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Abstract 

Efficient and selective catalysis lies at the heart of many chemical reactions, enabling the 

synthesis of chemicals and fuels with enormous societal and technological impact. A 

fundamental understanding of intrinsic catalyst properties for effective manipulation of the 

reactivity and selectivity of industrial catalysts is essential to select proper catalysts to catalyze 

the reactions we want and hinder the reactions we do not want. 

 The progress in density functional theory (DFT) makes it possible to describe interfacial 

catalytic reactions and predict catalytic activities from one catalyst to another. In this study, 

water-gas shift reaction (WGSR) was used as a model reaction. First-principles based micro-

kinetic modeling has been performed to deeply understand interactions between competing 

reaction mechanisms, and the relationship with various factors such as catalyst materials, 

structures, promoters, and interactions between intermediates (e.g., CO self-interaction) that 

govern the observed catalytic behaviors.  

Overall, in this thesis, all relevant reaction mechanisms in the model reaction on well-

defined active sites were developed with first-principles calculations. With the established 

mechanism, the promotional effect of K adatom on Ni(111) on WGSR compared to the 

competing methanation was understood. Moreover, the WGSR kinetic trend, with the hydrogen 

production rate decreasing with increasing Ni particle diameters (due to the decreasing fractions 

of low-coordinated surface Ni site), was reproduced conveniently from micro-kinetic modeling 

techniques. Empirical correlations such as Brønsted-Evans-Polanyi (BEP) relationship for O-H, 

and C-O bond formation or cleavage on Ni(111), Ni(100), and Ni(211) were incorporated to 

accelerate computational analysis and generate trends on other transition metals (e.g., Cu, Au, 

Pt). To improve the numerical quality of micro-kinetic modeling, later interactions of main 



  

surface reaction intermediates were proven to be critical and incorporated successfully into the 

kinetic models. Finally, evidence of support playing a role in the enhancement of catalyst activity 

and the impact on future modeling will be discussed. 

DFT will be a powerful tool for understanding and even predicting catalyst performance 

and is shaping our approach to catalysis research. Such molecular-level information obtained 

from computational methods will undoubtedly guide the design of new catalyst materials with 

high precision.  
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Efficient and selective catalysis lies at the heart of many chemical reactions, enabling the 

synthesis of chemicals and fuels with enormous societal and technological impact. A 

fundamental understanding of intrinsic catalyst properties for effective manipulation of the 

reactivity and selectivity of industrial catalysts is essential to select proper catalysts to catalyze 

the reactions we want and hinder the reactions we do not want. 

 The progress in density functional theory (DFT) makes it possible to describe interfacial 

catalytic reactions and predict catalytic activities from one catalyst to another. In this study, 

water-gas shift reaction (WGSR) was used as a model reaction. First-principles based micro-

kinetic modeling has been performed to deeply understand interactions between competing 

reaction mechanisms, and the relationship with various factors such as catalyst materials, 

structures, promoters, and interactions between intermediates (e.g., CO self-interaction) that 

govern the observed catalytic behaviors.  

Overall, in this thesis, all relevant reaction mechanisms in the model reaction on well-

defined active sites were developed with first-principles calculations. With the established 

mechanism, the promotional effect of K adatom on Ni(111) on WGSR compared to the 

competing methanation was understood. Moreover, the WGSR kinetic trend, with the hydrogen 

production rate decreasing with increasing Ni particle diameters (due to the decreasing fractions 

of low-coordinated surface Ni site), was reproduced conveniently from micro-kinetic modeling 

techniques. Empirical correlations such as Brønsted-Evans-Polanyi (BEP) relationship for O-H, 

and C-O bond formation or cleavage on Ni(111), Ni(100), and Ni(211) were incorporated to 

accelerate computational analysis and generate trends on other transition metals (e.g., Cu, Au, 

Pt). To improve the numerical quality of micro-kinetic modeling, later interactions of main 



  

surface reaction intermediates were proven to be critical and incorporated successfully into the 

kinetic models. Finally, evidence of support playing a role in the enhancement of catalyst activity 

and the impact on future modeling will be discussed. 

DFT will be a powerful tool for understanding and even predicting catalyst performance 

and is shaping our approach to catalysis research. Such molecular-level information obtained 

from computational methods will undoubtedly guide the design of new catalyst materials with 

high precision.  
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Chapter 1 - Introduction 

Fuels and chemicals (e.g., hydrogen, methanol, and alkyl benzenes) that we depend on in 

every aspect of our lives are often produced through catalytic reactions, such as 

(de)hydrogenation,1,2 hydrogenolysis,3 hydrodeoxygenation (HDO),4 and dehydroxylation5 

involving different feedstocks (e.g., hydrocarbons,6 cellulose,7 glycerol,5 furfural8). Efficient and 

selective catalysts that accelerate and enhance chemical reactions are at the heart of these 

processes. In order to improve catalyst reactivity and selectivity, the factors that determine 

catalyst reactivity and selectivity should be developed to favor the reactions we want and hinder 

the reaction we do not want.  

 

 1.1 Model Reaction of This Thesis 

Hydrogen is an important clean fuel9-11 with high energy capacity and the largest amount 

of energy per mass unit compare to any other known fuels (121 MJ/kg)12. In addition, hydrogen 

is also widely used for fuel upgrading13, ammonia synthesis14, and fine chemicals production15. 

Steam reforming of hydrocarbons (e.g., CH4 as shown by Equation (1)) is a major industrial 

route to obtain hydrogen source in the form of syngas.16-18 Alternative routes that utilize 

biomass-derived polyols (e.g., glycerol as shown in Equation (2)) have been successfully 

employed to demonstrate the feasibility of obtaining biorenewable hydrogen.6,19,20 Water-gas 

shift reaction (WGSR) (Equation (3)) is ubiquitous in reforming reactions, and consumes CO to 

form CO2 and boost hydrogen production6,21. To a great extent, WGSR provides the benefits of 

boosting hydrogen productivity and mitigating catalyst poisoning by removing the strong-

binding CO molecules from active sites.22,23 WGSR contains different reaction steps such as 

water activation and CO oxidation, which could also refer to other reactions that contain same 
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reaction steps (e.g., hydrogen evolution reaction). Therefore, WGSR is a main model reaction in 

this thesis driven by the need for clean energy to sustain our societal needs.  

 

𝐶𝐻4(𝑔) + 𝐻2𝑂(𝑔) ⇌ CO(g) + 3𝐻2(𝑔), ∆𝐻°298𝐾 = 206.2𝑘𝐽/𝑚𝑜𝑙 (1) 

𝐶3𝐻8𝑂3(𝑙) ⇌ 3CO(g) + 4𝐻2(𝑔), ∆𝐻°298𝐾 = 350𝑘𝐽/𝑚𝑜𝑙 (2) 

𝐻2𝑂(𝑙) + CO(g) ⇌ 𝐶𝑂2 + 𝐻2(𝑔), ∆𝐻°298𝐾 = −41.1𝑘𝐽/𝑚𝑜𝑙 (3) 

 

Detailed insights into how catalyst materials (e.g., pure transition metals, oxide supported 

transition metals), surface structures (e.g., (111), (100), and (211) surfaces), catalyst particle 

sizes, promoters (e.g., Ni(111) with K-adatom), process conditions (e.g., temperature, pressure, 

and feed gas composition), and adsorbate-adsorbate interaction (e.g., CO self-interaction) control 

WGSR catalyst reactivity and selectivity is studied. In addition, first-principles based micro-

kinetic modeling framework is established to analyze, predict, and guide new catalyst materials 

design.  

 

 1.2 Computational Catalysts Design 

Extraordinary progress has been made in first-principles based computational methods 

and presents an unprecedented opportunity for catalyst design.24,25 Figure 1.1 shows a closed-

loop catalyst design underlined in this thesis. Overall, to describe a catalyst realistically, a 

hierarchical approach is able to simplify a complex problem so that various key aspects can be 

understood. The reaction mechanism on this complex catalyst surface should be determined and 

catalyst reactivity and selectivity are predicted to guide experimental studies.  
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Figure 1.1. Schematic loop describing proposed computational catalyst design strategy based on 

first-principles modeling. 

 

In particular, the development of scaling relationships accelerates the elucidation of 

adsorption trends across extensive catalytic surfaces.26 The scaling relationship, coupled with 

Brønsted-Evans-Polanyi relationships, which predict transition state energies of elementary 

reactions from the thermodynamics of those reactions,27-31 can be further applied to describe 

complex potential and free energy surfaces on catalyst as a function of simple parameters, known 

as descriptor.32 Then kinetics can be calculated to predict catalytic activity trends, conveniently 

represented as volcano-type relationships between rate and descriptors.24,33 A detailed 
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description of the modeling techniques for surface chemistry will be presented in Chapter 2 

section 2.2.  

However, standard (density functional theory) DFT calculations are normally performed 

at low surface coverage, which is not the case on realistic catalytic surfaces, which are usually 

crowded with different adsorbates, interacting with each other. Lateral interactions, having 

significant influence on species adsorption and desorption energies and transition state stabilities, 

34,35 are being recognized to be essential for computational catalytic activity prediction.34,36,37 To 

improve the numerical quality of micro-kinetic modeling, lateral interactions of main surface 

reaction intermediates need to incorporate into the micro-kinetic models. 

 

 1.3 Factors Determining Catalyst Performance 

The selection of proper catalyst requires the knowledge of how different catalyst 

parameters (e.g., materials,38 surface structures,39,40 nanoparticle size,41 promoters42, 

supports43,44) control catalyst ability to catalyze different reactions. Here, the role of different 

factors determining catalyst performance will be reviewed from both theoretical and 

experimental studies. 

 

 1.3.1 Role of Catalyst Surface Structure  

It is well known that there are strong connections between catalyst structure and catalyst 

reactivity and selectivity. Atoms at different sites (e.g., face, edge, and corner site) have different 

nearest neighbors, and can have different catalytic properties.45,46 Molecular level understanding 

of surface chemical processes helps the establishment of correlations between surface structure 

and chemical properties of technological importance.47 Catalyst structure–activity correlations 
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can be determined experimentally through catalytic activity measurements of the isolated crystal 

surfaces at high pressures.47 Early examples are the studies of ammonia synthesis over various 

Fe crystal facets and showed that certain facets with specific atomic arrangement have 

significantly higher catalytic activity than other surfaces. 39 

Developments of theoretical techniques, especially the DFT-based computational 

methods, are becoming increasingly important to understand the impact of catalyst surface 

structures on catalyst reactivity.34,40,48,49 For instance, Honkala et al.40 studied the ammonia 

synthesis over magnesium aluminum spinel supported ruthenium catalyst and found that stepped 

Ru surfaces are much more reactive than the close-packed (001) surface for N2 dissociation step, 

the rate-limiting step. In addition, the calculated rate of ammonia synthesis from DFT method 

was within a factor of 3 to 20 of the experimental data, which shows that DFT is sufficiently 

accurate to predict and design practical catalytic materials.40 Yang et al.34 proposed that Ru(211) 

is ~6 orders of magnitude more active than Rh(111) surface for syn-gas conversion to ethanol 

and other C2+ oxygenates based on DFT calculation, but highly selective toward methane, while 

the Rh(111) surface is selective toward acetaldehyde. Yang et al. 50 employed DFT to study the 

surface structure effect on the activity of Pd based catalysts for acetylene hydrogenation to 

ethylene. They proposed that the activities of different Pd surface sites for acetylene 

hydrogenation follows the order of Pd(211) > Pd(111) ≈ Pd(211)-defect >> Pd(100).50 

 

 1.3.2 Role of Catalyst Particle Size  

In close relation to catalyst surface structures, catalyst activity is expected to be sensitive 

to its sizes, 51-56 which can be reflected by one of the three factors: (i) variations of adsorption 

strength of reactants; (ii) change in the structure or surface stoichiometry of the adsorbed 
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intermediates, and (iii) difference in the active area during steady-state conditions by reason of 

the variable formation of unreactive residues of the reactant.41 Factors (i) and (ii) are also related 

to the surface structure effect on catalyst performance as described in section 1.3.1.  

Behaviors of a catalyst can be altered through changing the catalyst particle size.41,57-59  

For instance, Haruta57 observed that gold exhibits surprising high activities and/or selectivities in 

many important reactions (e.g., the combustion of CO and saturated hydrocarbons, the partial 

oxidation of hydrocarbon) with diameters smaller than 5 nm on TiO2. Bond 41 summarized the 

particle size effect to different reactions and proposed that rates of oxidation reactions of 

propane, ethylene, and CO generally decrease with decreasing average particle size due to 

stronger oxygen binding strength on smaller particles; whereas rates of alkane (e.g., ethane, 

propane, and n-pentane) hydrogenolysis on Ni, Pt, and Pd based catalysts increase with 

decreasing average particle sizes.  

DFT could be a useful method to study particle size effect, which can generate different 

sizes particles easily, such as through Wulff constructions60,61. For example, Karim et al.62 

studied ammonia synthesis and decomposition on Ru through DFT and found that the maximum 

TOF occur at catalyst size at about 7 nm. Nørskov et al. 63,64 demonstrated that nanoparticle size 

can affect electrocatalytic activity with the catalytic rate enhanced sharply on Au particles while 

decreased on Pt particles with increasing particle size based on DFT calculations. Tritsaris et al. 

55 reproduced the experimentally observed trends for the oxygen reduction reaction on Pt in both 

the specific and mass activities for particle sizes in range of 2 to 30 nm from DFT calculations 

and observed a maximum mass activity for the oxygen reduction reaction on Pt for particles of a 

diameter between 2 and 4 nm. 



7 

 

DFT can be employed to probe catalyst reactivities by calculating bonding strengths of 

key reaction intermediates on particles of various sizes. For instance, Yudanov et al. 56 found a 

linear correlation between the average bond length and 𝑛−1/3~𝑅𝑝
−1where 𝑅𝑝designates the radius 

of the nanoparticles and n designates the number of atoms for the nanoparticle range from 6 to 

260 and established a relationship between the adsorption energy and the size n of the Pd 

nanoparticle as shown in Equation (4): 

 

𝐸𝑎𝑑𝑠 = 𝐸0 − 𝜀𝜏𝑛−1/3 (4) 

 

where the slope is 𝜀𝜏=74.9 kJ/mol for CO adsorption on Pd nanoparticles. 

 

 1.3.3 Role of Promoter  

The promoter is an additive that can improve the activity of catalyst by interacting and 

modulating electronic or crystal structures with the main active components of catalysts.65,66 

Numerous studies have shown the effect of promoters on catalyst activities and selectivities on 

various systems.67-72 Typical promoters include metals (or metal ions) 73-77 and metal 

oxides76,78,79. For example, different kinds of promoters (e.g., noble metals and alkali promoters) 

have been used in Fischer-Tropsch (FT) synthesis to improve catalytic performance.42,67,80-83 

Gaube et al. 42 investigated the effects of alkali promoters (Li, Na, K, Cs) in FT iron and cobalt 

catalyst, and observed an increased 1-alkene selectivity, a slightly increased reaction rate, an 

increased growth probability of hydrocarbon chains and also an increased resistance against 

oxidation of iron by the reaction product water with introducing promoters. Tsubaki et al. 82 

investigated the effects of various noble metal promoters (e.g., Ru, Pt, and Pd) loaded on 10 wt% 
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Co/SiO2 catalyst, and proposed that CO hydrogenation rate followed the order of Ru-Co/SiO2 > 

Pd-Co/SiO2 > Pt-Co/SiO2 > Co/SiO2. Morales et al. 83 studied the effect of manganese oxide 

(MgO) promoter on Co/TiO2 FT catalysts and revealed an increase of C5+ selectivity and olefinic 

products with increasing MgO loading on Co/TiO2 catalysts. 

DFT-based computational modeling is again a useful tool to study the promoter effect of 

catalysts. Through detailed mechanistic analysis, the influence of promoter on the 

thermodynamics and kinetics of each elementary step can be understood. The modeling provides 

valuable molecular-level information of promoter effect. For instance, Mortensen et al.84 

observed the promotional effect of alkali adsorbate on the dissociation of N2 and thus enhancing 

the ammonia synthesis on Ru catalyst surface from DFT calculations. In addition, the origin of 

this promotion effect is predominantly a direct electrostatic attraction between the adsorbed 

alkali atoms and the N2 molecule.84 Moses et al. 85 studied the Co promoter effect on MoS2 for 

hydrodesulfurization of thiophene and found the Co decreases the barrier of hydrogenation 

reactions and active site regeneration but increase the barrier of C-S scission reactions based on 

DFT results. 

 

 1.3.4 Role of Supports 

Immobilization of noble metal catalysts on a support play a key role in defining catalytic 

activity and selectivity through either a direct participation of the support86,87 or indirect roles via 

affecting the size and shape of the metal nanoparticles,88 charge transfer from or to the metal 

nanoparticles,89,90 metal support interaction,91 or stabilizing ionic metal species92.  

Common supports of heterogeneous catalysts can be metal oxides (e.g., TiO2,
43,93 

CeO2,
94,95 Al2O3,

93 MgO96), zeolites,97,98 carbon nanofibers,99 active carbon,96 metal carbide (e.g., 
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SiC100). For metal oxide supports, there exist two different kinds of supports: (1) the non-

reducible supports, such as Al2O3,
23,101 MgO,102,103 and (2) the reducible supports that can 

transfer its lattice oxygen with forming oxygen vacancy (Ov), such as CeO2,
104-107 TiO2,

87,108-110 

ZrO2 
103. 

The catalyst activities can strongly depend on the type of the support material.57,111,112 For 

example, Bui et al. 111compared the zirconia and titania support effect associated with CoMoS 

catalysts in guaiacol hydrodeoxygenation (HDO) reaction and found that these two different 

supports give very different selectivity of conversion of guaiacol into deoxygenated 

hydrocarbons which may come from the different reaction scheme on the catalysts.  

In most cases, the role of supports cannot be explained by simply the summation of 

contribution of metals and supports individually. The formation of new active sites at 

metal/support interface is one of the reasons believed to be responsible for catalyst 

reactivity.102,113,114 Fu et al.115 studied WGSR over Au/CeO2 and Pt/CeO2 catalysts, and they 

proposed that metal nanoparticles do not participate in the WGSR over Au/CeO2 and Pt/CeO2 

catalysts, but the nonmetallic Au and Pt species strongly associated with surface cerium-oxygen 

groups do. Zhao et al.102 found that water activation barrier becomes essentially zero on Au/MgO 

interface compares to ~2 eV on clean Au(111) surface. Zhang et al.114 revealed that the electron 

transfer at the Ru/TiO2 interface via the Ru-O bond reduces the activation barrier of CO 

oxidation over Run/TiO2 catalyst.  

The reducibility 86,116 and the oxygen storage capacity116 of the support materials can 

govern their ability to enhance catalytic performance.46 For example, the transferability of 

support lattice oxygen (e.g., TiO2,
117 CeO2,

118 FeOx
119) to the Pt catalysts is a prerequisite for an 

efficient CO oxidation over supported Pt catalysts.  
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 1.4 Organization of This Thesis 

This thesis contains seven chapters. Chapter 1 introduces the background and scope of this 

thesis. Chapter 2 provides introductions of theory and computational methods used for the study. 

Chapter 3 describes the reaction mechanism of WGSR on Ni based catalyst. Chapter 4 

investigates the promoter effect to WGSR over Ni(111) surface and O* removal reaction over 

Mo2C catalyst. Chapter 5 contains catalyst surface structure, nanoparticle size, and process 

condition effect for hydrogen production via WGSR. Chapter 6 investigates the impact of 

adsorbate-adsorbate interactions on catalyst performance predictions. Chapter 7 presents the 

support effect on WGSR and CO oxidation catalytic activities.  

Chapters 3, 4, 5, 6, and 7 contain information from published papers with some 

rearrangements. Each chapter is both self-contained and is a piece of the larger story about 

catalyst design for fuels and chemicals production. 
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Chapter 2 - Computational Methods and Theory 

 2.1 Density Functional Theory (DFT) 

DFT is a variational approach to compute the electronic structure of many-body systems, 

such as atoms, molecules, and solids. DFT calculations produce accurate ground state molecular 

structures and total energies at a rather efficient computational speed given modern day parallel 

computing hardware. Here, the DFT fundamentals within the Kohn-Sham framework, which has 

been employed for this thesis work, will be summarized. 

 

 2.1.1 DFT based on Kohn-Sham Formulation 

The fundamental rationale of first-principles (i.e. ab initio) methods is to treat interacting, 

inhomogeneous, N-body system, as in molecules, solids, and surface, without the inclusion of 

empirical data or parameters, where the wave function, 𝜓(𝑟1, … , 𝑟𝑁), can be approximated by the 

product of N single-particle wave functions, Ψ𝑖(𝑟𝑖), as expressed in Equation (5): 

 

𝜓(𝑟1, … , 𝑟𝑁) = Ψ1(𝑟1)…Ψ𝑁(𝑟𝑁) (5) 

 

  Here, the focus is DFT method developed within the Kohn and Sham’s fornulation1, in 

which the single particle 𝑖 Schrödinger equation can be written in Equation (6): 

 

[−
ℏ2

2𝑚
∇𝑖

2 + 𝑣𝑒𝑓𝑓(𝑟)]Ψ𝑖(𝑟) = 𝜀𝑖Ψ𝑖(𝑟) 
(6) 

𝑣𝑒𝑓𝑓(𝑟) = 𝑣𝑒𝑛(𝑟) + ∫
𝜌(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟′ + 𝑉𝑥𝑐 [𝜌(𝑟)] (7) 
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𝜌(𝑟) = ∑|𝜑𝑖(𝑟𝑖)|
2

𝑖

 (8) 

 

where −
ℏ2

2𝑚
𝛻2 in Equation (6) is the electron kinetic term. The 𝑣𝑒𝑓𝑓(𝑟) represents the effective 

potential functional , which is a function of electron density 𝜌(𝑟).  

 

 2.1.2 Plane Wave Basis Set and Brillouin Zone 

Bloch theorem2 establishes the foundation to solve Schrödinger equation for periodic 

systems. The plane wave function based on Bloch theorem can be expressed by Equation (9): 

 

Ψ𝑘(𝑟) = 𝑒𝑖𝑘∙𝑟𝑢𝑘(𝑟) (9) 

𝜌(𝑟) ≈ ∑|Ψ𝑘(𝑟)|
2

𝑘

 
(10) 

 

where 𝑢𝑘(𝑟) is a basis set function with the same periodicity as the supercell and 𝑢𝑘(𝑟 + 𝑛1𝑎1 +

𝑛2𝑎2 + 𝑛3𝑎3) = 𝑢𝑘(𝑟) for any integers 𝑛1 ,  𝑛2 , and 𝑛3 . Thus, it is possible to solve the 

Schrödinger equation (Equation (6)) for each k value independently. Computationally, the plane-

wave based approach is much more efficient to calculate for periodic systems. The space of 

vector k is called reciprocal space or simply k space. The length of the reciprocal lattice vectors 

is inversely related to the length of the real space lattice vectors. If𝑎1, 𝑎2, 𝑎3 are the axis vectors 

of the real lattice, then the axis vectors of the reciprocal lattice  (𝑏1, 𝑏2, 𝑏3) can be written as 

Equations (11-13). The primitive cell in reciprocal space named the Brillouin zone.  
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𝑏1 = 2𝜋
𝑎2 × 𝑎3

𝑎1 ∗ 𝑎2 × 𝑎3
 (11) 

𝑏2 = 2𝜋
𝑎3 × 𝑎1

𝑎1 ∗ 𝑎2 × 𝑎3
 (12) 

𝑏3 = 2𝜋
𝑎1 × 𝑎2

𝑎1 ∗ 𝑎2 × 𝑎3
 (13) 

 

It is possible to approximate electron density with Equation (10) using a finite number of 

k-points. Monkhorst-Pack methods 3 can be used to generate equally spaced k-points in the 

Brillouin zone in DFT calculations. Then the plane wave basis set in the reciprocal space can be 

expanded into Equation (14) based on Bloch’s theorem, 

 

𝜑𝑖𝑘(𝑟) = ∑𝑐𝑖𝑘(𝐺)

𝐺

𝑒𝑖(𝑘+𝐺)∙𝑟 
(14) 

 

where G is the lattice vector in the reciprocal space with 𝐺 = 𝑛1𝑏1 + 𝑛2𝑏2 + 𝑛3𝑏3. 𝑐𝑖𝑘(𝐺) is the 

expansion coefficient corresponding to vector G, which decreases as |G|2 increase. Therefore, it 

is sufficient to truncate the infinite series in Equation (14) to include the plane waves up to the 

cutoff energy (𝐸𝑐𝑢𝑡) as in Equations (15) and (16). In practice, the ground state energy and 

density converge quickly with the number of k-points and cutoff energy used.  

 

𝐸𝑐𝑢𝑡 =
ℏ2

2𝑚
𝐺𝑐𝑢𝑡

2  (15) 

|𝑘 + 𝐺| < 𝐺𝑐𝑢𝑡 (16) 
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 2.1.3 Pseudopotential 

As the potential wave function in the proximity to the nuclei becomes very attractive, 

wave functions oscillate rapidly, thus, making all-electron calculations (i.e. explicit inclusion of 

core electrons) with full Coulombic rather expensive.4 In addition, core electrons are usually not 

directly responsible for the chemical bonding and other physical characteristics. For these 

reasons, pseudopotential methods have been developed and widely adapted through representing 

the valence electrons with full wave functions, but frozen core electrons (i.e. pre-calculated and 

fixed) to reduce the computational cost. Pseudopotential generated from the projector augmented 

wave (PAW) method5 is a computationally efficient method that can mitigate the artificial effects 

effectively.  

 

 2.1.4 Electron Exchange-correlation Functionals 

When solving Equations (6) and (7), only the exchange-correlation energy, which 

illustrates the interacting electronic kinetic energy and the corrections of Coulomb interactions of 

an electron with itself, cannot be defined and has to be approximated instead. The generalized 

gradient approximations (GGA),6-9 which includes both the local electron density and the local 

gradient of electron density to approximate 𝐸𝑋𝐶(𝑟) , are one of the forms to approximate 

exchange-correlation energy. The gradient of electron density can be treated differently which 

lead to a number of GGA functionals, such as Perdew–Wang (PW91),10,11 the Perdew-Burke-

Ernzerhof (PBE),10 the revised PBE (RPBE),12 the re-parameterized PBE functional for solids 

and surfaces (PBEsol)13 and the Becke–Lee–Yang–Parr functional (BLYP)6,14.  

The GGA functionals are very popular due to high accuracy to cost ratio for many 

system, such as transition metals, ionic crystals, compound metals, surface, interfaces and some 
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chemical systems. The GGA functionals are well accepted for predicting reliable binding 

energies and geomeries.15,16 For example, Hammer et al.15 compared the chemisorption of O, CO 

and NO on Ni(100), Ni(111), Rh(100), Pd(100), and Pd(111) surfaces, and found that the GGA 

functionals, especially for the RPEB functional, produce moderate chemisorption energies with 

uncertainties less than about 0.25 eV .  

Compared to LDA functionals, GGA functionals reduce the bond dissociation error and 

improve the transition state energy barrier. For instance, Hammer et al. 17 found that GGA 

functionals predict reasonable values of H2 chemisorption energy and dissociation barrier on 

Cu(111). Pederson et al. 18 proposed that GGA leads to a more reasonable hydrogen exchange 

reaction barrier of the CH3-CH4 compared to local density approximation (8.7 kcal/mol vs 0.7 

kcal/mol), with experimental value of 14 kcal/mol.  

 

 2.1.5 Electron Self-interaction Errors 

The GGA functionals are widely adopted to account for the exchange-correlation term 

(Equation (7)), and have been implemented in many plane wave-based DFT packages (e.g., 

VASP, 19,20 Quantum espresso21). However, electron self-interaction error occurs when standard 

GGA functionals are used to calculate lattice parameters, magnetic moments, band gaps, oxygen 

vacancy formation energies of systems with localized d- or f- orbitals, notably in the case of 

transition metal oxides (e.g., TiO2,
22,23 CeO2 

24,25). In order to address this issue, empirical 

electron Coulomb (U) and exchange (J) parameters are introduced to GGA functionals named 

GGA + U method for subjecting to the d-, f-electrons in the system.  

One way to determine the Hubbard U parameter used in GGA + U methods can be 

carried out by screening a range of U values based on the known properties of the material.26,27 
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Alternative approach can treat U as a non-empirical property to introduce a self-consistent 

procedure based on a linear-response approach to derive the U and J parameters,28 which has 

been used for trend analysis of MO2 (M = Ti, Cr, Mn, Nb, Mo, Ru, Rh, Re, Ir, and Pt) activities 

in oxygen evolution reaction.29 In this thesis, the U and J values for CeO2 in Chapter 7 section 

7.2 are obtained from literature24, based on the second approach mentioned above. 

 

2.2 Modeling Techniques for Surface Chemistry  

 2.2.1 Generate Single Crystal Surfaces 

Surface with well-defined sites participating catalytic reactions are generated for DFT 

calculations. Such model surfaces are often cleaved from corresponding single crystals. The low-

index surfaces, such as (111) and (100) for face-centered cubic (FCC) crystals, are widely used 

to represent close-packed and open planar surfaces, and are illustrated in Figure 2.1(a-b). The 

(111) surface in FCC crystal is the most close-packed surface, and the coordination number (CN) 

of surface layer atoms is 9. The (100) surface is a more open surface, and the CN of surface layer 

atoms is 8.  The (111) facet may contain fcc, hcp, top, and bridge sites, as indicated in Figure 

2.1(a). The (100) facet can contain 4-fold hollow site, bridge site, and top site as shown in Figure 

2.1(b). It is a common practice in this study that only the most stable configuration of atomic or 

molecular adsorption is analyzed.  

Beside planar facets, step, corner, and defective facets are common in realistic catalyst 

structures. For example, Figure 2.1(c) represents the (211) facet of the FCC crystal, and the CN 

of surface layer atoms is 7, which may have both step (edge) sites and the terrace sites. Near the 

edge of (211) surface, it includes top, bridge, 4-fold, fcc near edge, and hcp near edge sites as 

shown in Figure 2.1(d). For computational convenience and efficiency, catalyst surfaces are 
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modeled with slab models bounded in a supercell with periodic boundaries. The slab top and 

bottom are separated by a vacuum space perpendicular to the surface as shown in Figure 2.1(c). 

In the slab models, the bottom layers are fixed to the optimized bulk lattice values, while surface 

and near surface layers are relaxed along with adsorbates. The vacuum should also be 

sufficiently large in order to avoid the interference between surface adsorbate and bottom layers. 

 

 

Figure 2.1. Surface models based on a FCC single crystal: (a) (111), (b) (100), (c) (211), and (d) 

top view of (211) facet. Available adsorption sites on each surface are labeled. Black dashed 

lines represent the boundaries of the supercell. The (211) facets in (c) and (d) are further 

expanded to show the 4-fold site. The edge atoms in (211) are highlighted in turquoise. 
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2.2.2 Bader Charge Analysis 

Charge transfers at catalyst active sites can be tied to catalytic activity and selectivity. 

Theoretical calculations that lead to electronic charge distribution can directly produce 

information regarding charge transfers. The original concept proposed by Richard Bader30, was 

developed into the Bader charge analysis31-33. In this approach, the electronic charge density is 

used to partition molecular system into different sections based on zero flux surfaces, which is a 

2-D surface with a minimum charge density perpendicular to the surface. The volume of each 

section can be considered as the occupation volume of each corresponding atomic species.  

