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1. Introduction

The processing of non-Newtonian fluids is important in many-

industries. Among these industries are nuclear energy, minerals, petro-

leum, rocket propellants, plastics and the synthetic fiber industry.

lion-Newtonian fluids are characterized by a non-linear shearing stress-

strain rate relationship. Suspensions such as thorium oxide in water,

emulsions, molten polymers, high molecular weight polyatomic and poly-

merio fluids and solutions of polymers are, for example, often non-

Nswtonian. The shear stress-rate of strain relationship for many fluids

can often by represented by the power-law model. This model has proved

to be a very useful two parameter model for a wide variety of non-

Newtonian fluids. The model, in complex geometry, is expressed as

n-1
T
±J

= -{° ft I ? \l A
lk } *i.i (1-D

k 1

where T^ .
is the shear stress and L

±
. is the symmetrical rate of deformation

av. dv.
tensor with components A = -^—- + ~2-

. The parameters m and n are

constants for a particular fluid at a given temperature and pressure.

'.vhen n < 1 the fluid is called pseudoplastic, when n > 1 the fluid is

called dilatant, and when n = 1 the expression reduces to the Newtonian

relation:

T
ij

= -^A
ij (1-2).

Studies of the heat transfer to those non-Newtonian fluids have been

restricted almost exclusively to tubular flow. Other geometries are of

engineering importance also. The concentric annulus is an especially



useful geometry to analyze because flow between parallel plates and in

a tube are limiting forms of the annular problem. When the ratio of

the inner to the outer radius approaches zero, the tubular flow problem

is approached, while the parallel plate problem is approached as the ratio

nears one. The concentric annular heat transfer problem is also of direct

interest in concentric tube heat exchanger design.

In the analysis below, it is assumed that the fluid with constant

physical properties enters the annulus with a uniform temperature and a

fully developed laminar velocity profile and, up to some point (z = 0)

the fluid is isothermal. Four distinct problems with different values of

the ratio of the inner to the outer radius and different indices of the

po;;er law model are considered here:

I. For z > 0, uniform heat input at the inner wall and insulation

at the outer wall.

II. For z > 0, equal wall temperatures are prescribed at both

the inner and the outer walls.

III. For z > 0, the outer wall is insulated and a temperature is

prescribed at the inner wall.

IV. For z > 0, different wall temperatures are prescribed at

both the inner and outer walls.

The purpose of this work is to determine the variation of the Nusselt

number with distance from the inlet. The analytical treatment of the

problems utilizes the technique of separation of variables. This technique

reduces the energy equation to a Sturm - Liouville problem and a first

order ordinary differential equation. After the eigenvalues and corres-

ponding eigenfunctions of the Sturm - Liouville problem have been determined,



the heat transfer parameters of interest can be readily calculated. The

accuracy of the results depends on the number and accuracy of the eigen-

values. An increasing number of eigenvalues is required to obtain accurate

results as the distance from the entrance is decreased. The limiting

Uusselt number as the distance from z = approaches infinity requires

only one eigenvalue. An iterative method and an asymptotic solution are

introduced to solve the Sturm - Liouville problem. The asymptotic method

used is known as the T.TCB method after G. tfentzel, H.A. Kramers and L.

Brillouin who independently discovered the procedure. •

2. Literature Survey

Though there are no solutions or data with which this work can be

compared, there are several papors which are especially pertinent to the

work. In the discussion below these are divided into four groups which

are concerned with (i) the velocity profile, (ii) non-Newtonian heat

transfor in a tube, (iii) Newtonian heat transfer in annuli, and (iv)

mathematical methods.

Predrickson and Bird (l) presented the analytical solutions of the

equation of motion for steady axial flow of Bingham and power law fluids

in a long cylinderical annulu3. From their solutions, they prepared tables

showing values of the dimensionless radial coordinate for which the shear

stress is zero and values of the ratio of maximum velocity to average

velocity. This solution was attacked by Ketzner (2). He noted that power

law solutions required that the parameters bo constant over the entire

range of shear stress under consideration. Motzner showed that this could



not occur for non-Newtonian fluids and that the power law solution will,

at best, be an approximation. Tho power law model predicted infinite

apparent viscosity at zero shear stress; however, real non-Newtonian

fluids exhibited a finite and constant viscosity at zero shear stross.

Vaughn and Bergman (3) presented experimental data confirming the failure

of the power law model to predict pressure loss and flow rate in concentric

aanuli. Recently though, KcEachern (4) has demonstrated that tho solution

of the annulus problem given by Fredrickson and Bird (l) to estimate flow

curves for the annulus can bo used if the power law parameters are

evaluated in the range of shear stresses found at the outside wall of

the annulus.

Laminar flow heat transfer for the cases of tho circular tube and

of infinite parallel planes represent limiting forms of the annulus.

These simple cases have received considerable attention, but only a few

publications have treated non-Newtonian fluids. Metzner et al, (5)

presented the first theoretical analysis combined with an experimental

study of the variables controlling heat transfer rates to non-Newtonian

fluids in tho laminar flow region. A review on the laminar flow work

has also boon given by Metzner (6). Lyche and Bird (7) showed how the

Graotz - Imsselt problem in heat transfer theory may be extended to

power law fluids. Temperature profiles were obtained and'used to caloulate

average outlet temperature as well as Nusselt numbers for several degrees

of non-Newtcnian behavior. Schenk and Van Laar (8) used the Prandtl -

gyring formula to calculate tho heat transfer parameters which were then

compared with those obtained by other workers assuming the power law

model. Christiansen (9) (10), using tho same model, presented generalized



plots of the Husselt number versus the Graetz number. The temperature

dependency of the viscosity was also included.

Until recently the annulus problem, even for Newtonian fluids, had

received much less attention than the tubular and infinite parallel plate

problems. Reynolds et al. (ll) and Hatton
;
et al. (12) have presented the

results of an extensive four year study of annular heat transfer to

Newtonian fluids. Included in their study is a bibliography of pertinent

publications. Jakob and Rees (13) obtained the temperature distribution

as axial distance tends to infinity for the solution of problem II in

this work. Kurakawa (14) (15) presented an integral equation formulation

as veil as some experimental results for water heated from the inside wall

with the outside wall of the annulus being insulated. The case where

arbitrary peripheral variations wore allowed was also considered. He

expanded the boundary conditions in a Fourier series and compared the

coefficients of both sides of the energy equation. Unfortunately a

general recurrence formula could not be obtained, so the coefficients

had to be evaluatod individually. Kurakawa carried his solutions to the

point of numerical calculation only for problem III and for one value of

the radius ratio. Viskanta (16) (17) has presented complete thermal entry

length solutions of the last throe problems. He utilized the method of

superposition to determine the temperature distribution fdr problem IV.

Some numerical results for heat fluxes, mixing cup temperatures and

irusselt numbers wore presented graphically. Analog computation seemed

to be rather convenient, but of limited accuracy. Lundberg et al. (18)

(19) have also presented thermal entry length solutions. This included

evaluation of the four fundamental solutions, which are basically the same



as in this work, by a solution of the eigenvalue problem. The analytical

predictions were also substantiated by their agreement with careful

experimental measurements. Hatton and £uarmby (20) gave the solutions

to problems I and III. The case of parallel plates with one side insulated

was included for comparison.

Siegel et al. (21) suggested the method of making the boundary

conditions homogeneous by subtraction of the fully developed solutions.

Berry and do Prima (22) developed the simple iterative method used for

the determination of the eigenvalues and eigenfunctions of the Sturm -

Liouville problem. Their method is particularly useful when the coeffi-

cients of the differential equation are not expressed in analytical form.

Sellars, Tribus and Klein (23) first applied the 1KB method of evaluating

the higher eigenvalues to heat transfer problems in tubes. This method

also has been applied by Lundborg et al. (l8) (19) and by Ziegenhagen (24)

to the annular problem.

3. The Velocity Profile

The equations describing the motion of the fluid are the equations

of continuity and motion:

|fc
+ (v-pV) -

'
(3-1)

p[tr + ^*v)v] - -vp - (v-t) + pg (3-2).

In the developments which follow, the flow between two coaxial

cylinders using the coordinate system and notation shown in Figure 1

is considered. The solution of thi3 problem was first given by Fredrickson
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and Bird (l) . The following assumptions are made:

(l). The fluid is incompressible,

(2). The flow is in steady-state,

(3)» The flow is laminar,

(4) • The cylinders are sufficiently long that end effects may be

neglected.

For the specific system under consideration, Equations (l-l), (3-1)

and (3-2) may be written in cylindrical coordinates as

n-1 dV
T = -m
rz

dV
z

dr
z

dr (3-3)

fe( pV - ° (3-4)

V
z dz~

= - dS" - F d? (r T
rz } + p ^z ( 3-5)-

Combining and simplifying Equations (3-4) and (3-5) leads to

1 d , v
?o " PL , ,.

rff<rTM> " —

T

+ PSz ( 3-6 )

in which p and p_ are the static pressure at z = and z = L, respec-

tively, and g is the component of gravitational acceleration g in the
z

direction of flow. This first order differential equation, valid over

the entire annular region for any fluid, may be integrated to give

,2

T
rz K'-^F] " (3-7)

in which X is the constant of intogration and P is the sum of forces

per unit volume on the right hand side of Equation (3-6). The radial

position r = XE represents that position at which T =0.
rz

Substituting Equation (3-3) into Equation (3-7) and introducing

the dimensionloss variable Q = —
, yiolds



FR
n+1

(r X
2

,
dV ln-1 dV

Tr < ,. < , dV
i'or a - 5 - X, z is positive and

dC

VT)n+l .2 dV n1S_(
C
-L-) = ..(_!) (3_9) .

, < „ < ., dV
For A. - Q - 1, z 13 nogative and

dC

pR
n+l

x
2 dV ri— CC - ~ ) = m(- —• ) (3-10).

setting s = —
, integrating Equations (3-9) and (3-10), and rearranging

leads to

\ - s# s
.f

C

(r--O
s

<K ,k<qU (3-iD

\ - R# s
J

1

(c - r
)S

dC ^-c- 1 (3-i2).

The boundary conditions V = at J = K and £ = 1 have been used.
z

Obviously, the above two equations must give the same value of the

velocity at £ = X where the shear stress is zero and the velocity is

a maximum. Then

[ (^-O s
dC = f

1

(C-^) s
dC (3-13)

and X 2

V* - E
<I>

S

! (|--C)
3 ^ (3-14).

From Equation (3-13), values of \ at different values of K and s can be

determined. These values have been tabulated by Fredrickson and 3ird (l).

.PR,,

'2m J

PR *•

In order to eliminate R(p—)° from the velocity profile, Equation (3-14)

may bo rewritten as
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V
V (

max
)

*#* Ti^L- (3-15).

K *

Therefore, the expression for the velocity is

V (V /V ) C ,2

V- r8- -
-x-
222^ • f (r- o s

aC , (3-16)
avs

T £--c) s
ac

K
„ „

.
K < K - C - X

V (V /V ) 1 ,2
^ . -2- . f4^ •

J ( C - |- )

s
dC , (3-17)

avs
T (^--c)

s
dc

c
&

3L < X - C - 1

where V is the dioensionless velocity, which may be calculated numeri-z

cally. Results for values of n of 0.2, 0.5, and 0.8 are shown in

Figure 2.
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4. Heat Transfer to Power-Lav; Fluids in Laminar Plow through an Annulus

4.1 Case I: Heat Transfer in an Annulus with Uniform Heat Input

at the Inner Wall and Insulation at the Outer Wall

4.1.1 Mathematical Statement of the Problem

The non-Kewtonian fluid flows with a fully-developed laminar

velocity profile in the +z direction in a concentric annulus. The

coordinates and geometry of the system are shown in Fig. 1. In the

region z < 0, the fluid and both walls are maintained at a uniform

temperature T . In the region z > 0, the inner wall is prescribed with

a uniform heat flux, -q., and the outer wall is insulated. The problem

is to find the temperature distribution and the variation of the heat

transfer coefficient on the inner surface with distance down the duct.

