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Abstract

Autonomous systems are transforming the society by enabling sophisticated technologies

such as robotic surgery and driverless cars. On one hand, increased automation through

removal of the human-in-the-loop promises enhanced efficiency, while, on the other hand,

the highly uncertain and safety critical environments, such as, varying weather and road

conditions, and the presence of pedestrians on the road, pose challenge to the design of

reliable autonomous systems. Hence, there is an immediate need for a robust framework for

certifying the correctness of autonomous systems.

In this report, we explore verifying the correctness of uncertain autonomous systems

modeled as discrete-time Markov chains (DTMCs) against correctness criteria provided as

continuous stochastic logic (CSL) formulae. Statistical model-checking (SMC) is a paradigm

for verification based on formulating the verification problem as a hypothesis testing prob-

lem. We propose a novel statistical model-checking algorithm based on Bayesian hypothesis

testing. While Bayesian approaches for simpler logics without nested probabilistic operators

and Frequentist approaches for nested logic have been previously explored, the Bayesian ap-

proach for CSL that has nested probabilistic operators has not been addressed. The challenge

in the nested case arises from the fact that unlike in probabilistic model-checking (PMC),

where we obtain a definitive answer for the model-checking problem for the sub-formulae,

we only obtain a correct answer with a certain confidence, which needs to be factored into

the recursive SMC algorithm. We have implemented our algorithm in a Python Toolbox,

and present our evaluation on some benchmark examples. We observe that while both the

Bayesian and frequentist SMC perform well in terms of inference, Bayesian SMC is more

efficient in terms of the number of samples. On several examples, it even beats the state-of-

the-art probabilistic model-checker PRISM.



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Verification of Discrete-Time Markov chains . . . . . . . . . . . . . . . . . . . . . 8

3.1 Discrete Time Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Continuous Stochastic Logic (CSL) . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Verification Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Bayesian Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 A brief introduction to hypothesis testing . . . . . . . . . . . . . . . . . . . . 14

4.2 Bayesian Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Bayesian SMC for Non-nested CSL Verification . . . . . . . . . . . . . . . . . . . 18

5.1 Verifying non-nested formulas . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Bayesian SMC for Nested CSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1 Overview of the approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iv



6.2 Error Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3 Approximate Bayesian Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.4 Bayesian SMC Algorithm for Nested CSL . . . . . . . . . . . . . . . . . . . . 30

7 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.1 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.3.1 Evaluation of the priors . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.3.2 Varying grid sizes, thresholds and time bounds . . . . . . . . . . . . . 35

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



List of Figures

1.1 Overview of Formal Verification . . . . . . . . . . . . . . . . . . . . . . . . . 1

3.1 Grid World Robot Navigation Scenario and the DTMC . . . . . . . . . . . . 11

6.1 Pr≥0.1(Pr≥0.2(F≤1b)U≤4g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vi



List of Tables

7.1 Comparison between Bayesian SMC with different priors . . . . . . . . . . . 35

7.2 Comparison between Bayesian SMC, SPRT SMC and PMC for different grid

sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.3 Comparison between Bayesian SMC, SPRT SMC and PMC for different prob-

ability thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.4 Comparison between Bayesian SMC, SPRT SMC and PMC for different time

bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



Acknowledgments

First, I would like to thank my major professor Christopher Vahl for providing me the

opportunity to do the M.S. report under his guidance. I would like to thank professors Juan

Du and Haiyan Wang for serving on my MS report committee, and teaching several courses

that I thoroughly enjoyed.

This report is a collaborative work with Ratan Lal, a former PhD student in the computer

science department and Weikang Duan, a PhD student in the statistics department at Kansas

State University. I believe that this is a truly foundational interdisciplinary work that spans

computer science and statistics and would not have been possible without the hard work,

dedication and collaboration of Ratan and Weikang.

I would like to thank the professors from the Department of Statistics who taught the

several courses that built up my foundations in statistics. I would like to thank the depart-

ment of computer science, department head Scott DeLoach and Kansas State University for

the support toward pursuing the MS in Statistics.

Finally, I would like to thank my family who have perpetually encouraged and supported

me in all my endeavors. A special thanks to my husband Som for being my strength in all

my pursuits.

viii



Dedication

To Moshi

for being my strength

ix



Chapter 1

Introduction

Autonomous systems are transforming the society by enabling sophisticated technologies

such as robotic surgery and driverless cars. On one hand, increased automation through

removal of the human-in-the-loop promises enhanced efficiency, while, on the other hand,

the highly uncertain and safety critical environments, such as, varying weather and road

conditions, and the presence of pedestrians on the road, pose challenge to the design of

reliable autonomous systems. Hence, there is an immediate need for a robust framework for

certifying the correctness of autonomous systems.
Formal Verification

✤ Models for Cyber-Physical Systems (Automata based)
✤ Correctness Specifications (Logic based)
✤ Verification Algorithms

3

Model

Specifications
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Figure 1.1: Overview of Formal Verification

Formal verification is an area of computer science that deals with scalable and rigorous

analysis of systems by automatically constructing proofs of correctness. Formal verification
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(see Figure 1.1) consists of (a) a mathematical model of the system to be analyzed, typ-

ically provided as an automaton or a transition system, (b) an unambiguous specification

of correctness, typically provided as a logical formula and (c) a verification algorithm that

takes the model and the specification as input and generate a proof that the model satis-

fies the specification. Verification algorithms can be broadly classified as those based on

model-checking and theorem proving. Model-checking algorithms are based on state-space

exploration and are typically fully automated, while theorem proving often requires manual

interference to complete the proofs.

In this report, we consider the verification task, where the model is provided as a Discrete-

time Markov Chain (DTMC) and the correctness specification is provided in a probabilistic

logic called Continuous Stochastic Logic. Autonomous systems interact with uncertain en-

vironments, hence, stochastic models are required to capture their behavior. In this work,

we focus an a simple stochastic transition system model, namely, DTMCs which consist of

states and probabilistic transitions between states. For instance, in1, the stochastic behavior

of a car driver is modeled as a DTMC, and several properties about the driver behavior mod-

eled in the logic Probabilistic Computation Tree Logic (PCTL) are verified. Probabilistic

Model-Checking (PMC)2 is a verification paradigm that provides an exact answer to the

model-checking problem involving probabilistic models and specifications. More precisely,

PMC returns an exact answer to the verification question: given a DTMC T and a formula

ϕ, does T satisfy ϕ? For instance, the formula P≥0.9(F≤kTarget) states that the probability

of reaching the state Target in the next k steps is at least 0.9. A probabilistic model checking

algorithm will return true if the sum of probabilities of paths that reach the state Target

within k steps is at least 0.9 in the given DTMC. Probabilistic model checking has been

explored extensively for various probabilistic models such as DTMC, Markov Decision Pro-

cesses, Continuous-time Markov Chains, Timed and Hybrid Probabilistic Systems as well

as several probabilistic logics including Probabilistic Computation Tree Logic (PCTL) (See

related works section).

While probabilistic model checking has made tremendous progress in verification of prob-

abilistic systems, scalability is still an issue when the state-space becomes large. Statistical
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model-checking3–12 is an alternate technique that provides a scalable method that instead

of state-space exploration, determines the satisfiability of a formula based on samples and

statistical tests. However, these methods cannot provide exact answers, but only provide

correct answers with certain confidence specified using Type I and Type II errors that spec-

ify the probability of an incorrect answer when the system satisfies/violates the property,

respectively. For instance, consider the formula P≥θ0(F≤kTarget). We can rewrite this as a

hypothesis testing problem with hypotheses H0 : θ ≥ θ0 vs H1 : θ < θ0 called the null and al-

ternate hypothesis, respectively. Statistical model checking algorithm consists of simulating

random paths of the DTMC, counting the number of paths that satisfy ρ = (F≤kTarget) and

using a statistic based on the counts to deduce whether to accept/reject H0. It is possible

that a hypothesis is rejected even when it is true, or vice versa. These errors are captured

using Type I and Type II errors using values α and β, that provide upper bounds on the

probability of rejecting H0 when it is true, and accepting H0, when it is false, respectively.

Different statistical hypothesis testing algorithms provide different methods to control the α

and β errors. In SMC, there is the frequentist approach in which the parameters are assumed

to be fixed (unknown) and the Bayesian approach in which parameters are assumed to have

a probability distribution (prior).

In this work, we present a Bayesian statistical model-checking (SMC) algorithm for ver-

ifying Continuous Stochastic Logic (CSL) specifications on discrete-time Markov Chain

(DTMC) models. Bayesian SMC has been explored previously for a fragment of CSL

without nested probabilistic operators4;5. A frequentist SMC approach based on accep-

tance sampling has been explored for the complete CSL logic3. Here, we build upon ideas

from these papers to address the problem of Bayesian SMC for the complete CSL logic.

Nested probabilistic operators are challenging in the case of SMC. Consider a nested for-

mula P≥0.9(F≤kP≥0.5G≤nTarget), which says that the probability of reaching a state from

which the probability of being in the Target for n consecutive steps is 0.5, is 0.9. While

probabilistic model-checking can verify such formulas inductively by first annotating each

state with the satisfiability of P≥0.5G≤nTarget and then using that information to verify the

rest of the formula. The challenge of adopting a similar approach for SMC arises from the fact
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that we cannot infer the definitive answers to the satisfaction of the formula P≥0.5G≤nTarget

at a particular state, but can only obtain the answer with certain confidence given by α and

β, which need to be factored into the recursive algorithm. We tackle this by basing our test

on a statistic based on these uncertain answers, quantifying its deviation from exact answers,

and finally, approximating its values by computable lower and upper bounds to obtain an

algorithm.

