1}{\zeta\left(I-\zeta_{i}\right)}=0
$$

With bour．Mary conditions

$$
\begin{align*}
& \because(I)=0 \\
& \because(\mathbb{Z})=0
\end{align*}
$$

Inspection of Eq. (4.3-14) and the last two boundary conditions of Eq. (4.3-15) shows that those are identical with Eq. (4.2-7) and Eq. (4.2-8) of tho zowocoding section. Thoroforo, the eigenvalues and oigenfunctions obtained in tho procoodine section will bo tho same as those of Eqs. (4.3-14) and (4.3-15). The solution, therefore, is

$$
Y(\xi, b)=\sum_{n=1}^{\infty} C_{n} I_{n}(b) \exp \left(-\alpha_{n}^{2} \xi\right)
$$

From tho first condition of Eg. (4.3-15) and the orthogonality property of the eigonfunctions, the coofficionts are found to be

$$
c_{n}=\frac{\int_{K}^{I}\left(\frac{\ln C_{1}}{\ln E_{i}}\right) r_{0} \bar{T}_{z} \sum_{n} d \zeta}{\int_{K}^{1} \zeta_{V_{z}} \bar{v}_{n}^{2} d \zeta}
$$

A similar procedure may be follow od to solve Eq. (4.3-16). Sating

$$
\uplus(\xi, \zeta)=Y^{r}(5, \zeta) \div \Pi^{2}(\zeta)
$$

yields

$$
\pi^{\prime}(\zeta)=-\frac{1-r}{1-\zeta_{i}}+\frac{\ln \zeta^{2}}{\ln \zeta_{i}}
$$

nd

$$
v^{\prime}(\xi, \zeta)=\sum_{n=1}^{\infty} D_{n} \sum_{n} \operatorname{axp}\left(-\alpha_{n}^{2} \bar{\zeta}\right)
$$

where

Tnerofora,

$$
\begin{array}{ll}
\bar{\vartheta}(\overline{5}, \zeta)=\sum_{n=1}^{\infty} C_{n} \Xi_{n}(\zeta) \operatorname{cxp}\left(-\alpha_{n}^{2} \xi\right)+\frac{1-\zeta}{1-\zeta_{i}}-\frac{1 n \zeta}{1 n \zeta_{i}} & \text { (4.3-24), } \\
\forall(\bar{\xi}, \zeta)=\sum_{n=1}^{\infty} \sum_{n} E_{n}(\zeta) \operatorname{cxp}\left(-\alpha_{n}^{2} \xi\right)-\frac{1-\zeta}{1-\zeta_{i}}+\frac{\ln \zeta}{1 n \zeta_{i}} & \text { (4.3-25). }
\end{array}
$$

Substituting Ens. (4.3-24) and (4.3-25) into Eq. (4.3-5) results in

$$
\begin{aligned}
T= & {\left[\sum_{n=1}^{\infty} C_{n} \sum_{n}(\zeta) \exp \left(-\alpha_{n}^{2} 5\right)+1-\frac{\ln \zeta}{\ln \zeta_{i}}\right]\left(T_{0}-T_{i}\right)+T_{i} } \\
& +\left[\sum_{n=1}^{\infty} D_{n} S_{n}(\zeta) \operatorname{axp}\left(-\alpha_{n}^{2} \xi\right)+\frac{\ln C_{0}}{\ln \zeta_{i}}\right]\left(T_{e}-T_{0}\right)+w_{0}-T_{\theta}
\end{aligned}
$$

(4.3-26).

This is the temperature profile of the problem. The expressions for the Husselt numbers follow readily from their definitions and the temperature profile given by Eq. (4.3-26).
4.3.3 Expressions for the Tusselt Numbers

For the case Two $=T_{0}$, ic. stop chance at innor rall, reducing and rommanging Eq. (4.3-26) yields

$$
\bar{\theta}=\frac{T-T_{i}}{T_{e}-T_{i}}=\sum_{n=1}^{\infty} C_{n} Z_{n}(\zeta) \operatorname{axp}\left(-a_{n}^{2} \xi\right)+I-\frac{I n C}{1 n \zeta_{i}}
$$

Proceeding as in Iq. (4.2-28) leads to

Therefore,

$$
\begin{aligned}
& \theta_{\text {aVE }}=\frac{2}{I-X^{2}} \int_{I}^{I} \bar{V}_{z} \theta \zeta \partial \zeta
\end{aligned}
$$

$$
\begin{align*}
& =-\frac{2}{1-\mathbb{R}^{2}}\left\{\sum_{n=1}^{\infty} c_{n} \operatorname{cxp}\left(-\alpha_{n}^{2} \overline{5}\right) \frac{1}{\alpha_{n}^{2}}\left[\sum_{n}^{1}(1)-\sum_{n}^{1}(\mathbb{N})\right]-\int_{n}^{1} \bar{V}_{2} \zeta d \zeta\right. \\
& \left.+\int_{Z}^{I} \bar{V}_{z} \frac{\ln \{ }{\ln \zeta_{i}} d \zeta\right\}
\end{align*}
$$

and

$$
\frac{\partial \theta}{\partial \zeta}=\sum_{n=1}^{\infty} c_{n} \operatorname{In}(\zeta) \operatorname{axp}\left(-\alpha_{n}^{2} \xi\right)-\frac{1}{\zeta \ln \zeta_{i}}
$$

Thus, the Nusselt number can be expressed as

For tic ease Tin $=T_{e}$, io. step change at outer wall, reducing and rocurancing of Ea . (4.3-25) yields

$$
\bar{\theta}=\frac{\square-T_{0}}{T_{c}-T_{0}}=\sum_{n=1}^{\infty} D_{n} \operatorname{m}_{n}\left(-\alpha_{n}^{2} \xi\right)+\frac{\ln c}{\ln \zeta_{i}}
$$

By procedures similar to that used in the formor case, the expressions for the hat transfer parameters are Found to be;

$$
\bar{\partial}_{\text {avS }}=\frac{2}{1-\mathbb{Z}^{2}}\left\{-D_{n} \operatorname{axp}\left(-\alpha_{n}^{2} \xi\right) \frac{1}{\alpha_{n}^{2}}\left[\sum_{n}^{\prime}(1)-E_{n}^{\prime}(K)\right]+\int_{\sum_{n}}^{1} \frac{\ln \zeta_{i}}{\ln \bar{S}_{i}} \bar{V}_{z} \zeta d \zeta\right\}
$$

$$
(4.3-34)
$$

$$
(4 \cdot 3-35)
$$

$$
\begin{aligned}
& \text { (4.3-31), } \\
& (1-K)\left(1-K^{2}\right)\left[\sum_{n=1}^{\infty} C_{n} E_{n}^{\prime}(1) \exp \left(-\alpha_{n}^{2} \overline{5}\right)-\frac{1}{\ln \zeta_{i}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4.3-32). }
\end{aligned}
$$

Values of the exvansion cooficionis and combinod functions are shom in Tables 12-15. Tomperaturo prosiles and variation oi the Nusselt number and avorace tomperature ritin tio axial aistance axe shom in Figs. I8-23.
4.3.4 Asymptotic Solution by the RKB Mothod

