A UNIX PORT OF THE PERKIN-ELMER PASCAL
RUN-TIME LIBRARY

by

HARVARD CHARLES TOWNSEND

L]

B.S., Kansas State University, 1980

4 REPORT

submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

Approved by:

Vs
Major P@essor

&8 - AlL202 bkkac2q

N e TABLE OF CONTENTS

¢ Z

Section

1. Introduction

1.1. Motivation and Language Desct‘iption R NN T

1.2. Language Portability LRI TR BRI BB A O B R I A B B B A A R A B A N N N I

2. Porting Concepts

2.1. Interface with the Underlying OS .ceececrscecssscesssarenssns
2.1.1. 05/32 interface ..cevevssensesasscsscocssnccassncenes
2ale2. THIX IBLEPLACE .veernnpencsnensssmnnnsprossswessasssss
2.1.3. Relevance to the pPort ,.eccecereccvusersovvoersrvsanss
2¢1.3.1. SVC translation cseccessesccoessesssossnsnss

2.1.3.2. C stack vs. Pascal sStack ..eevscsessccsascns

2.2. Memory Management ..c.esevessceccssscrcsssocacssssassnrasrne
2.2,1, 038/32 task memory sScheme ..ceceesrvescssonsaatnncsns
2.2.2., UNIX process memory SCHEME seescsascstssscassssscncns
2.2.3. Relevance t0 POPL cucvenessscnnanscanvsessssnassasane

2,35 Error HanQliIng: . .ues seseiemmememsmreries o 8 § 5o i assaesas ¢ ¢ s
2.3.1. 05/32 interrupt handling ..eescecssscccsasssasasonses
2:3:2% UNIX S1gnals mu e s snmvuesmaineaaing s » @ i s i avaav e &
2.3.3. Relevance £0 POrt ..cuivessssnccacescenssnsoraosnanans

2.4, File Handling cueecssesecsossacsascnssanassnsnesasasassasasnoes
2ol 1. 08732 £llea. yuvn v romrrmrnsennsnyvess 3 3 S TEevEeyeEes §
2.,4,2, UNIX files R R T PR

20'"'3’ Relevance to the Wrt B RS R R A RN R RN EREENEREENERN NN

3. Implementation

Page

12

26

217

28

3.1 The Run=Time Library .seeosssssssvissvoaspaneisasssssesssses
3.1.1. Production enviromment ...scceccosessserransosnaannsas
3.1.2, Classification of RTL routines ...seeseevssssaassssna

3.2, Initiallzation Group scavescsesssccsasascnasscnnsssanssnasne
o2l C SLACK woveusomemmmummmnss as o 50568 supemeivessssssssi
3.2.2. Command=line parameters ...cescecescessassscsacasssas
3.2.3. Memory allocation and pointer initialization .vececes

3¢3, Error Handler .ieeocesvecsessceccssasosnnsosssnssesasssessnnse
3.3.1., Handler initialiZation seeeesscsssccsccoconvasaosanss
Fedede The crror Hamdler , pewemmawsewns g5 § 5 5 § SEFREHEES SRS ¥ §
3B uds DELLILY roubites . sswwroreesns i § SRR REBEER T ERE §

Iully Prefik Qroud wewssies s s v i SnEEneriEvEmin § & i o 5§ RN tesemedmae 1 s

3.5. Library Support GroUD ..eesscsccossscenssesosnssosanancanass
3.5.1. Non-text file Input s.ceveecvversnaccnssnsscsnaccnnss
3258 Toxt File Inpol v, s vvmememmmsnns i § § § 9 SR ERaaine e i
3.5.3. Nop=text Pile QUEPUL ., ssevseinwavasissssossmaiminies
3:Bells TexE F116 OUBDUL v i v o anmoumuwaians s 4 585 55 o mbihdiibinncne
3.5.5. Common I/0 routines ..ceveesssnsnconcroncccnncassansas
3.5.6. I/0 error servicing routines ..uveeeeccescececerooeces

Fialla TEBERLE wn o 0 sammmammenwees o o 3 8 § SHFEFFRRRBECTELS & § § 5 WRRHLBES

o7+ Documentation cooepnomwvmacasssnss s vowummmmenasssssessssnsds

By SUDMBIY wwmoenssas s s soesEmmmmosas i s 4 4 § 5§ § S RRPEEEEs® v 5 § § 3 § saviis

5' References IR R A R R R RN RN N I BRI I A A R BRI B N R R RN B N N BN BN RN N R

Appendix Ao Run-time library Poutine examples 89 0 5 ORI UTEPEITPIEREETES
Appendix B. Makefile for development enviroment ...cececececcsssacs

Appendix Cu On=1line manual entries L R R R R R R R R R R R I I I T I SN S

- ii =

30
30
33
34
34
35
37
38
38
35
42
3
46
46
48
50
51
52
54
55
59
61

63

65
9

82

LIST OF FIGURES

Figure 1. Pascal process in general 0S enviromment ..ecececocavessas T
Figure 2, SVC 1 parameter blocCKk ..cevscevsccescscnesssosssanssnsnsanss 10
Figure 3. Pascal program in UNIX and 05/32 enviroments ..seesueease 11
Figure 4., UNIX stack segment management by Pascal process ..s.eeseees 17
Figure 5. Pascal memory map in 0S/32 veceucccccsncssaascsssassssssse 19
Figure 6., Pascal memory map in UNIX .eeesevecacccesveccasosrsssanscacs 21
Figure 7. File hierarchy for development systel ,.eeveacecscssnssnes 31

Figure 8. CAL program for testing P$WRITLN routine ...csececresssees BT

Table 1. 0S/32 supervisor CallS .sesesessssunssssstssssssssancnasrsss B8
Table 2. UNIX system €allsS seevesvessvsnscncassassvassnssssassssanesa 13
Table 3, Pascal run-time error MeSSAZES seecssssosesrsesrsscsssennsas 41
Table 4, UNIX=detected error mMESSAZES cecessecsssssassasscssssnncsne U1

Table5. Pr‘ef‘ix r’outine mmes * 0 #6008 02T H PO O e NN PP T et S SEE PSS 55

- iii =

ACKN OWLEDGEMENTS

This paper was submitted as partial fulfillment for the degree of
Master of Science in Computer Science at Kansas State University,
Manhattan, Kansas. I first of all wish to thank my major professor, Dr.
Virgil E, Wallentine, for excessive patience and confidence in my
ability to complete this project. All programmers should be so lucky as
to have a supervisor like him. Secondly, I could not have even begun to
tackle this project without the guidance and expert technical
consultation of Robert Young. All "real” programmer apprentices should
be so lucky as to have a mentor such as he, Finally, my deepest
gratitude 1is due my wife, Dana, and my children, Sarah and Michael, who
put up with many long hours of me staring at the monitor and pecking at
the keyboard. All husbands and fathers should be so fortunate as to

have a wife and family as precious as mine,

- iv =

1. INTRODUCTION

1.1, Motivation and Language Description

As the UNIX operating system [1] has increased in popularity, the
desire to port a variety of languages to the UNIX enviromment has also
increased, The programming language Pascal [2,3], although still
largely academic, likewise has enjoyed increased use, Although a number
of implementations of Pascal on UNIX exist [4,5,6], the Perkin-Elmer
Corporation (PE) at the time of this project did not have a Pascal
compiler available to market with the version of UNIX they =sell for
their minicomputers, Neither did the Kansas State University (KSU)
Department of Computer Science have a compiled standard Pascal for their
Perkin-Elmer minicomputers running Edition T UNIX. PE did, however,
have a standard Pascal implementation [7] available for their own 08/32
multitasking operating system [8]. Consequently, PE requested that the
KSU Dept. of Computer Science port their 0S/32 Pascal onto the version
of UNIX which runs on their minicomputers.

Perkin=Elmer Pascal (PEPascal) is marketed for PE's 32=bit
processor family running 0S/32 R05.2 or higher, It is an implementation
of the standard Pascal language with a number of useful extensions. PE
provides an optimizing 10-pass compiler in both overlay and resident
task versions, The compiler driver and passes are written in PEPascal.
The compiler provides a number of programming aids in the form of
options to the compiler, It is possible to get a listing of the
compiled program, a cross reference of the program identifiers, a
summary listing, assembly listing, and an object map with these options,

The wuser can also process a number of source programs at once with the

Page 2

BATCH option., Although these options add to the size and complexity of
the compiler passes, they do help make PEPascal a good inglementation
language for development applications.

They also provide a library of run-time routines (RTL) to support
the PEPascal task while it is executing. These routines are written in
PE's Common Assembly Language (CAL) [9]. The RTL routines perform a
wide variety of functions, including memory allocation, error handling,
and implementation of standard procedures and functions. It also has
the code which implements a number of extensions to the standard
language which provide the user with easy access to 05/32 services and
utilities., To the user, these extensions are provided in the form of
either a "prefix"™ to the program source code or external procedures

declared with the EXTERN directive.

1.2. Language Portability

A large proportion of the literature on software portability deals
with porting across machine architectures [10,11]. Porting to a new
machine normally means porting to a new operating system (0S), so many
of the same strategies apply. Furthermore, nearly all language
implementations work on top of a host 0S, so the underlying 0S may have
more of an influence on the porting process than that credited to it in
the literature.

A number of approaches have been proposed for both writing portable
software or just moving software to a different enviromment [10,11].
One method is to wuse tools which are available in a variety of

enviromments, A pgood example of such a tool is a compiler or

Page 3

interpreter for a popular language. If you write your software in a
high-level language such as C, Pascal, FORTRAN, or COBOL, you are likely
to find a translator for that language available on the target system.
Then the porting process is simply to recompile/reinterpret the source
on the new machine, If the user is careful to only use the language's
standard facilities, then little, if any, changes will be needed. Since
PEPascal's compiler driver and passes are written in an extended Pascal
standard, it does employ this portability strategy in part. However,
several of the language extensions used by the compiler are very
specific to 0S/32 and the RTL is still written in host-system dependent
assembly language.

Another approach to portable software is to implement it with a
flexible method which can be performed by a large number of tools. This
way, an implementor is likely to be able to find some suitable tool in
the new enviromment which may be similar or even identical to the tool
with which the original software was developed. This is the notion of
macro processors, This, for -example, is how SNOBOLY [12] was
implemented, Its syntax is sufficiently simple that most any macro
processor c¢an translate it. This method deces not apply to PEPascal,
however,

A third approach to portability is the "abstract machine" apprcach.
With this, a fixed host-independent language is translated into some
target language (abstract code). The target language is designed for an
abstract machine which is ideally suited for the solution to this
problem, To implement the software on a real machine, the target
language mnust be interpreted into something understood by the new host.

This method is employed by a number of high-level language systems, such

Page 4

as Per Brinch Hansen's Concurrent Pascal [13], KSU's implementation of
Coneurrent Pascal [14], and the Portable Simula system [15]. The
abstract code 1is often translated into assembly code of the host
machine, but in some cases it is translated into another high-level
language supported by the new host, Whitesmiths' Ltd., for example,
uses this strategy to port Pascal onto UNIX. Their implementaticn
translates the Pascal source into the C programming language [16].
Since C is the standard language for UNIX, most any UNIX system would be
able to compile the abstract code into code suitable for the host
machine, The only thing which would have to be ported would be the
Pascal-to=-C tramslator, If this is written in C, then moving this
system to a new enviromment would be trivial., Whitesmiths' Ltd., elaims
that this method is beneficial since the code is now run through an
optimizing C compiler, However, this method has the overhead of a
second lexical analysis,

The abstract machine approach is applicable to the PEPascal
implementation, In the PEPascal compiler, the first five passes perform
the lexical and semantic analysis., If no errors occur, abstract code is
produced from pass5 which can then be translated into the host-dependent
code. Passes 6 through 9 of the compiler do this by translating this
intermediate code into Perkin-Elmer machine cocde. Moving the system to
a new machine would thus require changing passes 6 = § to produce the
host machine code, unless a Whitesmiths-like technique was used. Since
our application did not port the language onto a different machine,
there was clearly no need to change PE's approach to producing machine
code.

All these methods have in common the fact that they are attempting

Page 5

to reduce the amount of system-dependent features which must be changed
when moving to a new enviromment. PEPascal further aids this process by
isolating the system-dependent features of the implementation in RTL
routines written in CAL. Once the RTL was working on UNIX, then the
port would be nearly complete since the compiler driver and passes are
all written in PEPascal. This would not be possible without the UNIX
utility ‘evobj!' which translates 0S/32 object code into UNIX object
code, With this utility, we were able to produce UNIX versions of the
object code for the driver and passes from the 05/32 objects supplied by
PE. Once the RTL was ported, then, we would have a working compiler.
Only then could we make changes to the compiler source and recompile it,.
Consequently, the first phase of the PE porting project was to port the

RTL as described in this report,

Page 6

2, PORTING CONCEPTS

2.1. Interface With the Underlying 03

By design, the routines in the PEPascal RTL are not directly
accessible from a high-level wuser program, Instead, the compiler
generates external references to these RTL routines which are resolved
during link-editing. Each RTL routine then has a specific function to
perform. To accomplish this, many of them require calling other RTL
routines and/or services provided by the underlying 0S. In this way,
the RTL acts as the interface between the user program and the host 0S.
This relationship is depicted in Figure 1 for a generic multitasking 0S.

The 0S services requested by the RTL routines thus represent one of
the system-dependent features of the language enviromment which must be
ported, I will therefore compare how a user process requests 03
services under 03/32 and UNIX as a prelude to the actual implementation

details described in section 3 below.

2.1.1, 05/32 Interface

In 08/32, 0S8 services are requested with supervisor calls (SVC) [8,
chapter 5]. These SVCs are classified by a decimal number between 0 and
1% which specifies the type of call. &VC 1, for example, handles file
I/0 reguests, SVC 2 does a number of general purpose functions, and the
SVC 7 group performs file management services, SVC 0 is reserved for
user-made system extensions. Table 1 shows the complete list of SVC
services available in 05/32,

These SVCs are actually made with an "sve" instruction from an

Page 7

Process 1 Process 1+n Process m
User User
progl progn

rtl Objects

OPERATING SYSTEM

PROCESSOR

Figure 1. Implementation of Perkin-Elmer Pascal
in a multitasking operating system.

n = number of active PE Pascal processes
m = total number of active processes in system.

Page 8

Table 1. 0S/32 Supervisor Calls (from [6]).