Bader charge analysis is a simple and useful technique. The calculated charge distribution 

can be used to determine multiple moments of interacting atoms or molecules, and the cost of 

removing charge from an atom can be quantified as well. The Bader charge analysis has also 

been incorporated into many DFT codes, such as VASP. 

 

 2.2.3 Transition State Search 

Identifying and elucidating the minimum energy paths (MEPs) is important in surface 

science to describe atomic or molecular diffusion or reaction on given potential energy surface 

(PES). The transition state (saddle point), which is the highest energy point on the MEP, can be 

found and used to calculate the reaction energy barriers to determine reaction kinetics. A number 

of transition state search techniques are available34 and I mainly focus on Nudged Elastic Band 
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Method (NEB) method and dimer method, which are the main tool for transition state search 

during my PhD.  

2.2.3.1 Nudged Elastic Band method  

The NEB method 35 is one of the most frequently used methods to find MEP especially 

when the initial and final states are known. During NEB calculations, the locations of initial 

intermediate images can be generated from a simple linear interpolation. Then those initial 

intermediate images along the reaction path are relaxed with finding the lowest energy while 

maintaining equal spacing to neighboring images to find the real MEP. During relaxation, the 

true force on each individual image in the elastic band is decomposed into a perpendicular and a 

parallel component to the MEP. A nudging force, perpendicular to the path, is employed to 

ensure that there will not be severe corner cutting at the curve of the MEP. Hence, NEB is ideal 

to map out the MEP; however, multiple saddle points can be identified. 

In order to avoid the slip of the image near the saddle point, the modified Climbing 

Image NEB (CI-NEB) method36 is developed to find saddle points more accurately in which the 

highest energy image is able to move towards the energy uphill through not feel the nudging 

force but the inverted force along the tangent. As a result, the image is able to maximize its 

energy along the band, while minimize in all other directions. When this image converges, the 

image will fall to the saddle point exactly. 

 

2.2.3.2 Dimer method 

When the product state on the MEP is complex and undefined, or only the knowledge of 

transition state is needed, the dimer method becomes advantageous. Based on the eigenvector-

following theory, the first derivatives of the potential energy will be used to search the saddle 
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point, As shown in Figure 2.237, the two replicas generated from the initial guess structure (or a 

‘dimer’) are rotated, pointing the direction of the lowest frequency normal mode (N̂) during 

energy minimization.4 An effective force (F⃗ U), which is calculated using the component of the 

true force (F⃗ R) along the inverted direction of N̂, is added to the dimer image, guiding the 

movements of the dimer image towards the saddle point. 

 

Figure 2.2. Illustrations of finding saddle point on a potential energy surface using dimer 

method.37 

 

Dimer method can be much more computationally efficient than NEB, as it requires 

fewer input structures. Recently, the dimer method is performed as a main approach to further 

refine the initial guess of transition state obtained from NEB calculations to accelerate transition 

state search.  
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2.2.4 Linear Scaling Relationship 

The cost of DFT calculations can grow exponentially with the size of the model 38, and 

thus will limit the considerations of surface chemistries involving large molecules and/or large 

systems. In addition, DFT calculations are only feasible for a limited number of systems, but can 

hardly do detailed analysis for all interesting systems.  In order to overcome these issues, the so-

called scaling relationships were established and been adapted and integrated in computational 

catalysis.  

Abild-Pederson et al.39 first formulated linear scaling relationships between the binding 

energies of several main group elements (i.e. C, O, N, S) and their hydrogenated counterparts (i.e. 

CHx, NHx, OHx, SHx) using periodic DFT calculations. Figure 2.3 shows such an example where 

the elemental carbon (∆𝑬𝒄) and CHx (x = 1-3) species (∆𝑬𝑪𝑯𝒙) bind in a consistent linear trend 

described by Equation (17):  

 

∆𝑬𝑪𝑯𝒙 = 𝜸∆𝑬𝒄 + 𝝃 (17) 

 

where 𝜸 = (𝝌𝒎𝒂𝒙 − 𝝌)/𝝌𝒎𝒂𝒙. 𝝌𝒎𝒂𝒙 represents the maximum number of H atoms that can bind 

to C, and 𝝌 is the total H atoms that actually bind to C. From Equation (17), 𝝃 is independent of 

the substrate and can be determined from the linear fit. Equation (17) indicates that the binding 

energies of AHx (∆𝑬𝑨𝑯𝒙) can be estimated directly from ∆𝑬𝑨, where A represents the main group 

elements (i.e., C, O, N, S).  

These chemical elements (i.e. C, O, N, S) represent a vast number of important catalytic 

reactions. The physical rationale of these scaling relationships can be explained through orbital 
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hybridization and charge transfer.39 In addition, the parameters (i.e., slope and intercept) of such 

scaling theory can be understood with a simple geometric argument, and further facilitate the 

understanding of molecular behavior on different catalyst surfaces.39 For this reason, the scaling 

relationship has been quickly adopted and developed into a strategy, coupled with kinetic 

modeling, for catalyst optimization. 

 

Figure 2.3. Binding energies of CHx intermediates (crosses: x = 1; circles: x = 2; triangles: x = 

3), plotted against adsorption energies of C, adapted from Ref. [39].  

 

 2.2.5 Brønsted-Evans-Polanyi (BEP) Relationship 

The BEP relationship is another important type of scaling relationship40-42 between 

reaction energies (ΔE) and energy barriers (Ea), as shown in Equation (18):  
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𝑬𝐚 = 𝛂 ∙ 𝚫𝑬 + 𝜷 (18) 

 

Energy barriers can be very computationally expensive to calculate using DFT. 

Therefore, an important use of BEP relationship is to accelerate analysis of reaction kinetics. In 

this case, elementary reaction kinetics can be characterized using two parameters (α and β, as in 

Equation (18)), which are functions of reaction types and catalyst. Figure 2.4 presents an 

example of BEP relationship (the dash black-white line) which shows a good linear relation 

between the dissociative chemisorption potential energy for the dissociation products and 

activation energies for N2, CO, NO, and O2 dissociation over transition metals (e.g., Cu, Ni, Pt, 

Ru).40 

The BEP relationships between activation energy and reaction energy of surface reactions 

become extremely useful on heterogeneous catalysis to provide data being used in kinetic 

models. The mean average error is used to quantify the accuracy of the BEP relationships.43,44 It 

is essential to control the mean average error of BEP relationship because an error as small as 

0.05 eV on the predicted energy barrier can lead to an error of at least 1 order of magnitude on 

the corresponding kinetic constant as the exponential nature of the Eyring equation.45 Therefore, 

the reaction models should be refined to have a high quality BEP relationship for high accuracy 

catalyst screening. 
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Figure 2.4. Calculated activation energies (Ea) for N2, CO, NO, and O2 dissociation on a 

number of different metals plotted as a function of the calculated dissociative chemisorption 

potential energy for the dissociation products (ΔE).40 

 

 2.2.6 Thermodynamic Properties Estimation 

The relationships between macroscopic thermodynamic properties and quantum 

mechanical calculations can be established through the standard statistical mechanical 

approach.46 The partition functions will be computed in order to derive entropy, enthalpy, and 

Gibbs free energy. The total partition function, 𝑞𝑡𝑜𝑡𝑎𝑙, can be expressed by Equation (19): 
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𝑞𝑡𝑜𝑡𝑎𝑙 = 𝑞𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 × 𝑞𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 × 𝑞𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 × 𝑞𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛. (19) 

 

As shown in Equation (19), the total partition functions can be broken down into the 

contributions from electronic, translational, rotational, and vibrational modes associated with 

thermal molecular motions. Detailed derivations and applications of these partition functions can 

be found in Ref 46,47.  

The electronic partition function (𝑞𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐) is represented by Equation (20): 

 

𝑞𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 = ∑ 𝑔𝑗𝑒
−𝛽𝜀𝑗,𝑒 = 𝑔0

𝑗,𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑖𝑒𝑠

+ 𝑔1𝑒
−𝛽𝜀1,𝑒 + 𝑔2𝑒

−𝛽𝜀2,𝑒 + ⋯ (20) 

 

Because the electronic energies are usually quite large and all terms beyond the first term can be 

neglected. As a result, this approximation restricts the electronic partition function to the ground 

state only.  

For gas phase species (e.g., CO, H2O, CO2, H2, and CH4), ideal gas law is assumed and 

the translational partition function (𝑞𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛(𝑉, 𝑇)) can be calculated from Equation (21):  

 

𝑞𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛(𝑉, 𝑇) = (
2𝜋𝑚𝑘𝐵𝑇

ℎ2
)
3

2⁄  𝑉 (21) 

 

where m is the mass, 𝑘𝐵  and ℎ  are Boltzmann and Planck constants, respectively, 𝑉  is the 

volume per molecule occupied. 
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Homonuclear/heteronuclear diatomic gas (e.g., H2, CO) and the polyatomic gas (e.g., 

H2O, CO2, CH4) have different forms to calculate rotational partition functions. For homonuclear 

or heteronuclear diatomic gas, the rotational partition function (𝑞𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛) is calculated from 

Equation (22): 

 

𝑞𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =
8𝜋2𝐼𝑘𝑇

𝜎ℎ2
 (22) 

 

where σ = 1 for the heteronuclear diatomic gas, and σ = 2 for homonuclear diatomic gas. I is the 

moment of inertia. For polyatomic gas, the rotational partition function is calculated by Equation 

(23): 

 

𝑞𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =
𝜋1 2⁄

𝜎
(
8𝜋2𝐼𝑎𝑘𝐵𝑇

ℎ2
)1 2⁄ (

8𝜋2𝐼𝑏𝑘𝐵𝑇

ℎ2
)1 2⁄ (

8𝜋2𝐼𝑐𝑘𝐵𝑇

ℎ2
)1 2⁄  (23) 

 

where σ is the symmetry factor, and Ia, Ib, Ic are the principles moments of inertia.  

The vibrational partition function (𝑞𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛) is represented by Equation (24): 

 

𝑞𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 = ∏ (
1

1 − 𝑒−𝛽ℎ𝑐𝑣𝑖
)

3𝑁−6(5)

𝑖=1

 (24) 

 

where 𝛽 =
1

𝑘𝐵𝑇
, c is a constant representing the speed of light, 𝑣𝑖  (cm-1) is the ith vibrational 

mode, and N is the number of atoms in a molecule.  
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For adsorbed species, the weakly bounded adsorbates (e.g., H2O on Ni(111)48,49) can be 

assumed as two-dimensional gases, which have the translation and rotational modes. 

Correspondingly, translational, rotational, and vibrational partition functions can be expressed by 

Equations (25-27): 

 

𝑞𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛(𝐴,𝑇) = (
2𝜋𝑚𝑘𝐵𝑇

ℎ2
)𝐴 (25) 

𝑞𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =
𝜋1 2⁄

𝜎
(
8𝜋2𝐼𝑧𝑧𝑘𝐵𝑇

ℎ2
)1 2⁄  (26) 

𝑞𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 = ∏(
1

1 − 𝑒−𝛽ℎ𝑐𝑣𝑖
)

3𝑁

𝑖=1

 (27) 

 

where m is the molecular weight, A is the surface area, Izz is the moment of inertia representing 

the z-axis (the only possible rotational mode on the surface) through the mass center of the 

adsorbate, c is the speed of light, and vi is the ith vibrational mode, N is the total number of 

relaxed atoms, and 𝛽 = 1
𝑘𝐵𝑇⁄  .  

For strongly bounded adsorbates (e.g., CO adsorption on Ni(111)48,49), the translational and 

rotational modes are frustrated. In this case, all degrees of freedom are contributed by the 

vibrational modes, which are assumed to be harmonic and calculated according to Equation (27). 

Using the calculated partition functions, the entropy (S°), internal energy (U°), enthalpy 

(H°), and Gibbs free energy (G°) can be calculated by Equations (28-33) summarized in ref 47:  
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𝑆𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛
∘ (T) = R[ln (

2𝜋𝑚𝑘𝐵𝑇

ℎ2
𝐴) + 1] (28) 

𝑆𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛
∘ (T) = R[ln (

𝜋1 2⁄

𝜎
(
8𝜋2𝐼𝑧𝑧𝑘𝐵𝑇

ℎ2
)

1 2⁄

) +
1

2
] (29) 

𝑆𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛
∘ (T) = R∑[

ℎ𝑐𝑣𝑖 𝑘𝐵𝑇⁄

𝑒𝛽ℎ𝑐𝑣𝑖 − 1
− ln (1 − 𝑒−𝛽ℎ𝑐𝑣𝑖)]

𝑖

 (30) 

𝑈𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠
∘ (T) = RT∑

𝛽ℎ𝑐𝑣𝑖

exp (
ℎ𝑐𝑣𝑖

𝑘𝐵𝑇
) − 1𝑖

+
3

2
RT 

(31) 

𝐻∘ = 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 + 𝑍𝑃𝐸 + 𝑈𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠
∘  (32) 

𝐺∘ = 𝐻∘ − 𝑇𝑆∘ (33) 

 

where R is the gas constant, 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 is the total energy from DFT calculation, ZPE is the zero 

point energy expressed as 𝑍𝑃𝐸 =
1

2
∑ ℎ𝑐𝑣𝑖𝑖 . By following this principle, macroscopic 

thermodynamic properties can be obtained from theoretical first-principles methods. 

 

 2.2.7 Micro-kinetic Modeling 

Micro-kinetic modeling is a widely adopted technique linking an atomic level description 

of a reaction pathway based on DFT calculations to the measurable kinetic behavior (e.g., rate, 

selectivity) observed in the experiment to analyze the catalyst performance. The ‘Catalysis 

Micro-kinetic Analysis Package’ (CatMAP)50 is the main tool used for micro-kinetic modeling in 

this thesis. A series of elementary reaction steps are used to represent the overall reaction. The 

reaction rate of each elementary step is obtained through solving a mean-field micro-kinetic 
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model at steady state with Equations (34-36).50 In this case, surface coverages of reaction 

intermediates are assumed to be uniformly distributed. 

 

𝑟𝑖 = 𝑘𝑖
+ ∏𝜃𝑖𝑗 ∏𝑝𝑖𝑗 − 𝑘𝑖

− ∏𝜃𝑖𝑗 ∏𝑝𝑖𝑙

𝑙𝑙𝑗𝑗

 (34) 

𝛿𝜃𝑖

𝛿𝑡
= ∑𝑆𝑖𝑗𝑟𝑗

𝑗

 (35) 

𝑘𝑖
± =

𝑘𝐵 ∗ 𝑇

ℎ

𝑞𝑡𝑜𝑡𝑎𝑙,𝑖𝑡𝑠

𝑞𝑡𝑜𝑡𝑎𝑙,𝑖𝑗
exp (

−𝐸𝑎 𝑏⁄

𝑅𝑇
) (36) 

 

𝑟𝑖 represents the rate of elementary step, i.  𝑘𝑖
± is the forward/reverse rate constant. 𝜃𝑖𝑗 and 𝜃𝑖𝑙 

represent  concentrations (or coverages) of surface  reactants and products, while 𝑝𝑖𝑗 and 𝑝𝑖𝑙 are 

the unitless pressure of the gas phase reactants and products for elementary step i. 𝑆𝑖𝑗  are 

coefficients for the stoichiometry of species i in elementary step j. In addition,  𝑞𝑡𝑜𝑡𝑎𝑙,𝑖𝑡𝑠  and 

𝑞𝑡𝑜𝑡𝑎𝑙,𝑖𝑗  are the total partition function for transition state and reactant in elementary step i 

calculated in Section 2.2.6. 𝐸𝑎  and 𝐸𝑏  are the forward and reverse energy barriers of step i, 

which can be obtained from DFT calculations or estimation based on BEP relationship. At steady 

state, the solution should satisfy Equation (37): 

 

𝛿𝜃𝑖

𝛿𝑡
= 0 (37) 

which must be solved subject to the site conservation constraint Equation (38): 
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∑𝜃𝑖

𝑖

= 𝜃𝑇𝑂𝑇 (38) 

where 𝜃𝑇𝑂𝑇 is the normalized surface area, which is equal to 1. 

 

 

 2.2.8 Volcano Plots and Trend Analysis and Predictions 

With the establishment of linear scaling relationships and BEP relationship, it can be noted 

that catalytic behavior can be understood in a predictive way. Based on such observation, one 

step further is to apply first-principles methods toward rational catalyst design. The Sabatier 

principle states that the optimal catalyst should neither bind reactants too weakly nor the 

products too strongly. This principle essentially dictates that there must be an optimum of the 

rate of a catalytic reaction as a function of the heat of adsorption, which can be rather 

conveniently obtained from DFT calculations. Thus, catalytic performance can be qualitatively 

characterized with so called ‘catalytic descriptors’,51 which can be further used to quantitatively 

measure the performance via micro-kinetic modeling. The concept of descriptor can be 

conveniently adapted as a rational catalyst design parameter. Ammonia synthesis 52 represents 

one such prominent example as shown in Figure 2.5. Nitrogen adsorption energy itself (Figure 

2.5(a)) or with N2 dissociation barrier (Figure 2.5(b)) can be the descriptor to identify the activity 

of those transition metals to ammonia synthesis. Too strong or too weak binding of N2 are all 

affecting ammonia synthesis adversely. An optimal strength of interaction is needed according to 

the Sabatier-type principle. 

From Figure 2.5(b), we can know that there are two different ways to increase the activity 

of catalyst to ammonia synthesis. One way is still obeying the BEP relationship with developing 



45 

 

the catalyst from single metal catalyst to a bimetallic catalyst (e.g., CoMo, red dot in Figure 

2.5(a)), the activity of CoMo for ammonia synthesis increase compare to both single metal Co 

and Mo. Another way is breaking the existing BEP relationship to a different lower lying one 

with doping alkali promoter on single metal (magenta line in Figure 2.5(b)). In this case, the 

catalyst activity changes to the direction of favoring the ammonia synthesis. Andersen et al. 

53also believed that a combination of different materials such as metals and oxides is another way 

to circumvent the BEP relationship to increase the catalyst activity for ammonia synthesis. 

 

 

Figure 2.5. (a) Calculated rate as a function of a single descriptor of EN. A data point of an 

intermetallic compound with active sites consisting of both Co and Mo is indicated. Experiments 

show such a material with activity close to that of Ru.54 (b) Ammonia synthesis rate as a function 

of nitrogen adsorption energy (EN) and N2 dissociation barrier (EN-N), with energetics and the 

corresponding scaling relation for stepped sites (dashed black–white) showing a linear 

relationship between EN-N and EN. The alkali-promoted scaling relation is represented by the 
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magenta line. 52 
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Chapter 3 - Mechanism and Selectivity of WGSR on Ni(111) Surface 

Chapter 3 is reproduced in part with permission from:  

Zhou, M.; Liu, B. DFT Investigation on the Competition of the Water-Gas Shift Reaction Versus 

Methanation on Clean and Potassium-Modified Nickel(111) Surface. ChemCatChem 2015, 7, 

3928-3935. 

 

3.1 Introduction 

WGSR is commonly catalyzed on transition metals and has been proposed to proceed via 

the redox, carboxyl, and formate pathways,1-5 as shown in Figure 3.1. The redox pathway 

includes direct CO oxidation. The carboxyl pathway includes the formation and dissociation of 

COOH*, while the formate pathway includes the formation and dissociation of HCOO*. 

 

 

Figure 3.1. Reaction schemes of WGSR and methanation reaction. The asterisks (*) represents 

an open surface site or an adsorbed species. Water dissociation and H2 formation are not shown 

in this scheme. 

 

  The preferred pathway for WGSR depends on the catalyst materials. On Pt(111), 

Cu(111), and Au(111) surfaces, carboxyl pathway is the most significant pathway.2,3,6,7 In 
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comparison, the formate (HCOO) pathway is less competitive than the redox and carboxyl 

pathways1-3,8, and HCOO has been considered as a spectator species. Water dissociation plays an 

important role during WGSR and has been discussed on transition metals.9 For example, water 

dissociation is the rate-limiting step for WGSR catalyzed by Pt, Cu and Au.2,3,7 The dissociation 

products, i.e., O, OH species can actively influence the productions and consumptions of key 

reaction intermediates.2,3  

Studies 10-13 performed on a number of monometallic catalysts suggest that Ni also 

exhibits promising reforming and WGSR activities when comparing with Co, Cu, Fe, Ir, Rh, Ru, 

Pt, and Pd. The natural abundance enables Ni-based catalysts to be an appealing material for 

practical, large-scale hydrogen production 14-16. For Ni, one of the challenges in heterogeneous 

catalysis is its tendency to cleave the C–O bond via methanation (as in Equation (39)) 17,18or 

hydrogenolysis13, adversely affecting hydrogen selectivity.  

 

3𝐻2(𝑔) + CO(g) ⇌ 𝐶𝐻4(g) + 𝐻2𝑂(𝑙), ∆𝐻°298𝐾 = −206.2𝑘𝐽/𝑚𝑜𝑙 (39) 

 

A systematic study on methanation via CO hydrogenation has been conducted by 

Vannice over group VIII metals, 11 where Ni, Co, Ru, and Fe are among the most active 

methanation catalysts from the generated volcano plot with CO as descriptor. Methanation has 

also been extensively examined in the context of Fischer-Tropsch synthesis.19 The detailed 

Fischer-Tropsch mechanism is still under debate, and various reaction pathways have been 

investigated using DFT calculations20,21 to reveal that the C–O bond scission elementary steps 

are the rate-determining step. Regarding C–O bond scission, both direct and hydrogen-assisted 
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methanation mechanisms have been proposed20,22, where the energy barrier can be significantly 

reduced once CO is partially hydrogenated. 

In this chapter, the molecular pathways for WGSR and methanation will be established 

using density functional theory (DFT) calculations as two main parallel competing mechanisms 

on Ni catalysts.1,5,23 The most likely methanation pathways that compete with WGSR on Ni(111) 

surfaces are elucidated.  

 

 3.2 Computational Methods 

Periodic, spin polarized DFT calculations were performed using Vienna ab initio 

simulation package (VASP).24-27 The exchange-correlation energy is calculated with the 

generalized gradient approximation PBE (GGA-PBE) functional.28 A three-layer Ni(111) slab 

with a p(3 × 3) surface unit cell was used. The top layer and adsorbate were allowed to relax, 

whereas the bottom two layers are fixed at the corresponding bulk lattice value. The equilibrium 

lattice constant of a 4-atom Ni bulk unit cell is 3.52Å, which is in good agreement with the bulk 

value at 3.52Å.29 The vacuum between any two successive slabs is 20 Å, and the plane wave 

energy cutoff is 385 eV. The first Brillouin zone of the slab model was sampled by a 4 × 4 × 1 k-

point mesh.30 Convergence tests on water adsorption were carried out using higher k-points (6 × 

6 × 1) and larger energy cutoff (400 eV), resulting in binding energy change below 0.01 eV. 

In this Chapter, the binding energies (BEs) are defined as Equation (40), 

 

𝐵𝐸𝐴∗ = 𝐸𝐴∗ − 𝐸𝐴 − 𝐸∗ (40) 
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where 𝐸𝐴∗ is the total energy of the adsorbate (A), 𝐸𝐴 is the total energy of the adsorbate (A) in 

gas phase calculated in a large box (10 Å × 10 Å × 10.5 Å), and 𝐸∗ is the total energy of the 

clean surface.  

Energy barriers of elementary steps were calculated using CI-NEB 31 and dimer 32 

methods introduced in Chapter 2. All calculated transition state structures were also confirmed 

using vibrational frequency analysis to show that there is only one imaginary frequency 

associated with each transition state. The energy barrier (𝐸𝑎) is calculated from Equation (41): 

 

𝐸𝑎 = 𝐸𝑇𝑆 − 𝐸𝐼𝑆 (41) 

 

where 𝐸𝑇𝑆 is the total energy of the transition state and 𝐸𝐼𝑆 is the total energy of the initial state, 

with reactant species treated at infinite separations.  

 

 3.3 WGSR and Methanation Mechanisms on Clean Ni(111) 

The competing pathways in the reaction networks are represented in terms of elementary 

steps describing adsorption, desorption, and chemical reactions on pre-defined sites of catalyst 

surfaces. The reaction network with combined WGSR and methanation consists of 18 reactive 

intermediates and 32 elementary steps as illustrated in Figure 3.1. Essentially, the competition 

between WGSR and methanation is distinguished by C-O bond formations versus C-O bond 

cleavage (Figure 3.1). As shown in Figure 3.1, the formyl group (CHO) is one of the few major 

intermediates involved in both reactions. 

The binding energies and preferred binding sites of each reaction intermediate on clean 

Ni(111) surfaces are listed in Table 3.1. It can be seen that a good agreement between this work 
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and literature with same functional (GGA-PBE functional) regarding binding energies and 

predicted adsorption sites on clean Ni(111) surface has been achieved.  

The calculated reaction energies, and the energy barriers of the elementary reaction steps, 

are given in Table 3.2. The optimized structures of reactive intermediates listed in Table 3.1 and 

the transition state structures for elementary steps in Table 3.2 are shown in Figures 3.2 and 3.3, 

respectively. 
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Table 3.1. Binding energies (BE, in eV), site preferences, and literature values for WGSR and 

methanation intermediates on Ni(111) surface. 

 BE[eV] Site Literature BE [eV] 

CH4 0.00 physisorption -0.0223 

CO2 -0.01 physisorption -0.0223, -0.121 

H2 -0.25 top -0.2223 

H2O -0.27 top -0.2923, -0.471 

CH2OH -1.56 fcc -1.5423 

CH3 -1.89 fcc -1.9123 

CO -1.93 hcp -1.9223, -2.091 

COOH -2.25 bridge -2.26(fcc)23, 

-2.54(bridge-top)1 

CHO -2.27 fcc, hcp -2.26(fcc)23, 

-2.49(bridge) 

H -2.80 fcc -2.8123, -2.771 

HCOO -2.88 top-top -3.021 

OH -3.27 fcc -3.4223, -3.341 

HCOH -3.88 fcc -3.8823 

CH2 -4.03 fcc -4.0123 

COH -4.39 fcc, hcp -4.39(hcp)23, -4.421 

O -5.39 fcc -5.6723, -4.811 

CH -6.41 fcc -6.4323 

C -6.48 hcp -6.7823, -6.611 
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Figure 3.2. Optimized structures of reaction intermediates (in Table 3.1) on clean Ni(111). C, O, 

H, and Ni are depicted in grey, red, white, and blue, respectively. 
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Table 3.2. DFT-calculated reaction energies (ΔE [eV]), energy barriers (Ea [eV], and imaginary 

frequencies (vi [cm-1]) of the transition states of the elementary reactions on clean Ni(111) 

surface. 

 Elementary step ΔE[eV] Ea,f(Ea,b)
[a] [eV] vi[cm-1] 

R1 CO (g) + * ⇌ CO* -1.93   

R2 H2O (g) + * ⇌ H2O* -0.27   

R3 CO2* ⇌ CO2 (g) + * 0.01   

R4 H*+H* ⇌ H2* + * 0.83 0.83(0.01) -641 

R5 H2* ⇌ H2 (g) + * 0.25   

R6 CH3* + H* ⇌ CH4(g) + 2* -0.03   

R7 H2O* + * ⇌ OH* + H* -0.41 0.86(1.27) -878 

R8 OH* + * ⇌ O* + H* -0.20 0.98(1.17) -1219 

R9 OH*+OH* ⇌ H2O* + O* 0.22 0.48(0.27) -137 

R10 CO* + O* ⇌ CO2* + * 0.97 1.56(0.60) -455 

R11 CO* + OH* ⇌ COOH* + * 0.96 1.40(0.44) -289 

R12 COOH* + * ⇌ CO2* + H* -0.19 0.93(1.11) -1343 

R13 COOH* + O* ⇌ CO2* + OH* 0.01 0.20(0.19) -929 

R14 COOH* + OH* ⇌ CO2 *+H2O* 0.22 0.00(0.00) -101 

R15 CO* + H* ⇌ CHO* + * 1.25 1.44(0.19) -245 

R16 CHO* + O* ⇌ HCOO* + * -0.41 0.73(1.14) -318 

R17 HCOO* + * ⇌ CO2* + H* 0.13 0.99(0.86) -195 

R18 HCOO* + O* ⇌ CO2* + OH* 0.33 1.75(1.42) -1115 
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R19 HCOO* + OH*⇌ CO2* + H2O* 0.54 1.88(1.33) -126 

R20 CO* + * ⇌ C* + O* 1.28 2.88(1.60) -472 

R21 CO*+CO* ⇌ CO2* + C* 2.25 3.49(1.24) -320 

R22 CHO* + * ⇌ CH* + O* -0.50 1.04(1.54) -344 

R23 CO* + H* ⇌ COH* + * 0.96 1.91(0.95) -1557 

R24 COH* ⇌ C* + OH* 0.52 1.86(1.34) -323 

R25 CHO* + H* ⇌ HCOH* + * 0.43 1.14(0.71) -1267 

R26 COH* + H* ⇌ HCOH* + * 0.73 0.83(0.10) -631 

R27 HCOH* + * ⇌ CH* + OH* -0.74 0.72(1.45) -425 

R28 HCOH*+ H* ⇌ CH2OH* + * 0.34 0.87(0.53) -901 

R29 CH2OH* + * ⇌ CH2* + OH* -0.70 0.65(1.35) -417 

R30 C* + H* ⇌ CH* + * -0.53 0.86(1.39) -877 

R31 CH* + H* ⇌ CH2* + * 0.38 0.74(0.36) -758 

R32 CH2* + H* ⇌ CH3* + * -0.03 0.63(0.66) -854 

[a]Energy barriers of reverse reaction are shown in the parentheses. 
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Figure 3.3. Transition state (TS) structures of elementary steps (labeled the same way as in 

Table 3.2) on clean Ni(111). The side view of each TS structure is shown as inset figure. C, O, 

H, and Ni are depicted in grey, red, white, and blue, respectively. 
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The above calculated binding energies and reaction barriers produce the most 

fundamental data to establish molecular-level mechanism. Optimized structures of these reaction 

intermediates provide the opportunity to rationalize the calculated reaction energetic and kinetic 

data. The elementary steps on close-packed nickel catalyst surface will be discussed in more 

detail.  

 

 3.3.1 H2O Dissociation 

On clean Ni(111), the adsorption energy of H2O is -0.27 eV on the top site. R7 is 

exothermic (-0.41 eV) with an energy barrier of 0.86 eV. OH* dissociation to produce O* and 

H* (R8) is also exothermic (-0.20 eV) with an energy barrier of 0.98 eV. The energy barriers of 

these two steps are lower than that on Cu(111) 2and Pt(111)3. 

The disproportionation of OH* (R9) is an alternative pathway to produce atomic O*. The 

reaction is endothermic by 0.22 eV with an energy barrier of 0.48 eV, which is approximately 

half as low as the barrier for OH* dissociation. Unlike WGSR on Cu(111) or Pt(111), in which 

the disproportionation reaction is favored both energetically and kinetically,2,3 the advantage of 

R9 is not as clear on Ni(111). Even though R9 becomes kinetically favorable (0.48 vs. 0.98 eV), 

it is thermodynamically more endothermic (0.22 vs. -0.20 eV) compared to R8. 

