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Abstract 

Climate change predictions for the Great Plains region of North America include 

increased temperatures, changes to annual precipitation, and reduced growing season 

precipitation, which will likely alter grassland soil systems.  To date, few studies have examined 

belowground community responses to predicted climate change scenarios, with fewer assessing 

long-term changes.  My research focused on the impacts of long-term changes in precipitation 

and associated soil water content on belowground grassland systems (belowground plant 

biomass, soil carbon (C) and nitrogen (N) pools, microbial biomass C and N, and invertebrate 

communities) using recently collected samples from a long-term (16-yr) reciprocal core 

transplant between Konza Prairie Biological Station (MAP = 850 mm) and Kansas State 

Agricultural Research Center at Hays (MAP = 580 mm), with the Hays site having a long-term 

average annual precipitation amount that is ~30% less than the Konza site.  Results from the 

experiment indicate that either increases or decreases in annual precipitation can have profound 

effects on belowground grassland systems.  Belowground plant biomass, microbial biomass, and 

potential C mineralization rates were greater at the wetter Konza site regardless of soil origin.  

Total C stored in soils incubated at Konza was significantly greater as well, likely due to greater 

root inputs.  The effects of precipitation were most apparent in the surface soil layers (0-20 cm), 

while soil origin impacted soil properties to a greater extent with increasing depth.  This 

contrasted with results for the soil mesofauna, where total microarthropods responded negatively 

and nematodes responded positively to increased annual precipitation.  Results of this study 

indicate important changes in soil C and N pools, belowground plant biomass, and soil 

mesofauna within grassland systems subject to changing precipitation regimes, and suggest more 



 

mesic prairie systems are more sensitive to changes in soil water availability than those in more 

arid grassland systems. 
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Chapter 1 - Introduction 

Increases in atmospheric concentrations of carbon dioxide (CO2) and other greenhouse 

gases have altered the global physical and chemical environment, and contributed to well-

documented increases in global surface temperatures ( IPCC 2001, 2007a).  At the current rate of 

atmospheric accumulation, CO2 is expected to double by the end of the century causing increases 

of 1.1-6.4
o
C in global surface temperatures (Hansen et al. 2006; IPCC 2007a).  As a consequence 

of increasing temperatures, alterations in atmospheric circulation and hydrological processes will 

modify mean annual precipitation and temporal variability of precipitation (Crane and Hewitson 

1998; Karl and Knight 1998; Easterling et al. 2000; Andrews and Forester 2010).  In fact, 

evidence suggests that changes in precipitation have already begun to occur (Karl and Trenberth 

2003; Allan and Soden 2008).  Global circulation models are still unclear about the direction and 

magnitude of precipitation changes in some regions; however, deficits in soil water availability 

will occur despite precipitation changes due to increased latent heat fluxes (Jackson et al. 2001; 

Mellander et al. 2004).  Therefore, various ecosystem-level processes dependant on soil water 

availability will be altered as a result of climate change (Mosier 1998; Harper et al. 2005; Knapp 

et al. 2008). 

In light of potential climate change scenarios, studies investigating long-term ecological 

responses to changes in precipitation regimes are becoming increasingly important.  Terrestrial 

ecosystems, such as grasslands, agricultural lands, and forests, provide various goods (food 

production, medicinal plants, etc.) and services (carbon storage, nutrient regeneration, water 

purification, etc.).  Although humans can circumvent various environmental pressures on small 

scales, natural systems are responsible for a majority of these benefits.  Changes in phenologies, 
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ranges, community composition, and species interactions will further alter ecosystem 

functioning.  Studies have suggested various species have already begun to be impacted (Hardy 

2003; IPCC 2007b).  Studies of past climatic shifts have revealed various alterations in 

ecosystem processes and ranges on global and local scales (Weaver 1954; Weaver and Albertson 

1956), some which are observed presently.  Although some ecological responses to past climatic 

shifts have been well-studied (e.g. species range shifts), current climate predictions are 

unprecedented and may cause novel changes in ecosystem functions and community 

compositions. 

Grassland ecosystems account for 24% of the world‟s vegetation cover (Sims and Risser 

2000), and their structure and function makes them one of the most vulnerable to global climate 

change of any terrestrial ecosystem (Sala et al. 2000; IPCC 2007b).  Changes in soil water 

availability, such as those likely to result from climate changes, have been linked to changes in 

plant community composition (Weaver and Albertson 1944), primary productivity (Briggs and 

Knapp 1995), nutrient dynamics (Mikha et al. 2005), and decomposition rates (Epstein et al. 

2002).  As a result, grassland systems worldwide will likely undergo various alterations in both 

soil processes and plant community dynamics as a function of climate change. 

Grassland ecosystems of the Central Plains region of the United States would be directly 

impacted by changes in climate, particularly aspects of climate that affect water availability and 

water limitation.  In this region, the distribution and composition of grassland species is largely 

dependant on local and regional temperatures and the strong east-west precipitation gradient 

characteristic of the region (Risser et al. 1981).  Plant species composition shifts from short-grass 

to tallgrass prairies (Kuchler 1974), and aboveground primary productivity increases with higher 

mean annual precipitation (Sala et al. 1988).  In addition to aboveground responses, climatic 
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shifts would likely alter belowground dynamics, as well.  As studies have shown positive 

relationships between increased soil water availability and belowground primary productivity, 

microbial biomass, and soil organic carbon concentrations, reduced amounts of soil water 

available would likely negatively impact these grassland properties.  Cascading effects from 

changes in belowground resource availability, as well as direct changes in the soil environment 

will likely impact soil fauna, including microarthropod and nematode composition and densities. 

The potential impacts of climate change on these soil systems are still relatively 

unknown.  Therefore, the major questions addressed in this thesis are: 1) How will grassland 

soils and soil biota respond to a simulated climate change (i.e., transplantation from a more 

mesic climate to a more arid climate and from a more arid climate to a more mesic climate)?  2) 

What ecological responses will be most sensitive to these precipitation changes?  3) Will a 

reciprocal change in rainfall patterns have comparable effects on soils adapted to wetter or drier 

conditions? To address these questions, an experiment was conducted utilizing reciprocal core 

transplants between a more mesic site, Konza Prairie Biological Station (Konza), and a more arid 

site, Kansas State University Agricultural Research Center at Hays (Hays).  These sites vary 

primarily in mean annual precipitation, Konza Prairie receiving ~850 mm of rainfall per year and 

Hays receiving ~580 mm of rainfall (almost 30% less).  Specific locations with comparable 

surface soils and vegetation were chosen at each site to reduce confounding factors and facilitate 

comparisons of the effects of altered precipitation.  This experiment is novel in the fact that it is 

one of the only experiments to analyze the longer-term (16 years) effects of altered precipitation 

on grassland soil systems.  In the first chapter, I report on the responses of selected plant and soil 

properties, including belowground plant and microbial biomass and carbon (C) and nitrogen (N) 

content and soil C and N pools, in response to long-term transplantation of intact soil-plant cores 
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to wetter or drier climates.  This yielded information on the changes in belowground biomass and 

selected C and N pools under altered precipitation regimes.  In the second chapter, I assessed the 

responses of soil mesofauna, including microarthropods and nematodes, to long-term 

transplantation, yielding information on the long-term changes in soil fauna and their depth 

distribution in response to climatic changes. 
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Chapter 2 - Subsurface Plant and Soil Responses to Changes in 

Soil Water Availability in a Grassland System 

 ABSTRACT 

Studies in a range of grasslands types have shown relationships between soil water 

availability and ecosystem structure (e.g. community composition) and function (e.g. primary 

productivity, nutrients dynamics, and decomposition).  Climate predictions based on global 

circulation models (GCMs) suggest increased temperatures and altered precipitation regimes 

with an overall reduction in soil water availability in many grasslands.  To assess the impacts of 

altered soil water availability on grassland soil systems, a reciprocal core transplant experiment 

was initiated in 1993 between a relatively mesic grassland site (Konza Prairie, mean annual 

precipitation = 850 mm) and a more arid grassland site (Hays, mean annual precipitation = 580 

mm).  After 16-years, in May 2009, 10 large, intact plant-soil cores at each site (5 “native” and 5 

“transplanted”) were harvested and sectioned into five depth increments (0-10, 10-20, 20-30, 30-

40, and 40-60 cm).  Each core section was analyzed for selected biological, physical and 

chemical properties (belowground plant biomass, soil carbon (C) and nitrogen (N), and potential 

C and N mineralization rates).  We assessed the influence of incubation location and soil origin 

on these properties both for whole cores (0-60 cm) and by depth increment.  In general, 

transplanting cores from the mesic site to a more arid climate had greater effects than 

transplanting cores from the arid site to the more mesic environment.  Transplantation of Konza 

soils to the more arid Hays site led to reductions in belowground plant biomass (~20%) and 

microbial biomass (~20%), resulting in reduced soil carbon storage (~5%).  Hays cores 

transplanted to the more mesic Konza site experienced modest increases in some properties 

(plant biomass = ~7.4%; microbial biomass = ~9.2%; SOC = ~4%); however, these altered 
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properties not statistically different from comparable values for “non-transplanted” Hays cores.  

Analysis by depth revealed that a majority of significant responses to transplantation occurred in 

the top 20 cm. Results of this study highlight the importance of changes in precipitation regimes 

on belowground grassland systems, and suggests a reduction in the ability for grasslands to 

sequester C under reduced annual precipitation. 
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 INTRODUCTION 

Water availability is generally accepted to be an influential abiotic driver of ecological 

processes in many terrestrial ecosystems (Le Houerou et al. 1988; Churkina and Running 1998).  

Various physical and chemical components of terrestrial ecosystems are often limited by water 

availability (Stark and Firestone 1995; Harper et al. 2005).  Therefore, alterations to water cycle 

components (i.e., precipitation and latent heat fluxes) will likely incur ecological responses in 

terrestrial ecosystems.  As a consequence of increased atmospheric greenhouse gases, global 

circulation models (GCMs) predict changes in global surface temperatures and precipitation 

regimes (Karl and Knight 1998; Hansen et al. 2006; IPCC 2007a).  Evidence exists that shifts in 

mean annual temperature (Cox 2000; IPCC 2007a) and precipitation (Karl and Knight 1998; 

Gabrecht and Rossel 2002) have already begun to occur.  As a result of recent climatic shifts, 

changes in plant and animal ranges have already become evident with species shifting toward the 

poles, toward higher elevations, or becoming extinct (IPCC 2007b; Kelley and Gouldin 2008).  