Call type Funetion

SVC 0 Reserved for user-made system extensions
Svc 1 Input/output request

SVC 2 Code 1 Pause the task

SVC 2 Code 2 Get storage for task's impure segment
SVC 2 Code 3 Release storage reserved with SVC 2 Code 2
SVC 2 Code & Set status in P3SW

SVC 2 Code 5 Fetch pointers - update the UDL

SVC 2 Code 6 Convert binary number to ASCII hex or decimal
SVC 2 Code T Log message

SVC 2 Code 8 Fetch current time-of-day into a buffer
SVC 2 Code 9 Fetch date into a buffer

SVC 2 Code 10 Time=of=day wait

SVC 2 Code 11 Time interval wait

SVC 2 Code 15 Convert ASCII hex or decimal to binary
SVC 2 Code 16 Pack file descriptor

SVC 2 Code 17 Scan mnemonic table

SVC 2 Code 18 Move ASCII characters in memory

SVC 2 Code 19 Peek at user-related task/system information
SVC 2 Code 20 Expand allocation

SVC 2 Code 21 Contract allocation

SVC 2 Code 23 Timer management facilities

SVC 2 Code 24 Set accounting information

SVC 2 Code 25 Feteh accounting information

SVC 2 Code 26 Feteh device mnemonic

SVC 3 End-of-task

SVC 5 Fetch overlay

SVC 6 Intertask coordination

SVC T File handling services

SVC 9 Load Task Status Word (TSW)

SVC 14 Reserved as a user SVC

3VC 15 ITAM device dependent I/0

Page 9

assembly program. The first operand is the SVC type number. The second
is the address of the corresponding SVC parameter block used to
communicate values between the calling program and the 08§, The
parameter block has a specific length and format based on the type of
service requested, An SVC 1 parameter block, for example, has fields
for the starting and ending address of the buffer used for transferring
data in the I/0 request, Figure 2 shows this structure,

Since the SVC is a machine-level instruction, a user clearly cannot
make such a call directly from a Pascal program (see Figure 3a). This
assures that the system-dependent features of the language are protected
in the assembly-level RTL. However, it has been stated that any
reasonable implementation of the Pascal language must allow the
programmer access to system calls and other operating system utilities
[6]. Without this, the language would not be suitable for most useful
applications. With this in mind, Perkin-Elmer Pascal allows the user to
make SVC calls from his/her Pascal program. The language provides a
complete set of external procedures for this purpose which must be
declared with the EXTERN directive as an extension to the standard
language [3]. Again it is important to note that RTL routines perform
the actual calls to the 08/32 kernel, These external routines are
merely a convenient user interface. A language could also provide this
facility if it allowed 1linking to wuser-written assembly language

routines,

Page 10

function logical device device
dependent,
code @ ndaeg &gnt g ender

buffer start address

buffer end address

random address

length of data transfer

reserved for 1TAM requests

Figure2 . SUC 1 parameter block.

Page 11

Compiled Compiled
User Program User Program
0b jec Objec
Code Code
Compiler-generated Compiler-generated
rtl referénces rtl references
(registers) (registers)

Internal rtl

RTL Objects ﬁﬂﬁﬁﬁﬁﬂﬁiﬁ RTL Objects

N
rtl references
to C routines

SUCs
(SUC parameter block)
(C stack segment)

0S/32 Kernel CO%BEEEQQ

System calls
(memory and
registers) i

UNIX Kernel

a. 0S/32 environment, b. UNIX environment.

Figure 3. The relationship between a compiled
erkin-Elmer Pascal program and the underlying
0S at _run-time. Arrows represent the nature
of calls to uncerlying layers. The structure(s)

for communicating data are shown in parentheses.

Page 12

2.1.2. UNIX Interface

Like 0S/32, communication with the UNIX supervisor occurs via SVC
calls. I will refer to these as "system calls™ rather than SVCs for two
reasons: 1) help distinguish between 05/32 and UNIX service requests,
and 2) the UNIX documentation refers to them as system calls [17]. The
services provided by UNIX system calls are quite different from the
05/32 services. Table 2 lists the services available in Edition 7 UNIX.
A complete description of these calls and their interfaces is in Section
2 of Vol. 1 of the UNIX programming manuals [17].

Again like 0S/32, the actual request for the 0S service is made by
an Msve" assembly instruction., The format of the operands is slightly
different, however, Instead of an SVC type number, the first operand is
always zero (0). The second operand is then the number which
distinguishes the type of 0S5 service requested. Even though the second
argument is not a parameter block address as in 03/32, data is still
communicated through a structure. Arguments to the system call
immediately follow the "sve" instruction in memory (reserved and
initialized with the CAL "define constant™ instruction [9, page 3-30]).
General register 0 may alsc be used for input. For example, the "write”
system call (see Table 2) expects the file descriptor in register 0, the
address of the buffer in memory immediately after the SVC instruction,
followed by the number of bytes to be transferred. General registers 0
and 1 are then used to return values, Some reguire call=-by-reference
arguments for communicating values back to the calling routine,

As assembly language instructions, these system calls are not

directly accessible from high-level language programs (again much like

Page 13

Table 2., UNIX Editien 7 system calls,

access - determine accessibility of file
acct = turn accounting on or off

alarm - schedule signal after specified time
break - change core allocation

chdir - change default directory

chmod = gchange mode of file

chown - change owner and group of a file
chroot = change root directory

close - ¢close a file

creat = create a new file

dup = duplicate an open file descriptor
exec - execute a file

exit - terminate process

fork - Spawn a new process

fstat - get file status

ftime - get date and time

getgid - get group identity

getpid - get process identification

getuid - get user identity

gtty - control terminal device

indir = indirect system call

ioectl = control character special files
kill - send signal to a process

link - link to a file

lock - lock a process in primary memory
lseek = move read/write pointer

mknod - make a directory or a special file
mount - mount a file system

mpx - create and manipulate multiplexed files
nice - set program priority

open - open a file for reading or writing
pause - stop until signal

phy s - allow a process Lo access physical addresses
pipe - ¢reate an interprocess channel
profil - execution time profile

ptrace - process trace

read - read from a file

setgid - set group ID

setuid - set user ID

signal - catech or ignore signals

stat - get file status

stime = set time

stty = control terminal devices

sync - update super-=block

time = get date and time

times - get process times

umask - set file creation mode mask
umount - unmount a file system

unlink - remove directory entry

utime - set file times

wait - wait for a process to terminate

write - Write on a file

Page 14

0S/32). Conveniently, UNIX provides C language interfaces for all the
system calls in addition to the assembly language interfaces [17,18].
The C routines which interface to the operating system are all part of
the standard € library, A user program wishing to make a system call
may thus simply call the corresponding C routine, This relationship is
shown 1in Figure 3b. Arguments are passed in the process' stack segment
in a specific order rather than via registers and specific memory
locations, The "write®™ C routine, for example, expects the file
descriptor on top of the stack, followed by the address of the buffer
and the number of bytes to be transferred, The library routine then
arranges the parameters appropriately for the actual system call. They
may also perform a number of housekeeping functions such as setting the
system error number if an error is detected, The "signal" system call
in particular requires a large amount of processing before the actual 0S
call is made. It is thus most efficient in terms of programmer time to
avoid the need to code this overhead by interfacing the UNIX operating

system though calls te C library routines,

2.1.3 Relevance to the port

I have noted several similarities between the 0S/32 and UNIX
interfaces: they both occur via "sve® assembly instructions and are thus
not directly accessible from high-level languages. Furthermore,
although the format and size of data communication structures differ,
parameters are passed at specific memory locations (UNIX also employs
general registers 0 and 1), Two major differences influence the effort

to port PEPascal from 0S/32 to UNIX, however,

Page 15

2.1.3.1 SVC translation

For one, the services offered by the two operating systems differ
significantly. Al though they both provide the fundamental services any
operating system must provide - I/0 control, file management, memory
management, and process management - the manner in which they provide
the services differs, There are thus a number of cases where no direct
translation from 03/32 SVCs to UNIX system calls is possible. No UNIX
system call exists to convert a number to an ASCII string, for example
(the 0S/32 SVC 2 code 6). Packing and unpacking a file descriptor
(08/32 SVC 2 code 16) is likewise foreign to UNIX. Several options are
therefore available for porting. If a direct equivalent exists in UNIX,
then the substitution is fairly straightforward. A UNIX "Mexit" call
will terminate a process much 1like an 0S/32 3VC 3. If no direct
equivalent exists, the SVC can simply be emulated with CAL code with or
without c¢alls to appropriate C library routines. Finally, some SVCs
have no application whatscever in UNIX and therefore will require no
translation. Packing and wunpacking file descriptors is one service

which will not need to be emulated in UNIX,

2.1.3.2 C stack vs. Paseal stack

The second difference between the two 0S interfaces which affects
the port is that in UNIX, OS calls are best accomplished via calls to C
library routines. This forces the user program enviromment into relying
on general register T as the pointer into the process' stack segment (C
stack) since C routines expect this register to hold the address of its

formal parameters. This has particular consequence in a Pascal

Page 16

programming enviromment because it must maintain 2 stacks: the Pascal
stack used for local and global Pascal routine variables as well as the
C stack for passing parameters to C routines (Figure 4).

In essence, the Pascal program will have to run in two different
modes, the Pascal mode and the C mode. To complicate matters, they have
completely different register conventions, the stacks grow in opposite
directions (C stack down, Pascal stack up), and they work in different
segments of the process' memory. The Pascal mode uses general registers
0, 1, and 2 as the stack pointers while the C mode uses register 7.
Furthermore, UNIX only protects registers 8-=15 across a routine call,
implicitly protects register 7 since it is the stack pointer, and
commonly uses register 0 for returning values. Pascal, on the other
hand, only protects registers 0-2. Finally, the Pascal stack exists in
the process' data segment while the C stack is in its stack segment.
Al this will therefore have to be taken into account when an RTL
routine prepares to call a C routine. The details of how this was

implemented in this port will be discussed in sections 3.2 to 3.5.

2.2. Memory Management

Another area of concern in porting the PEPascal language from 03/32
to UNIX is memory management. Since a process must work within the
context of any number of other processes which reside coincidentally in
memory (Figure 1), the manager of that memory will put constraints on
the process' use of the memory allocated to it., It will thus be wuseful
to examine the task memory management strategies of the two operating

systems in order to understand the implementation needs of the port.

Page 17

c.parms

‘\\ argv
\)___gr‘ c _ __|

.Bp+

C-apAR register

C.Sp $3Ve area

\ Cogptidf — — ——— — —
\» C parameters
———————— -

rtl
ob jects

NN

Stack Segment

Data Segment

Figure 4, Management of the stack segment
by a PEPascal process, Rtl routines
fetch c.sp each time they switch to C
mode. They then save registers and put
parameters on the C stack in the areas
indicated.

Page 18

2.2.1. 08/32 task memory scheme

The 0S/32 memory manager allocates memory to a user task when it is
loaded, Memory is allocated on a first-fit basis from an area known as
the "dynamic task memory space™ [8]. This memory is in essence anything
other than space reserved for system functions or other tasks. The
task's memory is then deallocated when it reaches end-of-task,

The user task's memory can have up to 16 segments. A segment is
defined as a set of contiguous addresses starting on a 64K boundary [8].
The segments are of 4 different types: impure, pure, task common, and
reentrant library segments. The first 256 bytes of every task are
protected as the User Dedicated Locations (UDL) [7,8]. At run-time,
this area contains data used primarily for communication between the (S
and the running task., This includes pointers to task space boundaries,
data relative to 0S-detected faults, and locations where old and new
Task Status Words (TSW) are swapped in response to certain events,

The UDL occupies the beginning of the task's non-sharable impure
segment. All tasks must have an impure segment. Three pointers, UBOT,
UTOP, and CTOP, are associated with this segment (Figure 5) and stored
in the UDL. UBOT is the starting address and is always relative address
#0. UTOP is the address of the first fullword past the area reserved by
the wuser task, Some tasks need an additional area in the impure
segment, called the undefined area, for dynamic allocation. The address
of the top of this area is available in CTOP, which is the top of the
task's impure segment.

A task may also contain a write-protected pure segment which can be

shared by other tasks. The "PURE™ option in CAL produces the code for

SL (r0)

GB (rl),

Remaining work
. Space for
activalion records

after

UuTQP
PSINIT

vat Bes

LB (r2)

Figure5.

program

SL
LB
GB

.

RTL scratchpad

Pascal SDA

and user. program

Pascal RTL obéects
ob ject "code

UL

Initial Memor

UBOT

in an

stack limit,
local base.
global base.

Map for Pascal
0S/732 environment.

Page 19

Page 20

this segment. The shared reentrant 1library segments 1likewise are
write-protected. The source of the code for these segments is some
common object library rather than the result of some CAL option,.
Finally, tasks may share data areas with the task common segments. You
can even set up protection on these common segments such that only one

task can write to it while all others have read=-only access,

2,2.2. UNIX process memory scheme

Like 0S/32, a UNIX process' memory is allocated when the process is
created. In UNIX, they are created by the "fork" system call [19].
Also, memory is allocated by the simple first-fit algorithm. The
process gets the first free block of memory into which it will fit. A
UNIX process has 3 major segments associated with it: the text, data,
and stack segments (Figure 6). The process executes from the text
segment which may contain shareable read-only code. If the process 1is
related to the C library in any way (as a ported PEPascal process is),
then the run-time initialization code, /lib/crt0.o, occupies logical
address #0 of the process memory. This code serves to rearrange the
arguments on the C stack (in the process' stack segment), branch to the
label "main," and terminate the process if control ever returns from
"main," The text segment also contains the executable user program
object code and library objects. The data segment is private, holding
both uninitialized and initialized data. This segment can be increased
dynamically with the "sbrk" system call or the "malloc" C routine which
calls "sbrk"©, The newly-allocated memory is initialized to =zero.
Finally, the stack segment starts at logical address #E1000 and grows

down to the 1imit of #E0000. Its default size is thus 4K which can be

Page 21

dynamically
increased

stack with "sbrk”’

Uninitialized
data

i
nar;z%sa
*setstack’

#E1000

initial ized
data

c.s
Data Segment o

C library
objects

#E0000
user prog Stack Segment
and

Pepascal
rtl objects

/lib/Zcril.o

#0
Text Segment

Figure 6. Memory ma%a of @ running PEPascal
%rocess in @ UNIX environment. #0 is
he relative starting address for ihe
process.

Page 22

altered by the “setstack' UNIX utility or the "=k" option of the UNIX

link editor, ‘1ld?',

2.2,3,., Relevance to the port

At run-time, a PEPascal program needs some other areas in addition
to the wuser program and library object code. First, it needs a Static
Data Area (SDA) for special run-time variables. If FORTRAN routines are
called from the PEPascal program, a variable number of fullwords must be
allocated for FORTRAN Static Communications Area (SCA). An RTL
scratchpad 1s also needed for local storage. Finally, it needs memory
for global variables, dynamically allocated variables (the heap) and
local variables for nested/recursive subroutines (the stack). This is
what constitutes the Pascal stack described above in secticon 2.1.3.2,

Since the two operating systems set up memory for a process 1in
different ways, the above-mentioned areas needed by a PEPascal program
at run=-time will not always be located in the same relative location in
the process' memory space. In 03/32, the UDL, the user program object,
RTL objects, the stack, the heap, and other areas will be Llocated
primarily (and perhaps entirely) in the task's impure segment in the
order shown in Figure 5, The user may specifically regquest certain of
these areas to be in one of the other three segment types.

In UNIX, location #0 will always be the starting address of
/1lib/ertl.o rather than the UDL. Conseguently, any locations in the
UDL needed by PEPascal under UNIX will have to be stored elsewhere in
the process' memory. The user program objects, PEPascal RTL objects, and
the C library objects will make up the rest of the text segment. Any

"PURE" object code is in this segment, The data segment must then hold

Page 23

the other areas such as the SDA, SCA, stack, and heap. Lastly, the
stack segment must be used to communicate with C library routines. A
map of these areas as they would appear in a UNIX process 1is shown in
Figure 6. The issue in the port, then, is to allocate the memory and
initialize all pointers to areas within it so that the 0S enviromment is
transparent to the compiler-generated user object c¢ode. This will
prevent the need for wholesale changes in the compiler code-generation
passes and thus help preserve its portability. The details of how this

was implemented are found in section 3.2. below.

