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Abstract

Shannon’s and Chomsky’s attempts to model natural language with Markov chains

showed differing gauges of language complexity. These were codified with the Chomsky

Hierarchy with four types of languages, each with an accepting type of grammar and au-

tomaton. Though still foundationally important, this fails to identify remarkable proper

subsets of the types including recursive languages among recursively enumerable languages.

In general, with Rice’s theorem, it is undecidable whether a Turing machine’s language is re-

cursive. But specifically, Hopcroft & Ullman show that the languages of space bound Turing

machines are recursive. We show the converse also to be true. The space hierarchy theorem

shows that there is a continuum of proper subsets within the recursive languages.

With Myhill’s description of a linear bounded automata, Landweber showed that they

accept a subset of the type 1 languages including the type 2 languages. Kuroda expanded the

definition making the automata nondeterministic and showed that nondeterministic linear

space is the set of type 1 languages. That only one direction was proven deterministically

but both nondeterministically, would suggest that nondeterminism increases expressiveness.

This is further supported by Savitch’s theorem. However, it is not without precedent for

predictions in computability theory to be wrong. Turing showed that Hilbert’s Entschei-

dungsproblem is unsolvable and Immerman disproved Landweber’s belief that type 1 lan-

guages are not closed under complementation.

Currently, a major use of language theory is computer language processing including

compilation. We will show that for the Java programming language, compilability can be

computed in nondeterministic linear space by the existence of a (nondeterministic) linear

bounded automaton which abstractly computes compilability. The automaton uses the tra-

ditional pipeline architecture to transform the input in phases.



The devised compiler will attempt to build a parse tree and then check its semantic

properties. The first two phases, lexical and syntactical analysis are classic language theory

tasks. Lexical analysis greedily finds matches to a regular language. Each match is converted

to a token and printed to the next stream. With this, linearity is preserved. With a Lisp

format, a parse tree can be stored as a character string which is still linear. Since the tree

string preserves structural information from the program source, the tree itself serves as a

symbol table, which normally would be separately stored in a readable efficient manner.

Though more difficult than the previous step, this will also be shown to be linear. Lastly,

semantic analysis, including typechecking, and reachability are performed by traversing the

tree and annotating nodes.

This implies that there must exist a context-sensitive grammar that accepts compilable

Java. Therefore even though the execution of Java programs is Turing complete, their

compilation is not.
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Chapter 1

Introduction

The purpose of this thesis is to improve the literature surround formal language theory in

four ways

• To resolve conflicting and imprecise notation across sources

• To argue relevance of infrequently used sources

• To draw additional conclusions from existing conclusions

• To present new findings

1.1 Differences in the Literature

Between sources in the literature, there are differences in both how certain concepts are

represented symbolically and how constructs are defined. This thesis can serve as a rosetta

stone to translate between the notations in the various sources.

1.1.1 Differing Notations

Through the literature there are concepts that are shared between researchers but are repre-

sented differently. In some cases, the subjects of these differences are very simple including

what type of construct is a member of a language. Some sources refer to these as “strings”
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while other prefer to use “words”. In Section 5.1, individual tokens are enumerated by find-

ing separating whitespace and other delimiters. The term “word” implies some delimitation

and is better suited to these tokens rather that the entire “string”.

Another example is how to represent the zero length string (or word). Although re-

searchers agree that all zero length strings are identical, they disagree on what symbol to

use. Early sources view languages algebraically as semi-groups where concatenation is an

operation with this empty string as the identity but without inverses. Later sources simply

view the empty string as the unique string with zero length.

When discussing the space hierarchy theorem, [1] uses limits to express that two functions

scale are of different orders. Using asymptotic notations, this is equivalent to little-oh nota-

tion which was introduced by [2]’s first edition [3] after publication of [1]. Later discussion

of the space hierarchy theorem in [4] using this notation.

1.1.2 Differing Definitions

Of the two major introductory texts on formal language, [1; 4], there are several notational

differences. On some matters other sources also disagree. Between these various notations,

automatic translation is difficult especially since similar notation have different meaning in

the different definitions.

Since the invention of the Turing machine, researchers have modified the definition to

better suit their needs. Although all the definitions are equally expressive, at face value,

they appear different and notation for one may not match another. Between texts, there is

no standard tuple definition of Turing machines. This is discussed in Chapter 3.

Relating back to the findings of [5; 6], it is an open question if nondeterminism grants an

expressive difference in bounded. Since [4] uses the definition of a linear bounded automaton

from [5] over the definition from [6], the findings of [6] are unusable.

The grammatical restrictions that created the Chomsky Hierarchy restrict the empty

string from languages. This complicated discussion of languages because accepting automata

have no such inherent prohibition on accepting the empty string. Section 2.2.2 lists conse-
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quences of this conflict and attempts to resolve it.

Section 4.2 discusses space complexity classes which have conflicting definitions. Where

[1] defines a class in terms of machines with certain properties, [4] defines a class in terms

of languages that are accepted by machines with certain properties. This subtle point is the

basis of Rice’s theorem, which distinguishes semantic properties of a language from concrete

properties of TMs themselves [1; 4].

1.2 Underutilized Sources

Editorial choices between [1] and its third edition [7] demonstrate assumptions that certain

facets of formal language are too obscure or of too little use to include in an introductory

text. The discussion of bounded automaton, space complexity, and type one languages was

removed from [7] even though the results of [8] answers a major open question and was

awarded the Gödel Prize [9].

1.3 Additional Conclusions

1.3.1 Space Complexity and LOGSPACE

Section 4.2 lists several theorems involving space complexity which only apply to complexity

classes above LOGSPACE. Across several application, this seems to be a barrier for useful

behavior.

Also Section 2.2.4 shows a 2-partitioned proper subset of the regular language form a

field over intersection and symmetric difference.

1.4 New Contributions

New concepts are developed and theorems proven in Chapters 4 & 5. The classification of

end behavior and theory leading up to Theorem 4.1 extends [1; 4]; the first direction is proven
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in [1], but the second direction is a new contribution. This continues into a formalization

of bounded automata and the use of asymptotic notation to populate complexity classes.

Section A.4 demonstrates a technique to formally prove correctness of Turing machines, a

task that is rarely attempted.

Most importantly, Chapter 5 demonstrates that Java compilability can be decided in

space proportional to the input and is therefore a context-sensitive language. This is not done

to manage memory scarcity but rather to show the an upper bound on the computational

complexity of determining compilability.

1.5 Open Problems

Nondeterminism is a recurring theme in computer science and across the field, there are

several open questions that relate to that. Limited to this literature, questions include

whether the subset relationship in Savitch’s Theorem is strict or not. If it is strict , then there

are some deterministic problems that can not be simplified as much with nondeterminism.

Another question involves comparing [5]’s findings with [6]’s. Again this reduces to whether

nondeterminism grants an expressive difference.

4



Chapter 2

The Chomsky Hierarchy

By the 1950’s, research had began on automata, initially only Markov chains1, to describe

languages [10; 11]. The finite state models are insufficient to describe natural language be-

cause they admit phrased that are “ungrammatical,” i.e. “Sandwich a ate John” [10, p. 113].

More precise models can be created by looking at sliding windows of multiple previous sym-

bols. However these models are simply larger Markov chains. For some languages, there can

not exist a Markov chain that accepts the language, that is, every Markov chain generates

some string not in the language or fails to generate a string in the language [10–12]. An

example would be the language of strings containing some number of 0s and then an equal

numbers of 1s [10; 13].

2.1 Grammars

A grammar, roughly “a finite set of ‘rewriting rules’”, can better approximate natural lan-

guage [10, p. 140] [11]. These rules operate on two disjoint alphabets: the symbols over

which the language is defined, and symbols used internally only during the rewriting process

[1; 4–6; 10; 13; 14]. Each rule is of the form ϕ→ ψ, read ϕ produces ψ, where ϕ is a string of

terminal symbols and non-terminal symbols that “can be rewritten as” [13, p. 140] another

string of terminal symbols and non-terminal symbols ψ. The language of the grammar is

1Figure 2.1 is an example.
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0 1

Figure 2.1: Golden Mean Markov Chain [12, p. 101]
Starting from either state, the machine follows a random outgoing edge and out-
puts the character at the new state. For this Markov chain, the sequence “11”
never appears. The name comes from the fact that the entropy is the logarithm
of the golden mean [12]. This measure of entropy was defined as capacity in [11].

the set of possible terminal strings2 σ1σ2σ3 · · ·σn that are the result of any finite number of

derivations, applications of productions, from the start non-terminal [1; 4–6; 10; 13; 14].