While some effects of recent climate change have been observed, further changes to the global 

climate are expected and the magnitude of ecological impacts remains unclear. 

Changes in mean annual precipitation are likely to have strong and rapid ecosystem-level 

effects in grassland ecosystems (Austin et al. 2002), especially in the Central Plains region of the 

United States.  The grassland systems of this region consist of short-grass, mixed-grass, and 

tallgrass prairies (Samson and Knopf 1994).  The distribution and composition of these 

grasslands are largely dependent on climate patterns and a strong east-west precipitation gradient 

characteristic of the region (Risser et al. 1981).  With increasing annual precipitation to the east, 

the community composition shifts from a short-grass to mixed-grass to tallgrass prairies (Weaver 

1954; Kuchler 1974), with corresponding increases in primary productivity (Sala et al. 1988; 
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Knapp and Smith 2001).  Similar patterns of precipitation, community composition (Pyankov et 

al. 2000), and productivity (Shankar et al. 1993) occur in other grassland systems.  Specific 

climate change models for this region have predicted increasing mean annual temperatures and 

variable changes in annual precipitation ranging from modest increases or decreases with less 

frequent, more intense rainfall events (Karl and Trenberth 2003; IPCC 2007a).  Predictions also 

include decreased growing season precipitation for the Great Plains region (Karl et al. 1991). As 

a result, these climatic alterations will strongly influence growing season soil water availability 

by increasing latent heat fluxes faster than precipitation inputs can recharge the soil (Jackson et 

al. 2001).  Studies have begun to investigate ecological responses to climate changes in these 

grasslands, including potential changes in primary productivity, plant community composition, 

and soil respiration (Knapp et al. 2002; Fay et al. 2003; Harper et al. 2005; Sherry et al. 2008). 

The potential impacts of these predicted climate changes on belowground dynamics in 

grassland systems are largely unknown. In these systems, plants have proportionally higher 

belowground than aboveground biomass (Simms et al. 1978; Rice et al. 1998; Milchunas et al. 

2005), with greater root-to-shoot ratios in more arid grasslands (Schulze et al. 1996) relative to 

more mesic grasslands (Knapp and Seastedt 1986).  Higher quality of belowground plant 

biomass (e.g., lower C:N ratio) has been reported in more arid grasslands, as well (Schlesinger 

1997).  Climate-driven differences in belowground plant quality and quantity have direct (i.e., 

carbon inputs) and indirect (i.e., aggregation) effects on soil organic matter (Kelly et al. 1996).  

Rhizodeposition, root decomposition, and sloughing of root cap cells are the primary sources of 

soil organic matter (Rasse et al. 2005), especially in frequently burned prairies where surface 

litter inputs are reduced.  The composition, abundance, and activity of microbial populations 

within the soil are dependent on plant inputs and water availability (Hinsinger et al. 2005), and in 
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turn, influence organic matter processing and nutrient cycling (Rice et al. 1998).  With temperate 

grasslands sequestering ~12% of the world‟s soil organic matter (Schlesinger 1997), changes in 

water availability in these grassland ecosystems could lead to drastic changes in biogeochemical 

cycling, with local, regional, and global consequences. 

Since climate change represents a chronic, not transient, alteration in global climates, the 

need for research investigating key ecological responses to long-term changes is becoming 

increasingly important.  This study was designed to assess longer-term (16-year) ecological 

responses to altered precipitation regimes, using a simple reciprocal transplant of intact plant-soil 

cores to simulate an increase or decrease in soil water availability.  The major questions 

addressed in this study are: 1) How will grassland soils respond to transplantation from a more 

mesic climate to a more arid climate and from a more arid climate to a more mesic climate?  2) 

What ecological responses will be most sensitive to these precipitation changes?  3) Will a 

reciprocal change in rainfall patterns have comparable effects on soils adapted to wetter or drier 

conditions?  We hypothesized that the movement of soil from a more arid site to a more mesic 

site would result in increased belowground plant and microbial biomass and increased storage of 

carbon (C) and nitrogen (N) within the soil.  We hypothesized that the movement of soil from a 

more mesic site to a more arid site would show a proportional opposite effect. 

 METHODS 

 Description of Study Sites 

The reciprocal transplant study was conducted between Konza Prairie Biological Station 

(Konza) and Kansas State University Agricultural Center at Hays (Hays), as part of an 

experiment funded by the Department of Energy/National Institute for Global Environmental 

Change (DOE/NIGEC) to investigate how vegetation, soil organisms, and soil processes of 
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grassland systems respond to altered soil moisture regimes.  Konza is a 3487-ha area of native 

tallgrass prairie in the Flint Hills of northeastern Kansas (39°05'N and 96°35'W), located 

approximately 13 km south of Manhattan, KS.  Konza is owned by The Nature Conservancy and 

Kansas State University and operated as a field research station by the Kansas State University 

Division of Biology as a Long-Term Ecological Research site.  Native grassland vegetation is 

dominated by Andropogon gerardii (big bluestem), Sorghastrum nutans (Indian grass), Panicum 

virgatum (switchgrass), and A. scoparius (little bluestem), which is typical for a mesic tallgrass 

system.  Average annual precipitation is 835 mm, with high interannual variability (Figure 2.1).  

The Hays site is a native grassland owned by Kansas State University and located 240 miles west 

of Konza (39°05'N and 96°35'W).  The vegetation is primarily mixed-grass species, including 

Bouteloua curtipendula (side-oats gramma), B. gracillis (blue gramma), Buchloe dactyloides 

(buffalo grass), and Agropyron smithii (western wheat grass); however, A. gerardii and P. 

virgatum were common and well represented at the specific site chosen for this study.  Average 

annual precipitation for this location is roughly 580 mm (30% less than the Konza site), with 

high interannual variability.  The regional scale difference in climate allowed us to address the 

effects of altered soil water availability on belowground plant biomass and tissue chemistry and 

soil properties.  Although differences in fire management occurred during the 16-year study 

period, with the Konza site being burned annually and the Hays site being burned sporadically 

(1993, 1994, 1995, 2000, 2003, and 2007), both sites were ungrazed and there were no other 

differences in management.  The Konza site was on a deep, nearly level (0–1% slope) Reading 

silt loam formed from alluvial sediments. Reading soils are fine, mixed mesic Typic Argiustolls 

with a silt loam A horizon (approximately 28 cm deep) overlaying light to heavy silty clay loam 

B1 and B2t horizons.  The Hays site was located on a deep, nearly level (0–1% slope) Harney silt 
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loam formed in calcareous, medium textured loess.  The A1 and A3 horizons were silt loams and 

light silty clay loams, respectively, overlaying light to heavy silty clay loam B horizons.  

Therefore, soils are texturally similar in the top 30 cm; however, below 30cm, notable increases 

in clay content were observed in Konza soils that were not present in Hays soils.  

 Experimental Design 

The reciprocal transplant experiment was initiated in 1993.  Seventy large (25 cm 

diameter × 70 cm depth) plant-soil cores, encased in intact, open-ended polyvinylchloride 

cylinders (PVC) were extracted from both the more mesic Konza site and the more arid Hays 

grassland site, using hydraulic coring equipment (Swallow et al. 1987).   Using a paired 

randomized block design, half of the cores extracted were placed back into their respective holes, 

while the other half were reciprocally transplanted between sites.  This resulted in 70 plant-soil 

cores at each site (35 “transplanted” and 35 “native”).  In 1994-1996, a subset of cores was 

destructively sampled twice per year to assess short-term effects of transplantation (O‟lear and 

Blair 1999; Todd et al. 1999).  An additional subset of soil cores remained incubating at each site 

to assess the longer-term effects of the transplantation, which is the focus of this study.  These 

long-term plant-soil cores (5 “native” and 5 “transplanted” at each site) were harvested in May of 

2009.  Each core was separated into 0-10, 10-20, 20-30, 30-40, and 40-60 cm depth increments.  

All plant-soil cores at each depth increment were processed and selected physical-chemical and 

biological responses were assessed.  Analysis of “native” cores from both sites allowed for 

comparison of belowground plant biomass and tissue chemistry and soil properties between 

grassland soils formed under different precipitation regimes.  Comparison of “native” cores to 

both sets of “transplanted” cores was used to assess differences in soils as a result of incubation 

location, and differences between soil type at each location (i.e., the effects of soil origin). 
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 Belowground Plant Biomass and Tissue Chemistry 

Belowground plant biomass and root tissue C and N concentrations were quantified at 

each core depth through a combination of hand-sorting and wet sieving of soil, followed by 

chemical analysis of plant tissues.  In the laboratory, I separated the soil by hand, removed large 

roots, and dried the roots for 1 week at 60
o
C.  The remaining soil was immediately stored at 4

o
C, 

until more time-sensitive analyses of soil properties were completed.  The remaining soil was 

then washed over a 2-mm sieve to retrieve fine roots.  I did not attempt to distinguish between 

live and dead roots; all wet sieved roots were dried for one week at 60
o
C.  Both hand-sorted and 

wet-sieved roots were then combined, weighed, ground, and redried at 60
o
C.  Carbon and N 

concentrations were determined by dry combustion coupled with gas chromatography on a 

Thermo Finnigan Flash EA1112 autoanalyzer. 

 Carbon and Nitrogen Pools and Mineralization 

Soil C and N pools and potential mineralization rates reflect both long-term accumulation 

and storage of C and N, and potentially available organic C and N pool within the soil.  During 

the initial processing of the plant-soil cores, a subsample (~500g) of soil was taken from each 

depth increment in each core.  In the laboratory, I homogenized the soil through a 4-mm sieve.  

Gravimetric soil water content was determined for each increment from a 20 g field-moist 

subsample that was weighed, dried at 60
o
C, and reweighed.  Once gravimetric soil water content 

was determined, the soil was ground into fine powder to determine percent C and N on a Thermo 

Finnigan Flash EA1112 autoanalyzer (Thermo Finnigan, Rodano, Milan, Italy). 

Extractable inorganic N was determined from a field-moist sample of homogenized soil 

taken from each core section.  Approximately 11 g of soil (~10 g dry weight) was extracted with 

2 M KCL shaken on an orbital shaker at 200 rpm for 1 hour.  Solutions were filtered through 0.4-
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mm polycarbonate membranes and stored at 4
o
C until analysis.  Concentrations of ammonium 

(NH4-N) and nitrate (NO3-N) were determined on an OI Analytical Flow Solution IV 

autoanalyzer (formerly Alpkem; College Station, Texas, USA) using cadmium 

reduction/sulfanilamide diazotization for nitrate and an indophenol blue method for ammonium. 