2.3. Error Handling

2.3.1. 0S/32 interrupt handling

A third area of conceptual interest to the port is how system=-
detected errors are handled. Like most operating systems, the 0S/32
kernel will handle (or "trap") internal interrupts from the processor
[8]. For example, if the opcode of the next instruction is not in the
processor's instruection set, i.e., an Millegal instruction," the
processor will not try to execute it., Instead, it will "interrupt" the
execution of the task. 0S/32 then traps this interrupt so that it can
gracefully (although sometimes cryptically) inform the operator/user of
the problem, Left to its own, 0S/32 will pause the task and display an
appropriate message. After the operator or user has had an opportunity
to check the process enviromment and perhaps correct the problem, the
task may either be continued or killed, Some other examples of events

which trigger interrupts are arithmetic faults, machine malfunctions,

Page 24

data format and alignment faults, and operator/user intervention. Some
interrupts are fatal in that they do not give the user the option of
attempting to continue the task,

Any custom error handling from user-programs would be next to
impossible if the operating system always handled the interrupts.,
Therefore, 0S/32 allows a user task to service the trapped interrupts.
This feature is enabled by setting the appropriate bit in the TSW.
Different traps are caught by setting different bits, This is one
action which relies heavily on the task's UDL since the old and new TSWs
are swapped in and out of this area. The handling routine is
responsible for saving general and floating point registers before
servieing the trap. After the service routine finishes, the old TSW is
swapped back to continue normal execution, provided the service routine
did not terminate ﬁhe task, PEPascal uses this facility for handling

run=time errors,

2.3.2. UNIX signals

The UNIX kernel can likewise handle interrupts caused by abnormal
events, In UNIX, these are referred to as "signals"™ from the processor
[18, 19]. One could classify these signals into 2 groups: signals from
the outside world and program faults, The former consists of signals
sent by the user or another process while the latter are normally
hardware~generated faults such as an illegal instruction, arithmetic
fault, or memory fault. The default action by UNIX upon catching these
signals is to print a message and terminate the process., Some signals

by default also dump the process' memory image into a file called "ecorem

Page 25

in the current directory. The wuser can then employ a debugger to
investigate the state of the process when it died.

Like 0S/32, the default response to a signal can be overridden with
control passed to a handling routine. Rather than setting a bit in a
TSW, default action in UNIX is altered with the "signal" system call.
The C routine which accomplishes this expects as arguments the type
number of the signal to be caught, followed by the address of the
handler routine. It is up to the handling routine to do any register
saves 1f needed. Unlike 03/32, though, contreol does not automatically

return to the original process once the handler is done executing.

2.3.3. Relevance to the port

Error handling is primarily important in PEPascal for providing
meaningful and graceful handling of run-time errors. If a user program
attempts to divide by zero, for example, the processor will detect this,
prevent the "divide" instruction from getting executed, and generate an
arithmetic fault, Just a generic message indicating such a fault
occurred and termination of the process would leave the programmer in a
state of bewilderment. A message with the source code 1line number,
address of the bad instruction, and type of error would be much more
useful, Thus PEPascal has an error handling routine which gives this
information to the user,

Since both 0S/32 and UNIX allow user processes to override the
default action and pass control to a user=written handler, the same
handler routine can be used in the port., The important difference 1is
how this feature is enabled., The UNIX port must make calls to the C

routine "signal" rather than setting bits in the task's TSW and

Page 26

providing a new TSW in the UDL for the handler,

2.4, File Handling

The last area of interest in the porting process is file
management. Not only are the PEPascal source code and object code in
files, but Pascal allows the program to interact extensively with files,
Files allow the wuser program to communicate with its external
enviromment., They are a very important part of the PEPascal
enviromment, Any process wishing to interact with files must request
services from the host cperating system in order to accomplish this.
File handling in PEPascal is thus strongly dependent on the underlying

0s.

2.,4.1. 08/32 files

0S/32 supports two types of files: indexed and contiguous [8].
Indexed files are open-ended in that their size can increase or decrease
dynamically. The only size 1limit is the physical space available,
Contiguous files are a fixed-size structure; they can neither increase
nor decrease in size., Their size is fixed when it is allocated. While
the latter file type may waste =space, it can ensure that space is
available and facilitate fast random access of data, In most
situations, though, the programmer will use indexed files since they do
not waste space., 05/32 file management and file I/0 is handled by SVC 7
and SVC 1 routines, respectively.

The internal structure of an 0S/32 file is also determined when it

is allocated. For indexed files, this structure is based on the

Page 27

"logical record.,™ Although the length of a logical record in a file can
be up to 65,535 bytes, it is commonly a value like 80, 120, 256, or 512
bytes. This length is fixed for a file once it is allocated. This 1is
also the basic unit of data transfers between the physical file and the
system buffers in the file's File Control Block (FCB). 4n SVC 1 call
actually reads or writes individual logical records, Less than a full
logical record can be read or written, but this wastes space since the
I/0 1is still based on the entire logical record; the system pads the
buffer to fill it up to the logical record length, Consequently, end-

of=file condition is determined only to the nearest logical record.

2.4.2, UNIX files

By contrast, UNIX views files in a much more simplified, uniform
manner. Instead of all the rigidly imposed structure of 03/32 files,
UNIX just considers all ordinary files to be a one-dimensional array of
bytes [1,19]. A file contains whatever the user puts in it, A text
file is simply a series of "lines," where a line is a string of any
number of characters terminated by a newline character (ASCII decimal
10). Binary (object) files are sequences of words as they will appear
in core memory when executed. In essence, any structure imposed on a
file is done by the program which uses it, not by the systen.

The basic unit upon which physical I/0 is bamed is a 512=byte block
(as opposed to the 0S8/32 logical record). However, the system maintains
I/0 buifers which are in essence a data cache from which the user
process requests data. If the reguested location is not in the one of
the blocks in the buffer, a buffer block is swapped ocut and the correct

block 1is read in from the physical device, This is all transparent to

Page 28

the user for whom all I/0 is based on reading/writing any number of
bytes. In other words, there 1is no restriction to a particular
record=size, As a result, end-of'=file condition is determined to the
nearest byte, The lowest level file handling and file I/0 is done with
UNIX system calls, but the C Llibrary provides a vast number of

additional I/0 routines [18].

2.4.3. Relevance to the port

So what does this mean to the UNIX port? First of all, the 08/32
file management and file I/0 SVC calls will need to be translated into
their respective C library calls (see Section 2.1.3.7.). This poses
several problems, Identifying the file is one. The 03/32 file SVCs use
either a file descriptor ([volume:]filename[.ext][/acct#]) of a "logical
unit" (explained later) to identify the file, These are both stored in
the SVC parameter block, The C library routines identify files in any
one of three ways: the pathname, the address of the file control
structure, or a small integer also called a file descriptor. The system
calls all use the file descriptor so the UNIX port must keep a table of
file descriptors for all open files.

Another problem in the SVC to UNIX system call translation arises
from the different basic I/0 unit as it appears to the programmer, 0S/32
I/0 is based on the logical record while UNIX I/0 has a single byte as
the fundamental wunit, For non-text files, this causes little trouble
since 05/32 will allow the user to read a single file component into the
FCB buffer,. The system may actually read more bytes than that to fill
the last logical record, but this is transparent to the user, Text

files are a different story. To 05/32, "read the next line" simply

Page 29

means go fetch the next logical record with an SVC 1., There is only one
physical 1line stored per logical record. To UNIX, though, "read the
next line" requires moving the text pointer to the first character past
the next newline character in the file buffer, Only if the text pointer
reaches the end of the buffer is the "read”" system call used to fetch
another buffer of characters from the physical file, As a result, the
UNIX port will normally require fewer 0OS service calls per standard I/0
routine call,

These file handling differences also mean that UNIX requires less
file management overhead., For example, there is no need to "fetch the
attributes"™ of a UNIX file since they can all be treated the same way.
Mlocating a file is also simpler since you do not need to bother with
choosing the file type and structure, Finally, 05/32 allows the user to
treat files and devices interchangeably by "assigning" the file or
device to a "logical unit™ [8]. A user task then interacts with the
logical wunit rather than directly with the file or device. In UNIX,
files and devices are both implemented as files in the overall file
system [18]. In essence, devices are just "special" files so that a
uniform interface controls all communication between a user program and
peripheral devices (as well as text files). More importantly, the
physical differences are transparent to the user. Therefore, a user
process may interact directly (in appearance, at least) with a file or

device without the need for an intermediate generic logical unit.

Page 30

3. IMPFLEMENTATION

3.1. The Run-Time Library

3.1.1. Production enviromment

The PEPascal RTL consists of over 7000 lines of well-documented CAL
code. The RTL routines provided by Perkin~Elmer were all in one file,
set up to be assembled with the "BATCH™ option. Since our version of
the CAL assembler, ‘as', does not support this pseudo-op, each RTL
routine was put into a separate file. These files were then grouped
into subdirectories according to functiecn. Figure 7 shows the hierarchy
of the file system used in developing the UNIX version of the PEPascal
system.

The UNIX utility “make' [20] was used to manage the many RTL source
files and build the overall compile-time and run-time system. Appendix
B contains the contents of the makefile used in the development. The
makefile was set up such that the developer need only type ‘make' to
re-assemble or re-compile any parts which have been updated more
recently than its corresponding object file, Since the RIL routines
rely heavily on PE's CAL Macro Processor utility [21], the makefile runs
CAL files through CAL Macro before assembling them. C files are
compiled with the "compile-only" option. All the RTL routines are then
loaded into two library object files used by the link editor, ‘1ld', to
resolve external references in the compiled user-program,

The makefile also facilitates building CAL routines used to test

individual RTL routines (explained in section 3.6), as well as the

Page 31

PEPASCAL

[.

2.

€. — 2 _ 1

RIL

conmu £ss PAS PASSES SRC TESTPROG
RS 10 2.4 _ ? ‘ 2.4 — ? 1.5, _ b 7.6, _)
CHECKLIST ONF ORHANCE DEVIANCE ERROR JPLENENT BUALTTY
[|
RIL
u._ _._ _ _ _ u.__ pﬂ._ 1] _ _._...J_
ERROR FORTRAN HEAP N7 INPUTNT INPUTT 10CONMMON 10ERROR Wmuwcdzd_ oUTPUTT PREF IX SET STRUCT sucs
Figure 7. File hierarchy of the development system for

PEPascal. The parent directory, pepascal, is in
/usr/src. The boxes represent directories. The
number of files in each directory is shown on the
upper righthand corner of each directory.

Page 32

public PEPascal system. The command 'make test! does the former, make
public' the latter, Finally, the makefile builds the special run=time
library, "comprtl", used by the compiler and the macro utility 1library,
"mutil.lib",

As mentioned earlier, the RTL routines are written using the CAL
Macro utility. The macreos used in the RTL are in the file "macros.srct,
They provide such commonly used structures as the FCB, SVC parameter
blocks, and register set mnemonics., It also is used for routine "ENTRI™
and "LEAVE"™ operations which save specified registers across the routine
call. This reliance on CAL Macro posed two options to us for porting
the routines to UNIX. One option was to expand the RTL routines into
CAL instructions with CAL Macro on a system running 0S/32, then use the
expanded code to integrate the UNIX port into. The other option was to
port the CAL Macro facility to UNIX and use the RTL macros for the UNIX
version also., The latter was the option chosen. During development,
then, the RTL routines remained at a manageable size since the routines
were only expanded immediately prior to assembly. Furthermore, I was
able to use many of the provided macros in the code for the UNIX port.
Since I also had to change some of the macros provided by PE, a utility
to build macro libraries was developed,

Another decision in the porting process was whether or not to
completely rewrite the RTL routines or to integrate the UNIX port into
the 08/32 version, We chose the latter since it c¢learly would save
programming time, It is also a better choice from the standpoint of
simplifying maintenance for Perkin-Elmer; they only have one RIL to
maintain, To accomplish this, I employed conditional CAL assembly. A

macro called "options" which contains symbols that allow the user to

Page 33

define the target 0S. If the symbols "unix" and "os32" are defined as 1
and 0, respectively, then the UNIX RTL is built. Object code for the
0S/32 RTL is produced if ™unix™ = 0 and "os32" = 1, The "options"™ macro

is defined in the file "macros.ksu”,

3.1.2. Classification of RTL Routines

The PEPascal RTL is conceptually separated into six groups:

1) Initialization.

2) Error handler.

3) The RELIANCE - Pascal interface and error handler.
4) Pascal prefix support routines.

5) Pascal SVC support routines,

6) Pascal library support routines.

Since the 3SVC support is specific to an 035/32 enviromment, Perkin-Elmer
did not wish to port this extension to the language. Likewise, the
RELIANCE interface has no application in a UNIX enviromment and
therefore was not ported. Many prefix routines are also 0S/32 -
specific. They too were not implemented, However, several prefix
routines were needed to get the compiler running and are potentially
useful in a UNIX enviromment. They were consequently ported. The other
three RTL groups (initialization, error handling, and the library
support routines), on the other hand, are all needed by the UNIX
implementation. The implementation of these groups, as well as the

prefix group, will be described in detail in the following sections,

Page 34

3.2, Initialization Group

This group contains only one routine, P$INIT, which initializes the
run-time envirorment of the compiled user program. In the production
system, this routine is in the file RTL/init/p init.s. In 0S/32, P$INIT
organizes the task work space described in section 2.2.3. Besides
allocating the memory, it sets the pointers into this workspace, local
base (LB), global base (GB), and stack limit (SL) (see Figure 5), It
then initializes the contents of the allocated memory to zero, P$INIT
also copies parameters from the 05/32 "START" command into a buffer
occupying the top 132 bytes of the workspace (which is the bottom of the
heap) so that they can be accessed from a program with the "START_PARMS®
prefix routine. Finally, if specified when the 0S/32 task 1is
established, the single and/or double precision float registers are
initialized to zero, All these actions and more were 1Iincluded in the

ported P$INIT.
3.2.1. C stack

The first action that the UNIX version takes is to set up the C stack
and initializes pointers to it (Figure 4), When control enters P$INIT,
general register 7 (r7) points to the “a.out' command-line parameters,
This address is preserved in the symbol "¢,parms", The first word in
c.,parms is the count of how many arguments were on the command line
(arge), followed by the addresses for each individual parameter
(argv[]). P$INIT next subtracts 96 off of r7 to preserve 96 bytes for
PEPascal to work with. This address is saved in "e.sp". This is

considered by the PEPascal run-time enviromment to be the stack pointer

Page 35

into the C stack segment used to communicate values between Pascal and C
routines. Thus, any Pascal routines needing to switch to C mode first
loads "c.sp" into r7. It then saves all the registers on the C stack in
the register-save area (Figure 4). The first 32 bytes above c¢.sp are
then available for parameters passed to the C routine. To switch back
to Pascal mode, the Pascal routine simply needs to restore the

registers. This destroys r7 as the C stack pointer again.

3.2.2., Command-line parameters

The next action by the UNIX version is to parse the parameters
given by the user on the command-line when the compiled program is
invoked, P$INIT recognizes three types of parameters (see manual entry
in Appendix C). Anything else is put on the bottom of the heap so that
it is available to the user program just like the O0S/32 "START"
parameters, One possible option is "=d" (upper or lower case) which
sets the flag "coreflag" in the global data area (gbdata) in the SDA.
This flag is wused by the error handler to determine whether or not to
dump the core image upon detection of a run-time error. If the user
includes the "=d" argument, the core image will get dumped. The default
action is to not dump the core. Another recognized argument is "=kx"
which alters the 8K default memory allocation for the Pascal workspace.
fx" is the number of bytes to allocate. P$INIT recognizes the suffixes
k", "b", and "™w" for multiplying the number by 1024, 512, and U4,
respectively.

The third possible argument type deals with the assignment of
external Pascal file identifiers with actual UNIX files., I mentioned in

section 2.4.3. that UNIX file identification at the lowest level is

Page 36

based on the file descriptor while 0S/32 uses the logical unit (LU).
The PEPascal compiler also deals with external file identifiers as LU's,
The first file in the program header file list is assigned to LU 0, the
second file to LU 1, third to LU 2, and so on, up to a maximum of LU 31.
I therefore built a table (fdtab) in the gbdata area which maps LU's
into UNIX file descriptors and UNIX pathnames. The LU is the index into
the table where the first fullword is the UNIX file descriptor and the
second fullword is the address of the pathname, P$INIT initializes all
the file descriptors to -1 and filename pointers to 0 (null). This is
where the third argument type comes in, This argument-type associates a
UNIX pathname with an LU. P$INIT takes an argument of the form "-fx
filename" and saves the pointer to 'filename' in the fdtab entry for LU
'x'. This filename is then used by other RTL routines, such as P$RESET,
P$RESETT, and P$REWRIT to open the file and get a UNIX file descriptor,
Note that P$INIT only copies filename pointers into the fdtab, It does
not verify that the file exists or is assigned to the correct LU. Other
routines do these checks.

