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CHAPTER |

INTRODUCT ION

Forecasting occupies a unique position in the modern industrial
structure in that it helps to plan the future development. Actual
forecasts are only a part of some control system. A specific action
will be based on the forecast made some prior period and hence the
success of that action, and the subsequent profit, will be a func-
tion of the forecast accuracy. In practical éituations the differ~.
ence between the actual observation and its prior forecast is

almost inevitable because any time series can always be decomposed

into the following components:

a, a constant entity or level,

b, a trend, which can, generally, be expressed
by a low degree polynomial model,

c. a cyclic or seasonal variation, a periodic
term,

and d. a noise, a component that cannot be catego-

rized as any of the above, it is unaccounted
for and varies randomly, but is always pres-

ent in practical situations.

These factors form the basics of the forecasting models,



Noise can be measured in statistical terms only; hence, its predic-
tion necessitates probabilistic models rather than simple mathe-
matical models (which may have algebraic, trigonometric or expo-
nential form) designed to represent the first three factors,
Apparently, a rigid control system cannot be designed to restrain
the magnitude or occurance of the noise factor, which makes it more
difficult to generate a prior forecast with a rigid level of

precision,

To deal with different types of forecasting problems, there exist
many kinds of forecasting systems that can be broadly classified
under Static and Dynamic methods. The first classification in-
cludes subjective estimates, graphical curve fitting and regression
analysis, whereas the second has simulation, moving average,
adaptive smoothing, exponential smoothing, etc. In all cases,

the efficiency of the system is decided by the magni;udes of the

forecast errors,

A forecasting error is defined as the difference between the
actual observation and its prior forecast. A good forecasting

system will care for,

1. a satisfactory and feasible forecasting method,

and 2, an allowance for the forecast errors,

The adequacy of the forecasting system will depend upon the

extent to which these factors are taken care of.



The first factor implies the establishment of a practical forecast
technique. The second urges us to devise a method to increase the
accuracy of the forecasts. The present research deals with a part

of the problem involved in this second aspect.

STATEMENT OF THE PROBLEM

Since improvement in system accuracy involves the reduction in
error magnitudes, the measurement of system errors and setting the
control limits for their variational range plays an important role.
There are different criteria for error measurement, the most widely
applicable and versatile of them being a statistic called a
'tracking signal.,' These will be discussed in detail In the next
chapter, However, it needs to be mentioned that the tracking sig-
nal statistic smooths the error statistic and maps it to a smaller

range of variation,

The present research deals witﬁ the statistical distribution of
this tracking signal statistic. The latter being a ratio of two
other error statistics, it s merely a series of numbers, the
magnitudes of which will depend upon the magnikudes of system
errors, Thus, if the statistical distribution of the errors is
known, the statistical distribution of the tracking signal can be

found. The present thesis is an attempt to find the tracking

signal distribution, making suitable simplifying assumptions.



The knowledge of the distribution of this tracking signal statistic
will facilitate the determination of suitable confidence range to
check on the magnitude of the system errors of any individual fore-

casting system.

Although the theory developed here may be extended and modified to
suit other dynamic systems, the exponential smoothing technique

is the one chosen for illustration. The entire treatment uses
exponential smoothing as a basis., The basic reason for this is
that the exponentiai smoothing provides for updating the coeffi-
cients of the forecasting model at each new sampling interval to
correct for the past errors; also, the ability of this technique
to react to changes in the observed process is another desirable
feature. The later part of this work includes a simulation

exper iment fo test the practical agreement of the developed theory

with the real-world-situation,
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CHAPTER 2

ERROR MEASUREMENT AND ANALYSIS

The forecasting error is defined as the difference between the

actual observation and the forecast model fitted., [t is similar
to the residuals in the regression technique, but that the fore-
cast is forward in time and hence the observation is not the one

used in building the forecast.

The mean of the distribution of the forecast errors will be zero

only if the model of the underlying process continues to hold
throughout the forecast lead time. The actual observation is a
modulation of this process with a noise component. The adaptive

{or dynamic) forecasting system amplifies the noise. That is, the
forecasts have a statistical distribution caused-by the past noise,
Since the forecast is a linear combination of the past observations,
the distribution of the forecasts will tend to be normal. (1,2)

The distribution of the forecast errors will be the convolution of
the noise distribution and the forecast distribution; the noise
samples may or may not be random, the forecasts, being a linear
combination of the past observations, are definitely correlated,

Due to the nature of dynamic forecasting, '' ,..whenever any such sys-
tem is set up, it is very desirable to incorporate some form of auto-

matic monitoring to ensure that the system remains in control," (5)



NORMALITY OF FORECAST ERRORS

In order to effect an improvement in forecast accuracy, it is
necessary to represent the data on forecast errors by a probébflity
distribution, This is due to the statistical nature of the system
noise, The data also need a meaningful statistical interpretation
to make a close allowance for these errors, Different statistics
and parameters have already been introduced to effectively deal
with this aspect, In the present research, a statistic called

"tracking signal" is given further consideration in this respect.

