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EFFECT OF MIXING ON REACTOR PERFORMANCE

1. INTRODUCTION

The manner and extent to which flow behavior, i.e. mixing, affects

the performance of continuous reactors have begun to be taken into

consideration in recent years. While much progress has been made in

understanding certain aspects of this problem, the task of developing

a general treatment still appears to be formidable Q.8, 2l] .

The purpose of this report is to review some of the background

information concerning the effect of mixing on the design of chemical

reactors.

When a fluid flows through a process vessel, the condition of

either plug flow or. perfect mixing is often assumed in designing it.

In practice, however, many systems do not conform to either of these

assumptions; hence calculations based on them may be inaccurate. In

order to describe actual flow systems which lie between the conditions

of plug flow and perfect mixing, Danckwerts [_2J introduced the concept

of the residence time distribution (RTD) . He further explained how

the residence time distribution can be defined and measured for an

actual system.

It has generally been assumed that the residence time distribution

could well be used to determine the conversion of the chemical reaction,

but this assumption is not always true. Kramers L.9J compared two

different reactor systems, both consisting of a tubular and a perfectly-

stirred vessel in series, (Fig. 1). He found that they had identical
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residence time distributions but gave rise to different degrees of

conversion for a chemical reaction of the second order.

DanckwertsQ3j showed that the residence time distribution is

sufficient to specify the degree of conversion only when the reaction

is of the first order. Zwietering [20J showed later that the deviation

in the degree of conversion between any two systems can be partially

explained by the difference between the two age distributions. He

showed further that with an arbitrary but known residence time distri-

bution, it is possible to derive, for any reaction mechanism, limits

between which the conversion must lie.

The work of these earlier investigators which is described above

leads to the conclusions that, in order to give a fuller description

of mixing effect on the performance of a chemical reactor, more infor-

mation concerning mixing other than the knowledge of the residence

time distribution is needed, and that it is convenient to be able to

describe mixing within continuous flow systems in terms of two compon-

ents, macromixing and micromixing £17].

The macromixing component specifies the variation in the residence

times experienced by the molecules flowing through a flow system. The

micromixing component, however, specifies the variation of environment

experienced by the molecules during their passage through the system,

[6, 7, 17, 18J. It will be made more evident later that the micromixing

component is described in terms of, and is restricted by, the macromixing

component. Macromixing is determined completely by the residence time

distribution and will be discussed further in the next section.



2. MACROMIXING

Macromixing is the aspect of mixing accomplished by gross fluid

motion in a flow system (chemical reactor). Specifically, macromixing

describes the variations in holding times experienced by fluid elements

passing through the reactor. A distribution function of holding times

is called the residence time distribution (RTD) or the age distribution

frequency of the exit stream from a vessel and it completely defines

macromixing [_2j.

The residence time distribution of a system can be determined

experimentally. Experimental techniques based on introducing a tracer

into the inflowing stream and recording the resultant tracer concen-

tration in the out-flowing stream have been summarized by Danckwerts j_2j.

The residence time distribution can be stated in a dimensionless

form as E(6), where E(6)d6 is the fraction of the fluid that has a

dimensionless residence time between 6 and 6 + d6 . Here 6 is equal

to the dimensional residence time t divided by the mean residence time

t, in which t is equal to the reactor volume divided by the volumetric

flow rate.

The important mathematical properties of the residence time distri-

bution function may be expressed in the following way:

i. / E(e)de = i, E(e) >_ o for e ^ o

2. r 6E(e)de » l.



A function related to the residence time distribution and of special

importance is the F function (or the cummulated age distribution function)

which is defined as

F(6) = f E(6)d6.

From the first property of the E function, it can be shown that

<_ F(8) <^ 1 for 6^0

F(S) may be interpreted as the total fraction of the exiting stream at the

steady state with a residence time less than or equal to 6.

Usually the two functions, E and F, are related to the step and

impulse responses of a process and provide an overall description of the

mixing inside the system relative to the direction of flow. In other words,

they describe the macro scale mixing or simply macromixing in the system.

Concerning the residence time distribution (RTD) , there are two

extreme cases. One extreme case is the RTD of the plug flow reactor (PFR)

in which all fluid elements spend the same length of time in residence

while passing through the reactor. The RTD of a plug flow reactor is

shown in Fig. 2. The other extreme is the RTD of a continuous stirred

tank reactor (CSTR) in which all elements within the reactor have equal

probability of leaving the reactor in the next dt units of time at any

moment. The RTD of a CSTR is an exponential decay function as shown in

Fig. 3. A non-ideal reactor can have any RTD falling between these two

extremes. This is shown in Fig. 4 [j )•

The above description of the residence time distribution suggests a
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qualitative scale of macromixing bounded by the RTD of a plug flow

reactor on one side and by the CSTR residence time distribution on the

other limit. An arbitrary RTD may fall anywhere between these two

limits. For conceptual purposes, a qualitative scale of macromixing

may be visualized as shown in Fig. 5 £l7J.

However, in a process in which a chemical reaction occurs, a

residence time distribution function alone, in general, will not be

sufficient to predict the outlet conversion. This situation is due to

the fact that a molecule may react before it passes out of the system.

The possibility of reaction depends both on the molecule's duration of

stay in the system and on its interaction with other molecules which it

encounters during its stay in the system. In other words, to have a

full description of conversion, both the macro scale mixing and micro

scale mixing should be considered.

Although macromixing is only a partial description of mixing, it is

sufficient to determine uniquely the conversion for the first order

reaction [_3, jQ. For reactions of an order other than the first,

Zwietering |_2(fJ has shown that knowledge of the residence time distribution

is sufficient to determine limits between which the conversion must lie.

These limits correspond to two extreme states of micromixing, i.e., com-

plete segregation and maximum mixedness, which will be discussed in the

next section.
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3. MICROMIXING (l8)

Micromixing refers to all aspects of mixing not defined by RTD and

is concerned with mixing on a molecular level. The concept of micro-

mixing is perhaps best explained by considering fluid elements which

are just entering or leaving a reactor Ql7, 18, 20]]. An entering

element of fluid is composed of molecules which are, in general, destined

to have different residence times. All molecules in the entering element

have life expectations which are equal to their individual residence

times. Thus the environment of a molecule entering the reactor consists

of molecules having identical ages but different life expectations.

Similarly an element of fluid leaving the reactor is made up of molecules

which have spent different lengths of time in residence. Since all

molecules which have spent different lengths of time in residence. Since

all molecules as they leave the reactor have zero life expectation, the

molecules in the leaving element have ages which are equal to their

individual residence times. The environment of a molecule leaving the

reactor consists of molecules having an identical life expectation of

zero but different ages. It is, therefore, clear that within the reactor

a transition takes place from a grouping of molecules with identical

ages to a grouping of molecules with identical life expectations. This

transition of molecular groupings is called micromixing. These concepts

of age and life expectation which provide an easy way of defining micro-

mixing have been introduced by Zwietering [I2QJ.

The residence time distribution imposes certain restrictions on
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microniixing in the following manner. As indicated by Zwietering [20j ,

the residence time distribution uniquely determines the distribution of

life expectations of the molecules within a reactor. It also determines

the distribution of life expectations in the entering fluid. If these

two types of life expectation distributions overlap, micromixing must

take place to associate the entering molecules each having life expec-

tation with the older molecules already in the reactor having the same

life expectation. The degree to which these two distributions overlap

is the measure of the micromixing which must take place within the

reactor to satisfy the residence time distribution.

For the plug flow reactor, with its impulse residence time distri-

bution, all the entering molecules have the same age of zero, and have

life expectations equal to those of the residence times (the exit age).

All of the molecules within the reactor have life expectations that are

less than the residence times (the exit ages) because their ages are

greater than zero. Thus plug flow permits no micromixing because no

association of entering younger molecules with older molecules can take

place. The continuous stirred tank reactor has a residence time distri-

bution of the entering molecules, it is an exponential decay function.

The life expectation distribution of the molecules within the reactor

has the same exponential decay function. There is complete overlap of

these two distributions and thus micromixing must occur.

Two natural extremes of micromixing can be explained according to

how early or late the permissible association of entering molecules with

older molecules already within the reactor occurs [20] . When the
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association is as late as possible; i.e. at the exit of the reactor,

the condition of segregated flow or (complete) segregation is to exist.

When the association is as early as possible, the condition of maximum

mixedness is said to exist.

Zwietering \j-0J devised models for the extreme cases of segregated

flow and maximum mixedness. For the segregated flow, as shown in Fig. 6,

the feed stream enters a plug flow reactor with side exits through which

portions of the flow leave after satisfying their residence time require-

ments. The model classifies molecules within the reactor according to

their age, . This arrangement mixes elements of the feed stream as

late as possible; i.e., all of the micromixing takes place in the exit

stream. For maximum mixedness, as shown in Fig. 7, the feed stream

enters through side entrances to a plug flow reactor in order to satisfy

the residence time distribution. The flow through each side entrance

instantaneously mixes radially with the main flow. This model classifies

molecules within the reactor according to their life expectation. This

arrangement allows the mixing of the elements of the feed stream with

elements of equal life expectation already within the reactor to take

place as early as possible. In other words, the micromixing takes place

as soon as the feed enters the reactor. More detailed discussion of

Zwietering' s model will be presented in section 5. As in the case of

macromixing, a qualitative scale of micromixing may be envisioned for

conceptual purposes as indicated in Fig. 8.
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4. SEGREGATION

In section 3, it is stated that the two natural extremes of micro-

mixing are, respectively, complete segregation and maximum mixedness.

Some important aspects of segregated flow and maximum mixedness flow

will be discussed more fully in sections 4 and 5, respectively.

Danckwerts £"3j illustrated segregation by studying a "well stirred"

continuous tank reactor in which an incoming element of fluid is

uniformly dispersed throughout the reactor volume in a time much less

than the mean residence time t. Assuming that the residence time

frequency distribution is (1/T) exp (-t/"0 dt, he showed that two

limiting cases exist.

a. The fluid element entering the system is broken up into dis-

crete fragments or streaks which are small in comparison with

the volume of the system, and which are uniformly distributed

throughout the system, and in which the molecules entering

together remain together indefinitely.

b. The incoming fluid element is dispersed on a molecular scale in

a time less than T. In this state the mixture is chemically

uniform and the neighborhood of any particular molecule does

not tend to contain an excess of molecules which entered at

the same time as itself.

Calculations of the overall reaction rate obtained in an isothermal

reactor for the two limiting cases showed that the rates in the first

cases would be higher for reaction orders greater than unity, lower for

reaction orders less than unity and equal for reaction orders of unity,
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if compared with those of the second case[]33.

To provide a way of characterizing the mode of dispersion and thus

to obtain a unique value of conversion, Danckwerts [^3^] introduced the

concept of segregation. By considering the first case to be a completely

segregated state, he defined a factor, called the degree of segregation,

J, which varied from zero to unity as the state of the system varied

from mixing on a molecular scale to complete segregation.

This degree of segregation, J, is defined as the variance of the

mean ages of the points in the reactor divided by the variance of the

ages of all the molecules of the system. One can write

N

Var a. (a„ - a) 2 J I (o„ - a)
2

J = -

. (ap " a) z
jj I (a.

P
. . P=l

?
(1)

Var a (a - a) 2 ± t (a. - o) s

where

a. = age of molecule i, defined as the time which has elapsed

since molecule i entered the system,

a = mean age of all molecules which are at some particular

moment in the system,

a = the mean age of the molecules at "point" p.

N - number of points considered in the analysis of the system.

M = number of molecules which are at some particular moment

in the system.

One can see that J has a value of one for the plug flow reactor since

anypoint contains molecules which have the same age, i.e. a = a .
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In this case the variance of ages among points will be identical to the

variance of ages among all the molecules. For any completely segregated

flow, J will also have a value of one for the same reason.