Soil microbial biomass was determined using the chloroform fumigation-incubation 

procedure (Jenkinson and Powlson 1976).  Field-moist samples (~20 g) were brought to 28% 

gravimetric water content (~60% water-filled pore space) and allowed to pre-incubate in 125-ml 

Erlenmeyer flasks for 5 days at 25
o
C.  Afterwards, half of the samples were fumigated with 

ethanol-free chloroform for 24 hours.  After fumigation, chloroform was removed by repeated 

evacuation of the dissector.  All flasks were resealed and incubated for 10 days at 25
o
C.  After 

this final incubation period, a subsample (0.5 mL) of headspace gas from each flask was 

analyzed on a gas chromatograph.  Following CO2 measurements, all samples were analyzed for 

inorganic N (see procedure above).  Microbial biomass C and N were calculated by the 

difference between fumigated and unfumigated samples, using a correction factor of 0.4 and 0.6, 

respectively (Voroney and Paul 1984).  In addition, potential C and N mineralization were 

calculated from the unfumigated microbial biomass samples, based on 10-day potentially 

mineralizable C incubations and 15-day potentially mineralizable N incubations (Robertson et al. 

1999). 

 Statistical Analysis 

Analysis of variance was performed using SAS PROC MIXED (SAS Institute) to assess 

differences in belowground plant biomass and tissue C and N content, total C and N in soil, 

microbial biomass C and N, and potential mineralization rates among treatments.  To determine 

the effect of transplantation on whole core (0-60 cm) dynamics of selected C and N pools, a 2-



17 

way ANOVA was used with soil origin and incubation location as independent variables.  A 3-

way ANOVA was performed on all variables using soil origin, incubation location, and depth as 

independent variables to identify potential effects of soil origin and location by depth for all 

variables.  The SAS SLICE featured was used to determine at which depth the main effects of 

location and origin, or their interactions, were observed.  In the case of a significant 3-way 

interaction (origin × location × depth), pair-wise comparisons of all combinations of soil origin 

and location were done at the specified depth.  Results were considered statistically significant at 

p<0.05, unless otherwise specified.  Data are reported as treatment means ± one SE. 

 RESULTS 

 Precipitation 

The mean annual precipitation at Konza Prairie (964 mm) was significantly greater than 

Hays (635 mm) during the study period (1993-2009) (Figure 2.1).  Over the course of the study 

Konza received ~37% greater annual precipitation on average than Hays, which was greater than 

the long-term 30% difference.  Although the average percentage difference during the study was 

above the long-term average, precipitation amounts were not consistently higher at Konza 

relative to Hays.  Differences in precipitation between sites were below the long-term average 

for several years (1993, 2000, 2001, 2003, and 2007), and in two years (1995 and 1996) Konza 

received less annual rainfall than Hays (Figure 2.1). 

 Belowground Plant Biomass 

Total belowground plant biomass (0-60 cm) was significantly affected by location, soil 

origin, and their interaction (Figure 2.2).  The location × origin interaction was due to the greater 

responsiveness of cores originating from Konza (the more mesic site) when transplanted to Hays 
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(the more arid site).  This transplantation resulted in a 20% decrease in total belowground plant 

biomass.  In contrast, the transplantation of cores originating from Hay to Konza did not result in 

a significant increase in total belowground plant biomass.   

To further analyze belowground plant biomass responses, rhizomes and roots were 

analyzed separately.   Rhizome biomass, representing ~25% of total belowground plant biomass 

(0-60 cm), was affected by a location × origin interaction, and was more responsive to the 

transplantation of Konza cores to the more arid Hays site (35% reduction), relative to the 

transplantation of Hays cores to Konza (non-significant increase of 6%) (Figure 2.3).  Further 

analysis of root biomass was performed using a three-way ANOVA, adding depth as an 

additional variable.  Analysis over all treatments by depth revealed significant effects of location, 

location × origin interaction, depth, location × depth interaction, and a location × origin × depth 

interaction (Figure 2.3). The main effect of depth was due to decreasing root biomass with 

increasing depth.  Significant three-way interactions were due to treatment effects on root 

biomass at the 0-10 and 10-20 cm depth increments.  At these depths, decreases of 23% (0-10 

cm) and 18% (10-20 cm) were experienced by Konza cores transplanted to Hays, while small, 

non-significant increases root biomass occurred in the Hays cores transplanted to Konza.  The 

main effect of location was significant at these depths as well, with cores incubated at Konza 

supporting 16% higher root biomass than cores incubated at Hays.  Therefore, decreasing annual 

precipitation for Konza cores (transplanting Konza cores to Hays) resulted in greater responses 

in root biomass, relative to increasing annual precipitation for Hays cores, with the differences 

apparent in both rhizomes and roots in the upper 20 cm of the soil.  

Carbon concentrations in rhizome biomass were not affected by location or soil origin 

(Figure 2.4), and concentrations remained at ~42%.  Carbon concentrations in root biomass were 
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not affected by location but were affected by soil origin, with differences apparent at 30-40 and 

40-60 depth increments.  At these depths, cores originating from Konza had significantly lower 

root C concentrations relative to cores originating from Hays.  The average C concentration in 

root biomass across all treatments was ~37%.  As a result of the lack of responsiveness of root C 

concentrations to precipitation change and small differences due to soil origin, the amount of C 

sequestered in root biomass was primarily a function of root biomass (Figure 2.5).  Therefore, 

increases and decreases in root biomass drove proportional changes in belowground storage of 

plant C. 

Nitrogen concentrations within rhizome and root biomass across soil origin showed 

similar responses to precipitation, with significantly higher N concentrations in cores incubated 

at the drier Hays site relative to cores incubated at Konza.  Rhizome N concentrations were 

greatest in Konza cores transplanted to Hays, which almost doubled in concentration compared 

to native Konza soil cores.  More detailed analysis of root N concentrations revealed no 

significant location × depth interaction overall; however, the differentiation between locations 

appears to be the greatest at the 0-10 cm and 10-20 cm depth increments.  As a result, change in 

belowground plant N storage was a function of increased N concentrations at Hays and increased 

belowground biomass at Konza.  Rhizome N storage was greater at Hays relative to Konza, 

regardless of soil origin.  Nitrogen storage within rhizomes increased ~39% in Konza cores 

transplanted to Hays, and decreased by 28% in Hays cores transplanted to Konza.  A location × 

depth interaction in root biomass indicated that roots in the top 10 cm of the soil had 

significantly greater storage of N at Hays relative to Konza   The change in storage of plant N 

between cores transplanted in both directions was restricted to the surface soil layer (0-10 cm), 
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with cores incubated at Hays containing significantly greater total belowground plant N 

compared to cores incubated at Konza.   

The combination of relatively small changes in root and rhizome tissue C concentrations 

and more substantial changes in N concentrations resulted in altered belowground biomass 

quality (i.e., C:N ratio) among treatments at all soil depths.  Since plant C concentrations were 

not altered by treatment effects in either rhizomes or roots, trends in belowground plant quality 

were driven primarily by changes in N concentrations.  Belowground plant biomass quality 

averaged across soil origin and depth was significantly poorer in cores incubated at Konza 

relative to Hays (Figure 2.4).  The significance of the depth term revealed plant biomass quality 

was not consistent with increasing depth, with C:N ratios being highest at 20-30 and 30-40 cm, 

intermediate at 0-10 and 40-60 cm, and the lowest at 10-20 cm. 

 Soil Carbon and Nitrogen Pools and Mineralization 

Soil C and N concentrations were not significantly affected by either incubation location 

or soil origin, averaged across the total soil core.  Despite a lack of general treatment effects on C 

concentration, total soil C storage was significantly affected by both location and soil origin 

(Figure 2.7).  Total C stored in soils incubated at Konza was greater than soils incubated at Hays, 

regardless of soil origin, while soils originating from Konza contained more C than soils 

originating from Hays.  No location × depth or origin × depth effect was detected.  No effects of 

location or soil origin were found in total N storage; however, an origin × depth interaction 

indicated that cores originating from Konza stored greater amounts of total soil N at the 40-60 

cm depth increment relative to Hays cores.  At this depth, Konza cores stored ~18% more soil N 

than Hays cores (Figure 2.7).  The relative lack of treatment affects on soil C and N 

concentrations led to no responses in the soil C:N ratio (Figure 2.6). 
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Both microbial biomass carbon (MBC) concentrations and storage were similarly 

effected by transplantation to the alternate site.  ANOVA of MBC across origin and location 

revealed that cores incubated at Konza supported a greater MBC than cores incubated at Hays 

(Figure 2.8, 2.9).  Transplanting Konza cores to Hays resulted in a significant 27% reduction in 

MBC, with a majority of the differentiation between sites occurring at 0-10, 10-20, and 40-60 cm 

depth increments.  Within these depth increments, Konza cores transplanted to Hays experienced 

a significant reduction in MBC (Figure 2.8, 2.9).  Total microbial biomass N (MBN) was 

unaffected by either the main effects of incubation location or soil origin; however, a significant 

location × depth interaction occurred, with the differences in location being apparent at the 0-10 

cm depth increment.  At these depths microbial biomass N storage was greater within cores 

incubated at Konza relative to Hays (Figure 2.8, 2.9).  Microbial biomass C:N ratio was also not 

affected by treatments (Figure 2.8), but a significant location × depth interaction was found, and 

indicated that the effect of location was significant at the 20-30 cm depth. 

Analysis of potentially mineralizable C, assessed from a 10-day aerobic incubations, 

revealed significant main effects of location and origin.  Potentially mineralizable C was found 

to be greater in soils incubated at Konza relative to Hays, regardless of origin; however, no 

significant location × depth interaction occurred.  Soil cores originating from Konza had greater 

overall potentially mineralizable C, but no origin × depth interaction was discovered.  Potentially 

mineralizable N was not affected by  location or origin alone; however, a significant origin × 

depth interaction occurred.  At 0-10 and 10-20 cm depth increments, soils originating from 

Konza had more potentially mineralizable N than soils originating from Hays.  
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 DISCUSSION 

Grasslands are dynamic ecosystems likely to respond to short-term changes in 

precipitation; however, the longer-term responses are perhaps more important and critical for 

assessing potential changes in grassland ecosystem functioning under altered future climates.  In 

grasslands, greater plant biomass is allocated belowground relative to aboveground, and 

belowground plant productivity is an important metric of ecosystem processes (Sala et al. 1998).  

