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Abstract 

Previous studies have shown that both human and rat umbilical cord matrix mesenchymal 

stem cells (UCMSC) possess the ability to control the growth of breast carcinoma cells. 

Comparative analysis of two types of UCMSC suggest that rat UCMSC-dependent growth 

regulation is significantly stronger than that of human UCMSC. Accordingly, the present study 

was designed to clarify their different tumoricidal abilities by analyzing gene expression profiles 

in two types of UCMSC. Gene expression profiles were studied by microarray analysis using 

Illumina HumanRef-8-V2 and RatRef-12 BeadChip for the respective UCMSC. The gene 

expression profiles were compared to untreated naïve UCMSC and those co-cultured with 

species-matched breast carcinoma cells; human UCMSC vs. MDA-231 human carcinoma cells 

and rat UCMSC vs. Mat B III rat carcinoma cells. The following selection criteria were used for 

the screening of candidate genes associated with UCMSC-dependent tumoricidal ability; 1) gene 

expression difference should be at least 1.5 fold between naive UCMSC and those co-cultured 

with breast carcinoma cells; 2) they must encode secretory proteins and 3) cell growth 

regulation-related proteins. These analyses screened 17 common genes from human and rat 

UCMSC. The comparison between the two sets of gene expression profiles identified that two 

tumor suppressor genes, adipose-differentiation related protein (ADRP) and follistatin (FST), 

were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they 

were co-cultured with the corresponding species’ breast carcinoma cells. The suppression of 

either protein by the addition of a specific neutralizing antibody in co-culture of rat UCMSC 

with Mat B III cells significantly abrogated UCMSC ability to attenuate the growth of carcinoma 

cells. Over-expression of both genes by adenovirus vector in human UCMSC enhanced their 



  

ability to suppress the growth of MDA-231 cells. In the breast carcinoma lung metastasis model 

generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC 

significantly attenuated the tumor burden. These results suggest that both ADRP and FST may 

play important roles in exhibiting stronger tumoricidal ability in rat UCMSC than human 

UCMSC and imply that human UCMSC can be transformed into stronger tumoricidal cells by 

enhancing tumor suppressor gene expression. 
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Chapter 1 - Introduction 

1.1 Umbilical cord matrix mesenchymal stem cells (UCMSC) 

Umbilical cord matrix mesenchymal stem cells (UCMSC) are derived from the 

gelatinous connective tissue of the umbilical cord, Wharton’s jelly (Fig. 1.1). The first isolation 

of stem cells from the Wharton’s jelly was carried out using porcine umbilical cords followed by 

human umbilical cords (4). UCMSC are collectable from several species, such as rat, pig, 

human, etc (2, 5). Although UCMSC are a mixture of stromal cells, they exhibit primitive stem 

cell characteristics which include self-renewability and multipotency. They express similar stem 

cell markers with those expressed in bone marrow derived mesenchymal stem cells (6). UCMSC 

can differentiate into cardiomyocytes, neuron-like cells, osteocytes, endothelial cells, and 

pancreatic islet-like cell clusters (5, 7, 8). They can be cultured for multiple passages, and large 

quantities of the cells can be obtained without feeder cells because of their high telomerase 

activity (4, 5). Low immunogenecity is another distinguished character of UCMSC (5, 9, 10 ). 

They are known to escape from the immune system by low expression of MHC class I, no 

expression of MHC class II and an indirect suppression of T cell activation via chemokine 

expressions, which implies the potential of allogeneic transplantation for disease treatment (8, 

10, 11).  

1.2 Breast cancer 

Breast cancer is one of the most common cancers among women in the United States. It 

is estimated that 226,870 women are diagnosed with breast cancer and 39,510 are estimated to 

die in 2012 (1). Etiology of breast cancer is diverse; environmental factors including history of 

pregnancy, diet, etc, and genetic factors are involved (12). Decisive factors for the treatment of 
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breast cancer depend upon diagnostic stage, receptor expression of steroids, and growth factors. 

Mainly the combination of mastectomy, chemotherapy and radiotherapy will be conducted, but 

these therapies have severe side effects which result in significant reduction of patients’ quality 

of life. Even though campaigns for early detection are expanding, complicated causes of breast 

cancer are furthering the difficulty of its treatment. Additionally, recurrence and the metastases 

to bone, lung or liver decrease the 5-year survival rate rapidly. It is on a high demand to explore 

a novel treatment for breast cancer and metastasized breast cancer which has fewer side effects. 

In the present study, highly lung metastatic MDA-231 breast adenocarcinoma cells sub-cloned 

from MDA-MB 231 cells were used, which are ideal model cells for studying lung metastatic 

breast cancer. MDA-231 cells are estrogen receptor positive and HER-2 receptor and 

progesterone receptor negative. Mat-B III cells are a rat mammary adenocarcinoma cell line 

derived from Fischer rats. Their receptor expressions are not yet studied. 