We have implemented a simplified version of our algorithm in a Python toolbox and

compared with the frequentist SMC algorithm and probabilistic model checking (PMC)

algorithm. In terms of computation time, our algorithm beats both the approaches. Further,

our Bayesian SMC approach requires fewer number of samples than the frequentist SMC

approach for deducing the correctness. All the approaches provide correct answers in our

experiments. In addition, we compared our Bayesian SMC approach with respect to different

priors. We observed that though uniform prior beats the other choices, the choice of prior

did not lead to significant differences in the performance, which eliminates the disadvantage

of the Bayesian approach which is criticized for the subjectiveness in the choice of the prior.
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Chapter 2

State-of-the-art

There are broadly two approaches for verification of probabilistic models, namely, proba-

bilistic model-checking and statistical model-checking. Probabilistic model-checking (PMC)

deduces whether a probabilistic systems satisfies a property by an exhaustive state-space ex-

ploration, while statistical model-checking (SMC) uses a sampling based approach to deduce

the correctness. PMC often provides an answer with full confidence, while SMC provide an

answer with certain Type I and Type II errors. We provide a brief overview of the related

works for both these approaches.

Probabilistic model-checking algorithms have been explored for different classes of mod-

els and specification logics. DTMCs are finite state systems whose transitions consist of a

probability distribution on the next states, MDPs allow both non-deterministic and proba-

bilistic transitions, and CTMCs consist of transitions with probabilistic timing information.

Several approaches for verification of DTMCs have been explored including an automata-

theoretic approach to verify LTL on probabilistic (concurrent) finite-state programs13;14,

model-checking algorithms for the probabilistic extension of the logic CTL (Computation

Tree Logic)15;16, namely, PCTL17–19, and symbolic algorithms for DTMC analysis based on

the symbolic representation of Algebraic Decision Diagrams and MTBDDs (multi-terminal

BDDs)20–23. Quantitative reachability verificaiton for MDPs by successive refinement24,

value iteration25, and linear programming26;27 based approaches, as well as model-checking
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MDPs with respect to probabilistic extensions of branching time logics such as pCTL* have

been explored28. CTMC model-checking has been shown to be decidable with respect to

Continuous Stochastic Logic (CSL) using results in algebraic and transcendental number

theory29. The problem of model-checking CSL is shown to be reducible to solving a sys-

tems of linear equations, a Volterra integral equation system and to computing transient

state probabilities of CTMCs30. An approximation algorithm for verifying branching-time

properties of CTMC has been explored30. Abstraction based analysis techniques that con-

struct simpler/smaller probabilistic systems have been explored for DTMCs, MDPs and

CTMCs31–34.

Several tools have been developed that implement probabilistic model-checking algo-

rithms. PRISM35 is a well-known probabilistic model-checker that implements model-

checking algorithms for DTMC/MDPs with respect to PCTL specifications, CTMCs with

respect to CSL specifications, and models with probabilistic, non-deterministic and real-time

characteristics2;36–40. In addition, several other model-checkers have been developed for ver-

ification of probabilistic properties specified in probabilistic computation tree logic (PCTL)

and continuous stochastic logic (CSL) and several probabilistic models, such as, ETMCC41,

MRMC36, and YMER42. A comparative analysis of the performance of these model check-

ers based on verification time and peak memory usage has been performed43. Satisfiability

Modulo Theory (SMT) based approach has been developed for analyzing infinite Markov

decision processes44.

An alternate approach to PMC is Statistical Model Checking (SMC) that infers the cor-

rectness of the probabilistic systems by evaluating certain test statistics on random samples

(paths) generated from the probabilistic models. Different methods based on frequentist and

Bayesian approach have been developed for SMC. A frequentist hypothesis testing based

algorithm for SMC of CSL on Discrete-time Markov chain (DTMC) based on sequential

Wald Probability Ratio Test45 has been explored3. A Bayesian SMC algorithm to check

a stochastic model with well-defined probability space over traces (e.g DTMC, CTMC)

against properties specified in Probabilistic Bounded Linear Temporal Logic (PBLTL) has

been explored4. In addition, SMC algorithms for black-box systems has been implemented
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in the tool VESTA8;46. A Bayesian approach for verification of DTMCs against non-nested

CSL specification has been explored4;5, this report explores its extension to the nested case.

Also, Bayesian estimation and Bayesian interval methods for Bayesian SMC for stochastic

discrete-time hybrid system model against PBLTL specifications have been explored5.

Furthermore, SMC for complex models such as Generalized Semi Markov Process (GSMP)8,

Generalized Stochastic PetriNet (GSPN)47, stochastic hybrid systems12, priced Timed Au-

tomata10, and Markov Decision Processes11 have been explored. Several surveys on Statis-

tical Model-Checking provide an exhaustive list of related literature6;7.
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Chapter 3

Verification of Discrete-Time Markov

chains

In this chapter, we formalize the verification problem we study in this report, wherein we

model the uncertain systems as discrete-time Markov chains (DTMCs), and specify the

correctness criteria using continuous stochastic logic (CSL) formulae.

3.1 Discrete Time Markov Chains

Discrete Time Markov Chains (DTMCs) are probabilistic models that consist of a finite set of

states along with transition probabilities that specify the probability of a state change/transition.

Let Dist(S) denote the probability distributions over a finite set S, that is, functions

p : S → [0, 1] such that
∑

s∈S p(s) = 1.

Definition 1. A Discrete Time Markov Chain (DTMC) is a structure T = (S,−→,AP,L),

where:

• S is a finite set of states;

• −→⊆ S × Dist(S) is transition relation such that for any state s ∈ S, and ρ1, ρ2 ∈

Dist(S), if (s, ρ1), (s, ρ2) ∈−→, then ρ1 = ρ2;

8



• AP is a set of atomic propositions; and

• L : S → 2AP is a labelling function.

An edge (s, ρ) ∈−→ will also be denoted as s −→ ρ.

Next, a finite (infinite) path of DTMC T = (S,−→,AP,L) is a finite (infinite) sequence

of states σ = s0s1s2s3 . . . such that there exists a finite (infinite) sequence of probability

distributions ρ0ρ1ρ2ρ3 . . . such that si −→ ρi, and ρi(si+1) 6= 0, for all i. We use σ[i] to

denote the i-th state in the path, namely, si. In addition, for a finite path σ = s0s1s2 . . . sn,

len(σ) denotes the length of the path σ, that is, len(σ) = n. Let Paths(T ) denote the set

of all possible infinite paths of T .

We can define a σ-algebra on Paths(T ) in a standard manner (see, for instance,48).

The σ-algebra is defined by assigning probabilities with finite paths each of which specifies a

cylinder consisting of all infinite paths that contain the finite path as a prefix. All measurable

sets are built from the cylinders using the operations of complementation and countable

union, and the probabilities are accordingly assigned. Given a finite path σ = s0s1s2 . . . sn,

prob(σ) denoting the probability of path σ, is defined as follows.

prob(σ) =
n−1∏
i=0

ρi(si+1).

Given a measurable set of paths C of the DTMC T , prob(C) denotes the probability of C in

the σ-algebra.

3.2 Continuous Stochastic Logic (CSL)

In this section, we discuss continuous stochastic logic, a logic for expressing probabilistic

properties. It essentially extends the branching-time logic, namely, Computation Tree Logic

(CTL*), by replacing the existential and universal quantifications over paths by probabilistic

operators. Next, we present the syntax and semantics of CSL.
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Syntax Given a set of atomic propositions AP, a CSL formula ϕ over AP, is inductively

defined as:

? ϕ ::= tt | a | ¬ϕ |ϕ ∧ ϕ |Pr./θ(%); ? % ::= Xϕ |ϕU≤kϕ,

where a ∈ AP, ./∈ {≤,≥} and θ ∈ [0, 1]. We refer to ϕ as a state formula and ρ as a path

formula.

ϕ is interpreted in a state of the DTMC and it evaluates to either true or false. In

particular, the symbol tt represents “true” and evaluates to true in every state. ¬ and ∧

represent the negation and the conjunction boolean operators, with standard meaning. % on

the other hand is interpreted on a path, wherein, Xϕ specifies that ϕ is true in the “next”

state of the path and ϕ1U
≤kϕ2 states that ϕ2 is true within the next k states, and ϕ1 is

true in every state before ϕ2 holds. Pr./θ(%) is true in a state if the probability of the set

of all paths starting from that state which satisfy % is ./ θ, where ./∈ {≤,≥}. We will use

a derived operator F in the sequel, that represents a property being satisfied in the future.

More precisely F≤kϕ is a path formula that states that ϕ holds in some state within the next

k states along the path, and can be expressed using the until operator U as F≤kϕ = ttU≤kϕ.

Next, we formalize the semantics of CSL.

Semantics Let us fix a DTMC T . Given a state s of T , and a CSL state formula ϕ, we

use s |= ϕ, to denote the fact that s satisfies the property ϕ in the model T . Similarly, given

an infinite path σ of T and a CSL path formula ρ, we use σ |= ρ to denote that the path

σ satisfies the path formula ρ. We define the satisfaction of ϕ, denoted as either s |= ϕ or

σ |= %, inductively as follows:

• s |= tt for all s ∈ S;

• s |= a if and only if a ∈ L(s);

• s |= ¬ϕ if and only if s 6|= ϕ;

• s |= ϕ1 ∧ ϕ2 if and only if s |= ϕ1 and s |= ϕ2;

• s |= Pr./ θ(%) if and only if prob(Cρ) ./ θ;

10



• σ |= Xϕ if and only if σ[1] |= ϕ;

• σ |= ϕ1U
≤kϕ2 if and only if for some j ≤ k, σ[j] |= ϕ2 and for all 0 ≤ i < j, σ[i] |= ϕ1;

Here, s 6|= ϕ denotes that s |= ϕ is not true, and Cρ = {σ ∈ Paths(T ) | σ |= %}. Note that Cρ

is a measurable set, since, the satisfaction of a path σ only depends on a finite prefix whose

length is upper-bounded by the sum of the bounds on the U operators in the formula. Let

Cρ,n denote the set of all paths in Cρ whose length is n.

3.3 Verification Problem

In this section, we define the verification problem for discrete-time Markov chain where the

correctness specification is given by a continuous stochastic logic formula.

Problem. Given a DTMC T = (S,−→,AP,L), a state s ∈ S, and a CSL state formula

ϕ, check whether the formula ϕ holds at state s, that is, s |= ϕ?

