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Rational design of metal nitride redox materials for solar-driven 

ammonia synthesis 
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Abstract 

Fixed nitrogen is an essential chemical building block for plant and animal protein, which 

makes ammonia (NH3) a central component of synthetic fertilizer for the global production of 

food and biofuels. A global project on artificial photosynthesis may foster the development of 

production technologies for renewable NH3 fertilizer, hydrogen carrier and combustion fuel. This 

article presents an alternative path for the production of NH3 from nitrogen, water, and solar 

energy. The process is based on a thermochemical redox cycle driven by concentrated solar 

process heat at 700-1200°C that yields NH3 via the oxidation of a metal nitride with water. The 

metal nitride is recycled via solar-driven reduction of the oxidized redox material with nitrogen at 

atmospheric pressure. We employ electronic structure theory for the rational high-throughput 

design of novel metal nitride redox materials and to show how transition-metal doping controls 

the formation and consumption of nitrogen vacancies in metal nitrides. We confirm 

experimentally that iron doping of manganese nitride increases the concentration of nitrogen 

vacancies compared to no doping. The experiments are rationalized through the average energy 

of the dopant d-states, a descriptor for the theory-based design of advanced metal nitride redox 

materials to produce sustainable solar thermochemical ammonia. 
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1. Introduction 

Renewable chemical fuels, such as hydrocarbons, methanol, hydrogen and ammonia may be 

synthesized from CO2, H2O and N2 by solar-driven photochemical, [1],[2] electrocatalytic, [3],[4] 

or thermochemical processes [5]. The latter approach utilizes the entire spectrum of concentrated 

solar energy as the source of high-temperature process heat, and as such provides a 

thermodynamically favorable path to solar fuels and materials production with high energy 

conversion efficiencies. A promising example is the production of syngas by thermochemically 

splitting CO2 and H2O via a metal oxide redox cycle [6] (and references cited therein). 

Natural photosynthesis relies on structures – proteins – that are built with fixed nitrogen, 

such as ammonia (NH3). Both, sugar, a major product of natural photosynthesis, and protein are 

the central components of the global food and biofuel production. In turn, synthetic ammonia is 

one of the major products of the chemical industry [7] that is mainly used as a fertilizer [8]. 

Additionally, NH3 is an energy carrier formed via reduction of N2, analogously to the products of 

photosynthesis, such as CO and hydrocarbon fuels via reduction of CO2 and splitting of H2O. 

Thus, NH3 may find application as hydrogen carrier [9],[10] and as a fuel for alkaline fuel cells 

[11],[12] and in internal combustion engines [13],[14],[15]. Currently, NH3 is produced 

industrially from N2 and H2 via the catalytic Haber-Bosch process at up to 300 bar and 400-

500°C [7],[16],[17],[18],[19]. The overall process is characterized by the high energy 

consumption associated with the production of the reactants. Usually, H2 is obtained by steam-

reforming of natural gas, while N2 is obtained by cryogenic separation from air. Both of these 

processes require a major input of energy, either in the form of heat or electricity, and 

consequently cause a significant concomitant pollution derived from the combustion of fossil 

fuels for heat and electricity generation. The total energy requirement is in the range 28-166 GJ/t 

NH3 [7],[16]. Furthermore, the severe process conditions require sophisticated high-pressure and 

high-temperature machinery that is operated in large-scale centralized plants producing typically 

1,000-3,000 t NH3 day-1 [7],[18]. 

To convert the nearly inert N2 molecule into a reactive chemical, Haber’s early studies [20] 

examined the formation of NH3 from H2 and various metal nitrides. These studies were motivated 

by the temporary formation of NH3 at low pressures from an iron nitride contamination of the 

catalyst that Ostwald used [21]. The NH3 formation ceased quickly since the spent iron nitride 

could not be regenerated with N2 at low pressure and the work spurred the development of the 
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Haber-Bosch process, in which NH3 is formed at high pressure to shift the thermodynamic 

equilibrium [20]. Current metal nitrides for the production of complex nitrogen-containing 

molecules cannot be regenerated with 1 bar N2 [22]. Examples are Ni3N, Cu3N, Zn3N2 and Ta3N5, 

which liberate 30, 25, 23, and 13 mol% of their lattice nitrogen in form of NH3 when reacted with 

H2 at 250, 250, 400, and 700°C, respectively [23]. Certain metal nitrides have been studied as 

low-pressure NH3 synthesis catalyst [24],[25] and some ternary metal nitrides have been found to 

reversibly reduce N2 at low pressure and to liberate the fixed nitrogen in form of NH3 in a second 

step, when reacted with H2 [26],[27],[28]. A typical example of such a material is Co3Mo3N that 

yields Co6Mo6N and up to 8 mol% of its lattice nitrogen in form of NH3 when reacted for 60 min 

with H2 at 400°C [28]. To increase the NH3 yield, current materials development focuses on 

increasing the amount of nitrogen stored in the metal nitride and on increasing the fraction of the 

lattice nitrogen that yields NH3 [22]. 

This paper focuses on materials development for a solar-driven ammonia synthesis from N2 

and H2O (instead of H2) that – in contrast to the Haber-Bosch process – does not require fossil 

fuels, electricity, or high-pressure operations [29],[30],[31]. In a first step, NH3 is formed at 1 bar 

and below 200-500°C via the oxidation of a solid metal nitride redox material with steam 

[32],[33]. The oxidized redox material is subsequently regenerated in an endothermic step driven 

by concentrated solar process heat at up to 1200°C with a stream of N2 with or without a gaseous 

chemical reducing agent [29],[30],[31]. The reaction stoichiometry of this redox cycle is given 

with Supporting Information (SI). While this process has been demonstrated successfully with 

Al-based redox materials, [34],[35],[36] the fixation of N2 with Al2O3 requires a carbonaceous 

reducing agent and technically-challenging temperatures above 1700°C. [30],[36],[37]. Certain 

transition-metal redox materials such as Cr-based nitrides have been shown to circumvent the 

need for a solid reducing agent and allow to regenerate the nitride below 1500°C, but at the 

expense of lower extents of the nitrogen fixation and ammonia evolution [29],[30],[31]. 

Only few metals accomplish the trade-off between thermodynamically stable formation of a 

metal nitride from N2 that gives NH3 upon hydrolysis [30],[32],[33] and formation of only 

intermediately stable metal oxides that can be recycled at moderate process conditions [29],[30]. 

This is in analogy to the Sabatier principle in heterogeneous catalysis [38] that describes the ideal 

catalytic activity of a material as function of an intermediately strong bond formed between the 

catalyst surface and key reaction-intermediates [19],[25]. As a starting point, we have chosen Mo 

and Mn as primary metals for the development of advanced metal nitride redox materials. 
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However, while both metals exhibit promising characteristics, Mo binds nitrogen slightly too 

weak leading to relatively low nitride and NH3 yields [30],[32] and Mn binds nitrogen somewhat 

too strong leading to the formation of relatively stable metal oxides due to the correlated stability 

of metal nitrides and metal oxides [39]. 

Here, we employ electronic structure computations to show how the bonding of nitrogen in 

the solid state can be controlled via doping with transition metals. Such novel theory-assisted 

design is analogous to the rational design of metal oxide redox materials [40],[41],[42], where 

reactivity is controlled by the oxygen vacancy formation energy [40],[41]. To verify the concept, 

we experimentally demonstrate controlling nitrogen vacancy formation in manganese based 

redox materials. Finally, we rationalize the trends in the Gibbs free energy of the nitrogen 

vacancy formation with the charge density distribution in the ternary metal nitrides and the d-

band center, a quantitative descriptor for the theory-based design of advanced metal nitride redox 

materials for sustainable solar-derived ammonia. 