Since, as to have mentioncd, the eigenvalues of this problem are cractiy tho samo as those of problom II, EC. (4.2-23) is valid for the present problom. Now the problem is to rowrito Eqs.(4.3-19) and (4.3-23) in terms of the asymptotic solutions wich rore derivea in Sec. (4.1.4).

$$
\text { For the case } T_{0}=T_{c} \text {, multinlyine Eq. }(4.2-7) \text { by } \frac{\ln c}{\operatorname{In} \zeta_{i}} \text { and }
$$

intešutins by parts yiolds

$$
\int_{\mathbb{I}}^{I}\left(\frac{\ln C}{\ln \zeta_{i}}\right) \zeta \bar{V}_{z}{ }_{n} d \zeta=\left.\frac{1}{\alpha_{n}^{2}} X \frac{d_{n}}{d \zeta_{0}}\right|_{\zeta=\mathbb{K}}
$$

Combininc Eq. (4.3-37) and Eq. (4.2-26) leads to

$$
\begin{align*}
c_{n} & =\frac{\left.2 \pi \frac{\partial n_{n}}{\partial \zeta}\right|_{\Gamma=K}}{a_{n}\left\{\left.\left(\frac{\partial \Xi_{n}}{\partial a_{n}}\right) \cdot \zeta \cdot\left(\frac{\partial m^{n}}{\partial \zeta}\right)\right|_{5=1}-\left.\left(\frac{\partial n_{n}}{\partial \alpha_{n}}\right) \cdot \zeta \cdot\left(\frac{\partial n_{n}}{\partial \zeta}\right)\right|_{\zeta=K}\right\}} \\
& =\frac{\sum_{i}^{I / \sigma_{3} I / 3 \Gamma\left(\frac{2}{3}\right)}}{a_{n} \gamma} \tag{4.3-39}
\end{align*}
$$

For the case $T_{i}=T_{e}$, therc rosulto

$$
\begin{align*}
& \left.2 \frac{d I_{n}}{d!}\right|_{\zeta=1} \\
& D_{n}=-\frac{}{\alpha_{n}\left\{\left.\frac{\partial \sum_{n}}{\partial \omega_{n}} \cdot \zeta \cdot \frac{\partial \sum_{n}}{\partial \zeta}\right|_{\zeta=1}-\left.\frac{\partial \sum_{n}}{\partial \omega_{n}} \cdot \zeta \cdot \frac{\partial P_{n}}{\partial \zeta}\right|_{\zeta=K}\right\}} \\
& =(-I)^{n} \frac{3^{I / 6} \Gamma\left(\frac{2}{3}, \sum_{0}^{I / 6}\right.}{\alpha_{n}} \tag{4.3-4I}
\end{align*}
$$

Table 12. Functions in the solution of problem IV, step change at the innor mall, by the iterative method for $n=0.5$
 ratio, K Cooif., C_{n}

0.2	-0.22125546	-1.64257310	-1.08762850	2.77522310
	-0.09249535	0.40790546	0.85639275	2.24243640
	-0.05524702	-1.12043510	-0.73754340	1.91445870
	-0.03884531	0.31925064	0.66755975	1.74154560
	-0.02959992	-0.94335255	-0.61937912	1.61985720
	-0.02377399	0.27658431	0.58396717	1.53691420
	-0.01979819	-0.85272568	-0.55687630	1.47924690
0.5	$-0.246970 c 2$	-4.46828900	-2.55713800	3.80230200
	-0.10528754	0.50750005	2.06307870	3.11115730
	-0.06313751	-3.11213980	-1.77836230	2.66755500
	-0.04449602	0.39870894	1.61142710	2.42543640
	-0.03393647	-2.62406490	-1.49998510	2.24815960

Table 13. Functions in the solution of problem IV, stop chance at the outor wall, by the itcrative mothod for $n=0.5$

$\begin{aligned} & \text { Radius } \\ & \text { ratio, } \end{aligned}$	$\begin{aligned} & \text { Jxpansion } \\ & \text { Coest., } D_{n} \end{aligned}$	$\mathrm{D}_{\mathrm{n}} \mathrm{i}(\mathrm{K})$	$D_{n} \sum_{n}^{\prime}(x)$	$D_{n} \operatorname{Er}_{n}(I)$
0.2	-0.43146680	-3.20335120	5.41191910	-2.12096730
	0.17595052	-0.77594364	-4.25570480	-1.52908460
	-0.10621944	-2.15417940	3.68079110	-1.41802120
	0.07450342	-0.61230725	-3.34020000	-1. 28034720
	-0.05684178	-1.81155340	3.11068860	-1.18941570
	C. 04557377	-0.53020086	-2.94620200	-1.11944120
	-0.03776020	-1.62636540	2.82130130	-1.06210510
0.5	-0.33344643	-5.03285780	5.13367580	-3.46501990
	0.13965548	-0.67315812	-4.12670070	-2.73650840
	-0.08423176	-4.15190610	3.55878550	-2.37251340
	0.05919442	-0.53041473	-3.22663240	-2.14373090
	-0.04517963	-3.49341820	2.99297540	-1.99693050

Table 14. Punctions in tho solution of problem IV, step chance at the innor wall, by the iterative method for $n=0.8$

Radius ratio	$\begin{aligned} & \text { Dxpansion } \\ & C_{\text {Cosi. }}, C_{n} \end{aligned}$	$C_{n}{ }_{n}(X)$	$C_{n} \mathrm{P}_{2}(I)$	$c_{n} n^{2}(\pi)$
0.2	-0.22224438	-1.59796700	-1.05925000	2.6935
	-0.08787225	0.39506572	0.80134439	2.03139330
	-0.05226240	-1.03183790	-0.63627978	1.72779100
	-0.03665041	0.30691108	0.61986746	1.56478190
	-0.02789862	-0.86443999	-0.57436074	1.45039620
	-0.02239542	0.25647895	0.54100840	I. 37264720
	-0.01864399	-0.75905897	-0.51545039	1.31804290
0.5	-0.24762470	-4.34026660	-2.49566070	3.68921180
	-0.10053694	0.51218795	1.94440950	2.8644 .4310
	-0.0.6036259	-2.89976900	-1.66662620	2.46628560
	-0.04230420	0.38846360	1.50249500	2.22806270
	-0.03241070	-2.43661130	-1.39952800	2.07416650

Table 15. Functions in the solution of problem IV, step change at outor riall, by the iterative method for n=0.8

Radius ratio,	$\begin{aligned} & \text { Expansion } \\ & \text { Cooざ., } \end{aligned}$	$D_{n} E_{n}(\underline{X})$	$D_{n}{ }^{\prime}(K)$	$\mathrm{D}_{\sim}^{1} \mathrm{E}(\mathrm{I})$
0.2	-0.43453722	-3.12/38120	5.26655850	-2.07106950
	0.17240889	-0.77513485	-3.98567540	-1.57226990
	-0.10348214	-2.04309030	3.42111170	-I. 35886790
	0.07251433	-0.60723608	-3.09598480	-I. 22643300
	-0.05529848	-1.71342580	2.87486290	-1. 13845330
	0.04430177	-0.52713856	-2.71531860	-1.07020220
	-0.03659338	-1.53327190	2.59405040	-1.01446180
0.5	-0.33514705			
	0.13603933	-0.69305576	-3.37595770	-2.63103460
	-0.08210059	-3.94404460	3.35445350	-2.25581780
	0.05790804	-0.53174781	-3.04988030	-2.05668800
	-0.04434224	-3.33361520	2.83774150	-1.91474440

Fig. 18 a Temperature profile development; problem N, step change at' the inner wall, $K=0.5, n=0.5$

Fig 18b Temperature profile development, problern $V_{\text {, }}$ wep change at the outer wall, $K=0.5, n=0.5$

(1)

Bigenvalues, expansion coofficionts and some combinod functions calculatod by tho Wen method are shom in majlos I6-19.