P$INIT does check for proper form of these three argument types.
Any suffix other than "k", "b", or "w" with the "=kx"™ option produces an
error., If the argument after "-fx" starts with a '=', an error is
produced since P$INIT expects a filename, Likewise, a non-digit LU is

an error, For any such error, P$INIT logs a message of the form

"pasecal: invalid parameter <badparm>"

where the illegal argument is echoed. It then terminates the process so

the user can try again.

Page 37

3.2.3. Memory allocation and pointer initialization

The 0S/32 version of P$INIT uses an SVC 2 code 2 "get storage" to
allocate memory for the Pascal workspace. The UNIX version uses the C
library routine "malloc"™ which expects as its parameter the number of
bytes to be allocated. The 0S/32 version relies on the compiler option
MEMLIMIT to determine how much of this workspace is to be used for the
Pascal stack and heap. A value of 100% allocates all of the memory for
this purpose. The extra memory available if MEMLIMIT < 100% is used
only if requested by an externally linked routine. Since UNIX can
dynamically increase the size of the data segment, MEMLIMIT is not a
meaningful option in a UNIX enviromment. If space for FORTRAN linkage
is needed, it can be allocated with a call to "malloe™. Thus, the user
is advised to leave the MEMLIMIT option at its default value of 100%.

As in 0S/32, the memory is allocated in two steps., First, memory
for the SDA and the RTL scratchpad is alloecated. "Malloe" returns the
starting address of the memory allocated so this is used to set the
pointer M™udl.ext™ which holds the address of the top of gbdata in the
SDA. The memory for the remaining workspace is then allocated with a
second call to M"malloch, This is the area with a default size of 8K
which can be altered with the "-k" parameter. The returned address 1is
then used to initialize the pointers LB, GB, and SL. "Malloe" returns a
zero (0) if there is not enough memory available to allocate the

requested number of bytes. In this case, P$INIT prints the message

"Not enough space to run pascal"

and terminates the process. This is the same action as in the 0S/32

Page 38

version. The last action in P$INIT is to initialize the single and
double precision floating point registers t{o zero, This is done
automatically in the UNIX version whereas in the 0S/32 version, this is
only done if the FLOAT and/or DFLOAT opticns are spécified when the task
is established. The memory map of a PEPascal process in a UNIX

enviroment upon exit from P$INIT is shown in Figure 6.

3.3. Error Handler

3.3.1. Handler initialization

Immediately after calling P$INIT, all PEPascal processes call the
error handler initialization routine, P$ERR. In the 0S/32 version, a
new TSW is set up in the task's UDL for the error handler routine,
PASERROR., It also sets the appropriate bit in the TSW to enable illegal
instruction traps since this is the type of interrupt generated for
run-time errors, An SVC 9 is used to swap TSW's.,

The UNIX version initializes the error handling in a much different
Way. As mentioned in section 2.3.2., UNIX enables signal handling by
calling the C library routine "signal®. Before giving "signal" the
address of the error handler, however, it is important to test whether
or not a particular signal is currently set to be ignored, This is due
to the possibility that the process is running in the background, If
this is the case, the UNIX shell has set certain signals to be ignored
so that when such interrupts occur, they do not kill this background
process too., For example, if the user runs the PEPascal process in the

background, starts another process, then decides to kill the foreground

Page 39

process with the DEL key ("interrupt™ signal), the background process
will be killed too unless it is set to ignore this signal. As a result,
if P$ERR finds that a =signal type is set to be ignored, it 1leaves it
that way. If the signal is set for anything else (normally just the
default action by the 08), then P$ERR calls "signal" again, this time
passing the address of the error handler, PASERROR., Then, if any of
these signals are detected, control passes to PASERROR,

One more issue is important in the error handling initialization.
When a signal is trapped, UNIX puts the old PSW status, program counter,
and stack pointer on the C stack before giving control to the error
handler. UNIX expects r7 to point to the top of the stack, The problem
is that in Pascal mode, PEPascal does not protect r7 as the C stack
pointer. Thus, P$ERR must set the process to run in "no-stack” mode so
that UNIX sets up a pointer 512 bytes off the top of the stack segment
to save these values when a signal cccurs. This is done in P$ERR by

calling "signal™ with the high-order bit of the PSW set.
3.3.2. The error handler

As mentioned earlier, control is given to PASERROR when a non-
ignored signal 1is caught by UNIX while a PEPascal process is running.
At this point in UNIX, r7 points to the location in the C stack segment
where UNIX saved the enviromment. The first word on the C stack is the
signal number caught. If a Pascal-detected run-time error occurred,
then ¢the =signal will be number # for an "illegal instruction" because
the compiler generates code that executes an "ERR" instruction (opcode
#88) when =such an error occurs. Pascal~detected errors have their own

messages so if the illegal opcode was #88, then PASERROR must handle the

Page 40

signal differently, The opcode is the first byte of the old pe, so if
it is #88, then PASERROR also retrieves the error code (2nd byte in pe)
and the source line number {last halfword). The error code is then used
as an index into a table of possible run-time error messages (Table 3).

An error message of the form

M.ine XXXX Address YYYYYY <message from table>"

is then sent to UNIX standard error (stderr) which defaults to the user
terminal,

The global flag "coreflag" (sec, 3.2.2.) 1is then checked to
determine whether or not to dump the core image before killing the
process., The UNIX "quit™ signal is used to dump the core while the RTL
routine P$TERM terminates without a dump. Note that the ™Quit" signal
trap must be reset to its default action before using it to kill the
process. Otherwise, UNIX will have PASERROR handle this signal too.

The other possible error condition is when any signal is caught
other than the M"illegal instruction™ produced by the ERR instruction.
These are UNIX-detected errors rather than Pascal-detected run-time
errors, Some examples include "interrupt" or "quit" in response to user
intervention, and "memory" or "address" faults from bad data, These
errors produce the same message format shown above for Pascal run-time
errors except that no source code line number is available and the error
type message comes from a different table (Table 4), In this case, the
line number is 1left at the default value of 0 making debugging
particularly painful. Finally, the "coredump™ flag is checked before

terminating the process in the same way as described above.

Page 41

Table 3. Perkin-Elmer Pascal run-time error messages, These strings
are used by the run-time error handler, PASERROR, in response to
Pascal-detected run=-time errors, They are printed to UNIX stderr
along with the source c¢ode 1line number and address of the
instruction causing the error,

pascal=detected run-time error message table

align ade
ertab equ &

db ¢! breakpoint f
db c'index range err !
db c'param range err !
db c'value range err !
db c'case label error!
db c¢'trunc range err !
db c¢'variant tag err !
db ¢'pointer error !
db c'stack overflow !
db c'heap overflow r

Table 4. Run-time error message text for UNIX signals. These strings
are used by the run-time error handler, PASERROR, in response to
UNIX-detected run-time errors, They are printed to UNIX stderr
along with the default source code line number of 0 and the address
of the instruction causing the error,

b UNIX-detected signal message table

#

ersigtab equ & index by 16% signal number
db ¢'signal 0 '

db c¢'hangup

db c¢'interrupt

db c'quit

db c'illegal instruc
db c'trace trap

db e'iot instr

db c'emt instr

db cl'arith fault

db c'kill

db c'mem/align fault
db c'address fault
db c'unix call error !
db c'pipe error '
db c¢'alarm trap '
db c'termination trap!
db ec'signal 16 !

- w w @w . - W W wm = .

Page 42

3.3.3. Utility routines

Three other routines are provided for run-time error handling.
P$PAUS is an 0S/32-dependent routine which pauses the user's task., This
was not implemented in UNIX. Any call to P$PAUS simply returns to the
callier. P$TERM is a utility which terminates the process., The 08/32
version used an SVC 3 to end the task after releasing storage with an
SVC 2 code 3. UNIX automatically does all the memory housekeeping when
a process terminates so the UNIX version simply calls the C 1library
routine "exit"™ in P$TERM. 0S/32 also uses an end-of-task code to
indicate the condition under which the process is being terminated. In
both operating systems, an exit code of 0 means normal termination, but
the UNIX port simply maps all non-zero end-of-task codes into an exit
code of 1 which is sent to M"exit"., It is thus possible for a parent
process running a PEPasecal process (e.g., the UNIX “sh' shell) to test
for normal termination of the PEPascal program.

The third utility, P$SEND, is used to log a message. 0S/32 does
this with an SVC 2 code 7 "log message™ call that prints the message on
the system consocle. The UNIX version prints the message to stderr. It
simply logs the message with a call to the C routine "write", then
returns to the caller, A normal sequence for a routine wusing these
utilities is to print the message with P$SEND, the kill the process with

P$TERM.

Page 43

3.4, Prefix Group

Only the prefix routines used by the compiler driver and passes
were cconsidered in this phase of the project. These routines, as well
as all the prefix routines, are listed in Table 5, The decision on
whether or not to port any of the other prefix routines was left to a
later phase in the project.

A number of the prefix routines are only used by the compiler in
special cases. OPEN and CLOSE, for example, are only used by passes 1
and 10 when the source preogram is on a non=random device, such as a
magnetic tape. Pass 1 opens a temporary disk file to copy the source
into so that pass 10 does not have to rewind the source device to re-
read it for the output 1listing. Since this is a rarely-encountered
condition, these routines were not ported, The routines
WRITE FILE_MARK, BREAKPOINT, and FORWARD FILE MARK fit this category
too,

Five other prefix routines, TIME, DATE, EXIT, FETCH_ATTRIBUTES, and
START _PARMS are 7unavoidably used by the compiler. TIME and DATE are
only used by pass 10 for the output listing page headers. 03/32
provides this information with SVC 2 calls. I thus translated these
into a call to the C routine "time"™ in both cases., The value returned
by M"time"™ is then submitted to the C routine "localtime® to get the
appropriate values to generate the 8-character strings expected by the
05/32 TIME and DATE.

The FETCH_ATTRIBUTES prefix routine is also used only in passes 1
and 10. In 0S/32, it uses an SVC 7 call to get the attributes of the

file or deviece assigned to the logical unit specified in the parameter

Page 44

Table 5., Perkin-Elmer Pascal prefix routine names as called from a
Pascal program, The starred ('#') proutines are used by the
compiler. Some of these routines are only used in special conditions
s0 they were not ported, The others were either fully moved to UNIX
or altered just enough to get them to work with the compiler.

% open
close
gllocate
rename
reprotect
delete
change_access privileges
checkpoint
® fetch_attributes
rewind
yrite_file mark
back_record
back file mark
forwd_record
forwd_file mark
breakpoint
start_parms
time
date
exit

Page 45

list. Since UNIX treats files and devices the same, there is no need
for this request in UNIX, I consequently Jjust changed the routine to
return some standard UNIX-oriented values. Again, this was just enough
to get the compiler to work and will not be a part of the final wversion
of the ported language.

The START PARMS routine is used by pass 10 to produce the table of
compiler option settings printed in the output listing, As mentioned
above in section 3.2.2., legal command-line parameters not used by
P$INIT are put at the bottom of the Pascal heap. START _PARMS then just
reads these 132 bytes into a character array. Therefore, no changes
were needed to have this routine work in UNIX. Likewise, the routine
EXIT was not changed since to terminate the process, it just calls
P$TERM which was ported as described in section 3.3.3. above.

Several of the prefix routines presented the problem of name
conflicts. When the compiler code makes a call to OPEN, for example,
what prevents branching to the C routine Mopen™ rather than the RIL
prefix routine of the same name? Only the prefix routines OPEN, CLOSE,
EXIT, and TIME had this potential problem. Since these four routines
were not crucial to the compiler, I was able to get the compiler working
crudely without dealing directly with the problem. Once I could
recompile the driver and passes, though, I changed the entry labels to
POPEN, PCLOSE, PTIME, and PEXIT so that they would not conflict, The
other RTL routines which one would expect to have the problem, such as

READ and WRITE, do not conflict with C routines because their entry

Page 46

labels start with the prefix "P§",

3.5. Library Support Group

This group of routines performs the detailed functions for many of
the PEPascal language features, This includes heap management,
manipulation of structured variables, set operations, and file I/0,
Since the former 3 functional subgroups of the library support routines
are handled without the aid of any 0S services, they needed no changes.
The source for these routines are in the subdirectories "heap",
"struct”, and "set" as shown in Figure 7. The latter subgroup, file
I/0, relies heavily on OS services. Consequently, the major effort in
porting the library support routines dealt with file I/0, These
routines are in the subdirectories "inputnt", "inputt®, "outputnt",

"outputt", "iccommon", and "ioerror™,

3.5.1. Non=text file input

The subdirectory "inputnt" contains the source for the routines
P$READ, P$GET, and P$RESET, P$READ needed no changes since it calls
P$GET to do the actual I/C. P$GET, then, simply fetches a single file
component into the file's FCB buffer. In 0S/32, this means "read the
next logical record"™ with an SVC 1 eall (see section 2.4.3.). The
porting process for this routine was thus primarily translating the SVC
1 into a call to the C routine "readm, To execute the UNIX T"read",

P$GET must determine the exact number of bytes for the given file

Page 47

component. This size is calculated from the starting and ending
addresses of the buffer, Two special error conditions had to be dealt
with, too. For one, this routine prints a message when UNIX has a
problem reading from the file (i.e., when "read" returns -1). This ecan
happen if the file does not exist or does not have read permission, for
example. Secondly, P$GET prints a measage and terminates the process if
UNIX was not able to read all the bytes reguested, i,e., the entire file
component,

P$RESET initializes a non-text file for reading, This routine is
called in response to the code "reset (fileid);" in the Pascal program.
In 0S/32, this simply involves an SVC 7 "fetch attributes™ call since
the file is assigned to its LU before the program is invoked. If the
file supports it, the file is then rewound through a call tﬁé P$$REWD.
P$RESET finally calls P$GET to read a file component into the buffer,
The UNIX version basically replaces the "fetch attributes" call with a
call to the C routine M"open". If the file is already open, it is first
closed before being reopened with read-only permission. This can happen
if the file had been written to earlier in the program.

The UNIX version handles two error conditions in P$RESET. If there
is no file name saved in the global fdtab for the LU being opened, a

message of the form
"reset: logical unit X unassigned”

is printed., This normally happens when the user forgets to assign a
UNIX file to the LU in the command-line. The other error occurs when
UNIX has a problem opening the file. This can happen, for example, if

the user does not have read permission on the file or the file does not

Page 48

exist, P$RESET just calls the C routine "perror", passing to it the bad
file name, to print the appropriate message. The source for P$RESET is

included in Appendix A,

3.5.2, Text file input

The routines in the "inputt" subdirectory perform many of the sanme
functions for text files as the routines described above do for non-text
files, The primary difference, though, is that everything is dinput as
ASCII characters, Items such as integers and reals must therefore be
converted from ASCII strings to their corresponding numeric value.
However, these conversions are all done internally without any 03
services, Therefore, only the routines which perform the actual I/0
transfers needed to be changed., These routines were P$READLN, P$GETT,
and P$RESETT.