Our results indicated that belowground plant biomass in grasslands was positively related to 

precipitation during the incubation period.  Regardless of soil origin, we found greater standing 

stocks of belowground plant biomass in soils incubated in the more mesic Konza climate.  A 

notable decrease in plant root biomass of 28% was observed when Konza soil cores were 

transplanted to Hays, while a non-significant increase of 12% was observed when Hays soils 

were transplanted to Konza.  These results were only partially consistent with our initial 

hypotheses, in that transplanting cores to a drier site resulted in a significant loss of root biomass.  

However, the responses of cores moved from an arid to a more mesic climate was not 

proportional; there was a trend for increasing root biomass, but it was not significant.  A majority 

of the difference in root biomass was found at the 0-10 cm and 10-20 cm depths within the soil, 

where a substantial (80%) proportion of belowground plant biomass was recovered.  Declines in 

plant biomass at these depths in Konza soil cores incubated at Hays were likely the result of 

prolonged deficits in soil moisture, which were not experienced at Konza.  Studies have shown 

that periods of droughts can have prolonged effects on root activity (Wraith et al. 1995), with 

recovery of root activity taking days or weeks after more favorable conditions occur (Casper and 

Jackson 1997; Wraith and Wright 1998).  As a result, water uptake is lessened, having cascading 

effects on leaf-level photosynthesis (Hu et al. 2010; Taylor et al. 2010) and ultimately reducing 

plant productivity (Rice et al. 1998).  Therefore, we suggest periods of water deficits experienced 
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at Hays led to lower plant water status, hindering C gain, and resulting in lower belowground 

plant biomass.  Similar responses to decreases in precipitation have been observed within the 

region for both aboveground biomass (Knapp 1985; Fay et al 2003) and belowground biomass 

(Schenk and Jackson 2002; Hays and Seastedt 1987). 

The three-way interaction for belowground plant biomass indicates differential responses 

to precipitation among plants in soil cores originating from different locations and at different 

depths.  In general,  plants originating from Konza were more responsive to transplantation 

relative to plants from Hays, and this location effect was driven by responses in the upper soil 

profile, while soil origin affected root biomass in the lower depths.  Increased clay content in 

Konza soils at lower depths limited root biomass slightly, compared to cores originating from 

Hays, and may have restricted root activity and water uptake primarily to the upper soil layers 

where water availability is less stable, likely affecting productivity, as explained previously.  

This phenomenon was not experienced in Hays soils.  Plants in soil originating at Hays 

apparently were not able to capitalize on the additional water received when transplanted to 

Konza, suggesting that nitrogen became the limiting factor in biomass production.  

While precipitation did not influence rhizome or root C concentrations or storage, it 

greatly influenced rhizome and root N concentrations.  Greater N concentrations were found in 

plants incubated at the more arid Hays site, regardless of soil origin.  The differences were 

apparent in top 30 cm of the soil.  The dynamics between plant water status and plant N 

concentration in grassland systems are dependent upon each other, as these systems are typically 

co-limited by both resources (Vinton and Burke 1995).  Across this region, water limitation is 

greater in the western, more arid region, while N is generally more limiting in the eastern, more 

mesic region (McCulley et al. 2009).  Therefore, it was expected that N concentrations would be 
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higher in cores originating from, and incubated at, Hays.  Alternatively, the reduction of N 

content with increasing precipitation could be due to the response of N retranslocation that 

occurs during periods of drought (Heckathorn et al. 1996).  Since Hays was more likely to have 

greater periods of drought, N levels within roots would be expected to be higher at this location.  

Hecklethorn and DeLucia (1994) noted significant differences in N content comparing pre- and 

post-droughts samples, where drought greatly reduced N content in aboveground biomass and 

increased N in rhizomes and roots.  Studies across this precipitation gradient have shown similar 

results in response to precipitation, with greater N concentrations in drier areas (McCulley et al. 

2009).  Changes in N storage within root systems are the net result of changes in root biomass 

and N concentrations.  In the present study, N storage within plant root tissues was significantly 

greater at Hays relative to Konza due to higher root N concentration in cores incubated at Hays, 

which overwhelmed differences in biomass.  Alterations in N concentrations led to changes in 

plant quality (i.e., C:N ratios).  With no apparent changes in C concentrations, increased N 

content let to higher plant tissue quality (lower C:N ratio) in cores incubated at Hays relative to 

Konza.  Other studies have confirmed this trend using comparative studies between grassland 

sites (McCulley et al. 2009) and experimental manipulations (Fay et al. 2003). 

Microbial biomass is the physiologically active component of soil organic matter 

(Schlesinger et al. 1997).  Studies in terrestrial ecosystems have identified soil water availability 

as an important factor regulating MBC and MBN.  Our results showed that transplanting Konza 

soil cores to Hays reduced MBC by 27%, and transplanting Hays soil cores to Konza increased 

MBC by 12%.  Differences due to location were apparent in top 0-20 cm of the soil, and were 

greatest in Konza soils.  Similar dynamics were experienced with microbial biomass N.  

Limitations on microbial biomass accumulation have been well-studied, including factors such as 
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nutrient limitation and plant quality inputs, and these limitations are also affected by soil 

moisture availability.  Microbial biomass is strongly correlated with high organic matter inputs 

and available soil organic matter, as they are the primary energy sources for heterotrophic soil 

microorganisms. Many studies have shown that soil C inputs can significantly impact soil MBC 

(Bardgett 1999; Brant et al. 2006). Thus, the addition of readily decomposable C can result in 

rapid increases in microbial biomass.  Microbial biomass also is limited by the availability of N 

(Hongmei et al. 2010).  Additions of NH4 and NO3 have been shown to increase microbial 

biomass.  Gallardo and Schlesinger (1994) found that addition of both organic and inorganic 

forms of N into the soil increased MBN.  As the availability of nutrients is directly related to soil 

moisture, it is likely that increased soil moisture enhances microbial biomass.  Direct effects of 

water on soil microbial populations are generally related to the balance between water and 

oxygen within the soil.  Linn and Duran (1984) found that microbial biomass was typically 

highest when soil water- filled pore space was between 50-60%.  Therefore, microbial biomass is 

dependent on various limitations, which are typically satisfied under more water balanced soil 

conditions. 

Potential soil C mineralization rates were affected by changes in precipitation regimes, 

and followed dynamics similar to those of MBC.  Potentially mineralizable C was significantly 

greater in soils incubated at Konza relative to Hays.  These results are consistent with those of 

other studies within the region.  Other studies also indicate that mineralized C and N rates may 

be reduced by increased wetting and drying cycles, which were likely experienced to a greater 

extent at Hays.  Mikha et al. (2005) found that increased drying and wetting cycles caused an 

initial flush of mineralized C.  However, it lasted for only 8h and did not compensate for the loss 

in microbial activity.  I found that the effects of precipitation were the most evident in the surface 
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soil (0-20 cm), which is where cores at Hays likely experienced the greatest wetting and drying 

cycles.  The surface soil layers have been identified as critical for ecosystem-level processes, like 

C mineralization (Briggs and Knapp 1995; Austin et al. 2004).  The lack of response in 

potentially mineralizable C at lower soil depths, where water content is more stable, may also be 

related to reduced C inputs at those depths from plant biomass.  Changes in potentially 

mineralizable C could be a function of microbial biomass, where greater microbial biomass 

would infer greater mineralization rates. 

Changes in the above soil core properties and characteristics can influence the total 

amount of C and N stored with these grassland soils.  The accumulation of C and N within the 

soil is dependent upon inputs and outputs of these elements within the soil environment.  Epstein 

et al. (2002) indicated that the amount of soil organic matter and its associated nutrient 

characteristics are dependent on net primary productivity and decomposition rates.  My results 

indicated that soil C accumulation was positively correlated with increases in annual 

precipitation, but soil N remained relatively unaffected.  Greater soil C storage was found in 

cores incubated at Konza relative to Hays, with a majority of this differentiation occurring in the 

top 20 cm, and although not significant, N storage was greater at 0-10 cm depths on Konza.  The 

accumulation of C within the system was likely the result of increased plant inputs, quality of 

plant inputs, and the activity of the microbes (Swift 1977).  Studies have shown that greater 

quantities of plant input and lower quality plant inputs can promote C accumulation within the 

soil (Kelley et al. 1996).  As the balance between inputs and outputs govern C accumulation, we 

suggest that greater inputs outweighed the losses due to C mineralization.  In addition, although 

decomposition does lead to C losses, increased processing of soil organic matter will result in 

some increased deposits of more recalcitrant C structures (e.g., humus) (Six et al. 2002; Allison 
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et al. 2008).  The lack of response in N storage may be due to the high potential for retention of 

N with grassland systems.  Nitrogen storage within plants is conserved through translocation of 

N during senescence, which may be enhanced by drought (Hecklathorn et al. 1996).  Nitrogen 

mineralized during decomposition of residues is either immobilized by microbes within the soil 

or rapidly incorporated back into plant biomass.  Therefore, as a result of N limitation in 

grasslands, these systems tightly conserve N (McCulley 2009). 

 CONCLUSION 

This study provided new information of the potential effects of climate change and 

altered precipitation on grassland soil systems.  We found that soil water availability, as 

influenced by increased annual precipitation, had the largest affect in the surface soils relative to 

the deeper soils, as a majority of observed responses occurred at depths of 0-20 cm.  Positive 

correlations were observed between precipitation and belowground plant biomass, microbial 

biomass C, and total soil C.  We found that plant N content increased with reduced precipitation, 

consistent with grassland co-limitation by water and N.  Furthermore, we found greater plant N 

storage at the more arid Hays site, driven by proportionally greater increases in root N 

concentrations relative to decreases in root biomass at the drier Hays site.  These changes in soil 

properties and nutrient dynamics were more evident in cores originating from at Konza relative 

to cores originating at Hays.  The differential response provides an indication that more mesic 

grasslands are more susceptible to drought conditions than arid grasslands are to more mesic 

conditions.  Therefore, a decrease in soil water availability in more mesic Konza site will likely 

result in altered ecosystem processes in these grasslands, while an increase in water availability 

at the more arid Hays site will likely remain unaltered. 
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 FIGURES 

Figure 2.1  Annual precipitation (1993-2009) at Konza Prairie Biological Station (solid line) 

and Kansas State University Agricultural Research Center at Hays (dotted line).