1.3 UCMSC on cancer treatment 

Application of stem cells on disease treatment is rapidly progressing due to their high 

potential. In adults, mesenchymal stem cells can be collected from bone marrow, adipose tissue 

and several other tissues while fetus derived stem cells can be collected from umbilical cord 

blood or matrix, amniotic fluid, etc (5, 13, 14). Stem cells home to inflammatory regions 

including cancers, and this is known as tumor tropism, which makes the stem cells useful for the 

gene delivery by virus and nanoparticles (15, 16). Recent findings show that naïve UCMSC 

suppress the growth of several kinds of tumors (2, 17, 18). Rat UCMSC completely abolished the 

growth of rat mammary tumors without recurrence for 100 days in vivo (2). The growth of 

pancreatic and lung cancer xenografts were also significantly suppressed by rat UCMSC therapy 

in immunocompetent mice (17, 18). The in vitro studies showed a decrease in breast cancer cell 
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growth by indirect co-culture of naïve UCMSC and breast cancer cells. (3). Also, conditioned 

medium with naïve UCMSC suppressed the growth of multiple types of cancer cells (3, 18). 

These results were observed in both rat and human UCMSC when they were cocultured with 

breast, lung, and pancreatic cancer cells (3, 17-20). Some other naïve stem cells are also reported 

for their possibility for cancer treatment. The growth of Kaposi’s sarcoma was attenuated by 

bone marrow derived mesenchymal stem cells (21). Adipose tissue derived stromal cells strongly 

inhibited pancreatic ductal adenocarcinoma by cell cycle arrest (22). Additionally, in glioma 

cells, apoptosis was induced by human umbilical cord blood stem cell treatment (23).  

1.3.1 Mechanisms 

Mechanisms of tumor suppression by naïve UCMSC are still unclear. Several 

possibilities are reported, which include an induction of cell cycle arrest and/or apoptosis in 

tumor cells, and an activation of anti-tumor immune responses in cancer bearing rats (3, 18, 19, 

24, 25). These researches suggest that naïve UCMSC communicate with adjacent cancer cells by 

receiving and sending chemical signals each other: this communication is most likely mediated 

by cytokines and growth factors. Regarding cell-to-cell communication, it is of interest to note 

that in tumor bearing rats, rat UCMSC appear to recruit cytotoxic immune cells into the tumor 

region by secreting MCP-1 thereby attenuating tumor growth which shows the importance of the 

tumor microenvironment on indirect tumor suppression (25). The importance of the tumor 

microenvironment is well recognized. It is well known that bone marrow mesenchymal stem 

cells home to tumors and form the tumor microenvironment which supports tumor growth (26). 

One aspect of the functional difference between UCMSC and bone marrow mesenchymal stem 

cells may be suggested in the following study; UCMSC do not transform into tumor associated 
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fibroblasts when they are cultured with conditioned medium of breast or ovarian cancer cells, 

while bone marrow mesenchymal stem cells differentiate into tumor associated fibroblasts (27).  

Although both human and rat UCMSC can suppress tumor growth, the tumor growth 

inhibition by human UCMSC is not as strong as that of rat UCMSC. In [
3
H]-Thymidine uptake 

assay, rat UCMSC suppressed the growth of rat mammary tumor cells more than 90% in a 1:15 

ratio, while human UCMSC suppressed the growth of human breast cancer cells 50% in a 1:2 

ratio (Fig 1.2) (2, 3). This difference in cell growth inhibition may be associated with their 

interaction mechanism with cancer cells; rat UCMSC are shown to suppress the growth of Lewis 

Lung Carcinoma cells and pancreatic cancer cells by causing G0/G1 cell cycle arrest, while 

human UCMSC cause G2 cell cycle arrest in breast cancer cells (3, 17, 18). The mechanism for 

these differences is unknown, but it implies that different cyclin-dependent kinases are 

modulated by rat and human UCMSC.  

1.3.2 Secretory tumor suppressor protein coding genes 

Several secreted proteins function to suppress the growth of tumors. In previous studies, 

it has been shown that the conditioned medium of naïve UCMSC could suppress the growth of 

tumors (3, 18). Based on these findings, we hypothesized that secreting proteins are the major 

factors which suppress the growth of tumors. 

 

1.4 Objective and hypothesis of the study 

The objective of the study is to identify the key mechanisms by which rat and human 

UCMSC attenuate tumor growth by comparing gene expressions when UCMSC co-existed with 

tumor cells. Prior to conducting the study, three hypotheses were set as followed; 1) UMCSC 

express genes differently when they co-existed with breast carcinoma cells. In support of this 
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hypothesis, our own preliminary study indicates that human UCMSC preliminarily co-cultured 

with breast carcinoma cells exhibited significantly stronger breast carcinoma cell suppression 

ability as compared with naïve UCMSC (data not shown). 2) Tumoricidal activities of rat and 

human UCMSC are dependent on differentially expressed genes. 3) Over-expression of 

identified rat UCMSC tumoricidal genes in human UCMSC will generate human UCMSC armed 

with enhanced tumoricidal ability. The goal of this study is to discover the molecular mechanism 

by which rat UCMSC significantly attenuate breast carcinoma cells. The principle of the 

molecular mechanism will be applied for generation of strongly tumoricidal human UCMSC for 

breast cancer treatment. 

 

 Figures 

 

 

Figure 1.1 Anatomical characteristics of Wharton's Jelly and morphology of human 

umbilical cord matrix derived mesenchymal stem cells (UCMSC) 

a. Cross section of human umbilical cord. UCMSC were collected from Wharton’s Jelly of the 

umbilical cord. b. Morphology of undifferentiatied human UCMSC are in spindle shape when 

cultured on a culture dish. 

a

. 

b

.

