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NOMENCLATURE

r;, 6; 2 Cylindrical coordinates used to describe the

initial configuration of the plate

hir), a Thickness function and radius of the plate
hg Minimum thickness

t Time wvariable

u, w Radial and transverse displacements of the

middle plane
Ero, ééO Radial and circumferential strains of the

middle plane

€., €4 Radial and circumferential strains

T35 Ty Radial and circumferential stresses
811587105800 Stress~strain relation coefficients

N, Ng Middle plane forces per unit length

M..; Mg Bending moments per unit length

Q Transverse shearing force per unit length
P(r, t) Loading intensity

= -ayo/a5o Poisson's ratio,

c = ay3/ap

D(r) Flexural rigidity

T, V Kinetic and potential energy

U Potential energy due to loading

Vi, Vo Potential energy due to stretching and begding
of the plate

f, T Dimensionless space and time varigbles

h( g) Dimensionless thickness function

i1



[a], [8],
[c], [o]

c,S,M,V,N
Tp, Tq
Wo

Amplitude parameters
Dimensionless shépe functions
Stress function

Dimensionless angular frequency

Nonlinear eigenvalue
(6x1) vector functions
(6x1) null vector
Coefficient matrices

Initial wvalues
Linear and nonlinear period

Deflection at the center of the plate

iv



I. INTRODUCTION

The linear theory for the motion of elastic plates is based
on the assumption that the deflecticns are small in comparison
with the thickness of plates. However, light weight structures
of thin plates may be required to withstand large amplitudes of
vibration when subjected to severe dynamic loading conditioms.
If the amplitude of motion is of the same order of magnitude as
the thickness of the plate, it is necessary to modify the mathe-
matical model from linear plate theory to include deformation of
the middle plane.

In 1956, Chu and Herrmann (1) studied the large amplitude
free vibrations of a rectangular plate. By applying a perturba-
tion method, they showed that the in-plane inertial force and
buoyancy terms can be neglected and obtained equations which are
dynamic analogs of the von Karman (2) equations of static equi-
librium. With appropriste choices for the displacement functions
the space variables were eliminated, and the remaining ordinary
differential equetion in terms of the time variable was solved
in the form of an elliptic cosine function.

Nowinski (3) utilized von Karmasn's dynamic equations in an
investigation of the free nonlinear vibrations of a circular
plate built in at the boundary. He represented the deflection
as a series of separable terms and used an orthogonalization
procedure to eliminate the space variable. By confining the
study to one term of the series, the solution in the time vari-

able was found in the form of elliptic functions.



In 1970, Huang and Sandman (l}) utilized von Karman's dynamic
equations to describe the large amplitude axisymmetric oscilla-
tions of a circular plate with a clamped and immovable boundary.
They used a different approach from the previous investigators.
Harmonic vibrations were assumed and the time varlable was elim-
inated by applying a Kantorovich aﬁeraging method (10). The
remaining nonlinear eigenvalue problem was solved numerically
by considering the related initial value probler (5, 6).

In this report the general governing partial differential
equations of large amplitude axisymmetric oscillations of a var-
iable thickness circular plate are derived. Following the same
approach as Huang and Sandman, harmonic vibrations are assumed
and the time variable is eliminated by applying a Kantorovich
averaging method. For simplicity only examples of stepwise
thickness plates under free vibration are investigated. This is
a nonlinear eigenvalue problem solved numerically by considering
the related initial value problems. The influence of amplitude
on the shape function of vibration is illustrated. The induced
stresses for different amplitude conditions are calculated and

the response curves are investigated.



IT. PROBLEM FORMULATION

Consider a thin elastic circular plate with variable thick-
ness as shown in Fig. 1, which has cylindrical coordinates r,

8, and z.

Fig: 1.

The basic assumptions regarding the flexural deformation
of the plate are:

1. Loads and deflections of the plate are symmetrical
with respect to the z-axis.

2. Middle plane is a plane of symmetry.

3. Slopes produced by flexure are moderately laerge, but
small in comparison to unity.

ly. Hooke's law applies.

5. Normals to the middle plane remain normal to the

deformed middle plane.