This work is at the interface of fundamental physical science of redox materials on one hand, 

and chemical engineering to store solar energy as ammonia. The ultimate vision of this work is a 

device that converts nitrogen from air, water and sunlight, at ambient pressure and without 

electricity, into ammonia and oxygen. Such a device would facilitate the production of NH3 fuel, 

as an alternative to carbon-based fuels derived from solar-driven CO2 and H2O splitting. 

Ammonia fertilizer for food and biofuels could be produced without the infrastructure for 

supplying natural gas or coal and the know-how and technology for the high-pressure operations 

employed globally for the production of synthetic NH3. A global project on artificial 

photosynthesis, as it is contemplated in this themed issue, [43],[44] could raise the public profile 

of this field and may assist in funding the development of solar-derived NH3 through 

governmental, private, and corporate contributions. Although solar-derived NH3 may be 

economically more attractive in certain geographically, economically, or politically isolated 

regions than NH3 from large-scale Haber-Bosch plants, accounting for ethical implications, such 

as diminished environmental impacts when avoiding the dependence on fossil fuel feedstock, 

may make solar-derived NH3 economically competitive with NH3 from Haber-Bosch plants. In 

this sense, solar-driven N2 reduction is equivalent to solar-driven CO2 reduction and H2O 

splitting, the central reactions of “synthetic photosynthesis” for an efficient production of solar 

fuel and food as well as acquisition of knowledge: Ethically, they are common heritage of 

humanity and should not be fully owned by profit-focused private interests. The mild process 
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conditions of solar-derived ammonia will allow implementation in parts of the world that may 

lack the infrastructure for a highly complex high pressure catalytic process like the Haber-Bosch 

based approach to ammonia. Ideally, global synthetic photosynthesis should he held on trust for 

humanity and its ecosystems and should be employed through a politically and economically 

neutral agency [44]. As verbalized at the Royal Society’s meeting discussing a global artificial 

photosynthesis project at Chicheley Hall in 2014: “Our goal is to work cooperatively and with 

respect for basic ethical principles to produce the scientific breakthroughs that allow development 

and deployment of an affordable, equitably accessed, economically and environmentally 

sustainable, non-polluting global energy and food system that also contributes positively to our 

biosphere.” 

2. Methods and Materials 

2.1 Thermochemical equilibrium calculations 

To quantify the potential of binary transition-metal nitride redox materials for a solar-driven 

ammonia synthesis, the thermochemical equilibrium of the redox cycle was analyzed for Mo- and 

Mn-based bulk metal nitrides at 1 bar and as a function of temperature from tabulated free energy 

data [39]. We note negative free energy differences mark exergonic reactions. 

2.2 Electronic structure calculations 

To quantify the effect of doping on the nitrogen vacancy formation energetics in transition-

metal nitrides, cubic γ-Mo2N and hexagonal ζ-Mn2N were modeled via density functional theory 

(DFT), performed with the Grid-based projector-augmented wave (GPAW) code [45],[46]. 

Exchange-correlation interactions were treated by the revised Perdew-Burke-Ernzerhof (RPBE) 

functional of Hammer, Hansen, and Nørskov [47] and atomic configurations were handled in the 

Atomic Simulation Environment (ASE) [48],[49]. Mo2N and Mn2N were modeled with four and 

eight metal atoms, respectively, and the stoichiometric amount of nitrogen occupying half of the 

octahedral interstitial sites. The bulk structures had periodic boundary conditions in all directions 

and were modeled with a k-point sampling of 4×4×4. The corresponding D0.5Mo1.5N and 

D0.25Mn1.75N ternary metal nitride models were created via replacing one of the parent metal 

atoms in each model with a dopant, D = Sc, Ti, V, Cr, Mo, Mn, Fe, Co, Ni, Cu or Zn, where all 

compositions containing Mn, Fe, Co, or Ni were modeled with spin-polarized calculations. The 

free energy of forming nitrogen vacancies in the bulk was determined as the difference in the 

total electronic energy of the metal nitride with nitrogen vacancies (50% and 25% relative to the 
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stoichiometric composition of Mo2N and Mn2N, respectively) and the stoichiometric metal 

nitride plus the chemical potential of N2 in the gas phase. The value was converted to free energy 

at 25C and 1 bar using standard statistical mechanical equations evaluated through ASE. The 

partial charge density was determined for all metal nitride models via Bader decomposition [50]. 

Computational details are given with SI. 

2.3 N2 reduction 

The effect of doping Mo- and Mn-based redox materials with Cr and Fe on the stability of the 

metal nitrides formed by Mo and Mn, respectively, was studied by reacting approximately 0.75-

2.00 g Cr, Mn, Fe, Mo, or equimolar Mo/Cr and Mn/Fe metal powder mixtures with N2. The 

metal powder was placed into a quartz boat and heated with a tube furnace (HTF55347C furnace, 

CC58434C temperature controller, Lindberg/Blue) for 0.5, 5, 10, 30, and 120 min (all samples) 

and 60, 90, and 240 min (samples containing Mn) at 750°C in 1.86 L(STP)N2 min-1 (all samples) 

and 1.86 L(STP)N2 min-1 diluted with 0.47 L(STP)H2 min-1 (samples containing Mo or Cr). All 

metals (99.8% pure Cr, 99.9% Mn, 99.9% Fe, and 99.95% Mo, from Noah Technologies, minor 

impurity levels are specified with SI) were -325 mesh and had comparable average particle 

diameters and specific BET surface areas, as shown with SI. All gases were of UHP Zero grade 

(Linweld). This article discusses the data for the N2 reduction with Mn, Fe, and Mn/Fe, while the 

data for Mo, Cr, and Mo/Cr is given with SI. 

2.4 Solid-state analysis 

The composition of the solids was quantified via powder X-ray diffraction (XRD) using a 

Miniflex II diffractometer (5-80 °2θ range, Cu-target X-ray tube, 30 kV / 15 mA output, 

diffracted beam monochromator, Rigaku). Scanning electron microscopy (SEM) was used (S-

3500N Scanning Electron Microscope, Hitachi, 20 kV) to determine the average particle diameter 

and energy-dispersive X-ray spectroscopy (EDS, Nova NanoSEM 430, FEI Company, 5-15 kV, 

beam deceleration, high stability Schottky field emission gun, and Oxford X-Max Large Area 

Analytical silicon drift detector) was used to map the distribution of metal dopant and nitrogen at 

the surface. All reactants and products were weighed (AE260 DeltaRange balance, Mettler) and 

the specific BET surface area was analyzed by NanoScale Inc., Manhattan, KS. 
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3. Results and Discussion 

3.1 Controlling the nitrogen vacancy formation in transition-metal nitrides 

To drive a two-step ammonia synthesis with concentrated solar energy and to facilitate the 

use of water as hydrogen source for the NH3 evolution, this section outlines the process 

conditions of a solar-thermochemical ammonia synthesis with metal nitride redox materials. We 

start our analysis with thermochemical equilibrium calculations for Mn5N2 and Mo2N, metal 

nitrides that facilitate the trade-off between high NH3 yields on one side and high N2 reduction 

yields on the other side. Thereafter we establish a rationale for how to further improve this trade-

off via doping metal nitrides with transition metals. 

Figure 1A shows the thermodynamic equilibrium for the oxidation of Mn5N2 with water at 1 

bar yielding MnO, NH3 and the balance H2. As indicated with the shaded area, the reaction is 

exergonic – that is thermodynamically favoring the formation of the reaction products – over the 

entire examined temperature range. We note forming NH3 at elevated temperatures and 1 bar 

requires the need to quickly remove NH3 from the reactor to thereby avoid its decomposition into 

N2 and H2 above 180C at thermodynamic equilibrium [20],[30]. The oxygen can be abstracted 

from the formed MnO in a second step above 1230C (below the melting point of Mn) using by-

produced H2 as reducing agent and ensuring that the partial pressure of water, pH2O, is below 1.5 

 10-4 bar. This endothermic reaction can be driven with concentrated solar radiation and stores 

the chemical potential in the redox material that is employed for the subsequent reduction of N2 

at 1 bar yielding Mn5N2 below 1060C. Figure 1B shows that the composition of the metal 

nitride allows to alter these reaction conditions: with Mo2N the NH3 evolution and the N2 

reduction are both limited at 1 bar to temperatures below 640C and 700C, respectively. 