 

3.3.2 WGSR Pathways on Clean Ni(111) Surface 

The calculated reaction energetics and kinetics of redox, carboxyl, and formate pathways 

on clean Ni(111) surface are all considered here and summarized in Figure 3.4.  
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Figure 3.4. Potential energy surfaces (PESs) of the redox (blue), carboxyl (red), and formate 

(purple) pathways on clean Ni(111). Transition state species are marked as TS and extra OH* are 

added to balance the whole step. Two black pathways represent water dissociation and gas 

product formation. 

 

Redox pathway: Direct CO*oxidation by surface O* species (generated from water 

dissociation) forming CO2* (R10) is endothermic (0.97 eV). The energy barrier is 1.56 eV, 

which is consistent with Catapan’s work,1 and higher than that on Cu(111)2 and Pt(111)3 (0.82 

eV and 0.96 eV, respectively). Step R10 is the rate-limiting step in the redox pathway (Figure 

3.4, blue pathway). 

Carboxyl pathway: The carboxyl group (COOH*) is formed by R11 and adsorbs at the 

bridge site in which H points down towards the surface. The formation of COOH* is 

endothermic (0.96 eV) with an energy barrier of 1.40 eV. The formation of COOH* is rate-

limiting (Figure 3.4, red pathway). 
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CO2 can be formed by carboxyl dehydrogenation as in R12, which is exothermic (-0.19 

eV) with an energy barrier of 0.93 eV. Aside from direct COOH* dehydrogenation, the 

participation of nearby O* and OH* species in R13 and R14 can reduce the energy barrier, as 

suggested in previous studies.1-3 In R13, with the assistance of O*, O-H bond cleavage becomes 

nearly thermally neutral (0.01 eV). The energy barrier for H* transfer from COOH* to O* 

becomes approximately 0.20 eV, much lower than that of direct COOH* dissociation. With OH* 

(R14), the reaction energy is 0.22 eV and the reaction barrier is negligible (~ 0 eV), which 

indicates that the H* in COOH* can be transferred to nearby OH* species almost spontaneously 

to form water and CO2. 

Formate pathway and formate formation: From CO, the formyl species (CHO*) is the 

precursor for formate formation (Figure 3.4, purple pathway). CHO is produced by the 

combination of CO* and H* (R15), which is highly endothermic (1.25 eV) with an energy 

barrier of 1.44 eV. 

The formation of HCOO* by C-O bond formation between CHO* and O* (R16) is 

exothermic (-0.41 eV) with an energy barrier of 0.73 eV. CO2* can be formed from HCOO* 

adsorbed in a unidentate manner, which is 0.58 eV metastable (Figure 3.2), by R17. On clean 

Ni(111), R17 is endothermic (0.13 eV) with an energy barrier of 0.99 eV. Similar to COOH* 

dehydrogenation, the O- and OH-assisted mechanisms were investigated as R18 and R19, 

respectively. R18 is endothermic (0.33 eV) with an energy barrier of 1.75 eV. R19 is also 

endothermic (0.54 eV) with an energy barrier of 1.88 eV. Unlike O- and OH-assisted carboxyl 

dehydrogenation, the O*/OH* species cannot increase either energetic or kinetic favorability, 

and similar conclusions were obtained for other metals.1-3 Instead, the reverse reaction, that is, 

formate formation from CO2 hydrogenation, are both energetically and kinetically more 
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favorable on Ni(111) (Table 3.2). Thus, at a higher CO2 pressure, it can be expected that the 

WGSR could be adversely affected by formate site blockage. 

Comparison of WGSR pathways: R10 and R11 are the rate-limiting steps for the redox 

(blue) and carboxyl (red) pathways (Figure 3.4), respectively, and both pathways are 

energetically and kinetically comparable. The redox pathway is more sensitive to the availability 

of O* species, in which the OH disproportion (R9) step can act as an alternative source for O* in 

addition to R8, but with much lower reaction barriers. In the formate pathway (purple), the 

formation of formate is limited by the slow kinetics caused by R16 and R17. Hence, the formate 

pathway will not be as competitive as the redox or carboxyl pathways and will not be included in 

the discussion in section 3.3.4. 

 

 3.3.3 Methanation Reaction 

Five C-O bond cleavage pathways were considered, that is, (1) direct C-O bond cleavage 

of CO*; (2) C-O bond cleavage of CHO*; (3) C-O bond cleavage of COH*; (4) C-O bond 

cleavage of HCOH*; and (5) C-O bond cleavage of CH2OH* (Figure 3.5). Gas-phase CO, H2O 

(the H source), and a clean surface were used to produce the potential energy surface. 
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Figure 3.5. Potential energy surfaces of the five methanation pathways: i) CO (blue), ii) COH 

(red), iii) CHO (purple), iv) CHOH (brown and yellow), and v) CH2OH (green) pathways 

considered in this work. Transition-state species are marked as TS, and extra H* is added if 

necessary to balance the whole step. Two black lines represent water dissociation and CH4 

formation. 

 

C-O bond cleavage of CO*: Direct CO dissociation (blue path in Figure 3.5) via R20 is 

highly endothermic (1.28 eV) with an energy barrier of 2.88 eV. The Boudouard reaction, 

between two adsorbed CO molecules forming carbonaceous C* and CO2* via R21 is even more 

endothermic (2.25 eV), with an energy barrier of 3.49 eV on Ni(111). As shown below, both R20 

and R21 are much more energetically and kinetically unfavorable than the other pathways, and 

therefore will not be considered in the subsequent analyses. 

C-O bond cleavage of CHO*: The energy barrier of C-O bond cleavage decreases as 

CO is increasingly hydrogenated.1,33 With CHO* (from R15), C-O bond cleavage (R22) 
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produces CH* and O* (Figure 3.5, purple pathway). This elementary step is exothermic (-0.50 

eV) with an energy barrier of 1.04 eV. Compared to R16 for formate formation, the energetics of 

R22 are slightly more favorable (-0.5 vs. -0.41 eV in R16). However, the C-O bond cleavage 

energy barrier is higher (1.04 vs. 0.73 eV). 

C-O bond cleavage of COH*: The hydrogenation of the O site of CO produced COH 

through R23, which is endothermic (0.96 eV), with an energy barrier of 1.91 eV. This barrier of 

COH* formation is higher than that of the hydrogenation of the C in CO to form CHO. The C-O 

bond cleavage of COH* (R24; Figure 3.5, red pathway) is endothermic (0.52 eV) with an energy 

barrier of 1.86 eV.  

C-O bond cleavage of HCOH*: Further hydrogenation of CHO* or COH* can produce 

HCOH* by R25 (Figure 3.5, brown pathway) and R26 (Figure 3.5, yellow pathway). Both 

reactions are endothermic (0.43 and 0.73 eV, respectively), and the corresponding energy 

barriers are 1.14 and 0.83 eV, respectively. The C-O bond cleavage of HCOH* through R27 

(Figure 3.5, yellow pathway) to form CH* and OH* is exothermic (-0.74 eV) with an energy 

barrier of 0.72 eV, which is much lower than the energy barriers of C-O bond cleavage for CO*, 

COH*, and CHO* discussed above. 

C-O bond cleavage of CH2OH*: The formation of CH2OH* through R28 from HCOH* 

is endothermic (0.34 eV) with an energy barrier of 0.87 eV. The dissociation of CH2OH* 

through R29 (Figure 3.5, green pathway) to form CH2* and OH* is exothermic (-0.70 eV) with 

an energy barrier of 0.65 eV. 

Comparison of methanation routes: C-O bond cleavage is usually the rate-limiting step in each 

methanation route. The C-O bond cleavage energy barrier decreases for partially hydrogenated 

CO intermediates in the order of: C-O>C-OH>CH-O>CH-OH>CH2-OH (Table 3.2). This 
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indicates that on the clean Ni(111) surface, it is likely that C-O bond dissociation occurs at much 

lower energy barriers upon hydrogenation.20,34 The consumption of surface H species causes the 

decreased H2 selectivity directly. 

Hydrogenation of CO may occur as early as the first step of H2O dissociation. The first 

CO hydrogenation produces either CHO* (the more kinetically competitive step) or COH* (the 

more energetically competitive step). The formyl group can undergo C-O bond cleavage directly 

(Figure 3.5, purple pathway) to form CH* or continue to be hydrogenated to form HCOH*, 

which is a metastable intermediate in comparison. For COH*, because of the high barrier of C-O 

bond cleavage, it is more likely that COH follows the pathway to first form HCOH* through R26 

 R27 (Figure 3.5, yellow pathway). Finally, even though the C-O bond cleavage energy barrier 

is the lowest (0.65 eV) among all the considered pathways, the formation of CH2OH is overall 

endothermic according to Figure 3.5. Therefore, the CH2OH pathway is not as competitive as the 

CHO, H-COH, or CHO-H pathways. 

 

 3.3.4. Comparison between WGSR and Methanation Reaction 

If we combine the most competitive pathways for the WGSR and methanation on clean 

Ni(111), the selectivity between the two reactions is summarized in Figure 3.6. Firstly, the 

selectivity of WGSR can be affected by the competition between CO oxidation by OH (R11) and 

CO hydrogenation (R15). Both steps have comparable energy barriers (1.40 eV versus 1.44 eV; 

Figure 3.6). However, R11 is less endothermic than R15 (0.96 eV versus 1.25 eV). As discussed 

in section 3.3.2, the carboxyl group can form CO2 easily (0.00 eV energy barrier for R14), 

whereas formyl decomposition via R22 requires a very large energy barrier (1.04 eV), even 

though R22 (to produce CH* and O*) is more exothermic. In addition, the redox pathway of 
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WGSR can also be competitive as the overall potential energy is comparable to that of carboxyl 

pathway.   

 

 

Figure 3.6. Potential energy surfaces of WGSR (redox and carboxyl pathways) and methanation 

(CHO pathway) on clean Ni(111) surface. Transition state species are marked as TS and extra 

OH* and H* are added if necessary to balance reactive species. Black pathways represent water 

dissociation and gas products formation. 

 

Energetically, methanation by the CO*  CHO*  CH* route can be competitive 

against WGSR routes: CO*  COOH*  CO2* (carboxyl pathway), and CO*  CO2* (redox 

pathway) on clean Ni(111). However, on the flat Ni(111) surface, the selectivity favors WGSR 

as methanation through the CHO pathway is hindered by the large energy barrier of R22. 

Nevertheless, it should be noted that the methanation rate-limiting steps, such as R22 (and R24), 
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are sensitive to catalyst surface structures.20,35,36 It has been shown that the stepped or defect sites 

can lower the barriers of C-O bond cleavage in R22 and R24 and accelerate methanation in the 

competition against WGSR.1  

 

 3.4 Conclusions 

DFT calculations were performed on the WGSR and methanation elementary steps on 

Ni(111) surfaces. A comprehensive comparison of different reaction pathways was performed 

using the DFT-calculated energetics and kinetics to gain the reaction mechanism of WGSR. The 

redox pathway and carboxyl pathway are both thermodynamically and kinetically competitive.  

The selectivity of WGSR can be affected by methanation reaction on Ni(111) surface. 

The key steps for methanation reaction, that is, formyl (CHO*) formation and dissociation 

through C-O bond cleavage, were found to be energetically competitive against the WGSR. The 

large C-O bond cleavage barrier hinders methanation on flat Ni(111). 
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Chapter 4 - Promoter Effects for Catalyst Reactivity 

Case study 1 is reproduced in part with permission from:  

Zhou, M.; Liu, B. DFT Investigation on the Competition of the Water-Gas Shift Reaction Versus 

Methanation on Clean and Potassium-Modified Nickel(111) Surface. ChemCatChem 2015, 7, 

3928-3935. 

Case study 2 is reproduced with permission from:  

Zhou, M.; Cheng, L.;  Choi, J.; Liu, B.;  Curtiss, L.; Assary, R. Ni-Doping Effects on Oxygen 

Removal from an Orthorhombic Mo2C(001) surface: A Density Functional Theory Study. J. 

Phys. Chem. C. Accepted. 

 

 4.1 Introduction 

In the development of catalysis, it was recognized that promoters could help to improve 

the catalytic properties. In general, the purpose of adding promoter is to facilitate the desired 

reaction and/or suppress the unwanted reactions. This chapter aims to provide a molecular level 

description of promoter effect in catalytic activity using WGSR over potassium modified 

Ni(111) surface and O* removal reaction forming H2O (includes O-H bond formation) over  Ni-

doped Mo2C surfaces as two model reactions. The thermochemical energies and energy barriers 

related to the elementary steps for WGSR and O* removal reaction were calculated using DFT 

method and potential energy surfaces (PESs) were generated to demonstrate the promoter effect 

to catalyst reactivity.  
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 4.2 Case Study 1: Selectivity of WGSR on Potassium Modified Ni (111)  

Alkali metals (e.g., Na, K) can act as catalytic promoters in both natural and synthetic 

catalyst materials.1-3 Potassium is one common and efficient promoter species as it functions as 

an electron donor (mainly through its 4s electron) to the surrounding metallic substrate and 

lowers the surface work function as a result.4 Regarding the role of potassium in WGSR and 

methanation, Ma et al. 5found that by increasing K loading on 100 Fe/5.1 Si/2 Cu/x K (x = 1.25 

or 3), the WGSR rate during Fischer-Trøpsch synthesis (FT) is significantly enhanced, and in 

turn provides enough H2 for the FT reaction even at low CO conversion level. In addition, 

Hwang et al. 6 found that potassium-modified Ni catalysts exhibit higher activity and selectivity 

for WGSR than the unmodified Ni catalyst and methanation reaction is suppressed over the 

potassium-modified Ni catalyst because of the increase of density for active hydroxyl group that 

takes part in the WGSR.  

The effect of alkali promoters are determined by the interaction characteristics between K 

and reaction intermediates of the pathways. With alkali metals, the adsorptions of more 

electronegative species (e.g., CO and H2O) are enhanced.2 Bornemann et al. 7 showed that at low 

K coverage (θ < 0.14), water molecules bind stronger on K-precovered Ni(111) than on clean 

Ni(111) surface. Also, it has been found that water shall decompose at even higher K coverage. 

Using DFT calculations, Liu et al.1 showed that the effective CO dissociation barrier can be 

substantially reduced by the pre-adsorbed K adatom on Rh(111). On the other hand, for less 

electronegative species (e.g., CH4), Bengaard et al.8 showed that the energy barrier for CH4 

dissociation is increased by 0.21 eV and 0.20 eV, when 0.125 ML of K is added on Ni(111) and 

Ni(100), respectively.  
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In this section, the most likely molecular pathways for WGSR and methanation will be 

established using DFT calculations on K-modified Ni catalysts. By this way, insights revealing 

the promoter effects on enhanced hydrogen selectivity will be understood.  

 4.2.1 Computational Methods 

The computational methods are same with computational methods in Chapter 3. 

 

 4.2.2 Adsorption of WGSR and Methanation Reaction Intermediates on K-

modified Ni(111) Surface 

Numerous studies have shown that alkali metals can influence catalytic characters by 

lowering the work function of catalyst surface.4,9 The adsorptions of more electronegative 

species are enhanced by the electropositive alkali metals. The binding energies, preferred binding 

sites, and the differential binding energies for WGSR and methanation intermediates on K-

modified Ni(111) surface are listed in Table 4.1. The optimized structures of the intermediates 

(illustrated in Figure 4.1) in both WGSR and methanation reactions were obtained with K as an 

adatom. 
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Table 4.1. Binding energies (BE, in eV), site preferences, and differential binding energies 

(ΔΔE, in eV) for WGSR and methanation intermediates on K-modified Ni(111) surface. 

 BE [eV] site ΔΔE [eV][a] 

CH4 -0.05 physisorption pointing at K top -0.05 

CO2 -0.29 physisorption pointing at K top -0.28 

H2 -0.06 top 0.19 

H2O -0.68 K adatom -0.41 

CH2OH -1.72 top -0.16 

CH3 -1.59 fcc 0.30 

CO -2.35 hcp -0.42 

COOH -2.73 top -0.48 

CHO -2.49 fcc -0.22 

H -2.81 fcc -0.01 

HCOO -2.98 top-top -0.10 

OH -3.24 bridge 0.03 

HCOH -4.00 fcc -0.12 

CH2 -3.90 fcc 0.13 

COH -4.44 fcc -0.05 

O -5.65 fcc -0.26 

CH -6.38 fcc 0.03 
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C -7.06 hcp -0.15 

[a]ΔΔE = BEK-modified Ni(111) – BENi(111) , a negative value means enhanced binding 

energy with K promoter. The BENi(111) is obtained from Table 3.1 in Chapter 3. 

 

 

Figure 4.1. Optimized structures of reaction intermediates (in Table 4.1) on K-modified Ni(111) 

surface. C, O, H, Ni, and K are depicted in grey, red, white, blue, and purple, respectively. 

 

The calculated charge, based on Bader charge analysis,10,11 on the K adatom is +0.78, 

which indicates that the K 4s electron has transferred to the nearby Ni substrate. The K adatom 

prefers to interact with the more electronegative sites (i.e., O) in the adsorbate molecules (Figure 
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4.1). In such cases, the binding energies increase. The binding energies of COOH (with carbonyl 

O), CO, H2O, CO2, and atomic O all increase noticeably by more than 0.25 eV (Table 4.1). 

For CHO*, CH2OH*, HCOH*, HCOO*, and COH*, the K adatoms also increase their 

binding energies but less than 0.25 eV. Bindings of CHO*, CH2OH*, HCOH*, HCOO*, and 

COH* are 0.22 eV, 0.16 eV, 0.12 eV, 0.10 eV, and 0.05 eV stronger than that on the clean 

Ni(111) surface, respectively. 

The varying degrees of alkali metal promoting effects are reflected by changes in 

molecular geometries, which include adsorption sites and adsorbate orientations. For instance, 

the binding energy of COH* is only lowered by 0.05 eV, which is because the perpendicular 

COH* configuration at the face-centered cubic (fcc) site constrains the O species at a longer 

distance from the K adatom (Figure 4.1). For CH2OH* and HCOO*, the interactions with K 

adatoms cause these adsorbates to dislocate from their preferred sites (e.g., CH2OH* moves from 

an fcc to a top site) or readjust their adsorption configuration by rotation (e.g., HCOO*). 

The exception in the adsorbate promoting effect is OH adsorption, in which the binding 

energy increases by 0.03 eV. In this case, the hydroxyl group moved from the preferred fcc site 

to the bridge site. Like HCOH*, the electrostatic interactions with the K adatoms have been used 

to overcome the energetics required by OH to migrate to the less favorable bridge site. 

Correspondingly, the K adatom also shows noticeable migration from the hexagonal close 

packed (hcp) site to the near top site (Figure 4.1). 

For the less electronegative C and H, the effects of K adatoms on the binding energies are 

either nearly neutral (e.g., CH4*, H*, and CH*), or inhibitive in terms of destabilizing the 

adsorptions (e.g., H2*, CH2*, and CH3*; Table 4.1). The exception of this trend is atomic C*, 

which binds more strongly by 0.15 eV than on the clean Ni(111) surface. The calculated binding 
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energy of atomic C is consistent with the work on CO dissociation on Rh(111) surfaces, in which 

the K adatom stabilizes the unpaired electrons in atomic C.1 The trend in the binding energy 

variation found in this study is consistent with previous findings.9 

 

 4.2.3 Effect of K on WGSR and Methanation Elementary Steps 

The effects on transition states by the K adatom were also investigated explicitly. The 

transition state structures of the WGSR and methanation elementary steps on K-modified 

Ni(111) surfaces are shown in Figure 4.2. Details on the promoting effects (i.e., the lowering of 

the energy barrier by K) are listed in Table 4.2 expressed as the actual energy barriers of each 

elementary step. 

The energy barriers for H2O and CO dissociation do not change noticeably and are only 

0.05 and 0.03 eV lower than that of the corresponding clean Ni(111) surface. 

For WGSR, in the presence of K adatoms, the energy barrier for R10 in the redox 

pathway increases by 0.05 eV. The energy barrier of carboxyl formation (R11) is lowered by 0.1 

eV. For 

COOH* dehydrogenation (R12), the energy barrier is significantly lower, by 0.42 eV. However, 

as the energy barrier for COOH* dissociation is already negligible by R14, such beneficial effect 

from K is not expected to further enhance the kinetics of this step. The energy barriers for formyl 

(R15) and formate formation (R16) increase by 0.17 and 0.24 eV, respectively. Hence, the 

WGSR carboxyl pathway benefits from the presence of adsorbed K kinetically. 
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Table 4.2. DFT-calculated reaction energies (ΔE [eV]), energy barriers (Ea [eV], and imaginary 

frequencies (vi [cm-1]) of the transition states of the elementary reactions on K-modified Ni(111) 

surface. 

 Elementary step ΔE[eV] Ea,f(Ea,b)
[a] [eV] vi[cm-1] 

R1 CO (g) + * ⇌ CO* -2.35   

R2 H2O (g) + * ⇌ H2O* -0.68   

R3 CO2* ⇌ CO2 (g) + * 0.29   

R4 H*+H* ⇌ H2* + * 1.04   

R5 H2* ⇌ H2 (g) + * 0.06   

R6 CH3* + H* ⇌ CH4(g) + 2* -0.32   

R7 H2O* + * ⇌ OH* + H* 0.01 0.81(0.80) -1042 

R8 OH* + * ⇌ O* + H* -0.50 0.70(1.21) -1218 

R9 OH*+OH* ⇌ H2O* + O* -0.51   

R10 CO* + O* ⇌ CO2* + * 1.40 1.61(0.21) -475 

R11 CO* + OH* ⇌ COOH* + * 0.89 1.30(0.40) -239 

R12 COOH* + * ⇌ CO2* + H* 0.00 0.51(0.51) -1138 

R13 COOH* + O* ⇌ CO2* + OH* 0.51   

R14 COOH* + OH* ⇌ CO2 *+H2O* -0.01   

R15 CO* + H* ⇌ CHO* + * 1.49 1.61(0.05) -350 

R16 CHO* + O* ⇌ HCOO* + * -0.03 0.97(1.07) -303 

R17 HCOO* + * ⇌ CO2* + H* -0.06 0.33(0.39) -428 

R18 HCOO* + O* ⇌ CO2* + OH* 0.44   
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R19 HCOO* + OH*⇌ CO2* + H2O* -0.07   

R20 CO* + * ⇌ C* + O* 1.30 2.85(1.55) -404 

R21 CO*+CO* ⇌ CO2* + C* 2.70 3.22(0.52) -278 

R22 CHO* + * ⇌ CH* + O* -0.51 0.94(1.52) -483 

R23 CO* + H* ⇌ COH* + * 1.37 2.09(0.72) -1563 

R24 COH* ⇌ C* + OH* 0.44 1.49(1.06) -323 

R25 CHO* + H* ⇌ HCOH* + * 0.55 1.05(0.58) -1340 

R26 COH* + H* ⇌ HCOH* + * 0.67 0.89(0.22) -681 

R27 HCOH* + * ⇌ CH* + OH* -0.55 0.61(1.17) -376 

R28 HCOH*+ H* ⇌ CH2OH* + * 0.31 1.12(0.81) -956 

R29 CH2OH* + * ⇌ CH2* + OH* -0.39 0.71(1.10) -391 

R30 C* + H* ⇌ CH* + * -0.32   

R31 CH* + H* ⇌ CH2* + * 0.48   

R32 CH2* + H* ⇌ CH3* + * 0.16   

[a]Energy barriers of reverse reaction are shown in the parentheses. 
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Figure 4.2. Transition state (TS) structures of elementary steps (labeled the same way as in 

Table 4.2) on K-modified Ni(111) surface. The side view of each TS structure is shown as inset 

figure. C, O, H, Ni, and K are depicted in grey, red, white, blue, and purple, respectively. 

 

For methanation, the energy barriers of direct C-O bond cleavage decrease by 0.03, 0.27, 

and 0.37 eV for R20, R21, and R24, respectively. Nevertheless, these barriers are still too high to 

allow these pathways to compete. 

The C-O bond cleavage barrier for R22 (CHO pathway) and R27 (HCOH pathway) 

decreases by 0.10 and 0.11 eV, respectively. The barriers for R23 (COH pathway) and R29 

(CH2OH pathway) increase by 0.18 and 0.06 eV, respectively. Overall, the K adatom can 
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promote the kinetics of C-O bond cleavage in the CHO and HCOH pathways, which have 

already been shown to be the main competing routes against the WGSR. 

 

 4.2.4 Effect of Promoter on WGSR Selectivity 

If we combine the calculated energetics and kinetics by focusing on the competition 

between the carboxyl and redox pathways of the WGSR against the CHO pathway of 

methanation, the overall potential energies for WGSR and methanation on the K-modified 

Ni(111) surfaces are summarized in Figure 4.3 (dashed pathways) along with the original clean 

Ni(111) surfaces (solid pathways, data from Table 3.2). 

 

 

Figure 4.3. Potential energy surfaces of WGSR and methanation pathways on clean Ni(111) 

(solid paths) and K-modified Ni(111) surfaces (dashed paths). 
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Because of the stronger binding energies for both CO and H2O, (a combined 0.83 eV 

lower) in the presence of K adatoms, the overall potential energies for both the WGSR and 

methanation pathways shift downward noticeably. 

Although the first step of H2O* dissociation (R7) becomes less exothermic on the K-

modified Ni(111), the potential energies still remain much more favorable than that on the clean 

Ni(111) surface, as shown in the comparison between the dashed and solid pathways for the 

corresponding steps in Figure 4.3. 

Between the WGSR carboxyl pathway and the methanation CHO pathway, the energy 

barrier of R11 (carboxyl formation) decreases by 0.10 eV and the barrier of R15 (formyl 

formation) increases by 0.17 eV. So do the reaction energies, in which R11 becomes more 

exothermic by 0.07 eV and R15 becomes more endothermic by 0.24 eV. As a result, the addition 

of K adatoms to Ni(111) effectively lowers the transition state energies and the energetics to 

favor the WGSR. 

The redox pathway in the WGSR consumes O* species produced at the second step of 

water dissociation. On the K-modified Ni(111) surface, R8 becomes more exothermic (by 0.3 

eV) with a reduced energy barrier (by 0.28 eV). Therefore, the adatom promotes the energetics 

and kinetics of the O formation, although the energy barrier of R10 remains almost unchanged 

(1.61 vs. 1.56 eV on clean Ni(111)). Still, if we combine the promoted OH dissociation and 

stronger CO binding, the potential energies of the WGSR redox pathway are also lower (even 

than the carboxyl pathway). Hence, the redox pathway becomes the most competitive pathway 

(Figure 4.3). 
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 4.3 Case Study 2: Ni-doping Effect on Oxygen Removal from an 

Orthorhombic Mo2C(001) Surface 

Introducing a suitable dopant (e.g., Ni, Co, Fe, and Cu) can enhance the Mo2C catalytic 

activity, selectivity, and stability in various hydrocarbon conversion reactions including 

oxygenates by generating new active sites or influencing existing sites. 12-16 Zhang et al. have 

found that with Ni promotion, the stability of Mo2C was improved in the hydrodeoxygenation 

reaction of model bio-derived compounds such as ethyl benzoate, acetone, and acetaldehyde.17 

Ma et al. have proposed that the highest activity and stability of Mo2C for stream reforming of 

methanol occurs at lower Ni doping amount.18 Choi et al. have observed that the catalytic 

performance of Mo2C in hydroprocessing of fast pyrolysis bio-oil was sensitive to the type of 

metal dopant and Ni-doped Mo2C outperformed Co-, Cu-, or Ca-doped counterparts.16 However, 

the fundamental reason behind the increased catalytic performance of Mo2C with Ni doping is 

not well known. 

While the fundamental catalytic effect of Mo2C in C-O/C=O cleavage is via the binding 

of ‘O’ to the catalytic surface, the strong binding of ‘O’ to Mo or C site promotes the scission of 

C-O/C=O bonds. However, with strong binding, the removal of the adsorbed atomic oxygen 

(O*: the asterisk (*) representing the adsorption site) is difficult and could hinder the overall 

catalytic reaction kinetics leading to catalyst poisoning.19 Additionally, the coverage dependency 

of oxygen and carbon (from various sources) binding with the dominant catalyst surfaces 

influence the efficacy of any deoxygenation catalysts.20-22 A catalyst with intermediate binding 

strength towards the ‘O’ atom (or oxygenated intermediates) is desirable for the favorable C-

O/C=O bond cleavage as well as surface ‘O’ removal. We hypothesize that the promoting effect 
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of Ni dopant on Mo2C-based catalysts in hydroprocessing of biomass derivatives as reported in 

the literature is partly due to the role of Ni in facilitating the O* removal. 16  

In this section, we present results of density functional investigation into reaction 

energetics and reaction barriers of oxygen removal from un-doped and Ni-doped Mo2C(001) 

surfaces. The models for the surface calculations and the methods are described in Section 2. The 

results and a discussion are presented in Section 3.  

 

 4.3.1 Theoretical Methods 

In this investigation, Mo2C(001) was chosen as a starting reaction surface model to 

investigate Ni effect on O* removal. Though the model does not have the lowest surface energy, 

the Mo2C(001) surface is stable23 and expected to exist on nanoparticles based on Wulff 

constructions.24,25 Additionally, the area proportional to the Mo2C(001) surface on the Wulff 

shape increases with the increase of H2 partial pressure,25 which is the main hydrogen source for 

the catalytic hydrogenation of O* species19. The binding energies (BEs) of reaction intermediates 

such as of O*, OH*, H2O*, H* and the activation energies of OH* and H2O* formation on un-

doped and Ni-doped Mo2C(001) surfaces were calculated using the density functional theory 

(DFT) method. 

The spin-polarized DFT calculations were used initially and the total magnetic moments 

were identified to be zero for both un-doped Mo2C(001) surfaces and Ni-doped Mo2C(001) 

surfaces. Therefore, spin unpolarized DFT calculations were performed for both un-doped 

Mo2C(001) surfaces and Ni-doped Mo2C(001) surfaces using the Vienna ab initio simulation 

package (VASP)26,27 with the generalized gradient approximation PBE (GGA-PBE) functional28 

for exchange-correlation energy. The electron-ion interaction was described using the projector-
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augmented wave (PAW) method 29, with a plane wave energy cutoff of 400 eV. The Brillouin-

zone was sampled with 4 × 4 × 1 k-point mesh for surface calculations and Γ-point mesh for gas 

phase calculations based on the Monkhorst-Pack scheme 30. The electronic occupancy was 

determined by the Methfessel-Paxton scheme31, with the width of smearing of 0.2 eV.  

The orthorhombic Mo2C phase was used in our model, henceforth abbreviated as Mo2C. 