Year

1992 1994 1996 1998 2000 2002 2004 2006 2008

A
n

n
a

u
l 

P
re

c
ip

it
a

ti
o

n
 (

m
m

)

200

400

600

800

1000

1200

1400

Konza

Hays



35 

Treatment
K
onza

 @
 K

onza

K
onza

 @
 H

ay
s

H
ay

s 
@

 H
ay

s

H
ay

s 
@

 K
onza

B
e

lo
w

g
ro

u
n

d
 P

la
n

t 
B

io
m

a
s

s
 (

g
 m

-2
)

0

500

1000

1500

2000

Loc
Ori
Loc*Ori

p < 0.001
p = 0.037
p = 0.017

a aab

c

 

Figure 2.2  Average belowground plant biomass (0-60 cm) from four combinations of soil 

core origin and incubation location.  Error bars are ± 1 SE.  Lower-case letters indicate 

pair-wise significant differences at p = 0.05.
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Figure 2.3 Average belowground plant biomass from four combinations of soil core origin 

and incubation location by depth.  Error bars are ± 1 SE.  Lower-case letters indicate pair-

wise significant differences at p < 0.05, at the specified depth.

Belowground Plant Biomass (g m
-2

)

0 100 200 300 400 500 600 700

D
e

p
th

 (
c

m
)

40-60

30-40

20-30

10-20

0-10

Rhizomes

p = 0.005

p < 0.044

p < 0.001

p = 0.002

p = 0.092

Loc

Ori

Depth

Loc*Depth

Loc*Depth*Ori

a

ab
b

c

a

a

ab
b

a

ab
b

c Loc

Loc*Ori

p = 0.002

p = 0.014

Hays cores @ Konza

Hays cores @ Hays

Konza cores @ Hays

Konza cores @ Konza



37 

 

Figure 2.4  Belowground plant biomass carbon concentration 

(top left), nitrogen concentration (top right), and C:N ratio 

(bottom left) from four combinations of soil core origin and 

incubation location by depth.  Error bars are ± 1 SE.  A number 

symbol (#) indicates significant (p < 0.05) origin effects, at the 

specified depth.  
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Figure 2.5  Average belowground plant biomass storage of carbon (top) and nitrogen 

(bottom) from four combinations of soil core origin and incubation location by depth.  

Error bars are ± 1 SE.  Lower-case letters indicate pair-wise significant differences at p < 

0.05, at the specified depth.  An asterisks (*) indicates significant (p < 0.05) location effects, 

at the specified depth.
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Figure 2.6 Total soil carbon concentration (top left), nitrogen 

concentration (top right), and C:N ratio (bottom left) from combinations 

of soil core origin and incubation location by depth.  Error bars are ± 1 

SE.  A number symbol (#) indicates significant (p < 0.05) origin effects, at 

the specified depth.
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Figure 2.7 Total carbon storage (top) and nitrogen storage (bottom) from four 

combinations of soil core origin and incubation location by depth.  Error bars are ± 1 SE.  

A number symbol (#) indicates significant (p < 0.05) origin effects, at the specified depth.
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Figure 2.8 Total microbial biomass carbon concentration (top left), 

nitrogen concentration (top right), and C:N ratio (bottom left) from four 

combinations of soil core origin and incubation location by depth.  Error 

bars are ± 1 SE.  An asterisks (*) indicates significant (p < 0.05) location 

effects, at the specified depth.
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Figure 2.9  Average microbial biomass C (top) and N (bottom) storage from four 

combinations of soil core origin and incubation location by depth.  Error bars are ± 1 SE.  

An asterisks (*) indicates significant (p < 0.05) location effects, at the specified depth. 
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Figure 2.10  Average mineralizable C (top) and N (bottom) assessed from aerobic 

incubations from four combinations of soil core origin and incubation location by depth.  

Error bars are ± 1 SE.  A number symbol (#) indicates significant (p < 0.05) origin effects, 

at the specified depth.
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Chapter 3 - Soil Microarthropod and Nematodes Responses to 

Changes in Soil Water Availability in a Grassland System 

 ABSTRACT 

Soil water availability is generally considered to be one of the most influential abiotic 

drivers of soil invertebrate communities, especially in water-limited systems such as grasslands.  

Global climate change predictions suggeste that grasslands in the Great Plains region of North 

America will undergo changes in precipitation regimes, which will alter soil water availability.  

This study was designed to assess the impact of altered soil water availability on soil 

microarthropod and nematode composition and abundance.  To quantify their responses, a 

reciprocal core transplant experiment was initiated in 1993 between a more mesic grassland site 

(Konza Prairie, mean annual precipitation = 850 mm) and a more arid grassland site (Hays, mean 

annual precipitation = 580 mm).  In May 2009, large, intact plant-soil cores at each site were 

harvested (5 “native” and 5 “transplanted” cores at each site) and sectioned into five depth 

increments (0-10, 10-20, 20-30, 30-40, and 40-60 cm).  Each core depth increment was 

subsampled for both microarthropods and nematodes.  We assessed the influence of incubation 

location and soil origin on soil biota for both whole cores and individual depth increments.  

Microarthropods, primarily Acari, responded to changes in soil water availability, with greater 

densities under drier conditions, regardless of soil origin.  Responses of the three main groups of 

microarthropods (prostigmatid, mesostigmatid, and oribatid mites) were not consistent.  

Prostigmatid mites were more abundant under drier conditions, while oribatid and mesostigmatid 

mites were more abundant under wetter conditions.  Nematode densities were drastically affected 

by changes in soil water availability but only in cores originating from Konza.  Herbivorous 

nematodes were the most abundant group, and analysis of the families Criconematidae and 
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Telotylenchidae revealed greater densities in cores incubated at Konza relative to core incubated 

at Hays.  The inconsistency in response to soil water availability among different soil fauna taxa 

suggests complex relationships between soil water availability and mesofaunal communities. 
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 INTRODUCTION 

Annual precipitation and water limitation are key environmental factors influencing 

grassland ecosystems (Sala et al. 1988; Burke et al. 1997; Zhou et al. 2009).  In the Great Plains 

region of North America, soil water availability varies across a strong east-west precipitation 

gradient characteristic of the region (Weaver 1954; Risser et al. 1981).  Studies along this, and 

other gradients, have linked water availability to primary productivity (Briggs and Knapp 1995; 

Knapp and Smith 2001), plant community composition (Albertson and Weaver 1944), nutrient 

cycling (McCulley et al. 2005), and decomposition rates (Epstein et al. 2002; Austin 2002).  As a 

result, changes in precipitation will likely incur responses in ecological processes at a range of 

scales, from population dynamics to ecosystem processes.  Recent global circulation models 

(GCMs) have indicated this region will undergo a variety of climatic shifts, including increases 

in mean annual temperature (Manabe and Wethererald 1975; Hansen et al. 2006; IPCC 2007) 

and potential changes in annual precipitation (Crane and Hewitson 1998; Easterling et al. 2000; 

Andrews and Forester 2010), with an overall reduction in soil water availability (Jackson et al. 

2001).  Climatic shifts have altered water availability in the past causing ecosystem-level 

responses (Weaver 1954; Weaver and Albertson 1944); however, the effects of unprecedented 

contemporary alterations in global climatic patterns are unknown. 

While many global climate change experiments have examined various ecosystem and 

plant community responses, few have examined the responses of soil fauna.   Grassland soil 

fauna are an important component soil food webs (Ingham et al. 1986), and soil food webs link 

aboveground and belowground systems and are responsible for a variety of ecosystem processes 

(Wardle 2002; Sackett et al. 2010), such as decomposition (Smith and Bradford 2003) and 

nutrient cycling (Ingham et al. 1986).  Soil fauna have a wide range of feeding strategies, body 
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sizes, and movement capabilities (Lavelle 1997), which can directly or indirectly affect rates of 

many soil processes.  Soil microorganisms are responsible for more than 90% of decomposition 

and nutrient cycling (Fitter 2005; Lavelle 2002), while larger soil fauna indirectly affect the rates 

of microbial decomposition and nutrient cycling by comminution (Seastedt 1984), selective 

grazing (Hanlon and Anderson 1980), fecal production, and survival within larger organisms.  

Soil fauna are sensitive to environmental conditions in the soil.  While a few studies have 

focused on responses of grassland soil fauna to short-term changes in climate (O‟Lear et al. 

1999; Todd et al. 1999); no known study has assessed the longer-term impacts of an 

experimentally altered climate.  As a result of changing climatic patterns it is likely that the 

abundance, distribution, and functioning of the soil fauna within grassland systems will be 

altered. 

Microarthropods are a major component of soil fauna in grassland systems and can 

influence multiple aspects of soil structure and function.  They are numerically abundant 

(Leetham and Milchunas 1985; O‟lear and Blair 1999) and relatively ubiquitous within the soil, 

existing in air-filled pore spaces (Coleman et al. 2004).  Microarthropods encompass a wide 

range of feeding behaviors (Moore et al. 1988; Ingham et al. 1989).  Community composition, 

abundances, and biomass of microarthropods have been studied in many terrestrial ecosystems 

(Kinnear and Tongway 2004), as have the ecological effects of their activities.  Studies have 

investigated interactions with other soil biota, primarily plant roots and microbial communities 

(Bardgett et al. 1993), and selective feeding on these organisms has been shown to cause changes 

in soil processes.  Microarthropods have been shown to directly alter soil processes, including 

decomposition rates and nutrient cycling, through comminution, fecal production, and 

dissemination of propagules (Seastedt et al. 1984).  As many soil properties and characteristics 
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are influenced to some extent by the activity of microarthropods, a basic understanding of their 

responses to altered precipitation patterns is important. 

Nematodes, like microarthropods, have a wide range of feeding behaviors, and interact 

with other soil biota in multiple trophic pathways (Ransom 1998; De Ruiter et al. 2002).  They 

influence ecosystem processes directly as herbivores, parasites, or both (Yeates et al. 1993; Todd 

1996; Ingham and Detling 1990) and indirectly as consumers of parasitic or beneficial soil 

microbes (Hunt et al. 1987).  Many studies on feeding behaviors have been conducted and are 

well-documented in agroecosystems (Freckman and Caswell 1985; Freckman and Ettema 1993; 

Yeates and Bongers 1999).  As a result, it is clear they directly and indirectly alter various soil 

processes.  As nematodes are abundant and reproduce quickly, studies have used their 

abundances and trophic structures as indicators of soil fertility (Yeates 2003; Shao 2008).  Based 

on nematode functions within the soil, an understanding of their susceptibility to altered 

precipitation patterns is vital to accurately predict potential changes in grassland soils to altered 

precipitation patterns 

The abundances and activities of microarthropods (Seastedt et al. 1984) and nematodes 

(Todd 1994) have been documented in grasslands; however few studies have focused on depth 

distribution within the soil (but see O‟lear and Blair 1999; Todd et al. 1999) and no known 

studies have addressed the longer-term impacts of climate change. Since global climate change 

represents a permanent alteration to grassland soil systems, such studies are becoming 

increasingly important.  The objective of this study was to assess long-term responses of 

microarthropod and nematode communities to alternate climate conditions.  Using a simple 

reciprocal core transplant to simulate increased and decreased annual precipitation and 

associated changes in soil water availability, we were able to assess the potential impacts of 
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climate change on grassland soil fauna.  This experiment was focused specifically on 

microarthropod and nematode community responses, including abundance, trophic structure, and 

vertical depth distribution. 