3.4 Illustrative Example

We illustrate DTMC with an example of a grid world robot navigation scenario.

1
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<latexit sha1_base64="13cR5Fynwx0HrzlrFbzLMdSUQ9o=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI8BLx4jmgckS5idzCZDZmeXmV4hLAF/wIsHRbz6Rd78G2eTHDSxoKGo6qa7K0ikMOi6305hZXVtfaO4Wdra3tndK+8fNE2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo5vcbz1ybUSsHnCccD+iAyVCwSha6d70znvlilt1pyDLxJuTCsxR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5JNSNzU8oWxEB7xjqaIRN342PXVCTqzSJ2GsbSkkU/X3REYjY8ZRYDsjikOz6OXif14nxfDaz4RKUuSKzRaFqSQYk/xv0heaM5RjSyjTwt5K2JBqytCmU7IheIsvL5PmWdW7rLp3F5Va7WkWRxGO4BhOwYMrqMEt1KEBDAbwDK/w5kjnxXl3PmatBWce4SH8gfP5Ay3Sjh8=</latexit>s3
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<latexit sha1_base64="TncOkGOyWKRD9dOfP/wBbjLMbZk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUfBS8OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv57SdUmsfywUwS9CM6lDzkjBorNVS/XHGr7hxklXg5qUCOer/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S1kXVu6q6jctK7TaPowgncArn4ME11OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/3FiM8w==</latexit>r
<latexit sha1_base64="z0yGr1i3rIiHf20mvl8boU+aBe0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUfBS8OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv57SdUmsfywUwS9CM6lDzkjBorNYJ+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrYuqd1V1G5eV2m0eRxFO4BTOwYNrqME91KEJDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AMQYjOM=</latexit>

b

<latexit sha1_base64="otdESUGxxWwV2nnrc/I6fKIsowI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUfBS8OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv57SdUmsfywUwS9CM6lDzkjBorNYb9csWtunOQVeLlpAI56v3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aFTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU1442dcJqlByRaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xKWhdV76rqNi4rtds8jiKcwCmcgwfXUIN7qEMTGCA8wyu8OY/Oi/PufCxaC04+cwx/4Hz+AMusjOg=</latexit>g
<latexit sha1_base64="z0yGr1i3rIiHf20mvl8boU+aBe0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUfBS8OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv57SdUmsfywUwS9CM6lDzkjBorNYJ+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrYuqd1V1G5eV2m0eRxFO4BTOwYNrqME91KEJDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AMQYjOM=</latexit>

b

<latexit sha1_base64="otXLQjGBBGGTomp7xQ6YWXuUwGU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUfBS8OKxUvsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8d3Mbz9xbUSsHnGScD+iQyVCwShaqdHou/1yxa26c5BV4uWkAjnq/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/mp07JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzxM6GSFLlii0VhKgnGZPY3GQjNGcqJJZRpYW8lbEQ1ZWjTKdkQvOWXV0nroupdVd2Hy0rtNo+jCCdwCufgwTXU4B7q0AQGQ3iGV3hzpPPivDsfi9aCk88cwx84nz/Q9o13</latexit>

S0

<latexit sha1_base64="OSr31IeN653LM8fymcJC0n883ac=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUfBS8OKxUvsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv57SdUmsfy0UwS9CM6lDzkjBorNRp9r1+uuFV3DrJKvJxUIEe9X/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCW/8jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0nroupdVd2Hy0rtNo+jCCdwCufgwTXU4B7q0AQGQ3iGV3hzhPPivDsfi9aCk88cwx84nz/Seo14</latexit>

S1

<latexit sha1_base64="Q6UfmNI/RCn0oRYDVs66yg2tFSA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklRFLwUvHis1H5AG8pmO2mXbjZhdyOU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut7O2vrG5tV3YKe7u7R8clo6OWzpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38389hMqzWP5aCYJ+hEdSh5yRo2VGo1+tV8quxV3DrJKvJyUIUe9X/rqDWKWRigNE1Trrucmxs+oMpwJnBZ7qcaEsjEdYtdSSSPUfjY/dUrOrTIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCW/8jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdoQvOWXV0mrWvGuKu7DZbl2m8dRgFM4gwvw4BpqcA91aAKDITzDK7w5wnlx3p2PReuak8+cwB84nz/T/o15</latexit>

S2
<latexit sha1_base64="ml4sHSO9VN+j/gq3rHqVwFJGvZ0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QMFLwIvHSMwDkiXMTmaTIbOzy0yvEJZ8ghcPinj1i7z5N06SPWi0oKGo6qa7K0ikMOi6X05hZXVtfaO4Wdra3tndK+8ftEycasabLJax7gTUcCkUb6JAyTuJ5jQKJG8H49uZ337k2ohYPeAk4X5Eh0qEglG0UqPRP++XK27VnYP8JV5OKpCj3i9/9gYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXUkUjbvxsfuqUnFhlQMJY21JI5urPiYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGZ/k4HQnKGcWEKZFvZWwkZUU4Y2nZINwVt++S9pnVW9y6p7f1Gp3eRxFOEIjuEUPLiCGtxBHZrAYAhP8AKvjnSenTfnfdFacPKZQ/gF5+Mb1YKNeg==</latexit>

S3

<latexit sha1_base64="TncOkGOyWKRD9dOfP/wBbjLMbZk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUfBS8OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv57SdUmsfywUwS9CM6lDzkjBorNVS/XHGr7hxklXg5qUCOer/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S1kXVu6q6jctK7TaPowgncArn4ME11OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/3FiM8w==</latexit>r
<latexit sha1_base64="z0yGr1i3rIiHf20mvl8boU+aBe0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUfBS8OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv57SdUmsfywUwS9CM6lDzkjBorNYJ+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrYuqd1V1G5eV2m0eRxFO4BTOwYNrqME91KEJDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AMQYjOM=</latexit>

b

<latexit sha1_base64="otdESUGxxWwV2nnrc/I6fKIsowI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUfBS8OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv57SdUmsfywUwS9CM6lDzkjBorNYb9csWtunOQVeLlpAI56v3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aFTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU1442dcJqlByRaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xKWhdV76rqNi4rtds8jiKcwCmcgwfXUIN7qEMTGCA8wyu8OY/Oi/PufCxaC04+cwx/4Hz+AMusjOg=</latexit>g<latexit sha1_base64="z0yGr1i3rIiHf20mvl8boU+aBe0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUfBS8OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv57SdUmsfywUwS9CM6lDzkjBorNYJ+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrYuqd1V1G5eV2m0eRxFO4BTOwYNrqME91KEJDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AMQYjOM=</latexit>

b

1

<latexit sha1_base64="R6OofxdExeKnyObeDh9m1a57/Y8=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKcyKoseAF48RTQwkS5idzCZDZmeXmV4hLAF/wIsHRbz6Rd78GyePgyYWNBRV3XR3hamSFin99gorq2vrG8XN0tb2zu5eef+gaZPMcNHgiUpMK2RWKKlFAyUq0UqNYHGoxEM4vJ74D4/CWJnoexylIohZX8tIcoZOurNd2i1XaJVOQZaJPycVmKPeLX91egnPYqGRK2Zt26cpBjkzKLkS41InsyJlfMj6ou2oZrGwQT49dUxOnNIjUWJcaSRT9fdEzmJrR3HoOmOGA7voTcT/vHaG0VWQS51mKDSfLYoyRTAhk79JTxrBUY0cYdxIdyvhA2YYR5dOyYXgL768TJpnVf+iSm/PK7Xa0yyOIhzBMZyCD5dQgxuoQwM49OEZXuHNU96L9+59zFoL3jzCQ/gD7/MHKUaOHA==</latexit>s0
<latexit sha1_base64="SXgZhDp3G7DKX4pqV9q+va3Zygc=">AAAB6nicbVDLSgNBEOyJrxhfUY9eBoPgKeyKoseAF48RTQwkS5idzCZDZmeXmV4hLAF/wIsHRbz6Rd78GyePgyYWNBRV3XR3hamSFj3vmxRWVtfWN4qbpa3tnd298v5B0yaZ4aLBE5WYVsisUFKLBkpUopUaweJQiYdweD3xHx6FsTLR9zhKRRCzvpaR5AyddGe7frdc8areFHSZ+HNSgTnq3fJXp5fwLBYauWLWtn0vxSBnBiVXYlzqZFakjA9ZX7Qd1SwWNsinp47piVN6NEqMK410qv6eyFls7SgOXWfMcGAXvYn4n9fOMLoKcqnTDIXms0VRpigmdPI37UkjOKqRI4wb6W6lfMAM4+jSKbkQ/MWXl0nzrOpfVL3b80qt9jSLowhHcAyn4MMl1OAG6tAADn14hld4I4q8kHfyMWstkHmEh/AH5PMHKsqOHQ==</latexit>s1