The optimized lattice constants for bulk Mo2C are a = 4.74 Å, b = 6.05 Å, and c = 5.23 Å which 

are consistent with the experimental values (a= 4.72 Å, b= 6.01 Å, c = 5.20 Å)32. A four-layer (2 

× 4) Mo2C(001) surface was generated with the top two layers and the adsorbates were allowed 

to relax, whereas the atoms from the bottom two layers were fixed at their corresponding bulk 

lattice positions. The Mo2C(001) surface has two Mo terminations and one C termination. Wang 

et al. 24 calculated the surface energies of Mo2C(001) surface with different terminations and the 

results show that one of the Mo termination (denoted as TMo ) as shown in Figure 4.4(a) becomes 

more stable under weaker carburization conditions (smaller value of carbon chemical potential) 

and C termination (denoted as TC ) as shown in Figure 4.4(b) becomes more stable under 

stronger carburization conditions. In this paper, we focus on the Mo2C(001) surface with TMo and 

TC. In order to study the Ni dopant effect, only one Ni atom was added to the Mo2C(001) surface 

to mimic an experimental condition, where the weight percentage of Ni is ~0.90 % (that is, one 

Ni for every 32 Mo2C units).18 All surfaces simulated here had a 20 Å vacuum between the two 

neighboring successive slabs. The combined climbing image-Nudged Elastic Band (CI-NEB) 

33and dimer 34 method were used to determine the transition state (TS) structures and the 

activation energy barrier of the OH* and H2O* formation at the surface. 
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Figure 4.4. Top view and side view of optimized structures of Mo2C(001) surfaces. (a) un-doped 

TMo Mo2C(001) surface, (b) un-doped TC Mo2C(001) surface. The top two layers of Mo atoms 

are depicted in different color to differentiate Mo on different positions. Same color scheme is 

utilized throughout the paper. 

 

The BEs of O*, OH*, H*, and H2O* on the surface in this paper are defined relative to 

non-radical neutral gas phase species as shown in Equations (42-45) respectively: 

𝐵𝐸𝑂∗ = 𝐸𝑂+𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 𝐸𝐻2(𝑔) − 𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝐸𝐻2𝑂(𝑔) (42) 

𝐵𝐸𝑂𝐻∗ = 𝐸𝑂𝐻+𝑠𝑢𝑟𝑓𝑎𝑐𝑒 +
1

2
𝐸𝐻2(𝑔) − 𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝐸𝐻2𝑂(𝑔) (43) 

𝐵𝐸𝐻∗ = 𝐸𝐻+𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒 −
1

2
𝐸𝐻2(𝑔) (44) 

𝐵𝐸𝐻2𝑂∗ = 𝐸𝐻2𝑂+𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝐸𝐻2𝑂(𝑔) (45) 
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where 𝐸𝑂+𝑠𝑢𝑟𝑓𝑎𝑐𝑒, 𝐸𝑂𝐻+𝑠𝑢𝑟𝑓𝑎𝑐𝑒, 𝐸𝐻+𝑠𝑢𝑟𝑓𝑎𝑐𝑒, and 𝐸𝐻2𝑂+𝑠𝑢𝑟𝑓𝑎𝑐𝑒  are the total energies of O, OH, 

H, and H2O adsorbed on the Mo2C(001) surfaces, respectively. The 𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is the total energy 

of the Mo2C (001) surface and the𝐸𝐻2𝑂(𝑔), and the 𝐸𝐻2(𝑔) are the total energies of H2O and H2 in 

the gas phase calculated in a periodic box of 10Å × 10 Å × 10.5 Å.  The reaction energies (𝛥𝐸) 

for O* removal reactions were calculated by Equation (46) and the energy barriers (𝐸𝑎) of OH* 

and H2O* formation was calculated using the Equation (47): 

 

𝛥𝐸 = 𝐸𝐹𝑆 − 𝐸𝐼𝑆 (46) 

𝐸𝑎 = 𝐸𝑇𝑆 − 𝐸𝐼𝑆 (47) 

 

where the 𝐸𝑇𝑆 is the total energy of the transition state structure and the 𝐸𝐼𝑆 or 𝐸𝐹𝑆 is the total 

energy of the initial state or final state with reactant species are treated at infinite separation. 

 

 4.3.2 O* Removal over Mo2C(001) Surfaces 

The computed thermochemistry of the adsorption of oxygen-species is discussed here, 

where the interactions of the substrate species and the surface can be represented in four model 

reactions (R) denoted as R1, R2, R3, and R4, respectively. Note that the asterisk symbol (*) 

described in this section represents the adsorption site on un-doped and Ni-doped Mo2C(001) 

surfaces. Among the substrates, the O* species can react with the nearby H* to form OH* (R1). 

Subsequently, the formed OH* on surface can either react with the nearby H* to form H2O* (R2) 

or react with neighboring OH* to form H2O* and O* (R3, OH disproportionation reaction). 

Finally, H2O* desorbs from the surface (R4).  
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O* + H* ↔ OH* + * (R1) 

OH* + H* ↔ H2O* + * (R2) 

OH* + OH* ↔ H2O* + O* (R3) 

H2O* ↔ H2O(g) + * (R4) 

 

The combination of R1, R2, and R4 is named direct O* removal, while the association of 

R1, R3, and R4 is named OH-assisted O*removal in this work. 

 

4.3.2.1 Ni-doped Mo2C(001) surface structures 

The Mo2C(001) surface can be either Mo-terminated (TMo ) or C-terminated (TC) as 

shown in Figure 4.4(a) and Figure 4.4(b)). The doped Ni can be either adsorbed on the Mo2C 

surface or embedded in the Mo2C lattice in place of a Mo site from XRD 13 and XPS 35. Thus, 

two different doping structures were considered on TMo and TC Mo2C(001) surfaces for the DFT 

calculations. Therefore, a total of six different Mo2C(001) surfaces including un-doped TMo 

Mo2C(001) surface, Ni-adsorbed TMo Mo2C(001) surface, Ni-replaced TMo Mo2C(001) surface, 

un-doped TC Mo2C(001) surface, Ni-adsorbed TC Mo2C(001) surface, and Ni-replaced TC 

Mo2C(001) surface. For each surface, multiple starting geometries were considered and the 

lowest-energy configurations were used here. The most stable Ni-adsorbed and Ni-replaced 

surfaces are shown in Figure 4.5 with Ni loading amount corresponding to ~ 0.90 wt%. 

Computations suggest that Ni prefers to adsorb on the bridge site of two 1st layer lower Mo 

atoms on both TMo and TC Mo2C(001) surfaces. The most favorable site for replacing Mo with 
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Ni is on the top surface layer. The DFT results reveal that on TMo Mo2C(001) surface, the 

formation of Ni_adsorbed and Ni_replaced TMo Mo2C(001) is exothermic by -0.11 eV and -0.59 

eV, respectively. On TC Mo2C(001) surface, the formation of Ni_adsorbed TC Mo2C(001) 

surface is also exothermic (ΔE =-1.00 eV), while the formation of Ni_replaced TC Mo2C(001) 

surface is endothermic (ΔE = 0.84 eV) and not preferred. 

Bader charge analysis10,11 results are also reported in Figure 4.5, where the Mo is an 

electron donor and C is an electron acceptor on Mo2C(001) as expected based on their electron 

negativity. On the TMo Mo2C(001) surface, the charges on Ni are -0.31 and -0.16 for Ni-adsorbed 

and Ni-replaced Mo2C(001) surfaces, respectively, which indicates that the Ni accepts electrons 

from nearby Mo atoms. Thus, on the TMo Mo2C(001) surface, the Ni atom prefers to interact with 

more electropositive species while Mo atoms prefers to interact with the more electronegative 

species. On the contrary, on TC Mo2C(001), the charge of Ni are +0.47 and +0.31 for Ni-

adsorbed and Ni-replaced Mo2C(001) surfaces, respectively, which suggests that Ni is an 

electron donor on these surfaces. The Ni and Mo atoms favor the adsorption of electronegative 

molecules while C atoms favor the adsorption of electropositive species. The synergies of Ni, 

Mo, and C atoms affect the adsorption of various species/molecules on those surfaces. 
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Figure 4.5. Top view of optimized structures of Mo2C(001) surfaces. (a) Ni-adsorbed TMo 

Mo2C(001), (b) Ni-replaced TMo Mo2C (001), (c) Ni-adsorbed TC Mo2C(001), (d) Ni-replaced TC 

Mo2C(001). The purple sphere represents the Ni atom. The red arrow shows the Bader charges of 

selected atoms. The white arrow shows the distance of Ni dopant to nearby Mo atom. 

 

4.3.2.2 Adsorption of Reaction Intermediates 

The optimized structures of the reactive intermediates (O*, OH*, H*, H2O*) on the TMo 

and TC Mo2C(001) surfaces are shown in Figure 4.6 and the computed binding energies are 

shown in Table 4.3.   
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Figure 4.6. Optimized structures of 4 intermediates shown in Table 4.3 on the un-doped and Ni-

doped Mo2C(001) surfaces. The purple, red, and white spheres represent Ni, O, and H, 

respectively. The shortest Ni-O and Ni-H distances at the surfaces are also shown. 
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Table 4.3. BEs (eV) of O* (Equation 42), OH*(Equation 43), H*(Equation 44), and 

H2O*(Equation 45) on un-doped and Ni-doped Mo2C(001) surfaces. 

 TMo  Mo2C(001) TC  Mo2C(001) 

 un-doped Ni-adsorbed Ni-replaced un-doped Ni-adsorbed Ni-replaced 

O* -1.88 -1.53 -1.35 -0.12 0.21 a -0.79 

OH* -1.50 -1.39 -1.16 -0.24 0.05 a -0.65 

H* -0.96 -0.75 -0.97 -1.03 -0.68 -1.24 

H2O* -0.97 -0.98 -1.03 -0.52 -0.78 -0.70 

(a): Note that the binding energies relative to non-radical neutral gas phase species (H2O and H2) 

as shown in Equations (42-45). 

 

On the TMo Mo2C(001) surface, an optimum energy conformation suggests that the 

oxygen atom sits on a three-fold site consisting of two first layer upper Mo atoms and one first 

layer lower Mo atom. The BEs of O* on un-doped, Ni-adsorbed, and Ni-replaced TMo 

Mo2C(001) surfaces are -1.88 eV, -1.53 eV, and -1.35 eV , respectively. On the TC Mo2C(001) 

surface, the ‘O’-atom prefers to bind with the surface carbon atom, where the BEs are -0.12 eV, 

0.21 eV, and -0.79 eV for un-doped, Ni-adsorbed, and Ni-replaced TC Mo2C(001) surfaces, 

respectively. The computed BE of the hydroxyl (OH*) species with the Ni-adsorbed (-1.39 eV), 

Ni-replaced TMo Mo2C(001) (-1.16 eV) and Ni-adsorbed TC Mo2C(001) (0.05 eV) are weaker 

compared to that of the un-doped Mo2C(001) scenario (-1.50 eV for TMo and -0.24 eV for TC). 

The computed binding energy of H* binding on the Ni-adsorbed TMo Mo2C(001) is -0.75 eV 
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marginally (vs. -0.96) weaker compared to that on an un-doped TMo Mo2C(001) (-0.96 eV). Note 

that the absorption site for H* species is similar to the adsorption sites for O* and OH* species. 

However, the site preference of H* on Ni-replaced TMo Mo2C(001) changes from a three-fold 

site consisting of two first layer upper Mo atoms and one Ni atom (i.e., the preference site of O* 

and OH*) to a three-fold site consisting of two first layer inferior Mo atoms and one Ni atom 

with BE identical to un-doped TMo Mo2C(001) surface. On the TC Mo2C(001) surface, the H* 

prefers to bind with the carbon sites with the BEs of -1.03 eV, -0.68 eV, and -1.24 eV for un-

doped, Ni-adsorbed, and Ni-replaced TC Mo2C(001), respectively. The H2O* binds at the top site 

of first layer upper Mo atoms. For TMo, the BEs of H2O* are -0.98 eV and -1.03 eV on Ni-

adsorbed and Ni-replaced Mo2C(001) surfaces, respectively, which are comparable to that (-0.97 

eV) of un-doped Mo2C(001) surface. For TC, the BE of H2O* are -0.78 eV and -0.70 eV on Ni-

adsorbed and Ni-replaced Mo2C(001) surface, respectively, which are marginally stronger than 

that of the un-doped Mo2C(001) (-0.52 eV). 

Based on the computed binding energies, the Ni dopant destabilizes the reaction 

intermediates (O*, OH*) on Ni-adsorbed, Ni-replaced TMo Mo2C(001) surface and Ni-adsorbed 

TC Mo2C(001) surfaces compared to that of the un-doped Mo2C(001) surface, which may be 

helpful for further O* removal reactions. Upon replacing one Mo atom by a Ni atom at the TC 

Mo2C(001) surface, the presence of the dopant stabilizes the bindings of O*, OH*, and H*. The 

Ni dopants have negligible effect on H2O adsorption on the TMo Mo2C(001) surface. On the 

contrary, the Ni dopants stabilize the H2O adsorption on the TC Mo2C(001) surface. 

 

4.3.2.3 Thermochemistry and reaction barriers of O* removal 
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The calculated reaction energies (ΔE) and reaction barriers (Ea) of O* removal via OH* 

and H2O* intermediates over Mo2C(001) surfaces are tabulated in Table 4.4 and Table 4.5, 

respectively. The transition state structures on TMo and TC Mo2C(001) surfaces are shown in 

Figure 4.7(a) and Figure 4.7(b), respectively. Details regarding the computed energetics 

associated with the O* removal are discussed below. 

 

Table 4.4. Calculated reaction energies (ΔE [eV]) of O* removal via OH* formation and H2O* 

formation on un-doped and Ni doped Mo2C(001) surfaces. 

 TMo  Mo2C(001) TC  Mo2C(001) 

 

un-

doped 

Ni-

adsorbed 

Ni-

replaced 

un-

doped 

Ni-

adsorbed 

Ni-

replaced 

(R1) O* + H* ↔ OH* 

+ * 

1.35 0.89 1.16 0.91 0.53 1.38 

(R2) OH* + H* ↔ 

H2O* + * 
1.49 1.16 1.09 0.75 -0.15 1.19 

(R3) OH* + OH* ↔ 

H2O* + O* 
0.14 0.27 -0.07 -0.16 -0.68 -0.19 
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Table 4.5. Calculated energy barriers (Ea [eV]) of O* removal via OH* formation and H2O* 

formation on un-doped and Ni doped Mo2C(001) surfaces. 

 TMo  Mo2C(001) TC  Mo2C(001) 

 

un-

doped 

Ni-

adsorbed 

Ni-

replaced 

un-

doped 

Ni-

adsorbed 

Ni-

replaced 

(R1) O* + H* ↔ OH* 

+ * 

1.83 1.40 1.75 1.83 1.29 1.87 

(R2) OH* + H* ↔ 

H2O* + * 
1.86 1.59 1.64 1.32 0.64 1.39 

(R3) OH* + OH* ↔ 

H2O* + O* 
0.71 0.45 0.07 0.22 1.29 0.44 
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Figure 4.7. Transition state structures of elementary steps of O* removal from (a) TMo 

Mo2C(001) surface, (b) TC Mo2C(001) surface. The bond lengths of transition states are marked 

here for better understanding of the transition state structures. The Ni-O distances on the surface 

are also shown. The energetics and energy barriers associated with the reaction steps are 

presented in Table 4.4 and Table 4.5.  

 

(a) O* + H* ↔ OH* + *(R1): 

  Based on the energetics and energy barriers presented in Table 4.4 and Table 4.5, the 

formation of OH* (R1) on the un-doped TMo Mo2C(001) surface is neither thermodynamically 

(1.35 eV) nor kinetically (1.83 eV) favorable at standard reaction conditions. The Ni dopants on 

TMo Mo2C(001) surface reduce the endothermicity of the reactions. For instance, the reaction 

energies (ΔE) of OH* formation on Ni-adsorbed site is 0.89 and on Ni-replaced site is 1.16 eV, 

respectively, both of which are less endothermic than that of the un-doped Mo2C surface. The 

computed reaction barriers (Ea) are also smaller (by ~0.2-0.4 eV) in the presence of Ni compared 

to that of the clean Mo2C catalyst surface. The OH* formation on un-doped TC Mo2C(001) 

surface is also endothermic by 0.91 eV with an energy barrier of 1.83 eV. This reaction energy 

and energy barrier is decreased for OH formation on the Ni-adsorbed TC Mo2C(001) surface 

(0.53 eV versus 0.91 eV for reaction energy and 1.29 eV versus 1.83 eV for energy barrier) 

compare with those on un-doped TC Mo2C(001) surface. However, on Ni-replaced TC 

Mo2C(001) surface, the OH* reaction energy and energy barrier are increased to 1.38 and 1.87 

eV, respectively, marginally higher than that of the Tc Mo2C (001) surface .   
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(b) OH* + H* ↔ H2O* + *(R2): 

A reaction of the OH* species on the surface is the formation of H2O*(R2). On the un-

doped TMo Mo2C(001) surface, the computed energy barrier for the H2O* formation is 1.86 eV 

and the reaction is endothermic by 1.49 eV. Based on computations (Table 2), a lower reaction 

energy (1.16 eV and 1.09 eV) and energy barrier (1.59 eV and 1.64 eV) are observed in the 

presence of Ni dopant (adsorbed and replaced) on TMo Mo2C(001) surface. The formation of H2O 

on un-doped TC Mo2C(001) surface is endothermic (0.75 eV) and require an energy barrier of 

1.32 eV. In the presence of Ni dopant (adsorbed) on TC Mo2C(001) surface, this energy barrier 

decreased to 0.64 eV and the formation of H2O becomes exothermic (-0.15 eV). However, when 

Ni dopant replaces one Mo atom on TC Mo2C(001) surface, the formation of H2O* becomes less 

favorable (endothermic by 1.19 eV) and require a higher energy barrier (1.39 eV). 

(c) OH* + OH* ↔ H2O* + O* (R3): 

The OH* species can react with neighboring OH* to form H2O* and O* (OH 

disproportionation). This OH disproportionation reaction is marginally endothermic (0.14 eV) 

and the computed energy barrier is 0.71 eV. On the Ni-adsorbed TMo Mo2C(001) surface, the 

computed energy barrier drops to 0.45 eV, however the reaction is marginally endothermic (0.27 

eV). On Ni-replaced TMo Mo2C(001) surface, the OH disproportionation reaction becomes more 

favorable both thermodynamically (ΔE: -0.07 eV versus 0.14 eV) and kinetically (Ea: 0.07 eV 

versus 0.71 eV). On un-doped TC Mo2C(001) surface, computations indicate the OH 

disproportion is exothermic (-0.16 eV) and the energy barrier required is 0.22 eV. On the Ni-

doped TC Mo2C(001), the OH disproportionation is thermodynamically favorable and the 

computed reaction barriers are 1.29 and 0.44 eV respectively for Ni-adsorbed and Ni-replaced 

Mo2C catalyst.  



104 

 

Overall, water formation through OH disproportionation (R3) is thermodynamically and 

kinetically more favorable than R2 with lower reaction energies and energy barriers on un-doped 

TMo Mo2C(001), Ni-adsorbed TMo Mo2C(001), Ni-replaced TMo Mo2C(001), un-doped TC 

Mo2C(001), and Ni-replaced TC Mo2C(001) surfaces. Therefore, OH disproportionation can 

boost water formation on those surfaces. However, on Ni-adsorbed TC Mo2C(001) surface, the 

water formation via R2 is kinetically more favorable than R3 (0.64 eV vs 1.29 eV). Therefore, a 

direct O* removal likely occurs at the Ni-adsorbed TC Mo2C(001) surface sites, while a OH-

assisted O* removal take place on other surfaces investigated here. 

 

4.3.2.4 Potential energy surface of O* removal 

Due to the lower reaction energy and energy barrier of OH disproportion reaction on un-

doped TMo Mo2C(001), Ni-adsorbed TMo Mo2C(001), Ni-replaced TMo Mo2C(001), un-doped TC 

Mo2C(001), and Ni-replaced TC Mo2C(001) surfaces, the OH-assisted O* (R1 R3 R4) 

removal were considered on those surfaces to generate the overall potential energy surface 

(PES). For Ni-adsorbed TC Mo2C(001) surface, the direct O* removal pathway (R1R2R4) 

pathway and the associated thermodynamics was considered to generate the potential energy 

profile. The overall PES is shown in Figure 4.8. The sum of the energies of a gas phase H2O 

molecule and the Mo2C(001) surface is considered as the reference value (0.0 eV). From Figure 

4.8, it is evident that the removal of O* intermediates to H2O from all Mo2C(001) surfaces are 

endothermic. In the case of un-doped TMo Mo2C(001) surface ((solid black line in Figure 4.8), 

computed direct energy difference (ΔEg, energy difference between highest and lowest point in 

the reaction coordinate) for the O* removal is 3.81 eV. Computations suggest that the Ni dopant 

on TMo Mo2C(001) surface can assist by reducing this thermodynamic bottleneck by 0.78 eV for 
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adsorbed Ni on the surface and 0.53 eV for Ni replaced one Mo atom in the lattice. In the case of 

un-doped TC Mo2C(001) surface, the O* removal (solid red line in Figure 4.8) has a direct 

energy difference of 2.18 eV. Upon adsorbing the Ni dopant on TC Mo2C(001) surface, the ΔEg 

for O* removal is reduced to 1.29 eV (from 2.18 eV) suggesting a relatively favorable O* 

removal. Though the ΔEg  for O* removal becomes higher with Ni_replaced Mo2C(001) surface 

than that of the un-doped TC Mo2C(001) surface (3.27 eV versus 2.18 eV), the formation of this 

doped surface structure is endothermic reaction. Overall, O* removal on the Ni-adsorbed TC 

Mo2C(001) surface is the most favorable reaction with the lowest ΔEg among the Mo2C(001) 

surfaces considered in this study.  
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Figure 4.8. Potential energy surface of O* removal on Mo2C(001) surface. Transition state 

species are marked as TS to distinguish from the intermediates. Extra OH* is added or removed 

to OH-assisted O* removal to balance the whole step. 

 

4.3.2.5 Temperature programmed reduction of surface-oxidized Mo2C and Ni-Mo2C 

As a way to assess the validity of the DFT calculation results obtained for the (001) plane 

of Mo2C, temperature-programmed reduction (TPR) experiments were performed on un-doped 

and Ni-doped (0.2-0.4 wt.%) bulk Mo2C catalysts. The carbide samples, passivated with a low 

concentration of oxygen (i.e., 1%) after synthesis, had been stored in air until the TPR 

experiments. The carbides were orthorhombic Mo2C investigated for HDO of a range of 

oxygenated hydrocarbon compounds by several research groups36. Information about the 
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synthesis procedure and catalytic properties related to the carbides similar to those used in the 

present study can be found in ref 16,37.  

The TPR results are presented in Figure 4.9 as H2O formation profiles as a function of 

reduction temperature. Since each carbide sample was dried at 100 °C in Ar prior to TPR, most 

of the H2O molecules evolved during TPR can be attributed to the reduction of surface oxygen 

(vs. desorption of physisorbed H2O). The fact that multiple H2O peaks appeared over a broad 

temperature range for most of the catalysts indicates that several types of O* species were 

present on the surface of these multi-faceted Mo2C solids. For both catalyst types (i.e., un-doped 

and Ni-doped), longer storage in air increased not only the amount of H2O formed, but also the 

number of peaks especially at high temperatures. This means that O atom incorporation 

continued even after the passivation likely via adsorption of O atoms on sites more difficult to 

reach and formation of surface Mo oxides. Indeed, X-ray photoelectron spectroscopy of 

passivated Mo2C samples often shows the presence of Mo oxide species such as MoO3 on the 

surface. 16,38,39 

Overall, the Ni-doped Mo2C had lower H2O formation than the un-doped Mo2C stored in 

air for a similar duration. In fact, the difference was significant; the Ni-Mo2C stored for 12 

months had a H2O formation level (based on the area under the H2O curves in Figure 4.9) similar 

to the Mo2C stored for only 1 month. This suggests that the Ni-doped Mo2C was less oxophilic 

than the un-doped counterpart. Furthermore, the reduction of Ni-Mo2C was completed at lower 

temperatures than that of the un-doped Mo2C stored for a similar duration in air. These TPR 

results thus are consistent with and support the validity of the DFT results obtained in the present 

study. 
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Figure 4.9. Water formation profiles obtained during temperature-programmed reduction of un-

doped and Ni-doped bulk Mo2C catalysts. Prior to the experiments, the synthesized carbides 

were passivated with 1% O2/N2 and stored for different lengths of time in air. Experimental 

conditions: reduction gas, 70% H2/Ar; temperature program, stabilization at 100 °C and ramp up 

to 800 °C at 10 °C/min; H2O profiles determined with a quadrupole mass spectrometer. 

 

4.4 Conclusions 

DFT calculations were performed to investigate the role of ‘K promoter to the WGSR 

activity and selectivity on Ni(111) surface and the role of ‘Ni’ promoter towards the O* removal 

from Mo2C(001) catalyst surface.  
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DFT calculations revealed that the K adatom enhances the adsorption of both CO and 

H2O, the main reactants, and thus shifts the potential energies of the WGSR, as well as the 

methanation, lower. With regard to the reaction steps that determine the selectivity between the 

WGSR and methanation, the effectiveness of the adsorbed K species to lower the potential 

energies of the redox and carboxyl pathways result in the WGSR becoming even more favorable 

in comparison to the methanation pathways. 

In addition, for O* removal reaction, the DFT results reveal that the favored Ni doping 

structures (e.g., Ni_adsorbed TMo Mo2C(001), Ni_replaced TMo Mo2C(001), and Ni_adsorbed TC 

Mo2C(001) surfaces) destabilize the adsorption of O* and OH* and benefit the O* removal. 

Among the six Mo2C(001) surfaces considered in O* removal reaction, the Ni-adsorbed TC 

Mo2C(001) is the most favorable surface. This study shows that Ni facilitates the removal of 

oxygen from various Mo2C surfaces. This computational prediction has been confirmed by the 

temperature programmed reduction profiles of Mo2C and Ni doped Mo2C catalysts that were 

previously passivated and stored in oxygen environment. 
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Chapter 5 - Structure and Size Effects of Ni Nanocatalysts for 

Hydrogen Production via WGSR 

Chapter 5 is adapted with permission from:  

Zhou, M.; Le, T.; Huynh, L.; Liu. Bin. Effects of Structure and Size of Ni nanocatalysts on 

Hydrogen Selectivity via Water-gas-shift Reaction – A First-principles-based Kinetic Study. 

Catalysis Today 2017, 280, 210-219. 

 

 5.1 Introduction 

This chapter aims to elucidate the hydrogen selectivity on different Ni surface, where the 

adverse effect of methanation cannot be neglected. WGSR and methanation are both sensitive to 

catalyst surface structures1-3. Stamatakis et al. 3performed kinetic Monte Carlo modeling of 

WGSR on Pt(111), Pt(211), and Pt(322) at 180 ~ 345°C and 1 atm, and proposed that at low CO: 

H2O ratios (e.g., 10-3), the step sites are much more active than the terraces sites; but at the CO: 

H2O ratios of 0.5, the coverages of CO and H and (turnover frequency) TOF of H2 show less 

sensitivity to the surface structures. Catapan et al. 1compared the WGSR and coke formation on 

Ni(111) and Ni(211) and concluded that the Ni(211) facet is more active for C-O bond scissions 

than Ni(111). Low-coordination surface atoms, i.e., at the step sites, are able to enhance the 

binding of H2O 4 and CO and dissociate the adsorbates. The facilitated H2O dissociation is 

beneficial toward WGSR, however, the enhanced C–O bond scission will also increase the 

selectivity to methanation. Therefore, a mechanistic understanding of the competition between 

WGSR and methanation and its structure-dependence will help address a fundamental 

heterogeneous catalysis issue. 
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Modern nanotechnologies have tremendously advanced the preparation of tailored 

nanocatalysts. 5,6 Control of nanoparticle shape and size will ultimately determine the dominant 

surface active terrace, edge, and corner sites. One prominent example of CO oxidation on gold 

demonstrated by Haruta et al. 7 suggests that catalytic activity and selectivity can be dramatically 

enhanced on highly dispersed nanoparticles (< 5 nm). In WGSR, it has been found by Shekhar et 

al. that the low-coordinated corner Au sites can be seven times more active than the perimeter 

Au sites8, both of which also depend on Au nanoparticle sizes. CO methanation is also found to 

be strongly dependent on the Ni nanoparticle sizes  (0.5 ~ 13 nm).9 A systematic investigation on 

the effect of Ni nanoparticle sizes (5 ~ 10, 10 ~ 20, and 20 ~ 35 nm) in Ni/α-Al2O3 on CO 

methanation by Gao et al. showed that nanoparticle size of 1 ~ 20 nm results in the highest CO 

turnover frequency (TOF) and CH4 yield.10  

In this chapter, the competition between WGSR and methanation was investigated to 

elucidate the key factors, i.e., temperature, surface coverage on hydrogen selectivity on 

nanoscale Ni catalysts using a uniform computational framework that consolidates periodic, 

spin-polarized DFT calculated thermochemistry and kinetics and the mean field kinetic 

modeling. A mechanism consisting of only the dominant WGSR (i.e., redox and carboxyl 

pathways), and methanation pathways (i.e., CHO and HCOH pathways) on Ni(111) was 

constructed (as shown in Section 3.3) to simply the reactions.11 The universal kinetic Brønsted-

Evans-Polanyi (BEP) relationships describing elementary steps involving C–H, O–H, and C–O 

bonds have also been established on Ni(111), Ni(100), and Ni(211) facets.  
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 5.2 Computational Methods 

 5.2.1 DFT Calculations 

The (111), (100), and (211) facets of single Ni crystal were used to represent the close-

packed, open-packed, and step sites that are common in supported spherical or hemispherical 

face-centered cubic (FCC) transition metal nanoparticle surface.12 Specifically, the Ni(111) 

surface is represented by a three-layer slab in a 3 × 3 hexagonal supercell; the Ni(100) surface 

represented by a three-layer 3 × 3 orthogonal supercell, and the Ni(211) surface represented by a 

three-layer 1 × 3 supercell, respectively. All other computational details are same as section 3.2 

in Chapter 3.  

Vibrational frequency analysis was also performed on all reaction intermediates as shown 

in Appendix A to approximate thermodynamic properties (e.g., entropy (S), enthalpy (H), and 

Gibbs free energy (G)).  Here, the thermodynamic properties were calculated using the SurfKin 

package13, where the translational, rotational, and vibrational entropies of gas phase and surface 

intermediates were calculated based on the standard statistical mechanical approach.14 The 

detailed approach for calculating thermodynamic properties are presented in Chapter # section #. 

 

 5.2.2 Micro-kinetic Modeling 

The descriptor-based Catalysis Micro-kinetic Analysis Package (CatMAP)15, developed 

by Medford et al. for kinetic modelings of heterogeneous catalysis and electrocatalysis systems, 

was used to calculate the rates of WGSR and methanation and the surface coverages of reaction 

intermediates based on the mean field theory. The micro-kinetic model used in this study 

consists of 14 reaction steps, and 10 reaction intermediates. The flat Ni(111) and Ni(100) facets 

were modeled using two different surface sites: a “hydrogen reservoir” site16, and site for all 
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other intermediates. The stepped Ni(211) facet was modeled by considering three different sites: 

a “hydrogen reservoir” site, a “four-fold hollow” site and a site for all other intermediates. An 

example of starting files for micro-kinetic modeling is provided in Appendix B. 

A temperature range of 423 ~ 723 K, and a pressure of 1bar were selected17-19. The 

formation energies of each reaction intermediate in the mechanism are calculated via explicit 

DFT calculations. H in gas phase H2, O in gas phase H2O and C in gas phase CH4 were used as 

the reference for H, O, and C species respectively. The energy barriers were taken from DFT 

calculations. The lateral interactions between adsorbates were not included in current modeling.  