 METHODS 

 Description of Study Sites 

This study was a part of a larger experiment funded by the Department of 

Energy/National Institute for Global Environmental Change (DOE/NIGEC) to investigate how 

vegetation, soil organisms, and soil processes of grassland systems respond to altered soil 

moisture regimes.  This reciprocal transplant study was conducted between Konza Prairie 

Biological Station (Konza) and Kansas State University Agricultural Center at Hays (Hays).  

These research sites are located across a strong east-west precipitation gradient in the Great 

Plains region of North America.  Konza, a representative mesic grassland site, is a 3,487 ha area 

of native tallgrass prairie in northeastern Kansas (39°05'N and 96°35'W), located approximately 

13 km south of Manhattan, KS.  Hays, a representative semi-arid grassland site, is located at an 

agriculture station 240 km west of Konza Prairie.  The dominant vegetation of Konza consisted 

primarily of Andropogon gerardii (big bluestem), Sorghastrum nutans (Indian grass), Panicum 

virgatum (switchgrass), and A. scoparius (little bluestem), which is typical for a mesic tallgrass 

system.  Dominant vegetation at Hays included Bouteloua curtipendula (side-oats gramma), 

Bouteloua gracillis (blue gramma), Buchloe dactyloides (buffalo grass), and Agropyron smithii 

(western wheat grass); however, A. gerardii and P. virgatum were well represented at the 

specific site chosen for this study.   

The long-term mean annual precipitation at Konza is 850 mm and at Hays is 580 mm 

(approximately 30% less).  Air and soil temperatures are similar at both locations.  Reciprocal 
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transplants of intact plant-soil cores between two sites in close geography proximity with altered 

amounts of precipitation allowed us to address the effects of altered soil water availability on soil 

microarthropod and nematode abundances and their vertical distributions within the soil.  

Although differences in fire management occurred during the 16-year study period, with the 

Konza site being burned annually and the Hays site being burned sporadically (1993, 1994, 

1995, 2000, 2003, and 2007), both sites were ungrazed and there were no other differences in 

management.  The Konza site was on a deep, nearly level (0–1% slope) Reading silt loam 

formed from alluvial sediments. Reading soils are fine, mixed mesic Typic Argiustolls with a silt 

loam A horizon (approximately 28 cm deep) overlaying light to heavy silty clay loam B1 and 

B2t horizons.  The Hays site was located on a deep, nearly level (0–1% slope) Harney silt loam 

formed in calcareous, medium textured loess.  The A1 and A3 horizons were silt loams and light 

silty clay loams, respectively, overlaying light to heavy silty clay loam B horizons.  Therefore, 

soils are texturally similar in the top 30 cm; however, below 30cm, notable increases in clay 

content were observed in Konza soils that were not present in Hays soils. 

 Experimental Design 

The reciprocal transplant experiment was initiated in 1993.  Seventy large (25 cm 

diameter × 70 cm depth) intact plant-soil cores, encased in open-ended polyvinylchloride 

cylinders (PVC) were extracted from both the more mesic Konza site and the more arid Hays 

grassland site, using hydraulic coring equipment (Swallow et al. 1987).   As stated previously, 

cores were extracted from both sites in an area dominated by A. gerardii to reduce variability due 

to plant community differences between locations.  Half of the extracted plant-soil cores were 

placed into their original holes, while the remaining cores were transplanted to the alternate site.  

This resulted in 70 plant-soil cores at each site (35 “transplanted” and 35 “native”).  In 1994-
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1996, a subset of cores was destructively sampled twice per year to assess short-term effects of 

transplantation (O‟lear and Blair 1999; Todd et al. 1999).  An additional subset of soil cores 

remained incubating at each site to assess the longer-term effects of the transplantation, which is 

the focus of this study.  These long-term plant-soil cores were harvested in May of 2009 and 

sectioned into 0-10, 10-20, 20-30, 30-40, and 40-60 cm depth increments.  Along with various 

physical/chemical responses (Chapter 2, this thesis), these cores were used assess the potential 

impacts of altered soil water availability on microarthropod and nematode abundances, 

community composition, and vertical distribution. 

 Microarthropod Extraction 

 To assess impacts of soil water availability on microarthropod abundances, community 

composition, and vertical distribution, 5-cm diameter × 5-cm deep soil cores were extracted from 

the upper surface of each depth increment.  Microarthropods were extracted from each core over 

a 1-week period using modified Tullgren type, high-gradient extractors (Crossley and Blair 

1991).  The organisms recovered were stored in glass vials containing 90% ethanol until 

identification.  Microarthropods were identified to taxonomic order in general, and to suborder 

for Acari.  These broad identification categories were used to assess abundances, community 

composition, and vertical distribution of soil microarthropods.  Since subsamples of 

microarthropods were extracted from the upper 5-cm only of each depth increment, an averaging 

method was used to estimate microarthropod abundances in the lower portions of each increment 

and in whole soil cores.  To estimate microarthropod abundances at 5-10, 15-20, 25-30, and 35-

40 cm, averages from subsamples above and below each increment were used to interpolate 

abundances in the intervening depths, and these values were added to extracted subsamples to 

estimate entire plant-soil core (0-45 cm) microarthropod abundance. 
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 Nematode Extraction 

To assess impacts of soil water availability on nematode abundances, community 

composition, and vertical distribution, nematodes were extracted from field-moist (~100 g dry 

weight equivalent), mixed soil subsamples using a standard centrifugal flotation technique 

(Jenkins 1964).  Nematodes were identified to family level and assigned to feeding guilds based 

on Yeates et al. (1993).  A complete list of the dominant nematode taxa of the Konza Prairie 

Biological Station and their trophic groupings can be found in Ransom et al. (1998). 

 Statistical Analysis 

Analysis of variance (ANOVA) was performed using SAS PROC MIXED (SAS 

Institute) to assess differences in microarthropod and nematode densities among treatments (soil 

origin and soil incubation location).  To determine the effect of transplantation on whole core 

dynamics of microarthropods (0-45 cm) and nematodes (0-60), a 2-way ANOVA was used with 

soil origin and incubation location as independent variables.  A 3-way ANOVA was performed 

using soil origin, incubation location, and depth as independent variables to identify at which 

depths significance occurred.  The SAS SLICE featured was used to determine at which depth 

treatment the main effects of location and origin were observed.  In the case of a 3-way 

interaction, pair-wise comparisons were used to compare all treatments separately.  A 

logarithmic transformation (x+1) was used to normalize density data prior to statistical analyses 

(Berthet and Gerard 1965).  Results were considered statistically significant at p<0.05, unless 

otherwise specified.  Data are reported as treatment means ± one SE. 
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 RESULTS 

 Precipitation 

During the course of this study (1993-2009), mean annual precipitation at both locations 

varied greatly (Figure 3.1).  Mean annual precipitation at Konza ranged from 627 mm to 1228, 

while precipitation at Hays ranged from 412 mm to 965.  Overall, annual precipitation at Konza 

was significantly (p = 0.012) greater than at Hays.  The average difference between locations on 

a yearly basis was ~37%, which was greater than the long-term average.  Although higher than 

average, precipitation at Konza was not consistently greater than Hays.  Many years, including 

1993, 2000, 2001, 2003, and 2007, had less than the long-term average difference in 

precipitation between sites, and in some years (1995 and 1996), Hays received greater annual 

rainfall than Konza. 

 Microarthropods 

Estimates of total microarthropod densities to a depth of 45 cm ranged from 173,060 to 

418,144 individuals per m
2
.  Analysis of the effects of location (where the cores were incubated 

during the experiment) and origin (where the soil cores originated) on total microarthropod 

densities indicated a significant (p ≤ 0.05) location effect but no effects of origin and no location 

× origin interaction (Figure 3.2).  Greater densities were recovered from cores incubated at the 

more arid Hays site relative to the more mesic Konza site, regardless of soil origin.  The lack of 

an interaction indicated that both Konza and Hays cores responded to location similarly, with 

both Konza and Hays cores having lower densities at the wetter site, and higher densities at the 

drier site.   

A more detailed analysis of microarthropod densities utilizing depth as an additional 

factor was performed to examine the effects of depth on recovered microarthropod abundances 
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and possible interactive effects of depth with location and origin.  Analysis of microarthropod 

densities revealed significant effects of location, depth, and a three-way interaction among all 

three factors, with marginal (0.5 < p ≤ 0.1) effects of origin and an origin × depth interaction.  

Microarthropod densities were greater in soils incubated at the more arid Hays location at the 10-

15 cm, 20-25 cm, and 40-45 cm depths.  The three-way interaction revealed differences in 

magnitude of response at each soil depth.  At depth 30-35 cm, transplanting Konza cores to the 

drier Hays site significantly increased microarthropod densities, while there was no significant 

effect of transplanting Hays cores to Konza.  At 40-45 cm, Hays cores were more responsive and 

there was a significant decrease when Hays cores were transplanted to Konza (Figure 3.3).  

A majority of the microarthropods recovered were members of the Order Acari (mites).  

Soil mites comprised 78%-93% of total microarthropod densities across depth increments.  Since 

soil mites represented such a large majority of microarthropods, analysis of total Acari responses 

were similar to those of total microarthropods (Figure 3.4).  The most abundant Acari suborders 

(Prostigmata, Oribatida, and Mesostigmata) were all responsive to location, origin, and depth 

effects.  Prostigmatid mites were affected by location, origin, depth, and a two-way origin × 

depth interaction.  Greater prostigmatid densities were found in cores incubated at Hays relative 

to Konza, with similar responses to location regardless of core origin.  The significant origin × 

depth interaction showed Hay soils supported greater densities of prostigmatid mites at 0-5 and 

30-35 cm depths relative to Konza cores.  Oribatid and mesostigmatid mite densities were 

affected by location, with greater densities found in cores incubated at Konza (Figure 3.5).  

While both oribatid and mesostigmatid mite densities were higher at Konza, differences in 

responses occurred with depth.  Oribatid mites had higher densities at 40-45 cm in cores 
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incubated at Konza relative to Hays, while mesostigmatid mites were significantly higher at both 

30-35 and 40-45 cm depths in cores incubated at Konza (Figure 3.5). 