Subject to the limitations mentioned below, the energy equation

describing the problem is

•
0C

p
Vz^ = k

-r5F'<
r 3F> (4.1-1)

and the boundary conditions are

T =» T for z -

BT
or

K 5r

p=H
= for z> (4.1-2).

q for z >
r-KB

= * '

Tae following assumptions are made.

(1) Steady state has been obtained.

(2) Heat conduction in the z-direction is negligible in

comparison with heat transport in the z-direction by the

bulk fluid motion.
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(3) The physical properties p, C , and k are constant.

(4) Viscous dissipation is negligible.

4.1.2 Solution of the Problem

With the introduction of the following dimensionless variables,

c
r
B

z

V
z

V
avg

6 =
T - T

e

qR/k

§ =
z

Z
d

=
Re Pr B

Z
d 2(1 - K)

(4.1-3),

the energy equation and the boundary conditions become

5 (0,C) -

c=1
= for I > (4.1-5).

39.

r „ = -1

Because of the nature of the boundary conditions in this problem,

the general method of the separation of variables cannot be used. The

procedure used in this work was first introduced by Siegal et al. (21).

The solution is divided into two parts, a fully-developed solution and a

solution valid near the entrance which disappears far downstream from

the entry. As will be shown, this procedure results in homogeneous
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boundary conditions.

Thus,

e (5,C) = 3
ro (S,C) + e

d (c,c) (4.1-6)

in which 9
ra

is the asymptotic solution for large 2j, and 9 , is the

solution which is valid near the entrance and which will be damped out

exponentially with £• Thus, Equations (4.1-4) and (4. 1-5) are divided

into two parts,

59 j -, -. 99 , 1

W-rtr (c sr> ' (4a-7)

with boundary conditions

39
d

59
d

5£

c-i - °

(4.1-8),

and 5G
ro

.. ^ 59
ra

with boundary conditions

00

c-i
°

S9
co

(4.1-10),

W « "
-1

and 9 (0,C) = 9
ra (0,C) + 9

d (0,C) = (4.1-11).
•

In order to solve Equations (4. 1-7) and (4. 1-8) by the method of

separation of variables, we set

9 (§,C) = Z (§) E (C) (4.1-12)

where Z and E are, respectively, functions of £ and £ only.

Substituting Equation (4. 1-12) into Equation (4. 1-7) and rearranging
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yields
If- £**«*> (4 - 1-13) -

z

3ecause the right hand side is a function of £ only and the left hand

side is a function of | only, both must be equal to a constant, say

2
-a . Thus,

ff - ^ 2
Z (4.1-14),

%(C§) + a-
2
cv

z
E = o (4.1-15),

with boundary conditions

E(C)Z(0) = 1

SS

c-i - °

S3
SC C-K ' °

(4.1-16).

Equation (4.1-15) with the last two boundary conditions of Eq. (4. 1-16)

belongs to the well known class of differential equations of the Sturm -

Liouville type. It can be shown (25) that there is a countable infinity

2 2 2
of values a. , a. . . . of the parameter a for each of which the Sturm -

Liouville problem, Eq. (4. 1-15), has a solution that is not identically

2
zero. The numoers a are the eigenvalues of the problem and the

corresponding solutions E (Q) are the eigenfunctions. By exploitation

of Berry and de Prima' s (22) iterative method, Eq. (4.I-I5) can be solved.

A discussion of the method of Berry and de Prima is provided in Appendix 9.1.

Combination of the solutions of Eqs. (4.I-I4) and (4.I-I5) yields

9o(5,C) = tcs exp(^ 2
s) (4.1-17).

d ,w n=l n n n ' s "

For the solution of Eqs. (4.1-9) and (4.1-10), it is expected

intuitively that after the fluid is far downstream from the beginning
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of the heated section the constant heat flux through the wall will

result in a rise in the fluid temperature that is linear in § , Furthermore,

the shape of the radial temperature profile will ultimately undergo no

further change with increasing §. Hence, a solution of the following

form is quite reasonable for large §.

QjlyQ) = C
g
§ + G(C) (4.1--18)

in which C is a constant to be determined presently and G is a function

of the variable Q only.

By an energy balance between the inlet and an arbitrary distance

from the conduit, it is found that

2tt R

J PC V (T - T )rdrd9 = 2nKRzq
KR p z e

(4.1--19).

Introducing the dimensionless variables and simplifying yields

2tt 1

J J"
9 V SdCdS . 2rrKSOK (4.1--20).

Therefore, 2rr 1_ -

S '' S \

CJ + G(0 V CdCd3 = 2ttK§

K
L & J

(4.1--21).

Setting 1

r G(c)v^dc = o (4.1--22)

gives „ 2nY.

•e
=

J* i

J j
V CdCdp

C K
Z

2K
(4.1--23)." i-:<2

Equation (4.1-9) and its boundary conditions no; r become

d2(? 1 :

n v

dC
2

'

3 dt s z
(4.1-•24)
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and dG

d£ r i
= for 5 >

dG

C=K
. -1 for § > (4.1-25)

1

f V^GCdC =0 for § >
It

z

which may be solved numerically. The computer flow sheet and program for

this solution are provided in Appendix 9.2.

The complete solution may now be written

9 = QjUC) + 9
d(s,C)

= C
g
5 + G(C) + nli

c
nVXp(_C

"n§) (4.1-26).

Multiplying both sides of Eq,. (4.1-26) by QY E , integrating with respect
Z XQ

to £ from K to 1, and utilising Eq. (4.1-11) yields

-
1 . - 1 -

: £-0 CV 3 3 d' = - £V GE d£ (4.1-27).
i, n=l nte 2 n m -

-\r
* z a * ^ "

11 iv.

?or n / m, 1

P C £V s S d£ - (4.1-28),
;v n* z n m te VH ''

because of the orthogonality of the eigenfunctions, and Eq.. (4. 1-27)

reduces to 1
?

1

T C £V 3 <1C = -f QV G3 d£ (4.1-29).*i n° z n *
v>

* z n to v ^ "

Therefore, 1

I CV
z
G3

n
dC

c
n

- -
x (4.1-30).

r
v C3

2
dc

K
Z n

4.1.3 Expression for the llusselt ifumber

The determination of the variation of the Nusselt number with
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distance from the inlet is the main purpose of this work. But before

the expression for the llusselt number can he derived, the mixing-cup

temperature must first be determined. 3y definition

9
avg

2tt 1

J J ev Cd£d8
b x

z

2rr 1

r ; v cdcd3
K

Z

=
1

2

2 J"
9V dC

1 - K* K
z

= &
i P n ^t? r"pr

1

+
J"

6V CdC
K

Z
1 - K2 4 W*

1

+ JLc exp(-o?
2
§)f E V Cdc] (4.1-31).n=l n ^ n '«, n z* to

_j ^ '

Furthermore, from Eq.. (4. 1-15) ? it can be shown that

1

r CV E
vL * 2 n
K

, d3

at - -^af

)

n

1
= (4.1-32).

K

Substituting into Eq.. (4.1-31) leads to

9
avg

2 > -

1 - k
2
i ^v c

1

=

2j V CdC
K

z
•^3

2 (1 - K
2
)V
avg

C I (4.1-33).

The llusselt number is defined as

ITu =

D h.

-f-^ (4.1-34)

.
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where

Thus,

h. (T -
avg' " ^ 3r r-KR

i

e &r r-KH
T - T

avg

»& " K
> t C=K

(4.1-35).

e - g
avg

2(1 - K)[g»(K) + n|1
C
nexp(-»nS)EA

(K)
]

G(K) + nl1
c
n
s
n ( K)exp(^s)

2(1 - K) /. .
-

£>= ^ -^ "—5

—

(4.1-36).
G(K) + LOE (K)exp(-o I)x ' n=l n n v

:

v n3/

This completes the solution of the problem. Results are presented in

Tables 1 and 2 and in Pigs. 3-8.

4.1.4 Asymptotic Solution by the WXB Method

The computation of the higher modes of Eq.. (4.1-15) becomes increas-

ingly difficult due to t:.e fact that the eigenfunctions oscillate (undergo

a sign change) n times in the interval K - £ - 1. To follow these

oscillations the spacing of the net for the numerical calculations,

either by the method of Runge - Kutta or finite differences, must be

reduced. This entails considerable time expense for many eigenvalues

and functions of different boundary conditions. In addition, it is

desired to chock the solutions obtained from the iterative method.

Accordingly, it is advantageous to develop an asymptotic solution valid

as a becomes large. Follovjing the method of Gellars, Tribus and

Klein (22), the so-called WKB method solution of Eq.. (4.I-I5) can be

obtained.



20

Table 1. Functions in the solution of problem I for n=0.5

Iterative Kethod
Radius Eigenvalue Expansion Coeff. C S (X)

ratio a
n

C
n

11 LI

0.2 4.5254 0.02716686 -0.07568741
8.5177 0.00860408 -0.02700806
12.4744 0.00429905 -0.01461511
16.4744 0.00260579 -0.00933038
20.3522 0.00172230 -0. oc642 63

7

24.2753 0.00125292 -0.00482587
28.1888 0.00091030 -0.00359735
32.0880 0.00072802 -0.00294076

0.5 7.1455 0.02662257 -0.07248851
13.7433 0.00779512 -0.02301125
20.2084 O.OO381384 -0.01200757
26.66138 0.00228768 -0.00751367
33.09439 0.00150830 -0.00512679
39.51390 0.00109488 -0.00382661
45.91941 0.00080289 -0.00287281
52.30940 0.00064127 -0.00234039

TJXB Method
Radius Eigenvalue Expansion Coeff. C E (K)

ratio or
n

C
n

n *i

0.2 4.6140615 -0.1343204 -0.08750703
8.5689715 -0.04787027 -0.03118655

12.523882 -0.02543207 -0.01 65 6850
16.523882 -C.016C9675 -0.01048672
20.433702 -c. 01124695 -0.00732717
24.388612 -0.00837468 -0.00545594
28.345220 -0.00651850 -0.00424667
32.298432 -O.C0524378 -0.00341622

0.5 7.515493 -0.09639799 -0.62394420
13.957344 -0.03435518 -0.02223669
20.399196 -0.C1825191 -0.01181370
26.841048 -c. 01155220 -0.00747726
33.282899 -0.00807164 -0.0c 522444
39.724751 -0.00601028 -0.00389021
46.166602 -0.00467861 -0.00302827
52.608454 -0.00376332 -0.00243584
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Table 2. Functions in the solution of probl em I for n=0.8

Iterative Method
F.adius Eigenvalue Expansion Coeff. C E (K)

ratio a C
n n

n n

0.2 4.62768 0.02567792 -0.07086307
8.63452 O.OC855808 -0.02734728

12.60923 0.00433102 -0.01512950
16.57412 0.00266460 -0.00986245
20.53212 0.00177207 -0.00685938
24.47825 0.00130180 -0.00521646
28.41486 0.00095422 -0.00393300
32.33733 0.00076834 -0.00324269

0.5 7.33398 0.02545143 -0. 069 69 242
13.91432 0.00779740 -0.02367462
20.41371 0.00388651 -0.01261984
26.90379 0.00231617 -0.00787358
33.52579 0.00155049 -C.CO5467O8
39.83944 O.COI13102 -0.00410468
46.28813 0.O00813O6 -0.00302409
52.72142 0.00068791

WEB Method

-0.C0261042

Radius Eigenvalue Expansion Coeff. CE (K)

ratio a
n

C
n

n n

0.2 4.645519 -0.14166713 -c. 09778348
8.627392 -O.O5048862 -0.03484896

12.609266 -0.02682312 -0.01851423
16.591140 -0.01697718 -0.01171823
20.573014 -0.01186213 -0.00818764
24.554888 -0.00883275 -0.00609667
28.536760 -0.00687572 -0.00474586
32.518635 -0.00553060 -0.00381741

0.5 7.569564 -0.10012111 -0.06762953
14.057762 -0.03568206 -0.02410242
20.545950 -O.C18956S4 -0.01280492
27.034159 -0.01199837 -C.C0810463
33.522357 -O.OC838338 -0.00566278
40.010555 -0.00624241 -0.00421 661
46.493753 -0.00485931 -0.00328236
52.986951 -0.00390867 -0.00264022
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/.o

0.2 0.6
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2.&

/.2

Fig. 3 Temperature profile development, problem'!,

K=0.5, n = 0.5
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Let 3
n

es(C)
f (4,.1-37)

and an asymptotic solution is sou,ght in the form

cCC) = a
ns

+ % + or"
n

L

g? +
• • • (4..1-38).