In a continuous stirred reactor, where micromixing on a molecular

scale may be attained instantaneously, the variance of ages among the

points may be zero, i.e., aP = a, because all entering fluid will

immediately be mixed on the molecular scale with all the fluid still

remaining in the tank. In this case J is, therefore, zero. However,

the flow may be completely segregated in this reactor, in which case J

will be unity. It is, therefore, evident that a continuous stirred

reactor may have any value of J from zero through one. This range

represents the full scale of J.

For a system with a certain arbitrary residence time distribution

which is neither that of a plug flow nor that of a continuous stirred

tank reactor, the value of the upper limit of J is always one, because

the concept of complete segregation is still applicable. A value of J

equal to zero as the lower limit is, however, impossible because there

is always a difference between the mean age of the molecules at a "point"

and the mean age of all molecules in the system. It is necessary to

designate a factor which is able to represent the lowest value attainable

by J. The residence time distribution places this lower bound on J (_20) .
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5. MAXIMUM MIXEDNESS AND ZWIETERING 1

S MODEL (l7, 6)

Zwietering L72CQ generalized Danckwerts' concept of segregation £33

and introduced the concept of maximum mixedness which corresponds to

the lowest value of J for a residence time distribution. The definition

of the condition of maximum mixedness gives rise not only to the com-

putation of a lower limit of J, but also to that of the minimum conver-

sion for a reaction of an order higher than one (and the maximum

conversion for an order of reaction lower than one)

.

For two series combinations of a plug flow and a continuous stirred

tank reactor with the same RTD (see Fig. 1) it can be seen that mixing

on a molecular scale throughout the whole system can never occur. At

the same time it is possible to show that the conversions obtained from

the two systems shown in Fig. 1 will, in general, be different even if

the mode of dispersion in the stirred tank reactor is the same. If the

reaction is isothermal and the order of reaction is greater than unity,

the higher conversion will be obtained in the first configuration of

Fig. 1 fe, 20j . Thus the first system may be considered to have a

higher degree of segregation than the second has [j5> 2CQ.

Based on this example, Zwietering Q20J provided an alternative

definition of complete segregation. Recognizing that the only difference

between the two reactor configurations shown in Fig. 1 is the fact that

in the first configuration the mixing occurs at a comparatively later

stage of the chemical reaction, he defined a completely segregated state

to be one in which the mixing (or micromixing) of the fluid elements

takes place as late as possible in the system, i.e., at the reactor
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outlet. In contrast, in a system under the state of minimum segregation

or the state of maximum mixedness, the mixing will take place as early

as possible.

As briefly mentioned previously, Zwietering f~20j used two simple

diagrams to show the complementary nature of the states of complete

segregation and maximum raixedness (see Figs. 6 and 7). Figure 6 shows

a reactor configuration which corresponds to that of complete segregation.

It consists of a plug flow reactor with a large number of extremely small

side exits which are placed very close together. When the flow rate

through the side exits is controlled to give a desired residence time

distribution, the mixing of molecules with different ages will occur at

the reactor outlet and the conditions required for complete segregation will

be fulfilled.

A reactor corresponding to one with a state of maximum mixedness is

depicted in Fig. 7. Since the only change from the first configuration

(Fig. 6) is the reversion of the flow direction of the side streams giving

rise to many entrances and only one exit, the residence time distribution

will be unchanged. Since the plug flow reactor is assumed to have ideal

or complete radial mixing, the entering molecules are mixed as soon as

they enter the system. In addition, this model of the reactor satisfies the

two conditions required for the state of maximum mixedness.

a. Molecules within a small group or a "point" have the same life

expectations, i.e., molecules within a point in the system will

leave at the same future moment.

b. Points having equal life expectations are mixed or at least have
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identical age distributions.

It appears that the first condition is violated for the case of a

continuous stirred (completely mixed) reactor or an ideal mixer. However,

Zwietering showed that the residence time distribution for this system

is a degenerate case and that the first condition is therefore not needed.

Specifically Zwietering C2(f] set up the models for the reactors

with a completely segregated flow and a maximum mixedness flow in the

following manner.

For segregated flow, he placed the entire flow in a plug flow

reactor with side exits through which portions of the flow could leave

after satisfying their residence time requirement (Fig. 6). The flow

leaving between time a and a + do is qE(oOda, where q is the flow rate.

It is obvious that no backmixing is permitted in the plug flow reactor

and that the immediate environment of each molecule consists of molecules

with exactly the same history. A position in the plug reactor is measured

from the inlet based on an age or a scale. The flow out of the side of

the reactor between a and a + da has a fractional concentration of

r(a) = — and a flow rate of qE(a)da.
C
o

A material balance around a differential volume of the reactor

between a and a + da provides the equation for the chemical conversion.

The terms of the material balance of the reactant are as follow:

mainstream inflow = q {1 - F(a)} r(a)

mainstream outflow = q {1 - F(a + da)} r(a + da)

where in this case F(a) is the fraction of the total stream at position a
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that has a residence time less than or equal to a, and (l - F(a) } is

the fraction of the total stream at position a that has a residence

time greater than a.

outflow from the side exit r(a) qf(a)da,

loss by reaction = R(r) q {1 - F(a) } da.

A summary of the terms gives

da J

+ qR(r) (l-FW)

Since

^iai . E(a)
da

rearrangement and simplification of this expression gives the expected

form

4
1 = " R(r) (2)

da

This formula is essentially the expression of the batch reaction rate.

The outlet concentration is obtained by summing up contributions of the

flows in the side exits. Thus the final concentration is

r = / E(a) r(a)da (3)



or the final conversion is

x, - / E(a) x (a) da (4)
c i5

where

x (a) = 1 - r(a)

and

x = 1 - r
f f

This simply verifies the well-known formula of conversion at the exit

x (or the exit concentration r ) of a completely segregated reactor

given below

% - / E(t) x (t)dt, (5)
o B

The derivation of the expression for the conversion for a reactor

with a maximum mixedness flow may be carried out in the same way. But

in this case the fluid enters through the side entrance at a coordinate

point corresponding to its life expectation and all the fluid leaves

together from the single exit of the reactor where X - (Fig. 7).
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Note that a position in the plug flow reactor is measured from the exit

based on a life expectation or X scale. All the entering flows have

the same inlet concentration. The flow entering between X and X + dX

is qE(X)dX. The material balance of the reactant around the differ-

ential volume between X and X + dX is as follows:

mainstream inflow = q {1 - F(X + dX) } r (X + dX),
tt

side entrance inflow qE(X) dx(l),

mainstream outflow = q {1 - F(X) } r (X),
m

loss by reaction = R(r ) {l - F(X)} q dX.
n

A summing up of these terms gives

fl-F(X+dX)) r (X+dX) - fl-F(X)] r (X)

- q {- _J? -
m

} + qE(x)

dX

qR(r ) (l-F(x)}

and a rearrangement of the above expression gives

drm E(X)
( 6 )

R <rm> " 77 C 1 " r
m<

X^ »

dX 1 - F(X) m
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where r (A) is the fraction of the reactant which is unreacted at them

point A in a maximum mixedness reactor. The boundary condition for

this equation is

dr
a

7T (7)

This equation can be integrated numerically and the value of r (0) is
m

the outlet concentration from which the conversion can be computed.

The rigorous initial value of r is obtained by substituting the

boundary condition in equation (6) and completing the limiting process

of X * * as shown below

- R(rm(-)]
- (1 - r

m
(-)) l^T-^iy C8)

Zwietering showed that when the limit of

E(X)

1 - 1(A)

is known, r (») can be calculated. The value of r (°=) is insensitive
m m

to changes in A with a magnitude of between three or four times the

average residence time and «>. Therefore, a numerical integration can

be carried out by considering that r = r (•>) at A = 4t and starting
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the integration there and completing it at X = 0. This gives the

concentration at the outlet of the reactor.

Zwietering i_2Qj also indicated that a plug flow reactor is

simultaneously in a state of complete segregation and a state of

maximum mixedness. This condition occurs because this type of reactor

has a residence time distribution which permits no freedom for different

degrees of segregation; J is always equal to unity.

6. EFFECT OF MIXING ON CONVERSION

In previous sections, it has been indicated that each of the

two components of mixing affects the chemical conversion in a

different manner. While the effect of micromixing on the conversion

may be discussed separately from that of macromixing, the latter

must be discussed with reference to definite conditions of micro-

mixing that have been assumed. In the following discussion of

macromixing a condition of completely segregated flow will be

assumed.

As mentioned previously, macromixing is represented by the

distribution of the residence time about the mean. The fractional

outlet conversion of a reactant in the case of a completely

segregated flow can be expressed as
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K - / x(t) E(t)dt
I D

where xf is the final concentration of the product, x_(t) the

concentration of the product in a batch reactor as a function of

time and E(t) the residence time distribution. It can be shown

mathematically |_18j that the plug flow reactor and its corres-

ponging impulse residence time distribution provide for the max-

imum chemical conversion for most types of chemical reactions.

As mentioned in section 2, the plug flow reactor and the

continuous stirred tank reactor are normally taken to be the

extreme cases so far as conventional reactor design considerations

are concerned. Their residence time distributions, a delta function

and an exponential decay, are considered as a limiting form of

macromixing. It was also mentioned in section 3 that segregated flow

and maximum mixedness flow are considered as two limiting cases of

micromixing. We shall discuss the effects of these limiting cases

of mixing on the conversion of the reactor.

Danckwerts j_3j and Zwietering [^2Qj showed that a unique pre-

diction of the conversion could always be obtained for a plug

flow reactor, and that the conversion obtained from a CSTR depends

upon the degree of segregation as mentioned previously. Thus

when a tubular reactor is compared with a CSTR, the degree of
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segregation in the latter must be specified.

Examining the average reaction rates in the two reactors

enabled Denbigh []4J provide a simple explanation of why, for all

of the reaction orders that he investigated, a plug flow reactor

always has a higher conversion than does a continuous stirred

tank reactor with the state of maximum mixedness (CSTR ). For
mm

these systems in which the reaction rate decreases as the

conversion increases, therefore, the conversion must increase

along the reactor length in a tubular reactor, therefore, the

average reaction rate will have a value between the high initial

rate and the low final rate. In a CSTR , however, the conver-
mm

sion at every point in the reactor is equal to the conversion

at the reactor outlet, and the average rate is equal to the low

value of the rate at the outlet. When the two systems are com-

pared at the same value of outlet conversion, the tubular

reactor will always have the higher average reaction rate, and

therefore, will require a smaller reactor volume.

Danckwerts C^3 also discussed the difference between the

states of maximum mixedness and complete segregation in a CSTR

in the following way. He took two portions of reaction mixture,

which have different conversions and mixed them. Then he

examined the average reaction rates in the resulting mixture

under the two extreme states of micromising. It was shown that
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the average rates were higher in the completely segregated

state (CSTR ) w^en the reaction order was higher than unity,

and lower when the reaction order was less than unity; and

that the two states were equivalent when the reaction order

was equal to unity. This result for first-order reactions

might be expected. Since the kinetic equations for such re-

actions are linear, the super-position principle would apply,

and the method of averaging would be immaterial. For second-

order reactions, however, the kinetic equations are nonlinear

and any dilution of the reactant concentrations will cause

lower average reaction rates. The following example is given

to illustrate major results discussed so far.

[Example l) (5]

For an nth-order irreversible reaction in an isothermal

plug flow reactor, it does not matter if a state of complete

segregation of maximum mixedness exists. The material balance

may be written as

-/,=de

kc11



32

x = C / —

-

(9)
o o Kc

n

n-1 x dx

C T - / (10)

K(l-x)

where x is the space time, and x the fractional conversion,

C " C

c
o

For a CSTR , we obtain
mm

cox
t = —2- (11)

-KC
n

n-1
C t =

n C12)K(l-x)

For a CSTR , in addition to the rate equation, we also have to con-
seg'

sider the segregation effect in order to determine the actual conversion.

As mentioned in Section 5, the conversion in a completely segregated
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reactor is given by Equation (5), i.e.