<latexit sha1_base64="7Uhnbng/VjyNjr85npkFGABgNX4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoseCF48V7Qe0oWy2k3bpZhN2N0IJBf+AFw+KePUXefPfuGl70NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvsn99iMqzWP5YCYJ+hEdSh5yRo2V7nW/1i9X3Ko7A1kl3oJUYIFGv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx26pScWWVAwljZkobM1N8TGY20nkSB7YyoGellLxf/87qpCa/9jMskNSjZfFGYCmJikv9NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6RVq3qXVffuolKvP83jKMIJnMI5eHAFdbiFBjSBwRCe4RXeHOG8OO/Ox7y14CwiPIY/cD5/ACxOjh4=</latexit>s2
<latexit sha1_base64="13cR5Fynwx0HrzlrFbzLMdSUQ9o=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI8BLx4jmgckS5idzCZDZmeXmV4hLAF/wIsHRbz6Rd78G2eTHDSxoKGo6qa7K0ikMOi6305hZXVtfaO4Wdra3tndK+8fNE2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo5vcbz1ybUSsHnCccD+iAyVCwSha6d70znvlilt1pyDLxJuTCsxR75W/uv2YpRFXyCQ1puO5CfoZ1SiY5JNSNzU8oWxEB7xjqaIRN342PXVCTqzSJ2GsbSkkU/X3REYjY8ZRYDsjikOz6OXif14nxfDaz4RKUuSKzRaFqSQYk/xv0heaM5RjSyjTwt5K2JBqytCmU7IheIsvL5PmWdW7rLp3F5Va7WkWRxGO4BhOwYMrqMEt1KEBDAbwDK/w5kjnxXl3PmatBWce4SH8gfP5Ay3Sjh8=</latexit>s3
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<latexit sha1_base64="TncOkGOyWKRD9dOfP/wBbjLMbZk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUfBS8OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv57SdUmsfywUwS9CM6lDzkjBorNVS/XHGr7hxklXg5qUCOer/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S1kXVu6q6jctK7TaPowgncArn4ME11OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/3FiM8w==</latexit>r
<latexit sha1_base64="z0yGr1i3rIiHf20mvl8boU+aBe0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUfBS8OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv57SdUmsfywUwS9CM6lDzkjBorNYJ+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrYuqd1V1G5eV2m0eRxFO4BTOwYNrqME91KEJDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AMQYjOM=</latexit>

b

<latexit sha1_base64="otdESUGxxWwV2nnrc/I6fKIsowI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUfBS8OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv57SdUmsfywUwS9CM6lDzkjBorNYb9csWtunOQVeLlpAI56v3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aFTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU1442dcJqlByRaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xKWhdV76rqNi4rtds8jiKcwCmcgwfXUIN7qEMTGCA8wyu8OY/Oi/PufCxaC04+cwx/4Hz+AMusjOg=</latexit>g
<latexit sha1_base64="z0yGr1i3rIiHf20mvl8boU+aBe0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUfBS8OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv57SdUmsfywUwS9CM6lDzkjBorNYJ+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrYuqd1V1G5eV2m0eRxFO4BTOwYNrqME91KEJDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AMQYjOM=</latexit>

b

<latexit sha1_base64="otXLQjGBBGGTomp7xQ6YWXuUwGU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUfBS8OKxUvsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8d3Mbz9xbUSsHnGScD+iQyVCwShaqdHou/1yxa26c5BV4uWkAjnq/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/mp07JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzxM6GSFLlii0VhKgnGZPY3GQjNGcqJJZRpYW8lbEQ1ZWjTKdkQvOWXV0nroupdVd2Hy0rtNo+jCCdwCufgwTXU4B7q0AQGQ3iGV3hzpPPivDsfi9aCk88cwx84nz/Q9o13</latexit>
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Figure 3.1: Grid World Robot Navigation Scenario and the DTMC

Consider a work-floor divided into a grid of size 2 × 2, consisting of four cells in which

a robot is navigating as shown in Figure 3.1 on the left. The initial position of the robot
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is in the cell labelled r; the label b indicates those cells where a robot can communicate

with a base station; and the label g shows the goal/target cell. In each cell, the robot can

move to each of its two neighboring cells (with which it shares a boundary line) with equal

probability.

DTMC Modeling The robot behavior can be modelled as a DTMC with four states, s0,

s1, s2, and s3, each corresponding to a cell, as shown in Figure 3.1 on the right. The tran-

sition relation is given by −→= {(s0, ρ0), (s1, ρ1), (s2, ρ2), (s3, ρ3)}, where ρ0(s1) = ρ0(s2) =

ρ1(s0) = ρ1(s3) = ρ2(s0) = ρ2(s3) = ρ3(s1) = ρ3(s2) = 0.5, and ρi(sj) = 0, otherwise. We

consider the set of atomic propositions to be AP = {r, b, g}, and the labelling function given

by L(s0) = r, L(s1) = L(s2) = b, and L(s3) = g.

Probability Space Consider a set C of infinite paths starting from s0 that reach s3 at

some point while avoiding s2 until reaching s3. The paths in C have prefixes of the form

(s0s1)+s3. So, prob(C) = prob(s0s1s3) + prob(s0s1s0s1s3) + prob(s0s1s0s1s0s1s3) + . . ., that

is, prob(C) = (0.5)0.5 + (0.5)30.5 + (0.5)50.5 + . . . = (0.5)0.5[1 + (0.5)2 + (0.5)4 + . . .] =

0.25[ 1
1−0.25

] = 1
3
.

CSL Property We are interested in checking whether the robot starting from the initial

cell r reaches the goal cell g within 4 steps with probability at least 0.1 while maintaining a

probability of at least 0.2 to be able to communicate with the base station (which is enabled

in the cells labelled b) in at most 2 steps. The corresponding CSL formula is given by:

ϕ = Pr≥0.1[(Pr≥0.2F
≤2 b) U≤4 g] (3.1)

Note that ϕ = Pr≥0.1(%) where % = ψ U≤4 g and ψ = (Pr≥0.2F
≤2 b). Note that ψ is true

in every state, because, there is a path from every state whose probability is greater than

0.2 that reaches a state labelled b within 2 steps. More precisely, ψ is trivially true at s1 and

s2, because b holds in these states. All paths from s0, that is, those that start with s0s2 and

s0s1, satisfy F≤2 b, and hence, s0 satisfies F≤2 b with probability 1. The DTMC satisfies the
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formula ϕ at state s0 because the following paths σ1 = s0 → s1 → s3 and σ2 = s0 → s2 → s3

satisfy the path formula %, and prob(σ1) + prob(σ2) = 0.25 + 0.25 = 0.50, which is greater

than 0.1. Note that σ1 |= %, because σ1[2] |= g and σ1[0] and σ1[1] satisfy ψ.
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Chapter 4

Bayesian Hypothesis Testing

Our broad approach to verification is a statistical model-checking algorithm. To provide

some background, in this section, we introduce statistical hypothesis testing and the Bayesian

approach for testing a certain hypothesis.

4.1 A brief introduction to hypothesis testing

A hypothesis test aims to obtain some inference on the parameters of a probability distribu-

tion using some statistical tests. More precisely, let Y be a random variable whose probability

distribution function (pdf) or probability mass function (pmf) depends on a parameter Θ.

We intend to test whether Θ is above or below a certain value θ0 called the threshold. Hence,

we have two hypotheses:

H0 : Θ ≥ θ0 vs H1 : Θ < θ0

whereH0 is referred to as the null hypothesis andH1 as the alternate hypothesis. A statistical

test typically consists of sampling from the distribution of Y to obtain a sample y, computing

a statistic which is some function of the sampled data y, and then determining whether to

accept or reject the null hypothesis H0 based on the comparison of the statistic to a certain

value. The value for comparison is chosen such that the outcome (accept/reject) has certain

guarantees α and β on the probability of errors. More precisely, one needs to guarantee that

the Type I error, namely, the probability that the test rejects the null hypothesis when it
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is true, is less than α, and the Type II error, namely, the probability that the test fails to

reject the null hypothesis when it is false, is less than β.

There are broadly two approaches to hypothesis testing, namely, a frequentist approach,

wherein the parameter Θ is assumed to be a fixed unknown value, and the Bayesian approach,

where Θ is considered as a random variable with a known distribution. In the paper, our

objective is to develop a Bayesian test for solving the verification problem, hence, next, we

present the details of the Bayesian approach.

4.2 Bayesian Hypothesis Testing

We present the Bayesian test for a Bernoulli distribution parameter Θ as proposed in4;5. Let

Y be a Bernoulli random variable with parameter Θ, that is, Y is the outcome of a random

experiment consisting of tossing a biased coin where the probability of head showing up is

Θ. Let PY |Θ(y|θ) be the probability mass function of Y , where y = 0 or 1, 0 ≤ θ ≤ 1, and

PY |Θ(y|θ) is the probability of head appearing in the coin toss for y = 1 and tail appearing

for y = 0. In the Bayesian approach, the parameter Θ is assumed to be a random variable

with probability density function fΘ(θ), which is also referred to as the prior distribution.

The prior distribution is our belief on the true Θ before sampling.

Let y = (y1, · · · , yn) be a random sample from Y . We will use PY |Θ(y|θ) to denote the

probability of the sample y occurring as a result of n independent and identically distributed

random Bernoulli trials. Let us consider the hypotheses, where θ0 is the threshold:

H0 : Θ ≥ θ0 vs H1 : Θ < θ0

The Bayes’ test is based on the Bayes’ factor, BY (y, θ0), as the statistic, which is the ratio of

the probability of observing data y, given that H0 is true, denoted f(y|H0), to the probability

of observing data y, given that H1 is true, denoted f(y|H1). Hence, the Bayes’ factor is

given by:
BY (y, θ0) =

f(y|H0)

f(y|H1)
=

∫ 1

θ0
PY |Θ(y|θ)fΘ(θ)dθ∫ θ0

0
PY |Θ(y|θ)fΘ(θ)dθ

∗ P1

P0

,
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P0 =

∫ 1

θ0

fΘ(θ)dθ, P1 =

∫ θ0

0

fΘ(θ)dθ.

The next theorem from4;5 provides a bound on the Type I and Type II errors for the hy-

potheses H0 and H1 on the parameter Θ of the Bernoulli random variable Y based on Bayes’

factor.

Theorem 1 (Bayes’ test). Consider a Bernoulli random variable Y with parameter Θ and

threshold θ0. Let H0 : Θ ≥ θ0 and H1 : Θ < θ0 be the null and alternate hypotheses,

respectively. Consider the test that accepts H0 when BY (y, θ0) ≥ 1
β

and rejects H0 when

BY (y, θ0) ≤ α. Then α and β are the upper bounds of Type I error and Type II error,

respectively.

Note that for a certain sample y, Bayes’ test accepts or rejects the null hypothesis only

if the Bayes’ factor is in the range [ 1
β
, α]. Hence, for given Type I and Type II errors α and

β, the algorithm based on Bayes’ test consists of iteratively sampling from Y until the test

statistic, Bayes’ factor BY , computed from the sample values falls outside the range [ 1
β
, α].