Substituting Eqs. (4.1-37) and (4 .1-38) into Eq. (4.1-15) and equating

powers of a gives
n to

(g«
2

+ *>» + <*«,g{ * G +
\ *bK + (g-I + 2<z , p- 1Vbl ^0S2

+ g^; + —•) 4 ... = (4. 1-39),

where the primes indicate dii'ferentiation with respect to Q, Since a
n

is assumed to be largo, only- the Jrirst two terms of Eq.. (4.1-38) are 1

retained. There:fore,

5 "

51
=

- 4 'v* (4.

(4.

1-40)

1-41).- iVg£ c

Substituting the above two equations into Eq.. (4. 1-15) gives i•or E
n ,

n J(Q)

=

A"exp-
L
iX

n | dj+ 3"^{-^
n

/_ I

X
V
3

'

dCJ

/ip*

=

A'e:o},i\ f
L n

K
f\ } + B«exp{-lX

n J /="
}

z ^*

fl v v
7 z

"
1 :',

>K
is. z

(4.1-42).A cot

flv l

Equation (4. 1-42) is tho so-called WKB solution. It must be patched to
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the i•e^ular solu'tion ca 2c,. (4.1-15) :for X < Q < 1 for sufficiently

large i a .

n

If it is as:aumed that very near bhe walls the velocity pro:file

can bo expressed as a linear oq,ucition., 3q. (4.I-I5) oar 1 bo reduced t,0

tV.'O £iiaplor eq.ua'tions. Lot

"1
2/3
n (C -K) (4. 1-43)

.

Then
(V

77 max
'7
s

=
JL , 2

X «

aw' . p -I

- C) dC
G

-2 TV, -,£

1 Tr a '
J

,2/3
+ " n

n

dii
1
-> D

i
n
1

as Tl, ->

where
D. -
i

(v /v )
max ' avff

X ,2

J (^--C)
S

d£

K ^

-,2
1 X

Lx

-s
-r] (4. 1-44)

.

Equal;ion (4. 1-15) then becomes

d^
n

,„2
T

1
dD
-~ + D.TLE =
dT), 1 '1 n (4. 1-45).

2/3
o- '

J

n
n

VJhen or is large
n ° , Eq. (4. 1-45) reduce:3 tO

d
2
E
n

ra +W : =
n

•

(4. 1-46)

,

which 1 is a form of Bessel's equation. The solution is

n _

r2/T
f

l
J
l/3L~T"

,3/2
'1

-2/dT

J
+ V-l/i 3 i

/2 -n
1

J/ (4. 1-47)

.

3y a similar procedure>, the solul;ion near the outer wall is found tc ) be

n

: c

"ViG

r2/D"
' T . .?.
r

2°l/3L 3

.3/2
'2

1 -2/F"

] * V-1/3L-T T,V2
'2 ]} (4. 1-48)
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whore (V A ) - -,s

D
o

- ™ »™
.

L
l-. 2

]
(4.1-49).

x *

The patching of Eq. (4.1-42) - (4. 1-47) and (4.I-48) can ho performed

by appropriately linearising the velocity profile in Eq.. (4. 1-42) and

by noting that, for largo values of the argument, the Bessel functions

appearing in Ecs. (4.1-47) and (4. 1-48) can be expressed as cosine

functions. This results in the following equations for the constants

GV H
i'

G
2'

and H2'

5 TT
G-, cos^~ TT + II. COSrrx = COS CT
1 s.d 1 12

G. sinr-p tt + H-, sin—" = sin a

5 ft
-1-

G
2
cos-^- ~ + IlgCosz— K^cos(o?

nY
- a)

GgSittj*. rr + H
2
sin^- = Xa sin(«

nY
- a )

(4.1-50)

where
f

Y =
i

7v„dc/F.r (4.1-51).

The derivation of these equations may be found in Appendix 9.3.1 Values

of v for different values of K and n are shown in Table 3.

Table 3. Constants in the Asymptotic Solution

n X v n K y

0.5 0.2 0.794354 0.8 0.2 0.788975
c.5 c.5 O.487686 0.8 0.5 O.484202

ter evaluating tho constants, it is found that near the inner wall

J f 2 . f
tt,_ r

2//\ „3/2" ! . , 5nv- "f^S „3/2TI
-

J
• - sm(o - -^j^— n/ J

- - sia(o - 2-)j_
l/3
|_-V J)

(4.1-52),
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i

and near the outer vail

2/1T
- sin(a v - a - ~)J^ ,A

L

/3

i fWU _ '/•". -5/0

1

r2/57
" f1 Sin^ " * " f|)

J-l/3[-rC ] } (4.1-53)

.

/I

Using the "boundary conditions, Eq.. (4. 1-16) yields

sin(o - ~) -

(4.1-54).

sin(a
nY

- o - ~) =

.'. a
n

. (n + |)tt/y • n=l,2,3... (4.1-55)

This is the asymptotic expression for the eigenvalues. The results

are shown in Tables 1 and 2 and a derivation of Eq,, (4.1-55) is provided

in Appendix 9*3.2.

For computational purposes, particularly to establish the asymptotic

values of the C , it is necessary to provide a more convenient form for

the integrals appearing in Eq. (4. 1-30). It is desired to evaluate the

r
1- 2

integral, ' V £S d£, which is the norm of the oigenfunction. Taking the
X

z n

derivation of 3c. (4.I-I5) with respect to a yields

sHtc^ aT>]
+Ws

n
+ *nV *T - ° .. ^.1-56).

n n

Since the order of partial differentiation may he reversed, this may he

*..Titten as

BE

SrL« ¥*dl +wE
a

+w *r ° (4-ww-

Multiplying Eq. (4. 1-57) by E and integrating between K and 1 leads to
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J
-» .

XV &
** "n
n

dC =

(4.1-58).

Integrating by parte twice yields

i»
— ? 1
v cb ac = ~- i

-
3° n ^ 2a I

n
'^n S? (ST')] +

i fa*) ' CCS?3)]
1

J

(4.1-59)

n n

£E

C-l ^V*^ C-K

I (4.1-60).

1 _
D .. nunorator of Eq,. (4.1-30) has the form, £V (

2
33
ndC.

Multiplying

. (4. 1-15) ^7 G(C) and integrating by parts yields

(t „— „„ .- 1 ,;1G .
" r» _ d / r dC\ , r \

iv G: A A
n

(4.1-61).

illing 3q.s. (4.1-24) and (4.1-15), it is found that

*rr( C ttJ = C C ^
dC

Vb d£' gte z
(4.1-62),

n j ^*-*-J

(4.1-63).

n

•on -1 a ~r ?-

C .- 33 -1
= " 2 l

C dC~ -L
n

•

- (4.I-64).

A £ ;.
n

KS

n

(4.1-65).
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Thus, the coefficients of the infinite series may be written

2KE (K)

B»W«se^'
., a f

n>

"a BC
v Sc\

(4.1-66).

I-

C-KC-l '

»

Further simplification can be made by substituting appropriate

tarns derived from Ec. (4.1-47) and (4. 1-48) into Eg.. (4. 1-66). Differ-

entiating 3c. (4.I-52) and introducing the condition of Eq.. (4.1-54) yields

S* - - 7= **>>. - h «>sh l#-i/3 (-r ^
/2

>3
'

• '

Differentiating again with respect to £ leads to

L-/!!e> 2 ^1/3/5- fate - KiJ /
r^Scv fc - -) 3/2 1

-2/D7

(4.1-67).

(C-K) 2

Ĉ
J
2/3L 3 nu

, (r - -0 3/2 1 1
J J

(4.1-68)

> and (C - K)
2

|f
J
2/3

"> °-
'2/3

vhorofcre, v o^
= (4.1-69).

C-K

Differentiating Eq.. (4.1-53) and introducing the condition of

Eq,. (4.1-54) yields

2A: ,

V COs(v - a - £)ig J.
l/3(-/ Tip)

2/51 5

- BiaKv - « - S> dr- ["f
J
-i/3 (-r ¥ 2)

] }
(4a-70)

•

n
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For small 71
? ,

*n "
/I

,1/6
>V3

Ky iv cos(or v - c - r~) • "V
""

i /
'

> - 7 cos(a v - a - *?).

—

n 12 (I^1/^ Y v n- 12' /JU 1/6
(f)J3-

-sin^v-a-g).^^™^-]} (4.1-71).

Therefore,

(_2L)
?C

v s«
C-l

= (-1)

. 2v^ 2/^
n+1 • o n

r(f)
576"

Again from Eq. (4. 1-47) and (4.I-48),

2/dT
3/23nW " ^(-ff 1 C=K

T|^i (!f ,3/2) -l/3
1
(-^ J

3
C-K

:
;

1/3

3 (1) =
n

Consequently,

r(f> • ^
i^&

r(f)

n • 1

(4.1-72).

(4.1-73).

(4.1-74).

(4.1-75).

Sq,, (4. 1-55) and Eg,. (4.1-75) sn^y bo solved numerically. Eigenvalues,

expansion coefficients and combined function, C^E , calculated by the both

methods are shewn in Tables 1 and 2. Temperature profiles and variation

of the Kusselt number and average temperature with axial distai~.ee based

on the data calculated from the iterative method are shown in Pigs. 3-8.
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For small. Tip,

,1/6

*K,Y - ° 'To)-^—— - — Kr -.v 003(0- v - o - r-r-j . -^ r7T -
Stfy, /t L n 12 rl^ 1/}'» /3

Y cos(

•
i- 5il\ a r 3"/J,1/3

'n
L4)l^6j/

Therefore,

C=l
= (-1)

n+1 • o n

r(f) . 3
W

Again from Eq. (4. 1-47) and (4.I-48),

3 (K)
n v ' t J

-i/3 f-T ^i
/2

) C-K

j _?
l/3

rf/J .3/2 ,-1/3
1

(-f):

(

C-K

3
1/3

,(D

Consequently,

(-l)
n
-3
l/3#

r(p . ^

3^/6 r(f)

"«5/3.
Y . D

l/6
n • 1

hk
(4.1-71).

(4.1-72).

(4.1-73).

(4.1-74).

(4.1-75).

Jc. (4-1-55) and Eq.. (4.1-75) may DQ solved numerically. Eigenvalues,

expansion coefficients and combined function, CwE , calculated by the both

methods are shown in Tables 1 and 2. Temperature profiles and variation

of the Iluocelt number and average temperature with axial distance based

on the data calculated from the iterative method are shown in Pigs. 3-8.
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4.2 Case II: Heat [Transfer in an Annulus with Bqual Wall Temper-

atures at Both ".'/alls; also Constant Temperature at the Inner Vail,

Insulation at the Outer (fall

In those two problems, the flow conditions are the samo as that in

Section 4.1, hut the boundary „ .

'

-itions are

different. Instead of having a uniform heat flux on the inner wall, a

fixed constant temperature is maintained on it. On the outer wall, the

conditions of constant temperature, or ilation, may he treated

simultaneously. Since the boundary conditions in these problems can be

made homogeneous with respect to the Sturm - Liouville problem, the

energy equation is readily solved by the method of separation of variables.