Text files in PEPascal are managed differently from non-text files.
Non~text files simply read another file component into the file's FCB
buffer when the next value is requested, Since a text file's component
is a single character, that same strategy would be very inefficient.
Therefore, PEPascal maintains a buffer of 256 characters in the text
file's FCB. As a result, most text file I/0 relies on P$GETT to move a
pointer to the next character in the FCB buffer,

Only two changes were needed for P4$GETT sinece it just manages an
internal buffer; it calls P$READLN to do the actual I/0 transfer, if
needed. For one, O0S/32 uses the carriage return character (ASCII
decimal 13) to denote the end-of-line while UNIX uses the newline

character (ASCII decimal 10). Secondly, the O0S/32 version forces an

Page 49

end=of-line condition if +the end of the buffer was reached since a
single buffer represents a logical record which is a "line". The UNIX
version skips this and calls P$READLN to get the next buffer of
characters, P$READLN is only called when either the text pointer gets
to the end of the buffer or a new "line" is reguested.

As stated in section 2.4.3., a regquest for a new line means two
different things in 0S/32 and UNIX. 1In 0S/32, "read a new line" means
simply to fetch the next logical record from the file with an SVC 1
call. In UNIX, this means to move the text pointer to the first
character past the next newline character in the ©buffer. This basic
difference forced me to completely rewrite the algorithm for P$READLN.
The new algorithm is included in the routine's comment header listed in
Appendix A.

The condition which caused the most trouble in porting P$READLN was
when the next newline character fell near the FCB buffer boundary. If,
for example, the next newline in the file i1s the last byte in the
buffer, P$READLN must call the C routine "read™ to get the next 256
bytes, the reset the text pointer to the first character in this new
buffer before returning toc the caller. P$READLN therefore has to
remember whether or not to continue searching this new buffer for a
newline character. This is the purpose of the "recflagh" variable., If
it is clear, then the newline character was already found in the old
buffer and there is no need to continue searching. Further complicating
matters was the need to maintain the end-of-file and end-of-line flags,
If the first character after the next newline happens to also be a
newline character, then the end-of-line flag has to be set before

returning, P$READLN was extensively tested because of all the of f-by-

Page 50

one errors that could occur when dealing with the buffer boundary.

Like P$RESET for non-text files, P$RESETT for text files opens the
file for reading. The UNIX version of P$RESETT thus closes the file if
it is already open, opens it read=-only, and fetches the first buffer of
characters by calling P$READLN., The error messages are the same as for

P$RESET,

3.5.3. Non-text file output

The subdirectory "outputnt"™ has only two routines for non-text file
output: P$PUT and P$WRITE. P$WRITE simply maintains the internal FCB
buffer, It copies the value of the file component into the buffer, then
calls P$PUT to have the buffer dumped to the physical file. It
therefore does not use any 0OS services and needed no changes to work in
UNIZ.

P$PUT, on the other hand, performs the actual I/0 transfer so it
needed changing. This primarily involved translating the 0S8/32 SVC 1
"write" to a call to the C routine "write", This required determining
the number of bytes to be written to the file. This was done by
subtracting the address of the start of the FCB buffer from the buffer
end address, Two possible error conditions are handled, The C routine
"perror™ prints a message for a UNIX-detected error in writing to the
file. For example, this can happen if the file does not exist, the user
does not have write permission on the file, or the device experiences a
hardware failure., The other error occurs if the entire file component
was not written into the file, This again is most 1likely due to a

hardware failure.

Page 51

3.5.4, Text file output

The files in subdirectory Moutputt" perform the output functions
for text files, Since all output to these files is in ASCII characters,
numeric values such as integers and reals must be converted to their
corresponding ASCII string before the ocutput is performed. This is the
opposite conversion performed by text file input routines.

Like text file input, these conversions are mostly done without the
aid of 0S5 services. There is one exception, though. The conversion of
an integer to its corresponding ASCII string is done in the 0S/32
version with the help of an SVC 2 code 6. Since UNIX does not have a
system call that does anything like this, the UNIX version of the
routines that wuse this simply performs the conversion within the
routine. This is done the =same way for all three integer-writing
routines, P$WRITBY (BYTE type), P$WRITSI (SHORTINTEGER type), and
P$WRITI (INTEGER type). The source code for all three routines is in
the file "pwrt.int.s.m"

Again, only a few routines perform the actual I/0 transfers for
text file output., The only two routines which needed to be changed were
P$PURGE and P$WRITLN. Both routines flush the FCB buffer out to the
file. Porting these routines involved translating an 08/32 SVC 1
"write" to a call to the C routine "write". The only difference between
the two routines is that P$WRITLN appends a newline character to the end
of the text in the buffer if the buffer is not full. This is necessary
because P$WRITLN can be called for two different purposes. It can be
called by P$PUTT to flush out a full buffer or it can be called directly

by the compiled user program, In the latter case, it is used to

Page 52

designate the end of a2 line which in UNIX means "write a newline
character®™ to the file,

P$PURGE and P$WRITLN handle the same two error conditions. Again,
"fperror® is used to print UNIX-detected errors such as the file not
existing. The other error occurs when not all the characters in the
buffer get written to the f{ile, This normally indicates a hardware

problem, The source for P$WRITLN is included in Appendix A.

3.5.5. Common I/0 routines

Five routines perform functions which are common to both text and
non-text files., They all reside in the subdirectory "iocommon," They
are P$REMRIT, P$IFCB, P$EFCB, P$CLOSE, and P$$REWD, Only P$EFCB did not
need changes since it is the only routine which dces not use 0S
services.

P$REWRIT initializes a file for writing, It is called in response
to the code "rewrite (fileid)" in the Pascal program. Like resetting a
file, the 0S/32 version simply uses an SVC 7 "fetch attributes" call to
find out about the file assigned to the given LU, Since rewriting a
Pascal file destroys the file, the UNIX version creates the file with
the C routine ‘"creat." This either creates the file if it does not
already exist or truncates it to zero=-length if it does exist. The UNIX
version then closes the file and opens it write-only. After some 0S-
independent FCB initializations, the file is ready for writing.

Like P$RESET and P3RESETT, there are two possible errors., If the
user did not assign in the command-line a UNIX file name to the LU, the

following message is printed:

Page 53

"rewrite: logical unit X unassigned"

The C routine "perror™ is alsc used to print an error message if UNIX
has a problem creating or opening the file,

P$IFCB sets up an internal file. It both c¢reates the file and
initializes its FCB. Porting this routine primarily involved
translating an SVC 7 "allocate and assign” call to its UNIX-eguivalent,
The UNIX version uses the C routine "mktemp" to make a unique file name
based on the process' identification number, This file, which 1is
created in the directory "/tmp", is then created with "ecreat". The
temporary file name and the returned UNIX file descriptor are then saved
in the global fdtab sc that P$RESET, P$RESETT, and P$REWRIT can reopen
the file according to how it is used in the program, M"Perror"™ is again
used to print a message if UNIX has problems creating the file,

P$CLOSE is used to close an internal file created by P$IFCB. The
0S/32 version simply does this with an SVC 7 "close™ call. To port this
routine, then, I translated the SVC 7 into a call to the C routine
"close", The UNIX version also calls the C routine Munlink" which
removes the temporary file from the file system, It also clears the
fdtab entries for this file so they can be reused by another temporary
file, if needed. If UNIX has a problem closing the file, then a message

of the form:

"erpor in attempting to close an internal file"

is printed, followed by the UNIX error message printed by "perror®,
The last routine ported in this group is P$$REWD. It is called by

P$RESET, P$RESETT, and P$REWRIT to rewind the file or device assigned to

Page 54

the given LU, 0S/32 does this with an SVC 1 "rewind"™ call. This was
translated into a call to the C routine "lseek™" which simply moves a
file's file pointer to the beginning of the file, This is done to
ensure that any read or write session for that file always starts at the
beginning of the file, The only error condition occurs when UNIX has a
problem during ™seek", In this case, "perror" is again used to print

the message before the process is terminated.

3.5.6. I/0 error servicing routines

There are seven routines used by other RTL I/0 routines to handle
special error conditions. Three of them, P$FCBERR, P$$SVC1, and P$$SVCT
are strictly 0S/32-dependent. They were, therefore, not ported to the
UNIX system. The other four, P$GETERR1, P$GETERR2, P$PUTERR, and
P$NUMERR needed to be changed to work on UNIX for two reasons. For one,
they all used an SVC 2 code 18 which moves ASCII characters between
buffers in memory and an SVC 2 code 6 to convert the LU to an ASCII
string. Secondly, a message in UNIX should have a newline character on
the end of it so that any subsequent terminal output starts printing on
the next line.

To port these four routines to UNIX, then, a message without the
SVC calls and with a newline on the end had to be created. This was
done with the C routine "sprintf" which creates a string from any
combination of other strings, characters, and/or numeric values. The
format of the messages was slightly changed, too, The UNIX version
prints the name of the file which had the error rather than the number

of the LU it was assigned to, In all cases and for both the 03/32 and

Page 55

UNIX versions, the message is then sent to the terminal with P$SEND
before the process is terminated. The source for P$NUMERR is inecluded

in Appendix A as an example,

3.6. Testing

To test the UNIX port of PEPascal, I first wrote CAL programs which
simulated compiler-generated c¢ode to call each routine individually.
This modular approach was not only a desirable strategy, but also a
necessary one, It was desirable from the standpoint of easily isolating
individual routines for testing. 1In the context of a compiled, 1linked
user program, RIL routines are often embedded in a long, and in some
cases difficult to predict, sequence of routine calls. It can thus be
difficult to distinguish the effects of an individual routine. This
strategy was likewise necessary since we did not have a working
compiler. The RTL routines had to be working before the compiler cculd
successfully compile a program which had calls to the RTL routines of
interest from a high-level Pascal program. Once the compiler was
working, however, I did test the RTL routines from PEPascal programs. I
will discuss this in more detail later. The UNIX assembly-level
debugger utility “adb' [22] was used extensively throughout the testing
process.

The testing strategy used was the "path analysis testing" approach
[23,24). Since executing every possible path from entry to exit was not
a practical possibility for most routines, test data was selected so

that every instruction in each RTL routine was executed at least once

Page 56

[23]. The modular design of the RTL aided this effort since each
routine was kept relatively small. The number of paths through each
routine was thus kept at a manageable level, In fact, some routines had
only one path to test, Others, like P$READLN, were quite complex so I
used a flow chart to help select paths to test. This effort also
inecluded testing error conditions. For example, I provided the RTL
routine P$INIT with a variety of invalid parameters to make sure they
were all detected and echoed in the error message,

Since every program first calls P$INIT for initialization of the
run-time enviromment, I first tested this RTL routine. All programs
likewise call the error-handling initialization routine, P$ERR,
immediately after calling P$INIT. I thus tested this next, These two
routines were used in all subsequent tests, File I/0 routines also
required initializing file control blocks for the files of interest so
P$IFCB and P4EFCB were tested early, as were P$RESETT, p$RESET, and
P$REWRIT. P$TERM was used to provide a controlled exit peint from the
test program since it exits with the message "Ending execution." These
routines thus provided the background in which other RTL routines could
be tested. As an example, Figure B shows the CAL code used to test the
routine P$WRITLN which writes a line to a text file, In the interest of
programmer efficiency, testing the routines in a wider context (i.e., in
relation to a number of other RTL routines in addition to the minimum
number described above) was deferred to when we had a working compiler
since it is much easier to write Pascal code.

Once all the RTL routines had passed the above testing procedure,
the compiler was loaded with the ported RTL object modules, This

provided an immediate test of the RTL routines in the context of a

Page 57

®# file control block

#
fecb strue
feb. mw ds Y flags (see below)
feb. tptr ds 4 text pointer, a(next_char)
feb.cf'sz ds 4 current file size
fcb.svel ds svel. svc 1 parameter block
fcb, sve2 ds 8 sve 2 parameter block
feb.sveT ds sveT. sve T parameter block
ds 80-# reserved
feb.bufr equ ¥ buffer starts here
ends
2
tfeb ds f'cb
ds 256 256 byte text file buffer
testprog equ #
lhi 14,#64 100% memlimit option
lis 13,5 min,lu
bal 15,P$INIT run-time initialization
bal 15,P$ERR error=-handling initialization
lis 12,0 logical unit
lhi 13,256 size of textfile buffer
la 14,tfcb addr of file control block
bal 15,P$EFCB init the fcb (external file)
bal 15,P$REWRIT set the file for writing
bal 15,P$WRITLN output the line to the file
lis 14,0 normal exit status
b P$TERM exit w/o return
end

Figure 8. The CAL program used to test the P$WRITLN rtl routine which
outputs a line to the file assigned to logical unit 0. At this
point, the rtl routines P$INIT, P$ERR, P$EFCB, PSREWRIT, and P$TERM
had already been tested.

Page 58

number of very large PEPascal programs, Pass 10 alone, for example,
contains over 4,000 lines of PEPascal source code. A number of the RITL
routines had to be modified at this point to get the compiler to work
properly. Once the compiler was funectional, however, testing then
shifted to PEPascal source code programs..

In this phase of testing, RTL modules were tested individually, but
this time in the context of a high-level PEPascal program. This phase
concentrated more on testing special cases which would have been
difficult and/or time-consuming to code in CAL. For an extreme example,
consider the text file input routine P$READLN. As mentioned earlier,
this routine must move the FCB text pointer to the first character past
the next newline character in the FCB buffer, Understanding that the
buffer occupies 256 bytes, I tested a large number of cases which read
and wrote values right around the buffer boundary. Keep in mind that
P$READLN must read another buffer from the file if the text pointer
reaches the end of the current buffer and that it must pay attention to
end-of=file and end-of-line conditions. For example, if the first
character past the next newline in the buffer is also a newline (which
would appear as a blank line in the input file), this routine must set
the end-of=line condition to true before returning. This is complicated
further if this exists across a buffer boundary.

The final phase of testing involved running the compiler through a
Pascal Validation Suite [25] of test programs. This set of over 300
Pascal programs not only tested for conformance to the Pascal standard
[3], but also a wide variety of situations including error handling,
implementation-dependent features, and extensions to the language

standard. This phase was very tedious and time-consuming since each

Page 59

test program had to be separately compiled and executed. However, it
proved valuable in finding a number of obscure error conditions which I
would have missed otherwise and increasing my confidence in the

implementation.

3.7 Documentation

The primary emphasis in documentation was on internal
documentation. The 0S/32 version of the RTL routines provided by
Perkin-Elmer was an excellent example of low-level documentation. As
the examples in Appendix A indicate, each routine has a header as well
as extensive in-line comments with the CAL instructions. The header
consists of information about the interface with the calling routine,
which registers hold what values when called, the action performed by
the routine, where it is called from, and which routines, if any, it
calls., My only addition to the header was to describe the action taken
by the UNIX port of the routine where it differed from the 0S/32 version
and to show which routines the UNIX port called, In the examples in
Appendix A, the lines added for the UNIX port are shown with a '|' in
the rightmost column. Note that in only one case, P$READLN, was the
action by the UNIX routine sufficiently different to warrant completely
rewriting the algorithm. In all cases, nearly every CAL instruection I
added was abundantly documented with comments to clearly describe the
local action,

External documentation consists of two on=line UNIX manual entries:

one for the compiler and one for the run-time enviromment. The entry

Page 60

which describes how to use the compiler and all its options is invoked
by the command “man pascal'. The entry for the run-time envirorment is
obtained with “man T pascal' since it resides in section 7 of the on-
line manual documentation and has the same name as the compiler
description. This latter document includes a description of how to
assign UNIX file names with the external files listed in the program
header. These manual entries are included in Appendix C. Finally, just
entering the command “pascal' will produce a brief synopsis of how to
invoke the compiler with its options. This documentation, along with
the PEPascal manual [7], provides the user with a very informative

enviromment for compiling and executing their PEPascal programs.

Page 61

4, SUMMARY

At the completion of this project, we had a working PEPascal
compiler available to students and faculty. It had successfully
recompiled its passes as well as a number of other programs written by
students in the Department. This project was only one phase of the
overall effort to port Perkin-Elmer Pascal onto UNIX, however. Other
phases include modifying the compiler to produce native UNIX object
code, providing an interface to permit calling C routines directly from
the Pascal program, and writing a driver in C to coordinate the
compilation and link-editing processes. Producing a functioning
compiler, however, was the important first step.

