PRABODH G. BAKSHI

B. E., Victoria Jubilee Technical Institute University of Bombay, India, 1960

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Inaustrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1965

TABLE OF CONTLNTS

INTRODUCTION 1
HYPOTHES IS 3
SChEDULING OF THE CINCINNATI TRANSIT COMPANY 3
STRAIGHT RUN MAKING 6
CONSTRUCTING SPLIT RUNS 9
COMBINING PIECES OF STRAIGHT RUNS AND PIECES OF VORK 13
SPLIT RUN SELECTION 15
MANUAL NETHOD - SUNAARY TABLE 18
COMPUTER METHOD - TOTAL TIME BASIS 20
COMPUTER METHOD - MODIFIED SUMMARY TABLE 22
COMPUTER METHOD - LINEAR PROGRAMMING APPROACH 26
SUMMARY AND CONCLUSIONS 32
ACKNOKIEDGMENTS 35
REFERENCES 36
APPENDIX 37

LIST OF FIGURES

1. Daily Volume of Traffic Curve 5
2. Computer Output - Straight Run Making 10
3. Flow Diagram - Straight Run Making 11
4. Flow Diagram - Split Run Making 14
5. Flow Diagram - Combining Pieces of Work and Pieces of Straight Run 16
6. Nachine Output - Combining Pieces of Straight Run and Pieces of Work 17
7. Summary Table 19
8. Selection Based on Total Paytime 23
9. Nodified Table 24
10. Comparison of Results, Company Selection vs Modified Table Machine Selected 27
11. Vertical Ranking of Split Run Data 31
12. Assignment Problem Technique Results 33

Piece of work	Any work assicned to an operator which pays less than 8 hours.
Straight run	A regular run having no unpaid breaks.
Split run	A regular run having unpaid breaks.
Pull out time	The starting time of a piece of work, straight run, or a split run.
Pull in time	The finishing time of a piece of work, straight run, or a split run.
Travel time	The actual running time from the garage to point of relief.
Platform time	The time during which an operator is in charge of a bus.
Turn-in	A specific amount of time which the operator receives for every straight run and each piece of work in his assignment.
Guarantee time	The time paid for but not worked, to make up a minimum guarantee for certain classes of work.
Allowance	A time equal to either the travel time, the guarantee time, or both.
Pay time	The total pay time for a specific run.
Spread time	The total working time plus the unpaid time of a split run.

INTRODUCTION

Since the close of World War II, the public has made it abundantly clear that they prefer the use of automobiles to any local system of mass trpnsportation. This is an established trend, and until this trend is reversed, the use of mass transportation will fall off. ${ }^{1}$ The rapid increase in the number of automobiles in use is not only causing alarm in the transit industry but is also threatening its very existence. Automobiles have captured today's transportation market for three important reasons which may be stated as:

1. They give complete door-to-door service in one vehicle.
2. They allow flexible routing for direct services from origin to destination.
3. They offer prompt, comfortable and convenient service. This imbalance between public and private transportation must be checked before it is too late.

City planners are greatly concerned about the growth in the number of automobiles in use today. They also realize the importance of having public transportation to service downtown areas. New cities of the future have to be planned with adequate facilities for efficient transit operations; however, the transit industry must also offer complete, or nearly complete, origin-to-destination services for a lare number of passenger trips. The aim of the transit authorities must be to carry both those who have to use their services and those who elect to use them, particularly during rush hours.

[^0]It is obvious that the task of the transit companies is becoming immeasurably greater and more complex. One of the urgent needs of today is that of increasing the efficiency of the transit services and to make them more attractive to the public. In view of the constant increase in the cost of labor, which constitutes almost 85 per cent of the total revenue ${ }^{2}$, there is an urgent need for reducing operating costs.

Proper scheduling techniques yielding efficient and effective schedules would play a major role in reducing operating costs. Hence, the aim of transit companies has been rescheduling services as a means of maintaining operations on a profitable basis in face of strong competition from the automobile users. The best manual methods of scheduling, however, fall short of solving the problem because computations cannot be made quickly enough to keep pace with the rapidly changing conditions. In order to overcome the computational difficulties, researchers are turning to the use of high-speed electronic computers. This report is based on the theoretical analysis completed in previous research on the use of computers in scheduling ${ }^{3}$.

The transit scheduling problem is divided into three main areas:

1. Determination of the passenger load and vehicle requirements by dividing the city into areas. Routes to service these areas are then fixed.
2. Preparation of a headway sheet giving the timings and the freguency of services in the various areas. This is dependent upon the requirements of the transit services during peak hours and slack periods.
3. Lassow, Bill, "Why Do We Need Transportation Research?" Metropolitan Transportation and Planning, November, 1963, Vol. 59:6, pp. 20-22.
4. Elias, Samy E. G., "A Digital Computer Solution to the Transit Operation Assignment Problem." Unpublished Doctoral Thesis, Oklahoma State University, 1960.
5. Preparation of operator assignments and establishnent of a daily work schedule.

In this report a computer solution to the assignment of the daily work schedule is demonstrated.

HYPOTHES IS

The objective of this report was to develop computer programs to construct the daily work schedule of the Cincinnati Transit Company, Ohio. The computer approach is primarily aimed at reducing both laborious manual work and the cost involved in constructing daily schedules. The solution is based on previous research on the use of computers for transit company scheduling ${ }^{4}$.

As a further step toward reducing manual work, computer progrums were developed to select the most economical combinations of split runs from among several alternatives.

The IBM 1620 computer was used for solving the problem. All programs were written in the PORTRAN (Formula Translation System) language. The data for this problem was obtained from the Cincinnati Transit Company, Ohio.

SCHEDULING OF THE CINCINNATI TRANSIT COMPANY

The computer approach to scheduling public transit was put to test on the data from four transit companies. It was the author's responsibility to develop the computer programs for the Cincinnati Transit Company, Ohio, as an objective of this report. The computer approach of preparing the transit company scheaule is a simulation of the manual method now in use. Therefore, the computer programs follow the manual nethod procedure very closely.
4. Ibid.

The number of variables and restrictions is the main difficulty encountered in effectively programming a daily work schedule for each operator. Operating variables, trip times, and restrictions of the union-management agreement are a few of the factors which have to be considered in making an effective daily schedule.

One of the biggest problems faced by the transit industry is the variable nature of the daily demand on their services. Traffic peaks in the mornings and late afternoons tend to fall off in the early morning hours and on weekends. As can be seen from the graph in Fig. 1 , the volume of traffic is almost 300 per cent more during peak hours than during slack periods. This vast fluctuation in the maximum and minimum demands forces the transit companies to maintain large fleets of buses and an equally large number of operators. It may be of interest to point out that 85 per cent ${ }^{5}$ of the revenue of transit companies goes out as wages to the employees. In order to remove traffic bottlenecks during peak hours, some buses are put on shorter trips while others make extremely long runs. This variation in trip distance and time involved leads to many complications in making operator assignments.

Some of the restrictions and constraints of the union-management agreement of the Cincinnati Transit Company are:

1. No regular run shall pay less than eight hours.
2. Time and one-half is paid as overtime for all work beyond eight hours.
3. Forty-six per cent ($4 \mathrm{~S}_{0}^{1}$) of all runs shall be straight runs.
4. Five minutes pay shall be allowed for operators for turn-in and will be considered as part of the regular time.
5. Lassow, op. cit.

DAILY VOLUME OF TRAFFIC

Fig. 1
5. No less than fifteen minutes shall be allowed for operators for meal relief.
6. If the operator is relieved on the road, he will be allowed actual running time from the garage to the point of relief plus five minutes.
7. If the intervening time between taking out parts of the run amounts to one or less, such intervening time shall be paid for as a part of the regular run.

To develop an effective schedule within the above restrictions is a difficult and tedious task. An ideal schedule would be one having all straight runs; however, as this is practically impossible, a three-step approach is used. These steps, the same in both the manual and the computer approaches to daily scheduling, :are:

1. Developing all possible straight runs.
2. Constructing split runs by combining pieces of work.
3. Combining pieces of work not used in step 2 with straight runs not utilized from step 1. The straight runs are broken into two or three pieces, depending upon the requirements.

The reason for following a three-step approach is that the computer storace capacity limits the use of one program to do all the steps.