. 
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Figure 1.2 Inhibition of DNA synthesis in breast cancer cells by co-cultured rat UCMSC 

was significantly stronger than that by co-cultured human UCMSC 

Human UCMSC were co-cultured with MDA-231 human breast cancer cells (5x10
4
) directly in 

1:20 and 1:2 ratios and rat UCMSC were co-cultured with Mat B III rat mammary tumor cells 

(1.5x10
5
) in 1:30 and 1:15 ratios. DNA synthesis was determined by [

3
H]-thymidine uptake 

assay. *; p < 0.05, **; p < 0.01.  (2, 3) 
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Chapter 2 - Microarray analysis of UCMSC 

Microarray analysis was conducted to identify the differential gene expression profile 

between naïve UCMSC and UCMSC co-cultured with breast carcinoma cells. The stepwise 

process of microarray analysis is schematically illustrated in Figure 2.1. 

2.1 Materials and Methods 

2.1.1 Cell culture 

Human UCMSC were prepared from Wharton’s jelly which is the matrix of umbilical 

cord using enzymatic methods as described previously (6, 28) and rat UCMSC were harvested 

from E19 pregnant Fisher 344 rats according to the method previously described (2). UCMSC 

were maintained in defined medium, containing a mixture of 56% low glucose DMEM (Life 

technologies, Grand Island, NY), 37% MCDB 201 (Sigma, St. Louis, MO), 2% fetus bovine 

serum (FBS) (Atlanta Biologicals, Lawrenceville, GA), 1x insulin-transferrin-selenium-X (Life 

technologies, Grand Island, NY), 1x ALBUMax1, 1x Pen /Strep, 10nM dexamethasone, 100μM 

ascorbic acid 2-phosphate,10ng/ml epidermal growth factor (EGF), and 10ng/ml platelet derived 

growth factor-bb; PDGF-BB. Cells were maintained at 37
o
C in a humidified atmosphere 

containing 5% CO2. Rat mammary adenocarcinoma cell line Mat B III cells were purchased 

from American Type Culture Collection (Manassas, VA). MDA-231 cells, kindly provided from 

Dr. F. Marini (M.D. Anderson Cancer Center), were maintained in MEM alpha medium (Life 

technologies) supplemented with 10% FBS and 1x Pen / Strep, 1% Non Essential Amino Acid, 

1% L-glutamine at 37 
o
C in a humidified atmosphere containing 5% CO2. The Mat B III cell line 

was maintained in McCoy's 5A modified medium (Life technologies) supplemented with 10% 

FBS, 100 units/mL penicillin and 100μg/ml streptomycin.  
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2.1.2 RNA isolation 

An indirect cell culture using Transwell culture dish (Corning, Lowell, MA) was 

performed to collect RNA samples for microarray study. In brief, human UCMSC (5 x 10
4
 cells) 

or rat UCMSC (1 x 10
5 
cells) were seeded in defined medium in the bottom of 6-well or 10cm 

Transwell culture dish, respectively. After allowing UCMSC to settle for 24 h, MDA-231cells 

(5x10
5
 cells) or Mat B III cells (1.5x10

6
) were added in Transwell inserts (0.4 μm pore size). 

After 48 h co-culture, total RNA of UCMSC grown in the bottom of Transwell dish and UCMSC 

cultured alone without carcinoma cells in the insert were collected by TRIzol (Life technologies, 

Grand Island, NY) following the manufacturer’s instruction. Concentration and quality of total 

RNA were determined by the NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, 

USA) and Agilent 2100 bioanalyzer (Agilent Technologies, inc. Santa Clara, CA), respectively.  

2.1.3 Microarray analysis 

Microarray experiments including RNA quality evaluation, hybridization, and initial data 

analysis were carried out at the National Institute on Aging, National Institutes of Health 

(Baltimore, MD). For each sample, biotinylated cRNAs were prepared using an Illumina Total 

Prep RNA Amplification Kit (Applied Biosystems, Foster City, CA, USA). Briefly, 5µg of total 

RNA were converted to double stranded cDNA using T7-oligo (dT) primers, followed by an in 

vitro transcription reaction to amplify biotinylated cRNA as described in the manufacturer’s 

instructions (Illumina Inc., San Diego, CA). The biotinylated cRNA from human UCMSC was 

hybridized to a Human Ref-8 Expression BeadChip platform that contains 24,357 probes. At rat 

UCMSC-derived biotinylated cRNA was hybridized to a Rat Ref-12 Expression BeadChip that 

contains 22,519 probes. The hybridization, washing, and scanning were performed according to 

the manufacturer’s instructions. The chips were scanned using a BeadScan 2.3.0.10 (Illumina 
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Inc.) at a multiplier setting of 2. The microarray images were registered and extracted 

automatically during the scan using the manufacturer’s default settings. 

2.1.4 Microarray data analysis 

The microarray dataset was analyzed with DIANE 6.0, a spreadsheet-based microarray 

analysis program. An overview of DIANE can be found online at 

http://www.grc.nia.nih.gov/branches/rrb/dna/diane_software.pdf. Raw intensity data for each 

experiment were normalized by z transformation. Intensity data were first log10-transformed and 

used for the calculation of z scores. Z scores were calculated by subtracting the average gene 

intensity from the raw intensity data for each gene and dividing that result by the standard 

deviation (S.D.) of all the measured intensities. Gene expression differences between any two 

experiments were calculated by taking the difference between the observed gene z scores. The 

significance of calculated z differences can be directly inferred from measurements of the S.D. of 

the overall z difference distribution. Assuming a normal distribution profile, z differences are 

assigned significance according to their relation to the calculated S.D. of all the z differences in 

any one comparison. To facilitate comparison of z difference between several different 

experiments, z differences were divided by the appropriate S.D. to give the z ratios. Further 

hierarchical cluster analysis was performed using open source software Cluster 3.0 and Java 

Treeview. 