6. Normal stresses in the transverse direction z are
negligible.
From these assumptions, the nonvanishing components of

strain are (2)

By Bom w — — (1)

where u(r, t) and w(r, t) are the radial and transverse compon-
ents of mid-plane displacement, respectively. The stress-strain

relations for cylindrically orthotropic media are
€ = 81199 * 81207 »

The stress resultants and moments per unit length are

=
H
Il
BN
o
[aN]
[oF]
s8]

My = G, z dz
- [ o

From equetions (1) and (2), the stresses can be written as

functions of displacements. TUpon substitution of expressions



(1) and (2) into (3), eguations for force and couple resultants

in terms of displacements can be obtained as follows:

h(r)
Ng = .,(—+))-—+))(——-))
322[F y J r 2 QT

hir) {/ 1 v , u
Np = —— — = (=) -
322 i G- \}21 L 2 Pr i g4
(L)
2w YV  gu }
M, ==0D(r) g8 — +— —
T Fre r 2r
v
: 1 aw UaEW
Mg = - D(r)J{ — —+ V— 3
¢ # gn @PQ
where
‘app b3 (x) S a1 a11
D(l’) 5 = - — ) cC = -— .
12(ayjapp-212) 822 222

The equations of motion can be obtained by referring to
Fig., 2, the free body diagram of a small element of the plate.

The equilibrium condition for moments about the © direction gives

L+ = G (5)

where Q represents the transverse shearing force per circumfer-
ential unit length. Consideration of the equilibrium of forces

in the z direction yields



Q+ Na

rt bMI’ / T

pt AN,
~N 2
~ u
N\ Ph(r)ra6Ar 3—-
\ \\ at2
Mg
\\
. Ng
2
8w
= Phlr)r — (6)
2t2

where fﬂ is the mass density of the plate.
By combining equations (l), (5), and (6), the governing
differential equation for an oscillating circular plate of var-

iable thickness is obtained.

D(r) S S SN . B RSEY i RS S
|_ arll- 4 3r3 re 91"2 r3 Zr
r a3 (2e+ V) 22w 1 gw 22u ) g
+ D'(r) | 2¢ & - — — |+ D" (r)|jc — + — —
| or3 r ar  r2 gr gr r 2r
2
aw
= P{r} - Fh(r) =
712
1 L 8 Wl Au ¢ 3w u7]
+ — - — — {hir)r —jc — + — ——)2 + — | (7)
322l_C'V2__§ r gr gr|{ 2r 2 3r r _l



The equilibrium equation for forces in the r direction

yields
N, Ny - Ng 5°2u
4 = /h(r) — . (8)
a2r r 71t2

For a moderately large oscillation, it is reasonable to neglect
the in-plane inertial force; therefore
2N, N, - Ng

7 + = (81)
T T

The differential equation of displacement in r direction
is obtained by substitution of equation (l) into equation (8'),

Te By

+ Wlr) Lel—)—] * —
ar dr2 2r ar
1 av
+ —h'(r)<dec (—)21 = 0 (9)
2 ar )

Equations (7) and (9) form the basic governing differential
equations for a cylindrically orthotropic circular plate with
moderately large amplitude oscillation. These equations are a
set of nonlinear coupled partial differential equations. Equa-
tions (7) and (9) can also be obtained by a variational method,

and the associated boundary conditions can be obtained



simultaneously.

For a conservative system, Hamilton's principle requires

that the integral (7)

H = f (T - V)dt : (10)
t

be a minimum, where T i1s the kinetic energy and V is the poten-

tial energy of the system. The kinetic energy of the system 1is

1 21 ,a a
T = — [ f f Pwtz rdrdédz = ﬂf Ph(r)wtg rdr (11)
2 /h'0 0 0

where f’represents the constant mass density for homogeneous

media. The potential energy due to the loading intensity

p({r, t) is

a

U= -/f P(r,t)wrdrde = - 2x j( P(r,t)wrdr (12)
s 0

As defined previously in equation (3), N, and Ng are the

membrane stresses integrated over the entire thickness h(r) of

the plate. €,.° and €0 represent strains of the middle plane.