4.2.1- Solution of the Problem

The energy equation describing the problem is

The following boundary conditions are considered:

Problem 2

T(o ,r) - T
' ' e

T(s,k) = T
q

for z >

T(z,KH) = T
Q

for z >

Problem 3

T(o,r) = T
e

ST
Sr r=R=° for z >

T(z ,KR) - T
Q

for z >

(4.2-2).
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Introducing the following dimensionless variables,

r - £
b " R

z

_ T - T
Q -

T _ T (4.2-3)
e o

V
z

V
z

™ V
'avg

3P3
c r

z
d " 2(1 - K)

yiolds rr Se 1 ;i/r a§\ /. _ .vv
z a?

= Q^K' (4 - 2-4)

with boundary conditions

Problem 2

e"(o,c) = 1

6*(§,l) =0 for § >

5"(C,K) = for § >

Problem 3 (4.2-5).

8"(0,C) 1

3C c-1
=0 for § >

a(§,K) =0 for § >

Equation (4.2-4), with the last two boundary conditions of each problem,

is a differential equation with homogeneous boundary conditions on the £

variable. Using the method of the separation of variables in the same

way as in Sec. 4.1.2, set 8(5>C) = Z(§) #B(C), thereby obtaining the tv;o

equations with the boundary conditions shovm.



dZ .
n 2 „•?=- » - Of Z

de, n n

dS

§r(C ^r1) + <CCV B -
dC dC rr z n

with "boundary condition

Problem 2

E (l) = for 5 >

E (X) = for 5 >
n v '

3

Problem 3

sc C=l
=

S (K) =
n^ '

for § >

for I >

and

The solution is

e"- e (c)z (0) = 1

9 = LBS exp(- or
2
§)n=l n n -

v nw

with coefficients

37

(4.2-6)

(4.2-7)

(4.2-8)

(4.2-9).

(4.2-10)

K
2 j*

.?? -,2.

(4.2-11).

Eigenvalues and corresponding expansion coefficients and combined functions

are shown in Tables 4-7.

4.2.2 Expressions for the Nusselt I'umbers
D h
Q

The llussolt numbers are defined by Nu = -e—-

".mere

ma

h (T - T ) = +k -
o v o avg' 33r

^T1

T. - T ) - -k 2i
x 1 avg 3r

(4.2-12).

r=XR
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Table 4. Functions in the solution of problem II

by the iterai;ive method :ror n=0.5

Radius Eigenvalue Expansion B E'(X)
n n v B E«(l)

n n v
'

3
j
E'(1)-KB«(K)1

n!_ n^ ' n v
'J

ratio a
n

Coeii. .3
' n

C.2 3.3749 -O.652722 8.187139 -3.208594 -4.846022
7.2493 0.083455 -2.023264 -0.77269C -0.368037

11.1914 -O.I0I466 5.595233 -2.155558 -3.274605
15.1376 0.035658 -1.593649 -O.612785 -0.293055
19.0857 -O.O8644I 4.730517 -1.808730 -2.754883
23.0425 O.C21799 -1.409237 -0.535454 -0. 253 607

26.8886 -0.057558 4.300519 -1.618970 -2.479074

0.5 5.5836 -O.580416 8.935970 -6.033153 -IO.5O1..

II.8406 0.034367 -1.015515 -0.673411 -O.I65653
18.2676 -0.147369 6.226329 -4.150863 -7.264032
24.6865 0.014698 -0.801174 -0.532289 -0.131702
31.1164 -0.079116 5.241128 -3.496911 -6.117475

Table 5. Functions in the solution of problem II

by the itera -iive method for n=0.8

Radius Eigenvalue Expansion 3 13 •(::)
n n

B E'(l)
n n B^CD^EJCK)]

ratio a
n

3oeiY.,B

C.2 3.3122 -O.65678I 7.960136 -3.130316 -4.722344
7.2652 0.034536 -1.954267 -0.770919 -O.38CC66

11.2477 -0.155744 5.I48884 -2.045140 -3.074917
15.2264 0.035363 -1.531163 -0.6c6550 -0.300317
19.2064 -O.O83197 4.325253 -1. 712811 -2.577362
23.1919 0.021906 -1.342649 -O.529185 -0.26C655
27.182C -0.055337 3.912C67 -1.529902 -2.312315

0.5 5.4844 -0.582620 8.680105 -5.871377 -10.211930
11.8880 0.034998 -0.997143 -0.676370 -0.17829

8

13.3764 -0.1419 61 5. 800221 -3.919573 -6.819639

24.8497 O.OI4852 -0.782219 -0.527490 -O.136480

31.3333 -O.C76IO7 4.870570 -3.23633c -5.721665
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Table 6. Functions in the solution of problem III
by tho iterative me"thod for n=0,.5

Radius Eigenvalue Expan:sion Coeff. B'E'(K)
ratio a

n
B«.
n

XI XI

0.2 1.4632 -0,.673244 4.80837590
5.7299 -0,,123214 2.49363260
9.7283 -0,,066002 2.C43CO08O
13.7159 -0,.043251 I.78785030
17.6868 -0,,032926 1.69100360
21.6128 -0,.025059 1.53566560
25.6319 -0,.021547 1.53646000

0.5 2.7747 -0..585164 5.26671000
9.4404 -0,,138566 3.45031730

15.9337 -0,.074649 2.82480400
22.4204 -0,.049671 2.5030558c
28.8651 -0.037380 2.32838520

Table 7. Functions in the solution of problem III
by the iteral;ivc method for n=0,.8

Radius Eigenvalue Expansjion Coeff. B»E'(K)
ratio a

n
3'
n

11 XI

0.2 1.4555 -0.,676644 4.82575730
5.7442 -0,.117378 2.2710C010
9.7874 -0,,062326 I.84624880
13.8046 -0,,040782 1.6075683C
17.8C51 -0,,030992 1.51375930
21.8067 -0,.023619 1.37338590
25.8088 -0,,020275 I.36893650

0.5 2.7698 -0,.587556 5.2957O09O
9.5026 -0,,132201 3.16349060

16.0538 -0,,071165 2.60591990
22.5730 -0.,047374 2.3C8C1620
29.0795 -0,,035617 2.14290390



Thus,

and

D |2L
„ 9 or

2(1 - 10—B v
'?X

avs

lm. =
2(1 - K)f £-1

avg

It can bo shown thai

C=l

avg

40

(4.2-13),

(4.2-14).

avg

J. — ft. ft.

Integrating 2a. (4.2-7) with respect to £ from X to 1 results in

(4.2-15).

1
n -1

' £V S dC = - ~ E'(l) -KE»(K)
x a

n

There

(4.2-16).

fore
» a" = -—2—5. I.B exp(-a'

25)*4r 3,
( 1 ) -KE»(K)1 (4.2-17),

avg , g.2 n=l n ^ n ' 2 L r. ' n x
'J ^ "

and Nu can be caressed as

(1 - II) (1 - h
2

)J1
3
n
E^(l)exp(- of^)

U
° "

g. K B Fe«(1) - KE«(K)lexp(- o<
2
§)n=l 2 nL n v

' n v
'J ^ v n3/

a
n

(4.2-18)

t-2n ~ 2 P N

NU. = -
(1 - K)(l - K ) E..B E«(K)exp(- oT?)
^ /

v

y n=l n n v
'

x n '

1

Q'

2_-1
En
~ B

|
2«(1) - KB'(K) exp(- at)

n=l 2 nL n v ' n x
'J

v nw
(4.2-19).

[Then C -> 0, l~\i -> <* . For values above a certain 5 = 5, Nu will

not differ by more than a few percent from the final asymptotic value

of the irusselt number, I'u . ^he region between and § is called the
a e

thermal entrance region. In t:.is region, IIu decreases from an infinitely
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large value at § = to Hu for § > Z • ^ot large value of 5, the first

torn of these series for Nu dominates, so that

(1 -K)(l -z2
)ah'(i)

Nu = s =-i (4.2-20),
[B£(l) - BJOO]

(1 -K)(l -K2
)«?E'(K)

Nu
fi <

= f
: M (4.2-21)

[EjCL) - KE{(X)J

and

a,i

are the asymptotic or fully developed ITussolt numbers at the outer and

the inner walls, respectively. Temperature profile development and

variation of the Husselt number and average temperature with axial distance

are sho-.m in Jigs. $-16.

4.2.3 Asymptotic Solution by the WKB Method

The HKB method was presented in Sec. (4.1. 4). To solve the present

problems, we have only to substitute the boundary conditions of Eq.. (4.2-8)

into Eq.. (4.1-52) and 4.1-53). Thus,

sin(o - j| tt) =0

sin(or v - a - r|ir) =

(4.2-22)

for problem 2, therefore

a
n

= (n + Z)Tx h (4.2-23),

Sin(0 - rr^ ttJ =
12

„ (4.2-24)
sin(a

nv
- a - jg) =0

for problem 3, therefore

«* - (n + |)tt /y (4.2-25).
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Equations (4.2-23) and (4.2-25) are the asymptotic expressions for the

eigenvalues and are easy to evaluate. The results are shown in Tables

8-11. These results should be compared with those obtained by the

iterative method and are presented in Tables 4-7.

For the evaluation of the coefficients of the infinite series, it

is necessary to re-write Eq.. (4.2-11) in terms of expressions which are

obtainable from the HKB method. Substituting the appropriate boundary

conditions into Eq.. (4.1-59) yields

1 i-> -i
— Oj1> O-ii -il

for problem 2, and

(4.2-26)

c=i

SE 3S
n „ n

+ W ^Wn * C-X (4.2-27)

for problom 3.

Furthermore, from Eq. (4.2-16),

a
n

(4.2-28)

for problem 2, and

r £V E dC = ^o KB' 00
n

(4.2-29)

for problem 3.

Therefore,
B - -
n

2j S«(l) - XE'(K)
!_ n n x

'

C-l '*n * ic=K
J

(4.2-30)

for problem 2, and
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3 = -
n

iS'(K)
n v '

2^1 u .d/ *h"|
c-

C-l
S
n St

(4.2-31)

for problon 3.

Simplifications similar to those shewn in Seo. 4.1.4 can bo made

yielding

(-!)»#* A^« ] • 3
1/6

r(f)
B =
n

or vX*
n'

(4.2-32)

for problem 2, and

3 =
n

,1/6 r(
2

}
. 3
V6

or v
n T

(4.2-33)

for problem 3.