However, the reduction of the formed MoO2 can be achieved more facile with CO as reducing 

agent (e.g., from gasified biomass) at above 730C and below 4.0  10-1 bar pCO2. We note the 

ideal temperature for the reduction of MoO2 with CO depends also on the vapor pressure of the 

molybdenum oxides that are formed during the NH3 evolution and the tendency for undesirable 

carbon deposition in the reactor. 

The ideal metal nitride composition would confer thermochemical properties to the redox 

material for a solar-driven NH3 synthesis that lie between those of Mn5N2 and Mo2N. Ideally, the 

metal nitride should be slightly more stable than Mo2N – to fix more nitrogen above 700C – 

while the metal oxide should be less stable than MnO – to avoid the need for temperatures above 
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1200C and the means to establish low partial pressures of H2O or CO2, respectively. Similar to 

the possibility to control the adsorption energy of adsorbates at surfaces by altering the surface 

composition, [19],[19],[25],[38] doping bulk metal nitrides with transition metals may diminish 

or augment the formation of the metal nitride [51]. However, no rationale exists yet that describes 

how to compose metal nitrides to control the stability of the lattice nitrogen. 

To establish trends in the effect of doping transition-metal nitrides on the bonding of the 

lattice nitrogen, we compute the free energy of the nitrogen vacancy formation across 22 metal 

nitride compositions. We hypothesize, negative free energies of the nitrogen vacancy formation 

correlate with metal nitride compositions that spontaneously liberate lattice nitrogen (in from of 

NH3 if a hydrogen source such as H2 or H2O is present) and that less readily form lattice nitrogen 

from N2, and vice versa. Figure 2 plots the free energy of the nitrogen vacancy formation in 

Mn2N bulk (i.e., the ζ-phase manganese nitride with a broad stoichiometry that includes Mn5N2 

and Mn6N2.58) [52] doped with a 3d transition metal or Mo vs. the number of d-electrons in the 

ground state of the dopant. The figure shows that all tested dopants decrease the stability of the 

lattice nitrogen, relative to the value for un-doped Mn2N, which is shown with a solid line. As a 

general trend, a high occupancy of the dopant d-states correlates with a high un-stability of the 

lattice nitrogen. In other words, filling the metal d-states of the metal nitride decreases the 

bonding strength of the lattice nitrogen. We note Zn0.25Mn1.75N shows the largest deviation from 

this trend, which is discussed in Section 3.3. Figure 3 shows the equivalent analysis for Mo2N. 

The steeper slope of the linear correlation for Mo2N, i.e., -0.162 eV for Mo2N vs. -0.072 eV for 

Mn2N, suggests that the stability of the lattice nitrogen in doped Mo2N is significantly more 

sensitive to the occupancy of the d-states than the stability of the lattice nitrogen in doped Mn2N. 

In summary, the formation and consumption of nitrogen vacancies in transition-metal nitrides can 

be controlled with the occupancy of the metal d-states. Aiming at the design of metal nitride 

redox materials, we suggest the relative strong binding of nitrogen in Mn2N may be diminished 

via doping with metals such as Fe while the relative weak binding of nitrogen in Mo2N may be 

augmented via doping with metals such as Cr. 

3.2 N2 reduction with Fe-doped Mn 

The test the predicted weakening of the nitrogen bonding in manganese nitride when doping 

with late transition metals, this section evaluates trends in the formation of manganese nitrides 

and iron nitrides from manganese, iron, an equimolar mixture of both metals and N2 at 1 bar and 
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750C. Figure 4A shows the formation of ε-Mn4N and ζ-Mn6N2.58 (which is equivalent to Mn5N2 

and Mn2N discussed in Section 3.1) [52] as a function of time. Mn fixes N2 quickly, yielding 

about 85 mol% Mn4N after 30 min. Thereafter, the yield of Mn4N decreases while the yield of the 

additional Mn6N2.58 phase increases to 85 mol% Mn6N2.58 after 240 min, indicating that the 

nitride with increased nitrogen content is formed via nitridation of the nitride with lower nitrogen 

content. We note the formation of these two manganese nitride phases is as predicted by the Mn-

N phase diagram, [53] while the  and  phases with higher nitrogen content [52] are unstable at 

750C [53]. Furthermore, the transformation of the ε phase via nitridation into the ζ phase is 

expected [53] and analogous to the formation of related interstitial nitrides, such as CrN from 

Cr2N [29]. Details on the crystal phases and physical characteristics of the redox materials are 

given with Table S1 (SI). In the presence of Fe, as shown with Figure 4B, the quick formation of 

Mn4N levels after 30 min at approximately 64 mol% and the subsequent formation of Mn6N2.58 

reaches only 29 mol% after 240 min. That is, Mn fixes about 0.24-0.28 mol nitrogen per mol Mn 

after 60-240 min in the presence of Fe, which is about 66-74% of 0.32-0.40 mol nitrogen fixed 

per mol Mn in the absence of Fe. This indicates that Fe destabilizes the lattice nitrogen in 

manganese nitrides. Assessing whether or not the dopant affects the diffusion kinetics of the 

nitrogen vacancies as well requires further studies. 

While Fe appears to destabilize the bond that is formed between Mn and the lattice nitrogen, 

Mn stabilizes the formation iron nitrides that are thermodynamically unstable in the absence of 

Mn, as shown with Figure 5. As expected, [39] Fe does not reduce N2 at 1 bar and 750C. 

However, in the presence of Mn some nitrogen appears to intercalate into the Fe lattice yielding 

up to 54 mol% of a cubic FeN0.0324 phase after 240 min. In conclusion, iron appears to diminish 

the formation of manganese nitrides – as predicted with Figure 2 – while manganese augments 

the formation of iron nitrides – in agreement with the lower occupancy of the d-states in Mn vs. 

Fe, as discussed in Section 3.1. 

We note while the preparation and cycling of ternary metal nitrides [26],[27],[28] or nano-

composites would provide the possibility to quantify the effect of the dopant on the bond energy 

of the lattice nitrogen, the discussed data for metal powders and metal powder mixtures confirms 

the trends in the stability of transition-metal nitrides predicted via electronic structure theory. To 

visualize the morphology of the metal nitrides employed in this work, Figure 6 shows SEM 

images of cubic Mn4N (up to 84.6 mol%), mostly cubic Mo and tetragonal Mo2N (up to 21.1 
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mol%) and a powder mixture of mostly trigonal Cr2N, cubic Mo and some cubic CrN and  

tetragonal Mo2N. Details are given with SI. The X-ray emission map of the metal powder 

mixture shows that the parent metal, Mo, and the metal dopant, Cr, are closely located in some 

regions. We suggest that these are the domains where the bonding of the lattice nitrogen is 

affected by both metals, while in other domains of the metal mixture the bonding of nitrogen is 

dominated by the presence of one metal only. We note while Cr increases the fraction of nitrogen 

fixed by Mo, as shown with Figure S2 (SI), the amount of nitrogen fixed by Mo is still below that 

fixed by Cr, as shown in Figure 6C by the inhomogeneous distribution of nitrogen mostly located 

with Cr. The Cr dopant appears to support the nitridation of Mo with N2 into Mo2N, presumably 

due to reduction of molybdenum oxides at the surface (discussed with SI) and due to stronger 

binding of the lattice nitrogen (such as discussed above for the formation of iron nitrides). 