2.1.5 Quantitative real-time PCR 

Microarray results were validated by qRT-PCR using the same RNA samples as those 

used for the microarray. qRT-PCR was carried out using the iScript One-Step RT-PCR Kit with 

SYBR Green (Bio-Rad, Hercules, CA), and the reactions were conducted on the StepOnePlus
TM

 

Real-Time PCR System (Applied Biosystems, Carlbad, CA). The qRT-PCR was performed as 

http://www.grc.nia.nih.gov/branches/rrb/dna/diane_software.pdf


 10 

follows: 45 cycles with initial incubation at 50
o
C for 10 min, 95°C for 5 min, and final extension 

at 72°C for 4 min. Each cycle consisted of denaturation for 10 s at 95°C, annealing for 20 s at 

58°C, and extension for 50 s at 72 °C. The results were quantified as Ct values, where Ct is 

defined as the threshold cycle of PCR at which the amplified product is first detected and 

signifies relative gene expression (the ratio of target/control). qRT-PCR results were analyzed by 

the comparative Ct method (29) . mRNA expressions of human UCMSC transduced with 

adenovirus encoding adipose differentiation related protein; ADRP and follistatin; FST were 

determined as same procedure as mentioned above. The human ADRP primers are described 

previously (30). Sequences of primers used are described in Table 2.1. 

2.1.6 Statistical analysis 

All values are expressed as means ± SE for all in vitro and in vivo experiments. Statistical 

significance was assessed by ANOVA test and t-test. Statistical significance was set at * p < 

0.05.  
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2.2 Results and Discussion 

2.2.1 Comparison of tumor suppressor gene expressions in human UCMSC and rat 

UCMSC by Microarray analysis 

Expressions of tumor suppressor genes in human or rat UCMSC co-cultured with 

corresponding species’ mammary tumor cells were screened by genome-wide microarray 

analysis using Illumina HumanRef-8 Expression BeadChip for human and RatRef-12 Expression 

BeadChip for rat, which contains 24,357 and 22,519 distinctive human or rat oligonucleotide 

probes, respectively. The total RNA were extracted from the human and rat UCMSC either co-

cultured with or without MDA-231 cells or Mat B III cells in Transwell culture dishes (cells 

were separated by a porous membrane with 0.4µm pores). Uniquely expressed genes were 

screened following the criteria described in the method section and Fig 2.1. By the analysis of Z-

normalization of the hybridization signals, 43 genes were selected in human UCMSC and 64 

genes from rat UCMSC. By comparing these selected genes between rat and human UCMSC, 17 

genes were commonly expressed in both rat and human UCMSC (Fig. 2.2). Eight of these genes 

were up-regulated in both human and rat UCMSC. Two genes were up-regulated in rat UCMSC 

but down-regulated in human UCMSC, while the other seven genes were up-regulated in human 

UCMSC but down-regulated in rat UCMSC (Fig. 2.3). Eight genes were reported as tumor 

suppressor genes and five genes as tumor promoter genes while the other four genes are related 

to cell growth but unknown for their functions in tumor growth (Table 2.2). Two tumor 

suppressor genes, ADRP FST, which were up-regulated in rat UCMSC but down-regulated in 

human UCMSC were further characterized as potential candidate genes to exhibit stronger 

tumoricidal activity in rat UCMSC more than that in human UMCSC.  
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2.2.2 Confirmation of gene expression by qRT-PCR 

The mRNA expressions of ADRP and FST in human and rat UCMSC were verified by 

qRT-PCR. Both ADRP and FST showed constantly upregulated gene expression in rat UCMSC 

co-cultured with Mat B III cells. In human UCMSC co-cultured with MDA231 cells, although 

FST expression was down-regulated as it was observed in microarray study, ADRP expression 

was up-regulated (Fig. 2.4).  
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Figures and Tables 

 

 

Figure 2.1 Schematic illustrations of the stepwise procedures of microarray analysis 
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Figure 2.2 Clustering analysis of significant genes  

Clustering analysis of significant genes in rat UCMSC (rUCMSC) and human UCMSC 

(hUCMSC) co-cultured with mammary tumor cells of their respective species, i.e., Mat B III rat 

breast carcinoma cells or MDA 231 human breast carcinoma cells. The differential gene 

expression profiles between naive human or rat UCMSC and those co-cultured with mammary 

tumor cells were compared. 
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Figure 2.3 Z ratios of the 17 commonly expressed genes in both human and rat UCMSC co-

cultured with breast cancer cells.  

The solid bars indicate gene expression in human UCMSC (hUCMSC) and the gray bars indicate 

gene expression in rat UCMSC (rUCMSC). Genes highlighted with blue color indicate tumor 

suppressor genes whereas genes highlighted with red color indicate tumor promoter genes. 