STRAIGHT RUN MAKING

In this step both the manual and the computer methods have the same objectives - to make all possible straight runs. As an example, the data for Route 26 and Block 3 is taken. Details regarding the route number, block number, pull-out time, pull-in time, and relief times are obtained from the headway sheet. The details of Route 26 ard Block 3 are:

Pull out of garage at	5:25 AM	
Pull into garage at	5:57 PM	
Relier もimes	5:25, 7:44,	8:59
	12:25, 12:58,	2:21
	4:45, 5:52,	5:57

All the data received from the Cincinnati Transit Company was in hours and minutes. In order to make the data compatible for use on the computer it had to be converted onto a 24 -hour clock and into hours and decimals. A. conversion program was used for this purpose. The converted computer output for Route 26 and Block 3 was punched out in the following form:
No/reliefs Travel Route Block $P /$ out $P /$ in Reliefs:

13

$$
\begin{array}{lllll}
0.0 & 26 & 3 & 5+1 & 17.95
\end{array}
$$

$$
\begin{aligned}
& 5.41,17.3,1898, \\
& 1246,1206,1435, \\
& 16.75,1786,1795,
\end{aligned}
$$

The steps followed in constructing straight runs are:

1. The machine finds the total trip time for the block and compare this with eight hours, the minimum permissible working time for a straight mun. $1705-5.41=12.54$ hours.
2. If the total trip time is more than 16 hours, two straight runs can be developed, one from the front of the block and another from the tail end of the block, leaving a piece of work in between. The logic behind this procedure is to avoid having a late piece of work which would be difficult to use in the next step.

If the total trip time is lareer than seven hours but less than 16 hours, a straight run and a piece of work will be developed. If the total trip time is less than seven hours, a piece of work will be punched out.

It was found that for any block having a total trip time of exactly seven hours, it would be cheaper ror the company to pay cuarantee time and
make a straight run rather than paying spread-tine penalty and making a split run. Hence, it was the company's policy to use a seven hour limit in deciding whether to make a straight run or a piece of work. The total time for the example falls in the second category.
3. The platform time for the straight run is now computed. The union-manacement agreement states that the company has to consider the five minutes turn-in, travel time, and five minutes travel allowance, if any, as a part of the recular time. Therefore, to avoid paying overtime, the platform time is computed as eight hours minus turn-in time (five minutes), travel'time and travel allowance, if any. For Route 26 and Block 3, used in the example, there is no travel time. Therefore, the platform time equals 7.91 hours (8.00 less 5 minutes turn-in time).

The machine now checks the relief times on the block, starting from the pull-out side, and looks for one that breaks the block into two pieces, one of them being either equal to or slightly larger or slightly smaller than the platform time. In the example, if the block is broken at the relief 12.96 we get a piece having a platform time of 7.55 hours, whereas the next relief time 14.35 gives a platform time of 8.94 hours.
4. The next step is to dcciue which of these two relief times to select as the pull-in time of the straight run. This selection is done on the basis of cost. In the case of reliff time 1296 , the company has to pay 0.36 hours as a guarantee time but relief time 1435 pays an overtime of 0.56 hours. Of these two alternatives, the one most economical is chosen. Therefore, relief time 1296 becomes the pull-jn time for the straight run.
5. The machine next checks the trip time of the remainder of the block. In our example this is 4.99 hours (17.95 minus 1296). It is not enough for another straight run so a piece of wolk is punched out.
6. Having developed a straight run and a piece of work from the forward direction, the machine now constructs another straight run from the tail end of the block. This is done to give the schedule maker the choice between selecting an early or a late straight run on the same block.

The straight run output for Route 26 and Block 3 is shown in Fig. 2. A flow diagram of the first step is given in Fig. 3.

CONSTTRUCTING SPLIT RUNS

The next step in constructing the schedule is that of combining the pieces of work. To explain this step, the following two pieces of work will be used:

	Route	Block	TF	P/out	P/in	TB	Platform
No 1	1	12	0	606	951	0	3.45
No 2	4	4	0	14,06	1826	0	4.20

Here again, both the manual and the computer methods follow almost identical steps. The computer goes through the following sequence of operations:

1. The cards containing the information about the pieces of work are first read by the machine. This information is then stored in the memory storage area of the machine.
2. The computer selects the first piece of work and makes all possible split run combinations with the other pieces. In our example, the first piece to be chosen would be (1-12). Before constructing a split run, the computer checks to see if all restrictions are fulfilled. These are:
a. The pull-out and pull-ir times of the two pieces being combined are checked. Both the pull-sut and the pull-in times of piece (4-4)

			COMPUTER SUTPUT - STRAIGHT RUN MAKING							
					ROUTE	26	BLOCK	3		
$N \sim$ -	Route	BLOCK	TF	P/CUT	P/IN	TB	PLAT	PENLT	TURN IN	PAY
1	26	3	0	541	1296	0	755	36	8.3	800
	26	3	0	1296	1795	0	499			
2	26	3	0	898	1795	0	897	0	$8 \cdot 3$	905
	26	3	0	541	898	0	357			

FiE. 2

Fig. 3. Flow Diagram - Streight Run Making
must either be earlier or later than the pull-out and pull-in times of piece (1-12). In the example this condition is fulfilled; the times of piece (4-4) are later than those of piece (1-12).
b. A gap of a minimum of five minutes plus travel, if any, must exist between the pull-in time of piece (1-12) and the pull-out time of piece $(4-4)$, if any. The gap between the two pieces being used is 4.55 , well beyond the minimum limit.
c. Spread time is computed. There is a maximum limit of 14.0 hours on spread time. However, any time beyond 11.0 hours is paid for at half the regular rate.

$$
\begin{aligned}
\text { Spread time } & =\left(\text { pull-in time of }(4-4)-\text { travel } t^{\prime} \text { turn-in }\right) \\
& -(\text { pull-out time of }(1-12)-\text { travel }+ \text { turn-in }) \\
& \text { or }(1826-0+8.3)-(606-0+8.3)=12.20
\end{aligned}
$$

This figure $(12,20)$ is within the maximum limit of 14.0 hours.
d. All the pieces used for making split runs must be at least one hour long. The amount by which a piece falls short of this limit is paid for by the company as guarantee time. The pieces of work used in the example satisfy this restriction.
e. The last check before a split run is constructed is for the platform tine. The total platform time must lie between 7.50 and 9.00 hours. Platform time for the example $(1-12) f(4-4)$ is 7.81 hours.

As the two pieces satisfy all the restrictions, a split run is developed. The computer output is in the following format:

No. Route Block TF P/out $P /$ in $T B$ Spread Platform Penalty Turn-in Pay

	1	12	0	606	951	0		345		
1	4	4	0	1406	1826	0	128.3	420	18.34	16.67

In a similar manner, the machine picks one piece at a time and constructs all possible split run combinations with the other remaining pieces. Thus, the computer approach gives every possible split run combination that can be constructed. The schedule maker has now to make a selection from the split runs developed.

A part of the objective of this report was to develop a computer technique to do the selection. A detailed description of the various approaches developed is given in the latter part of this report. Figure 4 gives the flow diagram of the computer program used in this step.

COMBINING PIECES OF STRAIGHT RUNS AND PIECES OF WORK

After completing selections from the several hundred alternatives of split runs constructed in the preceding step, there were invariably some pieces of work that were unused. To avoid paying a high overtime, these are now combined with pieces of straight runs.

According to the union-management agreement, a daily schedule must contain at least 46 per cent straight run. The straight runs which are broken and used in this step are the ones that are in excess after this minimum restriction has been satisfied. These straight runs are broken into two or three pieces and combined with the unused pieces from the preceding step. The machine is programmed to do the following sequence of operations:

1. All the pieces of work are read and retained in the memory storace.
2. One straight run is read ct a time and is combined as follows: a. The straicht run is broken at every relief point until one section can be combined with one or more pieces of work. This section is

Fig. 4. Flow Diagram - Split Run Making
called piece No. 1 to facilitate the description of the procedure. All the split run combinations are punched out.
b. The remaining portion of the straight run is now broken until a second section is developed with which one or more pieces of work can be combined. Again, all the combinations are punched out. The piece of the straicht run used is designated as piece No. 2.
c. The computer now makes all the possible split run combinations with the third and last piece of the straight run.
d. On completion of step c, the machine goes back to piece No. 2 and increases its length by one relief time. The new piece No. 2 is again combined with the same pieces of work. Step c is repeated but with a smaller piece No. 3. This cycle is repeated until the lencth of piece No. 2 becomes equal to the straight run minus piece No. 1.
e. The machine now branches back to step a and increases the leneth of piece No. l by one relief time. The sequence of operations is repeated. This cycle endsas soon as the length of piece No. I reaches the maximum limit of six hours.
3. The machine now reads another straight run and repeats the whole sequence of operations described above.

A flow diagram for this part of the computer program is shown in Fic. 5 . A sample output of this step is shown in Fig. 6.