From a practical perspective, an optimized metal nitride redox material should provide a high 

specific surface area for the formation and consumption of nitrogen vacancies, either via a porous 

structure [54], similar to the structure of advanced metal oxide redox materials [55], or in form of 

a porous particle bed [56]. As a starting point we have computed the apparent nitrogen diffusion 

constants at 750C (see details in the SI) with 7.77  10-9 cm2 s-1 for the formation of Mn6N2.58 

and 3.07  10-11 cm2 s-1 for the formation of Mo2N. These values compare well with those 

reported previously, i.e., 3.07  10-9 cm2 s-1 for the ζ-manganese nitride phase at 890C [57] and 

5  10-9 to 3  10-14 cm2 s-1 for Mo2N at 600-750°C [58],[59]. Comparing these values for a 

presumably interstitial nitrogen diffusion process [58] to the diffusion constants for nitrogen 

vacancy diffusion in good anion conductors, such as 2  10-11 cm2 s-1 at 700°C in nitrogen-doped 

yttria-stabilized zirconia, [60] indicates that transition-metal nitrides are promising materials for 

the fixation of N2 [58]. Due to the higher fraction of fixed nitrogen per metal and the higher 

diffusion constant, manganese nitrides might be ideal starting materials for the development of 

advanced metal nitride redox materials for a solar-driven low-pressure ammonia synthesis. 

3.3 Electronic structure descriptors 

To understand how doping controls the formation and consumption of nitrogen vacancies in 

transition-metal nitrides, this section discusses trends in the electronic structure of doped Mn2N 

and doped Mo2N. We find that the stability of the lattice nitrogen in these materials can be 

predicted with the average energy of the metal d-states of the dopant and the quantity and 
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geometry of partially localized electronic charge. Employing these trends for the computational 

screening [3],[61] of advanced metal nitride redox materials is outlined. 

Figure 7A decomposes the electronic interaction of the metal dopant, as an example for 

doped Mo2N, into the metal-projected s-, p-, and d-orbitals. The figure identifies continuous 

filling of the d-states and emptying of s- and p-states when moving the dopant from the left to the 

right in the periodic table. These trends correlate with a decreasing stability of the lattice 

nitrogen, as shown with Figure 7B and 7C. Figure 7B employs the b-band center – that is the 

central moment of the dopant d-band – as a descriptor for the electronic structure trends in 

transition-metal doped metal nitrides. This metric has been used successfully for describing 

adsorption energy trends at transition-metal surfaces which, in turn, has revolutionized the high-

throughput screening of advanced catalysts [62]. As a general trend, the positive slope of the 

correlation shown with Figure 7B identifies the anti-bonding character of the dopant d-states, 

while the negative slope of the two correlations shown with Figure 7C identifies the bonding 

contribution of the dopant s- and p-states to the bonding of the lattice nitrogen. However, while 

the d-band center yields a linear correlation with predictive value, the correlation of the p- and, in 

particular, the s-band center is rather qualitative. Essentially, only the values for the Zn dopant 

deviate from the d-band center correlation which can be understood due to the stable 

configuration of the completely filled Zn d-states, as discussed with SI. 

To understand the difference in the sensitivity of the scaling between the free energy of the 

nitrogen vacancy formation and the number of electrons in the dopant d-states, which is shown 

with Figure 2 and 3, we compute the partial charge localized at the metals and nitrogen in the 

metal nitride models. Figure 8A and 8B show the correlation of the free energy of the nitrogen 

vacancy formation with the partial charge localized at the dopant and the partial charge localized 

in average at the lattice nitrogen, respectively. Generally, a high amount of net-positive charge 

localized at the dopant and a high amount of net-negative charge localized at the lattice nitrogen 

correlate with stable lattice nitrogen. The steeper slope of scaling of the free energy of the 

nitrogen vacancy formation with the partial dopant charge for D0.5Mo1.5N vs. D0.25Mn1.75N 

suggests that the dopant donates nearly the same amount of charge in both materials which, 

however, has a stronger effect on the bonding of the lattice nitrogen in D0.5Mo1.5N relative to 

D0.25Mn1.75N. The larger increase or decrease of charge density at the lattice nitrogen when 

doping D0.5Mo1.5N vs. D0.25Mn1.75N, shown with Figure 8B, can therefore be understood due to 

the dopant concentration in the metal nitride. Doping Mo2N with twice the amount of metal, 
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compared to Mn2N, yields nearly twice the amount of charge density change in average at the 

lattice nitrogen, relative to the un-doped metal nitride. Previous studies have suggested that the 

bonding of nitrogen in metal nitrides can be controlled via metal doping [51]. The trends 

discussed here indicate that the stability of the lattice nitrogen in transition-metal nitrides can be 

controlled with the type and the amount of a metal dopant due to the anti-bonding character of the 

dopant d-states as well as due to the amount of charge density transferred to the lattice nitrogen. 

Comparable to the trends in the quantity of the charge density transfer, forming nitrogen 

vacancies in ternary metal nitrides shows also trends in the geometry of the charge distribution. 

Figure 9A analyzes changes in the charge density due to the formation of nitrogen vacancies in 

Mo2N. Darker shaded areas mark regions with accumulated charge (charge sinks) while lighter 

areas mark regions from which charge is withdrawn (charge sources). As shown schematically 

with Figure 9B, the stability trends of the lattice nitrogen can be understood due to attractive and 

repulsive electronic interactions between charge density sinks and sources. 

In detail, doping Mo2N with Sc or Ti results in stronger binding of the lattice nitrogen 

compared to no doping, as shown with Figure 3. For these dopants, the charge density difference 

near the dopant exhibits four 3d lobes that are nearly equally pronounced. For the V, Cr and Mo 

dopants, the binding of the lattice nitrogen decreases while the charge density starts to 

accumulate at the dopant, next to the lattice nitrogen. When doping with Mn, Fe, Co, and Ni the 

binding of the lattice nitrogen decreases further while charge density also accumulates at the 

lattice nitrogen. This suggests that the weaker binding of the lattice nitrogen is due electronic 

repulsion between two charge sinks. This also explains why the binding of the lattice nitrogen 

does not decrease further when further increasing the occupancy of the dopant d-states, i.e., when 

doping with Cu and Zn. For the Cu dopant the spatial polarization of the charge density 

difference at the dopant weakens while it nearly changes its polarization for the Zn dopant, which 

appears to cancel the repulsion between two charge sinks. This correlates with an increase in the 

stability of the lattice nitrogen in Mo2N when doping with Zn. Further details of this analysis are 

given with SI that is showing the charge density differences due to doping in Mn2N. 

4. Conclusions 

Complementing the production of solar fuels and chemicals via synthetic photosynthesis, 

NH3 fertilizer from solar-driven N2 and H2O splitting could aid in the global and decentralized 

production of solar-derived food and biofuels. Renewable NH3 fuel might be an attractive 
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alternative to carbon-based fuels derived from solar-powered CO2 and H2O splitting, the central 

reactions of synthetic photosynthesis. In this sense, this work contributes with novel design 

principles for metal nitride redox materials to the development of a global project on artificial 

photosynthesis which, in turn, could raise the public profile of this field and may assist in funding 

the development of solar ammonia production. 