Three types of information are basically needed:
1. the form of the error distribution,
2. the parameters of the error distribution,
3. the serial correlation between different samples

of the distribution,

Simulation has proved that in a great number of cases, the error
distribution is approximately normal, (1,2) The analytical approxi-
mation to this effect is derived in Appendix A, In most of the
cases this approximate normality of errors can be assumed without
question, |f the noise in the past data is random and is around

a zero mean, the error distribution will have a zero mean as long

as the underlying process does not change, and the error variance
can be estimated from the response characteristics of the fore-

casting system,
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ERROR GENERATOR:

u(t) ‘ v(t)
DELAY
T

.:}— x(t) = u(t)-v(t-T) |

o FORECAST ERRORS B

Fig. 1

The block diagram in the Fig. | above represents the analogous
error generator, The time series of data is fed into the fore-
casting system represented by the impulse response function, h(t).
The output is the forecasts of the observations, This is delayed
over the lead time and forms a negative feedback to the time series
of data, the resultant interaction of which generates the forecast

errors,

SERIAL CORRELATION OF FORECAST ERRORS:

If © represents the forecast lead time, the forecast error x(t)

at time t is given as,
x(t) = u(t)-Ug (t-¢) awie (1)

where u(t) is the actual observation at time t, and Ug (t-T) is



its forecast made © periods ago. |In terms of impulse response
function h(t) of the forecast system, the forecast can be repre-
sented as the convolution equation of the form,

oo

Ug () = } h(n) .u(t-n) exes 12

n=o

which changes the equation (1) te the form,

o
xg (t) = u(t) - Zh(n).u(t*c-n) e (3)

n=-o

If the forecast system is accurate enough, all the forecast errors
would be distributed around a zero mean value, The errors may or
may not be serially correlated, The relevance in this respect may

be evaluated from the autocorrelation coefficients of the errors.

If Fy denotes the sum of cross products of the errors © periods

apart in the error time series such that

Fe =§x(t).x(t+c), e ()

t

the mean value of F, , viz. E (F_ ), is called its average lagged
product. |If the forecast errors are distributed about a zero mean,
that is if E(x(t)) = 0, the average lagged product is the auto-

covariance of the errors; and is denoted by R (2 )



. ; 2
It is, thus, obvious from equation (4) that the variance, 0 ° ,

of the error distribution will simply be,

a = R

X xx(o)'

Also, that the autocovariance function is symmetrical, that is

Ryx(T) = Rxx(-c)

The set of values of autocovariance over the entire range of
is called the autocorrelation function, most commonly expressed as

a ratio,
RXX(D)

called the autocorrelation coefficient. This ratio has a finite
domain of (~1,1). In the case of noisy data (uncorrelated errors),
fhe value of this ratio is quite close to zero, The errors in

such cases are quite independent of each other. |If the value, on
the other hand, lies quite close to £ 1, high correlation exists
between the errors and the knowledge of any error may be effectively
used to forecast the subsequent errors, From the equation (3)

above,

Rux(T) =R, (T) - ﬁ h(n)Euu( T tn)+Ry (T- nit

(=] oo

t z E h(m).h(n).Ruu(C+n—m), s e 40,
n :z m = O

¢
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where RUU(C ) is the autocovariance of the observations sampled

T periods apart in the given time series, |f the observations

were random and uncorrelated,
”2
Ryu(0) = OF
and R, (5) =0 for TZ0,

2 o0
i .El-i- Ehz(nﬂ
n=z=o

This yields, R*X(O)

oo

and Ry, (T) = 03.2 . > h(n).h(ctn)

n=o

MEASUREMENT AND ANALYSIS OF ERRORS:

The following criteria can be used in evaluating errors:

—

cumulative error

2, mean error

3. wvariance of errors
L, mean absolute error
5. smoothed error

6. smoothed mean absolute deviation

7. tracking signal,

aw 160)

Cumulative error is the sum of forecast errors. Mean error and

cumulative error are two different criteria of expressing the same

statistic, For normally distributed errors with zero mean, the

cumulative error will fluctuate around zero,
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But even if this condition is satisfied, it does not necessarily
testify to the forecast accuracy, The precision of the forecasts
will, in such cases, be judged by the standard deviation (or vari-

ance, in other words) of the errors,

In analytical problems it is most convenient to deal with the

variance 0"'2 as a measure of scatter of the data around the mean,
However, the computation of the standard deviation (square-root of
variance) from a large number of observations is an involved task.
Hence, a simpler and more meaningful statistic called ‘mean abso-
lute error' is introduced, |f x(t) represents the error having a

statistical distribution p(x) about the mean g then the mean

absolute error jis defined as,

ZCS = v//J X = FI. p(x) . dx
52

for a continuous density function. For a discrete distribution

this takes the following form:

L% = ﬁ | x(£) = p[.px(e)) .

t=o

If P = 0, as in most cases, the computation is considerably re-
duced, In the general case, where the error distribution may or
may not be normal, a normalized variable z may be defined such

that

Z:__x__-...ﬂ._.’