SPLIT RUN SEIECTION

As mentioned in the hypothesis, one of the objectives of this report was to present a computer approach to the selection problem in order to elininate manual work. In the case of small companies, selection from the split

MACHINE OUTPUT - COMBINING PIECES OF STRAIGHT RUNS AND PIECES

ROUTE NO. 44 BLOCKO NO. 2

NO.	RN	BN	TF	P/OUT	P/IN	TB	SPREAD	TRIP	PENLTY	TURN	PAY
	1	9	0.0	1440	1946	0.0		506			
1001	44	2	16.6	651	888	0.0	110.0	237	$40 \cdot 3$	16.6	800.0
	1	64	0.0	1523	1883	0.0		360			
$1 \mathrm{nO2}$	644	$4 \supset 2$	0.0	625	1083	0.0	83.1	458	0.0	16.6	834.6
	3	33	0.0	1475	1843	0.0		368			
1003	644	402	0.0	625	1083	0.0	126.3	458	0.0	16.6	842.6
	4	3	0.0	1386	1740	0.0		354			
1004	644	402	0.0	625	1083	0.0	0.0	458	0.0	16.6	828.6
	5	56	0.0	1498	1818	0.0		320			
1005	644	402	0.0	625	1083	0.0	101.3	458	$5 \cdot 3$	16.6	800.0
	10	51	0.0	$14+6$	1796	0.0		350			
1006	644	402	0.0	625	1083	0.0	0.0	458	0.0	16.6	824.6
	10	52	0.0	1480	1816	0.0		336			
1007	644	402	0.0	625	1083	0.0	0.0	458	0.0	$16 \cdot 6$	810.6
	24	9	0.0	1515	1868	0.0		353			
1008	644	402	0.0	625	1083	0.0	75.6	458	0.0	16.6	827.6
	24	57	0.0	1518	1838	0.0		320			
1009	644	402	0.0	625	1083	0.0	121.3	458	$5 \cdot 3$	16.6	800.0
	68	11	0.0	1485	1841	0.0		356			
1010	644	402	0.0	625	1083	0.0	124.3	458	0.0	16.6	830.6
	68	58	0.0	1601	1935	0.0		334			
1011	644	402	0.0	625	1083	0.0	109.1	458	0.0	16.6	808.6
	68	59	0.0	1480	1798	0.0		318			
1012	644	402	0.0		1083	0.0		458	$7 \cdot 3$	16.6	800.0
	44	2		1083	1281		198				
	1	9	0.0	1440	1946	0.0		506			
1013	44	2	0.0	888	1156	0.0	0.0	268	$9 \cdot 3$	$16 \cdot 6$	800.0
	44	2		1156	1281		125				
	1	9	0.0	1440	1946	0.0		506			
$1 \cap 14$	44	2	16.6	651	935	0.0	110.0	284	16.6	16.6	823.3
	3	1	36.6	1468	1870	0.0		402			
1015	44	2	16.6	651	935	0.0	90.3	284	97.3	16.6	800.0
	1	9	0.0	1440	1946	0.0		506			
1016	44	2	0.0	935	1208	0.0	0.0	273	$4 \cdot 3$	16.6	$800 \cdot 0$
	44	2		1208	1281		73				

FiG. 6
run alternatives developed is not a problem, but as the size of the company Erows, this becomes a difficult and tedious task. The difficulties arise from the fact that the number of split run alternatives to select from becomes very large, sometimes running into several hundred. The number of split runs developed for the Cincinnati Transit Company was 803.

Selection criteria vary from company to company. The manual selection method developed in previous research ${ }^{6}$ and three other computer approaches devcloped in this report are described in detail. These methods are:
1.. Manual Method - Summary Table
2. Computer Method - Total Pay-time Basis
3. Computer Method - Modified Summary Table based on Pay-time
4. Computer Method - Linear Programming Approach

MANUAL METHOD - SUMMARY TABLE

The split run output from the computer method consists of all the possible combinations that can be made. To make the output more manageable, a summary table, Fig. 7, was constructed. This: table was made by the machine. Ficure 7 gives the table for the 803 combinations made for the Cincinnati Transit Company.

On this table, a letter "l" is indicated for every split run combination made. The number of combinations made with each piece is indicated on the extreme richt and bottom of the table. The use of the summary table is now illustrated.

The criterion for selection is to use as many pieces as possible. The

[^1]

Fig. 7
logical approach, in such a case, would be to select first the pieces having the least number of combinations.

In the summary table, Fic. 7, it is observed that piece (8-6) was scheduled only once. In checking for a complementary piece, it was noted that piece (26-52) was also combined only once. Thus, this split run combination would be the first choice.

After making the first selection, the next step would be to eliminate these two pieces from the summary table. New totals are then computed and the next least combined piece is chosen. In this manner the complete selection is made. This method is time-consuming and does not take into consideration the cost factor at all. For example, if the schedule maker is faced with two split run alternatives to choose from, he has no ready means of knowine which is the most economical.

COMPUTER METHOD - TOTAL TIME BASIS

In order to computerize the selection and to incorporate the cost factor, the following approach was adopted. The criterion used in this approach was that of selecting the least costly combination first.

The initial step in this approach was to arrange all the 803 split runs in their ascending order with respect to total pay time. This was done by means of a computer procram. To explain the steps, the following example is described in detail.

Assume that three pieces, A, B, and C, were fed into the machine in the following order:
Piece Pay time

1. The machine stores this inomation in the memory storage area.
2. The pay time of pieces A and B is compared. If the computer finds that the pay time of A is greater than that of B, it then interchanges their positions. In this case, A is less than B so the machine moved to the next two pieces, B and C.
3. On comparing these pieces, the machine finds that piece B has a larger pay time. It interchanges the position of pieces B and C. The order of the pieces in the storage area is now shown below:

Piece	Pay time
A	800
C	820
B	840

4. On completing the comparison of the last pair, the machine starts with the first two pieces again. It now compares A and C, then C and B. As no interchange takes place, the arranging is complete.
5. The arranged pieces are punched out with serial numbers assigned by the computer.

After the split run input was arranged and punched out, the machine shifted to manual control. At this stage the schedule maker could instruct the computer to select the split run of his choice. This permits the inclusion of a particular split run which has to be used in the schedule. Upon receiving this information, the nachine goes about selecting the least costly combinations first. The program has checks to ensure that no piece of work is used more than once. As soon as one selection is complete, the information is punched out and the computer shifts back to manual control,
ready to make another selection. The selection cycles take only ten minutes.

The results from this approach are given in Fig. 8. On comparing these With those selected by the company, it was observed that all but eight pieces are the same. In place of the eicht pieces not used by the company, other pieces of similar pull-out time, pull-in time, and trip times were utilized. There was a saving of almost eleven hours or 4.1 per cent in the schedule. The company-selected runs paid 268.93 hours whereas the computer selections paid only 258.22 hours.

COMPUTEER METHOD - MODIFIED SUMMARY TABIE

In spite of saving almost eleven hours by using the preceiding method, it was felt that a little more flexibility in making a selection was needed. Almost every transit company has a few routes on which it invariably makes a loss. In order to minimize the losses, the company attempts to use the least costly split run combinations on such routes. This modified summary table approach was so developed that split runs from such blocks can be selected first. The selection depends on the order in which the blocks are fed into the machine.

In the summary table, Fig. 7, no distinction was made on the basis of pay time. The letter "l" simply indicated that a split run had been developed. To improve on this, a new modified summary table was constructed.

The new modified table is shown in Fig. 9. Prior to feeding the split runs into the computer to construct the new table, the data had to be ranked. This ranking was done on the machine in the following manner:

1. All the split run combinations were read by the machine and

SELECTION BASED ON TOTAL PAYTIME

AM/P	PM/P	PAY
6802	107	800
2406	302	800
806	2652	800
2602	6801	802
503	4401	816
311	104	818
2807	2603	836
6810	403	840
2404	2851	845
2902	2460	852
2604	408	855
4403	6859	857
2405	751	858
305	553	859
502	459	859
112	404	864
701	106	865
2408	2805	868
6809	1051	871
6806	801	881
1003	101	881
1001	461	887
304	160	890
306	556	896
309	6857	897
111	301	900
2806	557	901
901	402	904
6807	463	908
504	501	912
$T 0 T A L=$	258.22	

FiE. 8

stored in the memory section.
2. The computer then picked the first block used and found all the split run combinations made in that block. These were arranced with respect to total pay time. A procram similar to the one described under Computer Method - Total Pay time Basis was used.
3. The arranged and ranked output is punched out. In a similar fachion all the split runs were arranged and ranked within each block.
4. This arranged and ranked output was used in making the modified summary table, FiE. 9..

The procram for constructing the modified summary table is given in the appendix. The table is constructed as follows:

1. The machine reads all the pieces of work used for the construction of the split runs.
2. The A. M. pieces are arranged along the vertical axis of the table and the P. M. pieces along the horizontal axis.
3. Each split run is now read. The machine locates the cell contained by the two pieces used in this run and puts the rank into the storage arca. Similarly, all the split runs are arranged in the memory of the machine in a matrix form.
4. On reading the last split run, the machine calculates the numbe: of combinations constructed with each piece. The table is then punched out. This is shown in FiE. 9.