The Chomsky Hierarchy is a sequence of grammar types induced by a sequence of gram-

matical constraints. Each grammar type is a subset of the previous. With each additional

restriction, the languages in the families become simpler to describe [13]. Each language type

has a corresponding type of automata that can accept languages of the type. Fittingly, as

the constraints on the grammars increase, the machines become simpler and more properties

of languages are decidable [1; 4–6; 13–15]. Table 2.1 gives a summary of this section.

2.1.1 Unrestricted or Type 0 grammars

The production rules of an unrestricted grammar allow for productions from substrings of

terminals and non terminals [1; 13]. An important functionality of unrestricted grammars is

deriving strings shorter that the original. This means that the lengths of strings in a series

of derivations is not necessarily increasing3. When attempting to derive a string s, from the

grammar G, if an intermediate derivation s′, is longer than s, there may be further derivations

2Sometimes referred to as word [14] or sentence [6; 10; 13; 14]
3The terms “increasing” [16] or “monotonically increasing” [2] correspond to ≥ while “strictly increasing”

corresponds to >.
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that are shorter and lead to s. This indicates that it may not be possible to demonstrate

that w can not be derived from G. That all members of the language can be shown to be

in the language even if some candidates can not be shown to not be in the language is the

defining characteristic of recursively enumerable4 languages [1; 4; 13; 15]. The automaton

for unrestricted grammars is the Turing machine which is discussed in Chapter 3 [1; 4; 13].

2.1.2 Context-sensitive or Type 1 Grammars

The productions of context-sensitive grammars5 can only produce from non-terminals and

may not produce ε6 [1; 6; 13]. Substrings immediately left and right of the non-terminal can

give context to the selection of productions that are allowed, for example ϕ1Aϕ2 → ϕ1ωϕ2

even if ϕ′1Aϕ
′
2 6→ ϕ′1ωϕ

′
2. Since ω 6= ε, |ω| ≥ |A| and therefore no application of a rule can

produce a shorter string than the input [1; 4–6; 13]. Another form for CSG matches the

definition of unrestricted grammars except the result of any production must not be shorter

than the original [1; 6; 13].

Unlike for unrestricted grammars, if an intermediate derivation w′, is longer than the

desired string w, then the derivation will never lead to w. The search for a derivation for a

candidate word w, can be represented by a tree similar to Figure 2.2 with a root representing

the start symbol. Each node has a child for every possible direct derivation. With a finite

length and finitely few production rules, every derivation has finitely few children. Ignoring

the children of derivations that are longer than w yields a finite tree and any search is

guaranteed to terminate [2; 17].

This shows that a non-member of a CSG can always be detected, or equivalently that

a CSG is corecursively enumerable [1]. Since the intersection of recursively enumerable

languages and co recursively enumerable languages is the set of recursive languages [1; 15],

languages defined by CSG are recursive [1; 4; 6; 13]. However, no amount of failure to find

strings in the language indicates if the language is empty. It is undecidable if a CSG is

4Sometimes referred to as decidable [4]
5Hereafter CSG
6Sometimes referred to as I in older literature since it is the identity for concatenation [6; 13] or Λ [15].
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S

S2

S22 12

1

Figure 2.2: Derivation Search Tree
The grammar S → S2 | 1 does not derive 21 because no such node exists in the tree and
any additional nodes can not lead to a derivation of 21.

empty [1; 4]. The automaton for CSGs is the linear bounded automaton [1; 5; 6]. Chapter

4 is devoted to general bounded automata.

2.1.3 Context-free or Type 2 Grammars

Named to be distinguished from their superset, context-free grammars7 follow the same

pattern as CSG except the contexts are both ε [13]. This means that a non-terminal has

the same productions, no matter where it appears, ϕ1Aϕ2 → ϕ1ωϕ2 ⇐⇒ ϕ′1Aϕ
′
2 → ϕ′1ωϕ

′
2

[1; 4; 13; 14]. Since each derivation simply expands a single non terminal into one or more

additional nodes, a parse tree can be constructed where the children of a non terminal are

the produced symbols. Figure 2.2 also serves as a parse tree.

Because no particular context is needed, a context-free grammar can be modified to

only have productions to single terminals or pairs of non-terminals and still accept the

same language [1; 4; 13]. Using the pigeonhole principle which says “...that if p pigeons

are placed into fewer than p holes, some hole has to have more than one pigeon in it” [4,

78], an arbitrarily long sequence of elements from a finite set must repeat an element. This

fact accompanied with Chomsky normal form shows that for sufficiently long strings in a

language, substrings can be removed or repeated, and the result is also in the language [1; 4].

7Hereafter CFG
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This pumping lemma8 shows it is decidable whether a CFL is empty, finite9, or infinite [1]

and its contrapositive can be used to prove certain languages are not context free [1; 4].

By construction of new grammars, CFLs can be shown to be closed under union. And by

the pumping lemma, the intersections of some CFLs can be shown to not be CFLs10. This

shows that the CFLs are not closed under intersection and by the closure lemma on page

38, CFLs must not be closed under complementation. Also, it is not decidable if two CFLs

are the same [1; 4].

2.1.4 Regular or Type 2 Grammars

The regular grammars describe the original phenomenon of languages produced by Markov

chains [10; 13]. The automaton for regular languages is the finite automaton which only stores

the current state [1; 4; 13; 14; 18; 19]. These languages adhere to a restricted version of the

pumping and are closed under complementation and symmetric difference. It is therefore

decidable if two regular languages are equal [1; 4].

Automaton New Decidable Property
Type 0 Turing Machine
Type 1 Linear Bounded Automaton Non membership
Type 2 Push Down Automaton11. Emptiness
Type 3 Finite Automaton Equality

Table 2.1: Grammatical Comparisons [1; 4–6; 13]

2.2 Refining The Chomsky Hierarchy

Only identifying 4 types of languages, the Chomsky hierarchy lacks precision to identify

certain language families. In several of these types, there exist subtypes with additional

properties.

8The pumping lemma for CFL is given in the proof for Lemma A.5 on pg. 45
9Section 2.2.4 has a detailed discussion of finite languages.

10Examples are given in Section 2.2.3
11The PDA is discussed at length in [1; 4]
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2.2.1 Recursive languages among Recursively enumerable languages

Recursiveness is not particular to CSLs, the set of recursive languages is an undecidable

strict subset of recursively enumerable languages [1; 4; 20] and strict superset of CSLs [1; 13].

Chapter 4 discusses recursive languages and their relationship with CSLs.

2.2.2 ε acceptance

Either formulation of CSGs quickly shows that ε can not be derived. In Section 2.1.1, it was

shown that, that if in general, a grammar can produce ε, then it is unrestricted. This would

mean that only unrestricted grammars can derive ε. In Table 2.1, the PDA was introduced

which can accept ε [1; 4]. However, as a type 1 language, a type 2 can not contain ε [13].

This demonstrates a conflict in the literature.

There is a clever solution taken from one interpretation of Chomsky normal form where

the start symbol can produce ε but the start symbol can not be produced [4]. With this, a

derivation sequence may only lead to ε if the first, and only, step is to produce ε from the

start symbol. By adopting this technique, the CSLs can be expanded to accept ε but not be

unrestricted. In CFG and regular grammars, ε productions do not add expressiveness [1; 4].

2.2.3 Deterministic Context Free Languages

In this section, the languages in Table 2.2 will be illustrative. Techniques useful to proving

the types of these languages can be found in the Appendices or [1; 4].