Nematodes 

Estimates of total nematodes densities to a depth of 60 cm ranged from 401,429 to 

4,526,742 individuals per m
2
.  Analysis of location and origin effects indicated total nematode 

densities were influenced by location, origin, and their interaction (Figure 3.6).  The significance 

of the location × origin interaction term revealed that cores originating from Konza were more 

responsive to transplantation than were soils originating from Hays.  The transplantation of 

Konza cores to Hays resulted in a 70% decrease in total nematode densities, while cores 

originating from Hays were statistically similar regardless of incubation location.   

Further analysis of nematode densities was conducted as a function of location, origin, 

and depth to reveal interactions among depth with the other factors.    Results of this analysis 

showed that origin, depth, and an origin × depth interaction were the significant factors 

influencing total nematode densities.  Origin effects were the most significant factor in 

determining nematode densities, with greater densities recovered from Hays soil cores.  This 

trend was driven by the interactive effect of origin × depth, with origin having a significant effect 

at 30-40 and 40-60 cm depth increments (Figure 3.7).  At the lower depths, Konza soils 

displayed a drastic decrease in nematode abundance, while abundances in Hays soils were more 

consistent across depths.  This trend appeared to be explained by the large textural differences 

between Konza soils and Hays soils at lower soil depths.  Konza soils had a marked increase in 

clay content below ~ 30 cm that was not observed in Hays soils.  A three-way ANOVA was 

performed on nematode data excluding the 30-40 and 40-60 cm depths to remove the effect of 

these lower depths (with higher clay content in Konza cores) on nematode densities (Figure 3.7).  
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With these depths removed, there was no significant effect of origin nor an origin × depth 

interaction.  Therefore, differences in nematode densities based on origin were the result of the 

lower depths analyzed. 

To better understand nematode responses to the treatments, analyses were performed on 

specific functional groups.  Herbivorous nematode densities were the only taxa responsive to 

treatments in whole core analysis, and were affected by origin and a location × origin interaction.  

Effects of location were only apparent in soils originating from Konza, where transplantation of 

Konza soils to Hays resulted in a 76% decrease (76%) in herbivore densities.  Herbivore, 

fungivore, and microbivore nematodes all exhibited three-way interactions (p < 0.1) among 

incubation location, soil origin, and soil depth, with differences being variable and dependent on 

taxa.  Herbivorous nematode densities at lower soil depths (30-40 and 40-60 cm) were more 

responsive in Konza cores, Konza cores transplanted to Hays experiencing significant decreases 

in densities, while herbivorous nematodes densities in Hays cores did not change significantly 

when transplanted to Konza (Figure 3.8).  Fungivorous nematodes showed similar dynamics, 

with transplantation of Konza cores to Hays significantly decreasing densities at 40-60 cm.  In 

contrast, three-way interactions of bactivorous nematodes were not restricted solely to the lower 

soil depths, with interactions occurring at 10-20, 20-30, and 40-60 cm depths, with soil cores 

originating from Konza being more responsive to transplantation at 10-20 and 20-30 cm depths 

and soil cores originating from Hays being more responsive to transplantation at 40-60 cm 

depths (Figure 3.8). 

The herbivorous taxa were the most abundant and arguably the most responsive to the 

effects of transplantation.  We identified two families (out of nine) that responded to 

transplantation.  Analysis of location and origin effects on total core (0-60 cm) abundances of the 
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two families yielded only origin as a significant factor influencing densities; however, analysis 

by depth revealed significant location × depth, and location × origin × depth interactions.  

Nematodes in the family Telotylenchidae were significantly altered by transplantation at 0-10 cm 

and 40-60 cm.  Transplanting Hays cores to Konza resulted in significantly (p = 0.006) increased 

densities at 0-10 cm, while significant (p = 0.098) decreases occurred at 40-60 cm.  Nematodes 

in the family Criconematidae had greatest densities in soils incubating at Konza relative to Hays, 

regardless of soil origin, and the differentiation was driven by densities in the 20-30 cm depth 

increment (p = 0.003).  

 DISCUSSION 

Climate change represents a chronic, not transient, alteration in global hydrologic cycles 

requiring long-term studies to assess possible impacts.  The longevity of this experiment allowed 

for comparisons to be made concerning the potential effects of global climate change on soil 

microarthropod and nematode abundances and composition.  There is increasing evidence that 

climate changes can affect soil mesofauna and the functions they provide (Hagvar and Klanderud 

2009; Lindroth 2010;).  Our results indicate that changes in long-term mean annual precipitation 

amounts and associated soil water availability, a potential consequence of climate change, can 

alter the abundance and community dynamics of soil microarthropods and nematodes.  Results 

from our experiment indicate that microarthropods and nematodes are responsive to 

experimentally altered soil water content to varying degrees among the different subgroups 

studied. 

We found soil microarthropods to be responsive to changes in mean annual precipitation; 

however the direction of this response was unexpected.  Transplanting soil cores originating 

from Hays to the more mesic Konza site significantly decreased microarthropod densities, while 



58 

the transplantation of Konza soils to the drier conditions at Hays led to a significant increase in 

densities.  We anticipated greater abundances of microarthropods would be found at the more 

mesic Konza site, due to the increased availability of food sources (i.e., plant residues, microbial 

biomass) (Yeates et al. 1993; Vreeken-Buijs et al. 1998).  Studies in other ecosystems have 

reported that greater soil water availability typically results in greater microarthropod abundance 

(Lindberg et al. 2002; Taylor et al. 2004).  In contrast, O‟lear and Blair (1999) found that in a 

tallgrass prairie the abundance of Acari decreased due to irrigation.  The negative response to 

higher soil water content could be a function of many underlying factors, including competition 

with other organisms, survival ability, and reproductive rates; however, these mechanisms were 

not assessed in the present study. 

The trends in microarthropod densities were primarily driven by the soil mite fauna, 

which constituted between 78% and 93% of the extracted microarthropods densities.  Several 

grassland studies have observed similar percentages of soil mite fauna in total microarthropod 

densities (O‟Lear and Blair 1999; Osler et al. 2008).  The response of soil mite fauna to 

precipitation was the primary driver of the total microarthropod response, with greater 

abundances occurring at the more arid Hays site.  Although the abundances of total mites was 

greater at the more arid grassland site, the response was not consistent among the three most 

abundant soil mite suborders.  Prostigmatid mites were consistently the most abundant of 

extracted soil mites, constituting 61-81% of the total soil mites, a percentage consistent with 

other grassland studies (Leetham et al. 1981; Leetham and Milchunsa 1985).  Prostigmatid mites 

showed an overall preference for the drier environment at Hays relative to Konza, regardless of 

soil origin.  Leetham and Michunas (1985) found that in prairie soils, two peaks in mites 

densities occurred through the soil profile, associated with root biomass and stability of soil 
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water deeper within the soil.  This separation could involve migrations within the soil profile 

(Whitford et al. 1981), where frequent water cycles experienced in the surface soils may force 

mites to assemble deeper within the soil profile.  Kethley (1990) suggested that some 

phytophagous and mycophagous prostigmatid mites, having short life cycles, may be able 

quickly respond to wet periods allowing for feeding on root and fungal. 

Both oribatid and mesostigmatid mites were found to be significantly greater at the more 

mesic site relative to the more arid site, regardless of soil origin.  This was a trend we assumed 

would be indicative of total Acari populations.  This is consistent with studies in temperate forest 

ecosystems, showing that oribatids are very sensitive to climatic alterations (i.e., drier, warmer 

conditions) associated with forest canopy removal (Seastedt and Crossley 1981; Blair and 

Crossley 1988).  Studies have indicated that oribatid mites are generally the most abundant of the 

soil mite fauna in more mesic habitats (Wood 1966; Coleman et al. 2004).  In grasslands, there is 

a strong possibility that increased plant residues within more mesic grassland sites may 

contribute to higher oribatid populations.  Mesostigmatid mites are primarily predaceous; 

therefore, we suggest their reaction to soil moisture content is a function of increased prey 

densities in the presence of increased plant biomass and soil organic matter.  Also, evidence 

exists suggesting that mesostigmatid mites, particularly the Gamasina, show little microhabitat 

preferences (Coja and Bruckner 2003).  The differences in the response to experimental 

treatments suggest complex interactions between soil water content and other factors, which was 

beyond the scope of this experiment. 

Studies on total microarthropod assemblages typically focus on the surface soil layers (0-

20 cm).  Results from our experiment indicate that while a majority of microarthropod densities 

do reside in upper soil layers (0-20 cm), a large quantity of microarthropods occurred at greater 
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depths.  I found that roughly 75% of the microarthropods in our study were located in the 10-15 

cm and 20-25 cm soil depths.  Very few studies have investigated the vertical depth distribution 

of microarthropods in grassland soils.  O‟Lear and Blair (1999) found a statistical majority of 

microarthropods located at depths of 20-25 cm.  Some studies have even suggested that mites 

with smaller bodies are able to move throughout the soil profile better than those with larger 

bodies (Holt 1981).  In addition, Whitford et al. (1981) found that soil mite fauna have diurnal 

migrations throughout the soil column.  Therefore, the vertical distribution of soil mites with our 

experiment indicates that soil microarthropod assemblages are potentially a function of both 

biotic and abiotic factors, and that greater sampling of soils at lower depths may provide valuable 

information on microarthropod densities in grassland soil systems. 

Our results on nematode densities indicate that total nematode densities are positively 

related to mean annual precipitation; however, these trends occurred only in cores originating 

from Konza.  The transplantation of Konza cores to Hays significantly decreased nematode 

densities by 70%, while only small, insignificant increases were observed in transplanted Hays 

cores.  We anticipated greater abundances of nematodes would be found at the more mesic 

Konza site, but were surprised in the lack of response in nematodes from Hays.  There is 

conflicting literature concerning the effect of soil moisture on the density of nematodes, with 

results ranging from increases (Steinberger and Sarig 1993; Todd et al. 1999), to no response 

(Papatheodorou et al. 2004), to decreases (Bonkonyi et al. 2007) to increasing soil moisture 

levels. These differences in observations may be due to differences in habitat preference by 

members in the same functional groups.  Sohlenius (1985) demonstrated that there are different 

optimum soil moisture values for different taxa in the same functional groups. This, therefore, 
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allows mixed nematode communities to maintain high densities over a wide range of 

environments.  