The modified summary table made stlection easier and gave a ready means of tellinc which alternative was least costly.

A procram to make the selection was written. On receiving the instruction
of the first split run to select, the machine moved from block to block, pickinc the least costly combination possible. The permutation and combinations of the various blocks would yield innumerable selections. The piece (68-9) was combined 29 times. Twenty-nine sets of selections were made, each havinc one combination of piece $(68-9)$ as the first choice. On an averace, 33 split runs were selected in each set. The total time varied from a minimum of 333.10 hours to a maximum of 335.30 hours.

A comparison between the least costly selection and the company's set is shown in Fic. 10. Thirteen pieces of work used in the company's schedule were not included in the computer solution. The total time paid by the company was 268.93 hours as against 251.03 hours for the computer selection. This shows a saving of almost 18 hours or 6.7 per cent.

COMPUTER NETHOD - LINEAR PROGRAMMING APPROACH

This method of selection was based on the "Assignment Problem Technique" 7 used in linear programming. An assignment problem is one in which there is a matrix of effectiveness which associates each of a number of oricins with each of the same number of destinations. The desired solution is an optimal assicnment wherein an origin is associated with one and only one destination in such a way as to minimize (maximize) the summed effectiveness. This technique is denonstrated by the following example.

A situation exists where there are four job vacancies and an equal
7. Sasieni, M., Operations Research Methods and Problems. New York: John Wiley and Sons, Inc., 1959, pp. 183-192.

COMPARISON OF RESULTS

Company selection vs medified table machine selected
machine selected

$A M / P$	$P M / P$	$P A Y$
6809	107	803
2806	6801	836
304	403	846
503	4401	816
6807	1051	888
211	104	818
6802	302	800
1003	404	873
111	101	886
2805	301	935
508	6857	916
2807	1503	836
310	2460	910
2405	751	858
604	2851	892
6810	459	850
2406	6305	854
2001	806	800
2902	160	861
2602	463	842
112	4453	889
110	105	919
2404	408	855
2604	106	864
502	461	873
701	402	901
1002	460	932
504	501	912
4403	801	881
6813	1053	946

TOTAL $=251.03$ HOURS

COMPANY SELECTED

AM/P	PM/P	PAY
6802	404	818
310	107	838
503	553	849
2902	160	861
2405	801	864
901	408	868
113	6801	871
1001	459	874
505	2603	877
311	2454	883
2404	501	884
6806	6856	885
2602	358	893
6807	2460	895
2806	101	897
2406	357	900
304	557	901
701	402	901
502	103	904
6810	463	910
309	802	912
6809	4453	914
305	4454	929
111	6805	932
112	2651	934
2601	106	935
508	158	937
1002	751	950
2805	6857	950
1003	359	1018
$T 0 T A L=$	268.93	$H 0 U R S$

TOTAL $=268.93$ HOURS

Fig. 10
number of eli巨ible applicants. Each applicant states his preference for each job by ranking the job 1 for his first choice and so on to 4 , his last choice. Similarly, the four supervisors state their preferences for each applicant in each job. The result is the following table ${ }^{8}$.

Jobs

		A	B	C	D
Applicants	a	1, 3	2, 2	3, 1	4, 3
	b	1, 4	2, 3	3, 2	4, 4
	c	3, 1	1, 4	2, 3	4,2
	d	2, 2	3, 1	1, 4	4, 1

(The first dicit indicates applicant's preference, the second, the job preference for each applicant as given by the supervisors.)

To reach the optimum solution, the following steps are required:

1. Add the two ranks as shown in the matrix.

	A	B	C	D
a	4	4	4	7
b	5	5	5	8
c	4	5	5	6
d	4	4	5	5

2. Subtract the minimun cell in each row from all the elements in its row. This results in the following matrix.

	A	B	C	D
a	0	0	0	3
b	0	0	0	3
c	0	1	1	2
d	0	0	1	1

3. Subtract the minimum cell in each column resulting from step 2 from all the elements in its colum.

	A	B	C	D
	a	0	0	0
b	2			
c	0	0	0	2
d	0	1	1	1
d	0	0	1	0

4a. The row or column having only one zero is selected as this is the only possible assignment that can be made. After selecting the first assignment, the row and column enclosing this cell (D, d) are deleted from the matrix.

4b. This step is repeated and the cell (A, c) is assigned.

5. The remaining matrix contains all zeros. This indicates the possibility of two optimal solutions, either $(B ; a)$ and (C, b) or (B, b) and ($C, ~ a)$.

In summary, there are two final optimal solutions:
First Solution: Assign Job A to applicant c Job E to applicant b Job C to applicant a Job D to applicant d

Second Solution: Assign Job A to applicant c Job B to applicant a Job C to applicant b Job D to applicant d

Comparing this example with our selection. problem, it will be noticed that the applicants are analogous to the A. M. pieces and the jobs analogous to the P. M. pieces. The objective in the example was to find the most satisfactory combination of applicant and job assignment; the goal of the selection problem was to combine the A. M. piece with the P. M. piece that gave the least costly combination of split runs.

The similarity between the problem of developing the split run selection and this example led the author to investigate the application of the assignment problem technique. The split run data was ranked horizontally (Fig. 9) and vertically (Fig. 11). Steps similar to those used in solving the example ${ }^{9}$ in the text (assignment problem technique) were performed. A solution containing 30 split runs was obtained. When compared with the company's selection of 30 split runs, it was noted that this solution paid a total time of 261.99 hours as against 268.93 hours paid by the company. This was a saving of approximately seven hours or 2.6 per cent per day.
9. Ibid.

To utilize the computer on this assignment problem technique approach was not possible due to the nonsymmetry of the effectiveness matrix and the limited capacity of the machine. However, upon studying the basis of the technique, it was felt that the following approach would yield equally good results.

The horizontal and vertical ranks were added as before. However, the decision was made by first selecting the split run combination which ranked the least. This, in effect, was the same as selecting the cells having all zeros in the effectiveness matrix. A set of 30 split runs was selected using this procedure. The total pay time for this combination was 259.51 hours comparing withing half a per cent ($\frac{1}{2} \%$) of those obtained by using the assignment problem technique.

The closeness of these two results prompted the author to test another alternative approach. This time the horizontal and vertical ranks were multiplied and a decision again made by selecting the combination ranked the least. Figure 12 shows the results of using the assignment problem technique, adding approach and multiplying approach. As seen from the totals of the pay times, there is a variation of less than half a per cent ($\frac{1}{2} \%$) in these solutions. It is therefore felt that either of the methods could be used. These methods, the adding approach and the multiplying approach, involve little or no manual work as computer programs have been written to do all the steps from ranking to the final selection.

SUMMARY AND CONCLUSIONS

The computer method, on comparison, was found to be more advantageous than the manual method in the following respects:

METHODS

ASSIGNMENT	APPROACH	
AM/P	PM/P	PAY
806	2652	800
112	107	800
204	403	846
211	104	818
502	459	859
508	6801	833
2406	302	800
307	2851	874
309	801	893
310	1051	903
1002	460	932
2806	557	901
604	2603	839
505	10.	914
2409	2805	868
205	4454	929
504	408	866
2404	106	864
6806	2651	920
4403	6859	949
111	404	878
2502	2460	829
503	4401	816
2901	2802	907
206	$5 j 6$	896
2807	751	864
001	402	904
701	1053	935
2601	802	919
6802	4453	843
T0TAL	261.99	

ADDING APPROACH

AM/P	PM/P	PAY
311	104	818
6802	107	800
6810	403	840
2406	302	800
2901	806	800
2404	2851	845
4403	6859	857
503	4401	816
2807	2603	836
305	4454	929
2602	2460	829
2604	408	855
2408	2805	868
2405	751	858
2902	6801	810
502	459	859
6809	1051	871
604	109.	914
701	106	865
2601	802	919
1001	461	887
306	556	896
1003	404	873
112	101	872
6806	801	881
901	402	904
304	160	890
504	501	912
2806	557	901
6813	1053	946
$T 0 T A L=$	259.51	

MULTIPLYING APPROACH

AM/P	PM/P	PAY
311	104	818
6802	107	800
6810	403	840
2406	302	800
2901	806	800
2404	2851	845
4403	6859	857
503	4401	816
2807	2603	836
305	4454	929
2602	2460	829
2408	2805	868
2604	408	855
1001	459	874
1003	6801	820
2405	751	858
6809	1051	871
604	109	914
502	461	873
701	106	865
2902	160	861
2601	802	919
306	556	896
112	101	872
6806	801	881
901	402	904
111	404	878
504	501	912
2806	557	901
304	463	894
$T 0 T A L=$	258.86	

Fig. 12

1. Manual work, both co:nputational and clerical, was reduced to the bare minimum.
2. The computer solution not only developed the company's present schedule but also several alternatives. The speed with which the computer programs work enables the schedule maker to incorporate changes in schedules almost instantaneously.
3. The techniques developed for choosing split runs were based on the cost criterion, which is the main objective.
4. The time taken in preparing the schedule for the Cincinnati Transit Company with the computer was approximately three hours as against several days when manual methods were used.