Computation of BY Bayes’ factor for Y given y and θ0 is given by:

BY (y, θ0) =
f(y|H0)

f(y|H1)
=

∫ 1

θ0
PY |Θ(y|θ)fΘ(θ)dθ∫ θ0

0
PY |Θ(y|θ)fΘ(θ)dθ

∗ P1

P0

where P0 =
∫ 1

θ0
fΘ(θ)dθ, P1 =

∫ θ0
0
fΘ(θ)dθ, and fΘ(θ) is a prior distribution of Y . Given

that Y |Θ is a Bernoulli random variable with parameter Θ, BY can be computed using the

following equation:

BY (y, θ0) =
P1

P0

∗
∫ 1

θ0
(θ)(m)(1− θ)(n−m)fΘ(θ)dθ∫ θ0

0
θ(m)(1− θ)(n−m)fΘ(θ)dθ

, where

P1 =
∫ θ0

0
fΘ(θ)dθ, P1 =

∫ θ0
0
fΘ(θ)dθ, m =

∑n
i=1 yi and n is the sample size.

Next, we briefly discuss the choice of the prior distribution fΘ(θ) for the parameter Θ

of the Bernoulli distribution. Note that Θ ranges in the interval [0, 1], hence, we need the

support of fΘ to be [0, 1]. We assume a Beta distribution as a prior for Θ whose support is
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[0, 1], and whose probability density function consists of two shape parameters a and b.

Beta distributions are a general class of distributions that can capture a wide range of

distributions by setting different values for the parameters a and b. For instance, when

a = b = 1, fΘ(θ) = 1
Beta(a,b)

= 1 for 0 ≤ θ ≤ 1, since Beta(1, 1) = 1, that is, we obtain a

uniform distribution. Further, Beta prior is the ‘conjugate’ prior of Bernoulli distribution in

the sense that the prior and posterior distributions belong to the same family of distributions.

This simplifies some of the computation as we will see in the next section.
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Chapter 5

Bayesian SMC for Non-nested CSL

Verification

In this section, we formulate the verification problem as a hypothesis testing problem. The

nested probabilistic operators pose a challenge to statistical analysis, so, we start with formu-

lae without nested probabilistic operators, and then extend our analysis to nested operators.

5.1 Verifying non-nested formulas

Verification problem can be formulated as a hypothesis testing problem. First, we consider

a formula with a single probabilistic operator at the top, namely, ϕ = Pr≥θ0(%), where % is

a path formula and does not contain any probabilistic operator Pr within it. We refer to

such formulae as non-nested formulae.

The satisfaction of the path formula % by a path σ depends only on a finite prefix of it,

whose length, say L%, can be upper bounded, for instance, by the sum of the k’s in U≤k

operators appearing within %. Hence, the satisfaction of ϕ is a state s can be determined

by considering all paths from s of length L%, verifying if the path satisfies %, summing up

the probabilities of all the paths that satisfy % and checking if it is ≥ θ0. Note that whether

σ |= % can be computed in time linear in the L% and size of %. While the above approach
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provides a deterministic procedure, it is highly inefficient because we need to enumerate all

paths of length L%, which are exponentially many in L%.

To avoid the exponential blow-up in verification complexity, we turn to a statistical

approach wherein the verification problem is formulated as a hypothesis testing problem as

follows. Let us consider a sample space C consisting of all finite paths of T starting from s

up to a given length L%, and let C% be the set of paths in C which satisfy %. Recall that the

probability associated with a finite path σ is given by prob(σ). A standard random walk on

the DTMC will sample from C such that σ appears with probability prob(σ). Let Y be a

random variable on this space, such that Y (σ) = 1 if σ |= %, and 0, otherwise. Note that

P [Y = 1] = prob(C%). Hence, Y is a Bernoulli random variable with parameter Θ = prob(C%).

Further, to solve the verification problem, does s |= ϕ = Pr≥θ0(%), we don’t need the

exact value of Θ, but we need to know whether it is greater than or equal to θ0. This

is essentially a hypothesis test, where the null hypothesis is given by H0 : Θ ≥ θ0 vs the

alternative hypothesis H1 : Θ < θ0. We can use Bayes’ test to check if s |= ϕ, that is, s |= ϕ

if H0 is accepted by the Bayes’ test and s 6|= ϕ if H1 is accepted by the Bayes’ test. Theorem

1 provides upper bounds on Type 1 and Type II errors. The Type I error corresponds to

the probability that the test falsely concludes that s does not satisfy ϕ, and type II error to

the probability that the test falsely concludes that s satisfies ϕ. Unlike the standard model-

checking algorithms40, where we obtain with probability 1 whether s |= ϕ, here, we can

only say with high probability whether s |= ϕ. However, as we will see in the experimental

section, statistical methods are much faster than traditional state space exploration based

model-checking algorithms.

Our algorithm for the non-nested case is summarized in Algorithm 1. Algorithms checks

if ϕ = Pr./θ0(ρ) is satisfied in a state s of T , under the assumption that the prior distribution

of Θ is a Beta distribution with parameters a and b. Our algorithm is a randomized algorithm

which outputs the correct answer to s |= ϕ with high probability, that is, the Type I and II

error probabilities are bounded by α and β. The algorithm consists of sampling a sequence

of paths σ of length len(%) from T starting from s and checking if σ |= %. Here, n counts

the total number of samples and m counts those that satisfy %. BayesFactor(θ0, n, m, a,
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Algorithm 1: Bayes SMC Base - SMC of a non-nested CSL formula

Input: s - state, T - DTMC, ϕ = Pr./θ0(ρ) - non-nested CSL formula, a, b -
parameters for beta prior, α, β - bound on Type I and Type II errors

Output: Answer if s |= ϕ in T with confidence α, β

1 begin
2 Set n = 0, m = 0
3 Set L% to be the depth of %
4 while True do
5 Increment n
6 Generate a (random) path σ from state s in T of length L%
7 if σ satisfies ρ then
8 Increment m

9 Set B = BayesFactor(θ0, n, m, a, b)
10 if B > 1

β
then

11 return true

12 if B < α then
13 return false

b) computes the B as given below, based on which the decision to accept or reject is made

to ensure Type I and Type II errors are within α and β, respectively, in accordance with

Theorem 1.

B =
P1

P0

∗
∫ 1

θ0
(θ)m(1− θ)(n−m)fΘ(θ))dθ∫ θ0

0
(θ)m(1− θ)(n−m)fΘ(θ)dθ

, where P0 =

∫ 1

θ0

fΘ(θ)dθ, P1 =

∫ θ0

0

fΘ(θ)dθ

We can summarize the correctness criterion of Algorithm 1 as follows:

Theorem 2. Let s, T , ϕ, a, b, α, and β, be as in Algorithm 1. If s |= ϕ in T , then

Algorithm 1 outputs true with probability at least (1− α). If s 6|= ϕ in T , then Algorithm 1

outputs false with probability at least (1− 1
β
).
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Chapter 6

Bayesian SMC for Nested CSL

In this section, we extend the Bayesian approach to nested probabilistic operators. Bayesian

SMC has been explored previously for non-nested operators4;5. A frequentist SMC approach

based on acceptance sampling has been explored for the complete CSL logic3. Here, we build

upon ideas from these papers to address the problem of Bayesian SMC for the complete CSL

logic.

6.1 Overview of the approach

Standard model-checking algorithms for verifying general CSL formulae work bottom-up,

where the satisfaction of state subformulae are evaluated at each state, and the satisfaction

of a formula containing these subformulae are inferred from it. Our broad approach is a

similar recursive algorithm, however, there are several intricacies due to the fact that we can

compute the satisfaction of subformulae exactly using an SMC algorithm.

Let us consider a CSL formula ϕ = Pr≥θ0(%), where the path formula % could potentially

have probabilistic operators Pr. We define a top-level formula of %, a subformula of %

of the form Pr≥θ0(%
′) which are not contained inside any probabilistic operators within

%. For instance, consider ϕ = Pr≥0.1(%) where % = ψ U≤4 g and ψ = (Pr≥0.2F
≤2 b) as

shown in Figure 6.1. ψ is a top-level subformula of %. Suppose ψ = (Pr≥0.2F
≤2 ψ′), where
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Figure 6.1: Pr≥0.1(Pr≥0.2(F≤1b)U≤4g)

ψ′ = Pr≥0.5(Xg). Then ψ′ would not be a top-level subformula of %, since it is contained

within another subformula with a probabilistic operator at the root, that is, ψ, which is a

subformula of %.

Suppose that we have deduced the satisfaction of all top-level formulas of % in each state

of the DTMC, that is, whether s |= ϕ′ for each state s of the DTMC and each top-level

formula ϕ′ of %. Then the verification of ϕ = Pr≥θ0(%) could be performed as in the case

of the non-nested operators. That is, given any path σ, we can define a random variable Y

such that Y (σ) = 1 if the σ satisfies %, which can be deduced (computed) deterministically

if the values of s |= ϕ′ for each state s and top-level formula ϕ′ of % are known.

Again, consider the formula ϕ from Figure 6.1. The satisfaction of % in a path σ depends

on the satisfaction of ψ along states in %. Suppose that we have checked for each state of

the DTMC, if ψ holds in that state. We can then use Algorithm 1 to check if s |= ϕ. More

precisely, we can verify the non-nested formula ϕ = Pr≥0.1(pψ U
≤4 g), where the labels of

DTMC now consist of an additional label pψ which is added to the label of exactly those sets

that satisfy ψ. Hence, we could verify a nested formula in a bottom up fashion, provided we

can compute the satisfaction of its top-level subformulae exactly.

However, our objective is to design a statistical model-checking algorithm for verifying

CSL formulae, and avoid computationally expensive probabilistic model-checking algorithms.

Hence, we will recursively call SMC algorithms on top-level formulae ψ of %, and use the
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result in verifying the satisfaction of %. In this case, the answer to s |= ψ is not definitive,

but has some error given by Type I or Type II errors. Hence, we need to factor in this

uncertain answer for the top-level subformulae in the analysis of %. We consider a random

variable Z such that Z(σ) = 1 if σ satisfies % using the values returned by SMC for s |= ψ.