Thus, the coefficients are ready to evaluate. Eigenvalues, expansion

coefficients and so::.e combined functions calculated by the 1>K3 method

are shown in Table 8-11.
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Table 8. Functions in the solution of probl or. II
by the 33 method for n=0.5

Radius
ratio

Eigenvalue
a
n

>ansion
Coeff. ,B

n

3 E»(K)
n n^ '

3 E«(l)
n re ' B^iCD-J^W]

0.2 3.295758 2.969854 3.349C79 -3.213493 -4.883309
7.250668 -0.426731 -2.029270 -0.781C49 -0.375195

11.205578 O.873486 5.552376 -2.137065 -3.247540
15.I60489 -O.204O89 -1.586943 -O.6IO8OI -0.293413
19.115399 0.512043 4.646891 -1.788551 -2.717929
23.070309 -0.134115 -1.379689 -c 531031 -0.255093
27.025219 0.362177 4.140320 -1.593576 -2. 4 21 640
30.980129 -0.099373 -I.25C560 -O.48I33O -0.231218

0.5 5.368209 2.384888 9.342101 -6.2275I8 -10.898567
11.810061 -O.I548I6 -1.025628 -0.683825 -0.170911
18.251912 0.701437 6.212763 -4.141477 -7.247358
24.693764 -O.C74042 -0.802225 -0.534769 -0.133657
31.135615 O.4IH87 5.199583 -3.466083 -6.065873
37.577467 -0.048656 -0.697454 -O.464929 -0.116201
44.019318 O.29C84O 4.432671 -3.083235 -5.404614
50.461170 -0.036233 -0.632178 -0.421415 -0.105326

•Table 9. Functions in the soluti.on of •oroblem II
by the SKB method for n=0.8

Radius
ratio

Eigenvalue
a
n

Expansion
Coeff. ,3

' n

3 E»(K)
n n v ' 3 E«(l)

n Tl
' BlEn(l)-KE.(K)]

0.2 3.318223 2.865589 7.638174 -3.039447 -4.567082
7.30C101 -0.431171 -1.944050 -0.773593 -0.384732

11.231975 c. 842820 5.079604 -2.021319 -3.037250
15.263849 -0.206212 -1.520299 -O.604970 -0.300910
19.245723 0.494067 4.251219 -1.691 681 -2.541925
23.227596 -c. 135511 -1.321749 -0.525961 -0.251611
27.209470 0.349462 3.787781 -1.507266 -2.264322
31.191344 -0.100912 -1.198043 -0.476735 -0.237126

0.5 5.406831 2.302810 8.605150 -5.86740S -10.209982
11.895030 -0.156326 -0.997318 — .673756 -0.175097
I8.383228 0.677297 5.775834 -3.901994 -6.789930
24.871426 -0.074764 -0.779930 -0.526895 -0.135930
31.359624 0.397036 4.833940 -3.255654 -5.632624
37.847822 -O.O49I3I -0.678071 -0.453033 -0. 119047
44.336021 0.280330 4.306979 -2.909656 -5.O63145
50.824219 -0.036587 -O.6I4609 -0.415210 -0.107905
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Table 10. Functions in the solution of problem III
by the 'JKB method for n=0.5

Sadius Eigenvalue Expansion Coeff. B«S'(K)
ratio a B«

LI 11

n n

0.2 1.977455 1.69253790 3.38487410
5.932365 0.56/17931 2.34694090
9.887275 c. 33850759 1.97948680

13.842185 0.24179H4 1.7 6947010
17.797095 0.18805977 1.52727790
21.752005 0.15386709 1.52198950
25.706915 0.13019522 1.43955450
29.661825 0.11283586 1.37249940

0.5 3.220925 1.70357730 4.74721700
9.662777 0.56785910 3.29153640
16.104629 0.34071546 2.77618970
22.546480 0.24336818 2.48164530
28.988332 0.18928636 2.28222420
35.430183 O.I54S7O67 2.13455900
41.372035 0.13104441 2.01894580
48.313886 0.11357182 1.92490240

Table 11. Functions in the solution of problem III
by the JJKB method for n=0.8

ratio

0.2

0.5

liger.value

a
n

E:cpansion Coeff.
B'
n

B«E«(:c;
n n v

'

1.990936 1.59750970 3.02914450
5.972810 0.53250324 2.10029150
9.954684 0.31950195 1.77145470
13.936558 0.22821567 1.58350950
17.918431 0.17750109 1.45626C90
21.900305 0.14522816 1.35203760
25.832179 0.12288535 1.28826620

O.IO65OO65 1.22325810

3 . 244099 1.63240980 4.37974810
9.732297 0.54413 660 3.03674750
16.220495 c. 32648197 2.56129250
22.708693 0.23320140 2.28954810
29.196892 0.18137336 2.10556350
35.635090 O.I484OO89 1.96932860
42.173238 C. 12556999 1.36266470
48.661486 0.10882732 1.77590090
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4.3 Case III: Heat Transfer in an Annulus with Different but

Constant Wall Temperatures at the Inner and Outer walls

The solutions whioh wore presented in the proceeding section apply

only -.rher. the two walls of the annulus are hold at the same constant

temperature. In this section, the problem is generalized to the situation

in which the inner and outer walls of the annulus are at different but

const-r.t wall temperatures. The method used is that of superposition,

so that the eigenvalues obtained in the proceeding section can be used

hero. The results obtained are such that one wall of the annulus can be

at either a higher or a lower temperature than the other. This technique

has boon used by Viskanta (15) • The energy equation and boundary

conditions describing the problem are

• p zes r ?.r
v or'

T(o,r) = T
o

(4.3-1).
T(z,E) = Tw

q

T(z,KE) = Tw.

4.3.1 Method of Superposition

To solve the energy equation, Eq.. (4. 3-1), it is convenient to split

the problem into two simpler ones. Since the energy equation is linear,

the general solution can bo obtained by superposition of the two simpler

solutions.

Let U denote the general solution of Do.. (4. 3-1) with the boundary

conditions
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U(o,r) = T
s

U(z,R) - T
e (4.3-2)

U(z,KR) = TWj

and let V denote the general solution of 2a. (4.3-1) with the boundary

conditions

V(o,r) = T
e

V(z,H) = T;.
o (4.3-3).

V(z,KR) = T
e

Figure 17 provides a graphical description of these boundary conditions.

3ecause of the linearity of Eq. (4.3-1)? any linear combination of

solutions is also a solution, and a proper addition of solutions U and

V will yield a, temperature distribution satisfying the boundary conditions

of the general problem. Combining solutions U and V yields

T = U+ V- ?
c

(4-3-4).

.his equation can be rewritten in the form

C- - C, i r
T - (:• + - 7=-)(T - Tw.) + Tw. + (4 + 4 ~)(T - Tw ) + Tw - Tv 1 - C.

/v o x' i v
- 1-C.e o J o o

*i *i

(4.3-5),

rhcre »(S»C) = n _ rr-"!; ~
t _ r

~
(4.3-6),

and
(4.3-7).

The solution $(§,£) satisfies the energy equation

5(1,0 =

U - Tw.
l c -c±

m rr« r

e i
~ M

$ \ § f C j
=

V - Tw

T - Tw
C

1
1

- c

* c
i
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6-1

Ts

Iip

-/
Xv."T«r

At,>Wi

A.

Kg

Fig. 17a Step change af-fhe iriner wall

/ Tvjo
Qs-O

\

J±^5tf

i \
Twi'Tc KR

! *

Fig. 17b Step change at the outer'wall



57

with boundary conditions

•(o,c) - t^=4-1 - *i

5(5,1) « (4.3-9).

S(5,K) =

Similarly, the solution
ty

satisfies the energy equation

v -
n (" N x

C 1 i mlJ

S B5 "
C 5C

(C
SC

; " C(l - Q ±
)

(4.3-10)

with boundary conditions

C - Q*

*(o,C) = ,./
2

t(5il) - (4.3-11).

*(5,K) = c

The validity of the temperature distribution given by Eq. (4.3-5) oa^i

be demonstrated aa follows:

i + c _ A n _ m
3

' e

T = (?""$ + 7 A(T - Tw.) + Tw. + (* =i + J"
"

£ )(T - Tw )

+ Tw - T
o e

= (T - Tw.) + Tw. + (T - Tw ) + Tw - T% e i' x v o o' o e

" *e '

At § > 0, C - C±
- K, T - Tw

±

T = (0 + 0)(T - Tw.) + Tw. + (0 + 1)(T - Tw ) + Tw - Tv /K
o i

7 i v ,x e o' o e

= Tw.
i

At % > 0, C - 1, T - T;;
o
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T = (0 + 1)(T - Tvr.) + Tv. + (C + 0)(T -

e
- Tw ) + T» -

o'
- T

e

= Tir
o

Thus;, the boundary conditions are -satisfie d and (4.3-5) can represent

the general problem of Eg.. (4.3-1).

4.3.2 Solution of the Problem

Before the method of separation of variables c;an be used to solve

Eqs. (4.3-8) and (4. 3-10), it is necessary to define ne;: functions to ohange

the non-homogeneous partial differential equations :Into a homogeneous

pill? L. iifferential equations.

To solve Eq. (4.3-8) and its boundary condition, Eq. (4.3-9)>t

define §(§,£) = Y(§,C) + W(C) (4.3-12).

Subsitituting Eq. (4.3-12) into Eq. (4.3-8) yields

v ^-=±-Uc 21) + lL(r SSL) .

1
(4.3-13).* CU-..CJ

Spli tting the above equation into two equations and their corres]ponding

boundary conditions yields

(4.3-14)

vifh . boundary conditions

/ x 1 — C 1 >

-

^i

Y(S,D =

•

(4.3-15)

Y(§,K) =

and Id, d"..\ i
n (4.3-16)

C S£" ag)
+

Cd _
Q± )

~ °

'.:_ ... . boundary conditions

:;(i) =

;;(::) = o
(4.3-17).
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Inspection of Eg.. (4.3-I4) and the last two boundary conditions of

Eq. (4.3-15) shows that these are identical with Eg.. (4.2-7) and Eq. (4.2-8)

of the proceeding section. Therefore, the eigenvalues and oigenfunctions

obtained in the proceeding seotion -./ill be the sa~;e as those of Eqs. (4.3-I4)

and (4.3-15). The solution, therefore, is

T(?,C) - J1
C
n
E
n
(C)exp(-a-^) (4.3-18).

From the first condition of Eq.. (4.3-I5) and the orthogonality property of

the eigenfunctions, the coefficients are found to be

P (^2LL.) Cv e dC
'. vln C . z n *

c = -

—

r-^ (4.3-19).
n i _ o

r £V E^dC

A similar procedure may be followed to solve Eq. (4. 3-16). Setting

*(i,e) - y«(§,c) + »»(c) (4.3-20)

yields
tft(c) _^L_ + l^i_ (4.3-21),

l - C- in C-

and
Y'(?,C) = S

n
D E e:o(-a 2

(4.3-22),
' b/ n=l n n - ^ n*

'

where 1
P (1 _^2Ll_)rvE d£

D = -* * (4.3-23).
n 1

Therefore,

|(5 fC) - J1
C
r
E
n
(C)exP(-^) +^7 _g-|7 (4.3-24),

'1 "i

«•« JAV«)^- an5)-rrf- + ^r < 4--25 >-

i — "i
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Substituting Eqs.( 4. 3-24) and (4.3-25) into'Eq. (4.3-5) results in

T = LCE (C)exp(- a\) + 1 - *"
% 1 (T - Tw,) + Tw.

Ln=l n nvw - ^ ns/ In C-J e i' i

+ I Z.D 3 (C)exp(- a
2
?) + —-£-](? - Tw ) + Tw - T

Ln=l n n Vto/ iV ns/ In £._T e o' o e

(4.3-26).

This is the temperature profile of the problem. The expressions

for the Nusselt numbers follow readily from their definitions and the

temperature profile given by Eq. (4.3-26).

4.3.3 Expressions for tne Nusselt Numbers

7or the case Tw = T , i.e. step change at inner wall, reducing
O G

and rearranging Eq.. (4*3-26) yields

m _ fp|j

* ' T1^- ' JA^O^C- ?& + 1 ~ ITT (4 * 3-27) -

e i ^x

Proceeding as in Eq. (4.2-28) loads to

1

K

1_ , - -,

r V CE-dC - - =0 E»(l) - KE'(K) (4.3-28).L z° n° 2 L n v / n v
'A

^ '

n

Therefore,

2 r>

X-
6
avg

= -^•1 V CdC
t- ,'t> 1 _ x K

- r^-3 [nii
c
n
exp(- *&twt +

£ V« -

I

?
* iff: SdC

J
1 - K K K .. K x

- - 7^2 {JA«P<- &> Tf frjW " P1W] " jfo«
1 - K ff

n
K

+
|
1?

2 iff" ^} (4.3-29),

a'" :1
- = S,C E'(C)oxp(-g

2
g) - „ -,

1
„ (4.3-30).

cC n=l n n^" / * v n3/ £ In £,
nrf * '
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Thus, the husselt number can be expressed as

(1 - K)(l - X
2

} §.C E«(K)exp(- a-
2
^) - v -,

1
r Iv /v 'Ln=l n n x

' -
v n" In £. J

ju . =
1

I §_C exp(- a
2
?) ~ I E»(l) - KE»(K)1 - f V Q&Q + f V r~- CclcTLn=l n ~ v n 3/

„,2 L n v ' n^ 'J &. z J ^ -\r z In £ 4
* te

J

ra_ =

n

(4.3-31),

(1 - i:)(l - K2 )| fLc B«(l)ezp(- a
2
l) - .