Table 16. Tunctions in the solution of problem IV, step change at tho imor vall, by tre WB metiod for $n=0.5$

Radius ratio	$\begin{aligned} & \text { Expansion } \\ & \text { Coois., } C_{n} \end{aligned}$	$C_{n} E_{n}(E)$	$C_{n} \sum_{n}(I)$	$\left.C_{n}\right]_{n}^{\prime}(K)$
0.2	1.02552270	-1.65981640	-1.09883340	2.85491410
	0.46160126	0.40585418	0.84487203	2.19508880
	0.29868318	-1.11047570	-0.73075568	1.89859950
	0.22076581	0.31738884	0.66071257	1.71561830
	0.17509012	-0.92937852	-0.61158352	1.58897450
	0.14507468	0.27593601	0.57442382	1.49242880
	0.12384424	-0.82806435	-0.54491307	I. 41575590
	0.10803435	0.25011226	0.52056202	1.35274850
0.5	1.02214640	-4.67104910	-2.65907030	4.00395850
	0.46461198	0.51291397	2.05219690	3.07856680
	0.30063129	-3.10638100	-1.77500790	2.65274670
	0.22220573	0.41 II1250	1.644037310	. 40752200
	0.17523213	-2.59979080	-1.48553870	2.22850460
	0.14602090	0.34872740	1.39527740	2.09310070
	0.12465200	-2.31637990	-1.32359570	1.98556870
	0.10873897	0.31608913	1.26468990	1.89720220

Tablo 27. Functions in the solution of problem IV, step change at the outer riall, by tho in method for $n=0.5$

$\begin{aligned} & \text { Radius } \\ & \text { raむio } \end{aligned}$	$\begin{aligned} & \text { mansion } \\ & \text { coef土., } D_{n} \end{aligned}$
0.2	$\begin{array}{r} 1.95433200 \\ -0.88833276 \end{array}$
	0.57480357
	-0.42485479
	0.33695379
	-0.27919029
	0.23833317
	-0.20790770
0.5	1.36274220
	-0.61942020
	0.40080549
	-0.29624827
	0.23495552
	-0.19467743
	0.16618806
	-0.14497256

$D_{n} E(\mathrm{~K})$
$D_{n} n_{n}^{\prime}(K)$
$D_{n} n_{n}(1)$
5.49416410
-2.1146́6020
$-4.22435840 \quad-1.62592180$
$3.65377670-1.40630950$
$-3.30356080-1.27151440$
$3.305791700-1.17695750$ $-2.87211810-1.10545520$
$2.72456360-1.04856300$
$-2.60330900-1.00199280$
-6.22751780
$5.33814010^{\circ}-3.55844770$
$-4.10439620-2.73602210$
$3.55001730-2.36646930$
$-3.20974660-2.13954230$
$2.97107800-1.98054430$
$-2.79055610 \quad-1.86020640$
$2.64719180-1.76463920$
$-2.52937950-1.68$ 610510

Tajle 18. Munctions in the solution or problom IV, step chance at the imer wall, by the ixs method for $n=0.8$

Radius こatio	$\begin{aligned} & \text { Expansion } \\ & \text { Coeste. }_{n} \end{aligned}$	$C_{n} E_{n}(\mathbb{E})$	$C_{n} L_{n}(1)$	$0_{n} \sum_{n}\left(\begin{array}{l}\text { a }\end{array}\right.$
0.2	0.95850586	-1.52763550	-1.01665940	2.55487970
	0.43568447	0.38881022	0.78163999	1.96439830
	0.28191349	-1.01592130	-0.67610757	1.69906810
	0.20837084	0.30406002	0.61130255	1.53621220
	0.16525963	-0.85024418	-0.55584749	1.42198300
	0.13592940	0.26434995	0.53146677	1.33558370
	0.11689095	-0.75755663	-0.50416284	1.26696850
	0.10195870	0.23960872	0.48172535	1.21058280
0.5	0.97944587	-4.34257390	-2.19556290	3.69402280
	0.44520257	-0.49865930	1.91879040	2.84026320
	0.28807232	-2.88793580	-1.65952070	2.45563080
	0.21292302	0.38996502	1.50054580	2.22116240
	0.16836998	-2.41696960	-1.38896880	2.05600200
	0.13992084	0.33903576	1.30457520	1.93107960
	0.11944462	-2.1534.8890	-1. 23755340	1.83187140
	0.10419637	0.30730455	1. 18247670	1.75034490

Table 19. Functions in the solution of problem IT, step chanse at the outor wall, by the TKB method for $n=0.8$

$\begin{aligned} & \text { Radius } \\ & \text { ratio } \end{aligned}$	$\begin{aligned} & \text { Pronnsion } \\ & \text { Cooİ., } D_{n} \end{aligned}$	$D_{n} \sum_{n}(K)$	$D_{n} E_{n}(\mathrm{I})$	$D_{n} \sum_{n}(1)$
0.2	1.90708320	-3.03944670	5. 08329450	-2.02278780
	-0.86685597	-0.77359330	-3.90844830	-1.55528290
	0.56090682	-2.02131910	3.38053670	-1.34521180
	-0.4145833C	-0.60497090	-3.05651080	-1.21627300
	0.32880743	-1. 59168110	2.82923720	-1.12583370
	-0.27244044	-0.52596190	-2.65733280	-1.05742840
	0.23257111	-1.50726590	2.52081270	-..00310340
	-0.20288117	-0.47673568	-2.40862550	-0:95846080
0.5	1.32336470	-5.86740820	4.991120600	-3.37184520
	-0.60152741	-0.67375550	-3.83758320	-2.59254710
	0.38922491	-3.90199500	3.31924290	-2.24237350
	0.28758799	-0.52589570	-3.00109190	-2.02744170
	0.22816633	-3.26565510	2.77793830	-1.87668590
	-0.18905211	-C.45808290	-2.60915160	-1.75255870
	0.16138594	-2.90965640	$2.47510 \leq 60$	-1.67210310
	-0.14078348	-C.41521040	-2.36495320	-1.59758700

5. Discussion cî Pesults

The variation of the Nussclt numbor with axial distance has been calculatod low four sots of boundary conditions on the annular surfacos. Results for different values of the power-lan model indices and two values of the ratio of the inner to tho outer radius of the annulus are prosonted graphically in Figs. 4-7, 10, 11, 14, 15 and 19-22. The corrosponding eicenvalues, α_{n}^{\prime}, coerficionts, C_{n}, and other functions obtained in the investigation of the individual problems are given in Tables 1 and 2 and 4-19. The four dificrent problems havo also beon ovaluated for the limiting casc or infinito paralicl plates.