Name Definition Type
L1 0i1i0∗ DCFL
L2 0∗1i0i DCFL
L3 L1 ∪ L2 = 0i1j0k CFL

such that i = j ∨ j = k
L4 L1 DCFL
L5 L2 DCFL
L6 L3 = L4 ∩ L5 CSL

Table 2.2: Languages Related to Context Freedom
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In general, a string in a CFL can be derived in multiple ways, however the various

derivation sequences may all correspond to the same parse tree [1; 4; 14]. This undecidable

condition [1; 4] is not necessary, but CFL that meet it are described as unambiguous [1; 4; 14].

Some unambiguous CFLs are also deterministic12 and can be accepted by deterministic

pushdown automaton13 [1; 4]. Unlike for the finite automaton, nondeterminism increases

expressiveness of the pushdown automaton. In a nondeterministic finite automaton, sets of

states can be combined to make deterministic behavior [1; 4; 18]. But in pushdown automata,

state transitions can be accompanied with side effects to the automaton and deterministic

state sets can not be constructed.

This intuition does not constitute a proof. However, the expressive difference can be

shown using an additional closure of DCFL. From Table 2.2, a DPDA for L1 is always in

a single state. A companion DPDA can be constructed with a complementary accepting

set to accept L4. The generalization of this construction shows that DCFLs are closed

under complementation. If the DCFLs are a subset of CFLs and have additional closure

properties, then they must be a proper subset [1; 4; 14]. DCFL are not closed under union

because two nondisjoint, incomparable DCFLs L1 and L2, will have two different parse trees

for words in their intersection. To formally show this, the pumping lemma can show that the

complement of the union of the DCFLs L6 is not a CFL. In Section 4.2.1, it will be shown

that the complement of a CFL is a CSL.

DCFL are important in computer science because parse trees determine semantics of a

program. If two parse trees exist for the program, then it has two different meanings. By

refactoring the grammar, the productions can be considered in a deterministic order and

only a single correct parse tree exists [18]. Also, unlike general CFLs, it is decidable if a

DCFL is regular [1, citing Stearns and Valiant].

2.2.4 Finite and Cofinite Languages among Regular Languages

There are also special types of regular languages that warrant consideration.

12Hereafter DCFL
13Hereafter DPDA
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Definition 2.1. A language is finite if and only if it contains finitely few strings.

Definition 2.2. A language is cofinite if and only if its complement is finite.

Both of these families of languages are indeed regular14 and also closed under union

and intersection15. A further result is that the union of finite and cofinite languages is

closed under union, intersection, and complementation16. This proper subset of the regular

languages with such closure properties should enjoy its own designation in the hierarchy.

The proposed refinements of types 2 and 3 can be combined to produce the fact that since

DCFL are closed under complementation, it is decidable if a DCFL is cofinite.

14Discussion of the regularity of finite languages is limited to a vague assertion in [10, p. 115].
15Proven on page 41
16Proven on page 44
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Chapter 3

Turing Machines

3.1 The Basic Turing Machine

Originally developed to study provability, “...the Turing machine has become the accepted

formalization of an effective procedure” [1, p. 147][20]. The Turing machine1 was shown to

accept recursively enumerable languages [1; 4; 13; 15]. Although all equivalent, the literature

has several different models for TMs. In this work, a new model will be selected as an

amalgamation of these. Before an enumeration of the differences, an explanation of the

functionality is warranted.

3.1.1 Explanation

The TM is an automaton consisting of a finite set of control states, Q, a tape of memory

squares arbitrarily long to the right, and a read/write head that moves along the tape. The

set of symbols allowed on the tape Γ includes and Σ the alphabet of the input. To start,

the tape is set so that the input is left aligned on the tape and every other square is . At

each step, based on the state of the machine and the symbol at the position of the head, the

machine will change control state, write a character in the square that the head is at, and

move the head forward or back one square.

1Hereafter TM
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These possible steps can be represented as a relation or set of tuples (q, γ, q′, γ′, D)

[1; 4–6; 15; 20]. When the machine enters certain accepting states2, the machine will halt

and accept the string. While only the control state and head symbol are used to determine

the next action, the sequence of tape symbols is also necessary to fully describe the machine’s

configuration3.

3.1.2 Head Movement and Writing

In its original presentation, the TM always moved to an adjacent square and always wrote

out a symbol, even if to overwrite a symbol with itself [1; 20]. In one presentation, a TM can

change control state and either move the head or write but not both [15]. This will lead to

control state space twice as large but does not weaken the machine. More recent work has

allowed the option of the head not moving during a step [1; 4–6]. The functionality could be

build by adding two more states to a mandatory implementation [4]. The model presented

will have the option of not moving.

3.1.3 Nondeterminism

By some authors, much like finite or pushdown automata, a TM may have multiple next

steps to take [1; 4; 6; 8; 21]. In these cases, if there is a choice that can lead the machine to

accepting state, then that choice is taken and the machine will eventually halt and accept. If

there is no such choice, then the selection process is irrelevant and the selection is arbitrary4

because the automaton will never accept.

Definition 3.1. An execution is a possible sequences of choices a TM could make and cor-

responds to the sequences of configurations at each step.

With no bound on space, nondeterminism does not increase expressiveness [1]. In Chapter

4, the choice matters because though an open question, it is likely that nondeterminism offers

2Sometimes referred to as final [5; 6]
3Sometimes referred to as instantaneous representations [1] or instantaneous description [21]
4This notion is equivalent to the fork & join paradigm which creates duplicates of the machine each

taking a different choice and accepts if any machine halts and accepts the input [1; 4].
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an expressive difference in bounded space.

An important feature of nondeterminism is that the intermediate values can be generated

nondeterministically and verified instead of being computed. This reduces the problem of

“finding a proof of a statement ... [to] efficiently verifying a proof” [1, p. 321]. In Figure

A.2, a factor of a number is generated nondeterministically if it exists proving compositeness.

Section 4.2.1 discusses using nondeterminism to quickly reject words.

3.1.4 Rejection

There is an important distinction between a string and an execution, an attempt to accept

a string. In the same way that accepting states halt execution and accepts, rejecting states

would halt an execution and reject [4]. If δ is allowed to be partial, rejecting states are

unneeded since any transition to a rejecting state can be removed and execution “falls off”5

the machine instead of explicitly being rejected [1; 15]. An execution can also be rejected if

it attempts to read left of the start. A machine rejects a word if all executions of the word

were rejected.

3.1.5 Basic Model for A Turing Machine

A Turing machine can be defined by a tuple of (Q, q0, Γ, , Σ, δ, Qaccept) where:

1. Q the finite control state space.

2. q0 ∈ Q is the starting state.

3. Γ is the finite tape alphabet.

4. ∈ Γ is the blank symbol.

5. Σ ⊂ Γ \ { } is the finite input alphabet.

6. δ | Q× Γ→ 2Q × Γ × {L, R, S} is the non-deterministic transition function.

5In an object-oriented languages, this would amount to catching a NullPointerException and return-
ing false rather than checking some condition and returning false when the check fails which is a bad
programming habit [22].
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7. Qaccept ⊂ Q is the set of accepting states.

To start, the tape has the form Σ∗ ∗ where Σ∗ is the input w. This justifies 6∈ Σ. A

common choice in designing TM is to have a special first character so executions know

where the boundary is. If starting with w on the tape, there exists some sequence of choices

that lead the machine to enter an accepting state, then the machine makes those choices

and eventually halts and accepts. In Section 2.1.1, the TM was said to be the accepting

automaton for unrestricted grammars which were shown to not alway be able to identify

non members. A famous result known as the halting problem showed that in general, it is

undecidable if a given TM will halt while computing a given string [1; 4; 15; 20].

3.2 Turing Machine Modifications

With a complete definition of a TM, modified versions of TMs can be examined. As a

demonstration of the power of the TM, many modification that intuitively should increase

the expressiveness fail to do so. Therefore, the TM is a simple yet powerful tool to describe

an algorithm. The goal is to eventually abstract away the TM definition but still understand

how the underlying TM behaves. The first three modifications are basic and can be done

directly while the rest rely on these basic modification. The results of Chapter 4 depend on

these modification no requiring additional tape.

3.2.1 Multiple Inputs

With an additional delimiter symbol, tuples or sequences of strings can be input to a TM

together. Since the specification of a TM is finite, it can be used as input into another TM.