X. - / x„(t) E(t)dt

where x^(t) is the conversion equation for an nth-order reaction in a

batch reactor and is equivalent to the solution of

n-1 1 1

C t = { — - 1}

K(n-l) (1 - x^t) 11"1

The exit age distribution function for the CSTR, E(t) is equal to

1 -t/T

The calculation of conversion with n = 1, 2, •= for the three

preceeding cases were carried out by Douglas Q5J> Equations of conver-

sion for the plug flow tubular reactor, CSTR , and CSTR are shown
seg mm

in Table 1. Results are shown in Figs. 9, 10, and 11. It is worth

noting in Fig. 9 that for a first-order isothermal reaction, the CSTR00 mm

and CSTR lead to the same conversion as pointed out by Danckwerts
seg

3 . For a second-order reaction (Fig. 10) or a reaction of the order

greater than one, the CSTR gives a higher conversion than CSTR^;

however, for a one-half order reaction (Fig. 11) or a reaction of the

order less than one the CSTR yields a higher conversion that the
1 mm

CSTR . For all of the above cases the conversion is only slightlyseg

affected by micromixing but is substantially affected by macromixing.

The plug flow reactor always has the highest conversion.
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The above examples are restricted to combinations of the extreme

cases of both macromixing and micromixing. For non-extreme conditions

of macromixing, or for any arbitrary RTD, one may also consider the

different cases of micromixing, namely, segregated flow, maximum mixed-

ness flow, and partially segregated flow.

For the first case, i.e. for any RTD with segregated flow, the

conversion can be found by using Equation (5) as was done for the CSTRggg:

x
f

- /" x
s
(t) E(t)dt.

For the second case, i.e. for any RTD with maximum mixedness, the chemi-

cal conversion can be found by using Equations (6) and (7).

dr EU)
-*--l(^- -U-rm (x)>
dX 1 - F(X)

and

drm
- for \ * '

dX
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Table 1. Material Balance Equations (5J

n-1 » dx
C t - /

K(l-x)'

n-1 x

K(l-x)

CSTR
seg

x =
•f
o
x
B
(t) E(£)dt

where x (t) is equivalent to the solution of the plug flow tubular
B

CSTR
seg

equation when T is replaced by t.

For isothermal reactions:

Tubular mm

1

n=l K " In
1-x

X
KT =

1-x

KT =

1-x

1

x x exp(- C t) _j
n=2 KC x KC t = x=l Ei (iET)

1-x (1-x) 2 KC T *V

Kx Kx x Kt
1
^2j2

1
k2t2 2C^

n=3 —j- = 2(l-»l-x) —r = -==. x = —r - -r -c~ + I~c~"exp(" ~k7")

c V "1-x C</

KT

where E. is the expontial integral, i.e.

„ e-x

E
± (y)

- / dx
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DIMENSIONLESS RESJ3ZNCE TIME- fcT/C
'^

Fig. II. Conversion profiles, one- half- order,

isothermal reaction (5),
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For the third case, any RTD with partially segregated flow, there

are various models of micromixing available for use. These will be

discussed in the next section.

7. THE MODELING OF MICROMIXING

In Section 5, the extreme cases of micromixing, complete segrega-

tion and maximum mixedness, are discussed. Any condition lying between

these two limits is called incomplete micromixing or partially segre-

gated flow. The following is an extensive survey of the previous works

concerning models of incomplete micromixing.

Weinstein and Adler [17, 18j proposed two simplified models of

mixing, each of which requires only one micromixing parameter. The

parameters in each of the two models are as follows:

(1) An age that separates the reactor into two parts - one part

containing molecules younger than this age in a condition of

complete segregation, the other part containing molecules older

than this age in a condition of maximum mixedness. This picture

leads to the use of the consecutive type model (see Fig. 12).

(2) An age that separates the entering fluid into two parts -

one part containing molecules which will eventually have residence

times of less than this age and always remain in a condition of

complete segregation, and the other part containing molecules

which will have residence times greater than this age and alwavs

remain in a condition of maximum mixedness. This picture leads

to the parallel type, model (see Fig. 13).
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The consecutive reactor model and the parallel reactor model are

complementary in that each of them represents a different family of

micromixing states. The consecutive reactor model is concerned with the

age at which fluid begins to experience micromixing. The parallel

reactor model is concerned with the fraction of the flow which exper-

iences micromixing. It is felt that the consecutive reactor model

better represents micromixing in most cases, since all of the fluid

entering a system tends to remain segregated for at least a short time.

Rippin 1.14J established a quantitative relationship of the recycle

reactor model (see Fig. 14) with the longitudinal diffusion model and

the tanks in series model. He then showed that the recycle reactor

can be used as a model of a flow reactor with incomplete mixing (macro).

With regard to macromixing, the RTD of the recycle reactor becomes that

of the plug flow reactor and that of the continuously stirred tank

reactor as the recycle ratio R tends to zero and infinity respectively.

An arbitrary RTD for a reactor which lies between that of a PFR and

that of a CSTR may be obtained by proper choice of the recycle ratio

R. With regards to micromixing, the recycle reactor itself is actually

always at the state of maximum mixedness since it fulfills the condition

of Zwietering's model of maximum mixedness, namely, that the association

of entering molecules with older molecules is as early as possible

(specifically at the inlet of the reactor). Thus, for this model, inter-

polation between the PFR and the CSTR is possible by changing the recycle

ratio, but this change in the macromixing (i.e. the RTD) simultaneously

causes the change in the condition of micromixing which may be characterized
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by the degree of segregation J. No matter what the RTD of the recycle

reactor may be, so far as micromixing is concerned the recycle reactor

always is in the state of maximum mixedness, i.e. the state of minimum

degree of segregation, corresponding to that RTD. This fact may be

interpreted by Fig. 15. As the recycle ratio changes from zero to

infinity, the condition of micromixing changes along the line of maxi-

mum mixedness, AC. If it is desired to study these two effects indepen-

dently a micromixing model which can be used with any RTD is required.

A single-parameter model of this type has been proposed by Ng and

Rippen
J, 12J , and a multi-parameter model by Asbjornsen [lj.

Ng and Rippin [l2j recently proposed a two-environment model. By

using this model, which allows the residence time distribution and the

extent of micromixing in the system to be varied independently, the

effect of micromixing is most clearly demonstrated. This procedure is

not possible with some commonly used reactor models i,14j such as the

plug flow with diffusion, tanks in series or recycle reactor models.

In this two-environment model the reactor is assumed to consist of an

entering environment in which the fluid elements are completely segre-

gated, and a leaving environment which is effectively a Zwietering

maximum mixedness reactor. The rate of transfer between these two

environments is determined by a transfer parameter R such that when R

is zero there is no transfer from the entering environment to the

leaving environment and the whole reactor is completely segregated.

When R is infinitely large, the whole of the . .entering material is immed-

iately transferred into a leaving environment such that the whole reactor
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becomes a maximum mixedness reactor. Intermediate values of R gives

rise to different degrees of micromixing.

Kippin [15] developed a procedure for the evaluation of Danckwerts 1

degree of segregation for a two-environment model of a partially mixed

(micro as well as macro) reactor from knowledge of the residence time

distribution and the micromixing transfer parameter R. He subsequently

applied this procedure to obtain an analytical relationship between the

degree of segregation and the transfer parameter of the two-environment

model for the residence time distributions equivalent to one and two

well-stirred vessels. Rippin Ql5] also established the fact that

different concentration histories may thus cause different conversion

even in systems having the same residence time distribution and the same

value of J. More specifically, only in the extreme cases of micromixing,

i.e., maximum mixedness and complete segregation, will the degree of

segregation accompanying the RTD provide the full information of conver-

sion for any reaction mechanism. In the case of partial micromixing, the

degree of segregation does not provide a good description of micromixing.

Thus the degree of segregation together with RTD cannot uniquely deter-

mine the conversion. Therefore, both the concentration history and the

RTD should be taken into consideration in determining the conversion for

any chemical reactor of partial micromixing.

Asbjornsen [1 J proposed a multi-parameter model of incomplete mixing

obtained by using a fluid-flow network with a triangular structure and

by subdividing the input and output of a system with a CSTR overall time
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distribution into a number of segregated input and output streams as

shown in Fig. 16. In this figure a circle indicates an ideal mixing

stage and the number inside the circle denotes the mean residence time

for this mixing stage. The network has two main input streams each

divided into n parallel streams and these two main streams may be con-

sidered as two completely segregated inputs (segregated feed of reactants).

The inter-mixing between the different streams in the system is simulated

by ideal mixing stages at the nodes of the network. Asbjornsen also

studied the effect of the degree of segregation on the overall conversion

of the reactants in the following reaction system.

a. A second order, irreversible chemical reaction with equimolar

feeds in the abiabatic reactor.

b. A second order, irreversible chemical reaction with equimolar

feeds in the isothermal reactor.

c. An isothermal autocatalytic reaction with traces of the product

in the input.

He further investigated the two extreme cases of micromixing completely

segregated reactant feeds and thoroughly mixed reactant feeds for

different types of flow distributions through the network.

Kattan [6] developed a mixing model capable of treating unmixed as

well as premixed feed and of approximating a wide variety of mixing states

in continuous flow chemical reactors. This model is based on random

coalescense and redispersion occurring between fluid elements of equal

life expectations. The model has been developed for homogeneous, isother-

mal systems but it can be used in simple dispersed systems. A stochastic
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version based on the standard Monte Carlo technique is also implemented.

Kattan [6] also studied three reactor problems. First, the effects of

varying micromixing and residence time distributions were explored for

several simple chemical reactions. Both premixed and unmixed feeds

were treated. Secondly, the model was used to vary micromixing in an

attempt to determine the yield of an arbitrary kinetic scheme involving

side reactions. Finally, the model was used to simulate experimental

results reported by others for a plug flow reactor.

Kattan and Adler [7 J presented a conceptual framework for describing

mixing in a continuous flow system based on the notions of the residence

time distribution, residual life times (life expectations), and coales-

cense and redispersion of fluid elements. This framework is believed

to be sufficiently comprehensive and flexible for use in any mixing

situation. These investigators also derived a limited analytical form-

ulation and compared it with three mixing models instituted by other

investigators. They further suggested the Monte Carlo simulation as a

practical means of implementing the model. Fukumi f 16 J studied the

dynamics of an imperfect micromixing chemical reactor based on the

diffusion model, the tanks in series model and the mixed model.

The models that have been mentioned above are all concerned with

deterministic processes. There are mixing models of stochastic processes

developed by Kattan and Adler [8 J and Krambeck, Shinnar and Katz [10].

Kattan and Alder developed a simple stochastic mixing model for tubular

reactors. The model is based on random collision and redispersions

between elements of fluid. Krambeck, Shinnar and Katz modeled turbulent
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chemical reactors by a network of stirred tanks with the stochastic

nature of the mixing introduced by taking the interstage flows to be a

stationary Markov process. They also discussed several general features

of tracer experiments in these quasi-steady flows, together with the

relations of the experimental result to the residence time distributions.

They further analyzed the statistics of tracer experiments related on

the one hand to the estimation of mixing parameters, and on the other

to the forecasts of average yield from the reactor system under first

order kinetics.

Makoto 1*11} proposed models of coalescence and redispersion for

micromixing, and estimated the effects of micromixing on the conversion

in continuous flow reactor using these models.

8. CONCLUSION

A single isothermal reaction is only slightly affected by micro-

mixing, but is substantially affected by macromixing. In most cases a

plug flow reactor which has the impulse type residence time distribution,

gives rise to the maximum conversion of the reactant 1.5). For an

adiabatic reaction, the micromixing effects on conversion may be as

great as that of the macromixing (5). Sets of simultaneous isothermal

reactions as well as reactions accompanied by large heat effects are

greatly affected by both micromixing and macromixing (l6J . Of course,

a single or simultaneous isothermal reaction of the first order are

completely governed by macromixing; micromixing has no effect.

The major significance of understanding the mixing effects on
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reactor performance lies in the fact that they determine

(1) The condition of mixing moat beneficial to reactor performance,

and

(2) The sensitivity of reactor performance to changes in mixing

condition.