It cannot be said that this rorls complotes the neoded analysis of non-liowtonian annular heat transfer. Only one of many possible nonTertonian models has been considered. Wven for the one model considercd, tino porrer-lan model, only a linited rance of the parameter has been correed. Pernans the greatost contribution made by this wort is that it has shom ho: to oxtend the analytical proceduros to problems involving the complez non-lie::tonian volocity profillos. These same procedures can now be usod to calcuiatc the heat transfor rates zor any velocity prozile and hence for any non-Nertonion model.

A suficiciont numbor of oigonvalues and oigonfunctions have been calculated by dircot solution of the problacis to prepare plots of Iusselt numbers to witinin a dimonsionless distence of 0.001 of the ontrance. Asymptotic solutions havo also boon prosentod and these can be usod to oxtend tho calculations to still closcr to the entrance. Fhture calculations reculd omploy the dircot mothod for only about four ciscnvaluos and then switch to the simpler .f. method for the hither oigenvalues.

This is discussed in more detail below.
It can be sean from trose zisures which show the variation of the Iussolt number with the axial distance, that the Nusselt number at the inner wall alays docreases with increasing radius ratio for a given power law model index while, at the outer wall, it always decreases with dooreasine radius ratio. But for a given radius ratio, the Nusselt number, at either the inner or outer wall, decreases with increasing power law model index. These phonomena are expectod from considoration of the basic fluia dynamies. Further investigation of these plots shows that the depondence of the Irusselt number on radius ratio is much greater then the dependence on the porrer Iaw model index.

Another problem oir considerable practical importance is the conditions undor which entroneo effects must be accountod for in heat transier calculations. Tho thomal ontranos Iength is definea howe as that value of $\frac{Z}{P e} \frac{z}{D e}$ for which the Wusselt number approwecos to within 5% of its asymptotic (fully-developed) value. Because this value may be seen Arom the plots mentioned in the last paragraph, no additional plots have boen prepared. One thing to note is that as K apyroaches unity (flat piate situation), both the Ifussolt number and the thermal ontrance Iongth prodicted for the heat transfor from tho inside rall of the annulus only ayprozeh those for the heat transion from the outside wall of the arnulus only. The same conciusion cen be reached from physical arguments.

It is not practical to fivo tomperaturo distributions as functions
 a wlot has been fiver, Fifurea 3, 9, 13, and 18, for cach kinà of problem $a s$ an iliustration of the deveiomont of the tomporature propile. It
is quite obvious that thoso results ero consiistent :iith what can be oxpeotod intuitivoly. Noto espocialiy in Fig. 3, in which the shape Of tho radial tomporaturo profiles do not widorgo further change with inoraasing axial coorinatos aiter a cortain distanco from tho ontry. This is the basis for the assumption of the expression of Eq. (4.I-18).

For practical purposes, the rixing-cup temporature, as defined by Eq. (4.1-31) ctc., is of greater interost than the transvorse tomporature Zistributions. Figuros 8, 12, 16 and 23 ano illustrative compenisons Of the lorgitudinal cinange of $\theta_{\text {ave }}$ for various valuos of K for eaoh problom. As tho axial distanoc dom the inlot inoreasos, the tomperaturo of tho fluid approaches the surfaco tomporature of anmulus. Fisuro 12 is casily undorstood from enerey balance considerations; for a given vilue of $\frac{l}{P C} \frac{z}{D e}$, with tho symmotrio boundery conditions, tho vamiation of ${ }^{3}$ will trace the same curvo in spitc of different values of K . Furthermome, it is found that the change of $\theta_{\text {avg }}$ for a given parametor I and $\frac{I}{P e} \frac{\pi}{D E}$ are smallor in problom 2 than in problon 3 or 4. These trends in $\theta_{\text {ave }}$ are oxpoctod and can bo readily be cxplaincd from the consideration of tho onorey balance on the coolant in the annulus.

In Tablos 1 and 2 and 4-19, the corrospondine cicenvalues and ozvernion coeごicicats of the serics, as Mell as some othcr functions concemod with tho oaloulation of tho Irussolt numbor are tabulatcd. Comparins thasa rocults for the tro mothods of oaloulation, it is found that the oxpansion cooflicionts obtaincd are not the same. This difforonce arises bocausc of cifferonces in tho procoduro. Tho oifenvalues and tho combinod functions, horrver, have to be the amo in order to heve the sovo variation of tho fusselt numoor along tho axial distanco. The
dovelovod exprossions from the WB mothod are assumod valid only for large eigonvalues. ThoreIoro, Eq. (4.1-46) is takon as an approximation to the actual qquation only as \tilde{n}_{n} bocomes large. It is apparent from Zq. (4.1-45) that in Z is manl, α_{n} must bo vory large in order to make Ba. (4.I-46) a roasonablo approrimation of tho actual equation. A comprison of the eigenvalues prodicted by tho WKB method and those obtainod directly oxhibit very ghood agrooment for tho third and highor oigonvalues, oven if I is small. Tho difforenco botroon tion is within 1\%. But tho combinod functions, such as $C_{n} \mathbb{Z}(K), B_{n} \mathbb{F}(K), B_{n} E^{\prime}(K)$ and $B_{n}(1)$ atc., aro loss accurate, perticularly thoso evaluated at the innor rall. For $K=0.2$, the oigenvaluos shom in tho tablos are not sufficientiy large to remove tho offoct of tho fins i donivativo torms in Eq. (4.1-45). Fan an becomes vony leree, Iq. (4.1-45) approaches ב̈q. (4.1-46); but Ior small \bar{z}, this value may be so large as to lie outsicio tho ranso of pructical intorost.

OREDCLAMUES

Symbols

\therefore A A, A"	Arbitrany constants
B, $B^{\prime}, S^{\prime \prime}$	Arbitrary constants
3 n	Wxpension coefミicient defined by Eq. (4.2-11)
${ }^{\text {c }}$	Constant deisined as $\frac{2 \mathrm{~K}}{1-\mathrm{K}}$
${ }^{5}$	Specisic heat
C_{n}	Ixpension coeflicient derined by Iq. (4.1-30) or Eq. (4.3-19)
De	Zquivalent diamotor
D_{i}	$D_{i}=\left(V_{\max } / V_{a v G}\right) \cdot\left[\frac{\lambda^{2}}{K}-\mathbb{I}^{5} / \int_{[}^{\lambda}\left(\frac{\lambda^{2}}{\zeta}-\zeta\right)^{s} d \zeta\right.$
D_{i}	Dupansion coozizciont deこ̇nod by 2a. (4.3-23)
D_{0}	$\left.D_{0}=\left(V_{\max } / T_{a v 5}\right) \cdot I-\lambda^{2}\right]^{s} / \int_{i}^{\lambda}\left(\frac{\lambda^{2}}{5}-\zeta\right)^{s} d 5$
$I_{n}(\zeta)$	Siccnfunction obtainod from the solution of Eq. (4.1-15)
$G(5)$	Function derinca by Ta. (4.I-18)
$\mathrm{G}_{1}, \mathrm{G}_{2}$	Aņitrary conztants
5	Gravi̇ational acceleration
ε_{z}	Gravitational acceleration in z Jircotion
E(b)	Function in the TKAB mothol
$\overbrace{2},{ }_{\square}$	Arbitrory constarts
1-	Thormal conductivity
-r	Sosio of outos radius to invor radius
I	Lonetin of armular rocion
=	Earmators of yo:ror lan Sluid
n	Parumotore of poron Ion fluid
\%u	Fucsolt numbor do Linod by jo. (4.1-34)