Classic examples of this include the universal TM which takes a TM spec, M and a string,

w, and simulatedM computing w [1; 4; 20] and the proof that it is undecidable that whether

a linear bounded automaton6 accepts the empty language [1; 4].

6Discussed in Section 4.2.2
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3.2.2 Augmented State Space

The states of a TM can be considered to hold both control information but also an element

from some other set. This partition of information and behavior is only abstract, the actual

state space is the same size. This could be useful to calculate the parity for the length of

a sequence. In the state corresponding to going right, the information would be the parity

calculated so far and would toggle with each additional symbol read. Another example

would be to compute palindrome by storing the character that should be in the other side

[1]. These can be considered modes of executions. By repeatedly applying this construction,

a k-tuple mode can be attached to the states.

3.2.3 Augmented Tape Alphabet and Tape Compression

Each tape square can also hold a finite amount of additional information. Elements in Γ \Σ

including can be expressed as a tuple from (Σ∪Σ′)×Σ′′ assuming Σ′′ 6= Ø. This effectively

allows two tape symbols to be written in the space of one input symbol [1]. By repeatedly

applying this construction, k symbols can be written to a single tape square. This shows that

computation that uses k ∗n squares can be done in n squares. Subsequent TM modifications

will rely on this to build more complex TMs [1; 4]. Section 4.2 uses this to establish tape

compression.

3.2.4 Inserting or Removing Tape squares

Spare squares can be added or removed by shifting blocks of symbols. First all blocks to be

moved are marked by replacing their symbol γ with a pair (γ, marked1). In the direction

of the shift, the destination of the first symbol is also marked as the destination. The head

starts at the first symbol and copies the symbol into its mode and blanking the square to

unmark it. To see if this is the last symbol to copy, the next square is checked for the mark

and the result is also stored in a mode. At the square marked as the destination, the mode

symbol is copied down and the square is unmarked. If this was the last symbol to be copied
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then the task is complete. Otherwise while traveling back to retrieve the next symbol, the

next square is marked as the destination [1].

3.2.5 Bi-Infinite Tape

Previous results can be combined to simulate a bi-infinite tape T , where there is no left most

tape square on a regular tape T . Usage of T ’s tape is as follows:

• T [0] = T [0]

• ∀i > 0, T [i] = (T [i], T [−i])

Also a mode stores whether the forward or reverse portion of T ’s tape is being read. This

is needed when deciding which symbol in the pair to pass to δM and how to interpret head

movement instructions. In the reverse mode, head movements are reversed. The mode

changes when the head reaches the left end of T which is detectable since T [0] is unique for

storing a single symbol [1].

3.2.6 Multiple Tapes

The results of Section 3.2.3 can be considered as multiple tapes but a single head that reads

all of them. A TM like machine T , with a head on each tape can be simulated on a TM

T . T ’s extended tape alphabet is Γ′ = Γ × (σ1 ∪ ) × Γ × (σ1 ∪ ). The second and fourth

elements of these tuple indicates the presence or absence of the head on that tape, so for

only one square is the value σ1. T ’s head traverses the tape left to right finding the symbols

at each of T ’s heads, and after finding the symbols, stored as modes, traverses the tape right

to left moving the simulated heads and rewriting the symbols [1].

Another construction involves a delimiter character separating the tapes and the two

heads are marked. Whenever the left tape needs an additional blank, the right subtape is

shifted to the right [4].
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3.2.7 Output

Beyond accepting or rejecting, a TM has a tape configuration if it halts. For each accepting

execution, the prefix of the tape until the first can be interpretted as an output of the

machine. This allows for a TM M , to be treated as a partial multi valued function M |

Σ∗ ⇀ (Γ \ )∗ ∪ ∅. Here M captures all of the behavior of M . M’s domain is the set of

string that M halts on. L(M) = {w | M(w) 6= ∅}. The values of M can be used to set the

output of other TMs or as a final output of a calculation.
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Chapter 4

Bounded Automata

In Section 3.1.5, the TM was introduced with an infinite tape in one direction. With this

definition, Section 3.2 generalized the TM without adding expressiveness. In this Chapter,

a restriction on the tape length for the TMs will be considered.

Definition 4.1. A bounded automaton or BA is a TM that first begins by allocating an

amount of tape based on the length of the input and never exceeds that allocation. Any

execution that attempts to do so is rejected.

Definition 4.2. A bounded languages is one that can be accepted by a BA.

The tape length is determined by a function s | N→ N. From the input w, s(|w|) squares

are allocated between boundary characters which are not in the tape alphabet < and >. Any

state that is seeking the end, will detect the > and move back left having not changed the

symbol. The bulk of this Chapter is about properties of languages induced by s including

the special case of CSL.

Lemma 4.1. For a TM M , If an execution x is not the only accepting execution of M , then

a machine M ′ identical to M except for rejecting x has the same language.

Proof. The execution, x, is determining some string, w. As the TM is defined, w will be

accepted if and only if, there exists some execution of w that accepts. If x is rejected, then
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M is M ′. If x is accepted, then by assumption, there exists an execution, x′, which is also

accepted. If x is rejected but x′ is accepted then w is still in the language of M ′.

4.1 Universal Machines

When a TM M computes a string w, a set of executions are generated, each with its own

behavior. M ’s acceptance of w depends on these behaviors. If any execution accepts, then

M accepts w but if any execution does not halt, then M does not reject w. Though it is

undecidable which, an execution can be sorted into at least one of four categories described

in Table 4.1.

Behavior Property
Accepting Entered an accepting state
Rejecting Entered a configuration with no next step
Diverging Entered a new configuration at each step
Looping Entered the same configuration a second time

Table 4.1: End Behaviors of TMs

4.1.1 Detecting Loops in TM Execution

While the first three categories are disjoint, the fourth contains elements of each category

since an execution could loop and then take a different path. A looping configuration could

also accept, reject, or diverge or simply continue to loop.

Whether an execution has repeated is recognizable since extra untracked storage could

be used to keep every configuration that has been entered. Since each configuration was

entered after finite time, the amount of tape used is finite, and the list of configurations can

be traversed. In the steps during the loop, other executions will have been created leaving

the loop. These same children executions can be made again the second time, however the

corresponding child from the first loop will steps ahead and will reach the same result. This

is illustrated in Figure 4.1. Thus means that once an execution has looped, no children that

it spawns can be the only accepting execution.
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Definition 4.3. ANoLoop is a universal TM that takes a TM M , and a string, w and rejects

looping executions but otherwise simulates w on M .

By Lemma 4.1, ANoLoop accepts 〈M,w〉 if and only if M accepts w but ANoLoop may

reject 〈M,w〉 even if M does not reject w. This reduces the possible behaviors to accepting,

rejecting, and diverging.

q0start · · · q1

· · ·

q2· · ·q3

· · ·

Figure 4.1: Repeated Configuration and Nondeterminism
When the execution follows q0q1q2, it will both leave the loop and enter q3 and repeat the
loop and enter q2 again. On each subsequent loop, it will spawn an execution “younger”
than an existing execution and loops again.

4.1.2 The Universal Bounded Automaton

By using ANoLoop, all TMs either halt or diverge. Using the contrapositive of the pigeonhole

principle1, since a divergent execution never enters the same configuration twice, it must

enter infinitely many configurations and therefore use infinite tape. This means a BA can

have no divergent executions.

Theorem 4.1. Given a language L, the following are equivalent:

1. There exists a BA MB, such that L(MB) = L

2. There exists a halting TM MH , such that L(MH) = L

1Discussed in Section 2.1.3
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Equivalently, the set of bounded languages is the set of recursive languages.

Proof.

1 → 2: Since MB is tape bounded, when computing a string, w, if it does not halt then it

must loop. MH can be constructed using ANoLoop and MB and will halt when MB looped.

MH therefore always halts [1; 4].

2→ 1: For any length n, for any word in L |w| = n, there exists a nonempty set of execution

that accept w on MH . Each execution s, has a maximum amount of tape used l(w, s). By the

well ordered principle of the natural numbers [16], there is a minimum l(w) = mins l(w, s).