Unlabeled genes indicate unclear relationship with tumor growth. 
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Figure 2.4 Messenger RNA expression levels of ADRP and FST in rat and human UCMSC 

co-cultured with tumor cells. 

  The mRNA expression levels of ADRP and FST in rat (a) and human (b) UCMSC co-

cultured with Mat B III cells or MDA-231 cells were determined by qRT-PCR. Naïve UCMSC 

mRNA expression level was set as 1. 

a b 
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Table 2.1 Primers used for qRT-PCR 

 

Gene  Forward (5’-3’)  Reverse (5’-3’)  

Human 

ADRP 

(23)   

CTCATGGGTAGAGTGGAAA-

AGGAGCATTGG  

TTGGATGTTGGACAGGAGGG-

TGTGGCACGT  

Rat 

ADRP  

CATTCAAGACCAGGCCAAAC AGGAGGTAACATTGCGGAAC 

Human 

FST 344  

TGTGCCCTGACAGTAAGTCG  GTCTTCCGAAATGGAGTTGC 

Rat FST  TGCTGCTACTCTGCCAATTC TGCAACACTCTTCCTTGCTC 
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Table 2.2 Function of differentially expressed genes in human and rat UCMSC 

Tumor promoter genes  References  Tumor suppressor genes  References  

PTGS2 (COX2) 

Rat+/human + 

(31) SULF1 

Rat+/human + 

(24, 32)  

SERPINE2 

Rat+/human+ 

(33, 34) GPI 

Rat+/human + 

(24)  

MIF 

Rat+/human + 

(35) HTRA1 

Rat+/human + 

(36) 

PDPN   

Rat-/human+ 

(37) ADRP 

Rat+/human- 

(24, 38) 

TGFBI 

Rat-/human+  

(39)  FST 

Rat+/human- 

(40) 

Unknown genes  

 

 LTBP4 

Human+/rat- 

(41, 42) 

P4HA1, COL1A2,  

PAM, PDIA5 

 BGN 

Human+/rat- 

(43)  

  LOXL1 

Human+/rat- 

(44) 
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Chapter 3 - Evaluation of the selected genes in vitro and in vivo 

3.1 Materials and Methods 

3.1.1 Adenovirus construction and transduction 

cDNA plasmids encoding human ADRP and FST were purchased from Open Biosystems 

(Huntsville, AL).  Construction of adenoviral vector for human ADRP and FST genes were 

done by Vector Biolabs (Philadelphia, NJ). Coding region of cDNA sequences of human ADRP 

and FST genes were inserted downstream of the GFP gene. Expansion and titeration of 

adenoviral vector encoding ADRP (Ad-ADRP) or FST (Ad-FST) were done by following the 

BD Adeno-X Expression system manual (Clontech Laboratories, Inc, Mountain View, CA). 

Adenovirus encoding GFP was prepared in Dr. F. Marini’s lab (University of Texas, Huston, 

TX) and used as a control vector. The gene transduction to human UCMSC was done by 

following the procedure described in the previous study (45). Transduction efficiencies of Ad-

ADRP and Ad-FST to the human UCMSC were determined by qRT-PCR and under fluoresent 

microscope as described above.  

3.1.2 Evaluation of the effect of conditioned medium obtained from engineered human 

UCMSC on the growth of human breast carcinoma cells 

The effect of ADRP or FST over-expressing human UCMSC on the growth of MDA-231 

cells was evaluated by culturing cancer cells in the medium conditioned with either unengineered 

human UCMSC, ADRP-over-expressing human UCMSC (ADRP-hUCMSC, FST-over-

expressing human UCMSC (FST-hUCMSC), GFP-over-expressing human UCMSC (hUCMSC-

GFP) or normal defined medium. In brief, different amounts of Ad-ADRP or Ad-FST (50, 100, 

300 MOI/cells) were transduced on human UCMSC. The media conditioned with various 
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engineered human UCMSC were collected after 48h of incubation and diluted with defined 

medium in a 1:1 ratio. MDA-231 cells seeded in 96 well plates (8000 cells/well) 24h prior were 

cultured for 3, 5 or 7days in diluted various conditioned media. Viable cell numbers was 

quantified by MTT assay. Twenty micro liters of MTT solution (5mg/ml) was added 4h before 

completing the expected time of incubation. Formazan crystals formed were dissolved by adding 

100μl solublization buffer (10% SDS containing 0.01N HCl) and incubating overnight in the 

incubator. The following day, color developed by the reaction was measured at 550 nm and the 

background absorbance was measured at 630 nm using the Molecular Devices Spectramax 190 

plate reader (Global Medical Instrumentation, Inc. Ramsey, MN).  