Po, $p_{I} \quad$ Static pressure at $z=0$ and $z=I$

Sum of forces per unit volume defined as $\frac{p_{0}-p_{L}}{I}+\rho g_{z}$
Peclet number defined as RePro
Prandtl number defined as $\frac{\mu C_{p}}{k}$
Heat flux
Radius
Outer radius
Reynolds number defined as $\frac{\rho V_{z} D e}{\mu}$
Defined as $\frac{1}{n}$
Temperature
Temperature at the inlet to the annulus
Temperature at wall
Temperature at wall
Average temperature
Function satisfying Eq. (4.3-2)
Local velocity
Dimensionless local velocity defined as $\frac{V_{z}}{V_{\text {avg }}}$
Function satisfying Eq. (4.3-3)
Function defined by Eq. (4.3-12)
Function defined by Eq. (4.3-20)
Function defined by Eq. (4.3-12)
Function defined by Eq. (4.3-20)
Axial coordinate
Function defined as $\frac{R e \operatorname{Pr} R}{2(1-K)}$
Function defined by Eq. (4.1-12)

Grook symbols

α_{n} Zigonvalue satisfiod Iq.(4.1-15) and poundary condition Mo.(4.1-16)
$\gamma \quad \gamma=\int_{\underline{I}}^{\widehat{V}_{z}} d \zeta$

- Dimensionless radius variabloo dofined as $\frac{r}{R}$

5 Dimensionless axial variables dofined as $\frac{z}{z_{d}}$
3 Phase angle
σ Phase shirt in the $N K B$ mothod
$m_{1} \quad n_{1}=\alpha_{n}^{2 / 3}(5-I)$
$m_{2} \quad m_{2}=c_{n}^{2 / 3}(1-5)$

- Dimonsionloss tomeraturo definod as $\left(I-T_{0}\right) / \frac{q_{R}}{R}$

है Dimonsionloss temporature doeined as $\frac{T-T_{0}}{T_{0}-T_{0}}$ or $\frac{T-T_{T}}{T_{C}-T_{i}}$
$\hat{\sigma}_{\text {avg }}$ Dimonsionioss avorasc tomporature
э Function dosinod as Eq. (4.3-6)

* Punction dorined as EG. (4.3-7)

P Donsity
Trz Shoaシinê stross
λ Dimonsionioss radio position roprosents the position at wich $Z_{\text {rz }}=0$

Subsc=ipts

a Desisnates the asymptotic value
i Designates a vaiuc of a vaniable of a function evaiuated at the insicic surfaco of tho arrulus
n Dosicnaios tinc $n^{\text {th }}$ cigonvaluc, eicconfunction or coefficiont

- Josignatos a valuo of a vaniablo of a function ovaluated at tho outcr sur: $2 c c$ of tho annulus

```
ACMO:LDDG,2nTMS
```

The alithor wishes to ownces his sincoro agpreciation to Dr. John
 Ciomical Encincering, For their holp and oncouraçement. Tho author Hould also Iike to aclmorleace the Ingineoring Ixperinent Station for financial support and the Kansas State University Computing Center for the use of tho computer.

1．Eredrickson，A．E．，and Pird，R．E．＂Non－iewtonian Flow in Annuli，＂ Ind．Ing．Chom．50，347－52（1958）．

2．Votencr，A．B．，＂Processing of Thomoplastics，＂E．C．Boruharat，ed．， Reinhole，Mew Yoris，19：

3．Vaughn，R．D．and Beromen，D．D．，＂Laminar Floü of Non－iTewtonian Fluids in Concentric innuli，＂I \＆BC Process Design and Development， ご○．I，5，44－47（1956）．

4．NoEachern，D．．f．，＂Axial Laminar FIow of a Non－Nerrionian Fluid in an Annulus，＂A．I．Ch．E．Joumal 12，328－332（1966）．

5．Notznoz，A．B．，Vaushn，R．D．and Houghton，G．I．，＂Heat Transfer to Non－Newtonian Fluiã，＂A．I．Ch．コ．Journal No．1＇，3，92－100（1957）．
6．Fotznor，A．B．and Gluck，D．F．，MHoat Fransfor to IVon－lientonian Muids Under Laminar Flow Conditions，＂Chem．Dne．Sci．12，185－ 190 （1960）．

7．Lyche，B．C．an̉ Bird，R．D．，＂The Graotz－Nusselt ProDiem for a Po：rovーIa：：lon－Mowtonian MIuid，＂Chom．Ince Sci．6，35－41（1956）．
8．Scinenir，J．and Van Laar，J．，NHoat Transeor in Kon－ITontonian Iaminar FIori in Tubes，＂Appl．Sci．Res．74，449－462（1958）．

9．Christiansen，D．B．and Crair，S．．，＂Hycat Transior to Pseudoplastic Iluics in Iaminar Mlow，＂A．I．Ch．3．Journal，ITO．2，8，154－160（1962）．
10．Christiansor，I．B．anc Jonser，G．E．，＂Enercy Tronsfor to ITon－ ＂Oowonian Mluids in Laninar Flow，＂Progress in Intermational Rescarch on Thomodynamic and Transport Proportics，Acadoric Press，738－ 747 （1962）．

ㄱ．Reynolis，i．c．，Lundberê，R．B．and licCuon，D．A．，＂Joat Mransfor in Annular Pascagos．Gonoral Formulation of the Problom for Arbitrary Eroscribed Vall Tomporaturos or Fioat Fluxcs，＂Int．Jo Heat Hass Thensĩor 6，483－493（1963）．

12．Hatton，M．S．，Poymolds，I．C．and Kays，T．F．，MHeat Transfor in Annular Dassagos．Simultanoous Devoloment of Tolocity and Tempor－ aturo Ficlas in Laminar ilorr，＂Int．J．Hoat Iass Iransfor，I， 763－781（1964）．

13．Jainob，$\because=$ oni ？oos，K．A．，＂iloet Tmonsior to a Pluid in Iaminar Plo：－Mhroush an Annulus Spaco，＂Mrans．A．I．Ch．こ．，37， 619 （1941）．
14. Nurairam, K., "Amalysis of Momporature' Distribution of Ionisothermal Laminar Blou of Pipos ritin Amular Sipace," Trans. Jap. Soc. Noci. Mregrs. הio. 67, 18, 43 (1952).
15. Furakaina, K., "Hoat Mransfor in Eaminar Flow Trourh Pipes rith Amular Space, "Trans. Jao. 'oc. Non. Bnes., ごo. 88, 19, 15 (1953).
16. Tislemta, R., "Hoat Tmanseor with Iaminar تloor in Concentric Amuly "Fith Constant and Arbitrarit Variablo Axiai NaII Tomperaturc," Ari-6441.
17. Vislsanta, R., "Heat rransfor uith Laminar Ploir in a Concentric fanulus frith Prescribed Nall Tomooraturos, 1 2001. Sci. Res. 12A 463-476 (2963).
18. Iundbarç, R.ت., Roynolds, T.C. and Kays, T.IT., "ITeat Trensior with Iaminar Plo: in Voncontric Amuli with Constont and Variable Wall Tomporature and Keat FIux," Rorort \#O. AYr-2, Stenford Univorsity.
19. Iunabors, R...., WeCucn, I.A. and Romolds, F.C., Hieat Transter in Snnular Passajes. Eydrodymamically Jovelowmon Iaminar Flow with Arbitrarily Prescribod …al Temporaturos on Ieat Fluxas," Int. J.