1
.v ;v 'i_n=l n n v

' * v n3/ In C. J
"1

-

; 2, C erp(- »5)4 E»(l) - KE»(K) -f V Cd£+f V 7
n

; ; <% + " ''

fln=l n ^ n*' 2 L xr ' n v 'j L s^ " v> z In C • 2 J
a K K i
n

(4.3-32).

?or the case Tw. = I? , i.e. step change at outer wall, reducing

and rearranging of 3c. (4.3-25) yields

n _ .-i-

.

9* = s =2- = 23 3 oxp(- a
2
Z,) + ¥L7~ (4.3-33).

T - Tw n=l n n ^ n=y In C. '

e c *i

3y procedures similar to that used in the former case, the expressions

for the heat transfer parameters are found to be;

^vS - -77^ £%«•<- «#J h LEA« - :^>] * ( iHr\w }
n

(4.3-34),

(1 - K)(l - X
2 )~ 2',D'B«(K)eap(-ah) + v

*
v 1x ' % in=l n n x

'
rv n°' X m K J

Nu .
=

.u
o

c K i
n

(4.3-35),

(1 - K)(l - K
2
)F gn D E«(l)exp(- g

2
+ =-irr 1v /v 'Ln=l n n^ ' *^ n3 ' In KJ

{JSa«»<-* J? few - =aw] - 1 &tr e«

}

0/ K i

(4.3-36).
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Values of the expansion coefficients and combined functions are sho-.ni in

Tables 12-15. Temperature profiles and variation of the Nusselt number

and average temperature with the axial distance are shown in Pigs. 18-23.

4.3.4 Asymptotic Solution by the VIKB Method

Since, as we have mentioned, the eigenvalues of this problem are

exactly the same as those of problem II, Eq., (4.2-23) is valid for the

present problem. Now the problem is to rewrite Ecs.(4.3-19) and (4.3-23)

in terms of the asymptotic solutions which were derived in Sec. (4. 1.4).

?or the case 3?w = T , multiplying Da. (4.2-7) by ——~- and
o e '

-«/o.\r " ' In C.
"i

inte-rating by parts yields

I ^IncT^Vn^ = -2 K dT
C-K

(4.3-37).

Jombining Eg.. (4.3-37) and Eq,. (4.2-26) leads to

dE

2K
dC

C =
n

r =t-

/ n\ , / riv

;-i

0^ C^i

(_2.W.f—E)
>k j

#VAr(f)
cr v
n 1

(4.3-38)

(4.3-39).

?or the case Tw. = T , there results
1 e'

dC -1

D = -
n 93

n „ n
rj -i « r •—

—

nl£c ° cCn

/ , %n

C-l

3
l/6

r(
2
);
,l/6

n 1

n r n

C-iK

(4.3-40)

(4.3-41).
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Table 12. Punot
step change at the inne

ions in the solution of problem IV,
r wall, by the iterative method for n=0.5

P.adius

ratio,

K

Expansion
: Coeff.,C

22

C E(K)
n

C E«(l)
n r.

'

0.2 -0.22125546
-0.09249535
-0.05524702
-0.03884531
-0.02959992
-0.02377399
-O.C1979819

-1.64267310
0.40790546

-1.12043510
0.31925064

-0.94335255
0.27658431

-0.85272568

-1.C8762850
0.85639275

-0.73754340
0.66755975

-0.61937912
0.58396717

-O.55687630

2.77522310
2.24243640
1. 91445 870
I.74I5456O
1.61985720
1.53691420
1.47924690

C5 -0.2^697002
-0.10528754
-O.C6313751
-0.04449602
-0.03393647

-4.46828900
0.50750005

-3.11213980
0.39370894

-2. 62406490

-2.56713800
2.O6307870

-1.77836230
1.61142710

-1.49998510

3.80230200
3.11115730
2.66755500
2.42543640
2.24815960

Table 13. Punct
step change at the outs

ions in the solution of problem IV,

r wall, oy the iterative method for n=C5

Radius
r-.tio,;:

: :u
_.3ion

' n

DE(K)
n '

d e«(k;)
n rr '

D E'(l)
n n v '

C.2 -0.43146680
0.17595052

-0.10621944
C.0745C342

-c. 05 684178
0.04557377

-0.03776020

-3.20335120
-0.77594364
-2.15417940
-O.6I230725
-1.31155340
-0.5302CC86
-I.6263654O

5.41191910
-4.2557C4S0
3.63079110

-3.3402COOO
3.11068860

-2.94620200
2.8213C130

-2.12C95730
-1.62903460
-1.41£02120
-1.28034720
-I.I894I57O
-1.11944120
-1.05210510

C5 -0.33344643
0.1396554

-O.C3423176
0.05919442

-O.C4517963

-5.03285780
-0.67315812
-A. 15190610
-0.53041473
-3.49341820

5.13367580
-4.12670070
3.55878550

-3.22663240
2.99297540

-3.46601990
-2.73650840
-2.37251340
-2/14373090
-1.99693060
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Table 14. Functions in tho solution of pro!olem IV,
step charige at the inner wall, by the iterative me 1thod for n=0.8

Radius
ratio

Expansion
Coeff..C

' n

c e (::} C E'(l)
n nr

E»(K)
n tr '

C.2 -0.22224438 -1.59796700 -I.O59250OO 2.69358520
-0.08787225 0.39506572 0.80134439 2.03139330
-0.05226240 -1.03183790 -0.68627978 1.72779100
-O.O3665O4I c. 30691108 O.61986746 1.56478190
-O.O2789862 -0.86443999 -0.57436074 1.45039620
-0.02239542 0.26647895 O.54IOC84O 1.37254720
-0.01864399 -c 75905897 -O.51545039 1.31804290

0.5 -0.24762470 -4.34026660 -2.49566070- 3.68921180
-0.10053694 0.51218795 1.94440950 2.86444310
-O.O6036259 -2.89976900 -1.66662520 2.46623560
-0.04230420 0.38846360 1.50249500 2.22806270
-0.03241070 -2.43661130 -I.399528CO 2.07416650

m-ible 15. Functions in the solution of problem IV,
step char.£3 at outer wall, by the iterative method for n=0.8

Radius
ratio,

2

Expansion
: cocff .

,

j
' n

D E (K)
n n x ' D E»(K)

n
D^E(l)

0.2 -0.43453722 -3.12438120 5.25655850 -2.07106950
0.17240889 -0.77513485 -3.9856754O -1.57226990

-0.10348214 -2.043C9030 3.42111170 -i.35885790
0.07251433 -0. 60723 608 -3.09598480 -1.22543300

-0.05529848 -1.71342580 2.87486290 -1.13845330
0.04430177 -0.52713856 -2.71531360 -1.07020220

-0.03559338 -1. 53327190 2.59405040 -1.01446180

C5 -0.33514706 -5.87432360 4.99315490 -3. 37774610
0.13603933 -0.69305576 -3.87595770 -2.6310346O

-0.08210059 -3.94404460 3.35445350 -2.25581780
0.05790304 -C 53174781 -3.04988030 -2/05668800

-0. 04434224 -3.33361520 2.83774150 -1.91474440
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t.o~

o,. -

I.Q

Fig. 18a Temperature profile development/

problem IV, step change at' the

inner wall/ K=0.5,' n=Q5
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$

-\ng

0.4

e

8b Temperature profile development,

problem IV, ~tep change at the

outer wall, K = 0.5, n=0.5
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Eigenvalues, expansion coefficients and some eombined functions calculated

by the WKB method arc shown in Tables 16-19.
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Table 16. Functions in the so].ution of problz~. IV,

step ohange at the i:;::or wall, by the KKB method for n=0.5

Radius Expansion C e (•:)
r. n

C E'(l)
n n v '

C E«(K)

ratio Cos if.,

C

' n

0.2 1.01552270 -i.5£98l640 -I.O988334O 2.85491410
0.46160126 0.40585418 0.84437203 2.19508
O.29868318 -1.11047570 -c 73075568 1.39859950
0.22076581 0.31733884 0.66071257 1.71661830

0.17509012 -0.92937852 -O.6II58352 1.58897450
0.14507468 0.275933C1 0.57442332 1.49242880
0.12334424 -0.82806435 -0.54491307 1. 41575590
0.10803435 O.25OH226 0.52066202 1.35274350

0.5 1.02214640 -4.67IO49IO -2.6690703O 4.00395850
O.4646II9S 0.51291397 2.05219690 3.07856680
0.3C063129 -3.10633100 -1.77500790 2.66274670

0.22220573 0.40111250 1.60487310 -752200

0.17623213 -2.5997908C -I.4855387O 2.22850460
0.14602090 0.34872740 1.39527740 2.09310070
0.12465200 -2.31637990 -1.32359570 1.98556370
0.10873i 0.316C8913 1.26468990 1.8972C220

Table 17. Functions in the solution of problem IV,

step change at the outor wall, oy the .5.3 methe»d for n=C5

Radius cmsion DE(K)
n

D S»(K)
n n K

'
D 3«(l)
n n^ '

ratio Cceff.,D
' n

0.2 1.95433200 -3.21349300 5.49416410 -2.II46602O
-0.88833276 -0.78105020 -4.22435840 -1.62592130

0.57480357 -2.137C6480 3.65377670 -i.zl0630950

-0.42485479 - .61080230 -3.30356O8O -1.27151440

-.33695379 -1.78855090 3.305791700 -I.I769675O

-0.27919029 -0. 53103160 -2.S72II8IC -1.10545520
0.23833317 -1.59357570 2.72456360 -I.048663OO

-O.2C79077O -0.48133100 -2.60330900 -I.OOI9928O

0.5 1.36274220 -6.22751780 5.33814010

'

-3.55844770
-0.61942820 -O.683824OC -4.10439620 -2.73602210
0.40C 3C 649 -4.14147800 3.550C1730 -2.36646930

-0.29624827 -c 53476950 -3.20974660 -2.13954230

0.23495552 -3.466C0330 2.971C7SOO -1.98054430
-0.19467743 -c. 46492330 -2. 79055 610 -1.86020640
0.16618806 -3.08823510 2.64719180 -1. 75463920

-C. 14497256 -0.42141530 -2.52937950 -1.6851C510
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Table 18. Funci;ions in the so!Lution of problem xV,

step change at the inner wall, oy the WKB method for n=0.8

Radius >ansion C E (K)
n n

C 3«(l)
n n v ' C E'(K)

n n .

ratio Coeff.C
n

0.2 c. 95850586 -1.52763550 -1.01665940 2.55437970
0.43568447 0.38881022 0.78163999 1.96439830
0.28191349 -1.01592130 -0.67610757 1.699C6810
0.20837084 0.30406002 0.61130255 1.53621220
0.16525963 -O.850244I8 -0.55584749 1.42198300
0.1 3 69 2940 0.26434995 0.53146677 1.33558370
0.11689095 -0.75755663 -O.50416284 1.26696350
0.10196870 0.23960872 0.48172535 1.21058280

0.5 0.97944587 -4.34257390 -2.49556290 3.69402280
0.44520267 -O.4986593O 1.91879040 2.84026320
0.28807232 -2.88793580 -1.65952070 2.45663080
0.21292302 O.38996502 I.5005458O 2.22116240
0.1 6886998 -2. 41 69 69 60 -1.3889 6330 2.05600200
0.13991 0.33903576 1. 3045 75 20 1.93107960
0.11944462 -2.15348890 -1.23755340 1.83187140
0.10419 63

7

0.30730455 1.13247670 1. 75034490

Tabic 19. Fund;ions in the solution of pro blem IV,

step change at the outer -all, ay the WXB method for n=0.8

P.adius

ratio
Expansion
Coeff.,D

n

3 E (K)
n n

3 E«(K)
n n v ' D E'(l)

n r. '

0.2 I.907O832O -3.03944670 5.C832945C -2.02278730
-O.86685597 -0.77359330 -3.90844830 -1.55528290
0.56090682 -2.02131910 3.38053670 -1.34521180

-c. 4145833c -0.60497090 -3.O565IO8O -1.2I6273CO
0.32850743 -1.691 68110 2.82923720 -1.12583370

-0.27244044 -0.52596190 -2.65733280 -1.05742840
0.23257111 -1.50726590 2.52081270 -_.GC310340

-0.20288117 -0.47673568 -2.40362560 -c .-95846080

0.5 1.32336470 -5.86740820 4.99112600 -3.37184520
-O.6OI5294I -0.67375550 -3.33758320 -2.59254710
0.38922491 -3.90199500 •3.31924290 -2.24237350
0.28768799 -0.52539570 -3.00109190 -2.02744170
0.22315533 -3.26565510 2.77793330 -1.87668590
-O.I89052H -0.45808290 -2.60915150 -1.76265870
O.I6I38594 -2.90965640 2.47510560 -1.67210310

-0.14078343 . -c. 415 21040 -2.36495320 -1.59763700
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5. Discussion cf Results

The variation of the Kusselt number with axial distance has been

calculated for four sets of bound iditione on the annular surfaces.