Thus the energy stored in a plate element with thickness hi(r)

and area (dr e« rd6) is

1

-0 0
E (NI,C—:.I, + Ng Ee ) rdrdé.

The strain -energy due to stretching of the plane is



1 2T ra 0 0
Vy = — [ [NI. €.  + Nog<€g ]rdrde
2 Jo /o

T a c u u u
= - 1[ cur2+c urwr2 + - wru + 2V-— u, + v - Wrg + (—)2
B 0 i r r r
h{r)rdr (13)
where B = ass (c - Vo).
For an element of thickness h(r) and area rdrd@, with radial

moment M, and tangential moment Mg, the energy stored is

1
- — (M, — + — —)r arde
2

1 .21 sa 2%w Mg gw ‘]
Va = - — / [ M, — 4+ — — |rdrds
= o Jo o | T

2
T }/aD(r) {(4/5 Wi, + E)2 +— (Y - C)Wrrwf} rdr
0]

Combination of equations (11), (12), (13), and (1), and

integration from time t; to t, yields the integral H, i.e.,

2] to
H = (T-V)dt=f (T - Vy -V, - U)dt ,
t1 t1

or
a
H = }; ); £1(t, v; W, Wy, Wy, Wpn)drdt ‘ (15)

where
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h(r) e
f1 == {f’h(r)r Wt2 - : [ch‘E + erupWne + — rwru + 2V uu,
u? Wr2
+ Y uwr2 + __i}_ D(P)[Frwrr2+ 2Vwp,wy, + ———-]
o r

+ 2 P(r, t)rw }

The extremization of the functional H will be considered.
After substitution of f; from equation (15) into Euler's equa-
tion (8), the basic governing differential equations, which are
the same as equations (7) and (9), are obtsined sgain. Mean-

while the boundary conditions can also be obtalined. They are

(1) (c Wiop + E— W)
r

‘ 7tr
c w
71(1) rD(r)(CWPrP + ; Wy - ;g)

r

+ rD'(r)(cwrr + K Wr)} = 0 (16)

4
(1) 2) to u.

where represent the variation related to w and ﬁq(
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ITT. ANALYSIS OF THE PROBLEM

By introducing the dimensionless quantities

N=vu/a, §=1r/a, X=uw/a, n(f) =n(r)/ng

(17)
Dg = hg3/(12B), D(%¥) = D(r)/Dy, = ='f/DO/(f’hoaLL)\t
equations (7) and (9) can be rewritten as
Jix 223X 1 22x 18X
hS(f)[c Tt - = +
Y E F%3 §228° 52 0%
3 3
X (2c+V) 27X 1 22X
+[h3(§}] r2ca + - s = J
gL 7¢3 ¢ 2% g2 9%
2°x Y ax P(f,7)a3 22X
] [25 - w4
gel 7y T 2% Dg 7t
1232 1 7 X axX 7
— {h(f 67 [:m+c_ /i 7 (184)
NCIPRPT: 7% 2 7% J
2 T -‘
2°n o 3N d ] an V7 ]
n(§){ec + ~ - +{n(§) {c o i
{ Jg2 ¢ 9% £ [ ]E' 7% §
(18B)

TRy ax E#‘QX c-y 22X 2'}+ : E(—B_X__ 2}= '
AR e rabr Ay 7 [hf)]ge il Rl

Let the plate be subjected to a time varying load of the

form

e, o = P(%) sin ot ( 15}
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and assume that the steady-state responses are

X =4 g(€) sin wt
(20)
M= A2f(§ ) sin® ot

where A is an amplitude parameter, and g(g ) and f(% ) are shape
functions. Since expressions (19) and (20) cannot satisfy equa-
tion (18A) for all T, the Kantorovich averaging method used, and

the integral

_ L @LLX 2¢ 33){ 1 22X . 1 72X
I IO{h(Z)[ i;” §3,§3 2 92 £3 0%

2
+ [30% )] [ X ¥ (20+]))_18—.§~__1_?_?_(. +Fh3(§)]

EE 272 mp? § 0

c X Yy
= (——2 —. &
+2 (?Z) +,§;}}6xgd> (21)