 Ien th "̈ith Iaminar Mo: in an Amulus," Int. J. Feat Nass Transier 2,973-980 (1962).

 Sci. Ros. 7i, 326-301 (1950).
22. Sorry, V.u. and do Yrima, C.E?., "Nin Itcrativo Fotioz zor the Soluticns of Jiconvalue Zrobloms," J. AppI. Phys. 23, 195-198 (1952).
 Ilo:i in a Round Lube or Flat Conduit - Tee craetz Froblom Jxtended," Mrans. $\sin 78$, 441-4.48 (1956).
24. Zioconianon, A.u., "Hpproximate Hisenvalues For Hoet Pransfor to Ianiner or Tumbulont Tlow in an Antulus," Int. J. Howt Vass Mransfer 2, 499-505 (2965).
25. Turchill, …., "Pourior Scrios ard Joundany Va?ue Probloms," V. Gran-Kill, Inc., Sccond Jaition, 1963.

9. APPMTIX

2.1 Tho Nothod of Bormy and de Prima Fow Dotomining the EigonEunctions and Eigonvaiuos

Tho metiod devolonod by Porry and do Prima (21) is a simole iterative procodure for the dotomination of oigonfunctions and oigonvalues associatel with the solution of Sturm - Iicuville probioms - a finito interval. The mothod is particularly useful whon the coefficients on the disforential ocuation ano not oxpressed in analytical form. The itcrative sohomo of the calculations is presonted here. For a complote disoussion the reador is refored to the winal papor.

Consiarr a Sturie - Iiourilio equation

$$
\begin{equation*}
\frac{d}{d 5}\left(p \frac{d s}{d \zeta}\right)-\left(q-\alpha^{2} w\right)=0 \tag{9.1-1}
\end{equation*}
$$

with boundary conaitions, for exarnye,

$$
\begin{align*}
& E^{\prime}(I)=0 \\
& \Sigma^{\prime}(I)=0 \tag{9.1-2}
\end{align*}
$$

and ortiogonainty condition

$$
\begin{equation*}
f^{1} z^{2} d r=1 \tag{9.1-3}
\end{equation*}
$$

and whono $p(\zeta), \frac{d}{i} p(\zeta)$, $q(\zeta)$ and $\mathbb{H}(\zeta)$ aro continuous in $\mathbb{K} \leq 5 \leq I$ and whore $p(\zeta)>0$ and $\because(\zeta)>0$ in $0<\zeta S$ I. fron thare axisis a countable number or cijonvaluos α_{1}^{\prime}, co $_{2} \ldots \alpha_{n} \ldots$ ane corrosponaing oiçonfunctions $I_{1}, y_{2} \ldots A_{n} \ldots$ such that z_{n} has procisoly n-1 asers in $0 \leq 5 \leq 1$.

It $\left(\alpha_{n}^{2}\right)_{x}$ is tho Vth appoximation to tho dosiroa valuo α_{n}^{2} and $u_{n}(x)$ is a zolution to Za. ($9.1-1$) with $\alpha_{n}^{2}=\left(\alpha_{n}^{2}\right)_{\text {a }}$ such that $\left(n_{\mathbb{K}}\right.$ satisfios
the ortioconality conditions and the recuisite boundary condition at $\zeta=I$ oniy, thon the raxt approvimation is eiven by

$$
\begin{equation*}
\left.\left(a_{n}^{2}\right)_{n+1}=\left(a_{n}^{2}\right)_{n} \pm\left[P_{n}(1)\right]_{n}^{1}(1)\right] \tag{9.2-4}
\end{equation*}
$$

This soquonce of awnoximations convorgos monotonically to α_{n}^{2}. In Io. ($9.1-4$), tho plus (+) sign is associated with the condition on zoro derivativos at tho outor wall and the minus (-) sisn with zoro ordinato.

A value is assumod for oithor tho slope or tho ordindto at $\zeta=K$, Winionever is not spocified as zoro by the bounlany conditions, and 3q. (9.1-1) Entogratod numorically. Jotin tho Runge - Irutta mothoz and Fine mothod of finite aifferencos hero ooc: usod in difecront situations in this weris. Tho outar maly valuos avo cưjusted in accordance with Iq. (9.1-3), then the vaiue of α_{n}^{2} is cornocted by Iq. (9.I-4) and the

 by Dormy and de "rime that the vaiue civon by

$$
\left(a_{n}\right)_{I}=\left[(n-I) \pi / \sum_{L}^{I}\left(\frac{I}{2}\right)^{2} d y\right]^{-2} n=I, 2, \ldots
$$

bo usod.
Tho computor 2lo\% sheot and computor procram for solvine Zq. (4.1-15)

9.2 Som utor Fow Shoot and Comutor Procrom for NaIculation of tioo G Fu.ction and üic Nuscolt Iumbon on Prosiom I

Ir orion to illuatrato the amanical calculation os the iterative

Fig. 2A Comptor flon shoot for soIving Eq(A.1-15) and $\operatorname{Ec}(4.1-10)$

```
    DIEMSION Y(101),TY(101)
100 FON.N( 3I3,2F10.6,T12.6)
101 PONWT(F10.6)
102 TORCNO(FIO.6)
200 FORMM (5P12.8)
201 30,**T(3:5=110.6)
202 FON:N(3HC=TI5.10,4H AL=T15.10)
```



```
205 TO2OM(6H D彐RY=T4.10)
    B2ADIOO,IT, N,NI,DELX, X,AL
    TWADIOI,(V(I),I=I,NII)
    R2SDI02,Y(1)
    l COMTNUS
    Y(2)=Y(I)
    DO 5 I=2,M
    \thereforeI=I
    N=(K+(AI-1.)*DIN
```



```
    3=I./(2.*DELX)-XK/(DIXNDSLX)
    C=TN/(DSLY*DNIX)+1./(2.*DSIX)
    Y(I+I)=1%V(I)/ 
5 commutus
    PUSOM200, (Y (I),I=1,IV)
    S=0.0
    DO IO I=I,IT
    AI=I
    CC=T(I)*(X\div(AI-I。)*DUIN)*Y(I)*Y(I)*uIIX
10S=S\divOC
    #U-cサ2Cl,S
    I=S-I.O
    INS(D)-0.0015)6,6,7
Y(I)=Y(I)+0.CCOI
    GO 「O I
6 OLTTIU
    DSNY=:Y(N) -Y (NO-I) )/DNLX
    こU.COR205,DコW
    IT(2S(23NY)-0.0001)8,8,9
CGYY(I)*DN:Y
    ~={I+G
    EULCH2O2,G,G.ST
    CO:O1
8 OOMINTS
    2T:0:203,*工
    #0.0
```