The values of Z(σ) and Y (σ) could differ, since, SMC could answer the question s |= ψ

incorrectly. However, we can bound probability with which Z differs from Y . This enables

us to approximate the Bayes’ test based on Y , through a Bayes’ test based on Z, and use

the latter for Bayesian statistical test for verifying ϕ.

Our broad approach consists of the following steps.

1. Recursive step: Compute recursively the s |= ψ for all states s of the DTMC T and

top level formulas ψ of % using the Bayesian SMC algorithm such that given Type I

and Type II error bounds, αψ and βψ, are achieved, respectively. (We assume that the

bounds are the same for all states, this can be easily relaxed).

2. Error Propagation: Propagate the Type I and Type II error bounds, αψ and βψ for

the top level formulas ψ of % to the root of the formula % to obtain α% and β%. α%

and β% provide bounds on the Type I and Type II errors, Z with respect to Y , that

is, the probability that σ |= % is answered incorrectly when SMC results are used for

satisfaction of ψ in a state as compared to when exact satisfaction answers are used.

Formally, α% and β% computed satisfy P [Z = 0|Y = 1] ≤ α% and P [Z = 1|Y = 0] ≤ β%.

3. Approximate Bayesian Test: While Bayes’ test deduces whether s |= ϕ by using

the values of samples from Y , we can only sample values of Z using our recursive

statistical approach. Hence, we provide an approximate Bayesian test, that provides

inferences on s |= ϕ with given Type I and Type II error guarantees using samples of

Z.

In Sections 6.2 and 6.3, we provide the details of the error propagation step and the

approximate Bayesian test, respectively. In Section ??, we present the algorithmic details

and illustrate on an example.
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6.2 Error Propagation

In this section, we describe an inductive definition to compute the Type I and Type II errors,

E1(%) and E2(%), respectively, corresponding to satisfaction of % (in any path σ of DTMC

T ) given the Type I and Type II errors for the SMC of top-level formulae ψ of %, denoted

E1(ψ) and E2(ψ), respectively. In particular, we provide E1(ϕ) and E2(ϕ), for the case

ϕ = tt, a,¬ψ, ψ1 ∧ ψ2 and % = Xψ,ψ1U
≤kψ2.

• E1(tt) = E2(tt) = 0;

• E1(a) = E2(a) = 0;

• E1(¬ψ) = E2(ψ), E2(¬ψ) = E1(ψ);

• E1(ψ1 ∧ ψ2) = E1(ψ1) + E1(ψ2), E2(ψ1 ∧ ψ2) = max{E2(ψ1), E2(ψ2)};

• E1(Xψ) = E1(ψ), E2(Xψ) = E2(ψ);

• E1(ψ1U
≤kψ2) = kE1(ψ1) + E1(ψ2), E2(ψ1U

≤kψ2) = (k + 1) max{E2(ψ1), E2(ψ2)}.

Below we provide a sketch of correctness of the rules. Note that the Type I error E1(¬ψ)

is the probability that the statistical evaluation of ¬ψ returns false when it is true. But this

is equivalent to the probability of the statistical evaluation of ϕ returning true when it is

false. Hence, we obtain E1(¬ψ) = E2(ψ). A similar argument provides E2(¬ψ) = E1(ψ).

E1(ψ1∧ψ2) is the probability that the statistical evaluation of ψ1∧ψ2 returns false when

it is true. That is, ψ1 and ψ2 are true but either the statistical evaluation of ψ1 says false or

that of ψ2 says false. This probability can be upper bounded by the sum of Type I errors for

ψ1 and ψ2. E2(ψ1 ∧ ψ2) is the probability that the statistical evaluation of ψ1 ∧ ψ2 returns

true when it is false. There are three cases here: ψ1 is true and ψ2 is false, ψ1 is false and ψ2

is true, and ψ1 and ψ2 are both false. Let us consider the case where ψ1 is true and ψ2 is false,

ψ1 is false. The statistical evaluation of ψ1 ∧ ψ2 returns true when the statistical evaluation

of ψ1 and that of ψ2 both return true. The probability that the statistical evaluation of ψ1

returns true, when ψ1 is true (and ψ2 is false), is upper bounded by 1, while the probability
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that the statistical evaluation of ψ2 returns true, when ψ2 is false (and ψ1 is true) is upper

bounded by the Type II error of ψ2. Hence, the probability that the statistical evaluation

of ψ1 ∧ψ2 returns true, when ψ1 is true and ψ2 is false, is the product of the above, namely,

1×E2(ψ2) = E2(ψ2). Similarly, for the other two cases we can upper bound the probability

by E2(ψ1) and E2(ψ1) × E2(ψ2). The overall upper bound is the maximum of all three,

namely, max{E2(ψ1), E2(ψ2)}.

Note that Xψ is satisfied by a path σ exactly when ψ is satisfied at σ[1]. Hence, the statis-

tical evaluation of Xψ for σ is incorrect exactly when that of ψ is incorrect at σ[1]. Therefore

the error probabilities carry over. Finally, the Type I and Type II errors for ψ1U
≤kψ2 are

obtained by interpreting ψ1U
≤kψ2 as the equivalent formula ¬

∧k
i=0 ¬(

∧i−1
j=0X

jψ1 ∧ X iψ2),

and using the previous rules.

6.3 Approximate Bayesian Test

In this section, we provide Bayes’ test for the verification of a CSL formula ϕ = Pr≥θ0(%)

on a DTMC T at a state s, where % could potentially have probabilistic operators. As in

the non-nested case, define a random variable Y , where Y (σ) = 1 if σ satisfies %, and 0

otherwise. Note that Y is a Bernoulli random variable with parameter Θ = prob(C%), where

C% is the set of paths of T which satisfy %. For the verification of ϕ, we need to test the

following hypothesis:

H0 : Θ ≥ θ0 vs H1 : Θ < θ0

Ideally, we would like to compute the Bayes’ factor BY over sampled data y consisting of

paths starting from the state s and use that in checking whether the state s satisfies ϕ.

However, given a path σ, we cannot check if it satisfies % exactly, because we do not know

the truth values of the nested probabilistic operator within % at the different states. Instead,

we have access to an SMC algorithm that deduces the satisfaction of nested probabilistic

operators in the states of DTMC with certain error bounds. In Section 6.2, we provided

the inductive definition to propagate these errors to %. Hence, we have access to a random

variable Z such that Z(σ) is 1 if σ satisfies % when SMC values are used for top-level
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formulae. Note that Z will not coincide with Y for a given σ always, but will agree with

high probability. More precisely, we have:

P [Z = 0|Y = 1] ≤ α% P [Z = 1|Y = 0] ≤ β% (6.1)

Moreover, Z can be interpreted as a Bernoulli random variable with some parameter Θ′.

Note that in the Bayesian approach, Θ itself is a random variable with a sample space Ω.

Our next task is to bound the difference between Θ and Θ′ (for every point in the sample

space for Θ).

Proposition 1. Let Y ∼ B(Θ) and Z ∼ B(Θ′) be Bernoulli random variables with parameter

Θ and Θ′, respectively, and let Equation 6.1 hold. Then, we have −α% ≤ Θ′ −Θ ≤ β%.

Proof. We know the following facts.

• P [Y = 1] = Θ, P [Y = 0] = 1 − Θ, P [Z = 1] = Θ′, P [Z = 0] = 1 − Θ′ since Y and Z

are Bernoulli random variables with parameters Θ and Θ′, respectively;

• P [Z = 0|Y = 1] ≤ α%, P [Z = 1|Y = 0] ≤ β%, from Equation 6.1, and

• P [Z = 1|Y = 1] ≤ 1, P [Z = 0|Y = 0] ≤ 1 from the properties of probability measures.

We can deduce:

• Θ′ = P [Z = 1] = P [Z = 1|Y = 0]P [Y = 0] + P [Z = 1|Y = 1]P [Y = 1] ≤ β%(1−Θ) +

1.Θ which implies Θ′ −Θ ≤ β%(1−Θ) ≤ β%.

• 1 − Θ′ = P [Z = 0] = P [Z = 0|Y = 0]P [Y = 0] + P [Z = 0|Y = 1]P [Y = 1] ≤

1.(1−Θ) + α%Θ which implies Θ′ −Θ ≥ −α%Θ ≥ −α%.

Next, we present Bayes’ test on Y using Bayes’ factor for a test on Z as stated in the

following theorem.
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Theorem 3. Let Y ∼ B(Θ) and Z ∼ B(Θ′) be Bernoulli random variables with parameter

Θ and Θ′, respectively, and Equation 6.1 hold. Given hypothesis

H0 : Θ ≥ θ0 vs H1 : Θ < θ0

Consider the test that:

• Accepts H0 when BZ(z, θ0 + β%) ≥ 1/βr1, and

• Rejects H0 when BZ(z, θ0 − α%) ≤ αr2,

where BZ denotes the Bayes’ factor for a test on Z, r1 = P [Θ < θ0]/P [Θ < θ0 + α% + β%]

and r2 = P [Θ ≥ θ0]/P [Θ ≥ θ0 − α% − β%]. Then α and β are the upper bounds of Type I

error and Type II error, respectively.

Proof. Note that from Proposition 1, Θ(ω) ≥ θ0 implies Θ′(ω) ≥ Θ(ω) − α% ≥ θ0 − α%.

Hence, {ω |Θ(ω) ≥ θ0} ⊆ {ω |Θ′(ω) ≥ θ0 − α%}. Similarly, Θ(ω) < θ0 implies Θ′(ω) ≤

Θ(ω) + β% < θ0 + β%. Hence, {ω |Θ(ω) < θ0} ⊆ {ω |Θ′(ω) < θ0 + β%}.

Also, from Proposition 1, Θ(ω) ≥ Θ′(ω) − β%. Hence, Θ′(ω) ≥ θ0 − α% implies Θ(ω) ≥

θ0 − α% − β%. Similarly, from Proposition 1, Θ(ω) ≤ Θ′(ω) + α%. Hence, Θ′(ω) < θ0 + β%

implies Θ(ω) < θ0 + β% + α%.

First, we show that α is a Type I error bound for the hypothesis test, that is, we show

that P ({reject H0}|H0) ≤ α.