3.1.3 Evaluation of the effect of over-expression of ADRP or FST on two or three 

dimensional growth of human breast carcinoma cells 

Two layer-colony forming assay was carried out as a three dimensional colony growth of 

human breast carcinoma cells by following the method described previously (3). Briefly, 50 MOI 

of Ad-ADRP, Ad-FST or Ad-LacZ were transduced into MDA-231 cells. Half ml of 0.9% agar 

(Sea Plaque agarose, Cambrex Bio Science Rockland, Inc. Rockland, ME) in MEM α medium 

supplemented with 10% FBS was poured into the wells of a 12-well tissue culture plate as a 

bottom layer. After solidification, adenoviral vector transduced MDA-231 cells suspended in 

0.5ml MEM α medium containing 10% FBS and 0.5% agarose were layered over the bottom 

layer. The cells were incubated at 37°C with 5% CO2 for growth of colonies. On days 7 and 12 

colony growth was evaluated by an automated phase contrast microscope equipped with Micro 

Analysis Suite (Olympus CKX41, Center Valley, PA). Colonies with an area greater than 5,000 

µm
2
 were counted using Micro Suite

TM 
Five software. Human UCMSC transduced with Ad-

ADFP, Ad-FST or Ad-GFP in 50 MOI were seeded (2,500 cells) on 12-well plate and allowed to 
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attach on the plate. On the next day, 0.5 ml of 0.9% agar in defined medium with 5% FBS were 

poured into the wells of a 12-well tissue culture plate (bottom layer). Engineered human 

UCMSC and MDA-231 cells (1x10
4 

cells) were suspended in 0.5ml of defined medium 

containing 5% FBS and 0.5% agarose, and plated on top of the bottom agar layer.  

The standard cell culture in plastic culture dish was carried out as a two dimensional cell 

growth of human breast carcinoma cells. MDA-231 cells were transduced with Ad-ADRP or Ad-

LacZ at MOI of 300. One day after transduction MDA-231 cells were seeded in 24well culture 

plate at a density of 10,000cells/well. The effect of ADRP over-expression on the growth of 

MDA-231 cells was evaluated by direct counting of cell number using a haemocytometer 2, 4 

and 8 days after transduction.   

3.1.5 Evaluation of the effect of FST over-expressing human UCMSC on metastatic 

tumor growth of human breast carcinoma cells in mouse lung 

All mice were housed in an animal care facility and held for 10 days to acclimatize. All 

animal experiments were carried out under strict adherence with the Institutional Animal Care 

and Use Committee protocol as set by Kansas State University. A lung metastasis model of 

MDA-231 cells was developed in immunodeficient CB17/SCID mice (Charles River, 

Wilmington, MA) by injecting 2x10
6
 cells through the tail vein. Six days after cancer cell 

inoculation, mice were randomly divided into three treatment groups; (1) PBS, (2) FST over-

expressing human UCMSC or (3) LacZ over-expressing human UCMSC. On days 6, 13 and 20 

after inoculation with MDA-231 cells, mice received intravenously either 200 µl PBS or gene 

engineered human UCMSC in 200 µl PBS (human UCMSC group; 30% of cells were stained 

with PKH26 fluorescent dye). The body weights of the mice were examined every other day. 

Four weeks after MDA-231 cells transplantation, all mice were sacrificed, lungs were collected 
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and lung weights were recorded. Numbers of tumor nodules in the lungs were counted under 

stereomicroscope.3.1.6 Statistical analysis 

All values are expressed as means ± SE (standard error) for all in vitro and in vivo 

experiments. Statistical significance was assessed by ANOVA and t-test. Statistical significance 

was set at * p < 0.05.  
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3.2 Results  

3.2.1 FST over-expressing human UCMSC inhibited anchorage-dependent growth of 

MDA-231 cells in vitro 

To evaluate the effects of ADRP or FST over-expression in human UCMSC, adenoviral 

vectors encoding ADRP (Ad-ADRP) and FST (Ad-FST) were individually constructed using 

GFP encoding expression vector. Gene transduction by Ad-ADRP or Ad-FST was confirmed by 

observing GFP co-expression in the cells. A good even expression of GFP was detected in 

human UCMSC under a fluorescent microscope when they were transduced at 50 MOI vectors.  

The effect of Ad-FST transduced human UCMSC on the anchorage-dependent growth of 

MDA-231 cells was evaluated by direct co-culture of the two types of cells. As shown in Fig. 

3.1, direct co-culture of FST, but not ADRP, transduced human UCMSC with MDA-231 cells 

(1:10 ratio) decreased the overall cell growth significantly. The results revealed that relatively 

small numbers of FST transduced human UCMSC can inhibit the growth of co-cultured MDA-

231 cells as compared to LacZ transduced human UCMSC. In addition, to evaluate indirect 

effect of the gene transduced human UCMSC on the growth of MDA-231 cells, MDA-231 cells 

were cultured with the conditioned medium obtained from either gene transduced UCMSC and 

the growth of MDA-231 cells was evaluated by MTT assay (Fig. 3.2). The growth of MDA-231 

cells was significantly attenuated when cultured with the conditioned medium from FST 

transduced human UCMSC as compared to that cultured in LacZ transduced human UCMSC. 

However, the conditioned medium from ADRP transduced human UCMSC showed only a slight 

decrease in cell growth. The experiment utilized with the conditioned medium supports that FST 

appears to be secreted in the culture medium and UCMSC dependent cell growth attenuation is 

at least in part mediated through proteins secreted from the UCMSC. 
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3.2.2 Transduction of adeno- FST but not adeno-ADRP attenuated the growth of 

MDA-231 cells in vitro  

Ad-ADRP was transduced into MDA-231 cells in order to observe their tumor 

suppressing effect. In the 3D culture, after 7 days of virus transduction, there were no significant 

differences between Ad-LacZ and Ad-FST or Ad-ADRP transduced groups. However, after 12 

days from the transduction, the colony size and numbers did not increase in the Ad-FST 

transduced group, while other groups increased the colony size (Fig. 3.3).  