Fis. 25 . Concutor flo:r sheot for solvinit Eq. (4.I-24)

```
C FUICRION ON G
    DIMYION V(IOI),Y(51)
    100 202, 哖(213,14,3F10.6)
    10I FONM:(S10.6)
    102 F0N:MN(-10.6)
    200 ?ODWM(5?12.8)
    201 Э0以**T(4I SS=T12.8)
```



```
    2,.DICO,T1,N,N,Z,DELX,X
    NADIO1,(V(I),I=I,II)
    R:DIO2,Y(I)
    C=2.*X/(I.-X*X)
    l cO:MIUU
    X=0.2
    Z=-1.0
    205 I=I,:I
    U1=2*こごK
    Z=2%I-1
    VI=-(Z/K-C*V(V))*#JIX
    U2=(Z+TI/2.)*DSI奚
    J=2*"
    V2=-((Z+V//2.)/(V+ DNN/2.)-C*V(J))*DULS
    T3=(Z+T2/2.)*)
    T3=-((J+V2/2.)/(I+JTM/2.)-CWT(J) ) %D3工X
    U\Lambda=(J\divV3)*DJこ.K
    I=2*I+1
    Vム=-{(Z\divT3)/(Z+DTO
    , VIY = (UN+2.NU2+2.*UU+UL)/6.
    DIZ=(VI+2.*TV 2 2.*V3+V4)/6.
    Z=?+DII.
    Y(I\divI)=Y(I)*DIIY
    O=X+Dジ:
    50,M-U2
    ここ.こ.200,(Y(I),I=I,İ)
    S=0.0
    20 20 I= ב,N
    x=0.2
    \therefore二=I
    J=2%I-I
```



```
    10 S=S\divOC
    \SigmaS={
    Fこ.O:-201,03
    Z=SS-0.0
    IE(NEL(3)-0.0001)6,5,7
    7Y(I)=Y(I)+0.0001
    CO MO I
    6 パッルニゴコ
    JNY=(Y(O;-Y(IT-工))/DEXX
    マいこ:202,D2:Y
    ~2%
```


Eig. 23 comptow flow shoct for calculating the emansion coofficiont, mixing-cup temp.,满 5 sclt mumber and temp. proizile.

```
                                    T02TNM -2STIC
                                    1410-50-970
```



```
    DIF=STCN(IOI,8),W(IO1),G(101),C(8),T(101),4工(8)
OC100 ?-0N04T(315)
CCIO1 FO-H?(215,2F10.6)
00102 TORNM(5\10.6)
00103 Э02%MN $10.6)
0 0 1 0 4 ~ 2 0 N . . ( 5 F 1 2 . 8 ) ~
00105 こ0, M(4315.10)
0C2C0 O0N!n(64 C(J)=N12.8)
```



```
CO2O2 FONWN(4II TB=F12.8,5H MTI=T12.8)
00203 FON:N(3H2=N10.6)
00106 ב0卫**(5.12.8)
    彐コ:D(I,100)工,II,II
    LiND(I,IOI)IT,IM,DILK,X
    OOOU=I,2
    Sこ⿱工\\(I,IO2)(I (I,J),I=I,IT)
C0030 CO.TIUS
    0045ū=3,ご
    DinA(I,IOo', (V(I,J),I=I,IT)
00045 00.n.ons
    RI:(I)(I,IO3)(V(I),I=I,II)
    2I:D(I,IOJ)(SI(I),I=I,I)
    CI=2.*X/(I.-N*N)
    3020J=?,I.
    S=0.0
    IO5I=I,N
    \thereforeI=I
    O-=2*工一工
    SII=V(K)*C(I)*(ZG(\OmegaI-I.)*ISLIO)*Y(Z,J)*DNTM
    SI2=T(Z+2)*G(I+I)*(X+AI*SITX)*I(I+2,J)*2INX
    SI=-(SII\divSI2)}/2
    C=S+21
00005 C0NMMUS
    C(こ)=3
    \cdotsごM!3,200)こ(J)
00010 00,OT, %
    Z=0.00001
00001 COUMIUU
    DOI5エ=こ,IL
    71=0.0
    K=2%こ一7
    3020J=I,I
    T2=C(J)
00020 T1=T1+12
    I(I)=02*J+C(I)\divOI
00015 00-%.0.2
    .-IT73(3,203)z
```



```
    T3= ジ%%
    D = 0 . 0
    D025J=I,I
    II=C(J)*V(I,J)*INP(-II(J)*Z)
    000252=こ\div-1
    ARI=2.*(I.-Y)/(C(I)\divP)
    NETO(3,202)MD,AIT
    =("-0.0002)6,7,7
00006 z=2;20.00001
    GOHO1
00007 IT(r-0.002)8,9,9
00008 Z=Z\div0.0001
    G0701
00009 I-(2-0.02)I1,12,I2
00011 Z=2.+0.001
    COROI
00012 ITM(7-0.2)13,14,14
00013 Z}=2+0.0
    COT01
00014 こコ(2-1.)16,17,17
00016 z=3+0.1
    CO2O1
0C017 II(こ-5.0)21,22.22
C0021 = = 7*1.0
00022 c0.GIMU, 
    2.D
```

couation of Lq. (4.1-24), and tho other is for tho colculation of the Fussolt numbur, tho mixinecoup towperature and the tomporature profile.

$$
\text { S. } 3 \text { Dowivation of 'ruation (4.1-30) and Lequation (4.1-55) }
$$

9.3.1 Desivation of Jquation (4.1-50)

Rs cin becomes lanca,

$$
\left.\tilde{J}_{I / 3}-\frac{-2 \sqrt{D_{i}}}{3} r_{I}^{3 / 2}\right] \simeq \sqrt{\frac{3}{\pi / D_{i} \pi_{I}^{3 / 2}}} \cos \left(\frac{2 \sqrt{D_{i}}}{3} \pi_{I}^{3 / 2}-\frac{5}{12} \pi\right)
$$

ana

$$
J_{-I / 3}\left[\frac{2 \sqrt{D_{i}}}{3} r_{1}^{3 / 2}\right] \simeq \sqrt{\frac{3}{\pi / D_{i}-3 / 2}} \cos \left(\frac{2 \sqrt{D_{i}}}{3} r_{1}^{3 / 2}-\frac{\pi}{12}\right)
$$

Thereforo, ヨe. (4.1-47) becomos

$$
\begin{align*}
& I_{n}=\eta_{1}^{1} \sqrt{\frac{3}{\pi \sqrt{D_{i}}-3 / 2}}\left\{\left[G_{1} \cos \frac{5}{12} \pi \div I_{1} \cos \frac{\pi}{12}\right] \cos \left(\frac{2 \sqrt{D_{i}}}{3} n_{1}^{3 / 2}\right)\right. \\
&\left.+G_{1} \sin \frac{5}{12} \pi+H_{1} \sin \frac{\pi}{12}\right] \sin \left(\frac{2 / D_{i}}{3} m_{1}^{3 / 2} j\right\}
\end{align*}
$$

Furthormore, vor larje cin,

$$
=I^{2} \cdot\left(\frac{i^{2}}{2}-\pi\right)^{\frac{5}{2}} \cdot \frac{2}{3} n_{1}^{3 / 2}=\frac{2}{3} \sqrt{D_{i}} \pi_{i}^{3 / 2}
$$