The latter information is particularly valuable when a reactor is

insensitive to micromixing. Then macromixing , conveniently defined by

the residence time distribution, is established as the suitable criterion

for design, scale-up and mathematical modeling.
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APPLICATION OF LINEAR PROGRAMMING TO CHEMICAL ENGINEERING

Linear programming is a method of finding the maximum or minimum

of a linear objective function subject to linear constraints. Most of

the basic work was done in the 194G t s by such men as F. L. Hitchcock,

L. Kantorovitch, T. C. Koopmans, and G. B. Dantzig. In 1947, Dantzig

formulated the general linear programming and developed the so-called

simplex method of solution. Since then the applications of linear

programming have been widespread and hundreds of technical articles and

many books on linear programming have appeared. Many of the earlier

uses of linear programming were made in the petroleum industry J_4 t 5,

16, 17 J. Other extensive applications of linear programming including

such problems as production scheduling, transportation, personnel,

assignment, diet preparation, machine-loading, and materials-bending

are presented in books by Llewellyn [ill, Hadley ClQ'S, Gass [ 9 J, and

Dantzig \_d j.

1. A SIMPLE EXAMPLE

Let us first consider the following simple problem as an illustration.

Suppose that a function,

f - 12x
1
+ 10x

2 , (1)

is to be maximized subject to the restrictions,
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2x. + x, £

2x
x
+ 3x

2
_< 12,

*1 i 0. (2)

x2 - °-

For this two dimensional case a graphical solution as shown in Fig. 1

is possible. The first restriction or constraint is represented by

the area under the line,

*
2

= 8 - 2
X;l , (3)

and the second constraint by the area under the line,

x = 4 - i. x. (4)

The third and fourth constraints jointly correspond to the area in the

first quadrangle. It can be seen that we have to seek values of x and

x^, which maximize the objective function in the shaded area.

Consider also a family of lines corresponding to the objective

function, equation (1), which is a family of parallel lines with a

slope of - 2. and which moves away from the origin with increasing f.

Maximizing f then is equivalent to seeking the line with the largest

f containing a point (x , x ), which belongs to the shaded region.



ig.l. Tv;o dimensions! rnoximun problem in

iir.^cr program ming .



Figure 1 shows such a line passing through point M. The values of

56

x
l

= 3 and (5)

are obtained by the simultaneous solution of the two straight-line

equations, equations (3) and (4). The corresponding maximum value of

f is 56.

From this simple example we may draw the following conclusions.

(1) The optimal solution lies on the boundary of the shaded region

or more specifically on the "corner".

(2) The shaded region is called a convex region, that is, all the

points on any line segment connecting any two points of the

feasible region.

This problem may also be stated in matrix-vector form as follows:

f~12, lol

subject to

2 1

2 3 12



X " "

1 >

X
2

- - -1

or more concisely as

T
max c x

57

Ax < b (6)

where

x >

12

10

C 12 10 Z] > A 2 1

2 3

b »

12

2. THE PROBLEM OF LINEAR PROGRAMMING

A linear programming problem can now be generally stated as finding

an n-dimensional vector, £x,, x
2 , ..., xl, or a set of values for n
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variables, £x x , ,.., x 7, which maximizes the linear objective or

profit function,

cA + c
2
x
2
+ ... + c.x. + ... + c

n
x
n , (7)

subject to m linear inequality constraints,

ax + ax + ... + a x. + ... + a x < b
11 1 12 2 lj j In n — 1

a x +a x + + a x + ... + a x <b.
21 1 22 2 2j j 2n n - 2

a. -.x. + a. -x., + +a..x. + ... + a. x <b.,u l i2 I lj j in n — i*

a x + a x + ... + a x + ... + a x <b,
ml 1 m2 I mj j mn n — m

under the conditions that

(8)

x. > 0, j = 1, 2, ..., n, (9)

where a , b. and c. are given constants and b. >

The general linear programming problem may be stated in many forms.

Some of the common ways of stating it are given below:



(1) Maximize

Sex
j-1 i 1

subject to

x. > 0, j = 1, 2, .... n

u ...

j = l

(2) Maximize

T
c X

subject to

?i °

and

Ax
_f_

b

where

T

1 a
ij

x
j 1 b > i = 1, 2, ..., m.

(cr c2> .... cj,
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"1

x
2

In

a a • . • a
21 22 2n

- , CO repeated n times)

.

(3) Maximize

T
c x

subject to

Ax >
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and

x n P, + x P + ... + x P < Pn1-1 2~2 n-n — ~0

where P
, j = 1, 2, . . . , n, Is the jth column of the matrix, A, and P.

= b. Note that without loss of generality, we can always consider a

linear, programming problem as a problem of maximization since the

minimum of an objective function is equivalent to the negative of

the maximum of its negative, i.e.

min (ex) » - max (-ex).

3. THE DUAL PROBLEM

Corresponding to every linear programming problem there exists

another linear programming problem called its dual . For example, the

dual problem for the simple problem in Section 1, may be defined as

min b y (10)

A y > c

> 0.

Or more specifically, it is used to minimize the new objective function,

g, defined by

g = 8yi + 12y
2

(11)
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subject to the constraints

2y
x
+ 2y, > 12

y
i
+ 3y

2 -
10

Yi
>

(12)

y
2
: o

The procedure for solving this problem graphically is shown in

Fig. 2. It is similar to that for solving the original maximization

problem. Those values of y, which satisfy the constraints must lie in

the shaded area bounded by the two straight lines,

y 2
= 6 - yi

?2

(13)

io yi .

3 3

A family of lines representing the new objective function, g, moves

decreasingly toward the origin in the region for positive g. Hence the

smallest g which contains yi and y, in the shaded area passes through

point S(y-, = 4, y 2
= 2) which corresponds to the simultaneous solution

of the two straight line equations, equation (13). Thus, the minimum

value of g is 56. We can immediately see that

max f = min g. (14)
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. Two dimensional minimum problem in linear

programming .
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The minimum point also lies on the boundary of a convex region of

possible solutions.

Now in conjunction with the general linear programming problem

presented in section 2, we can state its dual as finding an m-dimensional

vector,

5^1

^2

which minimizes the linear objective function,

8" Vl + V2
+ '•• + b

j
y
j

+ "• +bmV (15)

subject to n linear inequality constraints,

anyi + a
2i^2

+

a
12yi + a

22y2
+

anyi + a
2iy2

+

"in*!
+ a

2ny2
+

.. + a
jiyj

+

• + a
j2yj

+

+ a
jiyj

+

+ Wi +

+ a ,y_ > c,,

mz-'m — z*

+ a .y > c .

.

mi/m — i*

(16)
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y. > 0, j = 1, 2, 3 m.

Or briefly in matrix notation, it can be stated as

nun b y

ATy > c (17)

y _> 0.

The duality theorem [2, 5, 9 J states that, for every linear programming

problem, there is another, the dual problem, and that the solution of

one exists if and only if the other has a solution. The maximum

problem can be thought of as the dual of the minimum problem or the

minimum problem can be thought of as the dual of the maximum problem.

In either event, one problem is referred to as the primal or LP (linear

program) and the other as the dual or DLP (dual linear program)

.

4. TRANSFORMATION OF THE PROBLEM

We shall first' consider the LP and then turn our attention to the

DLP. By introducing m new nonnegative variables

which are called slack variables, we can replace the original inequality

constraints,
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1
ll

X
l
+ a

l2
X
2
+ ••• +a

ln
Xn- b

l>

3
21

X
l
+a

22
X
2
+ ••• +a

2n
Xn- b

2'

a -x, + a ~x„ + ... + a x < b ,ml 1 m2 2 mn n — m'

by the same number of equality constraints,

a
ll

x
l
+ a

12
x
2 + ••• + alN*N

= b
l»

a21xl
+ a

22
x
2
+ ••• + a

2N
x
N

= b2'

amlxl + a
m2

x
2 + ••• + *m\ = V

x. > 0, j = 1, 2, 3, .... N,
3

N = n + m,

3
l,n+l ~ a

2,n+2 " a
3,n+3 " ••* " amN " 1 >

(18)

(19)
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and all other a. . which have been newly introduced in this step are zero.

The objective function, f , may now be written as

f • c^ + c2x2 + . . . + cNxN (20)

where

n+1 n+2 °N

In matrix notation, these transformed equations can be written as

an a
i2 ••• am 1 ° ••• °

a21
a
22 ••• a

2n
1 ...

nl m2 *
"

* mn ... 1

x
l

x
2

XN

-

b
l

b
2

bm

(21)

f =
£ Cl

C
2

...
CjjJ (221



3y defining

6b

P.
-J

3
2j

mj

^0

Xl l

*
= ^ X

l
X
2 N -1 '

c =[c c , .... C ^] ,

%
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The linear programming problem or simply linear program may be written

T
max ex , x ^>

subject to

N
P = Z x P . (23)

j = l
3 3

5. SIMULTANEOUS LINEAR EQUATIONS AND GAUSS-JORDON REDUCTION

A system with m simultaneous linear equations with n unknown can

be written as,

aux
1
+ a

12
x
2
+ ... + a

ln
x
n

= t^ ,

a
21

x
l
+ a

22
x
2 + • •

•
+ a

2n
x
n ' b

2 •

(24)

a .2. + a x r.+~... + a x = bml 1 m2 2 mn n m

This equation can also be written in short form as

Ax = b . (25)
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The solutions of underdetermined and determined sets of equations can

be obtained by means of the Gauss-Jordon reduction [2, 10 J. This

method is a specialization of the Gauss' method for inversion of non-

singular square matrices by elementary matric operation. If a 4 0,

dividing the first equation of equation (24) by a , we obtain

l au I an 3 au n au

x. + b 10x_ + b, ,x, + ... + b, x
1 12 2 13 3 In n

Multiply this equation by a and subtracting the result from the second

equation, we obtain a new equation with the variable x eliminated as

where

b
22
x
2
+ b

23
x
3
+ . . . + b

2n
x
n

= c
2

12
b
22

= 3
22 " 3

21 T[
x

= a
22 " 3

21
b
12

K - -11 KD
23 ' a

23 " a
21 an " a

23 " a
21

b
13

b2n
_ a2n " a21 7"^ = a2n " a21blna

ll



71

C
2

= b
2

" a
21 Z£

= b
2

' a
21

C
l

Repeatedly using the same procedure in the third, fourth, ..., nth

equations obtain

,

b
22

x
2
+ b

23
x
3
+ ... + b

2n
x
n

= c
2 ,

b
32
x
2
+ b

33
x
3
+ ... + b

3n
x
n

= c
3 ,

(26)

b-x- + b„,x, + ... + b x = c .
ml 1 ij j mn n m

If b._ 4 0, we can divide the second of these equations by b and

multiply by b,, and subtract the resulting equation from the first

equation. This procedure eliminates x, from the first equation and the

same procedure may be carried out to eliminate x from each of the other

equations. A new system of equations then has the form
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x
l + + c13

x3 + c
14
x4 + • + clnXn = d1(

x
2
+ c23x3 + c24x4

+ ... + c2n
xn

= d2>

c33x3 + c34x4 + • • • + ^n5^ = d 3>

(27)

cm3x3 T
<in4

x
4

If we continue in this way, we shall arrive at a set of equations having

the following form.

x, + a ^.x^., + a x ,. + ...+ a. x = B,

,

1 l,r+l r+1 l,r+2 r+2 In n 1'

x
2
+ a

2,r+l
X
r+l

+ a
2 ,r+2

X
r+2

+ - + a
2n
X
n " B

2>

(28)

x+a x . + a x „+,,.+ a x = B ,
r r,r+l r+1 r,r+2 r+2 rn n r

° " B
r+1'

° " B
r+2'
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The number r is called the "rank" of the matrix A. Note that r _^ min(m,n).

If r < n, equation (24) is called underdetermined; r = n, determined.