Using only l(w) tape, some accepting execution that normally would accept w but will

now leave the bounds and reject. Lemma 4.1 shows that w is still accepted. The value

s(n) = max|w|=n smin(w) is the least amount of tape needed to accept any word in string in

L of length n. Therefore there is a tape bound, s, in which L is computed.

At the beginning of this Chapter, s was introduced as a function that calculates how

much a BA will need as was a process that makes s(|w|) squares of tape. These two can be

combined into a bounding TM.

Definition 4.4. A bounding TM is one that creates a tape allocation based on the size of a

string.

With a finite length of tape, there are finitely few distinct configurations [1; 4]. Rather

than finding the first loop as ANoLoop does, another approach would be to prove that any

loop occurred. As an additional track to the machine, a place-value system could count the

number of steps the execution has taken. Once the count exceeds the number of possible

configurations, by the pigeonhole principle, a loop must have occurred [1; 4]. This requires

s ∈ Ω(log) otherwise the configuration counting outruns the tape [2]. Logarithm is also a

lower bound for Savitch’s Theorem [1; 4; 21], somehow demonstrating that sub-logarithmic

space complexity behaves differently.

Definition 4.5. ABA is another universal TM that given a bounding TM S, a TM intended

to compute on a bounded tape M , and a string w, simulates w on M with loop detection on

a tape bounded by S.
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4.2 Space Complexity

Definition 4.6. The space complexity2 of a bounding function is NSPACE(s) = {L |

∃ M bounded by s ∧ L = L(M)} [4].

In Section 3.2.3, it was shown that a length of n tape can simulate k ∗ n tape for any

k ∈ N. Obviously k ∗ n tape can simulate n tape by only using the first portion of the

tape. Therefore k ∗ n tape is equally expressive as n tape. Since expressive equality is an

equivalence relation, for all k1 and k2, k1 ∗ n tape can simulate k2 ∗ n tape or simply n tape

can simulate c ∗ n tape for all c ∈ R [1; 8].

Theorem 4.2. If two positive functions s1 and s2 are continuous and s1 ∈ Θ(s2), then s1

and s2 have the same space complexity.

Proof. Θ prescribes that after some finite interval, the ratio s1(n)
s2(n)

is bounded [2]. The func-

tions s1 and s2, being continuous over the initial interval, are bounded as is their ratio [16].

Since the ratio is bounded over the positive reals, then there exists a scalar that equates

them.

The space hierarchy theorem extends the correspondence between function complex-

ity and space complexity with the fact f ∈ Ω(log) ∧ f ∈ o(g) =⇒ NSPACE(f) (

NSPACE(g) [1; 4].

4.2.1 Immerman-Szelepcsényi Theorem

An important find in space complexity theory is that every complexity class at or above

log, is closed under complementation, formally f ∈ Ω(log) =⇒ ∀ L ∈ NSPACE(f), L ∈

NSPACE(f) [4; 8]. Given a bounded language L, there exists a BA M that accepts L.

If the complement of L is also a bounded language and can be accepted by a BA M ′ with

the same bound as M . M ′ can be simulated using M . For a string w, if there exists an

execution x of M that accepts w then M accepts w and M ′ should reject. We can consider

2A space complexity class is a set of TMs in [1].
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x an execution of M ′ as well. This situation where a rejecting execution implies that all

execution will be rejected will be called negative nondeterminism and is a special case of

alternating TMs [1; 4]

4.2.2 The Chomsky Hierarchy Revisited

Most of the types of the Chomsky Hierarchy can be expressed using space complexity. This

makes another progression that can be used to describe the languages.

Unrestricted Languages are related to TMs that may or may not only require finite tape.

If an unrestricted languages is decidable, then there exists some bounding function for it,

other wise no bound exists. This set of languages contains all possible space bounds.

The nondeterministic linear bounded automaton3 is a BA with the bounding function

s(n) = n and accepts the set of CSLs [1; 6]. The question of what type of language is the

complement of a CSL remained open for some time [5; 6; 8]. But an immediate consequence of

the Immerman-Szelepcsnyi Theorem is that the linear space is closed under complementation

[1; 8]

Lemma 4.2. The complement of a CFL is a CSL.

Proof. This follows from the closure property just given and the fact that CFLs are a subset

of CSL.

The Immerman-Szelepcsényi theorem which also requires at least logspace shows that

the complement of a language has the same space complexity. This means that even though

CFLs are not closed under complementation, the containing space complexity is. The space

complexity is exactly logarithmic since efficient coding of a PDA onto a BA will reduce

storing quantities on the stack to storing a value in place-value form in the tape. Strangely,

languages that are not related to CFLs are also in logspace. With the pumping lemma,

0a1b0a∗b can be shown to not be context free. But by construction of a log bounded BA4, the

3Hereafter LBA
4The tape would need 2 ∗ (dlog(a)e+ dlog(b)e) to store a and b and a + b in place value.
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languages is in logspace. By the hierarchy theorem, logspace is in linear space, and therefore

is a CSL.

When computed on a NFA, regular languages don’t need storage beyond the state space.

So type 3 = NSPACE(0), but beyond that, with k tape a BA can split state between the

state space proper and the tape configuration but still has finite states, therefore the set

of type 3 languages = NSPACE(0) = NSPACE(k). This shows the need for the first

condition on the space hierarchy theorem as 0 and k are of different orders but have the

same space complexity.
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Chapter 5

Java Compilation

Language processors including compilers typically involve a pipeline that creates, modifies,

annotations, and records intermediate representations [18; 19; 23]. Though not the only way

to write a compiler, this methodology can serve to describe the process since compilation

has no side effects and has several inherently sequential parts. Each phase can be treated

as a form of analysis of the input from the previous phase and will output information for

subsequent phases as a string in a potentially different alphabet. The output of the last

phase is the result of compilation. These phases will be executed on the various tapes of a

multitape LBA as discussed in Section 4.2.2.

It will be demonstrated that these phases iteratively refine the language of legal Java

programs from type 3 to type 2 and finally to type 1. This would mean that the compiler

need not be Turing complete since it reduces to acceptance of a CSL, a strictly simpler

problem than acceptance of a TM. The order of types given is the reverse of the description

from Chapter 2. Since languages are sets of strings, one language can be a proper subset of

another regardless to their respective types.

The type 3 language used for lexical analysis is not the tightest possible type 3 language

that accepts all legal Java programs, but any tighter type 3 bound would eliminate some

but not all illegal token orders1. The pumping lemma for regular languages2 can be invoked

1For example public must be followed by whitespace.
2Discussed in
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to show that Type 2 refinement is still required since the set of legal Java programs is not

a regular language. The actual need for type 1 refinement can be demonstrated by showing

that the set of legal Java programs is not context-free with a generalization of the pumping

lemma for context-free languages3, Ogden’s lemma, where nontrivial portions of the file

including member declaration must be pumpable [1; 4].

The goal is to show that compilable Java programs for a CSL. This will be done by

showing that compilation can be computed on an LBA. It should be emphasized that this

endeavor is assess feasibility not practicality. This discussion is intentionally abstract to

potentially allow it to be applied to other programming languages. The program in Figure

5.1 will serve as a demonstration through the phases.

public class HelloWorld {
public static void main(String[] args) {

System.out.println("Hello, World!");

}
}

Figure 5.1: Sample Compiler Input

5.1 Lexical Analysis

Lexical analysis4 is the process of converting the file into a sequence of tokens including

optional values. This is done by iteratively consuming the maximum match of the remainder

of the file with a regular language [18; 19; 24], s, and recording a function of s. This function,

T , behaves according to Table 5.1. The compiler will simulate an finite automaton and write

the tokens on a second tape.

For each form, as |s| increases, |T (s)| increases no faster. Therefore |T (s)| ∈ O|s| and

since
∑

s in file |s| = |file|,
∑

s in file |T (s)| ∈ O(|file|). The resulting token stream is given

in Figure 5.2.