 

 5.2.3 Generation of Ni Nanoparticles 

The Ni nanoparticle is assumed to have the shape of a truncated cuboctahedrons with 

predominant close-packed sites (i.e., (111)-like facet), open-packed sites (i.e., (100)-like facet), 

and step sites (i.e., (211)-like facet).12 To investigate the size-dependence, cuboctahedra 

consisting of various numbers of Ni atoms were generated, corresponding to diameters ranging 

from 1 ~ 8 nm, measured as the distance between two opposite Ni(100) facets. The optimal 

(111), (100) and (211) fractions for each octahedron are determined according to the Wulff 

theorem 20 so that the overall surface energies can be minimized. 

 

 5.3 WGSR and Methanation on Ni(111), Ni(100), and Ni(211)  

 5.3.1 Adsorptions of Reaction Intermediates 

Fourteen intermediate species were studied using periodic DFT calculations on the open-

packed Ni(100) and stepped Ni(211) facets. The binding energies were then calculated based on 

their most stable configurations on respective surfaces. These binding energies and the preferred 



120 

 

adsorption sites for all intermediates included in this study are listed in Table 5.1. The binding 

energies on close-packed Ni(111) have been reported in Table 3.1 in Chapter 3. The adsorption 

structures on Ni(100) and Ni(211) are illustrated in Figure 5.1(a) and Figure 5.1(b), respectively.  

Table 5.1. Binding energies (BE), site preferences of reaction intermediates on Ni(111), Ni(100), 

and Ni(211) surfaces. 

 Ni(111)† Ni(100) Ni(211) 

 BE 

[eV] 

site BE 

[eV] 

site BE 

[eV] 

site 

H2O -0.27 top -0.36 top -0.55 top 

CO -1.93 hcp -1.88 4-fold 

hollow 

-1.97 hcp 

CO2 -0.01 physisorption -0.25 4-fold 

hollow 

-0.38 top-top 

HCOH -3.88 fcc -4.19 bridge -4.53 bridge 

CH2OH -1.56 fcc -1.63 bridge -2.05 bridge 

H -2.80 fcc -2.73 4-fold 

hollow 

-2.82 hcp 

OH -3.27 fcc -3.43 4-fold 

hollow 

-3.78 bridge 

COOH -2.25 bridge -2.69 4-fold 

hollow 

-2.18 top-top 

CHO -2.27 fcc, hcp -2.81 bridge -2.53 bridge 

CH2 -4.03 fcc -4.27 4-fold -4.11 bridge 
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hollow 

COH -4.39 fcc, hcp -4.67 4-fold 

hollow 

-4.43 hcp 

O -5.39 fcc -5.61 4-fold 

hollow 

-5.57 hcp 

CH -6.41 fcc -6.95 4-fold 

hollow 

-6.67 4-fold 

hollow 

C -6.89 hcp -8.22 4-fold 

hollow 

-7.91 4-fold 

hollow 

† Data taken from Table 3.1 in Chapter 3 

 

 

 

 

 



122 

 

 

Figure 5.1. Optimized structures of the clean surface and the 14 intermediates in Table 5.1 on 

(a) Ni(100), and (b) Ni(211). The grey, red, white, and blue spheres represent C, O, H, and Ni, 

respectively. The edge Ni atoms in Ni(211) are highlighted in turquoise. The adsorption sites on 

Ni(100) and Ni(211) are marked on the clean surface (clean_surf). 

 

A brief overview of the binding energies and their preferred binding sites of the studied 

intermediates will help explain the thermodynamics and surface coverages in subsequent 

modelings. On Ni(100) and Ni(211), H2O adsorbs on the top site, and the respective binding 

energies are -0.55 eV and -0.36 eV, versus -0.27 eV on Ni(111). CO binds on the 4-fold hollow 

site and the hcp site of the respective Ni(100) and Ni(211) facets. The CO binding energies are -

1.88 eV and -1.97 eV, which are comparable to that on the Ni(111). CO2 binds much stronger on 

the 4-fold hollow site and the top-top site of Ni(100) and Ni(111) facets, at -0.25 eV and -0.38 

eV, respectively, versus that of -0.01 eV on Ni(111). HCOH also binds stronger, at respective -
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4.19 eV and -4.53 eV, at the bridge sites of respective Ni(100) and Ni(211) facets than on 

Ni(111). CH2OH binds stronger on Ni(100) and Ni(211) at the bridge sites, with binding energies 

of -1.63 eV and -2.05 eV, respectively, as well. H binds at the 4-fold hollow site and the hcp site 

on Ni(100) and Ni(211). The binding energy of H on Ni(100) is -2.73 eV, slightly weaker than 

that on the Ni(111), while H binds slightly stronger at -2.82 eV than that on the Ni(111). OH 

binds stronger than that on Ni(111) at the 4-fold hollow site and the bridge site of Ni(100) and 

Ni(211) at -3.43 eV and -3.78 eV, respectively. COOH binds much stronger at the 4-fold hollow 

at -2.69 eV (versus -2.25 eV on Ni(111)), however, the binding is weaker on Ni(211) at -2.18 eV 

at the top-top site. CHO also binds much stronger on the bridge site of Ni(100) at -2.81 eV 

(versus -2.27 eV on Ni(111)). CHO also prefers to bind at the bridge site of Ni(211) at -2.53 eV, 

again stronger than on Ni(111). CH2 binds at the 4-fold hollow site and bridge site of respective 

Ni(100) and Ni(211) at -4.27 eV and -4.11 eV compared to -4.08 eV on Ni(111). COH binds at 

the 4-fold hollow site of Ni(100) and the hcp site of Ni(211), at -4.67 eV and -4.43 eV 

respectively compared to -4.39 eV on Ni(111).  O binds at the 4-fold hollow site of Ni(100) and 

the hcp site of Ni(211) surface with respective binding energies of -5.61 eV and -5.57 eV, both 

of which are stronger than on the Ni(111) surface. CH binds at the 4-fold hollow of Ni(100) and 

the 4-fold hollow of the step on Ni(211) with binding energies of -6.95 eV and -6.67 eV, 

respectively. Similar to CH, C also binds on the 4-fold hollow sites of Ni(100) and Ni(211) with 

much stronger (> 1.0 eV) bind energies at -8.22 eV and -7.91 eV in comparison to -6.89 eV on 

Ni(111). 

All intermediates bind stronger on Ni(100) and Ni(211) facets in general, except for CO 

and H on the (100) facet, and COOH on Ni(211). CO and H still prefer the hcp 3-fold sites on 

Ni(211), where the low-coordination edge Ni atoms play negligible role in enhancing the binding 
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of CO and H. However, the intermediates participating in CO methanation – e.g., CHO, CH, O – 

bind much stronger on Ni(211) and Ni(100). 

 

 5.3.2 BEP Relationship 

A BEP relationship can reveal a linear correlation between the transition state energy and 

the corresponding reaction energy of an elementary step.21,22 Consequently, BEP relationships 

provide a means for fast estimation of reaction kinetics.23-25 In this study, the elementary steps 

involving C–H, O–H bonds and C–O bonds on the (111), (100), and (211) facets were 

investigated. The transition state energies (ETS) and final state energies (EFS) relative to gas phase 

initial state energies were used to obtain the BEP relationship (Figure 5.2 (a) and (b)). The 

transition state structures are shown in Figure 5.3. 

 

Figure 5.2. (a) BEP relationship for C–O bond forming/scission; (b) BEP relationship for C–

H/O–H bond forming/scission. The elementary steps are expressed in the exothermic direction. 

EFS and ETS are relative energies to gas phase initial state energies. 
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Using the results obtained from DFT calculations on the (111) facet (blue dots), a linear 

relationship for both C-O bond forming/scission or C-H/O-H bond forming/scission clearly exist 

as described by Figure 5.2(a) and (b), with the mean absolute error (MAE) of 0.24 eV and 0.25 

eV for C–O bond scission and C–H/O–H bond scission reactions, respectively. The slope and 

intercept for C-O bond cleavage/forming reaction are 0.91 and 1.16 eV while the corresponding 

values for C-H/O-H bond cleavage/forming reaction are 0.92 and 0.93 eV on Ni(111). The slope 

of C–H/O–H bond relationship (0.92) is in good agreement with that (0.96) developed by 

Mohsenzadeh et al.26 using a dataset that combines Ni(111), Ni(100) and Ni(110) facets; and 

0.86 obtained by Catapan et al. for just Ni(111)1. The C–O bond BEP relationship is in good 

agreement with that developed by Catapan as well1.  
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Figure 5.3. Optimized transition state structures on (a) Ni(100); and (b) Ni(211). The grey, red, 

white, and blue spheres represent C, O, H, and Ni, respectively. The edge Ni atoms in Ni(211) 

are highlighted with the turquoise color. 

 

It should be noted that, unlike the BEP developed in other literature, this work intends to 

test the generality of the BEP relationship using only a subset of kinetic data, i.e., Ni(111). We 

believe that the BEP relationship developed on Ni(111) has the predictive power for Ni(211) and 

Ni(100). In order to further demonstrate the applicability of such linear relationships on Ni(100) 

and Ni(211), additional DFT calculations on a subset of the elementary steps on Ni(100) (green 

dots) and Ni(211) (red dots) were included in Figure 5.2 (a) and (b). Seven elementary steps are 

calculated for testing C-O bond cleavage/forming reaction, including: CO* + O* ↔ CO2* + *, 
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CO* + OH* ↔ COOH* + *, CO* + * ↔ C* + O*, CHO* + * ↔ CH* + O*, COH* + * ↔ C* + 

OH*, HCOH* + * ↔ CH* + OH*, and CH2OH* + * ↔ CH2* + OH*. In the meantime, five 

elementary steps are calculated for testing C-H/O-H bond cleavage/forming, including H2O* + * 

↔ H* + OH*, OH* + * ↔ O* + H*, COOH* + * ↔ CO2* + H*, CO* + H* ↔ CHO* + *, CO* 

+ H* ↔ COH* + *. It can be seen that the same steps on the less-packed terrace sites and steps 

sites indeed follow the same linear relationships reasonably well. The energy barriers of the 

elementary steps are listed in Table 5.2. 
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Table 5.2. Energy barriers of the elementary steps for C-O bond formation/scission and C-H/O-

H bond formation/scission on Ni(111), Ni(100), and Ni(211) surfaces. 

 Ni(111)‡ Ni(100) Ni(211) 

 △E/eV Ea/eV △E/eV Ea/eV △E/eV Ea/eV 

CO* +O* ↔ CO2* +* 0.97 1.56 1.15 1.31 0.84 1.53 

CO* +OH* ↔ COOH* +* 0.96 1.40 0.88 1.83 1.60 1.66 

CO* + * ↔ C* + O* 1.28 2.88 -0.3 1.79 0.15 2.40 

COH* + *  ↔ C* + OH* 0.52 1.86 -0.65 0.97 -0.97 0.74 

CHO* + * ↔ CH* + O* -0.50 1.04 -1.25 1.22 -0.69 0.71 

HCOH* + * ↔ CH* + OH* -0.74 0.72 -1.30 0.44 -1.07 0.87 

CH2OH* +* ↔ CH2* + OH* -0.70 0.65 -0.99 0.63 -0.81 0.58 

CHO* + *O* ↔ HCOO* + * -0.41 0.73 -- -- -- -- 

COOH* + * ↔ CO2* + H* -0.19 0.93 0.04 1.06 -0.65 0.44 

CO* + H* ↔ COH* + * 0.96 1.91 0.59 1.67 0.95 1.93 

CO* +H* ↔ CHO* + * 1.25 1.44 1.13 1.23 1.08 1.14 

COH* + H* ↔ HCOH* +* 0.73 0.83 0.83 1.22 0.34 0.69 

OH* + * ↔ O* + H* -0.20 0.98 -0.23 0.96 0.11 1.03 

H2O* + * ↔ OH* + H* -0.41 0.86 -0.37 0.91 -0.66 0.87 

HCOH* + H* ↔ CH2OH* + * 0.34 0.87 -- -- -- -- 

HCOO* + * ↔ CO2* + H* 0.13 0.99 -- -- -- -- 

CHO* + H* ↔ HCOH* + * 0.43 1.14 -- -- -- -- 

‡ Data taken from Table 3.2 in Chapter 3 
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5.3.3 Free Energy Diagrams of WGSR and Methanation on Ni(111), Ni(100), and 

Ni(211) 

WGSR is a moderately exothermic reaction (as shown in Equation (3) in Chapter 1), and 

the thermochemistry favors CO conversion at low temperatures (in the range of 423K ~ 513K). 

Nevertheless, WGSR at intermediate and high temperatures (up to 1000K under steam reforming 

conditions) are still relevant in many applications.27,28 Figure 5.4 presents the DFT-based free 

energies of WGSR redox and carboxyl pathways on the (111), (100), and (211) facets. The free 

energies were estimated at 600 K and 1 bar, using gas phase CO, H2O and clean surface as the 

energy reference.  

 

Figure 5.4. Free energy diagrams representing the redox and carboxyl pathways on Ni(111), 

Ni(100) , and Ni(211) surface at 600 K and 1 bar.  The black path represents CO adsorption, H2O 

adsorption, dissociation, and H2 formation. 
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Water dissociation is enhanced on Ni(211) (black solid paths in Figure 5.4).29 On 

Ni(100), the OH dissociation step forming O becomes even more exothermic (black dashed 

path), which is consistent with the findings by Mohsenzadeh et al.30. The enhanced water 

dissociation is expected to boost WGSR and hydrogen production by supplying the essential H, 

O, and OH species.   

Direct CO oxidation by O from water dissociation occurs in the redox pathways forming 

CO2, represented by the solid, dashed, and dotted paths for (211), (100), and (111) in Figure 5.4, 

respectively. It can be seen in Figure 5.4 that the CO oxidation step remains the rate-limiting step 

on all three facets studied. The redox pathways corresponding to the Ni(100) and Ni(211) facets 

shift downward in the free energy diagram compared to the closed-packed Ni(111), due to the 

enhanced water dissociation and CO oxidation thermochemistry.  

The carboxyl pathway is another competitive WGSR route, and CO reacts with OH 

forming COOH is the rate-limiting step. On Ni(100) and Ni(211), the carboxyl pathway remains 

competitive, with COOH formation step being rate-limiting. The free energies of the carboxyl 

pathway on Ni(211) shift downward when compared to the Ni(111) facet, due to the enhanced 

water dissociation that produces the OH species. It is also intriguing to note that the rate-limiting 

step on Ni(100) shifts upward, due to the increased energy barrier of COOH formation, making 

the carboxyl pathway the least kinetically favorable.    

The free energy diagrams depicting CO methanation via the formyl and HCOH pathways 

on Ni(111), Ni(100), and Ni(211) at 600 K and 1 bar are shown in Figure 5.5. Gas phase CO and 

adsorbed H are chosen as the zero energy reference.  The C–O bond scissions of the CHO and 

HCOH intermediates are the rate-limiting steps of respective pathways. The formation of CHO* 

are exothermic on all facets, and Ni(211) enables the lowest energy barrier for CO 



131 

 

hydrogenation. The energy barriers of the C–O bond scission in CHO are lower on Ni(211) and 

Ni(100) facets. The formyl pathway on Ni(211) has the lowest overall free energies, mainly due 

to the much lower energy barrier for C-O bond scission in CHO.  

 

Figure 5.5. Free energy diagrams of the formyl (purple) and HCOH (green) pathway on Ni(111), 

Ni(100), and Ni(211) facets at 600 K and 1 bar. The black path represents CO adsorption, H2O 

adsorption, dissociation, and CH4 formation steps. 

 

  HCOH pathway involves COH as an intermediate species. CO hydrogenation pathways 

forming COH* are endothermic on all facets and Ni(100) has lowest energy barrier. The 

formation of HCOH* is still endothermic and Ni(211) has lowest energy barrier. The C – O bond 

scission from HCOH* is exothermic on all facets and the energy barriers decrease in order of 

Ni(111) > Ni(100) > Ni(211).  Overall, the formyl pathway and the HCOH pathway are both 

competitive pathways on Ni(211). 
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5.4 Micro-kinetic Modeling of WGSR and Methanation 

5.4.1 First-principles Based Mechanism for Micro-kinetic Modeling 

The influence of CO methanation on hydrogen selectivity and the structure and size-

dependence on Ni nanocatalysts have been investigated by carrying out mean-field theory-based 

micro-kinetic modelings. A mechanism consisting of 14 reaction steps, including the redox and 

carboxyl pathways (R4~R7, for WGSR), the formyl and HCOH pathways (R9 ~ R13, for 

methanation), CO adsorption (R1), H2O dissociation (R2, R3), H2 and CH4
11 formation steps 

(R8, R14) for micro-kinetic modeling are constructed: 

 

CO(g) + * ↔ CO* R1 

H2O(g) + 2* ↔ OH* + H* R2 

OH* + * ↔ O* + H* R3 

CO* + O* ↔ CO2(g) + 2 * R4 

CO* + OH* ↔ COOH* + * R5 

COOH* ↔ CO2(g) + H*  R6 

COOH*  + OH* ↔ CO2(g) + H2O(g) + 2* R7 

2H* ↔ H2(g) +2 * R8 

CO* + H* ↔ CHO* + * R9 

CHO* + * ↔ CH* + O* R10 

CO* + H* ↔ COH* + * R11 

COH* + H* ↔ HCOH* + * R12 

HCOH* + * ↔ CH* + OH* R13 

CH* + 3H* ↔ CH4(g) + 4*  R14 
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The asterisk (*) represents the open site on Ni(111), Ni(100), or Ni(211), and will be 

differentiated in the kinetic modeling. Particularly, ‘H reservoir’ sites were created, as 

implemented by Medford et al.16. The detailed mechanisms for respective Ni(111), Ni(100), and 

Ni(211) facets and Ni nanocatalysts are shown in Appendix C. R4 and R5 are identified as the 

rate-limiting steps for WGSR as discussed in Section 3.3.2 in Chapter 3.  

 There are still debates regarding the actual rate-limiting steps for micro-kinetic modeling 

of CO methanation.31 In this kinetic modeling, C-O bond dissociation steps (R10 and R13) are 

both treated as the rate-limiting steps based on the first-principles calculations. The energy 

barriers for water dissociation, i.e., R2 and R3, are also explicitly included due to its sensitivity 

of these steps to surface structures (as shown in Figure 5.4). In addition, the energy barriers of 

CO hydrogenation steps were also included.  

Gas phase H2 and H* are in thermodynamic equilibrium, an assumption that has been 

adopted by Sehested et al.31. CH* is also assumed to proceed quickly and in thermodynamic 

equilibrium with gas phase CH4, which is same with the mechanism proposed by Vannice 32that 

CHy hydrogenation step proceeds very quickly and does not influence the kinetics of the whole 

methane formation reaction32.  In our kinetic modeling, the energy barriers for both H2 and CH4 

formations have been neglected. 

 

 5.4.2 Ni Nanocatalyst Facets and Size Effects on Reactivity and Selectivity 

Dependence 

Figure 5.6 shows the H2 and CH4 production rates based on the micro-kinetic modeling 

conducted at a temperature range of 423 ~ 723 K and the pressure of 1 bar on Ni(111), Ni(100), 

and Ni(211) facets. The simulated feed composition, with a representative molar ratio of CO : 
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H2O = 1:233, was used. The production rates on different single Ni crystal facets are represented 

in terms of the turnover frequency (TOF in s-1). The TOF order for both H2 and CH4, 

corresponding to the rates of WGSR and methanation, are in good agreement with the free 

energy diagram (Figures 5.4 and 5.5). The vertical dashed line indicates the TOF for the 

temperature of 600 K.  

 

 

Figure 5.6. Turnover frequencies (s-1) of H2 and CH4 production on Ni(111), Ni(100), and 

Ni(211) at 1 bar, respectively. The feed composition has a molar ratio of CO : H2O = 1:2. 

Vertical black dash line marks the reaction conditions of free energy diagram being generated in 

section 5.3.3. 

 

In Figure 5.6, both the H2 and CH4 production rates increase with the temperature, which 

suggest that the reaction system is still kinetically controlled.  In principle, this could be due to 
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the lack of explicit consideration of the adsorbate-adsorbate interactions in our micro-kinetic 

models. In fact, the CO surface coverage as shown in Figure 5.7 has been found to be over-

estimated to around nearly 1 ML and would be likely to hinder the surface to reach 

thermodynamic equilibrium. Further studies with considering adsorbate-adsorbate interactions in 

micro-kinetic models will be discussed in Chapter 6. 

 

 

Figure 5.7. Surface coverage of CO* on (a) Ni(111) and Ni(100) and surface coverage of CO* 

and O* on (b) Ni(211) with feed composition of molar ratio of CO : H2O = 1:2 at 1bar. 

 

Figure 5.6 shows that the H2 production rate decreases in the order of Ni(211) > Ni(100) 

> Ni(111), and the same trend has been observed for CH4 production rate. At feed composition 
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of  CO : H2O = 1:2, the H2 production rate is much higher on all Ni facets than the CH4 

production rate. Among the Ni(111), Ni(100), and Ni(211) facets, the difference in TOFs for H2 

productions (solid lines) is much smaller than that for CH4 productions (dashed lines). 

Qualitatively, the modeling suggests that although reaction rates are higher on the Ni(211) step 

edge sites, methanation is much more sensitive to these low-coordination Ni atoms that facilitate 

the C–O bond scission rate-limiting steps.  
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Figure 5.8. (a) Atomic fractions of surface Ni atoms (black square), and fractions of Ni atoms at 

close-packed (solid orange circle), open-packed (solid green circle), and step edge sites (solid red 

circle) for unsupported cuboctahedral Ni nanoparticles with diameter from 1nm ~ 8nm. The 

schematic representations of cuboctahedra of 1, 4, and 8 nm diameters are also shown; (b) TOF 

(s-1) of H2; and (c) CH4 production at 600K and 1bar. The TOF is the sum of TOF on Ni(111), 

Ni(100) and Ni(211). The feed composition has a molar ratio of CO: H2O = 1:2. The solid and 

dashed lines are simply to guide the trend of modeling results. 
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The particle size effect on WGSR and methanation competitions is also investigated by 

integrating individual Ni single crystal facets, i.e., Ni(111), Ni(100, and Ni(211), to reflect 

representative fractions of each Ni atom site on a single Ni catalyst nanoparticle. The crystal 

facets can be conveniently combined into truncated cuboctahedra, and the fraction of each facet 

is dependent on the diameter of the nanoparticle, as shown in Figure 5.8 (a). With increasing 

particle sizes (diameter varying from 1 nm to 8 nm), the fraction of surface atoms decreases from 

0.48 to 0.1 (black squares). Correspondingly, the fractions of Ni atom at the close-packed sites 

increases from 0.4 to 0.75 (solid orange circles) and the Ni atoms at the open-packed sites 

increases from 0 to 0.15. However, the Ni atoms at the nanoparticle edges decreases from 0.6 to 

0.1.  

For instance, the fractions of surface Ni atoms on Ni(111), Ni(100) and Ni(211) are 0.68, 

0.11, and 0.21, respectively (Figure 5.8 (a)), corresponding to a Ni particle of a diameter of 4 nm. 

The open sites for each facet are defined as different reaction species within the mechanism, 

which is demonstrated in the Appendix C. The TOFs for H2 and CH4 productions as a function 

of particle diameter (in nm) are shown in Figure 5.8 (b) and (c), for a given temperature and 

pressure (i.e. 600 K and 1 bar).  In Figure 5.8 (b) and (c), the production rate of H2 and CH4 both 

decrease with increasing particle sizes. It can also be noted that, at 600 K and 1 bar, both the H2 

and CH4 production TOFs follow a similar trend of the atomic fraction of Ni atoms at the (211) 

sites. For H2 production, the rate (in log10 of TOF) decreases from -2.0 to -3.5 as the nanoparticle 

diameter increase to 8 nm, while the rate for CH4 changes from -14.0 to -17.5. Therefore, it can 

also be concluded that the methanation reaction, which depends more on the edge site for C–O 

bond scission, will be more sensitive to the cluster sizes as well.  
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 5.4.3 Feed Composition Effect on WGSR and Methanation 

As discussed in Section 5.4.2, at high CO concentration without H2 in the feed, the open 

sites on Ni surface are dominated by CO. As indicated by Figure 5.6, the selectivity for hydrogen 

production should remain high on all Ni facets. Typically, the CO concentration in the reforming 

product stream will be much lower than the CO: H2O = 1:2 ratio used in Section 4.2. Instead, 

substantial H2 is also present.34,35 Feed composition will affect the equilibrium and product 

selectivity. A different feed composition is used for the micro-kinetic modeling on the respective 

Ni(111), Ni(100), and Ni(211). The selected composition, i.e., 2.5% CO, 25% H2O, 12.5% CO2, 

37.5% H2, and balance N2, is based on the values reported in Ref. 19. Similar to Section 5.4.2, 

Figure 5.9 shows the H2 and CH4 production rate as a function of temperature. H2 production 

rates on Ni(100) and Ni(211) are not shown, as H2 production rates are negative at the 

temperature below 573 K on Ni(100), and on Ni(211) for the entire temperature range 

considered. The negative H2 production rates can be explained as hydrogen is consumed in CO 

methanation at a faster rate than that produced via WGSR on Ni(100) and Ni(211) facets. It can 

be seen from Figure 5.9 that the CH4 production rate decreases in the order of Ni(211) > Ni(100) 

> Ni(111). Comparison of the CH4 production rates in Figures 5.9 and 5.6 show that the CH4 

production rates dramatically increase at the new feed composition. Throughout the temperature 

range, the CH4 production rates on Ni(211) and Ni(100) are higher than that of H2 production on 

Ni(111). This finding reveals that, at low CO concentration and high H2 concentration, 

methanation will become a significant competition and lower hydrogen selectivity by consuming 

CO and H2, particularly on the low-coordinated step edge sites and open-packed sites. 
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Figure 5.9. Turnover frequencies (s-1) of CH4 production on Ni(111), Ni(100), and Ni(211) at 

1bar, respectively. The feed gas molar composition is 2.5% CO, 25% H2O, 12.5% CO2, 37.5% 

H2, and balance N2. 

 

 5.5 Conclusions 

DFT, statistical mechanical calculations, and micro-kinetic modeling were carried out for 

WGSR and methanation on different Ni facets to understand the surface structure and particle 

size effect for reaction selectivity. Free energy diagrams were generated at 600 K and 1 bar to 

study WGSR and methanation reaction thermodynamically and kinetically. The energetics of 

WGSR and methanation point out that the most favorable facet of redox pathway is Ni(100) and 

for carboxyl pathway is Ni(211). For methanation pathway, Ni(211) favors both formyl pathway 

and HCOH pathway.  
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Detailed micro-kinetic modelings contain favorable pathways for WGSR and 

methanation on different facets were used to calculate reaction rates under the temperature range 

of 423 to 723 K. The results of the micro-kinetic model indicate that temperature, catalyst 

structure, particle size and feed composition can affect WGSR and methanation. With feed 

composition of CO : H2O = 1:2, trends for H2 and CH4 production rates show an increase with 

increasing temperature on all facets, and decrease in the same order as: Ni(211) > Ni(100) > 

Ni(111). Also, the TOFs of H2 and CH4 production decrease with increasing Ni particle sizes, 

whereas methanation is more dependent on the step edge sites on the nanoparticle surfaces. 

Furthermore, feed composition can also influence H2 and CH4 production rate. The presence of 

H2 in feed gas favors methanation reaction and can dramatically increase the CH4 production 

rate. 

This work presents the detailed information of WGSR and methanation on different Ni 

facet and particle size. The finding of this work provides fundamental insight of the activity and 

competition between WGSR and methanation on different facets. The structure sensitivity and 

particle size effect supply explanation for different catalytic performance. This first-hand 

information can be used to tune and predict catalyst performance for WGSR and methanation. 
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Chapter 6 - Adsorbate-adsorbate Interaction Effects for Hydrogen 

Production via WGSR  

Chapter 6 is reproduced with permission from:  

Zhou, M.; Liu, B. First-principles Investigation of Adsorbate-Adsorbate Interactions on Ni(111), 

Ni(211), and Ni(100) Surfaces. Ind. Eng. Chem. Res. 2017, 56, 5813-5820. 

 

 6.1 Introduction 

DFT-based molecular modeling typically only considers adsorption and chemical 

reactions at low surface coverage conditions. However, under realistic reaction conditions, 

adsorbate-adsorbate interactions directly impact chemisorptions and reaction energy barriers.1-4 

The influence cannot be neglected if key reaction intermediates are involved. According to the 

mean field micro-kinetic modeling discussed in Chapter 5 section 5.4.2, the rate of H2 production 

via WGSR follows an order of Ni(111) < Ni(100) < Ni(211). Although this is a qualitatively 

anticipated behavior, where stepped and low-coordination sites are more active, the coverage of 

CO has been severely overestimated (as shown in Figure 5.7 in Chapter 5) and may hinder the 

accuracy of quantitative analyses.  

We hypothesize that adsorbate-adsorbate interactions vary on different single crystal 

facets, and thus a function of particle shape and size. Furthermore, the inclusion of such 

molecular behavior will alter catalyst selectivity. Here, the objective is to elucidate the nature of 

adsorbate-adsorbate interactions on different catalyst facets. In a broader context, the different 

behaviors of adsorbate molecules interact with its neighbors in a local environment would offer 
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insights into the development of the capability of modeling the heterogeneity of a catalyst 

surface.  

In literature, several means have been developed to quantitatively describe the CO-CO 

lateral interaction, which is repulsive. Empirical correlations, in the forms of polynomial 

functions of CO coverage (𝜃𝐶𝑂) on copper Equation (48),5 and platinum Equation (49),6 fitted to 

DFT calculations, have been employed.  

 

𝐵𝐸𝐶𝑂∗(𝜃𝐶𝑂) = 6.81𝜃𝐶𝑂
2 − 3.14𝜃𝐶𝑂 − 0.53 (48) 

𝐵𝐸𝐶𝑂∗(𝜃𝐶𝑂) = −1.78 + 0.0065 exp(4.79𝜃𝐶𝑂) + 0.031135𝜃𝐶𝑂exp (4.79𝜃𝐶𝑂) (49) 

 

The binding energies of other adsorbate species, such as O, H, OH, and COOH, can then 

be approximated through a simple correction using either Equation (50) or Equation (51), as a 

function of 𝜃𝐶𝑂. 

 

𝐵𝐸(𝜃𝐶𝑂) = 𝐵𝐸0 +
𝑎

1 + exp [𝑏(𝜃0 − 𝜃𝐶𝑂)]
 (50) 

𝐵𝐸(𝜃𝐶𝑂) = 𝐵𝐸0 + 𝑎exp(𝑏𝜃𝐶𝑂) (51) 

 

where a, b, θ0, are fitting parameters, and BE0 is the binding energy of the adsorbate calculated 

without the presence of CO. 

Recent work has suggested that the binding energy of an adsorbate, such as CO, remains 

relatively constant below a threshold coverage (𝜃0). Above 𝜃0, the influence of lateral interaction 

becomes pronounced quickly.1,3,4 This pattern can be generalized by the piece-wise integral 

binding energy (𝐵𝐸𝑖𝑛𝑡), as shown in Equation (52),  
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𝐵𝐸𝑖𝑛𝑡(𝜃𝐶𝑂) = {
𝐵𝐸0𝜃𝐶𝑂 ,                                  𝜃𝐶𝑂 ≤ 𝜃0

𝐵𝐸0𝜃𝐶𝑂 + 𝜀(𝜃𝐶𝑂 − 𝜃∗)2,     𝜃𝐶𝑂 > 𝜃0 
 (52) 

 

where 𝑑𝐸𝑖𝑛𝑡(𝜃) =  𝐸𝑑𝑖𝑓𝑓(𝜃)𝑑𝜃 and 𝜀 (in eV/ML) represent a measure of the interaction strength 

between adsorbates, known as the self-interaction parameters.  