{ﬁzX V&'XJ P(% 72X 12821 @2
n
§

X
GERE ;g [C;

is employed to obtain a governing equation which closely approxi-
mates (184) within the limits of the assumed form of motion given
by equation (20). For a given T, the above integral is equiva-
lent to the virtual work of all the transverse forces as they
move through a virtual displacement 6 X. Substituting equations
(19) and (20) into equation (21) and equating the average virtual

work over one period of oscillation to zero, i.e.,
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2n/w
IA:j Idt =0 |, (211)
0
one obtains
2¢ 1 1
h3(§) cgiv+—-—g"'--——-—g"+———g' + h3(f)
§ § 2 g3 [ ]‘E
(2c+ J) 1 - Y
[}cg“' + —_—g" - 3 g'| + Lh3(3)] . [cg” + — g'J
% £ §5 g
- w’gh( %)
1 alt 94 4 r c )
- P(¥) + — — |n(§)gg'(cf! +—g'° + — 1)
’VZ(DOhO §) ‘gd?[gggc zg % ]
(224)
Aa o
where £ = (—)° .
hg

This procedure, as outlined by expressions (21) and (21'),
is analogous to the approach used in reference (9) for the
single degree of freedom Duffing's equation. Substitution of

equations (20) into equation (18B) yields

c f c-))
h( ?){Cf”+—f‘ - BRTEY g — (g')z}
£ §2 2%

Y & >
+h'('§) Pt 30— F g — [gh) = 0. (22B)
i 2
Equations (22) are the final forms of the governing differ-
ential equations in the displacement formulation. For the stress

formulation, the stress function V/ is defined by



!

Ne=-—-——("l"))
or

= £,
r

which satisfy equation (8') identically. By introducing the

function

asole - P?)
hg

Il

(%) g (%)

with

ges) . ¥ —

A2 sin? T

"

equations (22) can be rewritten as

. 2¢c 1 1
n3( §) [cg”+—§—g"' -— 8" +—g} [h3(§]

£° 15
(2c+ ﬂ) J
1m1 noo_ h S
[ECg + 5 gr g [ (3)]§ [cg +g gJ
- gh(f )
1 d -
=__.( ) +___[grp(§)J , (234)
S Doho E dg
c F h'(g.)
(cP" + — F! - ——5) - (cF' - Y —)
€ ¢ h (€)
h(% )
= - (c -Y?) s (g% . (23B)
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This set of equations is the final form of the governing dif-

ferential equations In the stress formulation.
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IV. NUMERICAL ANALYSIS AND COMPUTATION

The governing differential equations (23), with a given set
of boundary conditions, can be solved approximately by a numer-
ical approach. For this purpose the governing differential
equations are changed to a system of six first-order differ-

ential equations. They are

oy
L -y
ag °
d¥o :
=y
a¥€ 2
ay
3.y
d % b
ay), 1 1 alt w®

_ _ ( ) P(§)) + ——— ¥
at ch3(§) ¥« Dghy cn?(€)
_h3(f) + E[h-q’(f)](g -1)2 [hB(E)]E’.@ (2l)
+

c'g h3(§)
B8 - o) [305 ]g - c?z[hf’(?ﬂz%
u2 h3(z
-on3(§) - 2¢ [hB(z)]‘é -
‘ =3 ¥) + —————— (Y5Yg+Y5Ye)

’ {13(%) T TF T
EEE = Y6



1f

= + 6
a4 cg2n( §) ¢ n(§)
-(c -Y2)n(%) 702
+ Y
2c 3 .
for o ¥ ELE,
where
Y2 g'
Y 11
T(gy=4 ) =4{°
Y}_{_ gll'l
YS F
Yg / F'/ .