The entire PEPascal system (shell and object code only) available
to users on UNIX required approximately 1.25 Megabytes of disk storage.
The development system which included all the source c¢ode for the
compiler passes and the rtl occupied about 6.25 Megabytes. The compiler
required 128K of main memory to compile a small to medium sized program,
It unfortunately took as much as 200K to compile some of the passes
which were over 4000 lines long. In terms of performance, the ported
PEPascal does well once the user program is compiled and linked.
However, any attempt to compile a large program when the host system has
a heavy load will result in user anxiety - it is slow!

The project involved approximately 3 man-months of effort. This is
a reasonable time frame when compared to other language ports [10,11,14]
although the other implementations involved porting to a new machine,
This 1is especially favorable considering the 3-year effort to implement

a language from scratch on a new machine [11]. An important point to

Page 62

consider, though, is that this time was just for porting the rtl = very
little was done to the compiler itself. In fact, the compiler =till
produces 0S/32 object code, It still has to be converted to UNIX object
with “ecvebj'. Considering my previous lack of experience with assembly
language programming, the run-time enviromment of languages, and the
0S/32 operating system, I think 3 man-months is a strong testimony to
the portability of the language implementation. Isolating the system-
dependent features in a modular rtl proved to be a successful strategy

for language portability.

[11

(2]

(3]

(4]

(5]

(el

[7]

(8]

9]

(101]

[11]

[12]

[13]

[14]

[15]

Page 63

REFERENCES

Ritchie, D.M, and K. Thompson. The UNIX Time-sharing System.
Comm. of ACM 26,1 (Jan 1983), p. 8u-89,

Wirth, N, The Programming Language Pascal. Acta Informatica 1

ANSI and IEEE. An American National Standard IEEE Standard Pascal
Computer Language. IEEE, New York, NY, (1983).

Joy, W.N., S.L. Graham, and C.B. Haley. Berkeley Pascal User's
Manual - Versiop 2.0. Univ, of Calif., at Berkeley Computer Center
Library, Berkeley, CA (1980).

Watson, J.A. SVS Pascal in the UNIX Enviromment. J. Pasecal, Ada,
& Modula-2 3,2 (Mar/Apr 1984), p., 25-28,

Watson, J,A. Pascal and the UNIX Operating System, J. Pascal and
Ada 2,6 {Nov/Dec 1983), p. 27=-28.

Perkin-Elmer Corp., Pascal User Guide, Language Reference, and Run
Time Support Reference Manual, Pub. no. 48-021R0O1 (1982).

Perkin-Elmer Corp. 0S/32 Programmer Referepnce Manual. Pub. no.
329-613RO4 (1979).

Perkin-Elmer Corp., Common Assembly Language (CAL) Programming
Reference Manual, Pub. no., S29-640R04 (1980).

Poole, P.C. and W.M. Waite. Portability and adaptability, in F.L.

Bauer, ed., Advanced Course in Software Engineering, Springer-
Verlag, Berlin (1973).

Brown, P.dJd. Macro processors, in P.J. Brown, ed.,, Software
Portapility, Cambridge Univ. Press, Cambridge, England (1977), p.
89-105,

Griswold, R.E. [The Macro Implementation of SNOBOL4. Freeman, San

Francisco, CA (1972).

Brinch Hansen, P. The programming language concurrent Pascal, IEEE
Trans, on Software Engineering, SE-1, no. 2 (1975), p. 199-207.

Neal, D. and V. Wallentine. Experiences with the portability of
Concurrent Pascal, Software = Practice and Experience, vol, 8
(1978), p. 341-353.

Norwegian Computing Center. SCALA, System Construction and
Application Languages: S-PORT, the development of a Portable
Simula System. Norwegian Computing Center, Forskningsveien 1B,
Blindern, Oslo, Norway.

[16]

[17]

[18]

(19]

[20]

[21]

[22]

(23]

[24]

(25]

Page 64

Kernighan, B.W. and D.,M. Ritchie. The C Programming Language.
Prentice-Hall, New Jersey, (1978).

Bell Telephone Laboratories. UNIX Programmer's Manual, Seventh
Ed., Vol. 1, See¢, 2. Bell Telephone Laboratories, Ine.,, Murray
Hill, NJ. (1979).

Kernighan, B.W. and D.M. Ritchie, UNIX programming - second
edition. In UNIX Programmer's Manual, Seventh Ed., Vol. 2a., Bell
Telephone Laboratories, Ine., Murray Hill, NJ. (1979).

Thompson, K. UNIX implementation, JIn UNIX Time-sharing System:
UNIX Programmer's Manual, Seventh Ed., Vol, 2b, Bell Telerhone
Laboratories, Inc., Murray Hill, NJ. (1979).

Feldman, S,I. Make = A program for maintaining computer programs,
In UNIX Programmer's Manual, Seventh Ed., Vol. 2a. Bell Telephone
Laboratories, Ine,, Murray Hill, NJ, (1979).

Perkin-Elmer Corp, CAL Macro Processor and Macro Library Utility.
Pub., no. S29-408ROY4 (1979).

Maranzano, J.F. and S.R. Bourne. A tutorial introduction to ADB.
In UNIX Programmer's Manual, Seventh Ed,, Vol. 2a, Bell Telephone
Laboratories, Ine., Murray Hill, NJ. (1979).

Beizer, B. Software Testins Techniques. Van Nostrand Reinhold Co,,
Inc. New York, NY. (1983).

Howden, W.E. Reliability of the path analysis testing strategy.
IEEE Trans. on Software Engineering SE-2,3 (Sept 1976), p. 208-
215.

Sale, A.H.J. and B.A. Wichmann. Pascal Validation Suite. A tape
distributed by C/=Software Consulting Services, Allentown, PA.

Page 65

Appendix A. Examples of ported Perkin-Elmer Pascal run-time library

routines, They are written in CAL with the support of the CAL Macro

processor., The symbols "unix" and "os32" are defined in the mnacro
called "options", These symbols determine whether the UNIX or 05/32
run=time libraries are assembled. All code added in the UNIX pert

has a '|' in the righthand column.

##p3RESET
P$RESET P.HEADR 01,00
SPACE 5
7.5.3 PROCEDURE P$RESET(VAR F: UNIV FILE);
#
& INTERFACE:
¥ THE ADDRESS OF THE FILE'S FCB IS RECEIVED IN R14,
#
0332 ACTION:
1. FETCH ATTRIBUTES OF THE LOGICAL UNIT,
2, IF THE FILE/DEVICE SUPPORTS BINARY I/0, SET THE SVC 1
FUNCTION CODE TO READ BINARY & WAIT; QOTHERWISE SET IT TO
¥ READ ASCII & WAIT.
b 3. IF THE FILE/DEVICE SUPPORTS REWIND, REWIND IT.
b 4, RESET THE FILE SIZE IN THE FCB TO ZERO,
* 5. SET THE STATUS FLAGS TO ALLOW INPUT AND SET EOF TO FALSE
2 FOR THE BENEFIT OF P3$GET.
6. CALL P$GET TO READ THE FIRST RECORD.
#*
JNIX ACTION:
¥ 1. IF THE FILE IS ALREADY OPEN, CLOSE IT. THEN OPEN IT
READ-QNLY, SAVING THE RETURNED FILE DESCRIPTOR.
* 1b. CHECK FOR ERRORS IN THE OPENING OF THE FILE.
& 2. SAME,
2 3. REWIND (WITH LSEEK) THE FILE.
2 4-6, SAME
#®
ERROR RESPONSES:
0S32: IF THE FETCH ATTRIBUTES CALL FAILS, A MESSAGE IS LOGGED
AND THE TASK IS PAUSED. ON CONTINUATION, THE OPERATION
¥ IS RETRIED,
® UNIX: IF THE FILENAME PTR. IS NULL, THEN NO UNIX FILE HAS BEEN
¥ ASSIGNED = LOG THE ERROR MESSAGE WITH P$SEND. IF UNIX DETECTS
¥ AN ERROR IN OPENING THE FILE, LOG THE MESSAGE WITH 'PERROR'.
% CALLED FROM:
¥ COMPILER GEMNERATED USER CODE.
&
CALLS TO:
® 0S32: P$FCBERR, P$PAUS, P$$REWD, P$GET
¥ UNIX: close, open, perror, sprintf, strlen, P$SEND, P3$TERM,
¥

P$SREWD, P$GET

Page 66

SPACE 5

$PREGS LIST=NO

$PASFCB LIST=HO

TITLE P$RESET - NON-TEXT FILE INITIALIZATION FOR READ
P.DATA

P.SAVEM R12

ENDS
% Macros needed for UNIX
options
gbdata
udl
SPACE 2
P$RESET P.ENTER
SPACE 2
¥ 1,
RESET.0 EQU # .
ifnz unix
i) r7,c.sp get ¢ stack ptr
stm r0,32(r7) save pascal regs
space
ir ril,ri4 save the fecb address
1b r12,fcb.sveT+sveT.lu{r11) get lu
sla riz,3 calculate fdtab offset
1l ri3,udl.ext get to top of ghbdata
s8i ri3,gbdata then get to the beginning of it
ar ri2,r13 and calculate actual offset
1 ri13,fdtab+fd{r12) get filedes
cli ri3,=1 is it unassigned?
be openit yes = open it w/o close
space
* close the file if it is already open
st r13,0(r7) otherwise put it on ¢ stack
bal.ext llink,close and close it
space
¥ open the file read-only if it has been assigned
openit 1 r1d4,fdtab+fname(r12) get filename ptr
bz filerr error if null ptr
lis ri15,0 read-only node
stm r14,0(r7) put them on ¢ stack for open

bal.ext llink,open
st ri,fdtab+fd(r12) save the filedes

bm openerr error if negative fd

space

1lm r0,32{r7) restore pascal regs

else unix

LI R12,0 SET UP FOR FETCH ATTRIBUTES
STH R12,FCB, SVCT+SVCT7.0PT(R14)

SvC 7,FCB.SVCT(R14) DO THE FETCH

LB R12,FCB.SVCT+SVCT7.STA(R1Y4)

LR R12,R12 FETCH QK ?

BZ RESET. 1 YES, CONTINUE

SPACE

Page 67

BAL, EXT LLINK, P$FCBERR LOG ERROR MESSAGE

BAL.EXT LLINK, P$PAUS WAIT FOR CORRECTION
B RESET.D RETRY
ende
RESET.1 EQU #
SPACE

* 2.
LI R13,S1FC. RDM+31FC. WTM ASSUME ASCII+WAIT
LH R12,FCB.SVCT+SVCT.KYS(R14) GET ATTR FLAGS

THI R12,X'1000!' EINARY SUPPORTED ?
BZ RESET.2 NO, SKIP IT
OHI R13,31FC.BIM SET BINARY BIT

RESET.2 EQU ¥
STB R13,FCB.SVC1+3SVC1.FC(R14) SET FN CODE
SPACE
£ 3,
ifnz o832 assume unix files support rewind
THI R12,X'00L0! REWIND SUPPORTED ?
BZ RESET. 3 NO, DON'T TRY IT
ende
BAL, EXT LLINK,P$$REWD REWIND THE FILE/DEVICE
RESET,3 EQU bl
SPACE

LI R12,0 RESET FILE_SIZE TO ZERO
ST R12,FCB.CFSZ(R14)
SPACE

LI R12,MW.RESET FLAG FILE AS RESET
ST R12,FCB.MW(R1L)
SPACE

BAL,EXT LLINK, P$GET

P.LEAVE

SPACE
¥ pessage for UNIX-detected error in opening the file
openerr equ #

1 r14,fdtab+fname(r12) get filename ptr

sta r14,0(r7) put on ¢ stack for perror
bal.ext llink,perror write the message

b quit

space

¥ error message for falling to assign a UNIX file to the pascal file
filerr equ &

la ri3,msgbuf get address of buffer for message
la r14,errnsg format string for sprintf

1b r15,fceb.sve7+sve7.lu(r11) get unassigned lu

stm r13,0(r7) put parms on ¢ stack for sprintf

bal.ext 1llink,sprintf generate the message string

space

la r14,msgbuf get address of message for strlen
st r14,0(r7) and put it on ¢ stack for strien

bal.ext 1llink,strlen get the length of the message

Page 68

space
1r r13,ro0 p$send needs length in r13
bal.ext llink,p$send send the message
space
quit lis ri14,1 error exit status
b.ext p$term
space
template for UNIX error message
errmsg db c'reset: logical unit %d unassigned',x'0a',x'00!'
msgbuf ds 40
END
#E¥PSREADLN
P$READLN P,HEADR 01,00
SPACE 5

7.6.8 PROCEDURE P$READLN(VAR T: TEXT);

INTERFACE:
THE ADDRESS OF T'S FCB IS RECEIVED IN Rid4,

RETURN:
IF EOF BECOMES TRUE, THEN THE CONDITION CODE ON RETURN IS
ZERO, OTHERWISE, IT IS FORCED NON=ZERO,
THIS FACT IS RTL-CONFIDENTIAL.

*

%

]

E]

#

*

#*

]

*

0S32 ACTION:
* 1. MAKE SURE THE FILE IS READABLE (I.E., RESET) AND

* NOT AT EOF, IF NOT A MESSAGE IS LOGGED AND THE TASK

IS TERMINATED,

* 2. GET THE NEXT PHYSICAL LINE:

¥ 2.1 READ A& PHYSICAL RECORD.

% 2.2 IF END-OF-FILE IS RETURNED, THEN SET EQF, FORCE THE
¥ CONDITION CODE TO ZERO AND RETURN. FOR OTHER I/0
* ERRORS, LOG A MESSAGE, PAUSE, AND RETRY THE READ.

* 2.3 IF THE NUMBER OF BYTES TRANSFERRED IS < 256, THEN

PLACE A CARRIAGE RETURN CHARACTER AS A SENTINEL AFTER
* THE LAST CHARACTER READ.

* 2.4 RESET THE TEXT BUFFER POINTER AND EOLN; INCREMENT THE
CURRENT FILE SIZE COUNTER.

IF THE CURRENT CHARACTER IS EOLCHAR, THEN SET

ECLN AND MAKE THE CURRENT CHARACTER BLANK.

*

#

*

®

]

¥

&

#*

UNIX ACTION:
1. SAME.
2. GET THE NEXT LOGICAL LINE == UNLIKE 0332, THIS REQUIRES
MOVING THE FILE POINTER TO THE FIRST CHARACTER PAST THE
NEXT NEWLINE CHAR IN THE FILE BUFFER. THIS MAY OR MAY
NOT REQUIRE READING IN A KNEW BUFFER FROM TEE FILE.
ALGORITHM:

ook Mt sk it W WA We e W Wtk WK M R e ol Wt A me B ol e o bl B e Ak s MR SR 3 oM ot sl o Mt sk R M a0 sl e 3B ol e e oW ok sl ok ok

procedure p$readln {var t: textfeb);

Page 69

type textfeb: record {not exactly right, but you get

the point}
eofflag, eolnflag: boolean;
filesize: integer;
bufr: array [1..textsize] of char
end;
var samebuf, search: boolean;
tptr: integer;

begin
samebuf := true;
search :=z true;
tptr := 0;

if not t.eolnflag then
while search do begin
tptr = tptr +1;
if t.bufrltptr] = chr(10) {newline char}
then search := false;
if tptr = textsize
then begin
readbuf (t);
tptr := tptr - 1
end
end {while loop}

else begin {eoln true when entered routine}

search := false;
if (t.filesize = 0) or (tptr = textsize)
then begin
readbuf (t);
samebuf := false
end
end; {else}
if samebuf then tptr := tptr +1;
if t.bufrftptr] = chr{10)

then begin
t.bufr(tptr] = * ';
t.eolnflag := true
end

end; {p$readln}

procdure readbuf (var t: textfeb);
var read_error: boolean;
begin
read_error := false;

magicread (t); {gets a buffer, sets eofflag and

read_error}
if read_error
then begin
print_error_message;
terminate process
end;
if not t.eofflag
then begin

tptr := 0;

end
end; {readbuf}

ERROR RESPONSE:

CALLED FROM:
P$GETT

CALLS TO:

W d s e e W M a W e o a M W e ke W W o

SPACE 5
$PREGS LIST=NO
$PASFCB LIST=NO

t.filesize :

t.eolnflag :

Page 70
t,filesize +1;

false

IF THE FILE IS NOT READABLE, OR EOF IS TRUE INITIALLY, THEN
LOG A MESSAGE AND ABORT.
0S32: FOR GENERAL SVC 1 ERRORS, CALL P$$SVC1 AND P$PAUS.
UNIX: FOR UNIX-DETECTED READ ERRORS, "PERROR" PRINTS THE MESSAGE.
THE PROCESS IS THEN TERMINATED.