3Discussed in
4Sometimes referred to as scanning [19]
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Semantic Information Token Example
None Suppressed Whitespace, Comment
Fixed <Token Type> Operators, even multi-character

Variable <Token Type, Token Value> Literal, Identifier

Table 5.1: String to Token Transformations [18; 19; 24]

<T public><T class><T id, HelloWorld><T openCurly><T public><T static><T void>

<T id, main><T openParen><T id, String><T openSquare><T closeSquare>

<T id, args><T closeParen><T openCurly><T id, System><T dot><T id, out><T dot>

<T id, println><T openParen><T stringLit, "Hello, World!"><T closeParen>

<T semi><T closeCurly><T closeCurly>

Figure 5.2: Sample Token Stream
The result of parsing the Sample Program in Figure 5.1

5.2 Syntactical Analysis

Syntactical Analysis5 is the process of converting the token stream into a parse tree by

checking conformance to a CFG [1; 4; 18; 19; 24]. Therefore, syntactical analysis recognizes

a type-2 language [1; 13]. The terminals of the grammar are the tokens from lexical analysis.

As mentioned in Section 2.2.3, since a parse tree corresponds to a semantic meaning, it is

important to have only one correct parse tree. Since computer language grammars are used

programmatically to parse programs, these grammars can be refactored to always create the

same tree for any string, making the grammar deterministic.

5.2.1 Parse Sequence

Several data structures can be used to represent parses [2; 17–19; 23], but to constraint

output to a string, the parenthetical structure of trees is needed. It has been shown that for

an unambiguous grammar, “any two [derivations] in a [string] ... either ... are disjoint or one

is part of the other.” [14, p. 571] This has been extended to depth-first-search of non-tree

graphs, the parenthesis theorem says that either two nodes will have an ancestor-descendant

relationship where the descendant is fully explored during exploration of the ancestor or

5Sometimes reffered to as parsing [19]
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the nodes are unrelated and the first node is fully explored before exploration of the second

begins [2]6.

“If we represent the ... [start] ... of vertex u with a left parenthesis “(u” and

represent its finish by a right parenthesis “u)”, then ... [the resulting string] ...

makes a well-formed expression in the sense that the parentheses are properly

nested” [2, p. 606]

Because these parentheses are well formed, the symbol preceding the close parenthesis is not

needed since it is known which non-terminal is being closed. This inspires a string notation

for parse trees. A non-terminal V having the production α1, α2, α3 will be represented as

(V α1 α2 α3). Of course if any of the αs are non-terminals, then they will be written out

in the same fashion. This “s-expression” or LISP format [25] mirrors postfix notation [18].

The parse sequence of the example program is given in Figure 5.3.

5.2.2 Parser Technology

Backus-Naur form is a standard, machine readable way to express a CFG [1; 18; 19; 26]. The

grammar specification for Java extends BNF with brackets to indicate a sequences appears

{zero or more times} or [zero times or one time] [24]. This allows for variable-arity

of nodes and shorter parse trees. Grammars with this feature are no more expressive than

fixed-arity recursive grammars, only easier to develop and understand at the penalty of now

needing more complex data structures to store a node’s children [2; 17–19; 23].

In fact, since programming language grammars are designed rather than discovered, they

could be constrained to LL grammars where the correct next production can be selected

greedily. The production selection is done with a lookup table defined by the grammar and

a fixed window of the token stream [18; 19; 23]. The lookup table, being defined by the

language not the input, can be built into the control state of the parser rather than the

memory used to manipulate the token stream. The nodes generated will be written out to

6Algebraically, this means that the relation “happens entirely after or entirely during” if understood to
be reflexive, is a total ordering.
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(CompilationUnit (OrdinaryCompilationUnit (TypeDeclaration

(ClassDeclaration <T public> <T class> <T id, HelloWorld> (ClassBody

(<T openCurly> ClassBodyDeclaration (ClassMemberDeclaration

(MethodDeclaration <T public> <T static> (MethodHeader (Result <T void>)

(MethodDeclarator <T id, main> <T openParen> (FormalParameterList

(LastFormalParameter (FormalParameter (UnannType (UnannReferenceType

(UnannArrayType (AmbiguousType <T id, String>) (Dims <T openSquare>

<T closeSquare>)))) (VariableDeclarationID <T id, args>))))

<T closeParen>)) (MethodBody (Block <T openCurly> (BlockStatements

(BlockStatement (Statement (StatementWithoutTrailingSubstatement

(ExpressionStatement (StatementExpression (MethodInvocation

(ExpressionName (AmbiguousName <T id, System>) <T dot> <T id, out>)

<T dot> <T id, println> <T openParen> (ArgumentList (Expression

(AssignmentExpression (ConditionalExpression (ConditionalOrExpression

(ConditionalAndExpression (InclusiveOrExpression (ExclusiveOrExpression

(AndExpression (EqualityExpression (RelationalExpression (ShiftExpression

(AdditiveExpression (MultiplicativeExpression (UnaryExpression

(UnaryExpressionNotPlusMinus (PostfixExpression (Primary (PrimaryNoNewArray

<T stringLit, "Hello, World!">))))))))))))))))))) <T closeParen>))

<T semi>))))) <T closeCurly>))))))))))

Figure 5.3: Sample Parsing sequencing
Using a Lisp like notation, a parse tree for the sample program in Figure 5.1 can be expressed
simply as a sequence of symbols.

another tape on the LBA.

5.2.3 Upper Bound on Parse Sequence Length

To show the memory bound of the parse sequence, the grammar must meet certain expecta-

tions. Besides being deterministic which was already established, the grammar may not have

any ε productions. The issue with ε productions is that they could create whole subtrees full

of ε leaves and internal nodes with no tokens as children. Luckily, these can be refactored

out [1; 18; 19]. If a grammar meets this condition, then the number of internal nodes is

linearly bounded by the number of terminal nodes7. With internal nodes having constant

size, the size of the parse sequence is linearly bounded by the size of the file.

7Proven on page 44
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5.3 Semantic Analysis

Chomsky gives the example “colorless green ideas sleep furiously” [10, p. 116] of a phrase

that parses correctly but is meaningless. To prevent similar results in Java, a few checks

must be made.

5.3.1 Parse Tree Traversal

Semantic analysis will be performed by traversing the tree and potentially adding information

to the tree. To make room for additional information, the tape would have to be shifted over

the appropriate amount. As opposed to traditional programming environment where a call

stack can manage recursively examining nodes of the tree, the best option is to mark nodes

currently being explored. By traveling left from a node, the head will find the parent of the

current node before any other of its ancestor. An additional tape can be used as a stack to

keep track of the depth, every time a internal node is entered, it should be marked and the

stack should be incremented. Anything encountered at the wrong level to be considered will

be ignored.

5.3.2 Symbol Table

Every named structure in the program must be recorded with its scope and type for references

to it may be resolved [18; 19]. Though described as a table, the information and its format is

not strictly tabular. Since Java is statically scoped, variables have meaning based on where

they are located rather than when they are referenced [24]. Since the parse tree contains all

the structural and semantic information of the program, the symbol table already exists in

the tree.

In Figures 5.4 amd 5.5, while searching for a declaration of i at D, the head will reach C

on the tape. However, since C is at the wrong depth, it is out of scope and ignored.

With the introduction of the keyword var, where local variables type can be omitted to

be inferred from the assigned value, they can not be immediately typed because they may
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{//A
{//B

int i;//C

}
i = 0;//D

}

Figure 5.4: Scope Example Code

A

B

C

D

Figure 5.5: Scope Example Tree

depend on some value in a broader scope. A local variable will have been assigned to before

any valid reference to it is made and by that time it will have a type [24]. This type can

overwrite the var declaration in the tree at the cost of a constant number of symbols per

local variable. The total of these increases is also linearly bounded by the file size.

5.3.3 Type Checking and Reachability

To enhance safety at runtime, Java requires programs expressions have a correct type for

how they interact with other elements [24]. This is done by recursively examining each

node to determine its type and recording it. Again this can be done by writing into each

leaf node its type. With nondeterminism, each leaf is assigned a legal type if possible. A

parent node then inspects the types of its children calculates its type as a and rejects the

program if there is an error or stores it and proceeds to the parent. According to [24,

Section 14.21.], “It is a compile-time error if a statement cannot be executed because it is

unreachable.” Checking this is very similar to type checking except that only information

needed is whether a statement can executes normally.