For simplicity, a clamped isotropic circular plate with
stepwise thickness under free vibration will be studied. Refer
to Fig. 3A. A radially stepwise thickness circular plate with
h = 2h, when O € r € a/2, and h = by, when a/2 < r < a, is illus-
trated. For isotropic media. under free vibration, ¢ = 1 and
p(f ) = 0. B8Since the thickness h is constant within each inter-
val of % , 1ts first derivative and the higher order derivatives

with respect to Z vanish. Then equations (2l4) are reduced to

vy
...—-—:Y2
as
dYg-
—_—i= Y
as #
dy

3 - v,

af
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- ————— ==

! '
hg , 2hg :
R N
Tt ¢
/
4
Fig. 3A.
dY)_l_ A 1 1 2 O«
= —Y¥Yy - — Y5 + — ¥q = — + Yo ¥
iy mt ey (o3 20
%YY (25)
+§h3 3
ay
sy,
ag
ary 1 1 (1 = y2) 5
— = — ¥g - — Y5 - ———— h(Y¥,)
af €2 ¢ 2%

for 0<% <1/2 and 1/2 € % =1 with a discontinuity of the
function Y( %) at ¥ = 1/2, where A = w2,
The singular point located at = 0 causes unboundedness

unless certain continuity conditions are satisfied. Arguing on

a physical basis, g and F and their derivstives are continuous
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and bounded functions if there is no concentrated load acting
at the origin. Hence ¥Y; and Y5 can be expanded in the Maclaurin

serles

YS = (YS)O + (Yé)o f - .

Substituting these expansions into equations (25) and demanding
that derivatives remain bounded in the limit as % approaches

zero, one finds

[ Y- |

_1 = 1)
L daflo
-

T = 3
| d% o
" ayq |

30—
L aftlo

(26)

- e K 4 = (O} 3]
L at]o 32 32

Il

’amﬂ % o7

ay
.__5 = g
a% o

[ avg |

— =0
a% jo
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at ? = 0, where (Y3)5 = 1 and C and S are certain undetermined

constants.
Consider Y at § = 1/2. Refer to Fig. L, a free body dia-

gram of an element of the plate in the vieinity of % = 149,

Qr,

(M) L (M,)R

T .
HH

B

Fig. L.

L%
I
=
>~
.

For no concentrated torque or concentrated load acting upon this
element, equilibrium conditions require that (MP)L = (Mr)R and
Qr, = Qg. From these relations, the following equations are

derived; i.e.,

. ( ) ! (w,) ’ (w.,.)
( )t = — (W + — (w - = (w ,
Wppl], 8 rr/R - r’'R r’'L
(27)
1 2 16
(Wppplp, = g (Wrrr)R - 5 (wr)R + 5_ (wr)L
with VY = 1/3.

After changing to a dimensionless form, a relation between

Y(1/2 - 0) and Y(1/2 + 0) is obtained; i.e.,

[a]7 (1/2 - 0) - [B]? (1/2 + 0) =0 , (28)

where
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1 0 0O 0 0 0 1 0 0 0o 0
0 1 0O 0 0 O 0 1 0 0 0
o 2/3 1 0 0 © - o 1/12 1/8 0 ©
[+] = (2] -
0 -16/3 0 1 0 © o -2/3 0o 1/8 o
0 0 0 0 1 © 0 0 0 o 1
L0 0 0 0 0 1 L0 © 0 0 0

Combining equations (25) and (26) and writing in vector

form, one obtains
——'—ZE(%;‘-Y—;‘*:)‘) (29)

for O é-% < 1, where H is the appropriately defined vector

function as stated in equations (25) and (26). The associated

forms for the boundary conditions in terms of:f(z ) are

1
0

[c] (o) = .
0

and (30}

0

[p] ¥(2) ={ o0
0

with

O &) O o Of
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1 0 0 0 0 0
1 0 0 0 0 O
: 01 0 0 0 0O
[c] =3 [D]=]o 1 0 0 0 o0
0O 0 01 0 0
0O 0 0 0-Y 1
0 0 0 0 1 0]

To solve this boundary value problem, as given in equations
(28), (29), and (30), the relsted initial value problems are
considered. ,

Since Y is discontinuous at & = 1/2, it is convenient to

introduce two initial value functions. They are
au
a¥
for 0 < ‘g < 1/2, with the initial condition

fuy (1

Uo

U
ﬁ<o>:J3 =

N
Ug

\Ué $=0 \

=H(S, T ; «, ) (31)

and
_:E(E,?;A,?\) (32)

for 1/2 £ (3 < 1, with the initial condition
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v1\ 0
Vo 0
_ s M
V(1) = >3 = =Ty
V}_‘_{ vV
VS N

Vo %=1 N

Among the components of the initial values in equations (31)
and (32), C, S, M, V, and N are adjustable parameters, and the
remaining components correspond to those boundary values at
g = 0 and ? = 1 found in equation (30).