P ({reject H0} | H0) = P (BZ(z, θ0 − α%) ≤ αr2 | H0) = P (BZ(z, θ0 − α%) ≤ αr2 | Θ ≥ θ0)

=
P (BZ(z, θ0 − α%) ≤ αr2,Θ ≥ θ0)

P (Θ ≥ θ0)
≤ P (BZ(z, θ0 − α%) ≤ αr2,Θ

′ ≥ θ0 − α%)
P (Θ ≥ θ0)

=
P (BZ(z, θ0 − α%) ≤ αr2,Θ

′ ≥ θ0 − α%)
P (Θ′ ≥ θ0 − α%)

P (Θ′ ≥ θ0 − α%)
P (Θ ≥ θ0)

≤ P (BZ(z, θ0 − α%) ≤ αr2 |Θ′ ≥ θ0 − α%)
P (Θ ≥ θ0 − α% − β%)

P (Θ ≥ θ0)
≤ (αr2)/r2 = α
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Next, we show that β is a Type II error bound for the hypothesis test, that is, we show that

P ({accept H0}|H1) ≤ β.

P ({accept H0} | H1) = P (BZ(z, θ0 + β%) ≥ 1/βr1 | H1) = P (BZ(z, θ0 + β%) ≥ 1/βr1 | Θ < θ0)

=
P (BZ(z, θ0 + β%) ≥ 1/βr1,Θ < θ0)

P (Θ < θ0)
≤ P (BZ(z, θ0 + β%) ≥ 1/βr1,Θ

′ < θ0 + β%)

P (Θ < θ0)

=
P (BZ(z, θ0 + β%) ≥ 1/βr1,Θ

′ < θ0 + β%)

P (Θ′ < θ0 + β%)

P (Θ′ < θ0 + β%)

P (Θ < θ0)

≤ P (BZ(z, θ0 + β%) ≥ 1/βr1 |Θ′ < θ0 + β%)
P (Θ < θ0 + β% + α%)

P (Θ < θ0)
≤ βr1/r1 = β

Note that αρ, βρ > 0 implies 0 < r1, r2 < 1, BZ(z, θ0 + β%) ≤ BZ(z, θ0) and BZ(z, θ0 −

α%) ≥ BZ(z, θ0). Hence, the approximate Bayes’ test is stricter than the traditional Bayes’

test for Z.

Computation of BZ: Theorem 3 provides us a method to perform the hypothesis test

on Θ using Z. This requires the computation of BZ that involves the PZ|Θ′ which is a

Binomial distribution with parameter Θ′ and fΘ′ , the prior distribution for Θ′. We do not

know the exact distribution of Θ′, however, we know that it is close to that of Θ. We use this

fact to obtain upper and lower bounds on the values of BZ and use that in the hypothesis

test.

Bayes’ factor for Z given z and θ′0 is given by:

BZ(z, θ′0) =

∫ 1

θ′0
PZ|Θ′(z|θ′)fΘ′(θ′)dθ′∫ θ′0

0
PZ|Θ′(z|θ′)fΘ′(θ′)dθ′

∗ P1

P0

where P0 =
∫ 1

θ′0
fΘ′(θ′)dθ′, P1 =

∫ θ′0
0
fΘ′(θ′)dθ′, and fΘ′(θ′) is a prior distribution of Z. Note

that exact computation of BZ is not possible because prior distribution fΘ′ of Z is not

known. Hence, we find the lower and upper bound on BZ via lower and upper bound on the

unknown prior distribution fΘ′ .

Let us assume that Θ′ is a function of Θ, say, Θ′ = g(Θ) such that −α% ≤ g(Θ)−Θ ≤ β%.
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Note that this is a stronger assumption than −α% ≤ g(Θ) − Θ ≤ β%, however, a reasonable

assumption given this fact. (Our assumption requires that an ω that map to θ through Θ

maps to g(θ) through Θ′.) Further, let us assume that g−1 is differentiable and its derivative

is bounded by some constants, c ≤ d
dθ′
g−1(θ′) ≤ d for all θ′ ∈ [0, 1]. Now, we can use

transformation of random variables to obtain the pdf fΘ′ of Θ′.

fΘ′(θ′) = fΘ(g−1(θ′))
d

dθ′
g−1(θ′),

and bound it using the derivate bounds:

cfΘ(g−1(θ′)) ≤ fΘ′(θ′) ≤ dfΘ(g−1(θ′)),

since, from our assumption, d
dθ′
g−1(θ′) ∈ [c, d]. Plugging Θ = g−1(θ′) in −α% ≤ g(Θ)− Θ ≤

β%, we get −α%θ′ − g−1(θ′) ≤ β%. We can conclude ||θ′ − g−1(θ′)|| ≤ max{α%, β%}.

Suppose fΘ is Lipschitz continuous with Lipschitz constant L, that is, ||fΘ(θ1)−fΘ(θ2)|| ≤

L||θ1− θ2||. Then, ||fΘ(θ′)− fΘ(g−1(θ′))|| ≤ L||θ′− g−1(θ′)|| ≤ Lmax{α%, β%}. Hence, fΘ(θ′)−

Lmax{α%, β%} ≤ fΘ(g−1(θ′)) ≤ fΘ(θ′) + Lmax{α%, β%}. Therefore,

c(fΘ(θ′)− Lmax{α%, β%}) ≤ fΘ′(θ′) ≤ d(fΘ(θ′) + Lmax{α%, β%})

We can compute upper and lower bounds on BZ(z, θ′) as in the next proposition.

Proposition 2. Let Y ∼ B(Θ) and Z ∼ B(Θ′) be Bernoulli random variables with param-

eter Θ and Θ′, respectively, and let Equation 6.1 hold. Assume Z = g(Y ), where g−1 is

differentiable and in the range [c, d]. Let fΘ be Lipschitz continuous with Lipschitz constant

L. Let γ = Lmax{α%, β%}. Let

BZ(z, θ′0)min =
c2

d2
∗ P

min
1

Pmax
0

∗

∫ 1

θ′0
(θ′)m(1− θ′)(n−m)(fΘ(θ′)− γ)dθ′∫ θ′0

0
(θ′)m(1− θ′)(n−m)(fΘ(θ′) + γ)dθ′
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BZ(z, θ′0)max =
d2

c2
∗ P

max
1

Pmin
0

∗

∫ 1

θ′0
(θ′)(m)(1− θ′)(n−m)(fΘ(θ′) + γ)dθ′∫ θ′0

0
θ′(m)(1− θ′)(n−m)(fΘ(θ′)− γ)dθ′

, where

Pmin
0 =

∫ 1

θ′0

(fΘ(θ′)− γ)dθ′, Pmax
0 =

∫ 1

θ′0

(fΘ(θ′) + γ)dθ′,

Pmin
1 =

∫ θ′0

0

(fΘ(θ′)− γ)dθ′, Pmax
1 =

∫ θ′0

0

(fΘ(θ′) + γ)dθ′,

m =
∑n

i=1 zi and n is the sample size of z. Then, we have

BZ(z, θ′0)min ≤ BZ(z, θ′0) ≤ BZ(z, θ′0)max.

The following proposition states that Beta distribution is a Lipschitz continuous function.

Proposition 3. Let fΘ be a Beta prior distribution for fixed shape parameters a, b, that is,

fΘ(θ) = θa(1−θ)b
Beta(a,b)

, for 0 ≤ θ ≤ 1. Then fΘ is a Lipschitz continuous function with Lipschitz

constant L = (a+b)
Beta(a,b)

.

6.4 Bayesian SMC Algorithm for Nested CSL

Algorithm 2 describes the verification of a CSL formula ϕ = Pr./θ0(ρ), where ρ could po-

tentially have nested probabilistic operators. If ρ is non-nested, then the algorithm calls the

Bayesian SMC for the non-nested case. If ρ is a nested formula, α%, β% ∈ (0, 1) are chosen

such that θ0 − α%, θ0 + β% ∈ (0, 1). We leave the exact procedure to be figured out during

the implementation, as it does not affect the correctness of the algorithm.

Comp Top Error(%,α%, β%) returns (a vector of) error bounds αψ, βψ for all top-level

formula ψ such that α%, β% are upper bounds on the errors propagated from the top-level for-

mulae ψ to ρ using the error propagation rules in Section 6.2. The Bayesian SMC algorithm

is called recursively on each top-level formula ψ and state s′ of the DTMC T to obtain the

“truth” values tψ,s′ with guaranteed error bounds αψ, βψ.

ρ is then treated as a “non-nested” formula where each top level formula ψ is treated

as a proposition with truth value tψ,s′ in state s′. Let Lρ be the depth of this “non-nested”
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formula. Samples σ of length Lρ are generated, and σ |= ρ is checked using the computed

values {tψ,s′}. n is the total number of samples and m the number of samples that satisfy

ρ as above. BayesFactorMin and BayesFactorMax implement BZ(z, θ′)min and BZ(z, θ′)max,

respectively. ProbBounds computes r1 and r2 from Theorem 3; lower and upper bounds on

BZ are used to check the acceptance/rejection conditions in the theorem.

Algorithm 2: Bayes SMC Nested - SMC of a non-nested CSL formula

Input: s - state, T - DTMC, ϕ = Pr./θ0(ρ) - (nested) CSL formula, a, b -
parameters for beta prior, α, β - bound on Type I and Type II errors,
assumption constants c, d

Output: Answer if s |= ϕ in T with confidence α, β

1 begin
2 if ϕ is nested CSL formula then
3 Compute α%, β% ∈ (0, 1) such that θ0 − α%, θ0 + β% ∈ (0, 1)
4 ᾱ, β̄ = Comp Top Error(%, α%, β%)
5 for ψ in Top(ϕ) and state s′ of T do
6 tψ,s′ = Bayes SMC Nested(s′, T , ψ, a, b, αψ, βψ, c, d)

7 Set n = 0, m = 0
8 Set L% to be the depth of (non-nested part of) %
9 while True do

10 Increment n
11 Generate a (random) path σ from state s in T of length L%
12 if σ satisfies ρ using {tψ,s′} then
13 Increment m

14 Set Bmin = BayesFactorMin(θ0 + β%, n, m, a, b, α%, βρ, c, d)
15 Set Bmax = BayesFactorMax(θ0 − α%, n, m, a, b, α%, βρ, c, d)
16 Set r1, r2 = ProbBounds(θ0, a, b, α%, βρ)
17 if Bmin >

1
r1β

then

18 return true

19 if Bmax < α/r2 then
20 return false

21 else
22 return Bayes SMC Base(s, T , ϕ, a, b, α, β)

We can summarize the correctness criterion of Algorithm 2 as follows:

Theorem 4. Let s, T , ϕ, a, b, α, and β, be as in Algorithm 2. If s |= ϕ in T , then
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Algorithm 2 outputs true with probability at least (1− α). If s 6|= ϕ in T , then Algorithm 2

outputs false with probability at least (1− 1
β
).
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Chapter 7

Experimental Analysis

In this section, we discuss the experimental analysis of the Bayesian approach for statistical

model-checking of DTMC models with respect to CSL formulae.