Here we have outlined the process conditions required to produce NH3 from H2O and N2 

with a metal nitride redox material and concentrated solar radiation at ambient pressure. This can 

be achieved with Mo2N that is oxidized with H2O at approximately 500C and recycled from the 

formed MoO2 with N2/CO at 750C and below 4.0 x 10-1 bar pCO2. As an alternative, NH3 can 

be formed with Mn5N2 that is oxidized with H2O at or above 500C and recycled from the 

formed MnO with N2/H2 at 1000-1230C and below 1.5 x 10-4 bar pH2O. Due to the intermediate 

thermochemical stability of Mn5N2 and MnO, the fast formation kinetics of Mn4N, and relative 

fast apparent solid-state diffusion of nitrogen in Mn6N2.58, manganese nitride was identified as an 

ideal candidate for the development of ternary metal nitride redox materials. To further decrease 

the correlated stability of the metal oxide, the design of ternary manganese-based metal nitrides 

focuses on destabilizing the lattice nitrogen. We have employed electronic structure theory to 

show that the stability of the lattice nitrogen in transition metal nitrides can be increased or 

decreased to a desirable process- and redox material-dependent value via doping with transition 

metals. This was verified experimentally for manganese nitride doped with iron. The electronic 

structure trends of transition-metal nitrides suggest that the nitrogen bonding is destabilized with 

an increasing occupancy of the anti-bonding dopant d-states. The d-band center has been 

identified as a quantitative descriptor that can be computed from first principles and utilized for 

the high-throughput screening of advanced metal nitrides for a solar-driven NH3 synthesis at 

moderate process conditions. 
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Figure captions 
 

Figure 1: Solar-driven low-pressure ammonia synthesis with (A) manganese nitride and (B) 

molybdenum nitride redox materials, shown schematically with panel (C). Negative values 

(shaded regions) of the thermodynamic equilibria indicate exergonic reactions; pH2O is fixed at 

1.5 x 10-4 bar for the reduction of MnO, while pCO2 is fixed at 4.0 x 10-1 bar for the reduction of 

MoO2. Online version in colour. 

 

Figure 2: Designing metal nitride redox materials: Free energy of the nitrogen vacancy formation 

in D0.25Mn1.75N metal nitrides doped with a transition metal, D (marked) vs. the number of 

electrons in the dopant d-states. The solid line marks Gv[N] for Mn2N; the dashed line is a linear 

regression (R2 ~ 0.75). The filled symbol marks a system that is studied experimentally in this 

work. Online version in colour. 

 

Figure 3: Designing metal nitride redox materials: Free energy of the nitrogen vacancy formation 

in D0.5Mo1.5N metal nitrides doped with a transition metal, D (marked) vs. the number of 

electrons in the dopant d-states. The solid line marks Gv[N] for Mo2N; the dashed line is a linear 

regression (R2 ~ 0.93). The filled symbol marks a system that is studied experimentally in this 

work. Online version in colour. 

 

Figure 4: Kinetics of the N2 reduction: Reaction yield in mol% of the indicated metal nitride 

formed relative to a stoichiometric conversion of Mn at 750°C with (A) Mn and (B) Fe-doped 

Mn forming Mn4N (light orange symbols) and Mn6N2.58 (dark blue symbols). Error propagation 

within a 95% confidence interval (error bars) yields in average ±17.81%. Solid lines are kinetic 

models limited by solid-state diffusion that are fitted to the data at 5-30 min for Mn4N and 60-

240 min for Mn6N2.58. Online version in colour. 

 

Figure 5: Kinetics of the N2 reduction: Reaction yield in mol% FeN0.0324 formed relative to a 

stoichiometric conversion of Fe at 750°C with pure Fe (circles) and Fe-doped Mn (triangles). 

Error propagation within a 95% confidence interval (error bars) yields in average ± 20.83%. The 

solid line is a kinetic model limited by solid-state diffusion that is fitted to the data at 60-240 min. 

Online version in colour. 
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Figure 6: Scanning electron micrographs for (A) Mn4N and (B) Mo/Mo2N, and (C) Energy-

dispersive X-ray spectroscopy analysis of mostly Cr2N (mixed blue/red domains) and Mo (green 

domains) formed from an equimolar mixture of Mo (green signal) and Cr (blue signal) powder 

after nitridation for 2 hrs at 750°C in N2 (red signal). Online version in colour. 

 

Figure 7: Electronic structure analysis: (A) Dopant-projected density of states (DOS) of 

D0.5Mo1.5N0.5 bulk for the marked representative dopants D (occupied states below the Fermi 

level are shaded and the position of the d-band center is indicated with a dashed line), and 

correlations of the free energy of the nitrogen vacancy formation with (B) the d-band center and 

(C) the s- and p-band centers of D0.5Mo1.5N0.5. The complete data is provided with SI. Solid lines 

are linear regressions to the data shown with filled symbols. Online version in colour. 

 

Figure 8: Correlations of the free energy of the nitrogen vacancy formation with the partial 

average charge of the (A) dopant and (B) lattice nitrogen. Solid lines are linear regressions to the 

data shown with filled symbols. The data with the highest and lowest partial charges are marked 

with the dopant. Empty symbols are the un-doped metal nitrides (marked with the metallic 

constituent) and metal nitrides doped with Zn (marked with Zn). All data is given with SI.  

Online version in colour.  

 

Figure 9: (A) Charge density differences (in units of the elementary charge per Å3) due to the 

formation of nitrogen vacancies in D0.5Mo1.5N (shown at the height of the nitrogen nucleus). The 

first panel in the first row is a schematic of the metal nitride crystal geometry with solid and 

dashed circles marking atoms in the upper and lower plane of the bulk models, respectively. (B) 

A schematic of the correlation between the nitrogen binding strength and the charge density and 

location near the nitrogen vacancy. M, V, and D mark the parent metal, the nitrogen vacancy, and 

the dopant, while a bold (simple) “+” or “-” mark the strong (weak) accumulation of positive or 

negative charge, respectively. Online version in colour.  
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1. Stoichiometry of the redox cycle 

The reaction stoichiometry of the solar thermochemical ammonia synthesis via a two-step 

redox cycle can be represented with: 

Metal nitride oxidation (Ammonia evolution): 

(S1)  23dc2ba H
2

3

bc

ad
NHOM

bc

a
OH

bc

ad
NM

b

1





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
  

Metal oxide reduction (Nitrogen reduction): 

(S2)  2ba2dc O
2bc

ad
NM

b

1
N

2

1
OM

bc

a
  

where M denotes a metal and MaNb and McOd are the (completely) nitrated and oxidized forms of 

the metal nitride redox material with generalized stoichiometry. We note the thermochemical 

equilibrium of the metal oxide reduction can be shifted towards the formation of the reaction 

products via adjusting the process pressure and temperature and via coupling the reaction to the 

oxidation of a chemical reducing agent such as CO, H2, or gasified biomass. 

2. Computational details 

2.1 Thermochemical equilibrium calculations 

Thermochemical data [1] were extrapolated for Mn4N at ≥ 700 K (R2 = 1), for Mn5N2 at ≥ 900 

K (R2 = 0.999999), and for Mo2N at ≥ 1500 K (R2 = 0.999997) using third-order polynominal 

regressions. 

2.2 Local optimization procedures 

In all DFT calculations the linesearch BFGS algorithm was employed to optimize the atomic 

geometries until the maximum force was less than 0.05 eV Å-1. Convergence was achieved with a 

Fermi-Dirac smearing of 0.1 eV and the structure optimization results were extrapolated to 0 K. 