By integrating the first initiasl value problem, equation
(31), simultaneously with akfcurth—order Runge-Kutta method,

the solutions can be obtalined as

<

€2}

ﬁ:ﬁ(‘g;n—l,,@;aﬂz for 0 € £ € 1/2. (33)

>

In the same mamner, equation (32) yields

M

B _— v
V=V (47, , 5 0, = ror 1/2 € § < 1. (3)

=

=

The secondary arguments discussed here indicate that the solution
depends upon the set of parameters ?11, 712, and «. From these

solutions the six equations of continuity



X — — N O -
Z(E’n’A):[A]U(E’nl”()_[B]V(-Q-;TIE”():O

(35)
wWhere

Z2<4E>na

may be constructed.

It is now apparent that solving the boundary-value problem

—

is equivalent to obtaining a functional relation 71 = 71(4)

which satisfies (35); i.e.,

Z(1/2; M(<), <) =0 . (36)

Thus for a fixed value of <, say « = <0 i

Y(€)
(37)

TEs MO, O, o f /2
V(s M0, 0,128 <1

is a solution to the boundary-value ﬁroblem, where
G

70 _ 0 _
A

>oE S B

are vectors corresponding to
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o
|
—

3|
|
L= >na

in

Z (1/2 H 5’_(0 4 a(O) = 0",

The solution of the six equations (36) for the six unknowns,
f?, can be accomplished by a direct application of Newton's
method. Starting from an initisl guess 3%;, the iterative

sequence

Nar = N+ 8N 5 k=1,2, ... (38)

is generated. Rejection of the higher order terms of a Taylor

series expansion about ?]k provides the linear correction

ANy = - [0 ] 202 5 7y, O (39)

at the Kk bh step of iteration. The Jacobian matrix (J) is

defined as

az]

(J) = | —= 1 (440)
2N Jt=1/2

and can be interpreted physically as the change of final values

with respect to a change of the initial data 7. If 5%1 is

chosen to be in a sufficiently small neighborhood of ﬁio, the

convergence of the sequence, equations (38) and (39), to the

root 3%0 can be expected., Since an explicit solution of the

initial-value problem does not avail itself due to the nonlinear

character of the vector function,ﬁ, the expression for (J) in
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equation (L0) cannot be evaluated directly. Therefore a method
of constructing the Jacobian matrix at any given step of iter-
ation must be devised. Differentiation of the initial-value

problems with respect to 1 results in the variational problems
a [2T] 28 [#E7)[e0

= = + = =

at|27n 27 2u ||&7

0Lt <1/2 ;

au T
and
a [av aH SH | | &V
—|=—=+|=||=—=|, /2<% <1 ;
ag | 37 an ABRYL
2V XD
In long-hand notation, define
('an/aG , V5 /2C
2U0;/3S ARVEE
_ aui/2x _ Vi /2 ,i=1,2, . . .,
Wy = { and X; =
2U;/6M 2V /7M (42)
204 /2V oV /v
K?Ui/&‘N 2Vi/pN

The variational problem will be



2

dﬁl ﬁ
——-—:2
d¥
ag
w5 g
dag
o 0]
aw), 2 _ 1 1 A U; Jo
'—fz-—.-—wu+——-w3———w2+-—wl+— 1
at 3 27 8 4 &0
0
94 =~ _ - — _
+ —— | U3We + UgWq + UoWg + UgW
2§ LTa5 & Tl + g 2]
¥ %
af
aw We Wg 2(1 - ¥2) _
_ = - — + - UoWo (43)