Results for different values of the power-lav model indices and two values

of the ratio of the inner to the outer radius of the annulus are presented

graphically in Figs. 4-7, 10, 11, 14, 15 and 19-22. The corresponding

eigenvalues , a , coefficients, C , and other functions obtained in the
t. ' n' ' n'

investigation of the individual problems are given in Tables 1 and 2 and

4-19. The four different problems have also been evaluated for the limiting

case of infinite parallel plates.

It cannot be said that this work completes the needed analysis of

non-IJewtonian annular heat transfer. Only one of many possible non-

ITewtonian models has been considered. Even for the one model considered,

the ;;owor-law model, only a limited range of the parameter has beer-

covered. Perhaps the greatest contribution made by this work is that it

has shown hew to extend the analytical procedures to problems involving

the complex non-ITewtonian velocity profiles. These same procedures can

now be used to calculate the heat transfer rates for any velocity profile

and hence for any non-irewtonian model.

A sufficient number of eigenvalues and eigenfunctions have been

calculated by direct solution of the prcbl^...., to prepare plots of ITusselt

numbers to within a dimoncicniess distance of 0.C01 of the entrance.

Acymptotic solutions have also been presented and these can bo used to

extend the calculations to still closer to the entrance. Future calcu-

lations would employ the direct method for only about four eigenvalues

and then switch to the simpler "..13 method for the higher eigenvalues.
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This is discussed in more detail below.

It car. be seen from those figures which show the variation of the

Kusselt number with the axial distance, that the Nusselt number at the

inner wall always decreases with increasing radius ratio for a given

power law model index while, at the outer wall, it always decreases

with decreasing radius ratio. But for a given radius ratio, the llusselt

number, at either the inner or outer wall, decreases with increasing

-ower law model index. These phenomena are expected from consideration

of the basic fluid dynamics. Further investigation of these plots shows

that the dependence of the husselt number on radius ratio is much greater

than the dependence on the power law modal index.

Another problcv. of considerable practical importance is the conditions

under which entrance effects must be accounted for in heat transfer

calculations. The thermal entrance length is defined here as that value

of 4- jr- for which the lusselt number approaches to within 5.- of its

asymptotic (fully-developed) value. Because this value may be seen from

the plots mentioned in the last paragraph, no additional plots have been

prepared. Cne thing to note is that as 1-1 approaches unity (flat plate

situation) , both the Ilusselt number and the thermal entrance length

nrediotsi for the heat transfer from the inside wall of the annulus

only approach those for the heat transfer from the outside' wall of the

annulus only. The ear.e conclusion can be reached from physical arguments.

It is not practical to give temperature distributions as functions

of r~:iial and axial coordinates for all of the problems solved. liowever,

n plot has been given, Figures 3, 9, 13, and 18, for each kind of problem

as an illustration of the development of the temperature profile. It
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is quite obvious that those results are consistent with what can be

expected intuitively. >7ote especially in Pig. 3, in which the shape

of the radial temperature profiles do not undergo further change with

increasing axial coordinates after a oertain distance from the entry.

'This is the basis for the assumption of the expression of Ea. (4. 1-18).

For practical purposes, the mixing-cup temperature, as defined by

Eq.. (4. 1-31) etc., is of greater interest than the transverse temperature

distributions. Figures 8, 12, 16 and 23 are illustrative comparisons

of the longitudinal change of 9 for various values of K for each° avg

problem. As the axial distance down the inlet increases, the temperature

of the fluid approaches the surface temperature of annulus. Figure 12

is easily understood from energy balance considerations; for a given

1 2
value of =— •=—

, with the symmetric boundary conditions, the variation of

rill trace the same curve in spite of different values of K. Further-

more, it is found that the change of _ for a given parameter K and
a /&

"* z
^r j?? are smaller in problem 2 than in problem 3 or 4. These trends

in 6 arc expected and can be readily be explained' from the considera-
avg

tion of the energy balance on the coolant in the annulus.

In Tables 1 and 2 and 4-19? the corresponding eigenvalues and

expansion coefficients of the series, as well as some other functions

concerned with the calculation of the Ilusselt number are tabulated.

Conparin
; these results for the two methods of calculation, it is found

that the expansion coefficients obtained are not the same. This difference

arises because of differences in the procedure. r2ho eigenvalues and the

>ined functions, however, have to be the same in order to have the

.ion of the ITusselt number along the axial distance. The
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developed expressions from the 3KB method are assumed valid only for

large eigenvalues. Therefore, Eq. (4. 1-46) is taken as an approximation

to the actual eauation only as a "becomes large. It is apparent from
n

Eq,, (4. 1-45) that if K is small, or must ho very large in order to make

Eq,. (4. 1-46) a reasonable approximation of the actual aquation, A

comparison of the eigenvalues predicted hy the WKB method and those

obtained directly exhibit very good agreement for the third and higher

eigenvalues, ever, if K is small. The difference between them is within

15$, But the combined functions, such as C S(K), B E(K), 3 2 * (K) and

B E(l) etc., are less accurate, particularly those evaluated at the inner

-.rall. ?or K = 0.2, the eigenvalues shown in the tables are not suffi-

ciently large to remove the effect of the first derivative terms in

Eq. {4. 1-45). When a becomes very large, Eq, (4.1—45) approaches

Eq, (4*1-46); but for small K, this value may be so large as to lie

outside the range of -practical interest.
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3 v.

Synibols

"5 A', Arbitrary constants

E, 3', Arbitrary com

3 Expansion coefficient defined by Eq,. (4.2-11)

C
g

2"
Constant defined as = rr

1 - K

?
Specific heat

c
n

ansion coefficient defined by Eq. (4*1-30) or 3a. (4. 3-19)

De

D.
1

Equivalent diameter

r . 2 -,s X .2
D. = (V / 7 )«|~r-K] / J (V-'C)

S
dC

1
v max ' avg' L -" K *

D .rpansion coefficient defined by Eq»(4.3—23)

D
o

"v 2

d . (v / v )."i -\ 2]7 r (V- -v max ' avg' _ _j ., ^

3
n<

-••
jenfunction obtained from the solution of 3o_. (4.I-I5)

;) .unction, define;! by Eq. (4.1-18)

G
1 J

G
2

Arbitrary constants

s Gravit 1 acceleration

Gravitational acceleration in z direction

>
/

Function in the WKB method

"2 >itrary constants

1; Th e r.v.al conductivi ty

"

Ratio of outer radius to inner radium

— Length of annular region

rameters of po:;er law fluid

n Parameters of power law fluid

Ilusselt number . (4.I-34)
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p , p
o' L Static pressure at z = o and z = L

PQ - P
T? Sum of forces per unit volume defined as =—— + as

Jj °z

Pe Peclet number defined as RePr

Pr Prandtl number defined as —r*-k

Q Heat flux

r Radius

R Outer radius
pV De

Re Reynolds number defined as —-

—

(J-

s Defined as —
n

T Temperature

T Temperature at the inlet to the annulus

T Temperature at wall

T Temperature at wall

T
avg

Average temperature

Function satisfying Eq. (4.3-2)

V Local velocity
z ^

_ V
V Dimensionless local velocity defined as

z

avg
V Function satisfying Eq. (4.3-3)

W Function defined by Sq.(4.3-12)

y Function defined by Eq.(4.3-20)

V Function defined ay Sq.(4.3-12)

Y' Function defined by Eq. (4.3-20)

z Axial coordinate

Re Pr R
z. Function defined as yrr- -r-

Q- *-\.l ™" ")

Z(§) Function defined by Eq. (4.1-12)
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Greek symbols

a
n

Eigenvalue satisfied 3q.. (4.1-15) and boundary condition 20.(4.1-16)
1

Y V=J/=-dC

Q Dimensionless radius variables defined as -=r
R

s Dimensionless axial variables defined as —
Z
d

3 Phase angle

c se shift in the WKB method

"l
--, = «*/3

(C - K)

e

\ - ^/3d -

Dimensionless temperature defined as (T - T )/ r~-v q" k

T. - T 0? - T
O IT

"e " ^o e ~ *
C
avg

Di.-Mcnsicr.lcse average teuporature

2 Junction, defined as Bq.. (4.3-6)

Function defined as 3c. (4.3-7)

P Density

T
rz

•^-OSS

\ :;isionless radio position represents the position at 'which Z =0
rz

Subsci•ipts

a nates the asymptotic value
•

i Designates a value of a variable of a function evaluated at the

inside surface of the annulus

n besigr.atcs the n eigenvalue, eigenfunotion or coefficient

Designates a value of a variable of a function evaluated at the

outer surface of the annulus
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9. A

c

9.1 The Method of Berry and dc Prima for Determining the Eigen-

functions and Eigenvalues

The method developed by Berry and de Prima (21) is a simple iterative

procedure for the determination of eigenfunotions and eigenvalues asso-

ated with the solution of Sturm - Liouville probi . a finite

interval. The method is particularly useful when the coefficients of

the differential equation are not expressed in analytical form. The

iterative soheme of the calculations is presented here. For a complete

discussion the reader is referred to the final papor.

Consider a Sturm - liouville equation

| " - (4 " A)B - (9.L!)

with boundary conditions, for example,

E(K) =

-:(!) = o

and orthogonality condition

(9.1-2)

r
1

2
(9.1-3),

an: where p(£), g- P (r), q(g) and :;(c) are continuous in X - C - 1 and

where p(r) > C and :.{C) > in < Q - 1. Then there exists a countable

number of eigenvalues a^, C'2> ..o/^... and correspond:.:- eigenfunctions

J
l'

S
2 r." '

Guch tha1: ;: -•>' n_1 33 ^c s in C - C - 1.

[a )v is the Kth ai proximation to the -ed value a
2
and

n ~ n

is a solution to Eg.. (9.1-1) a* = (a*) such that { . )„ satisfies
- 1 -- -- n b.
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the orthogonality conditions and the requisite boundary condition at

C = I- only, then the next approximation is .given by

(/ x
= (<#K

i [VDi [^(1)1 (9.1-4).

This sequenoe of approximations oonverges monotonioally to a . In

Eq. (9.1-4), the plus (+) sign is associated with the condition of zoro

derivatives at the outer wall and the minus (-) sign with soro ordinate.

A ralue is assumed for eit ie slope or the ordinate at Q = K.

whichever is not specified as soro by the boundary conditions,

Eq. (9.1-1) integrated numerically. Both the huivjo - Kutta method and

the method of finite differences have been used i. erent situations

in this work. The outer vail values are adjusted in accordance with

Eq. (9.1-3), then the value ode" is corrected by Eq. (9.1-4) and the

process is bed.