The lattice constants of the Mo2N and Mn2N bulk metal nitrides were chosen as the DFT-

calculated bulk lattice constants to avoid reminiscent stress in the calculations. We note, the 

DFT-computed lattice constants (i.e., a = 4.220 Å for Mo2N and a = 2.853 Å and c = 4.393 Å for 

Mn2N) compare well with the experimental values (i.e., a = 4.163 Å for Mo2N [2] and a = 2.844 

Å and c = 4.509 Å or Mn2N [3]), which is a relative difference of 0.32-2.57% that is within the 

uncertainty of DFT calculations. [4],[5] 

2.3 Free energy computations 

The free energies of the chemical species i (Gi) was calculated with: [5] 

(S3)   
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where T is the absolute temperature (298.15 K), P is the absolute pressure (1.013 bar), Ni is the 

number of atoms, μi is the chemical potential, Ei is the DFT-determined total electronic energy, 

UZPE,i is the zero-point vibrational energy, and Si is the entropy. N2 was assumed to be an ideal 

gas, while the liberated lattice nitrogen was computed based on the harmonic approximation 

where all degrees of freedom are treated as frustrated harmonic vibrations and pressure-volume 

contributions are neglected. All thermodynamic properties were calculated from vibrational 

frequencies and standard statistical mechanical equations, evaluated through ASE, and free 

energy corrections of the solids were neglected. [6] 

The free energy of forming nitrogen vacancies (∆Gv[N]) in the bulk was computed with: [7] 

(S4)   

where Gv, Gs and GN
r are the free energies of the metal nitride model with the nitrogen vacancies, 

the stoichiometric metal nitride (without nitrogen vacancies) and the reference energy of the 

lattice nitrogen yielding N2 gas. Negative free energies indicate an exergonic evolution of the 

lattice nitrogen. The reference free energy of nitrogen (GN
r) is computed from stable N2 gas, 

[4],[5] with: 

(S5)    

where G[N2] is the free energy of N2 molecules in the gas phase. 

2.4 Charge density differences 

The charge density difference (CDD) for doping a metal nitride is computed as the difference 

between the volumetric charge density (CD) of a doped bulk metal nitride and the CD of the 

metal nitride without the dopant. Analogously, the CDD for the formation of nitrogen vacancies 

is computed as the CD of a metal nitride model with nitrogen vacancies plus the CD of the 

balance of atomic nitrogen minus the CD of the stoichiometric metal nitride model. 

3. Experimental details 

3.1 N2 reduction 

The level of impurities of the metal precursors is given by the manufacturer (Noah 

Technologies) for Mn (99.9% pure) with: 0.0015% Ag, 0.0030% Al, 4.16 ppm As, 3.78 ppm B, < 

1 ppm Ba, < 1 ppm Be, < 1 ppm Bi, 0.0099% Ca, < 1 ppm Cd, 2.38 ppm Co, 0.0059% Cr, < 1 

ppm Cu, 0.0571% Fe, < 8 ppm K, 3.19 ppm La, < 1 ppm Li, < 4 ppm Mg, < 1 ppm Mo, < 

0.001% Na, < 1 ppm Ni, < 4 ppm P, 0.0019% Pb, < 4 ppm Pd, 0.0379% S, 0.0020% Sb, 0.0076% 

Se, 0.0070% Si, < 4 ppm Sn, < 1 ppm Sr, < 4 ppm Th, < 2 ppm Ti, 0.0177% Tl, < 0.002 % U, < 1 

ppm V, 9.73 ppm W, < 1 ppm Y, < 1 ppm Zn, < 2 ppm Zr; for Mo (99.95% pure) with: < 1 ppm 

Al, < 1 ppm Co, < 1 ppm Cr, < 1 ppm Cu, < 1 ppm Fe, < 1 ppm Mg, < 1 ppm Mn, < 1 ppm Ni, < 

0.004% W, < 0.015% O2, < 0.001% C (total); for Fe (99.9% pure) with: < 3 ppm As, < 2 ppm 

Hg, < 4 ppm Pb, 0.04% acid insolubles; and for Cr (99.8% pure) with: 0.10% Fe, 0.012% C, 

0.68% O, 0.022% S. 

Table S1 summarizes the characterization of the metal reactants and the metal nitrides that were 

formed from pure metal powder and N2. We note Table S1 does not list the discussed cubic 

FeN0.0324 since this compound was not obtained with pure Fe powder.  
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metal Cr2N

(CrN)

ε-Mn4N

(ζ-Mn6N2.58)

β-Mo2N

space group A

dp
B (μm)

ABET
C (m2 kg-1)

Ф D (m3 m-3)

17  11

654  9

-

7  4

426  3

-

46  19

270  3

-

P31m

(Fm3m)

Pm3m

(P6322)

I41/amd

Table S1: Characterization of the metal and binary metal nitride powder beds 

A) via X-ray diffraction; B) average particle diameter; C) BET surface area; D) void space fraction Ф = 1 –

ρbulk/ρparticle,  where ρi is the  density in  kg m-3, relative  error via  error propagation   5.98 %; generally, powder 

bed surface = 33  2 cm2, powder bed  thickness < 1 mm.

Mo           Cr              Fe              Mn nitride

6  4

429  3

0.75

18  13

692  8

0.57

29  21

281  5

0.66

43  22

269  2

0.62

Im3m I43mIm3mIm3m

 

The tube furnace employed in this work was equipped with a quartz tube (60 mm inner 

diameter, 1 m length) that was purged for 10 min with 0.5-0.9 L(STP) N2 min-1 before each 

experiment. The heating rate (rh) for N2 reduction experiments at 750°C was approximately rh = 

At + B, where t is the heating time in min, A = -6.91 °C min-2 and B = 77.4 °C min-1. 

To determine the temperature that results in a minimum formation of surface oxides during the 

nitridation of Mo, the reaction of Mo powder with N2 was studied at various reaction 

temperatures hold for 2 hrs: 998 ± 3 mg Mo was placed into a quartz boat, pretreated for 10 min 

at 60°C to remove water, and thereafter introduced into the tube furnace at 400°C and heated to 

450, 500, 550, 600, 650, 700, 750, 1000 and 1200°C respectively. Heating was approximately 

linear with A in the range of -9.36 to -2.82 °C min-2 (for maximum temperatures in the range of 

1200 to 450°C) and B in the range of 65.9 to 67.9 °C min-1 (for maximum temperatures in the 

range of 450 to 1200°C). H2 was supplied at 0.47 ± 0.05 L(STP)H2 min-1 and replaced with a flow 

of 1.86 ± 0.05 l(STP)N2 min-1 when the maximum reaction temperature was reached. After 2 hrs 

the furnace was cooled (at about -13.5 to -2.73 °C s-1 within the first 60 s, -3.85 to 0.767 °C s-1 at 

60 to 180 s and above -0.767 °C s-1 at above 180 s) to below 75°C. The solid was removed and 

stored under air at 4°C. To eliminate the possibility of rapid quenching affecting the yield of 

Mo2N, the nitridation of Mo for 2 hrs with N2 at 450 or 750 °C was repeated with a cooling rate 

of about -6.05 to -1.80 °C min-1. This decrease in the cooling rate did not affect the Mo2N yield. 

3.2 Processing of experimental data 

The yield (Xi) of the chemical species j (a metal, metal nitride or metal oxide, respectively) is 

reported as the molar ratio of a chemical species detected after the experiment (nj in mol) relative 

to the theoretical amount of that species formed at stoichiometric conversion of the metal reactant 

(nj
* in mol) 

(S6)  
jjmetal0

metaljt

*

j

j

j
aMxm

Mxm

n

n
X




  

where Δm (in g) is the mass difference between the solid reactant and the quartz boat at time t 

and before the reaction (subscript 0), x (in g g-1) is the metal, metal nitride, or metal oxide weight 

fraction, M (in g mol-1) is the molar mass, and a is a dimensionless coefficient that is accounting 

for the stoichiometric amount of metal atoms contained in the reaction product. 
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To assess the effect of solid-state diffusion limitations, a diffusion-limited shrinking-core 

model for spherical particles with constant size [8] was applied to the experimental data: 

(S7)  )1(2)1(31k j

3/2

j XXt   

where k (in s-1) is a specific rate constant. We note this model describes the reported kinetic data 

best (highest R2) when compared to kinetic models that account for limiting gas phase diffusion 

or available surface area. [8] 

4. Supporting results 

4.1 N2 reduction with Mo, Cr, and Cr-doped Mo 

Figure S1 shows the formation of Mo2N and MoO2 from Mo heated in N2. XRD showed 

formation of tetragonal β-Mo2N with a homogeneity range of 28.7 to 34.5 mol% N. Thus, 

quantitative calculations in this work assume stoichiometric Mo2N as-indicated. Given the 

minimum MoO2 yield and maximized Mo2N near this temperature, Mo was nitrated at 750°C in 

this work. 