COMPILER GENERATED USER CODE,

0S32: P$GETER1, P$GETER2, P$$SVC1, P$PAUS
UNIX: P$GETER1, P$GETER2, read, perror, P$TERM

TITLE P$READLN - GET NEXT INPUT RECORD (TEXT)

P.DATA
P.SAVEM R12
ENDS

definitions needed for UNIX
udl
gbdata
options

recflag ds 2

#
SPACE 2

P$READLN P.ENTER
SPACE

® .
L R12,FCB.MW(R14)
TI R12,MW. RESET
B.EXT P$GETER1,CC=2Z
TI R12,MW.ECF
B.EXT P$GETER2,CC=NZ
SPACE

2.1

READLN.1 EQU ¥
ifnz unix
lis ri3,1
sth r13,recflag

1 r13,feb. tptr(rid)
1 r12,feb.m(ril)
ri2,m.eoln

bz rdln.l1a

set = continue searching for newline

clear = quit search - found newline

GET FCB FLAGS
IS IT READABLE ?
NO, FATAL ERROR
IS IT AT EOF ?
IF SO, TOO BAD

set flag to continue getting chars
from bufr

get ptr to current character

get feb flags

at end of line?

noe == continue looking for newline

Page T1

space
lis ris,0
sth ri15,recflag clear flag to stop searching buffer
ni ri2,-1=-mw,eoln reset eoln to false
st r12,fcb.mv(r1ld)
1 r12,fcb.,cfsz(rii) is this the first record read?
bz rdln.l1c yes -- go read first record
space
1 r15,fcb.svel+svel.1xf(ril) byte count from last read
ai r15,feb. bufr-1(r14) to find end of data
elr ri3,r15 at end of data?
bnl rdln.l1e yes -= read a new record
ais ri13,1 bump tptr to beginning of new line
b read.lda and prepare to return
space
% search for the newline char
rdln,1a ais ri13,1 bump tptr to next char
continu 1lb r12,0(r13) get the char
cli ri2,newline is it a newline char?
bne rdlin.1b no =- continue
lis r11,0 yes == found nl - clear recflag
sth ri11,recflag
#* need a new buffer?
rdln.1b 1 r15,fecb.svel+svel.1xf(r14) byte count from last read
ai r15,fcb.bufr=-1(r14) to find end of data
elr ri3,ris at end of data?
bnl rdln. 1c yes -- read a new record
lh ri5,recflag no -- get the flag
bnz rdln.,1a set =-- get the next char
ais ri3,1 clear -- bump tptr
b read.la and prepare to return
space

pead in a new buffer from the file

rdln.l1e 1 rT,c.sp get ¢ stack ptr
stm r0,32(r7) save pascal regs
1ir ril,ril move fcb address
1 ri5,udl, ext get top of gbdata
si ri15,gbdata and get to the beginning of it
1b r12,fcb.svel+svel.lu(r11) get the lu
sla ri12,3 get fdtab offset
ar ri2,ri15 and calculate actual offset
1 r13,fdtab+fd(r12) get the filedes
la r14,feb.bufr(r1i1l) get addr of buffer to receive data
1li ri15,textsize number of bytes to be read
stm r13,0(r7) parms for unix routine
bal.ext llink,read go do the read
st r0,feb.svel+svel.lxf(r11) save returned byte count
ir rd,ro test return status
bm rderri read error
space
1lm ri,32(rT) restore pascal regs
1 ri5,fcb. svel+svel.1xf(r14) test byte count for eof
bz readln.z2 go set eof flag

e e e e e e e = e e e e T e R R e e e REAR ERER e M S e A R EmEE R R B G e e e e e le e AN MM Smem M M Emm s e e e M e —— ——

® 2.2

READLN.2

® 2.3

READLN. 3

READLN. 4

2.4

read.la

lis

ril,1

am r11,feb. efsz{ril) increment current file size
b readln, b continue

else unix

Sve 1,FCB.SVC1(R14) READ A RECORD

LE R15,FCB. SVC1+SVC1.STA(R14) CHECK STATUS

BZ READLN. 3 OK

SPACE

TI R15,81ST, EMM+S1ST,EFM EOF/EOM SET ?

BNZ READLN., 2 YES, GO SET FLAG

BAL.EXT LLINK,P$$SVC1 GO LOG ERROR MESSAGE
BAL,.EXT LLINK,P$PAUS PAUSE FOR INTERVENTION

B READLN, 1 THEN RETRY THE READ

endc

SPACE

EQU #

1 ri2,fecb.mi(r14) restore feb flags

0I R12,MW, EOF SET EOF FLAG

ST R12,FCB.Mi(R14) IN FCB

LIS R12,0 FORCE COND CODE = ZERO

B READLN.5

SPACE

EQu #

ifnz o832 UNIX does this automatically
L R13,FCB.VC1+SVC1,LXF(R14) GET LENGTH OF XFER
CLI R13,TEXTSIZE LESS THAN A BUFFER XFERED ?
BNL READLN, 4 NQO, IT'S OK A4S IS

LIS R15,EOLCHAR FORCE AN EOL AS SENTINEL
STB R15,FCB.BUFR(R13,R14) AT END OF BUFFER

ende

EQU N

SPACE

LA R13,FCB.BUFR(R1L4) RESET TEXT POINTER

ST R13,FCB. TPTR(R14) TO BUFFER START

SPACE

1 r12,feb. me(r14) restore r12 with feb flags
NI Rt12,=-1-Mi, ECLN AND RESET EOLN

ST R12,FCB.MW(R14)

ifnz unix

lh ri5,recflag get newline search flag
bnz continu if set, continue

endc

SPACE

LB R12,0(R13) CURRENT CHARACTER

ifnz unix

ei ri2,newline UNIX end-of-line?

else unix

CI R12,EOLCHAR 0S32 END OF LINE?

ende

BNE READ.5A IF SO THEN...

Page T3

LI R12,C' ! STORE A BLANK
STB R12,0(R13) AND

SPACE

L R12,FCB.MW(R14) SET EOLN

0I R12,Md. EOLN
ST R12,FCB.MW(R14)
SPACE
READ.5A4 EQU #
SPACE
ifnz o0s32 this done for UNIX earlier
LIS R12,1
AM R12,FCB.CFSZ(R14) INCREMENT CURRENT FILE SIZE
ende
b AND FORCE COND CODE NON-ZERC,
SPACE
READLN,5 EQU #
st ri3,feb.tptr(rid) save new tptr
P.LEAVE AND RETURN
¥ UNI¥=detected error in reading the file
rderri equ ¥

i r14,fdtab+fname(r12) get the filename ptr
st r14,0(r7) put it on ¢ stack for perror
bal.ext 1llink,perror Wwrite the message
lis ri14,1 error return status for pgterm
b.ext P$TERM exit w/o return
END
#¥PSWRITLN
P4WRITLN P,HEADR 01,00
SPACE 5

7.7.10 PROCEDURE P$WRITLN(VAR T: TEXT);

INTERFACE:
THE ADDRESS OF T'S FCB IS RECEIVED IN Rl4.

0S/32 ACTION:

1. MAKE SURE THAT T IS WRITABLE.

2. IF THE CURRENT TEXT POINTER IS LESS THAN THE SVC 1 BUFFER
END ADDRESS, THEN FORCE AN ECLCHAR AT THE END OF THE
BUFFER,

3. WRITE THE PHYSICAL RECORD.

4, RESET THE CURRENT TEXT POINTER TO THE BUFFER START ADDRESS
AND INCREMENT THE CURRENT FILE SIZE.

UNIX ACTION:
1. SAME
2. IF THE CURRENT TEXT POINTER IS LESS THAN THE SVC 1 BUFFER
END ADDRESS, THEN FORCE A NEWLINE CHAR AT THE END OF THE
TEXT,

WM W A ik sk R W 3k ke W W W g W W R W

4, SAME

ERROR RESPONSE:

CALLED FROM:
P$PUTT

CALLS TO:

MM ol oam ae b M M ol s dc M oM e ol M ol ke Mt R e ok

SPACE 5
$PREGS LIST=NO
$PASFCB LIST=NO

Page Ti

3. WRITE THE BUFFER -- ONLY THE NUMBER OF CHARACTERS UP TO THE
CURRENT TEXT POINTER ARE WRITTEN.

0S/32: IF AN SVC 1 ERROR OCCURS, CALL P4SVC1 TO LOG AN ERROR
MESSAGE. THEN CALL P$PAUS TO PAUSE THE TASK. UPON
CONTINUATION, RETRY THE WRITE.

UNIX: IF THE FILE HAS NOT BEEN REWRITTEN (NOT WRITEABLE), THEN
LOG THE ERROR MESSAGE WITH P$PUTERR. IF AN ERROR OCCURS IN
THE UNIX "WRITE", THE UNIX-DETECTED MESSAGE I3 PRINTED WITH
"PERROR, " IF FEWER BYTES ARE ACTUALLY WRITTEN THAN WHAT IS
SENT TC "WRITE," THEN WRITE AN ERROR MESSAGE WITH P4$SEND.
IN ALL CASES, THE PROCESS IS TERMINATED,

COMPILER GENERATED USER CCDE.

0S/32: P$PUTERR, P$$sSVC1, P$PAUS
UNIX: P$PUTERR, write, perror, sprintf, strlen, P3SEND, P$TERM

TITLE P$WRITLN - WRITE A PHYSICAL LINE TO A TEXT FILE

P.DATA
P. SAVEM R12
ENDS

definitions needed for UNIX
gbdata
udl
options

writsiz ds y
SPACE 2

P$WRITLN P,ENTER
SPACE
i R12,FCB.MW(R14)
TI R12,MW. REWRT
B.EXT P$PUTERR,CC=Z
SPACE
L R13,FCB. TPTR(R14)
ifnz o0s32
SIS R13,1
endc

GET FLAGS

AND ENSURE FILE IS WRITEABLE
IF NOT, FATAL ERROR

GET TEXT POINTER

AND BACK IT UP 1

CL R13,FCB.SVC1+SVC1.EAD(R14) BUFFER FULL ?

BNL WRITLN. 1
ifnz unix

li ri5,newline
stb r15,0(r13)
else unix

T R15,EOLCHAR
STB R15,1(R13)

YES, JUST WRITE IT

else append newline char

ELSE APPEND AN EOLCHAR

Page T5

ende
SPACE

WRITLN,1 EQU #
ifnz unix
1 7 ,C. SP get ¢ stack ptr
stm r0,32(r7) save pascal regs
space
lr ri1,r14 save fcb address
1b r12,fcb.svel+svel.lu(r11) get lu for file descriptor
sla riz,3 calculate fdtab offset
1 ri4,udl.ext get top of gbdata
si rii4,gbdata then get to the beginning
ar ri2,r1l4 and calculate actual offset
space
1 r13,fdtab+fd(r12) get fd
1 r14,fcb, svel+svel.sad(r11) get buffer start address
1 r15,feb. tptr(r11) for byte count
ais ris,1
sr ris,ri14 calculate number xfer count
st ri5,writsiz and save it
stm r13,0(r7) put UNIX parms on ¢ stack
bal.ext llink,write write the buffer
space
st r0,feb.svel+sve1.1xf(r11) save the transfer count
1ir r0,r0 check the status (byte count)
bm writerri write error
cl r0,writsiz
bl writerr2 wrote fewer bytes than sent
space
1m r0,32(rT) restore the pascal regs
else unix
SVC 1,FCB.SVC1(R14) WRITE THE LINE
LH R15,FCB, SVC1+SVC1.STA(R14) CHECK THE STATUS
BZ WRITLN,2 IF ZERO, CONTINUE
BAL, EXT LLINK, P$$SVC1 LOG THE ERROR
BAL.EXT LLINK,P$FPAUS AND PAUSE
B WRITLN, 1 ON CONTINUATION, RETRY
endc
SPACE

WRITLN.2 EQU # WRITE SUCCESSFUL,..
LA R13,FCB.BUFR(R14) RESET TEXT POINTER
ST R13,FCB. TPTR(R14) TO START OF BUFFER
SPACE
LIS R13,1
AM R13,FCB.CFSZ(R14) AND INCREMENT FILE SIZE
SPACE
P.LEAVE EXIT

problem writing to file (UNIX write returned a =1)

writerr! equ

1 r15,fdtab+fname(r12) addr of filename ptr

st r15,0(r7) put on ¢ stack for perror
bal.ext llink, perror write the message

b bye and exit

Page T6

space

yrote fewer bytes than sent to UNIX write
writerr2 equ #

la ri13,msgbuf addr of buffer for message
la r14,ermsg format string for sprintf
1 r15,fdtab+fname(r12) get fname ptr for message
stm r13,0(r7) put parms on ¢ stack
bal.ext 1llink,sprintf create the message
st r13,0(r7) put buffer ptr back on ¢ stack
bal.ext llink,strlen get length of message
lr ri4,r13 addr of message
ir r13,r0 length for P$SEND
bal,ext 1link, P$SEND send it
bye lis ril4,1 exit error status
b.ext P$TERM exit with no return
bl format string for UNIX error message
ermsg db c'%s: wrote fewer bytes than sent',x'0a',x'00!
msgbuf ds 80
END
8P SNUMERR

P$NUMERR P, HEADR 01,00

SPACE 5

7.6.10 PROCEDURE P$NUMERR(VAR T: TEXT);

INTERFACE:

THE ADDRESS OF THE FILE'S FCB IS RECEIVED IN R14,

0532 ACTICN:

AN ERROR MESSAGE IS CREATED AND LOGGED TO THE CONSCLE AND
THIS ROUTINE RETURNS TC THE CALLER TO HANDLE TERMINATION.

AN ERROR MESSAGE WITH THE FILENAME IS CREATED AND SENT TO
STDERR. CONTROL IS RETURNED TO THE CALLER FOR TERMINATICN.