We shall discuss all possible cases below

i) m < n

If r < m, the only way there can be solution to this set of equations

is for $ ... - 0, 3^_2 = 0> •••> ^m
= "• Tlle solution can then be written

X,r+1 r+1 " l,r+2 r+2 In n *

x
2 " B

2 " a
2,r+l

xr+l " a
2,r+2

x
r+2

ai x ,2n n '

_ a
r,r+l

x
r+l " a

r,r+2
x
r+2

(29)

where if we set arbitrary values for x^.-^, Jt_j.2« •••> xn > the values of

x, x., ... x are uniquely determined. Here x. , x , ..., x are called1^2' r n ^ 1 l n

dependent variables or basic variables and x , ..., x are called

independent variables or non-basic variables. The special solution

obtained by setting the independent variables equal to zero and solving

for the dependent variables is called a basic solution. Thus the basic

solution of equation (24) is the following:



n

X
1
=B

1>
X
2
=S

2' ••• X
r= B

r

x , = x „=...= x =0.
r+1 r+2 n

A basic solution is degenerate if the values of one or of more of

the dependent (basic) variables are zero. In particular, the basic

solution of equation (24) is degenerate if 3. =0, 1=1, 2, ...,r

for at least one i. If r = m, the values of ^.j, Xj^. . . . , x^ may be

arbitrarily set and x-^ x
2 , . . . , x^ are uniquely determined. If we set

the values of the (n-m) variables xy.j, xm+2 , ..., j^ equal to zero,

then the solution to the resulting system of equations is called a basic

solution. The m variables which can be different from zero are called

basic variables.

ii) m > n

There are more equations than unknowns. Since r < n < m, in order

to have consistent solutions one must have B_J_ 1 = 0. B_. ., = 0. .8 =0rri * rri ' * m

and the last m - r equations provide no useful information as far as the

solution is concerned.

iii) m = n

There are an equal number of equations and unknowns. If r < n,

then (n- r) equations are dependent and can be ignored. A solution will

exist only when &T+1 = 0, ..., Bn = 0. If r = n, a unique solution

exists

.

The above discussion may be summarized very neatly in terms of the

ranks of two matrices. The first matrix is



11 12

a a
21 22

In

a
2n

(30)

and the second matrix, called the argument matrix of A, is

Aug A

a a ... a b
11 12 In 1

a a ... a b
21 22 2n 2

ml m2
a b
ran m

(31)

Carrying out the Gauss-Jordon reduction by pre-multip lying or post-

multiplying A and Aug A respectively by suitable matrices, we get

and Aug B in the form
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10 a

1 ... a

1,1+1 1 r+2
• • In

2.1*1 °2 r+2 • • °2n

3,r+l °3 r+2 " • °3n

000 l a O „ au u u ••• x r,r+l r,r+2 • rn

... ...

(32)

...

and
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10

Aug B

a l.rfl a l,r+2

...

J ln

1 ... <x2>r+1 o.2)r+2 ... a2n 6 2

1 ... a3>r+1 a3>rf2 ... 03n B3

... 1 ar>r+1 ar>rf2 ... arn

o ... ...

o ... ... (

r+1

r+2

(33)

If Br+1
=

°» e
n-2

= °» ••• em
= °» equation (26) will have a solution

and it follows necessarily that rank B is equal to rank aug B and rank A

is equal to rank Aug A. Conversely, if rank A is equal to rank Aug A,

the set of equations will have a solution. Summing up, we get an

important theorem for linear simultaneous algebric equations. The neces-

sary and sufficient conditions for a set of linear simultaneous equations

to have a solution is that the rank of the matrix of the coefficients must

be the same as the rank of the augment matrix of the coefficients ( 2 J.

A second important theorem deducted from the above discussion may

be stated as follows. If the rank of the matrix of the coefficients in

•
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a set of linear simultaneous algebraic equations is r and is the same

as the rank of the argument matrix, and if n is the number of unknowns,

the values of (n-r) of the unknowns may be arbitrarily assigned and the

remaining r unknowns are uniquely determined, provided that the matrix

of the coefficients of the remaining r unknowns has rank r ,' 2J.

let us now return to considering the reduced system fsee equation

(28) J in the soluble case of the nonhomogeneous system equations Ax = b.

If r is the common value of the rank of the coefficient matrix and of

the argument matrix, the reduced system can be written as equation (29).

In that form, it can be seen that x .-, x „ x can be given

arbitrary values, say

x
r+l

= X
l>

x
r+2 " A

2- — x
n

= Vr < 34 >

With these values equation (29) reduces to

ic=8_a A_a A_ a A

1 1 l.r+1 1 l,r+2 2
'"

In n-r
'

s=B-a A-a A _ ... _ a A
2 2 2,r+l 1 2,r+2 2 2n n-r '

x = 8 - a A-a A-.. .-a A , C35)
r r r,r+l 1 r,r+2 2 rn n-r

x =. A
r+1 1

*Y.1
=

\



79

X
1 i

X
2

3
2

X
r

= B
r

-X
1

X
r+1

X

•

X

L n
_ _ _

l,r+l

2, r+1

+ ... - A

am
a
2n

•

m

-1

_

r,r+l

-1

a -1

l,r+2

a
2,r+2

r,r+2

-I

(36)



tute equation (36) into equation (24) , we get

81

A
(
x
n + E X

i
x .1 = Ak + £ A. Ax. (38)

where

= b +

%r+j

r,r+j

-1

-
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6. EXPANSION OF VECTORS IN A BASIS [_2, 10J

A vector may be expanded in terms of a basis. This concept is very

important in linear programming. We begin with the following definitions.

Spanning set: A set of vectors a,, ..., a from e" is said to span

or generate E if every vector in E
n

can be written as a linear combin-

ation of a,, ..., a
r .

Easis: A basis for E is a linearly independent subset of vectors

from E which spans the entire space.

The representation of any vector b in terms of a set of basis or a

, n
basis vectors is unique, that is, any vector in E can be written as a

linear combination of a set of basis vectors in only one way. But, under

certain conditions, an arbitrary vector, say b, from E
n can replace one

of the vectors in a basis so that the new set of vectors is also basis.

The technique of replacing one vector in a basis by another so that the

new set is also a basis is fundamental to the simplex method for solving

linear programming problems.

Consider a given set of basis vectors a, , . . . , ar for E and any

other vector b / form E . Then b can be written as a linear combin-

ation of the a,- , as

b = I a
±

a
±

. (39)
i=l

where
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b. -

v

If any vector a. for which a, £ is removed from the set a, a

and b is added to the set, the new collection of r vectors is also a

basis for E .

By considering equation (39) as a system of simultaneous equations

•• +a
r

alr •

b
2

=
"l a21

+ °2 a22
+ ••• +

"r
a
2r '

br= a
i

a
rl
+a

2
a
r2

+ ••• +
°r

a
rr (39)

bm-°l aml
+ °2 am2 + •• +

°r V



1' a
2 • '" a

r may ^e determined as discussed in section 5. Now

consider the set of vectors with m components

e- > • • • > (40)

where e is the vector with 1 in the jth position and zero elsewhere.
"j

Then we may express any vector in the original vector space consisting

of a., ^2> •••> an in terms of the set (eJ for

= a
lj fl

+ a
2j ?2

+ ••• + a
mj Sm

for a11 1 (41)

uv.d

b = b-, e, + b1 el
T °2 e

2 (42)

The set of vectors fe.) is called a set of unit vectors of the m-th
J



order and any vector with m components may be expressed or expanded in

terms of this set. If we add to and subtract from equation (42) a con-

stant multiple of one of the vectors of the set {a,}, say, a , we obtain,

1=1
(43)

Since

?r " a
lr-

e
l
+ a

2r-
e
2
+ ••• + a

rr?r
+ ••• + Wm > <**>)

we have

b = Z (b± - aa± )e ± + oa . (45)
i=l

Thus we obtain an expansion of the vector b in terms of a new basis vector.

This new basis includes a and the original basis from which a vector is

removed. The vector to be removed depending on the proper choice of a.

If e is to be removed, we choose

b
s

Then we have

.\
(b

i " T^ aiAei + r1
?r • (46)

i-l sr "sr
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Now each of the other vectors, not in the new basis, will have an expan-

sion which is different from the original one. For instance, from

equation (44) , we can write

=i^- a
lr?l a

2r?2 " ••• " a
s-l,r?s-l

(47)

s+l,res+l " ••• " yj

The expansion of any vector a. can be written from equations (41) and

(47) as

a = I (a __Sl air ) e
±
+_5l a j^r

(48)

ar = Oe^ + 0g2 + . . . + 0em + ar .

The procedure may be conveniently summarized in Table 6.1 and 6.2.

All the vectors under consideration are listed at the top of Table

6.1. Each vector consists of the components which are products of

coefficients in the column below the vector and the corresponding unit

vectors are listed in the first column.



Table (i.l

*1 •
•

• ?j • • • 5r 5i •
•

• 5s • • ~m b

Si all a
lj alr 1 bl

-2 -_i a
2j

a2r b2

53 a31 a
3j

a3r b3

a -i a .

si sj

5m aml «n) ^r ... ... 1 b
ffi

If we remove e of the basis and introduce a as a new basis and then— <* ~ r

we can determine the expansion coefficients in terms of the new basis

by using equations (46), (47) and (48). This procedure is illustrated

in Table 6.2. We shall now show that these entries in the table can be

produced by operating on the rows of the matrix with elementary matrix

operators. The entries in the row opposite a in the first column of

Table 6.2 may be obtained by dividing the row opposite e in the first

column of Table 6.1 by agr . Now note that all the elements under the

column of a in Table 6.2, except the one opposite a in the first

87



column, are zero. For example, in order to produce a zero opposite e„

in the first column, and under a in the top row we divide the row opposite

Ss
in Table 6- 1 by a

sr , multiply it by a2 , and subtract the result from

the second row. This procedure produces the elements in the second row

of Table 6.2. This simple numerical algorithm allows us to find expan-

sions of vectors in terms of the new basis. Actually this is the same

scheme as the Gauss-Jordon reduction mentioned in section 5.

Table 6.2

a, ... a. ... a e, . . . e„ . .

.

em b
~ -J ~r -^ _s J

hla * _
2
£l a 1

3lr k
b
S

- -* alr ° * ~— ° b
l " —- air

sr sr sr sr

aa1 &c4 ao— b
-2 a21 "— a2r a2j " -^ a2r ° ° -— b2 - _S_ a2ra J a a asr sr sr sr

asl a
<!i 1

-5i -21 1 —
a
sr

a
sr a

s

si
a 1 — aml a mr

sr
bm " T- *•

sr "sr



In order to illustrate the method, we may consider a simple example in

which there are three basis vectors a., a,, a , each with three components.

i-i

52

-
e
3

?1 S2 -?3 ?! =2 ?3

3 6 3 10
12 3 10
3 2 1

We shall first remove e„ replacing it with a, as shown belo

1=1

-
a
3

-
e
3

-"1 =2 -3 fl ~2 ~3

2 4-0 1-1
I I 1 I
3 3 3

3 2 1

where we have operated on the rows of the first table to produce 1 at

the intersection of the second row and third column and zeroes at all

other positions of the third column. The second step is to replace en

with a„. If we operate on rows to produce 1 at the intersection of the

first row and second column, we obtain the following results.
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-1 "2 -3 -1 -2 -3

L,
1

1
1 1

2 2 4 " 4

i. 1 1 1

3 "
6 2

L, 2 1 I
1

3 "
2 2

Thus we can write the results as follow.

-
a
i " i h + 2

-
e
3

a -i a -la -la
?1 4 -2 6 ?3 2 ?3

e = - i a + — a +ic
-2 4-22-32 -3

7. THE SIMPLEX METHOD [2, 9]

In Section 1, we discussed the geometrical interpretation of a linear

programming problem in two dimensions. We observed that the set of

feasible solutions to a linear programming problem described mathematically

by equations (1) and (2) formed a convex region or convex set (if there

a feasible solution). Furthermore, when an optimal solution exists, it

is at one of the comer points or extreme points of the convex region of

the feasible solution. It can be shown that in an n-dimensional convex

region also, the optimum lies at one of the extreme points [2, 10J.