In conclusion, the author feels confident that this computer method will Eive efficient and effective schedules and may possibly be an important step in solving a segment of the transit industry's crisis.

The author feels that, although this method looks efficient, there is still ample room for improvement. An interesting problem would be to develope a program with which it would be possible to prepare the complete schedule in one step as against the three steps used in this report.

ACKNOWLEDGMENTS

The writer gratefully acknowledges the guidance and encouragement of his major professor, Dr. Samy E. G. Elias during the execution of the entire project. Appreciation is also expressed to the Cincinnati Transit Company, Ohio, for making available the data used in this investigation.

REFERENCES

Elias, Sary E.G., "A Digital Computer Solution to the Transit Operation Assignment Problem." Unpublished Dcctoral Thesis, Oklahoma State University, 1960.

Elias, Samy E. G., "The Use of Digital Computers in the Economic Scheduling for Both Man and Machine in Public Transportation." Special Report 49, Kansas State University Engineering Experiment Station.

Lassow, Bill, "Why Do We Need Tiransportation Research?" Metropolitan Transportation and Planning, November, 1963, Vol. 59:6, pp. 20-22.

Sasieni, M., Operations Research Methods and Problems. New York: John Wiley and Sons, Inc., 1959, pp. 183-192.

Teichroew, Daniel, An Introduction to Management Science - Deterministic Models, New York: John Wiley and Sons, Inc., 1964, pp. 520-526.
"What Transit Companjes are Doing to Improve Ridership." A geographical analysis made by Metropolitan Transportation and Planning researchers. Metropolitan Transportation and Planning, July, 1963, Vol. 59:4, pp. 34-35.

```
            PROGRAN NO. 1
            CONVERSIUN FR゙UURAM FOR HCURS MINUTLO TO HOURO UECIMALS
            OINENSIUN NEL(100)
?111 REAUS112,TRAVEL
1112 FSRMAT(F2.O)
    TRAVEL=TINE(TRAVFL,I.667)
    19 N1=1
            N2=12
            READI,LINE,NOTRIP,POUT,PIN,(FEL(I;,I=NI,NZ)
        1 FCRMAT(2I2,15F5.0)
            IF(LINE)IUU,1U0,2
    2 IF(REL(Nく))3,4,3
    3 IF(REL(N2)-PIN)5,6,5
    5N1=1+N2
            N2=N2+15
            REAL1,LINE,NOTRIP,(REL(I),I=N1,N2)
            GOTO2
        4 DE 7 I= = N2
            IF(PFI_(I))7,8,7
        7 CONTINUF
        & T=I-I
            G0 TO9
        6 I =N2
        O DO ir J=1,1
    1: REL(J)=TINE(REL(J),1.007)
        POUTC=TIVE(HOUT,1.667)
        POINC=TIME(PIN, 1.657)
    17 PUNCHIO,I,TRAVEL,LINE,NOTRIP,PUUTC,POINC,(REL(J),J=1,I)
            ๕0 Tこ 111
    100 PAUSE
        F\TO 1111
    18 FORMAT(I3,F5.I,2I3,11F6.0/26X,GFG.U/26X,GFG.0/26X,9FG.0/26X,9F6.O/
        1~6X,SF6.0/26X,9F6.01
            END
* TIME FUNCTISN
            FUNCTISN TINE(X,Y)
            IF(X)1,2,2
    1 }x=-x+1200
    2 I X=X/IUU.
        HR=IX*100
        TIME=(X-HR)*Y+HR
        QETURN
        FND
```

```
            PREGRAM NO. ?
            a stRAIGHT RUN mARING
            UIVENSIUN REL(10O)
    1 K=C
    2 TURN=8.33
            TF=U
            TB=0
    1\cap DO 201 I=1,100
2\cap1 REL(I)=0
    PIINCH 2O2
2^2 FORMAT(//)
    REAU11,M,TRAVEL,ROUTE,BLOCK,TINONg,1 INOFF,(REL(L),L=1,M)
    14 BACK=0
    FRONT=u
    PuUT=TIMON
```



```
    18 E IGHT=OUU.-TURN
    2の ALLOV=0
    21 IF(TIMNFF-TIMON-800.)24,24,22
    22 EACK=1
    24 IF(TIMCFF-TI`CN)10,10,25
    25 TRIDT=TIMOFF-TIMON
    25 IF(TINNN-POUT)27,28,27
    27 TF=TRAVEL
    28 IF(TINCFF-PCIN)25,30,29
    <y TO=TRAVEL
    3u ir(TKIrT-7v0.)31,130,130
136 1r(indri-ouu.)36,30,150
150 TF(FRONT)>CJU,OU,Z00
    31 1F(TRDRT-190.)331,331,431
321 NUNCH 332,ROUTE,BLOCK,TF,TIMUN,TINUFH,TE,TRIPT
332. FORMAT(YX,2I4,F5.1,2I6,F5.1,5X,I6,< %X,1H:)
    GO TS 33
421 PUNCH32,ROUTE,BLOCK,TF,TINON,TIMOFF,TB,TRIFT
    33 TF=0
    TE=C
    IF(EACK)YUUU,10,100
    36 IF(TINUN-POUT)37,38,37
    37 TF=TKAVEL
    38 IF(T1MUFr-rOIN)39,40,39
    39 To=TKAVEL
    40 ALLCW=TF+TB
    K=K+1
    TOTAL=TRIPT+TURN+TF+TB
    4? PUNCH43,K,ROUTE,BLOCK,TF,TINON,TINUFF,TO,TRIPT,ALLON,TURN,TOTAL
    TF=O
    TF=O
    FRONT=1
    IF(DACK) YCLO,10,100
```

```
50 rLAT=TLMUN+OUU.-TKKAVEL-TURN
5] DO 53 L=1,M
52 1F(PLAT-REL(L))65,54,53
53 CuntiNuE
    IF(L-M)53,31,31
=4 TB=TRAVEL
55 TOTAL=REL(L)-TIMON+TURN+TRAVEL
55 ALIOW=TF+TR
    TRIPT=REL(L)-TINON
    k=k+1
g9 ruINCr:42, 人,ROUTE,BLOCK,TF,TIMON,REL(L),TE,TRIPT,ALLCW,TURN,TOTAL
    FRONT=1
    TF=C
    TB=0
    TIMCN=REL(L)
6 3 \text { EIGHT=OUO.-TURN-TKAVEL}
    GO TO 24
65 PWO=(REL(L)-PLAT)*.5
66 PNP=PLAT-REL(L-1)
67 IF(PWO-PWP)68,68,74
68 K=<+1
    Tg=TRAVEL
    ALLCW=TF+TE
    TOTAL=REL(L)-TIMON+TURN+TF+TE
    TRIPT=REL(L)-TINMN
    60 T0 59
74K=K+1
    TO=TRAVEL
    ALLOW=TF+TB+PWP
    TCTAL=REL(L-1)-TINON+TURN+ALLOW
    TRIPT=REL(L-I)-TIMON
    DUNCH43,K,ROUTE,BLOCK,TF,TINON,REL(L-1),TB,TRIPT,ALLOW,TURN,TOTAL
    TIMON=REL(L-1)
    TE=0
    FRONT=1
    GO TO 63
    99 TS=TRAVEL
100 TIMON=POUT
    TIMOFF=POIN
200 PLAT=TIMOFF-800.+TRAVEL+TURN
101 DO 103 L=1,M
    IF(PLAT-RFL(L))121,164,103
103 CONTINUF
    IF(L-:i)1\cup3,31,31
104 TF=TRAVEL
    ALLOW=TF+TE
    TOTAL=OUU.
```

```
    k=k+1
    iN1PT=T1MOFF-KEL(L)
```



```
II TF=:
11= T1MOFF=REL(L)
114 TIUE=TIUOFF-TIUON
115 IF(TINE)Y~w,1O,116
115 IF(TINE-(8U0.-TRAVEL-TRAVEL))117,119,199
100 TO=TRAVEL
    60 TO 20
117 DACK=0
    GOTこ <う
    119 ठACK=0
    120 60 TO 36
    121 PKO=(PLAT-REL(L-1))*.5
    122 PGP=REL(L)-PLAT
    122 !F(PVO-P&P)124,124,134
    124 TF=TRAVEL
        ALLOH=Tr+TO
        TSTAL=TIMOFF-REL(L-1)+TURN+ALLOW
        <=K+1
        TRIPT=TIMNFF-KEL(L-1)
```



```
        LL
        FRONT=\
        TF=U
        TIMCFF=REL(L-1)
        G0 TO114
    is4 Tr=TRAVEL
        ALLON=TF+TP+PNP
        TOTAL=TIMOFF-REL(L)+TURN+ALLOW
        K=k+1
        TRIPT=TIMOFF-REL(L)
        OC TO 109
OUOS STOP
```



```
        1(/<0x, iro.U)
            EnO
```

```
    DREGRAN NR. 3
    3 SPLIT RUN YAKING
    IIMENSION ROUTE(2UO),BLOCK(2OO),TF(2UO),TIMON(2OU),TIMOFF(2OO),TE(
    12U),TRIPT(20U)
1 KEAD2,IHW
2 FORMAT(3XI3)
    TURN2=16.67
    3 TURN=8.33
    4 FIVE=8.33
    M=U
    6 0こG I=1,IPW
    7 READ8,ROUTE(I),BLOCK(I),TF(I),TIMON(I),TINOFF(I),TO(I),TRIPT(I)
    IF(TINON(I)-1100.)5,5,13
    5 IK=IK+I
    IAM(IK)=ROUTF(I)*IOO.+BLOCK(I)
    60 Tこg
12.1K=JK+1
        IFM(JK)=ROUTE゙(I)*100.+ロLOCK(I)
    GCONTINUL
10 L=1
11 PS 1OOU J=1,IPW
12 PENLTI=0
    PENLT2=0
    pFNLT3=O
16 TF(TIMON(J)-TINON(L))1000,1000,17
17 IF(TIMSFF(J)-TIMOFF(L))1000,1000,18
18 IF(TIMMN(J)-TINOFF(L))1000,1000,19
    N=C
    19 GAH=TIVON(J)-TIMOFF(L)
    2O OREAK=TB(L)+TF(J)+FIVE
    21 IF(GAP-BREAK)1000,22,22
    22 IF(GAP-1UO.) 5U0,23,23
    23 SPREAD=TINCFF(J)-TIMCN(L)+TF(L)+TD(J)+TURN
    24 IF(140U.-SPREAD)1000,25,124
124 IF(SPREAD-110U.)26,26,25
    25 PENLT3=(SPREAD-1100.)
    26 PW1=TRIPT(L)+TF(L)+TB(L)
    27PW2=TRIPT(J)+TF(J)+TB(J)
    28 IF(PW1-100.)29,31,31
    20 PENLTI=100.-PW1
    30 PWI=1OU.
    31 IF(PW2-1UU.) 32,34,34
    32 PENLT2=ICU.-PW2
    33 PWん=1Cし.
    34 TOTAL=PW1+PN2+2.*TURN
    35 IF(TOTAL-75V.)1000,36,45
    36 PENLTY=50.
    27 PAYTIN=TOTAL+PENLTY
        ALLCW=PENLTY+PENLT1+PENLT2+TF(L) +To(J) +TO(L) +TF(J)
        M=N+1
    46 PUNCH41,ROUTE(L),BLOCK(L), TF(L),TIMON(L),TIMOFF(L),TE(L),TRIPT(L)
```

```