when 0 < § <1/2,

2,
d% 0

[dﬁﬂ B
ag]o

ololoNoleRe

il
ot

OOOOOH
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_ 0
dw_g] 0
—=| =<0
[65 0 8
0
_ 0 0 1
dw), 3 0 27 1 0
— = 1 + — & C<{0 + 8 0
R R N
0 0 0
_ 0
W 1
i = 0
[dﬁJo 8
0
=7 0
[dWél B g
d?_lo 0
)
0
when f = 0, with the initial value matrix
00100 0]
[ ] 000001
Wleo :[:w}]-__ =Bﬁ'}...{w 1 _=|l000000],
£ Hp {3 ¢=0 1 %14=0 " 1000000
000000
00000 O0|
i = L, &, , b
ax _
_1 g X2
a%
dig —
—
af 3
ax _
a3
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- 0
dXh 2 _ 1 _ 1 _ _ O
— = - — Xt — X3 - — K+t AX + V(1
a% ; §° g7 0
0
9 - _ _ -
%o
ag
dié i6 3(-5 l-\)2 s
_ = - = 2- V2X2
as LI %
when l/2-§l? < 1, with the initial value matrix
00001V |
[ ] [ 0001020 6
Kl o B {X-],_ = 001000 =1, 2, «..,
%=1 -1; 5=1 000000 | ’
000000
| 000000

For & given vector 7? and «£ = AO, these derived problems and

equations {31) and (32) may be solved simultaneously on both
intervals [O, 1/2:]and [1/2, 1] . Evaluation of the solution
to the variational problem, equation (4l1), at E = 1/2 yields

(J), where

(7) = [A][{wi'}:lT ~ [B][{Xi}]T g =1, 8 5 a5 6

Thus Newton's method in conjunction with the initial-value
problems {31), (32), and (41) provide an operational technique
for solving the boundary-value problem (29) and (30) for a

fixed value of «.
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The analysis of the two-point boundary-value problem is
completed when the functional relation 51 = ?i(x) is estab-
lished. Using the above procedure this can be accomplished in

a discrete manner, i.e.,
ﬂi:ﬁi(,z.i) s 120, L, By v e w, i

Having obtained a root 'ﬁj corresponding to «£ = Aj, the value

of « may be perturbed,
« =M = dyald (45)

For this value of <, iteration is reinstated starting from
7 = 5ﬁj. If A«J is not exceedingly large, the 5ﬁj is contained
in the new contraction domain of Newton's method, and iteration
converges to the root 5}j+l, which corresponds to « = xj+1.
Initially, « is set equal to zero, <0 = o, By assuming
initial values, Cq, S5, Ay, My, V5, and Ny properly, the initial-
value problems are integrated numerically with step size
Ap = 1/Z5 on [O, 1/2] and [1/2, 1] . Correction and integra-
tion are carried out until the components of the error vector
in (35) are within a range of allowable error. The correspond-
ing values of CO, No, 10, MO, VD, and N9 are stored and the
solution is recorded.
By successive repetition of this analytic continuation given
in expression (45), the resonance curve and accompanying solu-

tions are found. This procedure is illustrated schematically

in Fig. 5.
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A second example (Fig. 3B) is also solved by the method
stated sbove. The numerical results of these two sexamples are

put together for comparison.
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Fig. 3B.
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V. NUMERICAL RESULTS

The numerical results are illustrated in Figs. 6 through
12, In Fig. 6, the nondimensional amplitude at the center of
the plate is plotted against the ratio of nonlinear period to
linear period. By a decrease of period with increasing ampli-
tude, the hard-spring behavior is evidenced.

Figures 7A and 7B illustrate the influence of amplitude
upon the shape function of transverse vibration. The mode shapes
for Wo/ho = 2 differ greatly from those for the linear solution.
It is expected from these results that the influence of ampli-
tude on the distribution of bending stress will be of greater
significance since the bending stresses are related to the
derivatives of the transverse shape function.