In this chapter, WGSR sequences consisting of the favorable redox and carboxyl 

pathways (R1 – R8) in Chapter 5 Section 5.4 will be used as a model reaction once again on Ni 

surfaces to gain understanding on this topic. Periodic DFT calculations were performed to 

determine the CO chemisorption structures and adsorption energies over a range of surface 

coverage on Ni(111), Ni(100), and Ni(211) facets. Molecular structures and corresponding 

binding energies for H2O, OH, O, H, and COOH coadsorbed at the 4/9 ML coverage were also 

obtained.  

Particularly, the CO–CO self-interactions were explicitly incorporated in the analysis of 

WGSR pathways for hydrogen production on single-crystal facets of Ni and other transitional 

metals like Cu, Pt, and Au. The carboxyl pathway is found to be the dominant pathway on 

Cu(111), Pt(111), and Au(111)5-8 from DFT calculations. Thus, a general trend for WGSR 

activity with only considering carboxyl pathways on transition metals is predicted through 

micro-kinetic modeling and compared with experimental results.   

 

 6.2 Computational Methods 

The computational details are same as section 3.2 in Chapter 3 and section 5.2.1 in 

Cgapter 5. The optimal configurations of CO co-adsorptions at 1/9, 2/9, 1/3, 4/9, 5/9, 2/3, 7/9, 

8/9, and 1 ML coverages were determined through geometrical optimizations. In this study, we 
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adopted the conventional definition for surface coverage, i.e., each surface Ni atom is counted as 

one adsorption site. Hence, the corresponding number of adsorbed CO molecules will be 1−9 on 

each facet. The interactions of CO with H2O, OH, O, H, and COOH were considered specifically 

at the 4/9 ML coverage, using the optimized CO configuration (at 4/9 ML coverage) as a starting 

point. The adsorbate (i.e., H2O, OH, O, H, and COOH) was then introduced to the open site for 

further optimization. 

At the low coverage limit (i.e., 1/9 ML), the binding energy (𝐵𝐸𝐴 ) of adsorbate 𝐴 , 

representing H2O, H, OH, O, and COOH, is defined as Equation (53), 

 

𝐵𝐸𝐴 = 𝐸𝐴+𝑠𝑙𝑎𝑏 − 𝐸𝑐𝑙𝑒𝑎𝑛 𝑠𝑙𝑎𝑏(𝑁) − 𝐸(𝐴) (53) 

  

where 𝐸𝐴+𝑠𝑙𝑎𝑏 is the total energy of the adsorbate (A), 𝐸(𝐴) is the total energy of the adsorbate 

(A) in gas phase calculated in a large vacuum box (10 Å × 10 Å × 10.5 Å), and 𝐸𝑐𝑙𝑒𝑎𝑛 𝑠𝑙𝑎𝑏(𝑁) is 

the total energy of the clean slab. N is the number of surface sites in the unit cell (i.e., N= 9 for 

all the Ni surfaces considered here) 

The differential binding energy (𝐵𝐸𝑑𝑖𝑓𝑓), representing the additional energy needed to 

insert one more CO molecule on the surface, is calculated from Equation (54),  

 

𝐵𝐸𝑑𝑖𝑓𝑓(𝜃) = 𝐸𝑛−𝐶𝑂+𝑠𝑙𝑎𝑏(𝑁) − 𝐸𝐶𝑂_𝑔𝑎𝑠 − 𝐸𝑛−1−𝐶𝑂+𝑠𝑙𝑎𝑏(𝑁) (54) 

 

where n is the number of CO adsorbed on slab, 𝐸𝑛−𝐶𝑂+𝑠𝑙𝑎𝑏(𝑁) is the total energy of the surface 

with n-1 adsorbed CO, 𝐸𝐶𝑂_𝑔𝑎𝑠  the total energy of gas phase CO.  
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The binding energies of adsorbate A at 4/9 ML coverage (𝐵𝐸𝐴−4𝑐𝑜 ) is defined by 

Equation (55), 

 

𝐵𝐸𝐴−4𝑐𝑜 = 𝐸𝐴−4𝐶𝑂+𝑠𝑙𝑎𝑏 − 𝐸4𝐶𝑂+𝑠𝑙𝑎𝑏 − 𝐸𝐴_𝑔𝑎𝑠 (55) 

 

where the 𝐸4𝐶𝑂+𝑠𝑙𝑎𝑏 is the total energy of adsorbate A with 4 co-adsorbed CO, and 𝐸4𝐶𝑂+𝑠𝑙𝑎𝑏  is 

the total energy of the slab with four adsorbed CO molecules.  

The differential CO free energy difference (𝐺𝑑𝑖𝑓𝑓(𝜃))is defined by Equation (56), 

 

𝐺𝑑𝑖𝑓𝑓(𝜃) = 𝐺𝑛−𝐶𝑂+𝑠𝑙𝑎𝑏(𝑁) − 𝐺𝐶𝑂_𝑔𝑎𝑠 − 𝐺𝑛−1−𝐶𝑂+𝑠𝑙𝑎𝑏(𝑁) (56) 

 

where 𝐺𝑛−𝐶𝑂+𝑠𝑙𝑎𝑏(𝑁) is the total free energy of the surface with n adsorbed CO, 𝐺𝐶𝑂_𝑔𝑎𝑠 the total 

free energy of gas phase CO, and 𝐺𝑛−1−𝐶𝑂+𝑠𝑙𝑎𝑏(𝑁) is the total free energy of the surface with n-1 

adsorbed CO. 

 

 6.3 Chemisorptions on Ni(111), Ni(100), and Ni(211) at Higher Coverages 

 6.3.1 CO Adsorption 

CO chemisorptions take place in a monodentate fashion, i.e., each molecule occupies one 

site. The structures of CO chemisorption on Ni(111), Ni(100) and Ni(211) at nine different 

coverages (1/9 ML – 1 ML) corresponding to the respective lowest ground state energy at each 

coverage are illustrated in Figure 6.1.  
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On Ni(111), the available binding sites are the hcp, fcc, and top site, indicated by red 

arrows in Figure 6.1(a). The 𝐵𝐸𝐶𝑂 at the 1/9 ML coverage, according to Equation (53), is -1.93 

eV, -1.92 eV, and -1.55 eV, respectively. Up to 1/3 ML, each CO is still able to bind at their 

preferred hcp site on Ni(111). At higher coverages, i.e., 4/9 ML, 5/9 ML, and 2/3 ML, some CO 

molecules are found to bind at the fcc site, which is regarded as a slightly metastable site 

according to the single molecule calculation. At 7/9 ML, CO begins to occupy the top site, 0.38 

eV metastable, in addition to the hcp and fcc sites. At even higher coverages, i.e., 8/9 ML and 1 

ML, the configurations of CO chemisorption become ordered again, and each CO binds at the 

hcp site. As shown in Figure 6.1(a), each CO molecule tends to maximize the intermolecular 

distances with its neighbors, thus sacrificing their preferred binding sites if necessary to maintain 

a rather uniform distribution on Ni(111) in order to minimize the repulsive forces.3  
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Figure 6.1. Optimized CO chemisorption geometries on (a) Ni(111), (b) Ni(100), and (c) 

Ni(211) at different coverages. Adsorption sites are labeled on each clean slab. The clean 

Ni(211) surface in (c) is further expanded to show the 4-fold site.  Ni, C, O, and H are depicted 
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in blue, grey, red, and white, respectively. The edge Ni atoms in Ni(211) are highlighted in 

turquoise. The dashed yellow circle indicates the original location of Ni atom and the yellow 

arrow indicates the direction of Ni dislocation with high CO coverage on Ni(211). The dashed 

black lines indicate the boundaries of the supercell. 

 

Ni(100) is the most open facet, with the Ni-Ni distance being 2.49 Å. On Ni(100), the 

available binding sites include the 4-fold, bridge, and top site (as indicated by the red arrows in 

Figure 6.1(b)), and the corresponding 𝐵𝐸𝐶𝑂 is -1.88 eV, -1.83 eV, and -1.65 eV, respectively, at 

the 1/9 ML coverage. The optimized geometries on Ni(100) are illustrated in Figure 1(b). For 1/9 

– 1/3 ML, each CO binds at its preferred 4-fold site. From 4/9 – 1 ML, CO binds at both the 

bridge and the 4-fold sites. For instance, at 4/9 ML, three of the four CO molecules actually bind 

at the bridge site. It has also been noted that the surface Ni can dislocate at high CO 

chemisorption coverage; for example, at 8/9 ML CO coverage, the Ni-Ni distance for Ni(100) 

facets vary between 2.45 Å and 2.62 Å. 

On Ni(211), the available binding sites are the hcp near edge, fcc near edge, bridge, top, 

and 4-fold sites. The corresponding 𝐵𝐸𝐶𝑂 is -1.97 eV, -1.85 eV, -1.94 eV, -1.78 eV, and -1.64 

eV, respectively, at the 1/9 ML coverage. As shown in Figure 6.1(c), initially, CO would bind at 

the hcp site near edge. Then, the second CO is adsorbed at the bridge site. Such a zigzag pattern 

continues until the 4/9 ML coverage, where CO molecules adsorb alternatingly at the bridge, hcp 

or fcc near edge sites. Once these sites are occupied, additional CO molecules bind at the terrace 

of Ni(211) facet at the 5/9 – 7/9 ML coverages. These calculations indicate the Ni(211) step site 

can accommodate four CO molecules at maximum. The adsorption pattern on Ni(211) provides 

another clear example suggesting that adsorbed CO molecules can sacrifice their preferred 
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binding site in order to minimize a repulsive lateral interaction, in this case, by occupying the 

metastable terrace sites. At even higher coverages, i.e., 8/9 ML and 1 ML, noticeable surface 

reconstructs can be observed, as indicated in Figure 6.1(c).  

The CO differential binding energies were obtained in order to quantitatively understand 

the trends for the CO-CO lateral interactions on the single crystal facets. Figure 6.2(a) shows the 

variations of CO differential binding energies, 𝐵𝐸𝑑𝑖𝑓𝑓  based on Equation (54), with the CO 

coverage. The black dash line indicates 𝐵𝐸𝑑𝑖𝑓𝑓 at 0 eV, meaning that further CO adsorption will 

be thermodynamically unfavorable, or the surface is saturated with CO.  
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Figure 6.2. (a) Coverage-dependent CO differential binding energies (𝐵𝐸𝑑𝑖𝑓𝑓 ) on Ni(111), 
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Ni(100), and Ni(211) surfaces. (b)CO 𝐵𝐸𝑑𝑖𝑓𝑓 as a function of surface area per CO molecule on 

Ni(111), Ni(100), and Ni(211) surfaces. (c) Coverage-dependent differential CO free energy 

difference (𝐺𝑑𝑖𝑓𝑓(𝜃)) on Ni(111), Ni(100), and Ni(211) surface. The dashed line indicates that 

the 𝐵𝐸𝑑𝑖𝑓𝑓 or 𝐺𝑑𝑖𝑓𝑓 is at 0 eV, corresponding to the saturation coverage. 

 

On Ni(111), 𝐵𝐸𝑑𝑖𝑓𝑓 (in red triangles) remains flat up to the 1/3 ML coverage, and each 

CO is able to adsorb at their preferred hcp site. This indicates that CO experiences little repulsion 

from its neighboring CO molecules. Starting from the 4/9 ML coverage, 𝐵𝐸𝑑𝑖𝑓𝑓  shows a 

noticeable indication that the thermodynamic driving force for additional CO adsorption 

becomes weaker due to the repulsive lateral interactions from the pre-adsorbed CO. This 

behavior has been captured with empirical relationships, such as Equations (48) and (49), in the 

literature,5,6 and confirms the piece-wise behavior of adsorption energy discussed previously.1,3 

In principle, it is also possible to understand the range of the CO lateral repulsive force this way. 

At 8/9 ML, the 𝐵𝐸𝑑𝑖𝑓𝑓  becomes positive, which suggests the CO adsorption at this high 

coverage becomes unfavorable.  

On Ni(100), the 𝐵𝐸𝑑𝑖𝑓𝑓 of CO (in blue circles in Figure 6.2(a)) remains relatively flat up 

until the 4/9 ML coverage, then increases at higher coverages. However, 𝐵𝐸𝑑𝑖𝑓𝑓 increases at a 

slower pace than that on Ni(111), suggesting that the CO adsorbate-adsorbate interaction is not 

as repulsive as on the most close-packed nickel single crystal facet. This can be rationalized by 

the fact that, on a more open surface, the geometric locations of adsorbed CO molecules, 

determined by their chemisorption sites (4-fold, bridge), can facilitate the mitigation of the 

repulsive CO-CO interaction. The 𝐵𝐸𝑑𝑖𝑓𝑓 maintains negative until the 8/9 ML coverage.  
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On Ni(211), the 𝐵𝐸𝑑𝑖𝑓𝑓 of CO (in green squares in Figure 6.2(a)) increases discernibly 

starting from the 1/3 ML coverage. At the step edge of Ni(211), the unique alternating zigzag 

pattern helps effectively minimize the lateral interaction, even though the CO intermolecular 

distance (2.96 Å) is shorter than that (4.33 Å) on Ni(111). Above the 1/3 ML coverage threshold, 

𝐵𝐸𝑑𝑖𝑓𝑓 increases quickly, suggesting a rapid increase of the repulsive interactions similar to the 

trend on Ni(111). In this case of Ni(211), CO will have to adsorb at the much less stable (211) 

terrace sites once the edge sites have been occupied. On Ni(211), beyond 7/9 ML, additional CO 

adsorption will then destabilize the slab surface, therefore, the 𝐵𝐸𝑑𝑖𝑓𝑓 corresponding to the 8/9 

and 1 ML coverages are not included.  

The CO self-interaction parameters are obtained by fitting the calculated DFT results to 

Equation (52) on Ni(111), Ni(100), and Ni(211) surfaces. In this case, the CO self-interaction 

parameters are 1.54 on Ni(111), 1.16 on Ni(100), and 2.09 on Ni(211). These CO self-interaction 

parameters are used in the micro-kinetic modeling in section 6.4 and section 6.5 to study the 

effect of considering CO self-interaction for hydrogen production. 

The entropies of CO chemisorptions have also been considered, and the differential CO 

adsorption energies (𝐺𝑑𝑖𝑓𝑓) at 600 K are shown in Figure 6.2(c). At 600 K, CO chemisorption at 

5/9 ML coverage on Ni(111) and Ni(211) become thermodynamically unfavorable, therefore, the 

4/9 ML coverage was adopted for the analyses of H2O-CO, H-CO, O-CO, OH-CO, and COOH-

CO pair interaction in Section 6.3.2. 

As in Figure 6.2(a), it can be seen that the coverage dependence of CO-CO lateral 

interactions are intrinsically weaker on Ni(100) compared to that on Ni(111) and Ni(211). This 

can be intuitively understood from the fact that Ni(100) enables larger CO separation from its 

neighbors due to its open surface structure. In Figure 6.2(b), 𝐵𝐸𝑑𝑖𝑓𝑓is plotted against the surface 
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area per adsorbed CO molecule (Å2/CO). It can be noted that 𝐵𝐸𝑑𝑖𝑓𝑓  collapses into a single 

trend, where 𝐵𝐸𝑑𝑖𝑓𝑓 quickly decreases first and then approaches an asymptotic value at c.a. 15 

Å2/CO molecule. This pattern suggests a universal chemical nature for CO-CO repulsion. 

 

 6.3.2 Lateral Interactions between CO and Other Species 

In this section, the adsorption structures and energies of reaction intermediates involved 

in the relevant WGSR redox and carboxyl pathways, i.e., H2O, H, OH, O, and COOH on the 

(111), (100), and (211) facets, were obtained at the 4/9 ML CO coverage, as shown in Figure 6.3.  

 

 

 



159 

 

 

Figure 6.3. Top views of optimized H2O, H, OH, O, and COOH on (a) Ni(111), (b) Ni(100), and 

(c) Ni(211) at 4/9 ML CO coverage. The white dash circles indicate the original CO locations, 

and the white arrows indicate the moving direction of CO to the new locations once co-adsorbed 

H2O, H, OH, O, and COOH are introduced. 

 

On Ni(111), H2O adsorbs at the top site (Figure 6.3(a)), which is the preferred site at low 

coverage limit (i.e., 1/9 ML) as shown in Chapter 3 section 3.3. One of its O–H bonds points at 

one neighboring CO molecule, the distance between the H and O atoms is 1.86 Å, and thus 

suggesting an intermolecular hydrogen bond-type structure, usually at a distance of 1.97-1.98 Å. 

In addition, three surrounding CO molecules have been pushed away to new locations in order to 
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accommodate this H2O molecule, as illustrated by the white dashed circles and arrows in Figure 

6.3(a). H, OH, and O bind at the 3-fold fcc site, also their preferred site. However, the 

neighboring CO molecules remain at their original positions. COOH also binds at the bridge site. 

Among the reaction intermediates, COOH is the most bulky molecule. As illustrated in Figure 

6.3(a), three CO molecules have been displaced. As a result, the OH group of COOH points at 

one neighboring CO molecule, the distance between the H and O atoms is 2.05 Å, again 

suggesting the existence of intermolecular hydrogen bonding.  

On Ni(100), H2O adsorbs on the top site, with two CO molecules near H2O are 

simultaneously displaced to new sites, as indicated in Figure 6.3(b). The intermolecular 

hydrogen bond structure is formed with one H atom in H2O to O atom in neighboring CO 

separated at 2.09 Å.  H, OH, and O are still able to bind at their preferred 4-fold site. However, 

for OH and O, two CO molecules are displaced to new locations, i.e., the bridge and 4-fold sites. 

COOH adsorbs at the 4-fold site by dislocating two CO molecules from their current bridge sites 

to a new bridge and 4-fold site, respectively. 

On Ni(211), H2O binds at the bridge site near edge, by displacing one CO to the fcc site 

near edge site, as shown in Figure 6.3(c). It can also be noted that the distance between the H 

atom in H2O and the O atom in one nearby CO molecule is 1.61 Å, indicating possible 

intermolecular hydrogen bonding. H now binds at the fcc site at the Ni(211) terrace, instead of 

competing against the CO molecules for their preferred hcp site near edge. Also, there is no CO 

molecule that has been displaced by the H atom. The same pattern has been observed for O, 

which also binds at the fcc site on the Ni(211) terrace. Both OH and COOH are able to bind at 

their preferred bridge site. The H atom in COOH points to one of the nearby CO molecules, and 

the distance between H and O atoms is 1.75 Å indicating a hydrogen bond-like structure. 
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The comparisons of the binding energies of H2O, OH, H, O, and COOH on Ni(111), 

Ni(100), and Ni(211) surface at 4/9 ML CO coverage and those without pre-adsorbed CO are 

listed in Table 6.1. The nature of the pair interactions is repulsive on Ni(111) at the CO coverage 

of 4/9 ML, as shown in the comparisons summarized in Table 6.1 between 𝐵𝐸𝐴−4𝐶𝑂  and 

corresponding 𝐵𝐸𝐴 , for reaction intermediates except H2O. In addition, CO, O, and COOH 

experience the most repulsive interactions (~0.80 eV). OH also experiences moderate repulsive 

interactions, which decreases the OH binding energy by approximately 0.55 eV. The 𝐵𝐸𝐻 is least 

affected due to its small atomic size, as proven in previous literature,2 and is weakened by only 

approximately 0.06 eV. The adsorption of H2O is instead enhanced by 0.05 eV in the presence of 

pre-adsorbed CO molecules due to the intermolecular hydrogen bonding.  

 

Table 6.1. Binding energies (in eV) of CO, H2O, OH, H, O, and COOH on Ni(111), Ni(100) and 

Ni(211) without pre-adsorbed CO and at 4/9 ML CO coverage. The italicized numbers highlight 

the 𝑩𝑬𝑨−𝟒𝑪𝑶 enhanced by co-adsorbed CO molecules. 

 Ni(111) Ni(100) Ni(211) 

 𝐵𝐸𝐴 𝐵𝐸𝐴−4𝐶𝑂 𝐵𝐸𝐴 𝐵𝐸𝐴−4𝐶𝑂 𝐵𝐸𝐴 𝐵𝐸𝐴−4𝐶𝑂 

CO -1.93 -1.15 -1.88 -1.45 -1.97 -1.04 

H2O -0.27 -0.32 -0.36 -0.46 -0.55 -0.39 

OH -3.27 -2.72 -3.43 -3.16 -3.78 -2.94 

H -2.80 -2.74 -2.73 -2.76 -2.82 -2.74 

O -5.39 -4.58 -5.61 -5.11 -5.57 -4.81 

COOH -2.25 -1.43 -2.69 -2.14 -2.18 -1.37 
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On Ni(100), the adsorbate-adsorbate interactions are also repulsive, except for H2O and 

H, with their binding energies increased by 0.1 eV and 0.03 eV, respectively. Similar to the CO-

CO lateral interactions, the repulsions between CO and each considered reaction intermediates 

are to a smaller extent compared to those on Ni(111). The 𝐵𝐸𝑂 and 𝐵𝐸𝐶𝑂𝑂𝐻  are weakened the 

most, by 0.5 and 0.55 eV, respectively, which is followed by CO-CO interactions, which has 

decreased by 0.43 eV. The 𝐵𝐸𝑂𝐻 decreases the least, by 0.27 eV.  

On Ni(211), the diminished binding energies indicate that all the repulsive nature of CO 

with the considered reaction intermediates. In particular, the adsorption of H2O is also weakened 

0.16 eV. CO, OH, O and COOH follow this trend with the binding energy decreasing by 0.93 

eV, 0.84 eV, 0.76, and 0.81 eV, respectively. The adsorption of H is weakened by 0.08 eV, 

which is the least affected.  

 

6.4 Impact on Hydrogen Production on Ni(111), Ni(100), and Ni(211) at 

4/9ML CO Coverage 

 6.4.1 Free Energy Diagrams of WGSR  

In order to understand how previously established knowledge of the interactions of the 

WGSR reaction intermediate pairs will affect the reaction activity on these single crystal facets, 

the free energy diagrams of WGSR incorporating the calculated adsorbate-adsorbate interactions 

at 600 K, are shown in Figure 6.4 (a-c), respectively. The pre-adsorbed four CO molecules on Ni 

facets with gas phase H2O and CO are used as the energy reference (i.e., 0 eV). In this analysis, 

we primarily focus on the reaction energetics, while assuming the energy barriers of each 

elementary step remain unchanged, as a first approximation. 
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Figure 6.4. Free energy diagrams for redox and carboxyl pathways at 4/9 ML CO coverage on 

(a) Ni(111), (b) Ni(100), and (c) Ni(211). The solid lines are the original free energies with no 

pre-adsorbed CO, and the dashed lines corresponding to co-adsorbed 4/9 ML CO. The blue path 

represents the redox pathway; the red path represents the carboxyl pathway, and the black path 

represents CO, H2O adsorption and activation steps, and H2 formation steps. 
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As shown in Figure 6.4(a), on Ni(111), the overall free energy surfaces for both redox 

and carboxyl pathways have become much more endothermic due to the weakened adsorptions 

of CO and H2O. Further activations of H2O, forming OH and O, are also adversely affected (i.e., 

becoming more endothermic). As a result, the redox pathway loses its competition to become 

less competitive compared to the carboxyl pathway due to the H2O activation. On Ni(100), as 

shown in Figure 6.4(b), the overall free energy upshift as the weakened CO, OH, O, and COOH 

adsorptions. Nevertheless, the redox pathway still remains competitive against the carboxyl 

pathway. On Ni(211), the free energies of hydrogen production via the redox and carboxyl 

pathways again resemble to that on Ni(111). However, unlike Ni(111), though the redox 

pathways becomes much less competitive compared to the low coverage limit situation 

represented by the solid lines shown in Figure 6.4(c), it is still competitive with carboxyl 

pathway. 

The above analysis can be used as a basic guideline to understand the activity and 

selectivity of hydrogen production influenced by the idealized nickel single crystal surface lattice 

structures. In the next section, micro-kinetic modeling was performed to obtain the turnover 

frequency (TOF) of H2 to investigate the role of adsorbate-adsorbate interaction.  

 

 6.4.2 Micro-kinetic Modeling  

Without consideration of CO lateral interactions, it is predicted that CO will occupy 

nearly all the open sites on all three single crystal facets. This behavior prevents the surface to 

reach thermodynamic equilibrium. From DFT calculations, the CO self-interaction parameters on 

Ni(111), Ni(100), and Ni(211) are found to be 1.54, 1.16, and 2.09, respectively, using Equation 

(52). These self-interaction parameters were then applied in the micro-kinetic models to compute 
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hydrogen production rates. A temperature range of 423 ~ 723 K, and a pressure of 1bar with CO 

and H2O molar ratio of 1:2 were considered,9-11 which is the same reaction conditions as the 

micro-kinetic modeling in Chapter 5 section 5.4.2. A mechanism, consisting of R1–R8 (see 

Section 5.4.2), was used.  
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Figure 6.5. The TOF of H2 production on (a) Ni(111), (c) Ni(100), and (e) Ni(211) at 1 bar. The 

predicted reaction intermediates coverages on (b) Ni(111), (d) Ni(100), and (f) Ni(211). The feed 

has a molar ratio of CO:H2O = 1:2. 
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The H2 production TOF (in s-1) of and surface coverage of main intermediates on 

Ni(111), Ni(100), and Ni(211) are shown in Figure 6.5. The most significant change is that, with 

CO self-interaction, CO coverages are revised and lowered down to a range of 0.4 - 0.75 ML on 

Ni(111), Ni(100), and Ni(211) surfaces. On Ni(111), as shown in Figure 6.5(a), the carboxyl 

pathway contributes to nearly all the H2 production when the temperature is below 550 K. Above 

this temperature, the redox pathway becomes more competitive quickly, and dominates H2 

production after reaching 570 K. This behavior can be understood by examining Figure 6.5(b), 

where COOH and O coverage (other than CO) are the main surface species at the low and high 

temperature regimes, corresponding to carboxyl and redox pathways, respectively.  

A different trend is noted on Ni(100), where redox remains as the main route for H2 

production throughout the temperature range, as shown in Figure 6.5(c). From Figure 6.5(d), it is 

shown that H2O adsorption and activation should be strengthened.  

Thirdly, on Ni(211) surface, the trend resembles more to Ni(111), where the carboxyl 

pathway is slightly more favored at temperatures below 530 K. Above 530 K, the redox pathway 

becomes more favorable. This observation can be explained by Figure 6.5(f) that OH (other than 

CO) coverage becomes abundant surface species at low temperature, which takes part in the 

carboxyl pathway. Figure 6.6 compares the total H2 production rate on Ni(111), Ni(100), and 

Ni(211) surfaces. At the temperature below about 570 K, the H2 production rate is higher on the 

open flat surface, such as Ni(100), than on the stepped surface, e.g., Ni(211). Above 570 K, this 

trend is reversed. The possible reason is CO self-interaction parameter on Ni(211) surface is 

larger than that on Ni(111) and Ni(100) surfaces, which weakens the CO binding strength too 

much on Ni(211) surface and leads to insufficient CO adsorbed on the surface. Therefore, the 

WGSR activity on Ni(211) activity is lowered at low temperatures.  
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Figure 6.6. Comparison of H2 production TOFs on Ni(111), Ni(100), and Ni(211). The feed has 

a molar ratio of CO: H2O = 1:2.  

 

  6.4.3 Reaction Orders from Micro-kinetic Modeling 

The reaction rate of WGSR can be expressed with Equation (57)12: 

 

𝑟 = 𝑘𝑃𝐶𝑂
𝑎 𝑃𝐻2𝑂

𝑏 𝑃𝐶𝑂2
𝑐 𝑃𝐻2

𝑑 , (57) 

 

where a, b, c, and d are the reaction orders of CO, H2O, CO2 and H2, respectively. 𝑘 is the rate 

coefficient. 𝑃𝐶𝑂,𝑃𝐻2𝑂, 𝑃𝐶𝑂2, and 𝑃𝐻2are the pressure of CO, H2O, CO2, and H2.  
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The reaction orders of CO, H2O, CO2 and H2 are calculated through micro-kinetic 

modeling. When calculating the reaction order of CO, the pressure of CO varies with fixed 

pressures of other species (i.e. H2O, CO2, and H2) at 600 K. Similar procedures are performed to 

calculate the reaction orders of H2O, CO2, and H2. Table 6.2 shows the reaction orders of CO, 

H2O, CO2 and H2 on Ni(111), Ni(100), and Ni(211) surfaces. The Ni(111) surface shows a CO 

reaction order of 0.05, a H2O reaction order of 0.77, a CO2 reaction order of 0, and a H2 reaction 

order of -0.60. The Ni(100) surface shows a CO reaction order of -0.12, a H2O reaction order of 

0.53, a CO2 reaction order of -0.01, and a H2 reaction order of -0.57. The Ni(211) surface shows 

a CO reaction order of 0.21, a H2O reaction order of 0.05, a CO2 reaction order of 0, and a H2 

reaction order of -0.42. The CO reaction order is somewhat positive on Ni(111) and Ni(211) 

from micro-kinetic modeling unlike the CO reaction order of -0.14 ± 0.05 from experimental 

study13, which is likely due to the larger calculated CO self-interaction parameters on Ni(111) 

and Ni(211) surfaces with predicting too low CO coverage. A good agreement of H2O reaction 

order between experiment results (0.62 ± 0.11)13 and our DFT-based micro-kinetic model on all 

Ni surfaces are observed.  

 

Table 6.2. Reaction orders of CO, H2O, CO2 and H2 (𝒂, 𝒃, 𝒄, 𝒅) obtained from micro-kinetic 

modeling on Ni(111), Ni(100), and Ni(211), respectively. 

Surface 𝑎 𝑏 𝑐 𝑑 

Ni(111) 0.05 0.77 0 -0.60 

Ni(100) -0.12 0.53 -0.01 -0.57 

Ni(211) 0.21 0.05 0 -0.42 
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6.5 Hydrogen Productions on Other Transition Metals 

Besides Ni, other transition metals (e.g., Cu, Au, Pt) also show reasonable activities for 

WGSR. In this section, we also studied the WGSR on Cu(111), Cu(211), Au(111), Pt(111) 

surfaces. A general trend (volcano plot) of WGSR activity on different transition metals will be 

generated using CO and H2O as descriptor.  These theoretical results will finally compare with 

Grenoble’s experimental results 13. As the carboxyl pathway is found to be the dominant 

pathway on Cu(111), Pt(111), and Au(111),5-8 R1, R2, R5, R6, R7, and R8 (carboxyl pathway) 

as shown in Chapter 5 section 5.4.2 are included in the micro-kinetic modeling. 

Three-layer Pt(111), Cu(111) and Au(111) with p(3 × 3) unit cells were used. A three-

layer (1 × 3) supercell was used to model the Cu(211) facet. The other computational details 

remain the same as for Ni(111) and Ni(211) facets shown in section 6.2. 