Figure S2 shows the formation of Mo2N with pure Mo powder or Cr-doped Mo powder and N2 

or a mixture of H2 and N2; the formation of Cr2N and CrN with pure Cr powder and N2 or a 

mixture of H2 and N2 is shown for reference. The nitridation of Mo at 750°C and 1 bar reaches a 

1.2 mol% yield after 0.5 min, that is increasing thereafter with diminished kinetics to a maximum 

of 3.3 mol% after 120 min. Cr fixes N2 quickly forming 66 ± 3 mol% Cr2N after 10 min, which 

converts into up to 15.8 ± 0.5 mol% CrN after 120 min. The formation of CrN is slow and is 

described well with a diffusion-limited reaction mechanism (R2 > 0.94). Forming the nitrides in 

presence of H2 affects the yield of Cr2N and CrN only slightly but increased the yield of Mo2N 

more than six-fold to 21.1 ± 0.7 mol% after 120 min. While the formation of the trigonal Cr2O3 

phase was in average 34% below the yield of Cr2O3 when reacting the metal with N2 only (which 

yielded 0 to 2.7 mol% Cr2O3), MoO2 or MoO3 were not detected. The yield of Mo2N from Mo/Cr 

powder mixtures reacted with N2 or the N2/H2 gas mixture differs only slightly from the results 

obtained with Mo and the N2/H2 gas mixture; in presence of Cr after 120 min 18 ± 2 and 23 ± 5 

mol% Mo2N were formed in absence or presence of H2, respectively. The limited yield of Mo2N 

from Mo and N2 that is increased by the presence of H2 or Cr can be understood due to the 

reduction of a thin layer MoO2 that limits the formation of Mo2N at the surface of the Mo 

reactant, yielding H2O or traces of chromium oxides with H2 or Cr respectively. The generally 

slow formation of Mo2N in presence of Cr or H2 indicates that the hypothesized promotion of the 

N2 reduction yield with Mo by the presence of Cr cannot be assessed due to diffusion limitations 

that prevent reaching the thermochemical equilibrium at the studied experimental conditions. 
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Figure S1: Formation of Mo2N (light orange symbols) or MoO2 (dark blue symbols) in mol% of 

the indicated metal compound formed relative to stoichiometric conversion of Mo after heating at 

a given temperature for 2 hrs with 1 bar N2. Lines are a guide only. The average relative error of 

the data within a 95% confidence interval is ± 22.86%. 

0.0

0.1

0.2

0.3

0.4

0.5

0 30 60 90 120

0.0

0.1

0.2

0.3

0.4

0.5

0 30 60 90 120
0.0

0.2

0.4

0.6

0.8

1.0

0 30 60 90 120

Time / min

M
et

al
 n

it
ri

d
e 

y
ie

ld
, 

X
n
it

ri
d

e
/ 

m
o

l%

50

40

30

20

10

0
0          30         60          90         120

100

80

60

40

20

0

M
et

al
 n

it
ri

d
e 

y
ie

ld
, 

X
n
it

ri
d

e
/ 

m
o

l%

50

40

30

20

10

0

M
et

al
 n

it
ri

d
e 

y
ie

ld
, 

X
n
it

ri
d

e
/ 

m
o

l%

A                                                     B                                                    C

Time / min

0          30         60          90         120

Time / min

0          30         60          90         120

Mo2N

Mo2N

Mo2N

Mo2N

Mo2N at equilibriumMo2N at equilibrium Cr2N at equilibrium

CrN at equilibrium

Cr2N

CrN

CrN

Cr2N

 

Figure S2: Reduction of N2 at 750°C with (A) Mo and 1 bar N2 (dark red symbols) or 0.199 bar 

H2 diluted in 0.801 bar N2 (light orange symbols) forming Mo2N, (B) an equimolar mixture of 

Mo and Cr and 1 bar N2 (dark red symbols) or 0.199 bar H2 diluted in 0.801 bar N2 (light orange 

symbols) forming Mo2N, and (C) Cr and 1 bar N2 forming Cr2N (dark red symbols) and CrN 

(dark blue symbols) or 0.199 bar H2 diluted in 0.801 bar N2 forming Cr2N (light orange symbols) 

and CrN (light blue symbols). Error bars are via error propagation within a 95% confidence 

interval. Solid lines are kinetic models limited by solid-state diffusion that are fitted to the data at 

0.5-120 min. Dashed lines are the approximate location of the thermodynamic equilibrium for 

forming the indicated metal nitride with N2. 

Figure S3 shows the morphology of Mo as-purchased, after heating in N2, and after heating in 

H2/N2. The analysis shows while Mo retains its hexoctahedral symmetry after heating with N2 it 

is apparently covered with a structure that replaces the terrace-like appearance of the pristine Mo 

surface. Heating Mo in H2/N2 results in the disappearance of the hexoctahedral symmetry of Mo. 

This in conjunction with the increased yield of Mo2N when heating Mo in H2/N2 confirms the 

interpretation that MoO2 is formed from traces O2 and H2O at the surface of Mo that is heated in 

N2. This oxide layer limits the formation of Mo2N. The oxide layer is removed in the presence of 

H2 which explains the increased yield of Mo2N due to decreased diffusion limitations. 
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Figure S3: Scanning electron micrographs of Mo samples (A) as-purchased, (B) after heating for 

2 hrs at 750°C in N2, or (C) in 0.199 bar H2 diluted in 0.801 bar N2. 

Table S2 summarizes the reaction rate constants determined from the experimental data and 

shrinking-core models that account for solid-state diffusion limitations. 

Solid reactant A

Mn

Mn

Mn/Fe

Mn/Fe

Mn/Fe

Mo

Mo

Mo/Cr

Mo/Cr

Cr

Cr

Cr

Cr

Table S2: Reaction rate constants, k

A) pure or equimolar mixtures; B) 1 bar N2 or 0.199 bar H2 diluted in 0.801 bar N2

Gas phase B Time range / s k / s-1Solid product

Mn4N

Mn6N2.58

Mn4N

Mn6N2.58

FeN0.0324 

Mo2N

Mo2N

Mo2N

Mo2N

Cr2N

Cr2N

CrN

CrN

N2

N2

N2

N2

N2

N2

N2/H2

N2

N2/H2

N2

N2/H2

N2

N2/H2

5-30

60-240

5-30

60-240

60-240

5-120

5-120

5-120

5-120

5-120

5-120

5-120

5-120

4.14  10-4

3.71  10-5

1.81  10-4

3.89  10-6

1.20  10-5

3.88  10-7

2.57  10-6

1.73  10-6

2.68  10-6

2.49  10-4

3.37  10-4

1.27  10-6

2.15  10-6

 

From the experimental data an apparent diffusion constant, D, can be estimated with [8]: 

(S8)  
g

2

pp

24bc

kd
D


  

where ρp (in mol m-3) is the density of the solid reactant, dp (in m) is the average particle 

diameter, b is the dimensionless molar ratio of reacted solid per reacted N2, and cg (in mol m-3) is 

the molar concentration of N2. The computation was limited to the reported kinetic data that is 

well described with equation S7 (i.e., R2 in the range of 0.90 to 0.98 for CrN and Mo2N 

respectively, 0.80 to 0.85 for Mn6N2.58). 