5.3.4 Bytecode Generation

The bytecode generated from Java compilation is in the form of classfiles which consist

of constants and then class members [27]. Constants are created as needed to represent

language constructs like identifiers, literals, and method calls. As the tree is converted into

a classfile, whenever a constant is needed, the partial constant pool being built can serve as
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a lookup table returning the index of existing constants or creating new constants.

5.4 Conclusion

This shows that a context sensitive grammar must exist that can decide compilability of

a Java program. Using the theory developed in Chapter 4, it has been shown that Java

programs can be compiled using a linear bounded automaton. This representation is certainly

less wieldy than existing compiler theory but has the advantage of clearly defining its memory

needs. Also Java compilation can be simulated on ABA meaning it is not Turing complete.
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Appendix A

Selected Proofs

Following are several proofs written out formally. They are separated from the main body

of work because many reader will find the reasoning obvious but included vestigially to

demonstrate proof techniques. Several of the justifications use basic facts about regular

expressions that [2; 4; 18; 19] cite from [1].

A.1 Preliminary Lemmas

Lemma A.1 (Closure Lemma). Given a set, X, and F ∈ 2X , if F is closed under comple-

mentation, then it is closed under union if and only if it is closed under intersection1.

Proof.

Forward: By DeMorgan’s, the intersection of two sets can be constructed from only comple-

mentation and union [1; 2; 4; 16; 28], A ∩ B = A ∪B. By the assumed closures, the result

of such a construction is in F.

Backward: Also by DeMorgan’s, the union of two sets can be constructed from only com-

plementation and intersection, A ∪B = A ∩B. By the assumed closures, the result of such

a construction is in F.

Definition A.1. A language is singleton if and only if it contains exactly one word

1Special cases of this are used in [1; 26] and left as an exercise in [4]
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Lemma A.2. A singleton language (Definition A.1) is regular

Proof. By induction on |w|

Case |w| = 0.

(1) w = ε by ε being the unique string of length 0

(2) {ε} is regular by {ε} = L(εR)

(3) {w} is regular by substitution, (1–2)

Case |w| > 0.

(1) Let w = w′a by choice

(2) |w′| = n− 1 by (1)

(3) {w′} is regular by inductive hypothesis, (2)

(4) {a} is regular by {a} = L(a)

(5) {w′} ◦ {a} is regular by regular languages being closed under

concatenation, (3–4)

(6) {w′} ◦ {a} = {w′a} by definition of concatenation

(7) {w} is regular by (1, 5–6)

Lemma A.3. The language L = {w ∈ Σ∗||w| ≤ n} has cardinality |L| = |Σ|
n+1 − 1

|Σ| − 1

Proof. By Induction on n
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Case n = 0.

(1) L = {ε} by ε being the unique string of length 0

(2) |{ε}| = 1 by counting

(3) 1 =
|Σ|0+1 − 1

|Σ| − 1
by evaluation

(4) |L| = 1 by (1–3)

Case n > 0.

(1) L = {w ∈ Σ∗||w| < n ∨ |w| = n} by definition of ≤

(2) L = {w ∈ Σ∗||w| < n} ∪

{w ∈ Σ∗||w| = n} by definition of ∪

(3) {w ∈ Σ∗||w| < n} =

{w ∈ Σ∗||w| ≤ n− 1} by discreteness of N

(4) |{w ∈ Σ∗||w| ≤ n− 1}| =
|Σ|n − 1

|Σ| − 1
by inductive hypothesis, (3)

(5) |{w ∈ Σ∗||w| < n}| = |Σ|
n − 1

|Σ| − 1
by (3–4)

(6) {w ∈ Σ∗||w| = n} = |Σ|n by |An| = |A|n, [2]

(7) |L| = |Σ|
n − 1

|Σ| − 1
+ |Σ|n by Inclusion-Exclusion Principle of disjoint

sets [2], (2, 5–6)

(8) |L| = |Σ|
n+1 − 1

|Σ| − 1
by (7)

Lemma A.4. A non-empty language has a longest word if and only if it is finite (Definition

2.1)
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Proof.

Forward:

(1) Let w be the longest word in L by assumption

(2) L ⊂ {w′ ∈ Σ∗||w′| ≤ |w|} by definition of maximum [16], (1)

(3) |L| ≤ |Σ|
|w′|+1 − 1

|Σ| − 1
by A ⊂ B =⇒ |A| ≤ |B|, Lemma A.3, (2)

(4) |L| is finite by |L| ∈ N, (3)

(5) L is finite by Definition 2.1, (4)

Backward: By Contradiction

(1) L is finite and non empty by assumption

(2) 6 ∃ w ∈ L, ∀ w′ ∈ L |w| ≥ |w′| by assumption

(3) ∀ w ∈ L, ∃ w′ ∈ L |w| < |w′| by DeMorgan’s with quantification [15; 28],

(2)

(4) ∃ w ∈ L by (1)

(5) There exists an infinite

sequence of words in L by induction, (3–4)

(6) ⊥ by (1, 5)

A.2 Theorems on Finite and Cofinite Languages

Theorem A.1. A finite language (Definition 2.1) is regular

Proof. By induction on |L|

Case |L| = 0.
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(1) L = ∅ by ∅ being the unique language of

cardinality 0

(2) {∅} is regular by {∅} = L(∅R)

(3) L is regular by substitution, (1–2)

Case |L| > 0.

(1) Let w ∈ L by choice

(2) Let L′ = (L \ {w}) ∪ {w} by choice

(3) |L \ {w}| = |L| − 1 by (1)

(4) L \ {w} is regular by inductive hypothesis, (3)

(5) {w} is singleton by Definition A.1

(6) {w} is regular by Lemma A.2, (5)

(7) (L \ {w}) ∪ {w} is regular by regular languages being closed under

union, (4, 6)

(8) L′ = (L ∩ {w}) ∪ {w} by A \B = A ∩B [2; 16], (2)

(9) L′ = (L ∪ {w}) ∩ ({w} ∪ {w}) by ∪ being distributive over ∩ [2; 16; 28],

(8)

(10) {w} ⊂ L by (1)

(11) L′ = L ∩ ({w} ∪ {w}) by A ⊂ B =⇒ A ∪B = B, (9–10)

(12) L′ = L ∩ U by {w} ∪ {w} = U [2], (11)

(13) L′ = L by U being the identity for ∩ [2], (12)

(14) L is regular by substitution, (2, 7, 13)
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Corollary A.1. A cofinite language (Definition 2.2) is regular

Proof. Follows immediately from Theorem A.1 and the already discussed closure of regular

languages under complementation.

Theorem A.2. The set of finite languages is closed under intersection with any decidable

language.

Proof. L1 ∩ L2 ⊂ L1, and therefore |L1 ∩ L2| ≤ |L1|. |L1 ∩ L2| is thus bounded by a natural

number and therefore finite.

Corollary A.2. The set of finite languages is closed under intersection.

Proof. Follows immediately from Theorem A.2

Theorem A.3. The set of cofinite languages is closed under union with any decidable lan-

guage.

Proof.

(1) Let A be a cofinite language by choice

(2) Let B be a language by choice

(3) Let C = A ∪B by choice

(4) C = A ∩B by Demorgan’s, (3)

(5) A is finite by Definition 2.2, (1)

(6) C is finite by Theorem A.2, (5)

(7) C is cofinite by Definition 2.2, (3)

Corollary A.3. The set of cofinite languages is closed under union
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Proof. Follows immediately from Theorem A.3.

Theorem A.4. The set of finite languages is closed under union.

Proof. |L1 ∪L2| ≤ |L1|+ |L2|2 [2]. Since N is closed under addition, |L1 ∪L2| is bounded by

a natural number and therefore finite.

Corollary A.4. The set of cofinite languages is closed under intersection.

Proof. Follows immediately from Definition 2.2, Theorem A.4, and Demorgan’s

Theorem A.5. The union of finite and cofinite languages is closed under union.

Proof. Either both languages are finite and Theorem A.4 shows the result to be finite or at

least one of the languages is cofinite and Theorem A.3 shows the result is cofinite.

Theorem A.6. The union of finite and cofinite languages is closed under complementation.

Proof. Follows immediately from Definition 2.2.

Theorem A.7. The union of finite and cofinite languages is closed under intersection.