CALLED FROM:

P$$RDINT, P$READSR, P$READR

CALLS TO:
0S32: P$SEND
UNIX: sprintf, strlen, P$SEND

#
#
®
#
=
#
#
]
]
®# UNIX ACTION:
]
#
#
]
H
L]
®
]
2

SPACE 5

$PREGS LIST=NO

$PASFCB LIST=NO

TITLE P$NUMERR - INVALID CHARACTER IN NUMERIC INPUT
P.DATA

P.SAVEM R12

ALIGN ADC

UNPKLU
MESG

DS
DS

Page TT

8
132

ALIGN ADC
ENDS

UNIX definitions

mesg2
lmesg?2

P$NUMERR

ds 80

ds 2
options
gbdata

udl

SPACE 2

align 2
P.ENTER

SPACE

ifnz unix

1 r7,c.sp
stm r0,32(r7)
space

1b ri13,feb.svel+svel.lu(rid)

sla ri13,3

1 ril,udl.ext
si r14,gbdata
ar ril,r13

1 r15,fdtab+ fname(rily)

la r13,mesg2

get ¢ stack ptr
save pascal regs

get the lu

and shift for offset in fdtab

get to top of gbdata

and then get to the beginning

calculate actual offset into fdtab
get ptr to the filename

address of message buffer

la ril,errnsg2 format string for sprintf

stm r13,0(r7) put them on ¢ stack for sprintf
bal.ext llink,sprintf create the message

space

la ri15,mesg2 address of message

st r15,0(r7) put it on ¢ stack for strlen

bal.ext 1llink,strlen

get the length of the message

sth r0,lmesg2 and save it

space

lm r0,32(r7) restore pascal regs
else unix

LA R12, ERRMSG MESSAGE ADDRESS

LA R13,MESG(R1) ADDR OF DEST

svC 2,MOVMESG MOVE IT TO THE STACK
SPACE

LHI R12,X'C306! UNPK DECIMAL, NLZ
STH R12,UNPKLU(R1) FORM PARAMETER BLOCK ON STACK
LA R12,DEST.LU(R1)

ST R12,UNPELU+4(R1) SET DEST'N ADDR
SPACE

LR R12,R0 SAVE RO

LB RO,FCB,SVC1+SVC1.LU(R14) GET BAD LU

SVC 2,UNPKLU(R1) UNPACK IT TO MESG

LR RO,R12 RESTORE RO

SPACE

LA R14,MESG(R1) ADDR OF MESG

LI R13,LMESG LENGTH OF MESG

ende

MOVMESG

ERRMSG
LU
LMESG

DEST.LU
#

errmsg2

Page 78

ifnz unix

la r1li,mesg2 addr of UNIX mesg

1lh r13,1lmesg2 length of UNIX mesg
ende

BAL.EXT LLINK, P$3SEND LOG THE MESSAGE

SPACE

P, LEAVE RETURN TO CALLER

SPACE 3

ALTIGN ADC

DB LMESG,18,R12,R13

SPACE 2

DB C'INVALID CHARACTER IN NUMERIC INPUT, LU= °
DB CrXXX'

EQU ®<ERRMSG

BU LU-ERRMSG+MESG

template for UNIX error message

db e'%s: invalid character in numeric input!',x'0a',x'00!
END

Page T9

Appendix B, The makefile used by the UNIX utility “make' for building
the PEPascal compile-time and run-time enviromment. The development
system can be built from scratch by issuing the command *make' while
in the same directory where this file resides. Tests of individual
rtl routines were made with ‘make test' where the CAL file "test.s"
contains the test code. The PEPascal version available to the
general public can be made with ‘make public'.

#The commented routines are not used in the UNIX port
#RTLOBJ1 = rtl/error/pas.rel.o rtl/fortran/p_fort.o

RTLOBJ1 = rtl/heap/p_ _remv.o rtl/heap/p disp.o \
rtl/heap/p_mark.o rtl/heap/p_new.o \
rtl/heap/p_rel.o rtl/heap/p_spac.o \
rtl/init/p_ermes.o rtl/init/p_init.o \
rtl/error/pas.err.o rtl/init/decl.o

#RTLOBJZ =

RTLOBJ2 = rtl/inputnt/p_read.o rtl/inputnt/p_get.o \
rtl/inputnt/p_reset.o rtl/inputt/p_ rdint.o \
rtl/inputt/p_gett.o rtl/inputt/p_readby.o \
rtl/inputt/p_readch.o rtl/inputt/p_readi.o \
rtl/inputt/p_readln.o rtl/inputt/p_readsr.o \
rtl/inputt/p_readr.o rtl/inputt/p readsi.o \
rtl/inputt/p_resett.o rtl/inputt/dotatod.o \
rtl/inputt/dotatof,.o

i

RTLOBJ3 = rtl/iocommon/p__ rewd.o rtl/ioccommon/p_close.o \
rtl/iccommon/p_efeb,o rtl/iocommon/p_ifeb,o \
rtl/iocommon/p_rewrit.o rtl/icerror/p_geteri.o \
rtl/icerror/p geter2.o rtl/icerror/p_numerr.o \
rtl/icerror/p_puterr.o rtl/icerror/p_fcberr.o \
rtl/icerror/p__svel.o rtl/icerror/p__sveT.0

RTLOBJY = rtl/outputnt/p_put.o rtl/outputnt/p _write.o \
rtl/outputt/p_page.o rtl/outputt/p_purge.o \
rtl/outputt/p_putt,o rtl/outputt/p_writb,o \
rtl/outputt/p_writch,o rtl/outputt/p writln.o \
rtl/outputt/p _writr.o rtl/outputt/p_writs.o \
rtl/outputt/p writsr.o rtl/outputt/pwrt.int.o \
rtl/outputt/dotftoa.o rtl/outputt/dotdtoa.o

RTLOBJS = rtl/set/p_sand.o rtl/set/p_scomp.o \
rtl/set/p_sdif.o rtl/set/p_sor.o \
rtl/struct/p_filecpy.o rtl/struct/p_stcmpl.o \
rtl/struct/p_stempl.o rtl/struct/p _stcmp2.o \
rtl/struct/p_stemp3.o rtl/struct/p_stcpy.o

#RTLOBJ6 = rtl/prefix/rename.o rtl/prefix/reprotec.o \
rtl/prefix/rewind.o rtl/prefix/back fil.o \
rtl/prefix/back re.o rtl/prefix/checkpoi.o \
rtl/prefix/forwd_re.o rtl/prefix/allocate.o \

Page 80

rtl/prefix/delete.o

RTLOBJ6 = rtl/prefix/open.o rtl/prefix/close.o \
rtl/prefix/feteh _at.o rtl/prefix/write fi,o \
rtl/prefix/forwd_fi.o rtl/prefix/breakpoi.o \
rtl/prefix/start_pa.o rtl/prefix/time.o \
rtl/prefix/date.o rtl/prefix/exit.o \
rtl/prefix/p _iofun.o rtl/prefix/change a.o \
rtl/sves/sve7.o rtl/prefix/prefix,o

RTLOBJA = $(RTLOBJ1) $(RTLOBJ2) $(RTLOBJ3)

RTLOBJB = $(RTLOBJY) $(RTLOBJS) $(RTLOBJE)

CRTLCBJ = comprtl/allotemp.o comprtl/dotatod.o \
comprtl/readscan,o comprtl/setlink,oc comprtl/readscn.o

#PASSES
#PASSES

./passes/pass*, o

./pas/passes.,o ,/passes/passl.o ./passes/pass2.o \
./passes/pass3.o ./passes/passli,o ./passes/pass5.o0 \
./passes/passb.o ./passes/passT.o ./passes/passB.o \
./passes/pass9.0 ./passes/passil.o

./pas/passes.o ./pas/pasleadr.o

./pas/passes,o ,/pas/pasldrall,o

PASSESA
PASSESB

DRIVER = ./pas/pascal.o
all: pepascal
public: pasall

pepascal: comprtl.o pasrtll.o pasrtl2.,o $(DRIVER) ${PASSESA)
ld -X -0 pepascal /lib/ert0.o $(DRIVER) ${PASSESA)\
pasrtll.o pasrtl2.o comprtl,o -l¢

pasall: comprtl.o pasrtlil.o pasrtl2.o $(DRIVER) $(PASSESB)
=1d =X =0 pasall /lib/crt0.o $(DRIVER) $(PASSESB)\
pasrtll.o pasrtl2.o comprtl.o =lc
mv pasall /usr/pascal/pepascal
chmod T75 /usr/pascal/pepascal
touch pasall

test used to test rtl routines with CAL programs
test: test.o pasrtll.o pasrtl2.o
1d =X /lib/crt0.o0 test.o pasrtll,o pasrtl2.o -lc

comprtl,.o: mutil,lib $(CRTLOBJ)
-ld =-r =-x -o comprtl,o ${(CRTLOBJ)

pasrtll,o: mutil,lib ${RTLOBJA)
=ld =r =x =0 pasrtll.o $(RTLOBJA)

pasrtl2.o: mutil.lib $(RTLOBJB)
=ld =r =x =0 pasrtl2,o $(RTLOBJB)

calmacro < $¥,s5 \

MLIBS=mutil.lib MLIST=NONE
as -u -o $¥,0 m,out,s
rm m,out.s

mutil.lib: macros, src macros, ksu
cat macros,ksu macros.src | bldlib
rm mutil, tmp

rtl/prefix/prefix,o: rtl/prefix/prefix.c
ce =¢ rtl/prefix/prefix.c
mv prefix,o rtl/prefix

comprtl/readscn.o: comprtl/readscn,c
ce =¢ comprtl/readscn.c
mv readscn, o comprtl

Page 81

Page 82

Appendix C. On=line UNIX manual entries for the Perkin-Elmer Pascal
compiler and run-time enviromments. The former is cobtained on-line

with the command ‘man pascal! while the latter is invoked with man
7 pascal',

PASCAL(1) EDITION VII Programmer's Manual PASCAL(1)

NAME
pascal = Perkin-Elmer Pascal compiler

SYNOPSIS
pascal name [options] [=0 file]

DESCRIPTION
Ppascal compiles the Perkin-Elmer Pascal program in name.
Note that the named file must have the .p extension but the
.p may or may not be included in the file name on the com-
mand line. Normal compilation messages are sent to stderr
unless the NLOG option is specified, If no compilation
errors occur, the executable objectfile is placed in the
file a.out in the current directory. Otherwise, compiler
error messages are sent to stdout with the corresponding
source line number, These error messages are imbedded in
the source code listing if the LIST option is used, Enter=-
ing the command name with no arguments will echo a synopsis
of the use of this command.

A number of options are available. They may not be con=
catenated together (like =vt must appear as -v -t). Any
option starting with a '-' and not listed below is passed on
to the link editor, 1d(1). Any option not starting with a
'=! is used by the compiler, Most of these compiler options
may also be included in the source code in a comment of the
form {$x[+]}, where 'x' is the compiler option mnemonic,
'+' means turn on the option, and '=' means turn it off,

-0 The file argument after -o is used as the name of the
ld output file, instead of a,out,

-C compile=cnly. Compiler output is not loaded and is
placed in name.o

=kn To expand the compiler work space by n bytes where p is
an integer value optionally followed by "k" to specify
maltiplication by 1024, "o" for 512, and "w" for 1.
The default memory allocation for the compiler is 128k.

-t Uses the current directory as the library instead of
/usr/pascal/lib.

Page

-v Verbose, Although the Perkin-Elmer Pascal compiler is
normally fairly informative, this option tells you even
more, perhaps to the point of annoyment.

Compiler options (all output goes to stdout); to turn off
the option, precede the cption name with an 'N':

AS|ASSEMBLY
Prints an assembler listing of the object program,
Default is NAS.

BO |BOUNDSCHECK
Checks for illegal values assigned to variables of
subrange type. Default is BO.

CR{CROSS
Produces a cross reference listing of the program's
identifiers, Default is NCR.

EJECT
Produces a page eject in the compiled program's output
listing. NOTE: this option can only be used in-
strean,

HE |HEAPMARK
Causes the compiler to recognize the routines MARK and
RELEASE as standard procedure identifiers. This option
must be used for any program which has references to
these procedures in it, Default is NHE.

LIJLIST
Prints a listing of the source program, Default is NLI,

LO|LOG
Prints to stderr notices of compiler operations, such
as current pass number and the number of errors encoun-
tered (if any). Default is LO., NOTE: This option may
only appear in the command line - it cannot be used
in-stream,

MA |MAF
Prints the code displacements and data area displace-
ments by line number., Default is NMA,

OP |OPTIMIZE
Causes compiler to perform optimizations, Default is
NOP. NOTE: This option may only appear in the command
line = it cannot be used in=stream.

SU | SUMMARY
Prints a summary of the optimizations performed, inter-
mediate code size, and heap use, Default is NSU.

83

Page 84

RA |RANGECHECK
Causes generation of code for run-time range checking
of subscripts, case labels, variant tags, pointer
values, and constant subrange parameters. Default is
RA.

SEE ALSO
1d(1), a.out(5).
pascal{7) for a description of the run-time envirocrment
Perkin-Elmer Corp., Pascal user guide, language reference,
and run time support reference manual. Pub., no. 48-021R01,
1982.

BUGS
The compiler options BATCH, BEND, INCLUDE, and RELIANCE are
not currently implemented, The MEMLIMIT option is imple=
mented but only wastes space since it causes memory to be
allocated which is inaccessible.
Very large programs may reguire more memory for the com-
piler. See the =k option above to get more memory for the
compiler,

CREDITS TO
Dept, of Computer Science, Kansas State University, Manhat-
tan

Page 85

PASCAL(7) EDITION VII Programmer's Manual PASCAL(T)

NAME
pascal - Perkin-Elmer Pascal run-time envirorment

SYNOPSIS
a,out [=kn] [=d][-fn file] ... [program args]

DESCRIPTION
To run a Perkin-Elmer Pascal program, execute the compiled
and linked object file produced by pascal(1). This file is
a.,out by default, or the file named by the =0 option for
pascal(1}, if used. The options are:

-kn To expand the user work space by n bytes where n is an
integer value optionally followed by "kK" to specify
multiplication by 1024, ®"b" for 512, and "™W" for U4,
The default work space size is 8k,

=d Produces a dump of the core image in the file "core" in
the current directory in response to certain run~time
errors for debugging. Default is to not dump the core.

=-fn file
For interaction with files. The file argument is the
UNIX pathname associated with the logical file indi-
cated by n. The logical file number corresponds to the
position of the file identifier in the program header
file-name list. The first file in the list has a logi-
cal number of 0, the second file is number 1, the third
number 3, and so on., There is a limit of 32 external
files, although UNIX limits a process to 20 open files.
Since stdin, stdout, and stderr are always open for a
process, you are limited to 17 files (both internal and
external) open at a time. To make the program interac-
tive, you can map your input and output files to
/dev/ttyx where x is the tty number of the terminal
where you are working., For example, the program header
"program main (input, output);" would require the fol=-
lowing command line at run-time to make it interactive:

a,out -f0 /dev/ttyx -f1 /dev/ttyx

Any other arguments are passed on to the program. These
arguments can be accessed from within the program with the
START_PARMS prefix routine,

SEE ALS3O
pascal(1), a.out(5)}.
Perkin-FElmer Corp., Pascal user guide, language reference,
and run time support reference manual., Pub., no. 48-021R01,

Page 86

1982,

BUGS
The external files INPUT and QUTPUT are treated like any
other files at run-time, Future efforts will map these into
stdin and stdout, respectively.

CREDITS TO

Dept. of Computer Science, Kansas State University, Manhat=-
tan

A UNIX PORT OF THE PERKIN=-ELMER PASCAL
RUN=-TIME LIBRARY

by

HARVARD CHARLES TOWNSEND

B.S., Kansas State University, 1980

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

ABSTRACT

This project involved porting Perkin-Elmer's Pascal run-time
library (RTIL) from the 0S/32 operating system to the UNIX operating
system for Perkin-Elmer 32-bit minicomputers, In Perkin-Elmer Pascal,
the RTL acts as the interface between the user program and the
underlying operating system (0S). Rtl routines may request 0S services,
such as file input/output or memory allocation, to help carry out a
function reguested by the compiled user program. The porting process
therefore concentrated on translating 0S/32 service requests to UNIX
requests., For programmer efficiency, C programming language library
routines were used to interface with the UNIX kernel, Four 0OS-dependent
issues influenced the porting process: the interface with the
underlying 0S, memory management, error handling, and file handling.
The differences in how the two operating systems treat these four areas
led to specific implementation needs. These are discussed both
conceptually and in terms of specific implementation details. This
project took approximately 3 man-months to complete which is consistent

with ports of other languages.