Hence if we check also all the extreme points, then we shall be able to

find the optimal solution. It may be proved [2, 6j that the extreme points

of the convex set of the feasible solution are the basic feasible solution
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to equation (8). Thus an optimal solution to a linear programming prob-

lem will be contained in the set of basic feasible solutions to equation (8)..

The simplex method proceeds in systematic steps from an initial

basic feasible solution to other basic solutions and finally in a finite

number of steps to an optimal basic feasible solution, in such a way that

the value of the objective function at each step (iteration) is better

than it was at the preceeding step. Because the objective function z is

improved at each step, the number of basic feasible solutions that must

be examined before reaching an optimal solution is found, is usually

much smaller than the total number of existing basic solutions. In

general, the number of iteration (changes of basis) required to reach an

optimal solution lies between m and 2m, where m is the number of constraints

lIOJ. The simplex method also indicates whether there is an unbounded

solution.

Now let us consider a linear programming problem with inequality

constraints statea as maximizing

(49)

A x _< b (50)

where



and

In

a
2n

92

L
n
J

b =

3y introducing slack variables into equation (9), as mentioned in section

4, it becomes

A x = b
1 " - (51)

subject to

T
Z = C X (52)
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V

a a ...a 10...0
11 12 In

a a ...a 1...
21 22 2n

ml m2

and

n+1

b =
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By detining

P =
-J

l
2J

aml

: - 1,2, N and P - (53)

N = n + m

the linear program may be written as

!o
= l x

j h
j-i

Tmax c x

x > (54)

We then ask what the coefficients x. must be in the expansion of the

vector Pq in order that c™x be a maximum with x _> 0. Since there are

K = m + n vectors in the expansion of a vector with m components, it is

apparent that there can be many combinations of coefficients x., which
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will satisfy the restraints. Note that only m vectors are required in

a basis. Also note that P , P ,, ..., P are m vectors which form a

basis in a m-dimensional space and we may denote them as

:n+l = .n+2 (55)

It is now possible to find a basic feasible solution if we choose

x
T
-(0,0, ...0, b

1
, b

2
, .... bm) (56)

where x satisfies equality constraints

P„ = Z x. P.

J-l
J ~ J

£ x. p.

j=n+l J ~ J

(57)

because x. = for j = 1, 2, ..., n. In this case, the objective function
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C x = (c1( c
2 , ..., cn> 6] (58)

The reason for the objective function being zero is that only slack

variables contribute to the objective function and they contribute

"nothing" to it.

Recall that in section 6, we established ascheme whereby the basis

can be changed by one vector at a time. If we change the basis by removing

one vector from it and adding another one to it in a manner such that the

profit function will always increase after a finite number of changes in

the basis we should be able to arrive at the maximum value of z if it

exists. The simplex method tells us which one of the vectors in the

basis should be removed and which new vector should be added until we

get the maximum value of z. In other words, it gives rise to the criterion
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of optimallty and provides us the direction of steepest decent. It may

be developed as follows:

Suppose that after examining various combinations of P
.

, we have

arrived at the corresponding feasible solution x with a set of basis

vectors f f f where f is an p i-i o-1 -2 • -m
w"eLe

Jj
ls a11 e

. , J-1, 2, ..., m or a P , j=l~3 ~j

, 3, ..., n. Let f^, ..., f
N

be the remainder of the original N

vectors. We employ f
g
to denote a vector belonging to the latter set.

Since the vectors, ^ {j, .„, f^, are linearly independent, they form

a basis in an m-dimensional vector space. We can then express every

vector as a linear combination of these basis vectors. Thus f and P
~s -0

can be expressed as

i = I a f
~ s j-1 js -j (59)

and

Define a quantity

50
=

*
A
l fj • (60)

2
s "

}_
X
js c

j »
s = m + 1, m + 2, ... m + n (61)

and the corresponding values of z
B

for the vectors f, £,, ..., f are

zs " cj . i - s - 1, 2 m. (61_ a)
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and let the profit function be denoted by

Z Xj c (62)

where the c. in these formulas which belongs to c is the appropriate c

associated with a particular f ., j=l, 2, ..., n+m. If f. is a P., then

Cj is c.£ and on the other hand, if f . is an e^ then Cj is zero.

Now suppose that one °f_fj, j=l, 2, ..., m, is replaced in the basic

basis by one of t , s = m+1, ..., N. Then

.

z

=1
x
i *i

~ 8
!s

+ e
!s

S (A
j

" 9a
js>

f
j
+ ef

s
j-1 J J -J -

I (X, - ea
ls ) f, + f

s
x=l

If we chose

Xi
e- —

i

"J 8
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we may expand P
Q

in terms of the new basis, that is, the basis with a

particular f . removed and f added to the set as shown below.
~J -s

SO" } ,

(Ai-:^ h + ^-h • (63)
=1 js "js

In the sum the term in which i = j is missing but the last term is sub-

Tstituted in its place. The vector X , which is the solution of the

problem now becomes

T ViS A
i

JS JS

The problem becomes that of choosing a proper in order to increase the

objective function. In contrast to the profit function

z - I X c (65)
j=l J J

for the old set of f , the profit function for the new set of f . is
~J ~J

m X,a.-„ X 1

n = z ( X - -l_i£) c + -J_
i-1 ajs ajs

m X
.

m X .a.

I \± c± + -J- cs - £ -1
ls

1-1 ajs i-1
ajs
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m A . A .
m

I A. c. J ^— c !— lac
i= l * * o

js
a
js i=1 is i

z + —J— (c - Z a. c.)
JS 1=1

+ —1— (c - z )

<*js s s'

+ 8 (c - z )
s s

(66)

Thus the new value of the objective function increases by the quantity

6(cs - z
s ) if 6(c

g
- z

g
) > 0.

Now suppose that 8 has been chosen so that

8 - —*- > ,

ajs (67)

implying that a. >0 and also that

, A-
ais >0

. f°r all i ^ 3 (68)

Then the solution of the problem given by equation (64)

™ X . a. A

.

a
t = a - JLia, -j_)

a
js

a
js



101

is a feasible solution. Note that A._>0, therefore, the vector f • to be

removed in order to increase the objective function must be such that

A.

(1) 8 = -J- >
(69)

js

a. >
js

(2) A
i

" tj~ "is * ° • * * 1 (70)
js

-J— minum
"js

and the vector f to be added is chosen so that (c - z ) is the largest.

If all these conditions can be satisfied, a new feasible solution is

obtained at an extreme point, and the process may then be repeated with

successive improvements in the objective function. An iterative procedure

may then be used until the maximum value of the objective function is

obtained. Thus the procedure will terminate when values of all (c - z )

are either negative or zero.

In case all a^
s <0, the procedure should also be terminate even though

some of (cs - z
g ) are still positive. This is the case of unbounded

solution and no finite maximum exists. This case can be expressed as

follows in the consideration of equations (66) and (63) repeated below
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m
. A A

z, = E (A - 1 a. ) c. + .1 c
1

i-i i a. 1S x T~ s
js js

£ (A±
- 6ais ) c. + ec

i=l
X S

z + e( cs " 2s> .

and

» A. A.
E - ! (xt

- -L. ) f + _J_ fs
i-1 ajs ~ ajs

~

x (a ±
- eais ) t± + efs

i=l

Since a^s are negative and consequently all (A
i

- Sais ) are non-negative

and f^ can be removed and fs can be introduced with a resulting feasible

vector regardless of the value 8 as long as it is positive for 6 > 0.

Since some of (c
s

- zs ) > for in this case, it follows that z-, can be

made as large as possible by choosing 6 to be as large as possible and

therefore, the solution is unbounded and no finite maximum exists.

The method is best described by considering the so-called simplex

tableau below.
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-2 ~j .m is 5n

s

1
Is

• • .a
IN

A
1

c
l

.2s _2N
A
2 2

. J s .JN
A

.3

c

, Am cm

c
l

c
2

. • • c. .

J
• • cm • c

s
•

•°N
- -

z
l

z
2

z

.

J
zm z

s *» z -

cl- z
l

c
2

" z
2

c . -
J

Zj cm" z
m c

s - z
e

CN
' Z

N - -

Note that the values of (c - z ) corresponding to the vectors, f, f„,s s ~ 1 ~2

•••» ±m
i11 the basis, are all zeros. Also note that, since the value

of the objective function z is j. A.c. , it appears at the intersection
j-1 J J

of column Po and raw z .

Now we proceed to determine which vector should be removed and which

should be introduced into the basis by means of this simplex tableau.

(1) Compute all (c - z ). Choose s so that (c - z ) is the largest

positive number. This procedure fixes column s called the pivot column.

The f is to enter the new basis.

(2) Examine the column of f . Select those elements a. which are- H is

greater than zero. Using these elements and the corresponding A compute
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Xj X A.

a . Choose the smallest .^- , say ^jl_. This procedure fixes the jth
1S is js

row called the pivot row.

(3) Use the method for replacing vectors in the basis in section (6)

.

It can be implemented as follows:

(a) Divide the jth row by a. to produce 1 in the column of f= .
js -s

at the jth row.

(b) Obtain zeros in all other rows of the table under fs . For

the 1th row this step is done by multiplying the jth row by ai
-s and

a

.

js
subtracting the result element by element from the ith row.

(A) Compute (cs - zs ) for each column.

(5) If all (cs - zs ) _< 0, the vector a at this stage is optimal; if

not, go back to step (1) and continue to interate.

(6) If one or more (c
g

- z
g ) _> and corresponding to these s, s = k

for at least one of s with all a. < 0, then there exists an unbounded
is — '

solution and thus the optimal solution does not exist.

Note that this procedure passes from one extreme point at a boundary

of the admissible space to another until the objective function cannot be

improved further by this method of computation.

8. GENERAL LINEAR PROGRAMMING PROBLEM

In section 2, we only considered the problem of linear programming

with inequality constraints. In a more general case, the constraints

may involve equalities. The general linear programming problem can be

described as follows ilOl;
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"Given a set of m linear inequalities or equalities in n variables,

we wish to find non-negative values of these n variables which

will satisfy the constraints and maximize or minimize some linear

objective function of these n variables."

Mathematically, this statement means that we have m inequalities

or equations in n variables (m can be greater than, less than, or equal

to n) of the form:

a
il

X
l
+a

i2
X
2
+ ••• + a

ln
X
n

{±>
=

> ^ } b
l

x, + a_x„ + ... + a x {_>, =, _<} b
21 "1 ~22"2 '

•"
' "2n a '-' • -' u

2

(71)

a x + a x + ... + a x {>,=,<} b
ml 1 m2 2 mn n — — n

This may be written in more compact form as

a
il

x
l
+ a

i2
x
2
+ ••• + a

in
x
n {^> "' i> \ • < 72 >

i = 1, 2, . . .
, m ,

or in matrix notation,

Ax {>, =, <} b , (73)

where A is a matrix of coefficients of n variables in m constraints i.e.
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11 12 In

*21 d
22 • * •

a
2n

- aml am2 • • • Sm

(74)

x is a column vector of n variables, i.e.

1
*2

L*„

(75)

and b is also a column vector of to variables, i.e.

(76)

l_ t>m J
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It should be noted that for each constraint one and only one of the

signs _<, =, _>, holds but the sign may vary from one constraint to

another. We seek values of the variables x^ satisfying (74) and

X, >0 , j - 1, 2 n , (77)

so that a linear objective function z defined below, is maximized or

minimized

z = c
1
x
1
+ c^ + . . . + c

n
x
n

£ C-jXj (78)
J-l

or in matrix notation

T
z = c X

where

c =
(
c
l

c
2 , .... cn) .