 

 6.5.1 Adsorption of Reaction Intermediates on Other Transition Metals 

The binding energies (BEs) and preferred binding sites of H2O, CO, OH, H, and COOH 

are summarized in Table 6.3 and Figure 6.7. On Pt(111) surface, H2O, OH, H, and COOH prefer 

to bind at the top site with respective BEs of -0.23 eV, -2.28 eV, -2.79 eV, and -2.39 eV. CO 

binds at the fcc site with BE of -1.86 eV. The preferred binding sites for H2O, CO, OH, H, and 

COOH on Pt(111) are consistent with ref6. On Cu(111) surface, H2O adsorbs at top site with BE 

of -0.16 eV, while COOH binds at the off-top site with BE of -1.53 eV. CO*, OH*, and H* 

prefer to bind at the fcc sites with respective BEs of -0.78 eV, -2.99 eV, and -2.44 eV. The most 

stable binding sites for H2O, CO, OH, H, and COOH on Pt(111) are in accordance with ref5. On 

Cu(211) surface, H2O binds at the top site with BE -0.38 eV and H* binds at the hcp near edge 

site with BE of -2.60 eV. The most stable adsorption site for other species (i.e. CO*, OH*, and 
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COOH*) are bridge site on Cu(211) surface. On Au(111) surface, H2O and COOH bind at the 

top site with respective BEs of -0.08 eV and -1.28 eV. The most stable binding site for CO on 

Au(111) is bridge site, which is consistent with ref8. And OH prefers to bind at bridge site on 

Au(111) surface with BE of -1.74 eV. H adsorbs at fcc site on Au(111) surface with BE of -1.98 

eV.  

 

Table 6.3. Binding energies (BEs) and site preference of WGSR reaction intermediates on 

Pt(111), Cu(111), Cu(211), and Au(111) surfaces. 

 Pt(111) Cu(111) Cu(211) Au(111) 

 BE [eV] site BE [eV] site BE [eV] site BE [eV] site 

H2O* -0.23 top -0.16 top -0.38 top -0.08 top 

CO* -1.86 fcc -0.78 fcc -1.01 bridge -0.07 bridge 

OH* -2.28 top -2.99 fcc -3.43 bridge -1.74 bridge 

H* -2.79 top -2.44 fcc -2.60 hcp -1.98 fcc 

COOH* -2.39 top -1.53 off-top -1.98 bridge -1.28 top 
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Figure 6.7. Optimized structure of the 6 intermediates for WGSR in Table 6.3 on (a) Pt(111) 

surface, (b) Cu(111) surface, (c) Cu(211) surface, and (d) Au(111) surface. The dark blue, pink, 

and gold atoms represent Pt, Cu, and Au atoms respectively. The edge Cu atoms in Cu(211) 

surface are highlighted in dark red. 

 

 6.5.2 Micro-kinetic Modeling on Transition Metals 

The modeling was performed at 573 K, and CO and H2O partial pressures at 24.3 kPa and 

31.4 kPa. This temperature and pressure selection is the same as Grenoble’s experimental 

condition13. BEP correlations obtained from Ni(111) (see Chapter 5 section 5.3.2) were 

employed to estimate transition state energies of C-O bond formation/cleavage and O-H bond 

formation/cleavage steps on Pt(111), Cu(111), Cu(211), and Au(111) surfaces. Figure 6.8 shows 
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the two-dimensional volcano plots of TOF of hydrogen without considering CO self-interaction, 

and Figure 6.9 presents the predicted CO surface coverage.  
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Figure 6.8. The TOF of hydrogen at varying binding energies of CO and H2O with (a) no CO 

self-interaction, (b) ¼ CO self-interaction, (c) ½ CO self-interaction, (d) ¾ CO self-interaction, 

and (e) full CO self-interaction included at T = 573 K, PCO = 24.3 kPa and PH2O = 31.4 kPa. 
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Figure 6.9. The predicted CO coverage as a function of CO and H2O binding energies, with (a) 

no CO self-interaction, (b) ¼ CO self-interaction, (c) ½ CO self-interaction, (d) ¾ CO self-

interaction, and (e) full CO self-interaction included at T = 573 K, PCO = 24.3 kPa and PH2O = 

31.4 kPa. 
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From Figure 6.8(a), both too strong and too weak CO BE to catalysts show low TOF of 

H2 production. An optimal strength of CO interaction with surface is required. The trend of 

activity of the transition metals for WGSR with no CO self-interaction parameter included in 

micro-kinetic modeling is predicted to be Cu(211) > Cu(111) > Au(111) > Ni(211) > Ni(100) > 

Ni(111) > Pt(111). The predicted CO coverage on Pt(111), Ni(111), Ni(100), and Ni(211) 

surfaces in Figure 6.9(a) are nearly 1 ML that poison those surfaces with low WGSR activity. 

Therefore, CO self-interaction parameters for Pt(111), Ni(111), Ni(100), and Ni(211) surfaces 

are necessary for the micro-kinetic modeling. The CO self-interaction parameters on Au(111), 

Cu(111), and Cu(211) surface can be neglected as the low CO coverages observed in Figure 

6.9(a). 

DFT calculations were performed with different CO coverages on Pt(111) surface to 

calculate the only unknown CO self-interaction parameter on Pt(111). The results are shown in 

Appendix D. Through fitting to the DFT data using Equation (52), the CO self-interaction 

parameter is 1.70 on Pt(111) surface, which is added to the micro-kinetic modeling.  

Figure 6.8(e) shows the TOF of hydrogen with considering full CO self-interaction on 

Pt(111), Ni(111), Ni(100), and Ni(211) surfaces, and Figure 6.9(e) are the corresponding CO 

coverages. When considering full CO self-interactions, the estimated trend of the WGSR activity 

for transition metals is predicted to be Ni(100) > Ni(111)> Cu(211) > Cu(111)~Pt(111) > 

Ni(211) > Au(111). The catalyst reactivity of Ni and Pt surfaces increase and the predicted CO 

coverage decrease when considering full CO self-interaction, which means that Ni and Pt can be 

active WGSR catalyst if CO poison can be relieved. 

  However, in reality, the CO coverage on catalyst surface is unlikely to be uniform. 

Some locations may have high CO density, where consideration of CO self-interactions is 
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necessary. Thus, the CO self-interaction parameter on a real catalyst surface can vary in an 

experimental condition. To mimic experiment conditions, CO self-interaction parameters can 

vary (not a constant value) in micro-kinetic modelings for quantitative analysis of WGSR 

reactivity trend on different transition metals.  Figure 6.8(b-d) present the TOFs of hydrogen 

production with varying CO self-interaction parameters, and the predicted CO coverages are 

shown in Figure 6.9(b-d). At 
1

4
  of the original CO self-interaction parameter, micro-kinetic 

predicted WGSR activity trend on transition metals follows Cu(211) > Cu(111) > Au(111) > 

Ni(211) > Ni(100) > Ni(111) > Pt(111), the same trend as that without considering CO self-

interaction. When 
1

2
 of the original CO self-interaction parameter was used, the predicted WGSR 

activity order changed to: Cu(211) > Cu(111) > Au(111) ~ Ni(211) > Ni(100) > Ni(111) > 

Pt(111) . With 
3

4
 of the original CO self-interaction parameter used, the WGSR trend change to 

Cu(211) ~ Ni(100) > Cu(111) > Ni(111) > Ni(211) ~ Pt(111) > Au(111). Overall, the strong CO 

binding sites become more active when more pronounced CO self-interactions are considered.  

Experimentally, Grenoble et al. 13 proposed that the trend of WGSR activity on transition 

metals to be Cu > Ni > Pt > Au at 573 K with a feed gas containing 𝑃𝐶𝑂= 24.3 kPa and 𝑃𝐻2𝑂= 

31.4 kPa. The micro-kinetic models predict a better WGSR trend when considering larger 

fraction of CO self-interaction up to 
3

4
 CO self-interaction. 

In this work, only CO self-interactions were considered in the micro-kinetic model. Other 

lateral interactions, such as self-interactions of OH species, or cross-interaction between CO and 

OH are believed to influence the prediction from micro-kinetic modeling. Further studies 

focused on this topic will further advance the capability and accuracy of kinetic modeling 

techniques. 
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 6.6 Conclusions 

Periodic density functional theory calculations have been performed in this study to 

investigate the adsorbate−adsorbate interactions between the CO−CO, CO−H2O, CO−OH, 

CO−H, CO−O, and CO−COOH pairs on Ni(111), Ni(100), and Ni(211). The nature of these pair 

interactions is repulsive except for H2O and H. In these exceptions, H2O adsorptions on Ni(111) 

and Ni(100) are enhanced by approximately 0.05− 0.1 eV because of the intermolecular 

hydrogen bonding, and H binding energy increases by 0.03 eV on Ni(100). On Ni(111) and 

Ni(211), it has been found that the CO−CO, CO−O, CO−OH, and CO−COOH pair interactions 

are strongly repulsive, where the binding energies are destabilized by 0.5− 1.0 eV, while the 

CO−H interaction is the least repulsive. On Ni(100), the adsorbate−adsorbate interaction is 

comparably weaker because of the open lattice structure. When the CO BEdiff is plotted as a 

function of the surface area per adsorbed CO molecule, BEdiff on all facets collapse into a single 

trend, suggesting a universal chemical nature for CO−CO interactions. 

The adsorbate−adsorbate interaction is also considered in the micro-kinetic modeling at 1 

bar and feed composition of CO: H2O = 1:2. A reaction mechanism transfer from carboxyl 

pathway to redox pathway is observed with elevated temperature on Ni(111) and Ni(211) 

surfaces. On Ni(100) surface, the redox pathway remains competitive against the carboxyl 

pathway. Overall, the H2 production rate is the highest on Ni(100) at the temperature below ~570 

K and above ~570 K, Ni(211) surface has the highest H2 production rate. The calculated reaction 

order of CO and H2O are in good agreement with the experimental results, as well. 

Adsorbate-adsorbate effect to catalytic activity of various transition metals to WGSR was 

also studied. The results show that the WGSR activity increasing at the strong CO binding metals 
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when considering CO self-interaction. In addition, Ni and Pt catalysts can become active if the 

CO poison can be relieved.   

This study once again confirmed the effect of intermolecular interactions of surface 

adsorbates to catalyst activity. We also note that more sophisticated intermolecular interactions 

can be developed to generate an unblemished volcano plot for predicting WGSR catalyst activity 

and designing new WGSR catalyst with high precision.  
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Chapter 7 - Insights into Catalysis at Catalyst-Support Interfaces 

Case study 2 is reproduced in part with permission from:  

Zhu, W.; Wu, Z.; Foo, G.; Gao, X.; Zhou, M.; Liu, B; Veith, G.; Wu, P.; Browning, K.; Lee, H.; 

Li, H.; Dai, S.; and Zhu, H. “Taming interfacial electronic properties of Pt nanoparticles on 

vacancy-abundant boron nitride nanosheets for enhanced catalysis”, Nature Communications, 

2017, DOI: 10.1038/ncomms15291. 

 

 7.1 Introduction 

The importance of an appropriate support to catalyst has sparked great interest among 

researchers. The usage of support should help decrease the total catalyst expense by maintaining 

the stability and dispersion of main catalyst component, decreasing the amount of costly 

materials used, and tuning catalytic performance.1,2  

Catalyst supports can participate catalytic processes. They may be catalytically active 

themselves or they may modulate catalyst particle properties. More importantly, new active sites 

are generated between the metal/support interfaces, which introduce new catalytic properties. 

These properties can significantly enhance catalyst performance, and should be exploited and 

taken into consideration in catalyst design. 

In this chapter, two reaction models are performed: (a) WGSR over Cu/CeO2 and 

Ni/CeO2 catalysts, and (b) CO oxidation over vacancy abundant hexagonal boron nitride 

nanosheets (h-BNNS) supported Pt nanoparticle to analyses the critical catalytic role of support 

in the reactions. The adsorptions associated with the reactive intermediates were calculated using 

DFT to address how the metal/support interface influence the binding of reactive intermediates 

and therefore affect the catalyst activity.  
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7.2 Case Study 1: WGSR over Cu/CeO2 and Ni/CeO2 catalysts 

Ceria (CeO2) is considered to be a beneficial support material for WGSR due to its high 

oxygen storage capacity, rich oxygen vacancy, and the ability to form strong interactions with 

metal catalyst particles.3 As discussed earlier, water dissociation is a critical step for WGSR. 

Rodriguez et al.4 found that ceria is able to enhance WGSR activity of Au and Cu nanoparticles 

dramatically by facilitating water dissociation on its reduced surface. Wang et al.5 proposed that 

water dissociation takes place at the Ov site or at the Cu-Ov interface over the Cu/CeO2 catalyst. 

Senanayake et al.6 indicated that CeO2-supported Ni catalysts display higher WGSR activity than 

common industrial WGSR catalyst (ZnO supported Cu catalyst), and small Ni coverage (below 

0.25 ML) on CeO2 is particularly efficient for water dissociation of water and catalyzing the 

carboxyl pathway. Studies by Carrasco et al.7 showed that Ni2+ sites are generated due to strong 

metal-oxide support interactions. The presence of Ni2+ sites favors water dissociation, which 

affects the overall WGSR activity.  

In this section, the behaviors of Cu/CeO2 and Ni/CeO2 catalysts  to WGSR pathways 

(redox pathway and carboxyl pathway) were investigated using periodic DFT calculations. 

Adsorptions of reactive intermediates are calculated to generate the potential energies of WGSR 

pathways. The obtained potential energies can be compared with the potential energies on pure 

Cu(111) surface and Ni(111) surface generated by the data in Chapter 3 and Chapter 6 to find out 

the critical role of CeO2 support on Cu and Ni catalysts.  

 

 7.2.1 Computational Methods 

Spin polarized DFT calculations were performed with the Vienna ab initio simulation 

package (VASP).8-11 The generalized gradient approximation PBE (GGA-PBE) functional 12 was 
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employed to describe the electron exchange-correlation energy. The projector augmented wave 

(PAW) pseudopotential method accounting for O-2s22p4, Ce-5s25p64f15d16s2, Cu-3d104s1, and 

Ni-3d84s1 valence electrons was used. The cutoff energy was set to be 385 eV.  The Gaussian 

smearing technique was utilized to assist numerical convergence with smearing parameter of 0.2. 

The system was sampled with the single gamma k-point.13. In addition, a local on-site Coulomb 

repulsion term (GGA + U) according to the formulation by Dudarev et al.14 was employed to 

account for the strong on-site Coulomb interaction of the Ce 4f electrons. The difference 

between the Coulomb U and exchange J parameters (Ueff = U – J) was set to be 4.5 eV 15 for 

geometric optimizations, which was calculated self-consistently by Fabris et al.15 using the linear 

response approach16. 

Ceria supported Cu and Ni catalysts were modeled with a quasi-one dimensional Cu or 

Ni ‘nanowire’ supported on a terrace CeO2 (111) surface, the optimized structures are shown in 

Figure 7.1. This nanowire configuration provides a rather realistic representation of large (~ 

several nanometers) catalyst particles with much better-defined step, facet, and peripheral 

structures near the catalyst-support interface. This concept has been implemented in several 

recent studies for supported metal catalysts.17,18  Due to the qusi-periodic nature, this approach 

can also be computationally convenient. A three-layer p(4 × 2) unit cell was used to represent the 

CeO2 support.  The metal nanowire that is three layers thick and two or three atoms wide is 

placed on CeO2 (111) surface.  

 



185 

 

 

Figure 7.1. Optimized structures of (a1) Cu/CeO2 and (b1) Ni/CeO2, and (a2) reconstructed 

Cu/CeO2 and (b2) reconstructed Ni/CeO2. The * and # indicate the two type of adsorption sites 

considered in the analysis (see details in text).  Dashed black lines indicate the boundaries of the 

supercell. Areas enclosed by purple dashed lines indicate the metal/oxide interface. The red 

arrow indicates the width of the super cell. Ce, O, Cu, and Ni atoms are depicted in white, red, 

pink, and blue, respectively. 

 

The right side Cu/CeO2 or Ni/CeO2 interface was chosen for reaction modeling. The top 

layer of CeO2, the entirety of nanowire, and adsorbate were allowed to relax during 

optimizations, whereas the bottom two layers of CeO2 were fixed at the bulk ceria lattice value.  
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 7.2.2 The Structure of Cu/CeO2 and Ni/CeO2 Catalysts 

After optimizing the pure CeO2(111) surface, the calculated Ce-Ce distance on the 

CeO2(111) surface is 3.826 Å. Thus, for the p(4 × 2) CeO2 unit cell, the width of CeO2 unit cell 

(defined at Figure 7.1(a2))  is 7.653 Å. After optimizing the pure Cu and Ni nanowires, the 

calculated Cu-Cu and Ni-Ni distances are 2.556 Å and 2.492 Å, respectively. The widths of Cu 

and Ni nanowire (defined at Figure 7.1(a2)) for each unit cell will be 7.668 Å and 7.476 Å, 

respectively. When Cu or Ni nanowire is supported on CeO2(111) surface, both Cu and Ni 

nanowires have a size mismatch of about 2.5% with CeO2(111) surface, indicating a small 

compressive strain within Cu nanowire, while a small tensile strain in the adsorbed Ni nanowire.  

The Cu/CeO2 and Ni/CeO2 catalysts were relaxed then without adsorbates, and the 

optimized structures are shown in Figure 7.1(a1) and Figure7.1(b1), respectively. However, after 

adsorption of reaction intermediates, the Cu and Ni nanowires both reconstructed. The most 

notable difference between the original and reconstructed structure is that the reactive facet of 

metal wire has shifted from the (100) facet to the close-packed (111) facet. After removing the 

adsorbate, both Cu/CeO2 and Ni/CeO2 retained their new structures. The reconstructed Cu/CeO2 

and Ni/CeO2 models, shown in Figure 7.1(a2) and Figure7.1(b2), respectively, are -1.05 eV and -

0.67 eV more stable. For the remaining analysis, the reconstructed Cu/CeO2 and Ni/CeO2 

catalyst models will be used.  

When reduced, CeO2 loses lattice oxygen and produces vacancy sites (Ov). Figure 7.2 

shows the optimized structure of Cu/CeO2 and Ni/CeO2 catalysts with one Ov. Many studies 

suggested that Ov in CeO2 surface promote water dissociations,5,19,20 a beneficial effect in 

WGSR. Here, WGSR occurring on reduced Cu/CeO2 and Ni/CeO2 catalysts will be focused. 
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Figure 7.2. Optimized structures of (a) Cu/CeO2 with Ov and (b) Ni/CeO2 with Ov. The Ov is 

highlighted as black dots. The § indicates one type of adsorption sites considered in the analysis 

(see details in text). Black dashed lines indicate the boundaries of the supercell. Areas enclosed 

in purple dashed lines indicate the metal/oxide interface. 

 

7.2.3 Adsorption of Reaction Intermediates 

Kitchin et al.21 and Mehta et al.22 proposed that strain shifts the d-band centers of the 

metal atoms along the boundary to higher energies, which strength the binding of adsorbates. 

Besides strain, ligand (bond interactions between metal and support), reorientation of adsorbate, 

supplementary bonding provided by support can also influence the adsorption energetics, which 

vary systematically on their own.22 The influence of catalyst support to adsorption energetics are 

variable, which need to calculate individually for each adsorbate. 

Three different sites were employed in Cu/CeO2 and Ni/CeO2 catalysts model, where the 

metal/support interface sites (top, bridge, and 3-fold sites of perimeter Cu or Ni sites, and metal-

metal-O hollow sites) are indicated by a ‘*’ symbol in Figure 7.1(a2) and Figure 7.1(b2). The top 
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site of O atoms on CeO2 close to the interface is depicted by a ‘#’ symbol in Figure 7.1(a2) and 

Figure 7.1(b2). The Ov site on CeO2 close to interface is noted as a ‘§’ symbol in Figure 7.2.  

The WGSR mechanism consists of five reaction intermediates (CO*, H2O§, H#, OH*, 

COOH*). The binding energies (BEs) of each species adsorbed at preferred sites on Cu/CeO2 

and Ni/CeO2 are listed in Table 7.1, and the respective adsorption structures are shown in Figure 

7.3 and Figure 7.4. The BEs of these species on unsupported Cu(111) and Ni(111) surfaces are 

also listed in Table 7.1 for comparison. 

 

Table 7.1. Binding energies (BEs) of reaction intermediates on Cu/CeO2, Ni/CeO2 catalysts and 

unsupported Cu(111), Ni(111) surfaces. 

 Cu/CeO2 Cu(111)† Ni/CeO2 Ni(111)‡ 

CO* -0.85 -0.78 -2.03 -1.93 

H2O§ -0.91 -0.16 -0.55 -0.27 

H# -4.83 -2.44 -3.39 -2.80 

OH* -3.22 -2.99 -3.35 -3.27 

COOH* -1.90 -1.53 -1.97 -2.25 

†Data taken from Table 6.3 in Chapter 6, and ‡Data taken from Table 3.1 in Chapter 3. 
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Figure 7.3. Optimized structures of reaction intermediates (a) CO*, (b) H2O§, (c) H#, (d) OH*, 

and (e) COOH* (in Table 7.1) on Cu/CeO2 surface. H and C atoms are depicted in white and 

grey, respectively. The black arrow indicates the position of Ov, which cannot recognize as 

being overlapped by the adsorbate in (b). 
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Figure 7.4. Optimized structures of reaction intermediates (a) CO*, (b) H2O§, (c) H#, (d) OH*, 

and (e) COOH* (in Table 7.1) on Ni/CeO2 surface. The black arrow indicates the position of Ov, 

which cannot recognize as being overlapped by the adsorbate in (b). 

 

As shown in Figure 7.3 (a) and Figure 7.4(a), CO prefers to bind at the top and 3-fold 

sites near Cu- and Ni-CeO2 interfaces, respectively. The calculated CO* BEs are -0.85 eV and -

2.03 eV, which are about 0.1 eV stronger than those on unsupported Cu(111) and Ni(111) 

surfaces. H2O binds preferentially through its oxygen at the bridge site between two Ce atoms 
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next to the Ov on both Cu/CeO2 and Ni/CeO2 catalysts, as illustrated in Figure 7.3 (b) and Figure 

7.4(b). H2O binds much stronger on Cu/CeO2 and Ni/CeO2 than on unsupported Cu(111) and 

Ni(111), with BEs of -0.91 eV and -0.55 eV, respectively. H prefers to bind at the top of O on 

CeO2 surface, with BEs of -4.83 eV and -3.39 eV over Cu/CeO2 and Ni/CeO2 catalysts, 

respectively. The BEs of OH are -3.22 eV and -3.35 eV at the respective interface of Cu/CeO2 

and Ni/CeO2. COOH prefers to bind at the 3-fold site at the interfaces of reduced Cu/CeO2 and 

Ni/CeO2 catalysts with its C atom located at the 3-fold site. The BEs of COOH are -1.90 eV and 

-1.97 eV, respectively. 

 

 7.2.4 WGSR Pathways on Cu/CeO2 and Ni/CeO2 Catalysts 

The CeO2 support can store or release oxygen under oxidizing and reducing conditions. 

Both experimental and theoretical studies proposed the adsorbed CO on metal/support (e.g., 

Au/CeO2
23,24, Pt/CeO2

23, Pd/CeO2
25) can oxidize by lattice O on CeO2, known as redox pathway, 

followed by re-oxidation of the support by H2O re-oxidizes the reduced CeO2. However, re-

oxidation of the CeO2 support are difficult with large energy barrier (above 1 eV) from DFT 

study on Au/CeO2.
26 Instead of re-oxidizing CeO2 support, the adsorbed OH produced through 

H2O activation can react with adsorbed CO to form COOH, known as carboxyl pathway, 

followed by COOH dissociation.24,27 No significant amount of formate (HCOO) was observed 

over Cu/CeO2. Hence, it is believed that formate should play a minor role in the reaction 

mechanism.5 Moreover, the formate is also found to be just a spectator species over Pt/CeO2 

from FTIR analyses.28 Therefore, only redox pathway and carboxyl pathway are considered, as 

shown below: 
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CO(g) + * ↔ CO* (R1) 

CO* ↔ CO2(g) + § (R2) 

H2O(g) + § ↔H2O§ (R3) 

H2O§ + * ↔ H# +OH* (R4) 

CO* + OH* ↔ COOH* + * (R5) 

COOH* ↔ CO2(g) + H# (R6) 

H# + H# ↔ H2(g) + 2# (R7) 

 

The calculated reaction energetics associated with reaction pathways are listed in Table 

7.2. In the redox pathway, surface lattice oxygen readily reacts with CO, forming CO2 (R2). This 

step is very exothermic with a reaction energy of -2.93 eV and -1.53 eV on Cu/CeO2 and 

Ni/CeO2, respectively. Then H2O adsorbs next to the Ov site (as shown in Figure 7.3 (b) and 

Figure 7.4(b) on Cu/CeO2 and Ni/CeO2 catalysts), followed by H2O activation. The O-H bond in 

water breaks to form OH* and H# (R4) with respective reaction energies of -1.74 eV and -0.85 

eV on Cu/CeO2 and Ni/CeO2. Instead re-oxidize the CeO2 support, carboxyl pathway happens 

with OH* react with CO* (R5) forming COOH*. This step is endothermic by 0.20 eV and 1.48 

eV on Cu/CeO2 and Ni/CeO2 catalysts, respectively. Then, COOH dissociates to form CO2 and 

H# in the R6 step. This step is exothermic with respective reaction energies of -2.56 eV and -

1.05 eV on Cu/CeO2 and Ni/CeO2. Lastly, two H atoms that bind at the O site on CeO2 

recombine to form H2. 
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Table 7.2. DFT calculated reaction energies (ΔE [eV]) of the elementary steps on Cu/CeO2 and 

Ni/CeO2 catalysts. 

  Cu/CeO2 Ni/CeO2 

(R1) CO(g) + * ↔CO* -0.85 -2.03 

(R2) CO* ↔ CO2(g) + § -2.93 -1.53 

(R3) H2O(g) + § ↔H2O§ -0.91 -0.55 

(R4) H2O§ + * ↔ H# +OH* -1.74 -0.85 

(R5) CO* + OH* ↔ COOH* + * 0.20 1.48 

(R6) COOH* + # ↔ CO2(g) + H# -2.56 -1.05 

(R7) H# + H# ↔ H2(g) + 2# 5.14 2.27 

 

By combining the calculated energetics of the above reaction sequence, the overall 

potential energy surface describing WGSR carboxyl pathway can be summarized in Figure 7.5. 

Potential energy surfaces on unsupported Cu(111) and Ni(111) are also shown (in respective 

black and red dashed lines) in Figure 7.5(a) and Figure 7.5(b). Due to stronger binding of CO 

and H2O and more favorable dissociation of H2O on Cu/CeO2 and Ni/CeO2 catalysts, initial 

potential energies shift downward on Cu/CeO2 catalyst (black solid line) compare to unsupported 

Cu(111) (black dashed line) and Ni/CeO2 catalyst (red solid line) compare to unsupported 

Ni(111) (red dashed line).  
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Figure 7.5. Potential energy surfaces of the WGSR carboxyl pathway on (a) Cu/CeO2 (black 

solid line), and unsupported Cu(111) (black dashed line), (b) Ni/CeO2 (red solid line) and 

Ni(111) (red dashed line). 
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However, when COOH forms and dissociates to CO2 and H#, the H# structures are very 

stable on Cu/CeO2 and Ni/CeO2 catalysts, which make the final H2 formation steps from two H# 

impossible. These findings reveal that the CeO2 support on Cu/CeO2 and Ni/CeO2 catalysts is 

likely hydroxylated, indicating that the model representing CeO2 support needs to be revised to 

capture this character. In fact, a recent published Science paper 29 presented that CO oxidation 

happens on steam-treated Pt/CeO2 catalyst, in which the Pt/CeO2 catalyst has surface Olattice [H] 

species ( same with H# here).  

 

 7.3 Case Study 2: CO Oxidation over Pt/h-BNNS 

Supported Pt nanoparticle catalysts have continuously drawn broad and increasing 

attention because of their unique catalytic activity for a large number of important chemical 

reactions, such as CO oxidation30,31. Due to the strong binding of CO, the O2 activation is usually 

blocked on Pt catalyst for CO oxidation.  

The h-BNNS can have high surface area and abundant edges and B/N vacancies,32 which 

could serve as an ideal non-redox active support for Pt NPs. Enhanced Pt nanoparticle activity to 

CO oxidation are found when supported with vacancy abundant h-BNNS. It is hypothesized that 

the interfacial charge transfer between Pt nanoparticle and h-BNNS support favor the adsorption 

of O2 , alleviating CO poisoning and promoting catalysis.  

Figure 7.6 shows the schematic illustration of h-BNNS with B-vacancy (Bv) and N-

vacancy (Nv). The interfacial electronic effect was primarily stemmed from the interaction 

between Pt and BV as well as Pt and NV. DFT calculations suggest that there exists a strong 

interaction between Pt and B/N vacancies, which is consistent with electron energy loss 

spectroscopy results. Therefore, in this section, the vacancy abundant h-BNNS support effect, 
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especially the interfacial electronic effect, on CO oxidation activity over Pt nanoparticle is 

discussed through DFT calculations. 

 

 

Figure 7.6. Schematic illustration of h-BNNS with BV and NV. (a) h-BNNS with B vacancy and 

N-terminated edge. (b) h-BNNS with N vacancy and B-terminated edge. 

 

 7.3.1 Computational Details 

Spin-polarized periodic DFT calculations were performed using the Vienna Ab initio 

Simulation Package (VASP)9,33 to optimize the Pt4 clusters, CO, O2 adsorptions, and analyze the 

Bader charge of Pt/h-BNNS models. The h-BNNS was modeled using a p(5×5) supercell, with a 

vacuum of 20 Å along the direction perpendicular to the substrate. The Generalized Gradient 

Approximation (GGA)-PBE functional12 was used for electronic exchange-correlation effect. 

The projector wave augmentation (PAW) method34 was used to describe the electron-ion 

interaction, with a plane wave cutoff energy of 400 eV. A 4×4×1 k-points mesh based on the 

Monkhorst-Pack scheme13 was used for Brillouin-Zone integration. Binding energies (BEs) on 

clean h-BN were calculated as: BE = E Pt4/h-BNNS - E Pt4 –E clean h-BN; BE on Nv/Bv on h-BNNS are 
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calculated as: BE = E Pt4 on Nv/Bv(h-BNNS) - E Pt4 –E Nv/Bv(h-BNNS). Respective binding energies of CO 

and O2 were calculated according to: BECO/O2* = ECO/O2* - E Pt4 on BNNS - E CO/O2(g) 

 

 7.3.2 Results and Discussion 

Periodic DFT calculations and Bader charge analysis35-38 were performed to optimize the 

molecular structures, and analyze the effective charges on the Pt cluster in Pt/h-BNNS. First, 

optimized structures of a Pt4 cluster on respective periodic h-BNNS, with clean, BV and NV, were 

obtained, with the corresponding Bader charge on Pt, B and N atoms presented in Figure 7.7. It 

has been found that the Pt4 cluster prefers the 3D pyramidal geometry on the h-BNNS support, 

and without any vacancy, the charge transfer between Pt and h-BNNS is negligible on the clean 

h-BNNS (Figure 7.7(a)). As shown in Figure 7.7 (b) and (c), the Pt atom (#1, #4) forms 

respective Pt-B and Pt-N bonds at the Nv and Bv sites, and the BEs in both cases increase 

significantly, which is consistent with experimental findings that stong interaction exists between 

Pt and the vancacies of h-BNNS. Bader charge analyses also confirmed that there exsits an 

interfacial charge transfer between the Pt4 cluster and h-BNNS. At the NV site (B termination, 

Figure 7.7(b)), charge transfers from h-BNNS to Pt, resulting in a net gain of 0.8 e on Pt #1; 

while at BV site (N termination, Figure 7.7(c)), charge transfers away from Pt, resulting in a net 

loss of 0.72 e on Pt #4.  
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Figure 7.7. Optimized structures and Bader charges of pyramidal Pt4 cluster on h-BNNS. (a) Pt4 

cluster on clean, vacancy-free h-BNNS, (b) Pt4 cluster h-BNNS with Nv, and (c) Pt4 cluster on h-

BNNS with Bv. 