Proof. Follows from the Closure Lemma and Theorems A.5 and A.6.

A.3 Theorems on Parse Trees

Theorem A.8 (Upper Bound on Tree size). In a deterministic CFG G, that has no ε

productions, if a parse tree T , has terminal nodes n(T ), and non-terminal nodes m(T ), then

|m(T )| ∈ O(|n(T )|).

Proof. A deterministic CFG can not have unit recursion and therefore has a longest chain

of unit productions with length k. By assumption, k is finite and fixed for G. By strong

induction on |n(T )|, It can be proven that ∀ T, |m(T )| ≤ k ∗ (|n(T )|+ 1) which would imply

|m(T )| ∈ O(|n(T )|).

2As a consequence of the Inclusion-Exclusion principle
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Case n(T ) = 1.

In Figure A.1, Ta derives a terminal in 0 ≤ d ≤ k derivations producing d = m(T )

internal nodes. Since d ≤ k, |m(T )| ≤ k × (|n(T )|).

Case n(T ) > 1.

In Figure A.1, Tb derives the internal node I in 0 ≤ d ≤ k derivations producing d

internal nodes.

(1) n(Tb) is partitioned

into {n(Ti) | 0 ≤ i < l} by assumption

(2) ∀ 0 ≤ i < l, |n(Ti)| < |n(T )| by (1)

(3) |n(Tb)| =
∑

0≤i<l |n(Ti)| by (1)

(4) ∀ 0 ≤ i < l, |m(Ti)| ≤ k× (|n(Ti)|) by inductive hypothesis, (2)

(5)
∑

0≤i<l |m(Ti)| ≤

k ×
∑

0≤i<l |n(Ti)| by (4)

(6) |m(Tb)| =
∑

0≤i<l |m(Ti)|+ d by assumption

(7) |m(Tb)| ≤ k × |n(Tb)|+ d by (3, 5–6)

(8) |m(Tb)| ≤ k × (|n(Tb)|+ 1) by (7)

A.4 Example LBA

As an example of the use of the LBA, the language C = {1n | n is composite} will be shown

to be context-sensitive but not context-free.

Lemma A.5. C is not context-free.
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Tb

...

I

T1

...

Ta

Tl· · ·

Figure A.1: Parse Trees

This classic problem is left as an exercise in [1] and can be solved in multiple ways. Two

proofs are given that leverage number theory and language theory.

Proof. Since a CFL over a singleton alphabet is regular3, then if C is not regular, then it

is not context-free. If C were context-free, then P = C \ {ε, 1} = {1n | n is prime} would

be regular as well by regularity preserving steps [1; 4]. P ’s non context-freedom is left as an

exercise in [1] and can be proven with the pumping lemma since even if a + b + c is prime,

a+ b(a+ c) + c = (a+ c) ∗ (b+ 1) is not.

Proof. By contradiction

(1) C is context-free by assumption

(2) C is pumpable by pumping lemma for CFL [1; 4], (1)

(3) ∃ p | ∀ w ∈ C, |w| ≥ p =⇒

∃ u, v, x, y, z | uvxyz = w ∧ |vy| > 0

∧ |vxy| ≤ p ∧ ∀ i, uvixyiz ∈ C by definition of pumpability for CFL [1; 4],

(2)

3This is a trivial application to a theorem in [14], a direct corollary in [26], left as an exercise in [1]
provable by the pumping lemma.
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(4) Let q > p be prime by Euclid’s infinitude of primes [4; 15],

choice

(5) Let w = 1q2 by choice. As seen in Step (13),

∀ 1 < i ≤ p, |w| must be coprime to i. The

smallest satisfying number is q2.

(6) w ∈ C by definition of C, (5)

(7) |w| ≥ p =⇒ ∃ u, v, x, y, z |

uvxyz = w ∧ |vy| > 0 ∧ |vxy| ≤ p ∧

∀ i, uvixyiz ∈ C by (3, 6)

(8) |w| = q2 by (5)

(9) ∃ u, v, x, y, z |

uvxyz = w ∧ |vy| > 0 ∧ |vxy| ≤ p

∧ ∀ i | uvixyiz ∈ C by (4, 7–8)

(10) u = 1a, v = 1b, x = 1c, y = 1d, z = 1e by (5, 9)

(11) Let n = b+ d by choice

(12) p ≥ n > 0 by (9–11)

(13) n and q2 are coprime by (4, 12)

(14) ∃ j | n× j + q2 is prime by Dirichlet's Theorem About Primes in an

Arithmetic Progression [29], (13)

(15) uvj+1xyj+1z ∈ C by (9)

(16) |uvj+1xyj+1z| is composite by definition of C, (15)

(17) |uvj+1xyj+1z| = n× j + q2 by (10–11)

(18) ⊥ by (14, 16–17)
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Lemma A.6. C is context-sensitive.

Proof. By Construction of an LBA

One possible certificate format4 for compositeness is a divisor D greater than 1 [1; 2; 4] and

verification is simply divisibility5. Figure A.2 will be shown to accept C.

First, Table A.1 shows a partitioning of the possible configurations of the machine. Each

partition is a family of configuration all having the same state, head symbol, and tape

pattern. The transitions between these families is given in Figure A.3. Once F4 ⇒ F6 is

taken, the divisor is fixed. The machine then proceeds to convert a symbol from the divisor,

2 → 3, and then mark a symbol from the dividend, 1 → . When all of the symbols from

the divisor are 3, detected by F12 ⇒ F13, they are all reset back to 2 and the cycle repeats.

Every time the divisor is fully marked and then reset, the dividend has been decremented

by D.

If there are no more 1s, then there should be exactly a single 3. This is tested with

whether the symbol left of the 3 is a 2. If so, then the machine accepts. Otherwise, it

rejects. An effect of this is that D = 1 is rejected after the division rather than failing

quickly. Here program simplicity is favored over efficiency.

Termination can be guaranteed by showing that all loops terminate. All of the self loops

point in a single direction and will stop at the end. Every multinode loop contains 9 and

every exit decrements the number of F1, which is monotonic. Therefore, eventually F6, F7,

or F8 must transition to F14 rather than F9 and the machine exits the complex division logic.

All loops happen a finite number of times and so the machine does halt.

4Additional information that if correct, simplifies an affirmative determination [2; 4]
5More precisely, D | N −D
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Figure A.2: LBA for C
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Config. Fam. Descrip. Tape State Next Config. Fam.
S Start <1∗ > F1, F2

F1 N = 0 < > q1 Reject
F2 N 6= 0 < 11∗ > q1 F3, F4

F3 D = 0 < 11∗ > q2 Reject
F4 Building D < 2∗11∗ > q1 F4, F5, F6

F5 N = D < 2∗> q1 Reject
F6 Last 2→ 3 < 2∗23∗ ∗1∗ > q2 F7, F8, F9, F14

F7 Skipping 3s < 2∗3∗33∗ ∗1∗ > q3 F7, F8, F9, F14

F8 Skipping s < 2∗3∗ ∗ ∗1∗ > q3 F8, F9, F14

F9 First 1→ < 2∗3∗ ∗11∗ > q3 F10, F11

F10 Skipping s < 2∗3∗ ∗ ∗1∗ > q2 F6, F10, F11, F12

F11 Skipping 3s < 2∗3∗33∗ ∗1∗ > q2 F6, F11, F12

F12 No more 2s <3∗ ∗1∗ > q2 F13

F13 First 3→ 2 < 2∗3∗33∗ ∗1∗ > q4 F13, F6

F14 No more 1s < 2∗3∗ ∗> q3 F15

F15 Skipping s < 2∗3∗ ∗ ∗ > q1 F15, F16

F16 Last 3→ 1 < 2∗3∗3 ∗ > q1 F17, F19, F20

F17 more 3s < 2∗3∗31 ∗ > q4 F18

F18 D 6 | N < 2∗3∗21 ∗ > q2 Reject
F19 N = 1 <1 ∗ > q4 Reject
F20 No more 3s < 2∗21 ∗ > q4 F21

F21 D | N < 2∗2 1 ∗ > q5 Accept

Table A.1: Configuration Families
Underlined symbols represent head positions.
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Figure A.3: Transition Graph among Configurations Families
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