3.2.3 FST transduced human UCMSC inhibited growth of MDA-231 xenografts in 

mice 

FST engineered human UCMSC (FST-hUCMSC) attenuated the growth of MDA-231 

grafts in a lung metastasis mammary tumor model. The previous in vitro experiments have 

shown that FST-hUCMSC have significant tumor suppressing ability. In the in vivo study, a lung 

metastasis model of MDA-231 breast cancer cells was used since the lung is the second most 

frequent site of breast cancer metastasis. Half a million of FST-hUCMSC were administered 

through the tail vein injection three times every week as a treatment. In lungs, small tumor 

nodules were observed when mice were sacrificed one week after the last treatment; a total 

duration was 4 weeks after tumor cell injection (Fig. 3.4A). No tumors were observed in other 

organs. FST-hUCMSC had a significant effect in reducing tumor nodule numbers in the lung 

(Fig. 3.4B), however, because of a unexpectedly slower growth of tumors and resultant early 

sacrificing, there were no significant differences in lung weight among groups. These results 

suggest that FST-hUCMSC had a tumor suppressing effect in a mouse model.  
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3.3 Discussion 

The current study discovered the change of expression pattern in tumor suppressor genes 

in rat and human UCMSC when they were co-cultured with tumor cells. Our previous study had 

revealed that gene expression pattern in rat UCMSC was significantly altered when they were 

co-cultured with rat breast carcinoma cells (24). However, whether the similar alteration of gene 

expression in rat UCMSC is also observed in human UCMSC when they were co-cultured with 

human breast carcinoma cells and the molecular mechanisms by which rat UCMSC markedly 

attenuate the growth of breast carcinoma cells in vitro and in vivo were unclear. Previous 

investigations in the tumoricidal activities of human and rat UCMSC had implied that rat 

UCMSC have stronger tumoricidal activity than that of human UCMSC, while their mechanistic 

differences were unclear (2, 3). UCMSC have a significant tumor cells growth suppressing 

ability in indirect co-culture which appears that UCMSC-dependent tumor cells growth 

inhibition is partially due to secretory proteins (2, 3). Consequently, we hypothesized that a 

comparison of gene expressions profiles in rat and human UCMSC co-cultured with breast 

cancer cells may provide the identity of the key players for the differential tumoricidal abilities 

in two types of UCMSC. Furthermore, an identification of the key mechanisms in rat UCMSC-

dependent strong tumoricidal activity will be utilized to reinforce human UCMSC-dependent 

tumoricidal activity to the rat UCMSC level. In the present study, two tumor suppressor genes, 

ADRP and FST were found to be upregulated in rat UCMSC, whereas these two genes were 

down regulated in human UCMSC when two types of UCMSC were co-cultured with 

corresponding species’ breast carcinoma cells. Therefore, these two gene expression differences 

in two types of UCMSC may explain their differential tumoricidal activities. 
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Firstly, ADRP has been reported as a prognosis marker of clear cell renal cell carcinoma 

(38). Patients with higher expression of ADRP in clear cell renal cell carcinoma tissues had a 

longer survival rate than those showing lower expression. Although ADRP had an effect to 

suppress the growth of rat mammary tumors (24), their tumor suppressor effect against human 

breast cancer was not significant (Fig 3.2). The role of ADRP in tumor suppression has not yet 

been rigorously studied; however, it is related to the lipid metabolism in several cells. Early 

adipocyte differentiation was observed in human UCMSC transduced with Ad-ADRP (Fig. 3.5) 

ADRP dependent lipid accumulation was also observed in murine fibroblasts, which supports 

our results (46).The initiation of adipocyte differentiation by ADRP in human UCMSC may have 

weakened their tumoricidal ability.  

Secondly, FST, which is known as an activin-binding protein, suppress the metastasis of 

small cell lung carcinoma (SCLC) (40). FST inhibit the bioactivity of activin A, a TGF beta 

family protein, which are associated with lung adenocarcinoma proliferation in human patients 

(47). However, effect of activin A on breast cancer cells are still controversial (48, 49). Although 

different cell lines were used in this study, FST overexpressing human UCMSC had moderately 

but significantly reduced the growth of MDA-231 cells in vitro which is consistent with the 

previous study (47). Further studies are needed to determine whether inhibition of activin A is 

the mechanism by which FST overexpressing human UCMSC and rat UCMSC suppress the 

growth of tumor cells. Transduction of Ad-FST to MDA-231 cells arrested the growth of MDA-

231 cells colonies from Day 7 to Day 12 in colony assay (Fig 3.3). This may indicate that FST 

expression attenuated the cell growth without inducing cell death (Fig 3.3). Additionally, the 

growth of MDA-231 cells was significantly attenuated by FST-hUCMSC in in vivo studies (Fig 

3.4). Further investigation on the circulating level of activin A may enlighten understanding the 
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mechanism of FST-hUCMSC dependent tumor suppression in vivo, since significant increase of 

circulating activin A was observed in bone metastatic breast cancer patients (49).   

As we hypothesized, rat and human UCMSC showed different gene expression profiles 

(Fig 2.2, 2.3). A comparison of the two gene expression profiles suggests that high expression of 

two putative tumor suppressor genes in rat UCMSC may be associated with strong tumoricidal 

activity (Fig 2.3). Over expression of one such gene, FST, in human UCMSC caused a 

significant suppression of tumor growth in both cell culture and mouse studies. Although the 

complete depletion of the tumors was not observed by the treatment with FST-over-expressed 

human UCMSC (Fig 3.4), this study indicates that upregulation of multiple tumor suppressor 

genes in UCMSC is involved in UCMSC-dependent tumor growth suppression.  