7or the first approximation of the eiganvalue, («)-.» it is suggestedn J.

by Berry and de Prima t .van by

,
X -2

(«„>! - |>- D", '"«
_

n - 1, 2, ... (9.1-5)
K

be used.

ber flow sheet and computer pre
i 'or solving Eq. (4.I-I5)

::y conditions of Eq. (4. 1-16) are shown on Pages 87 and 38.

2 Computer Plow Shoet and Computer Program for Calculation of

the G Functi n iusselt Number of Problem 1

In or:ler to illustrate the numerical calculation of .ho iterative

.-
: 3 more computer programs eir flow diagr 'or solving

problem _ tore. The first is for solvin inary differential
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Assunie \K /

(Assur.e a """N

value of E(K) J

Orthogonali
property

i Correct the eigenvalue)

i~.2-l- Computer flow sheet for solving "Sci (4.1-15)
-r.c 2c (4.1-13)



c c ::-:: foe jhifohe heat input ~:;i e

ION Y(101),V(101)
100 r(313,2510.6,F12.6)
101 F0BKATCF10.6)
102 FC P10.6)
2C0 F0K.IAT(5F12,8)
201 .6)

202 P0HMAT(3H G=F15.10,4H AL=F15.10)
203 FOEKATUH AL=F15.10)
205 F0EKAT(6H BSRY-F14.10)

100,N,M,N1,IELX,X,AL
101,(V(l),I«l,Nl)

ID102,Y(1)
1 CONTINUE
T(2)-Y(l)
do 5 i=2,::

r=i
xx=(x+(ai-i.)*bslx)
=2.*XX/(] :)-al*v(1)*xx

3=l./(2.-D3LX)-:CX/( : LX)
C=XX/(L hl./(2.*3ELx5
Y ( 1+1 ) =A*Y ( I ) / 0-:-3*Y ( 1-1 ) /C

5 C

PUNCH200,(Y(l),I=l,N) '

S=0.0
do io 1=1, ::

A 1=1
cc=v(i)*(x+(ai-i.)*:dslx).*y(i)* elx

10 S=S4-0C

JNCH201,S
B=S-1.0
I?(A33(3) -0.0015) 6, 6,7

7 Y(l)=Y(l)+C.CC01
GO TO 1

6 C
i ;-y(::-i))/.,

fCH205,I

IFC -0.0001)8,8,9
9 G=Y(K)*I

AL=AL+G
pu::ch202,g,:oa
GO TO 1

_ nras
:
:ui:c}:2G3,.'i
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/ Using the

slooo of -1.0

Xv.r.cricr.l

Srnge-

-:•--.- 25 . Computer flow sheet for solving Eq. (4.1-2-1)
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OF G
DIM V(101),T(51)

IOC lT( 213,14,3510. 6)
101 . ?(F10.6)
102 - ).6)

20c J(5?12.8)
201 _ F(4H SS=F12.8)

I 12.6)
jico, ::,::, Ni,z.

.

.01,(v(l),I=l,Kl)
KEAD102,Y(l)
C=2.*X/(l.-X*X)

1 C(

::=o.2-

2=-1.0

ui»
K=2*I-1
V1=-(Z/X-C*V(K))*IELX
U2«(z+vi/2.)*:nELX
j=2-1

V2=-((Z+Vl/2.)/(X+IELX/2.),-C*V(j;
U3=(Z+V2/2.)*IE1X
V3— ( ( Z+V2/2. )/( /2.)-C*V(J) ; *]ELX
U4=(Z4-V3; -

1=2-1+1
V4—((z+V3)/(x+ )-c*y(L))*EELX

- IELY«(Ul+2.*U2+2.*U3+U4)/6.
'".rlH-2.-V2+2.-V3+V4)/6 «

Y(I+1)=Y(I
X=X+DELX

5 CC

(Y(l).I=l,X)
:.o

x lo i=i,::

x=o.2
AI=I
J=2*I-1
cc=v(j)*(x*(ai-l)-

10 S=D+CC

1TC1I201 -

3=S5-C.O
I?< -0.0001)6,6,7

7 Y(l)»Y(l)+0.0001
D vO 1

6 C

Y»(Y(1J)-Y(IT-1))/I
3H202,I



91

eigenvalue,
cigenfunc tion

,

"i function

Numerical integration
and calculation of Cn

dLve a::ial distance

\
Calculation

oT

[mixing-cup temp
\ ana
\ temo. profile

/Calculation of

^usselt number

?ig. 25 Cor^putcr flow sheet for calculating the

errpansion coefficient, nixing-cup temp.,

::u2selt number and ter.n. profile.
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FORT . . LI T: l'AlO-PO-970
c

3H Y(l01,8),V(lCl),G(lOl),C(8),T(lOl),AL(8)
OOIOO ?OR2.IAT(315)

CCIC1 P0HMA?J215,2F10.6)
00102 FORMAT(5P10.6)
001C3 P0HiaT(P10.6J
0010, 5P12.8)
00105 JTOBKATJ4F15 . 10)
0C2C0 P02KA?(6H C(j)=P12.8)
00203 £T(5F12,8)
C0202 FORMAT?4H ?3=?12.3,5H AIO=F12.8)
00203 FORIIATQH Z-F10.6)
00105 PO?JciT(5P12.8)

R3AD(1,100)L,II,LL
'l,101)N,K,IELX,X

DJ=1 2

R3AJ)(l,i02)(Y(l,j),I«l,IT)
00030 c

1,106) (Y(l,J),I»l,ff)
00045 Q

>.D(1,103)(V(I),I=1,II)

1,104) (G(I), 1=1,41)
1,105)(AL(I),I=1,L)

ci=2. -::/(i. -;,

D010J«l,Ii
:.o

D05I=1
AI=I
K=2*I-1

[)*<j(l)*(X+(AI-lO*EELX)*Y(K,j; *I

S12=7(K+2)*G(l+l)*

,

3LX)*Y(K+2,J)*I£I
Sl=-(Sll+S12)/2.
S=S

00005 c
r( ~

3,2CO)c(j)
.0 Oc.j::

z=o. ooooi
_ C02TT2

- JL— _ * JjJj

ti-o.o

>0J=1,L
T2«C(J)«Y(K,J)*EXP(-AL(J)h ;)

>0 T1=T1-

:

L5 cc::v

^,203)2
IT3(3,201)(T(I),I»1,1
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1*Z
CO

D025J=1,L
Pl=C(j)*Y(l,j)*E - - r]

00025 ?=P+ 1

L-2.*(1.-X)/(G(1)+P)
ITS(3,202)T] [

1PI >02)6.7,7
00006 Z=Z+0.00001

GCT01
00007 I?( — .002)8,9,9
00C08 Z=Z-r0.0001

GOT
0CCC9 IF(Z-0.02)ai,12,12
CC011 Z=Z+0.001

G0T01
CC012 IF(Z-0.2)13, 14,14

.01

G0T01
0001 -1.) 16, 17, 17

•0.1

GC
CC0I7 I?(Z-5.0)21,22,22
C0021 Z=Z+1.0
00022 CC
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equation of Eg.. (4. 1-24), and the other is for the calculation <if the

JTusselt number, the mixing-cup temperature and the temperature profile.

9.3 Derivation oh Lon (4 l-pO] uation (4.1-55)

9-3.1 Derivation of Equation (4. 1-50)

he or heco::.es lax
n

O /-v /in

(9.3-1)
:- 2/ ^i 3/2 1- / 3 ,

2/

3

i .3/2 5
T
vJ

i/i 3 - J / n/$:\*/*
COo(

3 -i -i2 "3

(9.3-2).

Bd
T

r
2/Di-3/2T~ / 3 _ ,

2/lJ
i .3/2 tk

°-l/3L 3 a J / w/T--3/2
00oC

3 '1 "12 ;

" / ";

i 1

lerefore, Eq. (4.1-47) becomes

«/£-
'*•' ' r --- ? — • TT nnrt ,

!!
. r*r>~( "~\3' \

-

" 1 / «r- _3/2 L L
C1°0S12 "

'

n
i
00a

12j
00a{

3 ^1 J

+ [c^in^ tt + H^injl] sin( ^ -V2
)} (9.3-3)..

Furthermore, for larje a .
' u n'

z cv
7 -^ a /J
n n

_ H*.(d- K)t. 1 .3/2 = 2 /j- ,3/2
(9.3-4).

bus, he. (4.1-42) leads to

/2 «r- _3/2> . /2 /=r- «3/2^ (9.3-5).— ' UO*J U * C031 ^ 1 ^ . - /' • Kilii u • COS! - / -^ • l-i J f
r- Crrv.L v

3 1 1 3 X '1 ' J

2

Co: .. (9-3-3) and Eq, (9.3-5) yields

G, cos-r-2- - + H, ccs~ = COS c

(4.1-50).

G
1
sin^ TT Ln

j| - cin c
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By a similar procedure, sotting

TC„ = a'
2 n

2/3d - c) (9.3-6)

ror larSe value of a^ the Bessel's solution of Eq,. (4.I-48) loads to

n ,;

2

2/T
7T/D

372
o '2

+ ^G
2
sinr-| n + ELsittl£ **$f$*)} (9.3-7).

Scansion of 3q. (4.1-42; yields

1
3 = ^— J. cos (a /^T dC — a) - a ^ /— dC M-

/v. »« z C z

~^- 1
C<»(V - c) coz^n I fT d* }

+ sir-(a/
nY

- <0 Bin(of
n J"

/=" dC)}
/fa v

s
"

S 2 C 3

(9.3-8).

Furthermore, for lar
r.

£ 2 " 7U o a"

2

71
1 -

ss fVf, -2 v

; ^73J ( " "271 }

Tn

- lAi _,2 N

s/2
„3/2

2 1— 3/2

3 ' o '

! 2

Comparing Eq. (9.3-5) a::d Sq. (9.3-7) le

G
2
COC

12
;;o^~~ " K^oosCof v - 0-)

. 5
t n—«£-Ln^- tt + :i

2
sinjg- = ::-oin(Q'

nY
- ex)

(9.3-9).

(4.1-47).
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9.3.2 Derivation of Equation (4.1-55)

Solving 3o. (4.1-50) yiel

/I
sin(a - ~)

\2'

2 . , 5rrv— cm (a -
f^)

/3
(9.3-1C).

/I
;xn (or v - a - r§)

sin(or
nv

- a - §)2
/i

Substituting thece constants into Eq. (4.1-47) and Eq,i (4.1-43) and

e:o" the Bessel function in series Torn yields

2/D. Tl
3/2

~

' 2 . / Ts S>
(-l)-

:(-^^-) 2^/3

K! (X + *"l/3)i

/I

2/5- " 3/2
(_i)K(_iii_)2i^i/3

^sin(a --1„).5 -
12 'K50 Ki (!-:- i/3)s (9.3-11),

-. 2/1
.3/2

2
•
— *in(or

nv - or - 55)^ K I (g+ l/3)l71

2 • / 5^> I?

-— -.3/2

(_ir(_^_|__)^-l/3
(9.3-12).

:-:s U- V3) J J

*

the variables of the boundary conditions of Eq.. (4. 1-16) loads to

C~. v°

,=0

(9.3-13).

=



-l. (9.3-13) to Eq. (9.3-11) and 3c. (9.3-12) yield:

sin(o - ~) = C

r.

therefore,

sin(of
nY

- a - ~) -

a - U + t)~/y . n = 1, 2, ...
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ABSTRACT

Analytical solutions of the rates of heat transfer to non-Newtonian

fluids in laminar flow through concentric annuli are presented. Four

distinct problems are considered:

I. Constant heat flux at the inner surface, outer surface

adiabatic,

II. 3qual temperatures at both the inner and outer surface,

III. Prescribed temperature at the inner surface, outor surface

adiabatic,

IV. The surfaces maintained at different temperatures.

An iterative method and an asymptotic "WKB" method have been used to

calculate the eigenvalues and oigenfunctions for different values of

the radius ratio and the power law model indices. The variation of

the ITusselt number, the bulk temperature, and the temperature profile

with axial distance are presented graphically.