7.1 Case study

We mainly focus on comparing our Bayesian SMC algorithm with the Frequentist SMC

(sequential probability ratio test with acceptance sampling3) and a probability model checker

(PRISM40 ). The case study we consider for our experiments is a robot-navigation system

in a grid environment as in Figure 3.1. We generalize the example to an n × n grid, where

we fix diagonally opposite cells as the initial position r of the robot and the destination/goal

g, respectively. We randomly assign the label b some of the n × n cells. We aim to verify

the following specification

ϕ = Pr≥θ0 [Pr≥θ1 [true U≤k1 b] U≤k2 g]

The formula specifies the property that the robot reaches the destination region labeled with

g within k2 steps with a probability of at least θ0 while maintaining at least a θ1 probability

of periodically reaching the state labeled with b within steps smaller than k1.
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7.2 Implementation

We have implemented the Bayesian SMC Algorithms 1 and 2 (for non-nested and nested

cases) in Python including implementations of random trace generation for the DTMC,

checking whether a trace satisfies an LTL formula, and the Bayes Factor Computation.

Our experiments are conducted with Ubuntu 12.04 OS, Intel R c○Pentium(R) CPU B960

2.20GHz× 2 Processor, 2GB RAM.

7.3 Evaluation

We perform experimental comparisons of our Bayesian SMC algorithm with two other algo-

rithms:

• Frequentist SMC3: A statistical model-checking approach based on sampling paths of

DTMC that uses the Sequential Wald Probability Ratio Test (SPRT)45 to accept or

reject the hypothesis.

• Probabilistic Model-Checking (PMC)40: It is an exact method that determines if s |= ϕ

using a state-space exploration based algorithm. PRISM is a state-of-the-art tool that

performs PMC on DTMCs.

PMC has the advantage that it gives correct answers with probability 1, however, they are

computationally expensive due to the exhaustive state-space exploration. SMC Algorithms

are typically light weight computationally, but can only provide correct answers with certain

confidence. Next, we compare the performance of these algorithms by varying different

parameters. First, we compare our Bayesian approach for different priors.

7.3.1 Evaluation of the priors

We vary the grid size (n × n) and compare the performance of uniform, left-skewed, right-

skewed and bell-shaped priors in terms of their inference, number of samples and time as

reported in Table 7.1. On all grid sizes, experiments with all of the priors leads to the
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same inference (in fact, it agrees with the results returned by PMC). The times are reported

in seconds. As expected, the number of samples and time for inference (until one of the

conditions on B is satisfied) increases as the grid size/DTMC size increases. Between the

priors, we observe that with uniform priors we are able to obtain the inference with the

fewest samples and smallest times.

Table 7.1: Comparison between Bayesian SMC with different priors

Uniform prior Left-skewed prior Right-skewed prior Bell-shaped Prior Status
n Samples Time Samples Time Samples Time Samples Time
2 24 0.475 58 1.005 62 1.35 38 0.69 T
4 4115 95.80 3423 71.00 3623 73.25 3015 63.80 F
8 6376 156.07 12972 309.70 13212 315.75 10195 223.16 F
16 20204 459.11 33348 780.41 34102 791.11 26512 540.05 F

Uniform prior: a = b = 1, Left-skewed: a = 5, b = 2, Right-skewed: a = 2, b = 5, Bell-
Shaped prior: a = b = 2, θ0 = 0.10, θ1 = 0.35, k1 = 3, k2 = 8, error bounds α = β = 0.01

7.3.2 Varying grid sizes, thresholds and time bounds

Next, we compare the performance of our Bayesian SMC approach with the Frequentist SMC

method and PMC in PRISM. For our proposed Bayesian SMC and frequentist SMC, we fix

both Type-I and Type-II error bounds to be 0.01. For our Bayesian SMC, we use uniform

prior (a = 1, b = 1 for Beta distribution shape parameters), since, from our previous obser-

vations that gives the best performance. For Frequentist SMC, we specify the indifference

region parameter, δ, to be 0.01 and 0.001. Our main reason for comparison of our Bayesian

SMC with the PMC method is to see if both methods return the same result. PRISM is

a mature tool that implements a PMC algorithm, hence, we expect its implementation to

be more efficient than our naive implementation, and therefore, the running times might be

slightly skewed toward PMC.

We compare the performance of the three approaches on varying grid sizes n, probability

thresholds θ0, θ1 and time bounds k1, k2; the number of samples to arrive at a decision is

reported for each of the SMC approaches and the time to arrive at a decision is reported
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for all the three approaches. These are tabulated in Tables 7.2, 7.3 and 7.4, for varying grid

sizes, probability thresholds and times bounds, respectively. All the methods infer the same

correct answers (correct, since, they agree with PMC answers), hence, they are reported only

once in the status column.

From Table 7.2, we observe that as the grid size increases, that is, as the size of the

DTMCs increases, the number of samples increases for both the SMC based approaches.

However, Bayesian SMC requires fewer samples to arrive at the conclusion than Frequentist

SMC. In terms of verification time, Bayesian SMC does better for large systems, which

indicates that the approach is more scalable.

From Table 7.3, we note that the threshold values have little bearing on the verification

time. There appears to be no particular relation between the threshold values and the

number of samples to arrive at the answer. Again, as observed from Table 7.4, the depth

do not affect the number of samples or the times for SPRT based SMC and PMC, however,

the number of samples and time required to arrive at the inference reduces with increasing

depths (time bounds) for Bayesian SMC, which again points to its scalability with respect

to larger time bounds in the formulae.

Table 7.2: Comparison between Bayesian SMC, SPRT SMC and PMC for different grid
sizes

Bayesian SMC SPRT with δ = 0.01 SPRT with δ = 0.001 PMC
n Samples Time Samples Time Samples Time Time Status
2 23 0.43 167 12.69 1655 12.005 10.85 T
4 2196 49.10 2892 41.15 37247 43.71 37.19 F
8 8097 170.51 19090 168.24 161618 169.20 150.07 F
16 14755 379.79 57052 711.12 642068 765.00 598.88 F

a = 1, b = 1, θ0 = 0.10, θ1 = 0.35, k1 = 3, k2 = 8, Errors α = β = 0.01
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Table 7.3: Comparison between Bayesian SMC, SPRT SMC and PMC for different proba-
bility thresholds

Bayesian SMC SPRT with δ = 0.01 SPRT with δ = 0.001 PMC
(θ0, θ1) Samples Time Samples Time Sample Time Time Status
(0.10, 0.35) 2923 60.72 5226 41.49 40936 41.59 37.07 F
(0.10, 0.55) 3275 65.59 3507 41.57 90084 41.59 38.09 F
(0.10, 0.75) 244 4.12 2191 41.47 31060 41.49 37.09 F
(0.25, 0.45) 2132 39.76 2457 41.46 23856 41.47 37.09 F
(0.75, 0.45) 2398 50.00 2450 41.38 23423 41.30 38.05 F

n = 4, k1 = 3, k2 = 8, error bounds α = β = 0.01

Table 7.4: Comparison between Bayesian SMC, SPRT SMC and PMC for different time
bounds

Bayesian SMC SPRT with δ = 0.01 SPRT with δ = 0.001 PMC
(k1, k2) Samples Time Samples Time Sample Time Time Status
(3, 8) 1727 35.56 3451 41.21 37677 41.41 36.99 F
(4, 10) 1544 37.19 2578 41.51 22660 41.57 39.75 F
(5, 12) 993 19.49 1912 41.54 17592 41.58 37.31 F
(6, 14) 439 7.66 1106 41.55 11768 42.35 37.20 F

n = 4, θ0 = 0.10, θ1 = 0.35, error bounds α = β = 0.01
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Chapter 8

Conclusions

The main contribution of the report is a Bayesian statistical model-checking algorithm for

verifying properties of Discrete-time Markov Chains specified in Continuous Stochastic Logic.

The previous approaches focused on frequentist SMC for the full logic or Bayesian approach

for the non-nested fragment of the logic. Our approach extends the previous results to the

case of nested probabilistic operators and Bayesian approach. Our preliminary experimental

results confirm the benefits of the Bayesian approach as compared to a frequentist approach

as well as the traditional probabilistic model checking based on state-space exploration in

terms of both the sample complexity and verification time.

There are several interesting future directions, which we briefly discuss below:

• Implement the Bayesian approach for the full logic with multiple levels of nested opera-

tors, and perform elaborate experimental comparison involving more complex formulas.

• Extend the approach to more complex models for autonomous systems such as Markov

Decision Processes and Stochastic Hybrid Systems that capture non-determinism,

stochasticity and dynamics.

• Extend the approach to CSL* which can be defined analogous to CTL*. CTL* extends

CTL by relaxing the requirement that the temporal operator be applied only on state

formulae to allowing them to be applied on path formulae as well.
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• Extend the approach to more complex logics that specify properties of multi-agent sys-

tems such as HyperCSL. Hyper-properties specify multi-trace properties as compared

to linear-time properties that specify single trace properties. Investigating Bayesian

SMC algorithms for probabilistic hyper-properties is an interesting future direction.
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