The microarray analysis also indicated an upregulation of three tumor promoter genes 

(prostaglandin-endoperoxide synthase 2; PTGS2, serpin peptidase inhibitor, clade E, member 2; 

SERPINE2, and macrophage migration inhibitory factor ; MIF) in both rat and human UCMSC 

when they were co-cultured with breast carcinoma cells. Among these genes, extracellular MIF 

has been shown to act as a pro-oncogene in breast cancer (35). Since UCMSC derived MIF 

might play a role as a pro-oncogene, MIF receptor expression in MDA-231 cells and Mat B III 

cells was investigated (data not shown). MDA-231 cells have a significant level of MIF receptor 

expression (35), whereas Mat B III cells co-cultured with rat UCMSC did not exhibit significant 

increase of MIF receptor expression, which implies Mat B III cells are less sensitive to pro-

oncogene, MIF. This data suggests different tumoricidal abilities of rat and human UCMSC 

might be due to different sensitivities of the different breast carcinoma cell to tumor promoter 

proteins produced by UCMSC; Mat B III cells are poorly sensitive to tumor promoters due to the 

poor receptor expression, whereas MDA-231 cells are sensitive to those due to a high receptor 
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expression for tumor promoters. A view from the regulation of the tumor promoter genes also 

provided a molecular mechanism of differential tumoricidal abilities of two types of UCMSCs. 

These results also indicate that an investigation in different combination of UCMSC and cancer 

cells appears to be important in order to fully understand UCMSC-dependent tumoricidal activity.  

In conclusion, the tumoricidal ability of UCMSC is a very unique character among many 

types of stem cells. The present study indicates that rat and human UCMSC dependent tumor 

growth suppression is due at least in part to the expression modulation of multiple tumor 

suppressor and promoter genes. This is the first study to describe potential use of human 

UCMSC engineered with an endogenous tumor suppressor gene over-expression for breast 

cancer treatment. This study clearly indicates that engineering human UCMSC by endogenous 

tumor suppressor genes can re-enforce UCMSC-dependent tumoricidal ability. It is apparent that 

generation of more effective human UCMSC requires further studies for the cell preparation and 

gene transduction methods. 
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Figures and Tables 

 

 

Figure 3.1 The growth of MDA-231 cells was significantly attenuated by the co-culture with 

ADRP- or FST-hUCMSC.   

MDA-231 cells were co-cultured with either LacZ, ADRP- or FST-hUCMSC for 48 h.  

Cell growth was measured by MTT assay. Either ADRP- or FST over-expressing human 

UCMSC significantly attenuated growth of co-cultured carcinoma cells. Transduction of 

adenoviral vector to human UCMSC did not affect the cell growth of human UCMSC. *p<0.05   
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Figure 3.2 The growth of MDA-231 cells was significantly attenuated by culturing with the 

conditioned medium from Ad-FST but not LacZ or ADRP transduced human UCMSC:  

MDA-231 cells were cultured in conditioned media from either 50 MOI Lac Z, ADRP- 

or FST-transduced human UCMSC for 48 h.  Cell growth was determined by MTT assay. 

*p<0.05.  DM; Defined medium, Non; naïve UCMSC, LacZ; LacZ transduced human UCMSC, 

FST; FST transduced human UCMSC, ADRP; ADRP transduced human UCMSC.  
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Figure 3.3 The growth of MDA-231 cells was significantly attenuated by the direct 

transduction of FST but not LacZ or ADRP.   

MDA-231 cells were transduced with either 50 MOI Lac Z, ADRP- or FST and cultured 

in soft agar for the total of 12 days. The rate of the colony growth of MDA-231 cells was 

determined between the days 7 and 12. The colony growth rate of the FST-transduced cells was 

1,02 (no growth), while the growth rates of other gene-transduced cells were approximately 1.5. 
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Figure 3.4 Treatment with FST transduced human UCMSC (FST-hUCMSC) significantly 

attenuated development of metastatic tumor in the mouse lung.   

A. Number of tumor nodules in mouse lung was counted under dissection microscope 30 

days after the inoculation of the MDA-231 cells. Bar graph represents average number of tumor 

nodules in each treatment group. B. Macroscopic images of mouse lungs treated with half-

A

. 

B

. 
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million of LacZ-hUCMSC, FST-hUCMSC and PBS for three times weekly were captured 

immediately after sacrificing mice. Arrows indicate tumor nodules in the lungs. Fewer numbers 

of tumor nodules were detected in FST-hUCMSC group. * p<0.05 compared to LacZ-hUCMSC 

treated mice. 

 

 

 

 

 

Figure 3.5 ADRP adenovirus vector transduction significantly increased oil droplets in 

human UCMSC.  

Human UCMSC transduced with adeno-ADRP (50 and 100 MOI) exhibited a large 

number of oil droplets in the cytoplasm of the cells that were stained by Sudan-black staining. 

However, hUCMSC transduced with adeno-LacZ (100 MOI) showed a negligible amount of oil 

droplets. 
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Figure 3.6 Schimatic illustration of the study summary 
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