    42 PuNOH4, ,a,ROUTE(J),blOCK(J),TF(J),TIMON(J),TIMOFF(J),TE゙(J),FENLT3,
        11KIPT(U),ALLOW,TUNN2,PAYTIM
        uし Tu luuv
    45•r(0wU.-TOTAL)20,40,46
    45 rENLTY=0ひU-TCTAL
    47 HAYTIN=rENLTY+TOTAL
    48 aLLOん=rENLTY+rENLTJ+PENLTZ+TH(L)+Tu(L)+Tr(J)+Tu(J)
    4% =n+1
    E0 10 4
    5% 1F(GN.0-TOTHL)100U,51,51
    51 PEALTY=.
        G0 TO 47
```



```
    501 Ir(Su:-736.)1u00,502,311
    502 ALLUW=UA゙R-TU(L)-TF(J)+8C0.-SLIM
    503 N=N+1
        TOTAL=SUMーTURN
        HAYTIN=0uv.
    5%5 aLOCXX= -LOCK(L)*100.+BLOCK(J)
        ROUTEX=RUUTE(L)*IUO.+ROUTE(J)
        PUNCHSUG,N,ROUTEX, LOCKX,TF(L),TIMON(L),TIMOFF(J),TG(J),TOTAL,ALLO
    1W,TURN,PAYTIM
        GO TO 701
    511 IF(SUM-8u.0)502,502,512
    512 IF(SUN-900.)513,513,1000
    513 ALLOK=UAP-TU(L)-TF(J)
        N=N+I
        TCTAL=EUM-TURA
        PAYTIN=SUM
        60 10 2uj
y% CONTINUE
        L=L+1
        IF(L-IPW)11,11,1005
MO STOD
        3 FERMAT(SX.2I4,FE.1.2F6.f,FS.1,OX,FO.O)
```



```
        ENO
```

```
            PROGRAM NO. }
            C COMBINING STRAIGHT RUN PIECES AND PIECES OF WORK
            DIMENSION LINEP(200),BLOCKP(200),PPF1(200),POINP(200),POUTP(200),
            IPPF2(200),TRIPTP(200),REL(100),PW(2),OUT(2),PIN(2),FF(2),FB(2)
            DIMENSICN PIECE(30)
            STR=500
            KX=1000
            SONOF=16.67
            TEN=16.67
            1 READ2,IPW,NSP,NST
            2 FORMAT(3I4)
            DO 3 I= l,IPW
            4 FORMAT(9X,2I4,F5.1,2F6.0,F5.1,5X,F6.0)
            3 READ4,.INEP(I),BLOCKP(I),PPF1(I),POUTP(I),POINP(I),PPF2(I),TRIPTP(
            1 I)
            5 KNST=0
            6 KNST=KNST+1
            7 IF(KNST-NST)8,8,9000
            8 READ9, M,TRAVEL,LINEO,BLCCKO,POUTO,POINO,(REL(K),K=1,N)
            9 FORMAT(I3,F5.1,3X,2I3,5X,2I6,6X,8I5/40X,8I5)
            PUNCH888,LINEO,BLOCKO
888 FORMAT(14H ROUTE NO. ,I5,14H BLOCKO NO. ,I5)
            PUNCH777,
            CHECKC=0
            CHECK=0
            CHECKE=0
            KTWVA=0
    10 MCNE=1
    11 POUT=POUTO
            POIN=POINO
            FR1S=16.67
            FR2S=8.33
    16 DO100OK=MONE,N
1016 SPW=REL(K)-POUT
            IF(SPW-150.)1000,1000,18
    18 SPOUT=POUT
            IF(SPW-600.)19,19,116
116 IF(SPNUT-POUTO)19,6,19
    19 SPIN=REL(K)
            SBLOCK=BLOCKO
            SLINE=LINEO
            SPF1=FR1S
            SPF2=TRAVEL
    24 Dこ 999 N=1,IPW
    26 PENLT1=0
            PENLT2=0
            PENLT3=0
            PENLT4=0
```

```
30L=1
    J=2
34 PW(L)=SPW
    OUT(L)=SPOUT
    PIN(L)=SPIN
    FF(L)=SPFI
    FF(J)=PPFFI(N)
    FB(L)=SPF2
    FB(J)=PPF2(N)
    PW(J)=TRIPTP(N)
    OUT(J)=POUTP(N)
    PIN(J)=POINP(N)
44 IF(OUT(2)-OUT(1))45,999,49
45L=2
    J=1
    GO TO 34
49 IF(PIN(2)-PIN(1))999,999,50
50 IF(OUT(2)-PIN(1))999,999,51
51GAP=(OUT(2)-PIN(1))
52 IF(GAP-TEN) 999,53,53
53 SPREA[ = PIN(2)-OUT(1)+FF(1)+FB(1)+FF(2)+FB(2)+SONOF/2.
    IF(1325.-SPREAD)999,55,58
5 5 ~ P E N L T I = ( S P R E A D - 1 1 0 0 . ) * . 5
    SPREAD=1300.
    GO TO 62
58 IF(125).-SPREAD) 55,59,59
59 IF(1200.-SPREAD)60,61,61
60 PENLT1=(SPREAD-1100.)
61 SPREAD=1250.
62 IF(GAP-100.) 200,200,63
6 3 ~ P W 1 T = P W ( 1 ) + F F ( 1 ) + F B ( 1 )
    PW2T=SW(2)+FF(2)+FB(2)
    TINE=PW1T+PW2T+S \NCF
173 IF(PW1T-100.)73,175,175
    7 3 ~ P E N L T 2 = 1 0 0 . - P W 1 T ~
175 IF(PW2T-100.)75,76,76
    75 PENLT3=100.-PW2T
    76 TIMET=TIME+PENLT2+PENLT3
    IF(TIMET-750.)999,78,82
    78 PENLTY=PENLT2+PENLT3+PPF1(N)+PPF2(N)+SPF1+SPF2+50.
        PAYTIM=TIME+PENLT2+PENLT3+50.
        GO TO 90
    82 IF(80C.-TIMET)86,83,83
    83 PENLTY=PENLT2+PENLT3+800.-TIMET+PPF1(N)+PPF2(N)+SPF1+SPF2
        PAYTIM=TIME+PENLT2+PENLT3+ 800.-TIMET
        GC TO 90
    86 IF(850.-TIMET) 999,87,87
    87 PENLTY=PENLT2+PENLT3+PPF1(N)+PPF2(N)+SPF1+SPF2
        PAYTIM=TIME+PENLT2+PENLT3
```

```
    90 KX=kX+1
        MKSX=KX
221 PUNCH79,LINEP(N),BLOCKP(N),PPFI(N),POUTP(N),PCINP(N),PPF2(N),
    ITRIPTP(N)
        PUNCH8O,MKSX,SLINE,SBLOCK,SPF1,SPOUT,SPIN,SPF2,PENLT1,SPW,PENLTY,
    1SONOF,PAYTIM
    79 FORMAT(4X,215,F5.1,2I5,F5.1,7XI5)
    80 FORMAT(I4,2I5,F5.1,215,F5.1,F7.1,I5,3F7.1)
        IF(IPW-N)1999,195,1999
195 IF(CHECK)9000,92,401
    9 2 \mathrm { CHECK } = \mathrm { CHECK } + 1 .
        KONE=K
    95 LEFT=POINO-REL(K)
    96 IF(LEFT)9000,99,97
    97 IF(LEFT-200)98,98,103
    98 PUNCH199,LINEO,BLOCKO,REL(K),POINO,LEFT
    0. IF (KONE+3-M) 100,6,6
100 CHECK=0
101 MONE=KONE +1
        PUNCH777
777 FORMAT(///)
102 GO TO 11
103 MONE=K+1
        PCUT=REL(K)
        POUTB=POUT
        POIN=POINO
        FRIS=TRAVEL
        FR2S=8.33
        GO TO 16
999 CONTINUE
    IF(CHECKC)801,1000,801
801 CHECKC=0
    GO TO 195
1000 CONTIN JE
1001 IF(CHECKB)9000,99,408
1999 IF(CHECKC)999,800,999
    800 CHECKC=CHECKC+1.
        GO TO 999
OOOC STOP
    200 SUM=TRIPTP(N)+SPW+FF(1)+FB(2)+GAP+SONOF
        IF(SUM-750.)300,202,209
    300 IF(SBLOCK-100.)333,999,999
    333 SBLこCK=BLOCKP(N)*100.+SBLOCK
                XLINE=LINEP(N)
        SLINE=XLINE*100.+SLINE
        SPW=PIN(2)-OUT(1)
        SPOUT=OUT(1)
        SPIN=PIN(2)
        SPFI=FF(1)
        SPF2=FB(2)
        GO TO 24
    202 PENLTY=800.-SUM +PPF1(N)+PPF2(N)+SPF1+SPF2 +GAP
```

```
    TIME=SUM
    TRIP=TRIPTP(N)+SPW
    STR=STP+1.
    OVFRT=0
    PAYTIM=800.
    MKSX=STR
    GO TO 220
209 IF(800.-SUM) 210,202,202
210 IF(SL.4-850.)211,?11,999
211 SFBl=0
    TRIP=TRIPTP(N)+SPW
    SFF2=0
    TIME=SUM
    PENLTY=PPF1(N)+PPF2(N)+SPF1+SPF2 +GAP
    PAYTIM=TIME+FF(2)+FB(1)
    STR=STR+1.
    MKSX=STR
220 GO TO 221
401 IF(CHECKB)9000,402,406
402 CHECKB=CHECKB+1.
    KTWO=K
404 IF(KTWOA-KTWO)405,499,405
405 KTWOA=KTWO
406 LEFT=POINO-REL(K)
    IF(LEFT) 90C0,408,412
412 IF(LEFT-200) 498,498,413
498 PUNCH199, LINEO,BLOCKO,REL(K),POINO,LEFT
408 IF(KTWO+2-M)409,499,499
4 0 9 ~ C H E C K B = 0
    MCNE=KTWO+1
    POIN=POINO
    PCUT=POUTB
    FRIS=TRAVEL
    KTWCA=0
    PUNCH778,
778 FORMAT(/)
411 GO TO 16
413 POUT=REL(K)
    K=M
    REL(K)=POINO
    FRIS=TRAVEL
    GO TO 1016
499 CHECKB=0
    GO TO 99
    199 FORMAT(4X2I5,5\times2I5,5X15)
    END
```

```
    PROGRAM NO. 5
    ARRANGING AND SELECTING PROGRAM - TOTAL PAYTIME
    DIMENSICN BLEKX(1000),RCUTX(1000),PAYX(1000),BLOK1(100),ROUT1(100)
        1,PAYI(100)
    READI,NL
    1 FORMAT(I5)
        DO 22 I= I,NL
    22 READI1,BLEKX(I),ROUTX(I),PAYX(I)
    1.1 FERMAT(4X,216,1X,14)
    KCUNT =NL
    I SUMI=0
    IND=0
    I NDEX=KOUNT-1
    13 DO45 I=1,INDEX
    IF(PAYX(I+1)-PAYX(I))16,45,45
    16 SAVE=PAYX(I+1)
    CAVE=BLOKX(I+1)
    RAVE=ROUTX(I+1)
    PAYX(I+1)=PAYX(I)
    BLOKX(I+1)=BLOKX(I)
    ROUTX(I+I)=ROUTX(I)
    PAYX(I)=SAVE
    ROUTX(I)=RAVE
    BLOKX(I)=CAVE
    IHOLD=I
    IND=1
    45 CONTINUE
        IF(IND)9,8,9
    9 INDEX=IHOLD
        IND=0
        GO TO13
        8 DO41I=1,KOUNT
        I SUMI=I SUM1+1
    41 PUNCH7,BLOKX(I),ROUTX(I),PAYX(I),ISUM1
    7 FORMAT(4I6)
111 READIO1,L
101 FORMAT(I5)
    CHECK=0.0
        MX=0
    DO4 J=1,NL
        IF(BLCKX(L)-BLOKX(J))2,4,2
    2 IF(RCUTX(L)-ROUTX(J))44,4,44
```



```
    6 \text { DN5 M=1,JK}
        IF(ROUTX(J)-ROUTI'(M) 25,4,25
    25IF(ROUTX(J)-BLOKI(M).)5,4,5
    5 CONTINUE
        DO17 M=1,JK
        IF(BLOKX(J)-BLOK1(M))117,4,117
117 IF(BLOKX(J)-ROUT1(M))17,4,17
    17 CONTINUE
```