The herbivorous taxa were the most abundant and arguably the most responsive to 

transplantation.  Transplanting cores originating from Konza to Hays resulted in a 66% decrease 

in plant-feeding nematodes.  The magnitude of this response was unexpected.  Many studies 

have been conducted across various ecosystems and have shown different responses in plant-

feeding nematodes and soil water availability (Smolik and Dodd 1983; Bakonyi et al 2000).  

Grasslands, in particular support large, herbivore-dominated nematode populations in the soil, 

and herbivorous nematodes are major controllers of plant production in these ecosystems 

(Smolik 1974; Lauenroth and Milchunas 1991).  Therefore, the presence of plant-feeding 

nematodes could be a function of either direct or indirect effects of greater precipitation.  In our 

study, we found two families of nematodes were the most responsive to transplantation.  The 

largest response to altered precipitation patterns was found within the nematode Family 

Criconematididae, where we recorded significant reductions in nematodes when transplanting 

Konza cores to Hays (p = 0.0249).  Criconematid nematodes have been found in a variety of 

ecosystems (Peneva et al. 2000; Liscova et al. 2004; Todd et al. 2006) and have been reported to 

feed upon multiple plant species.  Nematodes in the family Telotylenchidae were also responsive 

to transplantation.  In this case, Telotylenchidae were only responsive in cores originating at 

Konza.  The greatest response was observed in the upper soil layers, and was likely due to 

reduced root biomass in Konza cores transplanted to Hays (See Chapter 2 of this thesis).  

Therefore, in the present study, we found responses of plant-feeding nematodes were positively 

correlated with increase precipitation. 
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The remaining trophic groups were less abundant and exhibited very few significant 

responses to changes in soil moisture. Fungivore and microbivore densities have shown 

inconsistencies with respect to increased soil water availability, ranging from negative (Solenius 

1985), to posititive (Ekschmitt and Griffiths 1998) responses.  In our study, we found 

fungivorous nematodes were not responsive to the effects of location, suggesting that mean 

annual precipitation has little influence on their abundance in grassland systems.  Bacterial-

feeding nematodes showed few responses to transplantation, as well.  Studies have indicated that 

greater densities of bacterial-feeding nematodes typically are higher in areas with greater soil 

water availability due to increased microbial biomass and microbial N (Todd 2006).  In the 

present study, we found bactivorous nematodes did respond to changes in precipitation regime; 

however, these responses were greatest in Konza soils at 10-20 and 20-30 cm.  Solenus (1985) 

found a positive correlation between soil water availability and bactivorous nematodes.  This 

contrasts with Gomez et al. (2003) findings that increased soil water availability in agricultural 

grasslands hindered bactivorous nematode densities, noting some of this nematode community 

responded differently. 

The vertical distribution of nematodes at Konza and Hays were similar to those reported 

for tallgrass and mixed-grass prairies, with most nematodes being concentrated in the upper 20 

cm of the soil profile (Risser et al. 1981; Smolik and Lewis 1982).  The exception was the 

herbivorous taxa which appeared to have a large population deeper within the soil in cores 

originating from Hays.  Also, it is important that a majority of the significant interactions and 

main effects occurred at depths below 30 cm.  This emphasizes the importance of sampling 

lower soil depths.   
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 CONCLUSION 

This study provided new information of the potential effects of climate change and 

altered precipitation on soil microarthropod and nematode densities and community structure.  

We found that climate change had a large effect on microarthropod densities at 10-20, 20-30, and 

30-40 cm depths.  At these depths, microarthropod densities were significantly greater at Hays 

relative to Konza.  Soil mites (Acari) accounted for a majority of the total microarthropod 

densities, and largely drove the responses to transplantation of soil cores.  However, different 

suborders of mites varied in their responses.  Greater densities of prostigmatid mites were found 

at Hays, while oribatid and mesostigmatid mite densities were greater at Konza.  Soil nematodes 

showed no consistent response to altered climates; however, Konza soil cores transplanted to 

Hays did experience drastic reductions in soil nematode densities.  Furthermore, nematodes were 

the most responsive to soil core origin, where high clay content in Konza soils hindered 

nematode densities.  Nematode trophic groups did not exhibit consistent responses, but 

nematodes in the Families Telotylenchidae and Criconematidae did appear to sustain higher 

densities at Konza.  Therefore, changes in soil water availability, a consequence of climate 

change, will alter belowground soil invertebrate communities, distributions, and densities. 
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 FIGURES AND TABLES 

Figure 3.1  Annual precipitation (1993-2009) at Konza Prairie Biological Station (solid line) 

and Kansas State University Agricultural Research Center at Hays (dotted line). 
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Figure 3.2  Total microarthropod densities (0-60 cm) from four combinations of soil core 

origin and incubation location.  Error bars are ± 1 SE. 
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Figure 3.3  Average microarthropod densities from four combinations of soil core origin 

and incubation location by depth.  Error bars are ± 1 SE.  Lower-case letters indicate pair-

wise significant differences at p < 0.05, at the specified depth.
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Figure 3.4 Average Acari densities from four combinations of soil core origin and 

incubation location by depth.  Error bars are ± 1 SE.  Lower-case letters indicate pair-wise 

significant differences at p < 0.05, at the specified depth. 
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Figure 3.5  Average densities of prostigmatid mites (top left), 

oribatid mites (top right), and mesostigmatid mites (bottom 

left) from four combinations of soil core origin and 

incubation location by depth.  Error bars are ± 1 SE.  A 

number symbol (#) indicates significant (p < 0.05) origin 

effects and an asterisk (*) indicates significant location 

effects, at the specified depth.
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Figure 3.6 Average densities of nematodes from four combinations of soil core origin and 

incubation location.  Error bars are ± 1 SE.  Lower-case letters indicate pair-wise 

significant differences at p < 0.05, at the specified depth. 
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Figure 3.7 Average densities of nematodes from four combinations of soil core origin and 

incubation location by depth.  Error bars are ± 1 SE.  A number symbol (#) indicates 

significant (p < 0.05) origin effects, at the specified depth.



77 

 

Figure 3.8 Average densities of herbivorous (top left), 

fungivorous (top right), and bactivorous (bottom left) 

nematodes from four combinations of soil core origin and 

incubation location by depth.  Error bars are ± 1 SE.  Lower-

case letters indicate pair-wise significant differences at p < 

0.05, at the specified depth. 
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Chapter 4 - Conclusions 

Contemporary global climate change is represented by unprecedented alterations in the 

global physical and chemical environment.  In light of these changes, studies investigating long-

term ecological responses to changes in precipitation regimes are becoming increasingly 

important.  Grasslands are likely to be the most vulnerable to global climate change of any 

terrestrial ecosystem, due to their high dependence on soil water availability for primary 

productivity.  In this thesis, I analyzed how climate change, specifically changes in mean annual 

precipitation and associated soil moisture content, affects plant and soil nutrient status, 

microarthropods, and nematodes in the Central Plains region of the United States 

The first chapter explored the effects of both increased and decreased mean annual 

precipitation on belowground plant and soil nutrient status of soils conditioned to more arid and 

mesic environments.  These parameters were assessed using a reciprocal core transplant between 

two locations across a strong natural precipitation gradient:  Konza Prairie Biological Station 

(MAP=850 mm) and Kansas State University Agricultural Research Center at Hays (MAP=580 

mm).  Using a reciprocal core transplant between these two sites we were able to compare both 

“native” and “transplanted” intact plant-soil cores between sites and among sites to assess 

differences due to precipitation and how precipitation effects may vary with soil origin.  

Belowground plant biomass was shown to be positively correlated with increasing precipitation, 

with cores originating from Konza being the most affected by altered precipitation.  While the 

carbon (C) concentrations within belowground plant biomass were unaltered by precipitation, 

nitrogen concentrations were drastically altered.  Regardless of soil origin, greater nitrogen (N) 

concentrations were associated with more arid climates.  As a result, the quality of belowground 

plant biomass, indexed as the C:N ratio, was greater under more arid conditions relative to more 
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mesic conditions.  Furthermore, the total amount C and N stored within plant biomass was 

altered by precipitation.  While C sequestration in roots was a function of belowground biomass, 

N sequestration was greatly dependent on tissue N concentrations and was significantly greater 

under more arid conditions.  These results indicate that grassland soils conditioned to more mesic 

environments are more responsive to decreases in precipitation, compared to the response of 

soils conditioned to more arid environments. 

The second chapter explored the effects of both increased and decreased mean annual 

precipitation on microarthropod and nematode densities conditioned to more arid and more 

mesic environments.  To assess these changes, subsamples of the reciprocal transplant 

experiment mentioned above were taken and densities of both organism types were measured.  

Microarthropods, almost exclusively comprised of organisms in the order Acari, were altered by 

changes in precipitation.  Greater densities of microarthropods were extracted from cores in the 

more arid environment, regardless of soil origin.  Mites in the suborders Prostigmata, Oribatida, 

and Mesostigmata were the most numerous and the most responsive to changes in historic 

moisture status.  Prostigmatid mites were significantly greater under more arid conditions, while 

greater densities of oribatid and mesostigmatid mites were extracted from soils in more mesic 

environments.  Nematodes densities were also affected by changes in precipitation; however, 

these changes were only apparent in soils originating from the more mesic Konza site.  Within 

Konza cores, greater densities of nematodes were extracted from cores incubating at the more 

mesic Konza site relative to the more arid Hays site.  In light of this conclusion, we examined the 

three most abundant nematode families and found that nematodes in the family Criconematidae 

were Telotylenchidae and altered and greater densities were recovered from soils located in more 

mesic climates.  These results suggest shifts in both microarthropod and nematode communities 
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are likely to occur with the changing climate, and their functions within the soil profile have the 

potential to change, as well. 

While these two studies specifically addressed climate change implications, it also 

provides additional information on belowground grassland studies, particularly the role of annual 

precipitation.  These studies provide a baseline for other studies to analyze specific interactions 

associated with changes in precipitation.  The results of this experiment gave rise to additional 

questions regarding long-term altered water availability. Specifically:  Are there changes in 

microbial community structure, and how might this relate to changes in potential C and N 

mineralization rates?  How long would it take for predicted shifts in plant communities, and 

would the soil fauna respond to changes in precipitation similarly to responses observed in A. 

gerardii dominated systems?  Is the soil C and N at a new steady state or will further changes 

occur?  Will densities or activities of soil fauna continue to change?  These and many other 

questions remain to be addressed.  Still, the results of this study emphasize the importance of 

research on climate change, particularly precipitation changes, and its relevance to ecosystem 

structure and functioning in the Central Plains region of the United. 