Nus, Ic. (4.1-42) 10ades to $I_{n}=\frac{t}{\sqrt{\zeta} \bar{v}_{z}}\left\{\cos \sigma \cdot \cos \left(\frac{2}{3} \sqrt{D_{i}} r_{1}^{3 / 2}\right) \div \sin \sigma \cdot \cos \left(\frac{2}{3} \sqrt{J_{i}} \eta_{1}^{3 / 2}\right)\right\} \quad(9 \cdot 3-5) \cdot$ Comparing Ja. (9.3-3) und Zq. (9.3-5) yielas

$$
\begin{align*}
& G_{2} \cos \frac{5}{12} \pi+\pi_{1} \cos \frac{7}{12}=\cos \sigma \\
& G_{1} \sin \frac{5}{12} \pi+T_{1} \sin \frac{\pi}{12}=\sin \sigma \tag{4.1-50}
\end{align*}
$$

3% a similar procodure, sotuins

$$
r_{2}=\alpha_{n}^{2 / 3}(1-\zeta)
$$

For lanço vailue of C_{n}, the joscel's soluviou of La. (4.1-48) loais to
$D_{n}=\eta_{2}^{\frac{3}{1}} \sqrt{\frac{3}{\pi / D_{0} n_{2}^{3 / 2}}}\left\{G_{2} \cos \frac{5}{12} \pi+H_{2} \cos \frac{\pi}{12}\right] \cos \left(\frac{2 \sqrt{D_{0}}}{3} n_{2}^{3 / 2}\right)$

$$
\left.+\left[G_{2} \sin \frac{5}{12} \pi+H_{2} \sin \frac{\pi}{12}\right] \sin \left(\frac{2 \sqrt{D_{0}}}{3} n_{2}^{3 / 2}\right)\right\} \quad(9.3-7) .
$$

Expansion $0=3 \mathrm{C}$. (4.1-42) yiclas
$I_{n}=\frac{\vdots}{\sqrt{\zeta} \bar{v}_{z}^{z}}\left\{\cos \left\{\left(\alpha_{n} \int_{z}^{I} \sqrt{\bar{v}_{z}} a \zeta-\sigma\right)-\alpha_{n} \int_{\zeta}^{I} \sqrt{\bar{v}_{z}} d \zeta\right]\right\}$
$=\frac{\hbar}{\sqrt{\zeta} \bar{T}_{z}}\left\{\cos \left(\alpha_{n} \gamma-\sigma\right) \cos \left(\alpha_{n} \frac{i}{\zeta} \sqrt{\bar{V}_{z}} d \zeta\right)+\sin \left(\alpha_{n} \gamma-\sigma\right) \sin \left(\alpha_{n} \int_{\zeta}^{I}{\sqrt{V_{z}}}_{z} \alpha \zeta\right)\right\}$
(9.3-8).

Funtiormore, for larco a_{n},

$$
\begin{align*}
& =\frac{2}{3} n^{2}\left(1-x^{2}\right)^{5 / 2} \pi_{2}^{3 / 2} \\
& =\frac{2}{3} \sqrt{m_{0}} \pi_{2}^{3 / 2} \tag{9.3-9}
\end{align*}
$$

$$
\begin{align*}
& G_{2} \cos \frac{5}{12} \pi+H_{2} \cos \frac{\pi}{12}=\cos ^{2} \cos \left(\alpha_{n} \gamma-\sigma\right) \\
& G_{2} \sin \frac{5}{12} \pi+H_{2} \sin \frac{\pi}{12}=\sin ^{2}\left(\alpha_{n} \gamma-\sigma\right) \tag{4.1-47}
\end{align*}
$$

$$
\begin{aligned}
& \text { 9.3.2 Dorivation or コquation (4.i-55) } \\
& \text { Solvins Bq. (4.1-50) yiolas } \\
& H_{I}=\frac{2}{\sqrt{3}} \sin \left(\sigma-\frac{T}{12}\right) \\
& G_{2}=\frac{2}{\sqrt{3}} \sin \left(\sigma-\frac{5 \pi}{12}\right) \\
& \Psi_{2}=\frac{2}{\sqrt{3}} \sin \left(\alpha_{n} \gamma-\sigma-\frac{\pi}{12}\right) \\
& G_{2}=\frac{2}{\sqrt{3}} \sin \left(\omega_{n} \gamma-\sigma-\frac{5 \pi}{12}\right)
\end{aligned}
$$

Substituting those constants Ento Iq . (4.1-47) and Iq. (4.1-48) and arpandinc the Soscol function ir sorios form yiolas
and
$=_{n}=-\frac{2}{2} i \frac{2}{\sqrt{3}} \sin \left(\alpha_{n} \gamma-\sigma-\frac{\pi}{12}\right)_{1} \sum_{n=0}^{\infty} \frac{(-1)^{\pi}\left(\frac{2 / D_{0}}{3}-\frac{2}{2}\right)^{2 K+1 / 3}}{2!(\pi+1 / 3)!}$

$$
-\frac{2}{\sqrt{3}} \sin \left(\alpha_{n} v-\sigma-\frac{5 \pi}{12} \cdot \sum_{-=0}^{\infty} \frac{(-1)^{\pi}\left(\frac{2 \sqrt{3}}{3} \frac{2^{3 / 2}}{2}\right)^{2 \pi-1 / 3}}{1(\pi-1 / 3)!}\right\} .
$$

Ohancons tio varizioco of the boundury conations of Bq. (4.1-16) loads to

$$
\begin{align*}
& \left.\frac{\partial_{n}}{d_{n}^{m}}\right|_{m_{1}=0}=0 \\
& \left.\frac{a_{n}}{d_{2}^{n}}\right|_{2=0}=0
\end{align*}
$$

$$
\begin{align*}
& \text { Applyinc } \mathrm{Bq} .(9.3-13) \text { to } \mathrm{Eq} .(9.3-11) \text { and } \mathrm{Ba} .(9.3-12) \text { yiclas } \\
& \sin \left(\sigma-\frac{\pi}{12}\right)=0 \\
& \sin \left(\alpha_{n} \gamma-\sigma-\frac{\pi}{12}\right)=0 \tag{9.3-14}
\end{align*}
$$

Tnoveこore,

$$
\alpha_{n}=\left(n+\frac{1}{6}\right) \pi / \gamma \quad . \quad n=1,2, \ldots
$$

HEAT TRATSFEER
IN THE THERIKAL DITRANCE REGION
of ait amulus
by

SUN-NAT HONG
B.S., National Taiwan University, 1963

AN ABSTRACT OF A MASTER'S THESIS
submittod in partial fulaillment of the
requiremonts for the degree

NASTER OF SCIENCZ

Department of Chemical Engineoring

KANSAS STATE UHIVERSITY
Kanhattan, Kansas

1967

ABSTRACT

Analytical selutions of the rates of heat transfer to nen-Nowtonian fluids in laminar flow through cencentric annuli are presented. Four distinct problems are considerod:
I. Censtant hoat flux at the inner surface, outer surface adiabatic,
II. Equal tomperatures at both the inner and euter surface,
III. Prescribed tomperature at the inner surface, outer surface adiabatic,
IV. The surfaces maintained at different temperatures. An iterative method and an asymptotic "源B" method have been used to calculato the eisenvalues and oicenfunctions fer different values of the radius ratic and the peior law model indices. The variation of the Nusselt number, the bulk temperature, and the temporature profile iith axial distance aro presented graphically.