$55 M X=M X+1$
BLCKI(MX) =BLCKX(J)
RCUTI(MX) = RCUTX(J)
PAYI(MX) = PAYX(J)
$J K=M X$
CHECK=1.
4 CONTINUE
PUNCH12,BLOKX(L),ROUTX(L),PAYX(L)
IF(MX)15,15,34
34 PUNCH12,(BLOK1 (MX), ROUTI $(M X)$, PAY1 $(M X), M X=1, J K)$
12 FORMAT(20X,3I5,45X)
GO TO 111
15 STOP
END

```
    PROGRAM NO. }
    ARRANGING AND RANKING BLOCKWISE
    DIMENSION BLOK(1000),ROUT(1000),PAY(1000),BLOKX(50),ROUTX(50),PAYX
    1(50),USEDB(100)
    READI,NL
    1 FORMAT(I5)
    Dこ22 I=I,NL
    22 READII,BLOK(I),RCUT(I),PAY(I)
    11 FORMAT(5X,I4,I4,4X,I4)
    L=1
    I SUM=0
    M=1
    USEDB(M)=BLOK(L)
    KJ=M
101 Dこ102 J=1,KJ
    IF(BLOK(L)-USEDB(J))102,105,102
102 CONTINUE
    G气 Tこ 108
105 IF(L-NL)106,110,110
106 L=L+1
    J=0
    GO TO 101
108M=M+1
    USEDB(M)=BLCK(L)
    KJ=M
    IF(L-NL)106,110,110
110 DO500 K=1,KJ
    MX=0
100 DO55 J=1,NL
    IF(USEDB(K)-BLOK(J))55,33,55
    33MX=MX+1
    BLこKX(MX)=BLEK(J)
    RCUTX(MX)=RCUT(J)
    PAYX(MX)=PAY(J)
    KOUNT=MX
    55 CONTINUE
        I SUMI=0
        IND=0
        INDEX=KOUNT-1
    3 DO 5 I=1,INDEX
        IF(PAYX(I+1)-PAYX(I) )6,5,5
    6 SAVE=PAYX(I+1)
        CAVE=BLOKX(I+1)
        RAVE=ROUTX(I+1)
        PAYX(I+1)=PAYX(I)
        BLOKX(I+1)=BLOKX(I)
        RCUTX(I+1)=RCUTX(I)
```

```
    PAYX(I)=SAVE
    ROUTX(I)=RAVE
    BLCKX(I)=CAVE
    IHOLD=I
    I ND=1
    5 CONTINUE
        IF(IND)9,8,9
    9 INDEX=IHCLD
        IND=0
        GO TO 3
    8 Dこ4 L=1,MX
        I SUMI=I SUM 1+1
        I SUM=I SUM+1
    4 PUNCH7,BLOKX(L),ROUTX(L),PAYX(L),ISUMI
    7 FORMAT(416)
        I=0
        KOUNT=0
        L=O
        IF(ISUM-NL)500,999,999
500 CONTINUE
999 STOP
        END
```

```
    DROGRAV VO. ?
```



```
    CIVENSION
```



```
    1<(75,75)
    O40 I=1.75
    O4, j=1,75
4<< (I,J)=\
    N=.
        00401 I=1.75
        00401 J=1,75
        1 X](I,J)=
4r7 !X(!,J)=0
        IK=0
        JK=
        REAO5OU,N
500 FORVAT(I3)
    0ここ I=1.8
```



```
    1 FORMAT(IIXIL,2XI2,TX+4.0)
```



```
    IF (POUT-1000•)3,3,4
    ` I%=I!+1
        TA\because(IK)=ISLOC
        O0 TO?
    & Jk=Jk+1
    IP\because(JK)=IBLOC
    2 CONTINUE
    5 REFDG,ISPRNI,ISPRNZ,VL
    6 FSRMAT(2I6,6X,I6)
    IF (ISPRNZ)7,%,8
    8 O- & I=?,IK
    IF (ICPRNI-IAN(I))9,10,9
    O CONTIMMF
        OC1? !=1,JK
        IF(ICPRNI-IP!(I)) 11,I<,I1
    1! CONTIMUF
        G0 TO 3
    12 IK=IK+1
        IAG(IK) = IPM(I)
        T=1K
    1!US 13 J=1,JK
        TF(ISPRN2-IPM(J))13,14,13
    ]2 CSNTIMUE
        O-15 J=1,IK
        IF(ICDRN2-IAN(J))15,16,15
```

```
15 CONTIN:F
    OOTO5
1< Jk=Jk+ 1
    IFN(JK)=1AM(J)
    J=Jく
14K(I!J)=NL
    G0T05
    7 \ 10? J=?.JK
        LX(I.J)=IPM(J)/IOOO
        LX(2,J)=(IPM(J)-LX(1,J)*1000)/10n
    1.x(2.J)=(IDM(J)-LX(I,J)*IOn-LX(2,j)*100)/IU
In2 LX(4,J)=IPM(J)-LX(1,J)兴IOOO-LX(2,J)*100-LX(3,J)*IO
    0UNCLT,?.((LX(T,J),J=1,71),I=1,4)
IN2 FOQNAT(4X,]HI,24I3,/,5X,24I3,/.5X,23I3,1HI)
    P!!लCH2:?
```



```
2م3 fOR暞T(//m----i---------------------------------------
    1-----------------------------------------------------------------------------
```



```
    0こ1%7 1-1.IK
    1SUn=,
    00 1<6 J=1,JK
            IF(v(I,J))]66,1<5,]:5
105 ISUM=1<0N+1
16G CONTIN:=
107 PUNCHIUI,IAM(I),(k(I,J),J=1,7I),ISUM
    PUNCH2.3
    Oこ2<4 J=1,JK
        ISUN](J)=0
    ここくくす 1=1,IK
    IF(K(I,J))205,205,209
20. ISUMI(J)=ISUM1(J)+1
2O5 CRNTIMUF
2O4 CONTINUF
        O{ 206 J=1,JK
    LXI(I,J)=TC(UMI(J)/?0
25 LXI(?,j)=1SUMI(J)-LXI(I,J)*I?
            PUNCHIO2,((LXI(I,J),J=1,7I),I=1,2)
        STOD
    ENO
```

```
        ORGGRA` \becauseO.O
```



```
Y90 IS%%=%
        R:AOIPN
    ] EOWMAT(I?)
        -922 I=1,N
        OFAO&•~LOK(I),NOUT(I),PAY(I),NO(I)
    AFOQUT(4T5)
    OPCNMTMU=
898 REAU5,MLOC&,AUUTE,TAYX,INO
    = -2?:AT(4I6)
    ひこここ J=1,N
```



```
    56 IF(ROUTE-ROUT(J))S5,ごロ20
    5 5 \text { CONTIM:E}
    =7 NOA=IMO+VO(J)
        \because\because=INO*NO(J)
        DUMCHG•HLOCK,DDUTF.PAYX.NOA
        HMNGH7.HLOCR,ROUTE,PAYX,NOW
    GFOこいNT(LTG)
    7 F-E@AT(LTS,55X,7H-)
        ISV=ICU+]
        IF(19U-*)688,909,1000
1% STSP
        &HC
```