We have thus formulated the general linear programming problem which,

in short, can be written as follows:

Tto max or min z = c x

subject to constraints (79)

Ax {_>, », _<} b, x 1 .
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Now we consider the transformation of the general linear programming

problem. As mentioned in Section 4, the problem of inequality constraints

with sign <_ may be transformed to equality constraints by introducing

slack variables. Specifically for the problem with inequality constraints

I a
±
.K. <_ b± , (80)

3-1

we may introduce slack variables

xn+: >

where

Xnj.-,- = b. - Z a. .x.

j=l J J

to change them to equality constraints given by

2 a
ij

x
-i

+ *n+i " b i • (81)
3-1 J

Now let us consider constraints with > sign,

I ax > b . (82)
j-1 1J J

Here we introduce new variables x^+ . such that

y-u+±
= Z aij xj

" bi •

j-1 3
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These types of variables are called surplus variables. With introduction

of the surplus variables inequalities are now changed to following

equalities,

.

Z

=1
a
ij

X
j
" *^i " b

i (83)

It is now obvious that we do not need any slack or surplus variables for

equality constraints.

The original linear programming which has been stated as

max z = ex

subject to,

Ax {_>, =, _<} b

x > 0,

(84)

is transformed into

max z = ex

subject to

Ax - b

(85)
x _> ,

Hence a column in A^ in equation (85) corresponding to one of such surplus
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variables is -ei because it has -1 as its coefficient as shown below,

a
ll

••• a
ln -1 ••• °

%1 amn -1
.

In this case putting variables x. equal to zero leads to

-Is = b (89)

where s is a vector of surplus variables given by

*n+l

*n+2

^n+K

we see that s is not a feasible solution because all elements in it are

negative. If we add, however, m more variables called artificial

variables xn+mfk , k = 1, 2, ..., m, then we have column e± in A„ which

is defined below, and which corresponds to one of such artificial

variables, because it has 1 as its coefficient.
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'n- • •
d m -1 . . . o 1 ...

ml ma
-1 •• 1

By letting both variables X>, J - 1, 2 n and surplus variables

Xn+ii i = 1, 2, ..., m, to be equal to zero, we have

Ir = b

where r is a vector of artificial variables x , k = 1 2 mn+m+k, ' •

Note that r is a basic feasible solution to Ajx = b, but not a feasible

solution to the original set of constraints A.x = b. Any feasible sol-

ution to A2x = b, which is also a feasible solution to the original set of

constraints AjX-b must have r=0, that is, all artificial variables must vanish.

In the simplex method, (z
g

- c
g

) determine which vector is to be

inserted into the new basic in each interaction. Thus far we have said

nothing about the prices to be associated with the artificial variables.
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What we must do is to assign prices to the artificial variables, which

are so unreasonable that the objective function can be improved as long

as any artificial variable remains in the basic feasible solution. If z

is to be maximized and if we assign an extremely large negative price to

each artificial variable, we would expect that z can be improved so long

as any artificial vector remains in the basis at a positive level.

Similarly, if z is to be minimized, a very large positive price should

be assigned to each artificial variable.

In case of equality constraints, we need to add neither slack

variables nor surplus variables, but we need to add artificial variables to

obtain an initial basic feasible solution.

Once we have an initial basic feasible solution, we may proceed to

find an optimal one by simplex method.

9- APPLICATION OF LINEAR PROGRAMMING TO CHEMICAL ENGINEERING

The design and operation of chemical engineering processes gives

rise to many optimization problems that can be solved by linear programming/

In recent years problems of scheduling petroleum refinery operations [8,

14, 15, 16, 17], production and inventory control in a chemical process

(15], chemical equilibrium [21j , have been solved by linear programming.

More specifically, linear programming has been used with excellent and

very spectacular results on such problems as:

(1) Most profitable manufacturing problem.

(2) Best inventory strategies.
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(3) Effect of changes in purchasing and selling price.

(4) Most profitable product mixture.

(5) Best location of plant.

(6) Best location of warehouses and distribution outlets.

(7) Lowest cost machine or manufacturing schedule.

Now, by means of several illustrative examples, we see how the

simplex method can be used in solving optimization problems of chemical

industry and chemical engineering which are amenable to the linear

programming solutions.

(Example 1)

In chemical industrial operations, attempts are often made to maximize

profits from available resources. Consider a chemical plant that has spare

capacity in three batch-processing units in which we wish to make three

possible products. Unit I is available for 22 hr./wk., Unit II for 14

hrs./wk., and Unit III for 14 hr/wk. Operating hours per ton of product

for each product in each unit are given in the following table:

Product A Product B Product C

Unit I 3 6 3

Unit II 1 2 3

Unit III 3 2

profit/ton, $ 1000 4000 5000

We are required to find a production schedule that gives the maximum

profit. This is an allocation-of- facility problem. Let
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be a production vector for products

,

1000

c = 4000

5000

the profit vector; and

22

14

14

the availability vector. Then the problem may be stated as follow.

Maximize the objective function,

f = 1000 k± + 4000 x2 + 5000 x3

subject to constraints

3x^ + 6x, + 3x, _< 22,

x-, 2x~ + 3x~ _<_ 14,
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3x + 2x„ < 14,

Let

and

x. s- 0, 1-1, 2, 3.
J
-

c - 1000, c
2

= 4000, c = 5000,

P
l

= P
2

=

Introducing slack variables x , x , and x , the constraints are trans-

formed into equality constraints. Furthermore, letting

K - A
2 2

X
4

= \ '
X
5

= S '

according to equation (60) , we have



U'6

and

c. =0, c, = 0, c =
4 5 6

The initial simplex tableau may then be written as

(I) p
l •?2 ~P 3 ~P 4 -P 5 h ~p o c.

3

p
4

3 6 3 1 22

h 1 2 (T) 1 14

?6 3 2 c 1 14

c
s

1000 4000 5000 — —

z
s

—

c -* z 1000 4000 ;5ooo;

Note that the feasible solution here is xT = |_0, 0, 0, 22, 14, 14J.

Note also that the quantities of (c - z ) corresponding to the vectors

in the basis, P., P , P are all zero as mentioned in section 7 and

those for the vectors not in the basis, we have (c - z ) = c , since
^

s s s

all z = r", °(. c. = 0. The largest positive value of (c - z ) corres-b
j
=ld s J ss

ponds to P., that is, s = 3. Now we can proceed to construct the simplex

tableau II according to the procedures described in section 7.

(1) Select the pivot column, in this case P_, which is to enter

the new basis

.

(2) Examine the column of _P Compare
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X A
, il_ , ^6_

which are respectively

22 , 14 , 14

3 3

Choose the smallest one, in this case

^5 _ 14

a
53

" 3

This procedure fixes the pivot row to be P which is to have the

basis.

(3) Replace P
5
by the method described in section 6, which leads

to tableau II.

(ID

2 ^J 1

1

3

2

3
1

3 2

1000 4000 5000

5000

3

10000

3
5000

2000

3

', 2000 !

i 3 .!

-1

1

3

1

5000

3

5000

3

14

3

14

70000

5000
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T 14
Now the feasible solution is x [X , X , X , X,, X , X ] = [ 0, 0, -r-,

8, 0, 14 ]. The largest positive value offc - z ) , is 2000/3 corres-

ponding to P., i.e. s = 2. Compute

x x ii XA
4 m 8

2
^3_ 3 _

A
6

m 14
a
42

" 4 "
' a

52
"

|
=

' a
62

=
2

=
'

X
4

Choose the smallest term which is = 2, and corresponding to P..
a
42 **

Replace P by P.. This procedure leads to Tableau III.

(III)
!i ?2 !a !a Is h !o

c
j

P, i 1 r - T 2 4000
_2 2 4 4

P
3

1 - i j ^ 5000

P
fi

2 0_
I I 1 10

c 1000 4000 5000 —
s

2000 4000 5000 1000 3000
Q

74000
s 6 2 3

1000 1000 3000
6 " 2

Since all (c - z ) are negative or zero, no further improvement

of the objective function can be made. The optimal feasible solution

T 10 3
is x - [ 0, 2, -r-, 0, j, 10] and the objective function,
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f = l.OOOx + 4,000x + 5,000x

+ 4,000x
2
+ 5,000x^y

74,000
3

= 24,333 -r- dollars/week

Therefore the optimal solution is

x1= 0, x
2
=2, x

3 =f

70,000Note that the objective functions in Tableau I, II, and III are 0,

74,000 . ,—^— respectively. The value increases step by step.

This problem is an original one worked out by the author.

(Example 2) [7]

In a chemical plant four raw materials A, B, C, D, are available

and five processes are available to produce four products, E, F, G, H

(Fig. 3). The raw materials are limited in supply and the processing

cost of each process is fixed but varies from process to process. The

selling price of the products is fixed. The data for the problem are

summarized below:
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Raw Materials Maximum Available Supply Cost Per Pound

(pounds per day) (dollars)

A 400 1.50

B 300 2.00

C 100 4.50

D 250 2.50

The data on the processes are as follows:

Process Pounds of Raw Material Pounds (and type) Selling Price of
Used of Product Product

(dollars per pound)

A B C D

3.00

3.75

5.00

5.00

Processes 4 and 5 differ only in processing cost. Process 4 has the

maximum capacity of 75 lbs. of product H per day. If more than 75 lbs.

of H are produced it must be produced in processes and processing costs

are given below.

1 2 1 3 (E)

2 - 1 3 (F)

3 3 1 2 6 (G)

4 2 7 3 3 15 (H)

5 2 7 3 3 15 (H)
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: Igw diagram of a chemical plant (7]
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Processing Cost*
Process (dollars per pound)

1 A + B + E 1.50 (a)

2 A + B * F 0.50 (A)

3 A + B •* E 1.50 (A)

E + A + D * G 1.00 (G)

4 1+B + I 0.50 (A)

F + B+C + D-H 2.00 (H)

5 A + B + F 0.50 (A)

F + B + C+D + H 2.20 (H)

*Based on the raw material or product indicated in the bracket

If we define x as the net profit from the jth process per day, the total

profit per day can be written as

f = x
1
+ x

2
+ x

3
+ x

4
+ x

5 (91)

The restrictions imposed on the processes because of the limitation of

the raw material leads to the following formulation of inequality con-

trains.

Let A£> B C , and D. be the amounts of the raw material A, B, C,

and D used in process i. Then we can write,

A + A, + A, + A. + A. < 400
1 I 3 4 5 —
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B
l
+ E

2
+ B

3
+ E

4
+ B

5 - 30 °
<92 )

c, + c
2
+ C, + C, + C. < 100

D
x
+ D

2
+ D

3
+ D

4
+ D

5
<_ 250

where

H. < 75
4 —

C
l " C

2
= S " °- D

l " D
2 " °-

Let E , F , G., H , be the amount of product E, F, G, H, in the process

i. The net profit of process 1, x , equal to the selling price of

product E. subtracts the raw material cost and processing cost of the

reactant A and B.

x
x

= 3 E, - 1.5 A - 2B - 1.5A

= 3 ( | A
x

) - 1.5 A
±

- 2 ( | &
±

) - 1.5 A
x

(93)

0.5 A

-

For the same reason,



"
2

= 2 3
F
2

- 0.5 A
2

- 2 B
2

- 1.5 A
2
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In 3
(2 j) -A - 0.5 A - 1.5 A, - 2(A) A2' 2 (94)

0.5 A„

X, = 3.75 G - 1.0 G, - 2

= 3.75 G3 - 1.5 A3 - 2.0

- 2.5 D
3

- 1.5 A3 -
1.5(f)

A
3

B3 - 2.5 D3 - 1.5 A - 1.0 G

= 3.75(2) A3 - 1.5 A3 -
I A3 - 2.5(| A^ - 1.5 A3 - 0.2 A3

" 3
A
3

(95)

>2B„

x = 5.0 H. - 1.5 A, - 2.0 \ " 4 - 5 C
4

~ 2 - S D
4

" °-5 A
4

- 2.0 H
4

,15ku
2

,7Ai /3Ai5(-^) - 1.5 A
4

- 2.0(^) - 4.5(^4) - 2.5(^) - 0.5 A,
, 2At,

2

2. (i^i)

(96)

3 A,
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6

7
B
4

2 C
4

D
4

X
5

= 5, ° H
5

" l - 5 A
5

" 2 -° B
5

" 4>5 C
S

" 2 - 5 D
5

_ °- 5 A
5

" 2 - 2 H
5

5(ift) - 1.5 A, - 20(^) - 4.5(^4) - 2.5(^4) - 0.5

K
2

;
(97)

2
A
5

f»5

= C
5

D
5

Since process 4 has maximum capacity of 75 lbs. of H per day, we may

write the constraint of x, as
4

X
4

= 3 A
4

3<f|*> (98)
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2H/

5

<_| (75) = 30

By substituting equations (93) through (98) into equation (92), the

inequality constraints become

with

2X
1
+ 2X

2
+ I x

3
+ I x

4
+ | x

5 < 40 °

X
l
+ X

2
+ 1 x

3
+ 1 X

4
+ I x

5 i 30°

2
x
4
+ x

5 i 10 ° (99)

X
3
+

2
x
4
+ x

5 i 250

x
4 <. 3

x . > 0. j = 1, 2, 3, 4, 5.