Figure S4 plots D vs. the theoretical volume fraction, fv, occupied by atoms or ions: 
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(S9)  



tsconstituenallk

3

kk
A

v
3

4
r

N
f 


 

where NA is Avogadro’s constant, ρ (in mol m-3) is the molar density of the formed reaction 

product, γk is the dimensionless fraction of atoms per product phase, and rk (in m) is the radius of 

the nitrogen or the metallic constituent of the metal nitride. Based on the relative low 

electronegativity of Mn, nominal N3- ions were assumed for Mn6N2.58 (i.e., Mn in 2+ oxidation 

state). CrN and Mo2N [9],[10] were computed as metallic compounds (i.e., atomic N bonded 

covalently by 12-coordinated metal atoms). MoO2 that is presumably present when reacting Mo 

with N2 was included as ideal ionic compound. 

fv (m3 m-3)

0.4     0.5     0.6     0.7     0.8      0.9     1.00.4 0.5 0.6 0.7 0.8 0.9 1.0

D
(c

m
2

s-1
)

10-8

10-9

10-10

10-11

10-12

Mn6N2.58 (N2)

CrN (N2/H2)

CrN (N2)

Mo2N (N2/H2)

Mo2N/CrN (N2/H2)

Mo2N/CrN (N2)

MoO2

R2 ~ 0.90

Mn6N2.58/FeN0.0324 (N2)

 

Figure S4: Apparent diffusion coefficients for the diffusion through the marked solid at 750°C 

vs. the theoretical volume occupied by metal and nitrogen or oxygen atoms. The density of 

Mn6N2.58 was estimated with 6,131 ± 292 kg m-3. The solid line is to guide the eye. Error 

propagation within a 95% confidence (error bars) yields in average ± 17.81%. The highest 

present nitride phases are indicated along with the gases present during the nitridation 

experiments in parenthesis. 

4.2 Electronic structure details 

Table S3 summarizes the Bader charge analysis of the metal nitrides models. 
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Atom     D in D0.25Mn1.75N

D

Mn

Mn

Mn

Mn

Mn

Mn

Mn

N

N

N

N

Table S3: Partial charges, qAtom / e

Sc           Ti            V            Cr             Mo          Mn          Fe           Co            Ni            Cu   Zn 

1.4743 1.4072 1.1414 0.8612 0.8437 0.7359 0.5704 0.3954 0.2978 0.3484 0.5600

0.6244 0.6565 0.6959 0.7185 0.7275 0.7359 0.7601 0.7863 0.7972 0.7820 0.7493

0.7879 0.7587 0.7363 0.7199 0.7750 0.7375 0.7318 0.7187 0.7249 0.7363 0.8200

0.6383 0.6606 0.7002 0.7384 0.7048 0.7374 0.7509 0.7689 0.7693 0.7628 0.7423

0.5855 0.6081 0.6727 0.7144 0.7405 0.7375 0.7686 0.7930 0.8037 0.7828 0.7542

0.6383 0.6606 0.7000 0.7385 0.7049 0.7374 0.7509 0.7689 0.7693 0.7626 0.7423

0.6244 0.6564 0.6957 0.7189 0.7275 0.7359 0.7603 0.7861 0.7971 0.7818 0.7496

0.6319 0.6526 0.6914 0.7300 0.6938 0.7359 0.7497 0.7693 0.7808 0.7813 0.7487

-1.5097 -1.5302 -1.5196 -1.4896 -1.4866 -1.4734 -1.4562 -1.4346 -1.4204 -1.4186 -1.4663

-1.5093 -1.5279 -1.5204 -1.4882 -1.4850 -1.4735 -1.4550 -1.4358 -1.4198 -1.4195 -1.4644

-1.5093 -1.5279 -1.5194 -1.4884 -1.4850 -1.4734 -1.4549 -1.4357 -1.4198 -1.4197 -1.4644

-1.4767 -1.4747 -1.4745 -1.4738 -1.4612 -1.4734 -1.4766 -1.4807 -1.4803 -1.4805 -1.4715

Atom     D in D0.5Mo1.5N

Sc           Ti            V            Cr             Mo          Mn          Fe           Co            Ni            Cu   Zn 

D

Mo

Mo

Mo

N

N

1.5287 1.4596 1.1713 0.8630 1.0437 0.6739 0.5582 0.4385 0.4304 0.4793 0.8033

1.0475 1.0703 1.0988 1.1305 1.0435 1.1513 1.1715 1.1861 1.1754 1.1651 1.1265

0.3489 0.3987 0.4934 0.5736 0.5654 0.6160 0.6499 0.6660 0.6646 0.6347 0.5663

0.3493 0.3989 0.4936 0.5739 0.5654 0.6157 0.6505 0.6659 0.6646 0.6350 0.5664

-1.6383 -1.6649 -1.6298 -1.5717 -1.6102 -1.5292 -1.5164 -1.4795 -1.4686 -1.4584 -1.5325

-1.6384 -1.6650 -1.6297 -1.5717 -1.6104 -1.5301 -1.5160 -1.4794 -1.4688 -1.4582 -1.5325
 

Figure S5 shows a complete density of states (DOS) analysis of the dopant-projected d-states. 

The figure shows how the dopant d-states are increasingly occupied when moving the dopant in 

the periodic table from the left to the right, which is shown in the manuscript representatively for 

Ti0.5Mo1.5N, Mo2N0.5, and Cu0.5Mo1.5N0.5. Furthermore, the figure shows how the deviation of 

Zn-doped compounds from the correlations discussed in the manuscript can be understood due to 

the energetically highly stable and essentially fully occupied d-states of the Zn dopant, when 

compared to the DOS of all other dopants in both Mo2N- and Mn2N-based metal nitrides. 
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Figure S5: Density of states (DOS) for stoichiometric D0.5Mo1.5N (using a k-point sampling of 

121212, except 888 for D = Ni) and D0.25Mn1.75N (using a k-point sampling of 888); the 

dopant, D, is marked on each DOS plot and the occupied states below the Fermi level are shaded 

in blue. 

Comparable to the trends in the quantity of the charge density transfer, doping transition-metal 

nitrides with different metals shows as well trends in the geometry of the charge redistribution. 

Figure S6 shows the difference in the volumetric charge density between doped Mn2N and un-

doped Mn2N. Darker shaded areas mark regions with accumulated charge (charge sinks) while 

lighter areas mark regions from which charge is withdrawn (charge sources). Comparing the 

charge density differences at the height of the dopant nucleus across the tested dopants shows a 

polarization of the charge density difference near the dopant with a distinct charge source that is 

opposite to a charge sink for all dopants with fewer or equal valence electrons in d-orbitals, 

relative to the Mn 3d5 occupancy (i.e., Sc to Cr and Mo). In these materials the nitrogen 

vacancies are formed at the lattice nitrogen that is marked with a solid circle in the schematic of 

the crystal geometry. With decreasing stability of the lattice nitrogen due to doping with metals 
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that have more valence electrons in d-orbitals relative to Mn (i.e., Fe to Zn), this polarization of 

the charge density difference rotates by about 180. For the Fe, Co and Ni dopants, this coincides 

with the formation of the nitrogen vacancies at the lattice nitrogen that is marked with a dashed 

circle, i.e., along an axis that is rotated by 180 relative to the vacancy formation in the metal 

nitrides with a reversed polarization of the charge density difference. For the two dopants with 

nearly or completely filled d-states, i.e., Cu and Zn, the nitrogen vacancies are formed at the 

lattice nitrogen that is marked with a solid circle. 

-12          0         9     -14        0           14  -19.2      0        19.2  -19.2      0        19.2  -12.0         0     7.2

Sc                        Ti                        V                         Cr                       Mo 
Mn
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Figure S6: Charge density differences (in units of the elementary charge per Å3) due to doping 

D0.25Mn1.75N bulk with the indicated dopant D (shown at the height of the dopant nucleus). The 

first panel in the first row is a schematic of the metal nitride crystal geometry with solid and 

dashed circles marking atoms in the upper and lower plane of the bulk models, respectively. 
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