PROGRAM NO. 9
SELECTION PROGRAM FOR- 1. MODIFIED SUMMARY TABLE
2. ADDING APPROACH
3. MULTIPLYING APPROACH

```
            DIMENSION BLOK1(900),ROUT1(900),PAY(900),ML(900),BLOKX(75),ROUTX(
        175),PAYX(75),NO(75)
            READI3,NL
    13 FORMAT(I5)
            DO22 I=1,NL
            READI,BLOKI(I),ROUTI(I),PAY(I),ML(I)
        1 FORMAT(2X,I4,2X,I4,2X,I4,4X,12)
    22 CONTINUE
4 4 4 \text { READI4,N}
    14 FORMAT(I3)
        DO333 L=1,N
        MX=0
        CHECK=U.0
        Dこ4 J=1,NL
        IF(BLOKl(L)-BLOKI(J))2,4,2
        2 I`(ROUT1(L)-ROUTl(J))44,4,44
    44 1f:(CHECK)15,55,6
        6 DO5 M=1.JK
        IF(ROUTl(J)-ROUTX(M))77,4,77
    77 IF(ROUTI(J)-BLOKX(M))5,4,5
    5 CONTINUE
        DO7 M=1,JK
        IF(BLOKI(J)-BLOKX(M)188,4,88
    88 IF(BLOKI(J)-ROUTX(M)17,4,7
        7 CONTINUE
    55 MX=MX+1
    66 RLOKX(MX)=BLOKI(J)
        RCUTX(MX)=R\capUTI(J)
        PAYX(MX)=PAY(J)
        NO(MX)=ML(J)
        JK=MX
        CHECK=1.0
        4 CONTINUE
            PUNCH12,BLOK1(L),ROUT1(L),PAY(L),ML(L)
        IF(MX)15,15,34
    34 PUNCH12,(BLこKX(MX),RCUTX(MX),PAYX(MX),NO(MX),MX=1,JK)
    12 FORMAT(20X,4I5,40X)
        PUNCH 16
    16 FORMAT(///)
333 CONTINUE
    GO TO 444
    15 STEP
        END
```

A STUDY OF THE SYSTEMS AND TECHNIQUES OF SCHEDULING
A PUBLIC TRANSIT COMPANY WITH THE USE OF A DIGITAL COMPUTER
by

PRABODH G. BLKSIII
B. E., Victoria Jubilee Technical Institute University of Bombay, India, 1960

AN AESTRACT OF A MASTER' REPORT
submitted in jartial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVEDSITY
Manhattan, Kansas

1965

The objective of this report was tc develop computer programs to construct the daily work schedule of the Cincinnati T ransit Company, Ohio. The computer appreach was prinarily ained at reducing laborious manual work and cost involved in preparing the daily schedule. The machine was also programmed to make a split runs selection basta on the cost criterion.

The preparing of the daily work schedule was done in three steps on the IBM 1620 computer. Computer programs were developed and tested successffully. On comparine the results of the computer approach with those of the manual method, the following conclusions were made:

1. Manual work, both computational and clerical, was reduced to the bare minimum.
2. The computer solution not only developed the company's present schedule but also several alternatives. The speed with which the computer prograns work enables the schedule maker to incorporate changes in schedules almost instantaneously.
3. The techniques developed for choosing split runs were based on the cost criterion, which is the main objective.
4. The time taken in preparing the schedule for the Cincinnati Transit Conipany with the computer was approximately three hours as against several days when the manual methods were used.

[^0]: 1. "What Transit Companies are Doing to Improve Ridership." Metropolitan Transportation and Planning, July, 1963, Vol. 59:4, pp. 34-35.
[^1]: 6. Elias, Samy E. G., "The Use of Digital Computers in the Economic Scheduline for both Man and Machine in Public Transportation." Special Report 49, Kansas State University Engineering Experiment Station.