In Figs. 8 to 11, nondimensional graphs of radial stress
versus amplitude are given. The expressions

g 8=

he

and

0*m=.N_r’
h

are used in the calculations of bending and membrane stresses

respectively. In terms of the previous assumptions,
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d°w  p dw
My = =D {€ —% F — — : r=a'§;w=aX:aAg(‘g)sian;
2
dr r dr
h3 y aA2¢]( ¢ )sin? wt
= . N = = .
3 r ;]
12822(1— Uz) r r
F hg
822(0'1)2)

When the time T is equal to ﬂ/2m2, the maximum amplitude occurs

and

crl,,ba2 hY « (dzg Y dg )

E hg? 2(1- ¥2) \a4® % a%

cr;mag 1 oy F

2

Ehg? h1l-y2 %

where B = 1/322.
With the aid of L'Hospital's rule, the stresses at % =0

are found to be

O‘},ba? ) nYx [ng }
0 £=0

E hp? 2(1 - V) 442

a}mag} 1« [dFi}
E hp?lyg h1-V2 [af 4o

In Figs. BA and 8B, the rapid increase of radial membrane

stress with increasing amplitude is shown. In Fig. 84, in con-

trast to the case of a uniform thickness plate under the same
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dynamic condition, the membrane stress at the edge is greater
than that at the center. This is due to the variable thickness
effect.

The nonlinear behavior of radial bending stress is shown
by Figs. 9 to 11. It is shown that the nonlinearity in the
stresses of the second plate is greater than that of the first
one. In Fig. 11, the discontinuity of stresses occurring at

% = 0.5 is due to the assumption that the stresses are dis-
tributed over the entire thickness of the plate at that section.

The free resonance characteristics are established in
Fig. 12, A comparison is made between the first stepwise thick-
ness plate and a uniform thickness plate under the same dynamic
conditions (l4). The higher frequency in the linear case and the
lower frequency in the nonlinear case of the first plate again
signifies the influence of the variable thickness effect. Under
the same amplitude, the greater frequency of the second plate

shows its higher stiffness.
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of relative amplitude.
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39

g-"a?
r
2
Ehg
_ Membrane stress at

the center

Membrane stress
at the edge

Fig. 8B. ©Nonlinear membrane stress.



10

O

0.l

Pig.

0.8

D

Center bending stress.

4o




16

1l

12

10

FPig. 10.

Edge bending stress.

g —f
A VY—aF
- —
¥
i ] | i
Oy .8 1.2 16 2.0

L1

Wo/hg



Fig. 11A.

Bending stress as a function of
radial position.
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VI. CONCLUSIONS AND REMARKS

The study presented in this report is based on the critical
supposition of harmonic oscillations. Although the assumptions
(20) contradict the inseparability of modes in the governing
partial differential equations, fundamental physical arguments
may be used to Jjustify the predicted results. By eliminating
the time variable an infinite number of degrees of freedom in
the space coordinate functions are maintained. The employment of
numerical integration leads to a discrete approximation of the
continuous system. The number of degrees of freedom and the
accuracy of computation are governed by the choice of the inte-
gration step size. Thus by the principle of least constraint
it is believed that the stress distributions and response curves
for the plate obtained in this study closely approximate those
that occur when the vibrations are nearly sinusoidal.

The two examples 1llustrated above show trends for two
types of variable thickness plates under flexural vibrations;
the first one is thicker and the second one is thinner in the
middle part. From the numerical results, it is shown that the
second type of plate is much stiffer for the given boundary con-
ditions and causes higher frequencies than the first one. The
bending stresses are lower for the second type of plate than the
first kind, as given in PFigs. 11A and 11B, especially at the
point of discontinuity of thickness. As to the membrane stresses,
the effect is contrary in general, as shown in Figs. 8A and GB.

The discontinuity of thickness leads to a sudden jump in stress
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curves which is caused by the assumption of the stress distribu-
tions., Practically, the stress curves shall be continuous.

This kind of discontinuity also can be prevented if the con-
tinuous function of thickness 1s introduced. The part of con-
tinuous function of thickness will be of further interest in

future research.
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The partial differential equations of large amplitude
vibrations of an elastic circular plate with variable thick-
ness are formulated. Steady-state sinusoidel oscillations are
assumed. The time variable is eliminated by applying a
Kantorovich averaging method. 1In this way the governing equa-
tions for the problem are reduced to a pair of ordinary dif-
ferential equations which form a nonlinear eigenvalue problem.
A simple example of a stepwise thickness isdtropic plate under
free vibration is solved by a numerical method. The effect
of large amplitude upon the mode shapes corresponding to the
fundamental natural frequency of vibration is studied and

illustrated. The dynamic response curve is presented.