Introducing slack variables x
fi

, x
7> x,., Xj, x

1Q , we may transform the

preceeding inequality constraints into equality constraints. The prob-

lem may now be stated as follows



with

Note that

x
j > ° . i - 1, 2 10

c
x

= c
2

= c
3

= c
4

= c
5

- 1

c
6

= c
7
= c

8
= c

9
= c

10
=

° »
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Maximize

f = x
x
+ x

2
+ x

3
+ x

4
+ x

5
(100)

subject to constraints

2x + 2x + ix + Jac + Ix + x - 400
1 2 23 3455 6

x
l
+ *2 +

I
x
3
+
j
x
4
+
I
x
5
+ x

7 " 30°

JX4 + x5 + xg = 100

x3 + -ix
4 + x5 + xg = 250 (101)

x4 + x10 " 30

V

and



12a

P. -

10

The initial simplex tableau may then be written as,
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(I) PPPPPPppppp
-1 -2 -3 ~4 -5 ~6 -7 -8 -9 -10 -0

p
-6 © 2 3

2

1

3

2

3
1 400

b i 1
1

2

7

6

7

3
1 300

Is
I

2
1 1 .0 100

h 1 1

2
1 1 250

Zio 1 1 30

c
s

1 1 1 1 1 — -

z
s -

c - ;*.m 1 1 1 1 0' _

The largest (c. - z
g

) is 1 in column 1 and the smallest X ± /a±1 is

200 row 6. So we replace P
fi

by P x and obtain Tableau II given below

(II) h h h U ?5 ?6 h ?8 ?9 ?lfl ?0
C

i

!i 1 1 3

4

1

6

i

3

1

2
200 1

?7 •

1

4
1 2 .

1
"

2
1 100

u 1

1
1 100

*9 1 1

2
1 1 250

ho 1 30

c
s

1 1 1 i 1 — -

z
s

1 1 3

4

i

6

1

3

1

2
200 -

c - z
.

° 1 TT1 2 1 - 200 _



130

The largest (c
s

- Zg ) is | in column 4 and the smallest Xj/a^ in row

10. By replacing ?
1Q

by P^ we obtain Tableau III given below.

(Ill) P P P p p p p p p p p-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -0

!i
1 1

3

4

1

3

1

2

1
"

6
195 1

h
1

"
4

0" . 1

2
1 70

!« 1 1 o
•. 1

2
85

?9
1 1 1

. 1
2

235

!^
1 1 30 1

c
s

1 1 . 1 1 1 - -

zs 1 1
3

4
1

1

3

1

2

5

6
225 -

c
s - z

i
, 6 1

4 HI-
1

2
-
. 5

6
- 225 -

The largest (c
g

- z
g

) is 1 in column 5 and the smallest \ t/a±i is 35

in rows 7. By replacing P
?
and P we obtain Tableau IV given below.
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(IV)
!i h h U f5 U h !a ?9 ho ?o

c
j

1 1 I £ -I =5|0 ±

h -| 1
-i i 35 1

h ° ° £ i -| 1 -

£

50

?9 ° ° Q i -i 1 -
| 200

?4 0001000001 30 1

c
s 1111100000 --

o
f 1 x

i
1 o | 2« -

^0 o -H o o-| -If

The largest (c - z ) is i in column 3, and the smallest X. /a , is -i£2°-
" J l i3 9

in row 9. By replacing I>

9
by I>

3
we obtain Tableau V given below

cv)
!i !a !3 U !s ! 6 ! 7 !8 ! 9 !io !o

c
a

- 1 27 54
u

27 27 27

P, 1--?- ^ o i - -L 515 .
-5 9 9

u
9 18 9

1

P
R 00000 |-il_i.i 250

-8 99999
P, 00100 1 _.A i - A I§°° 1-3 9 9 9 9 9

?4 00010000 1 30 1

c
s

11111000 --
z llliilllin 8 37 8305
s 27 54

U
27 54 ~27~ "

c
s
-z

s
0-ii-iio-— -21- 2IP1

27 54 27 54 27
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Since all (c
s

- z
g

) are now negative or zero, no further improvement of

the objective function can be made. The optimal solution is x =
[

0, g~ ' 3"« ~g~ ,0,0, —r—
, 0, ] and the corresponding value of

the objective function is

f = x + x, + x, + x. + x,12 3 4 5

27 9
JU

9

8305
27

307
|f

.

Therefore, the maximum attainable profit under the conditions of the

problem is 307 -sm dollars per day.

The original problem was solved by French and Acrivos [7] by using

the simplex method. The author formulated the problem in a slightly

different way that led to different simplex tableaus but eventually the

same result was obtained.

(Example 3) [3, 16]

Four kinds of crude oil are available for purchase by an oil

company: 100,000 barrels per week each of crudes 1, 2, and 3, and

200,000 barrels per week of crude 4. Let x be the amount of crude 1

purchased (and processed), expressed in thousands of barrels per week.
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Then the maximum availability of 100,000 bbls/wk of crude 1 implies that

x
! 1 10 °- (103)

Similarly we can describe the constraints on crudes 2 and 3 by the

inequalities:

x
2 £ 10° (104)

and

x
3

< 10° (105)

where x
2

, x are defined in the same way as x .

Crude 4 requires slightly different handling because it can be

processed two ways. Let x
4
be the amount of crude 4 processed to make

heating oil, and let x. be the amount processed mainly to make lubri-

cating oil. The constraint on crude 4 may be written as follow:

x
4 + x

5 £ 200 (106)

Four products - gasoline, heating oil, lubricating oil and jet fuel

- are made from these crudes as shown by the block diagram of Fig. 4,

Table 7.1 gives the amount of each product which can be sold. The bottom

row of Table 7.1 shows the profit gained per 1000 barrels of crude

processed. These numbers are obtained by adding up the market value of

the products coming from 1000 barrels of the crude in question and then

deducting the costs of production, sales, and the crude itself. The
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TABLE 7.1 — Crudes Used to Satisfy Product Needs [3]

Gasoline

Heating oil

Lube oil

Jet fuel

Loss

Total

crude identity

FUEL FUEL FUEL FUEL LUBE

Product Yield, Vol. %

0.6 0.5 0.3

0.2 0.2 0.3

0.1 0.2 0.3

0.1 0.1 0.1

1.0 1.0 1.0

Crude available
bbl/wk 100000 100000 10000

Profit, $/M bbl
crude

0.4

0.3

0.2

0.1

0.4

0.1

0.2

0.2

0.1

1.0 1.0

100 200 70

-200000-

250

Product on

order,

bbl/wk

170,000

85,000

20,000

85,000
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yields are fixed by process technology and remain constant throughout

the week. On the other hand, other data - availabilities, orders, and

profits - are only estimates and may change between the receipt of the

computer solution and the actual crude run.

The gasoline yields in the top row of Table 7.1 can be used to

show that the weekly gasoline production (in thousands of barrels) in

terms of the crude consumption is

0.6x, + 0.5x. + 0.3x, + 0.4x. + 0.4x,.12 3 4 5

It will be assumed that we are permitted to make less product than

is ordered, but no more. Thus we may write the following constraint on

gasoline production.

0.6x
1
+ 0.5x

2
+ 0.3x. + 0.4x, + 0.4x <_ 170 (107)

Similarly we obtain production constraints on heating oil,

0.2x
1
+ 0.2x

2
+ 0.3x, + 0.3x, + O.lx £ 85, (108)

lube oil,

0.2x
5

_< 20 (109)

and jet fuel,

0.^ + 0.2x + 0.3x + 0.2x, + 0.2x <_ 85. (110)
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The bottom line of Table 7.1 enables us to calculate the profit,

f , in dollars per week as

f = 100x
n
+ 200x„ + 70x, + 150x. + 250x c .12 3 4 5

The optimal running plan would be the set of feasible x's which maximize

this profit.

By introducing slack variable x,, x
y

x into equations (103),

(104), — , (110) respectively. All the inequality constraints may be

transformed into equality constraints and this problem may be stated as

follow:

f = 100Xl + 200x
2
+ 70x

3
+ 150x

4
+ 250x (111)

subject to constraints

x, + x, - 100
i o

x
2
+ x = 100

x, + x- = 100

x
4
+ x

5
+ x

9
= 200

(u2)

0.6X, + 0.5x„ + 0.3x. + 0.4x, + 0.4x c + x, . = 170
1 2 3 4 5 10

0.2x, + 0.2x, + 0.3x, + 0.3x. + O.lx, + x, , - 85
1 2 3 4 5 11

0.2x + x 20

0.1x
n
+ 0.2x„ + 0.3x, + 0.2x. + 0.2x, + x,, - 85

1 2 3 4 5 13



x. > 0, for i " 1, 2, .... 13.

The initial simplex tableau may then be written as

(I)
!i li h !* !s !e !? !s ! 9 !» !u ?u !i3 !o

c
j

!e
1 1 100

?7
1 1 100

p
s

1 1 100

!9
1 1 1 200

!io
0.6 0.5 0.3 0.4 0.5 170

p
ll

0.2 0.2 0.3 0.3 0.1 1 85

!l2
0.2 1 20

!l3
0.1 0.2 0.3 0.4 0.2 1 85

c
s

100 200 70 150 250 - -

z
s

-

z -100--200 -70--150--250 _ _

Starting with the initial simplex tableau, we may solve the problem

by the simplex method. The problem was originally solved by Beighter

and Wilde. The author solved it by using a 1410 computer. The optimal

solution is found to be

x
±

37.5, x
2

= 100, x
3

= 58, 33 x
4

= 100 x
5

= 100 .
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and the maximum profit is

f - 100x
n
+ 200x„ + 70x, + 150x, + 250x c1 I 3 4 5

= 100 x 37.5 + 200 x 100 + 70 x 58.33 + 150 x 100 + 250 x 100

= 67,833.33 dollars per week.

10. CONCLUDING REMARK

Linear programming is one of the most powerful and most frequently

used optimization methods; Problems with 25,000 variables can now be

solved on the computer by using the simplex method [12, 13]. However

the linear programming algorithms are only valid for linear problems,

and the majority of process design problems are more accurately repre-

sented by nonlinear design relations (1)

.

A compromise must be reached between the use of a powerful linear

optimization method on an approximate linear model of a chemical process,

and the use of the less efficient nonlinear programming methods on a

more accurate model of the process. In many cases, we are forced to

abandon the linear programming, since the important features the

engineer wishes to incorporate into his optimum design are inherently

nonlinear. To linearize the equations describing most chemical processes

is to do irreparable damage to reality (13)

.
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ABSTRACT

In part one, an extensive review of literature concerning the

effect of mixing on the reactor performance is presented. Two aspects

of mixing, micromixing and macromixing are fully discussed. A detailed

example of the effect of mixing under extreme conditions of the conver-

sion is given for an isothermal reactor. Various models of incomplete

mixing are also reviewed.

In part two, development of the simplex method of linear pro-

gramming is presented. Typical examples are given to illustrate the

application of linear programming in chemical industries and processes.