 

In the presence of Bv, the adsorbing CO binding energy on Pt in its most stable 

configuration is -2.59 eV (Figure 7.8(b)), weaker than on the Pt with vacancy-free h-BNNS (-

2.65 eV, Figure 7.8(a)), indicating the alleviation of strong CO adsorption on Pt/h-BNNS. On the 

other hand, the adsorbing CO binding energy on Pt increased slightly after charge transferred 

from NV to Pt (Figure 7.8(c)). Moreover, BEs of O2 on the Pt4 cluster are stronger with both Bv 

(-2.90 eV) (Figure 7.8(e)) and Nv (-3.08 eV) (Figure 7.8(f)) than that on the vacancy-free Pt/h-

BNNS (-2.26 eV) (Figure 7.8(d)), and also stronger than the BEs of CO (Figure 7.8(b) and (c)). 

This suggests that the effects on Pt induced by vacancy-abundant h-BNNS could faciliate O2 
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adsorption and activation, and enhance CO oxidation, which is in accord with other theoretical 

studies39,40. This observation also explains why bulk h-BN (with fewer edges and vacancies, 

performs inferior to h-BNNS (abundant of vacancies and edges). 
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Figure 7.8. The most stable configuration of CO (a-c) and O2 (d-f) adsorption and BEs on Pt4 

cluster. (a) Pt4 cluster on clean, vacancy-free h-BNNS, (b) Pt4 cluster h-BNNS with Bv, and (c) 

Pt4 cluster on h-BNNS with Nv, (d) Pt4 cluster on clean, vacancy-free h-BNNS, (e) Pt4 cluster h-

BNNS with Bv, and (f) Pt4 cluster on h-BNNS with Nv. 
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 7.4 Conclusions 

DFT calculations were performed on both WGSR over CeO2 supported Cu or Ni 

catalysts and CO oxidation over vacancy abundant h-BNNS supported Pt nanoparticles to 

investigate support effect to catalysts activities. The new active sites at metal/support interface 

change the binding of reactants to the catalyst. The Cu/CeO2 and Ni/CeO2 catalysts are 

hydroxylated first for WGSR, which needs further calculations to reaction energetics and 

kinetics to investigate CeO2 support effect. The O2 binds stronger than CO molecules on vacancy 

abundant h-BNNS supported Pt nanoparticles, alleviating the CO poisoning and promoting CO 

oxidation reaction. 

The energetics of support effect to reactions have been studied in this chapter. Future 

study could focus on the support effect to energy barriers of each reaction steps. Then micro-

kinetic modeling with inter-atomic interaction can be performed to have a completed 

understanding of support effect. 
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Chapter 8 - Conclusions 

In this thesis, micro-kinetic modelings based on molecular mechanisms derived from 

first-principles calculations have applied in various scenarios to gain fundamental understandings 

of how promoters, surface structures, catalyst particle size, and catalyst supports determine 

catalyst reactivity and selectivity using WGSR as model reaction. The main conclusions are 

listed as below: 

 WGSR pathways become more favored in the presence of K adatoms on Ni(111) with 

respect to competing methanation pathways. 

 Hydrogen production rates decrease with increasing Ni particle sizes (diameters), as a 

result of decreasing fractions of low-coordinated surface Ni atoms.  

 Included with CO self-interactions, the hydrogen production rate increases on the strong 

CO binding metals (e.g., Ni and Pt), which means Ni and Pt can be active WGSR catalyst 

if CO poison on these catalysts can be relieved.  

 Influence of catalyst supports (e.g., h-BNNS) on active sites structurally and 

electronically plays significant role in modifying catalyst character and offers opportunity 

to diversify catalyst functionalities. 

So far, first-principles micro-kinetic modeling works quite well for WGSR systems with 

predicting comparable results to experiment. However, there are still a number of important 

unsolved issues. The micro-kinetic framework needs to be further developed by including 

diffusions of reactive intermediates between different sites on nanoparticles and adding more 

inter-atomic interactions (e.g., OH self-interaction, and CO-OH cross-interaction. The Cu/CeO2 

and Ni/CeO2 catalysts models need to be revised with a hydroxylated CeO2 supported to study 

the critical role of CeO2 support to WGSR.  
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This work implies that molecular level information on promoters, surface structures, 

nanoparticle sizes, and supports effects to catalytic activity and selectivity based on 

computational methods and provide theoretical insights that improve catalytic properties. The 

first-hand information provided by computational methods will enable better guidance and more 

reliable prediction in the scientific process of designing new catalyst materials with high 

performance. 
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Appendix A - Vibrational Frequencies of Reaction Intermediates on 

Ni(111), Ni(100), and Ni(211) 

 

Table A.1. Vibrational frequencies of reaction intermediates in the gas phase and on Ni(111)  

 Frequencies [cm-1] 

H2O(g) 3820, 3705, 1583 

CO(g) 2119 

H2(g) 4458 

CO2(g) 2366, 1319, 636, 636 

CH4(g) 3093, 3091, 3090, 2973, 1511, 1510, 1286, 1285, 1285 

H2O 3665, 3556, 1536, 458, 449, 228, 226, 226, 219 

CO 1767, 388, 283, 282, 232, 232 

CO2 2350, 1315, 625, 615, 220, 220, 220, 220, 220 

HCOH 3602, 2033, 1595, 1212, 1061, 575, 479, 341, 304, 246, 241, 232 

CH2OH 3595, 2508, 2145, 1551, 1262, 1120, 1069, 934, 363, 305, 250, 245, 240, 230, 227 

H 1138, 874, 871 

OH 3419, 682, 681, 431, 307, 306 

COOH 3571, 1469, 1215, 1123, 692, 583, 440, 382, 260, 240, 231, 230 

CHO 2903, 1267, 1166, 608, 500, 363, 280, 257, 239 

CH2 3002, 2340, 1436, 663, 596, 559, 414, 345, 294 

COH 3582, 1263, 1084, 474, 455, 433, 240, 237, 236 

O 553, 459, 444 
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CH 3027, 660, 648, 647, 471, 471 

C 632, 606, 606 

 

Table A.2. Vibrational frequencies of reaction intermediates on Ni(100)  

 Frequencies [cm-1] 

H2O 686,3576,1540,476,431,229,217,214,210 

CO 1626,312,247,246,237,237 

HCOH 3292,2954,1341,1138,1107,815,497,447,351,291,220,218 

H 716,517,512 

OH 3627,651,650,345,219,217 

COOH 3596,1277,1159,1017, 661,555,351,346,295,276,247,233 

CHO 2918,1169,1071,631,525,381,377,322,277 

COH 3583,1139,1026,454,439,368,250,246,229 

O 385,329,329,219,212,211 

CH 2886,637,635,497,496,467 

 

Table A.3. Vibrational frequencies of reaction intermediates on Ni(211)  

 Frequencies [cm-1] 

H2O 3691, 3582, 1550, 488, 444, 269, 253, 250, 249 

CO 1851, 421, 353, 327, 250, 245 

HCOH 3330, 2968, 1348, 1165, 1105, 810, 516, 444, 371, 288, 251, 247 

H 1157, 836, 811 
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OH 3638, 701, 607, 490, 378, 251 

COOH 3489, 1424, 1274, 1096, 681, 650, 412, 400, 271, 251, 248, 245 

CHO 2846, 1453, 1192, 699, 545, 351, 260, 249, 248 

COH 1820, 1303, 967, 826, 469, 347, 305, 265, 256 

O 636, 571, 247 

CH 2899, 701, 672, 482, 467, 445 
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Appendix B - Input Files for Micro-kinetic Modeling on Ni 

Nanoparticles 

 B.1. Input Energy File 

surface_name site_name species_name formation_energy frequencies

 reference 

Ni s1 CH -1.889 [471, 471, 647, 648, 660, 3027] Input File Tutorial. 

Ni s1 CH-H -1.688 [] Input File Tutorial. 

Ni s1 CH-O -0.152 [] Input File Tutorial. 

Ni s1 CH-OH -0.58 [] Input File Tutorial. 

Ni s1 CH2 -2.046 [] Input File Tutorial. 

Ni s1 CH2-H -1.955 [] Input File Tutorial. 

Ni s1 CH3 -2.618 [] Input File Tutorial. 

Ni s1 CH3-H -2.507 [] Input File Tutorial. 

Ni s1 CHO -1.188 [239, 257, 280, 363, 500, 608, 1166, 1267, 2903] Input 

File Tutorial. 

Ni s1 CO -1.901 [232, 232, 282, 283, 388, 1767] Input File Tutorial. 

Ni s1 CO-H -0.532 [] Input File Tutorial. 

Ni s1 CO-OH -0.648 [] Input File Tutorial. 

Ni s1 COH -1.481 [236, 237, 240, 433, 455, 474, 1084, 1263, 3582] Input 

File Tutorial. 

Ni s1 COO-H -0.163 [] Input File Tutorial. 

Ni s1 COOH -1.089 [230, 231, 240, 260, 382, 440, 583, 692, 1123, 1215, 1469, 

3571] Input File Tutorial. 
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Ni h1 H -0.539 [871, 874, 1138] Input File Tutorial. 

Ni s1 H-CO -0.998 [] Input File Tutorial. 

Ni s1 H-COH -1.194 [] Input File Tutorial. 

Ni s1 H-OH 0.59 [] Input File Tutorial. 

Ni s1 H2O -0.271 [219, 226, 226, 228, 449, 458, 1536, 3556, 3665] Input 

File Tutorial. 

Ni s1 HCOH -1.295 [232, 241, 246, 304, 341, 479, 575, 1061, 1212, 1595, 

2033, 3602] Input File Tutorial. 

Ni s1 O 0.197 [444, 459, 553] Input File Tutorial. 

Ni s1 O-CO -0.14 [] Input File Tutorial. 

Ni s1 O-H 0.83 [] Input File Tutorial. 

Ni s1 OH -0.145 [306, 307, 431, 681, 682, 3419] Input File Tutorial. 

Ni s2 CH 0.752 [466.581494, 496.374931, 497.187809, 634.589573, 

636.959551, 2886.148424] Input File Tutorial. 

Ni s2 CH-O 2.676 [] Input File Tutorial. 

Ni s2 CH-OH 2.229 [] Input File Tutorial. 

Ni s2 CHO 1.452 [277.656489, 322.268104, 377.606706, 380.894386, 

525.003104, 631.465722, 1070.759304, 1169.496379, 2917.796316] Input File 

Tutorial. 

Ni s2 CO 1.302 [236.803462, 237.180715, 246.470555, 247.146649, 

311.590197, 1626.234975] Input File Tutorial. 

Ni s2 CO-H 2.486 [] Input File Tutorial. 

Ni s2 CO-OH 2.818 [] Input File Tutorial. 
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Ni s2 COH 1.426 [228.901219, 246.525389, 250.36235, 368.119658, 

439.089881, 454.291143, 1026.555991, 1139.732978, 3583.511204] Input File 

Tutorial. 

Ni s2 COO-H 2.722 [] Input File Tutorial. 

Ni s2 COOH 1.662 [233.738328, 246.72071, 275.637245, 295.372999, 

345.990209, 350.584425, 554.645026, 660.986204, 1016.559152, 1159.255733, 

1276.891396, 3596.903956] Input File Tutorial. 

Ni h2 H -0.466 [512.197514, 517.193407, 716.267316] Input File 

Tutorial. 

Ni s2 H-CO 2.066 [] Input File Tutorial. 

Ni s2 H-COH 2.292 [] Input File Tutorial. 

Ni s2 H-OH 0.551 [] Input File Tutorial. 

Ni s2 H2O -0.357 [210.089556, 214.398593, 217.452095, 229.8459, 

431.409321, 476.241737, 1540.093281, 3576.574049, 3686.848316] Input File 

Tutorial. 

Ni s2 HCOH 1.79 [218.314929, 219.508289, 290.518204, 350.768431, 

447.062678, 496.928234, 814.880654, 1106.772078, 1137.992356, 1341.462379, 

2953.960663, 3291.643572] Input File Tutorial. 

Ni s2 O -0.029 [328.608311, 329.363066, 385.189061] Input File 

Tutorial. 

Ni s2 O-CO 2.586 [] Input File Tutorial. 

Ni s2 O-H 0.648 [] Input File Tutorial. 
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Ni s2 OH -0.263 [217.031823, 218.87629, 345.310445, 650.061385, 

651.482285, 3626.663306] Input File Tutorial. 

None gas CH4 0.0 [3039, 3091, 3090, 2973, 1511, 1510, 1286, 1285, 1285]

 Input File Tutorial. 

None gas CO 3.184 [2119] Input File Tutorial. 

None gas CO2 2.455 [2366, 1319, 636, 636] Input File Tutorial. 

None gas H2 0.0 [4458] Input File Tutorial. 

None gas H2O 0.0 [3820, 3705, 1583] Input File Tutorial. 

Ni f3 CH 1.038 [] Input File Tutorial. 

Ni s3 CH-O 2.446 [] Input File Tutorial. 

Ni s3 CH-OH 2.319 [] Input File Tutorial. 

Ni s3 CHO 1.738 [] Input File Tutorial. 

Ni s3 CO 1.217 [] Input File Tutorial. 

Ni s3 CO-H 2.595 [] Input File Tutorial. 

Ni s3 CO-OH 2.222 [] Input File Tutorial. 

Ni s3 COH 1.668 [] Input File Tutorial. 

Ni s3 COO-H 2.603 [] Input File Tutorial. 

Ni s3 COO-H-OH 2.541 [] Input File Tutorial. 

Ni s3 COOH 2.165 [] Input File Tutorial. 

Ni h3 H -0.556 [] Input File Tutorial. 

Ni s3 H-CO 1.859 [] Input File Tutorial. 

Ni s3 H-COH 1.801 [] Input File Tutorial. 

Ni s3 H-OH 0.319 [] Input File Tutorial. 
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Ni s3 H2O -0.551 [] Input File Tutorial. 

Ni s3 HCOH 1.451 [] Input File Tutorial. 

Ni s3 O 0.014 [] Input File Tutorial. 

Ni s3 O-CO 2.765 [] Input File Tutorial. 

Ni s3 O-H 0.371 [] Input File Tutorial. 

Ni s3 OH -0.656 [] Input File Tutorial. 

 

 B.2. Set Up Reaction Parameters 

# 

#Micro-kinetic model parameters 

# 

scaler = 'ThermodynamicScaler' 

 

rxn_expressions = [ 

               '*_s1 + CO_g <-> CO_s1', 

        '*_h1 + H2O_g + *_s1 <-> H-OH_s1 + *_h1 <-> H_h1 + OH_s1', 

        'CO_s1 + OH_s1 <-> CO-OH_s1 + *_s1 <-> COOH_s1 + *_s1', 

        'COOH_s1 + *_h1 <-> COO-H_s1 + *_h1 <-> CO2_g + H_h1 + *_s1', 

        'COOH_s1 + OH_s1 <-> CO2_g + H2O_g + 2*_s1', 

        '*_h1 + OH_s1 <-> O-H_s1 + *_h1 <-> O_s1 + H_h1', 

        'CO_s1 + H_h1 <-> H-CO_s1 + *_h1 <-> CHO_s1 + *_h1', 

        'CHO_s1 + *_s1 <-> CH-O_s1 + *_s1 <-> CH_s1 + O_s1', 

        'CO_s1 +  O_s1 <-> O-CO_s1 + *_s1 <-> CO2_g + 2*_s1', 
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        'H_h1 + H_h1 <-> H2_g + 2*_h1', 

        'CH_s1 + 3H_h1 <-> CH4_g + 3*_h1 + *_s1', 

        'CO_s1 + H_h1 <-> CO-H_s1 + *_h1 <-> COH_s1 + *_h1', 

        'COH_s1 + H_h1 <-> H-COH_s1 + *_h1 <-> HCOH_s1 + *_h1', 

        'HCOH_s1 + *_s1 <-> CH-OH_s1 + *_s1 <-> CH_s1 + OH_s1', 

 

               '*_s2 + CO_g <-> CO_s2', 

               '*_h2 + H2O_g + *_s2 <-> H-OH_s2 + *_h2 <-> H_h2 + OH_s2', 

        'CO_s2 + OH_s2 <-> CO-OH_s2 + *_s2 <-> COOH_s2 + *_s2', 

        'COOH_s2 + *_h2 <-> COO-H_s2 + *_h2 <-> CO2_g + H_h2 + *_s2', 

        'COOH_s2 + OH_s2 <-> CO2_g + H2O_g + 2*_s2', 

        #'COOH* + O* <-> COO-H-O* + * <-> CO2_g + OH* + *', 

        '*_h2 + OH_s2 <-> O-H_s2 + *_h2 <-> O_s2 + H_h2', 

        #'H* + H* <-> H2_g + 2*_s', 

        'CO_s2 + H_h2 <-> H-CO_s2 + *_h2 <-> CHO_s2 + *_h2', 

        'CHO_s2 + *_s2 <-> CH-O_s2 + *_s2 <-> CH_s2 + O_s2', 

        #'CHO_s + H_h <-> CHO-H_s + *_h <-> HCOH_s + *_h', 

               'CO_s2 +  O_s2 <-> O-CO_s2 + *_s2 <-> CO2_g + 2*_s2', 

        'H_h2 + H_h2 <-> H2_g + 2*_h2', 

        #'COH_s + *_s <-> C_s + OH_s', 

        #'CH* + H* <-> CH2* + *', 

        #'CH2* + H* <-> CH3* + *', 

        #'CH3* + H* <-> CH4_g + 2*', 



219 

 

        'CH_s2 + 3H_h2 <-> CH4_g + 3*_h2 + *_s2', 

        #'CO* + * <-> C-O* + * <-> C* + O*', 

        #'C* + 2H2_g <-> CH4_g + *', 

        'CO_s2 + H_h2 <-> CO-H_s2 + *_h2 <-> COH_s2 + *_h2', 

        'COH_s2 + H_h2 <-> H-COH_s2 + *_h2 <-> HCOH_s2 + *_h2', 

        'HCOH_s2 + *_s2 <-> CH-OH_s2 + *_s2 <-> CH_s2 + OH_s2', 

        #'C_s + H_h <-> C-H_s + *_h <-> CH_s + *_h', 

        #'CH* + * <-> C-H* + * <-> C* + H*', 

        #'CH_s + H_h <-> CH-H_s + *_h <-> CH2_s + *_h', 

        #'CH2_s + H_h <-> CH2-H_s + *_h <-> CH3_s + *_h', 

        #'CH3_s + H_h <-> CH3-H_s + *_h <-> CH4_g + *_s + *_h', 

        #'CH4* <-> CH4_g + *', 

        '*_s3 + CO_g <-> CO_s3', 

        '*_h3 + H2O_g + *_s3 <-> H-OH_s3 + *_h3 <-> H_h3 + OH_s3', 

        'CO_s3 + OH_s3 <-> CO-OH_s3 + *_s3 <-> COOH_s3 + *_s3', 

        'COOH_s3 + *_h3 <-> COO-H_s3 + *_h3 <-> CO2_g + H_h3 + *_s3', 

        'COOH_s3 + OH_s3 <-> CO2_g + H2O_g + 2*_s3', 

        '*_h3 + OH_s3 <-> O-H_s3 + *_h3 <-> O_s3 + H_h3', 

        'CO_s3 + H_h3 <-> H-CO_s3 + *_h3 <-> CHO_s3 + *_h3', 

        'CHO_s3 + *_f3 <-> CH-O_s3 + *_f3 <-> CH_f3 + O_s3', 

        'CO_s3 +  O_s3 <-> O-CO_s3 + *_s3 <-> CO2_g + 2*_s3', 

        'H_h3 + H_h3 <-> H2_g + 2*_h3', 

        'CH_f3 + 3H_h3 <-> CH4_g + 3*_h3 + *_f3', 
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        'CO_s3 + H_h3 <-> CO-H_s3 + *_h3 <-> COH_s3 + *_h3', 

        'COH_s3 + H_h3 <-> H-COH_s3 + *_h3 <-> HCOH_s3 + *_h3', 

        'HCOH_s3 + *_f3 <-> CH-OH_s3 + *_f3 <-> CH_f3 + OH_s3', 

         

        ] 

 

                

surface_names = ['Ni'] #surfaces to include in scaling (need to have descriptors defined for 

each) 

 

descriptor_names= ['temperature','pressure'] #descriptor names 

 

descriptor_ranges = [[498,600],[1,10]] 

 

resolution = 15 

 

species_definitions = {} 

species_definitions['CO_g'] = {'concentration':25./1000.} #define the gas pressures 

species_definitions['H2O_g'] = {'concentration':250./1000.} 

species_definitions['CO2_g'] = {'concentration':125./1000.} 

species_definitions['H2_g'] = {'concentration':375./1000.} 

species_definitions['CH4_g'] = {'concentration':0} 
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species_definitions['s1'] = {'site_names': ['s1'], 'total':0.62} 

species_definitions['s2'] = {'site_names': ['s2'], 'total':0.07} #define the sites 

species_definitions['s3'] = {'site_names': ['s3'], 'total':0.31} 

species_definitions['h2'] = {'site_names': ['h2'], 'total':0.07} #define the sites 

species_definitions['h3'] = {'site_names': ['h3'], 'total':0.31} 

species_definitions['f3'] = {'site_names': ['f3'], 'total':0.31} 

species_definitions['h1'] = {'site_names': ['h1'], 'total':0.62} 

 

data_file = 'wgsr.pkl' 

 

# 

#Parser parameters 

# 

 

input_file = 'energies.txt' #input data 

 

# 

#Scaler parameters 

# 

 

gas_thermo_mode = "shomate_gas" 

#gas_thermo_mode = "ideal_gas" #Ideal gas approximation 

#gas_thermo_mode = "zero_point_gas" #uses zero-point corrections only 
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#gas_thermo_mode = "fixed_entropy_gas" #assumes entropy of 0.002 eV/K for all gasses 

except H2 (H2 is 0.00135 eV/K) 

#gas_thermo_mode = "frozen_gas" #neglect thermal contributions 

 

adsorbate_thermo_mode = "frozen_adsorbate" 

#adsorbate_thermo_mode = "harmonic_adsorbate" 

#adsorbate_thermo_mode = "zero_point_adsorbate" 

 

scaling_constraint_dict = { 

      'CO_s':[None,None,None], 

      'H2O_s':[None,None,None], 

                           'O-CO_s':'initial_state', 

                           'H-OH_s':'initial_state', 

                           } 

 

# 

#Solver parameters 

# 

 

decimal_precision = 100 #precision of numbers involved 

 

tolerance = 1e-50 #all d_theta/d_t's must be less than this at the solution 
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max_rootfinding_iterations = 100 

 

max_bisections = 3 
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Appendix C - Mechanisms for Micro-kinetic Modeling on Ni(111), 

Ni(100) and Ni(211) surfaces 

 C.1 Elementary Steps on Ni(111) and Ni(100): 

*_s + CO_g ↔ CO_s 

*_h + H2O_g + *_s ↔ H-OH_s + *_h ↔ H_h + OH_s 

*_h + OH_s ↔ O-H_s + *_h ↔ O_s + H_h 

CO_s +  O_s ↔ O-CO_s + *_s ↔ CO2_g + 2*_s 

CO_s + OH_s ↔ CO-OH_s + *_s ↔ COOH_s + *_s 

COOH_s + *_h ↔ COO-H_s + *_h ↔ CO2_g + H_h + *_s 

COOH_s + OH_s ↔ CO2_g + H2O_g + 2*_s 

H_h + H_h ↔ H2_g + 2*_h 

CO_s + H_h ↔ H-CO_s + *_h ↔ CHO_s + *_h 

CHO_s + *_s ↔ CH-O_s + *_s ↔ CH_s + O_s 

CO_s + H_h ↔ CO-H_s + *_h ↔ COH_s + *_h 

COH_s + H_h ↔ H-COH_s + *_h ↔ HCOH_s + *_h 

HCOH_s + *_s ↔ CH-OH_s + *_s ↔ CH_s + OH_s 

CH_s + 3H_h ↔ CH4_g + 3*_h + *_s 

where *h represents the “hydrogen reservoir” site, and *s represents the site for all other species. 

 

 C.2  Elementary Steps on Ni(211): 

*_s + CO_g ↔ CO_s 

*_h + H2O_g + *_s ↔ H-OH_s + *_h ↔ H_h + OH_s 
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*_h + OH_s ↔ O-H_s + *_h ↔ O_s + H_h 

O_s +  O_s ↔ O-CO_s + *_s ↔ CO2_g + 2*_s 

CO_s + OH_s ↔ CO-OH_s + *_s ↔ COOH_s + *_s 

COOH_s + *_h ↔ COO-H_s + *_h ↔ CO2_g + H_h + *_s 

COOH_s + OH_s ↔ CO2_g + H2O_g + 2*_s 

H_h + H_h ↔ H2_g + 2*_h 

CO_s + H_h ↔ H-CO_s + *_h ↔ CHO_s + *_h 

CHO_s + *_f ↔ CH-O_s + *_f ↔ CH_f + O_s 

CO_s + H_h ↔ CO-H_s + *_h ↔ COH_s + *_h 

COH_s + H_h ↔ H-COH_s + *_h ↔ HCOH_s + *_h 

HCOH_s + *_f ↔ CH-OH_s + *_f ↔ CH_f + OH_s 

CH_f + 3H_h ↔ CH4_g + 3*_h + *_f. 

where *h represents the “hydrogen reservoir” site, *f represents the “four-fold hollow” site, and 

*s represents the site for all other species. 

 

 C.3 Elementary Steps for Ni Nanoparticles: 

*_s1 + CO_g ↔ CO_s1 

*_h1 + H2O_g + *_s1 ↔ H-OH_s1 + *_h1 ↔ H_h1 + OH_s1 

CO_s1 + OH_s1 ↔ CO-OH_s1 + *_s1 ↔ COOH_s1 + *_s1 

COOH_s1 + *_h1 ↔ COO-H_s1 + *_h1 ↔ CO2_g + H_h1 + *_s1 

COOH_s1 + OH_s1 ↔ CO2_g + H2O_g + 2*_s1 

*_h1 + OH_s1 ↔ O-H_s1 + *_h1 ↔ O_s1 + H_h1 

CO_s1 + H_h1 ↔ H-CO_s1 + *_h1 ↔ CHO_s1 + *_h1 
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CHO_s1 + *_s1 ↔ CH-O_s1 + *_s1 ↔ CH_s1 + O_s1 

CO_s1 +  O_s1 ↔ O-CO_s1 + *_s1 ↔ CO2_g + 2*_s1 

H_h1 + H_h1 ↔ H2_g + 2*_h1 

CH_s1 + 3H_h1 ↔ CH4_g + 3*_h1 + *_s1 

CO_s1 + H_h1 ↔ CO-H_s1 + *_h1 ↔ COH_s1 + *_h1 

COH_s1 + H_h1 ↔ H-COH_s1 + *_h1 ↔ HCOH_s1 + *_h1 

HCOH_s1 + *_s1 ↔ CH-OH_s1 + *_s1 ↔ CH_s1 + OH_s1 

 

*_s2 + CO_g ↔ CO_s2 

*_h2 + H2O_g + *_s2 ↔ H-OH_s2 + *_h2 ↔ H_h2 + OH_s2 

CO_s2 + OH_s2 ↔ CO-OH_s2 + *_s2 ↔ COOH_s2 + *_s2 

COOH_s2 + *_h2 ↔ COO-H_s2 + *_h2 ↔ CO2_g + H_h2 + *_s2 

COOH_s2 + OH_s2 ↔ CO2_g + H2O_g + 2*_s2 

*_h2 + OH_s2 ↔ O-H_s2 + *_h2 ↔ O_s2 + H_h2 

CO_s2 + H_h2 ↔ H-CO_s2 + *_h2 ↔ CHO_s2 + *_h2 

CHO_s2 + *_s2 ↔ CH-O_s2 + *_s2 ↔ CH_s2 + O_s2 

CO_s2 +  O_s2 ↔ O-CO_s2 + *_s2 ↔ CO2_g + 2*_s2 

H_h2 + H_h2 ↔ H2_g + 2*_h2 

CH_s2 + 3H_h2 ↔ CH4_g + 3*_h2 + *_s2 

CO_s2 + H_h2 ↔ CO-H_s2 + *_h2 ↔ COH_s2 + *_h2 

COH_s2 + H_h2 ↔ H-COH_s2 + *_h2 ↔ HCOH_s2 + *_h2 

HCOH_s2 + *_s2 ↔ CH-OH_s2 + *_s2 ↔ CH_s2 + OH_s2 
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*_s3 + CO_g ↔ CO_s3 

*_h3 + H2O_g + *_s3 ↔ H-OH_s3 + *_h3 ↔ H_h3 + OH_s3 

CO_s3 + OH_s3 ↔ CO-OH_s3 + *_s3 ↔ COOH_s3 + *_s3 

COOH_s3 + *_h3 ↔ COO-H_s3 + *_h3 ↔ CO2_g + H_h3 + *_s3 

COOH_s3 + OH_s3 ↔ CO2_g + H2O_g + 2*_s3 

*_h3 + OH_s3 ↔ O-H_s3 + *_h3 ↔ O_s3 + H_h3 

CO_s3 + H_h3 ↔ H-CO_s3 + *_h3 ↔ CHO_s3 + *_h3 

CHO_s3 + *_f3 ↔ CH-O_s3 + *_f3 ↔ CH_f3 + O_s3 

CO_s3 +  O_s3 ↔ O-CO_s3 + *_s3 ↔ CO2_g + 2*_s3 

H_h3 + H_h3 ↔ H2_g + 2*_h3 

CH_f3 + 3H_h3 ↔ CH4_g + 3*_h3 + *_f3 

CO_s3 + H_h3 ↔ CO-H_s3 + *_h3 ↔ COH_s3 + *_h3 

COH_s3 + H_h3 ↔ H-COH_s3 + *_h3 ↔ HCOH_s3 + *_h3 

HCOH_s3 + *_f3 ↔ CH-OH_s3 + *_f3 ↔ CH_f3 + OH_s3 

 

where *h1 represents the “hydrogen reservoir” site on Ni(111), *s1 represents the site for all 

other species on Ni(111), *h2 represents the “hydrogen reservoir” site on Ni(100), *s2 represents 

the site for all other species on Ni(100), *h3 represents the “hydrogen reservoir” site on Ni(211), 

*f3 represents the “four-fold hollow” site on Ni(211), and *s3 represents the site for all other 

species on Ni(211). 
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Appendix D -  Differential Binding Energies of CO on Pt(111)  

 

Figure D.1. CO differential binding energies (𝑩𝑬𝒅𝒊𝒇𝒇) on Pt(111) as a function of surface 

overage. Optimized structures at each coverage 1/9, 2/9, 1/3, 4/9, 5/9, 2/3, 7/9, and 8/9ML are 

shown at the top. 

 

 

 