O
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where Ox is the standard deviation of errors. The mean absolute

error is then

JAN

IZU;’ . p(x).dx
«Q

U% [z ,.p(z) .dz | s LE)

(@]
the integral being over the entire sample space §). Hence, the

mean absolute error is proportional to the standard deviation of
the errors, For normally distributed errors, the constant of

proportionality is 0,7979 (1).

All the criteria introduced above are, thus, more or less related
to the same common statistic, |[f y(t) represents the cumulative

error, then
) = > x(i)

For the forecasting system using exponential smoothing, the
impulse response function, h(t), producing the cumulative error

is given as,

t

hY(t) = /3 s

where ﬁ = | - o, and ot is the smoothing statistic of the sys-

tem. (Also, 0< &, < 1),
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Hence, if Oy s the variance of the input data noise, the variance

of the cumulative error is,

2
2 2 o0 9 OL
Oy = 0; . =Ei hY (t) = ] ve.. (8)
t=o I "/3

If the errors are normally distributed, and the noise samples were

serially independent, the mean absolute error is (1),

YA\

Vorm., 2/ 2o, 0

u

VAN 7 I ceee (9)

or Oy

Equations (8) and (9) above give the relation between U; and Zf&.
The standard deviation of the cumulative error is, thus, propor-

tional to the mean absolute error,

All the crfferia discussed above are quite adequate as statistical
measures of error analysis as long as the actual process level
does not change. However, if a sudden change in the level occurs,
the errors grow larger in magnitude., As the forecasts 'catch up'
with the changed process level, the errors again tend to settle
down about zero mean., Yet the forecast catch-up period does not
match with the settling period of the error statistic described

above,

For example, let us consider a practically noiseless process

infinitely settled at a level 'p,'
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The forecasts in such cases are practically equal to the observation
values, and the mean error lies on the zero level. |If now there

is a sudden rise to another noiseless level 'G,' a big error of
magnitude (G-D) is observed in the forecast. As the forecasts

catch up with this change, the magnitude of the error decreases.

In the figure below, the nature of impulse response of the fore-

casts is shown.

PROCESS LEVEL 'G'

FORECAST
IMPULSE RESPONSE

PROCESS LEVEL ‘D!

Fig, 2

However, during this catching up period, the errors are all of the
same sign and the mean error drifts away from zero, The period
for the mean error to drop down to practically zero is substan-
tially different, though, from the forecast catching-up period,
This means that during such transition stage the above error
statistics are inadequate to judge the forecast precision, This
necessitates the definition of some other modified statistic that

can effectively track the forecast precision.
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Thus, smoothed statistics are introduced,
Smoothed error: This is defined as,

smoothed error = (1= &) previous smoothed error
+ o (latest error),

where o is the smoothing statistic. However, this o need not be
the same as the smoothing statistic of the forecast system, though
the same value in both the cases may have a better synchronization

of the 'catching-up' and 'settling-down' periods.

Figure 3 compares the forecast catch-up process with the settling-
down process of the mean error and the smoothed error, The
smoothing statistic is the same for both the forecasts and the
smoothed error, It could be observed that the smoothed error and
the forecasts reach the desired levels almost simultaneously.
Therefore, this error statistic can be effectively used as a mea-

sure of forecast precision at any instance,

n
By definition, smoothed error = EE O(Pfx(n_i) ,
o

and for a stabilized system (that is for sufficiently largen)

variance of the smoothed error is,

2 co ) 2 2 0_2
= ! o .
Tp = E «f Ox 2 —
i =0 ! ‘13
2
(24
& e+ U ... (10)



That is, the standard deviation of the smoothed error is propor-

tional to the standard deviation of the_errors.

Smoothed mean absolute deviation (SMAD) : This is another smoothed
statistic defined as,
smoothed mean absolute deviation = (1-«) previous SMAD

+ o (latest absolute error),
This is simply a convenient measure of the noise in the system,
In fact, its mean is proportional to the standard deviation of
errors and is simpler to compute - the facts that make this sta-

tistic quite important and meaningful,

0f all these criteria the most important and the most widely
applicable is a statistic called the 'tracking signal.' R. G.
Brown (1,2) first defined this as,

Cumulative error

Tracking signal =

Mean absolute error

He used the mean absolute error as a measure of scatter around
the mean., The error tracking signal is, thus, a normalized mea-
sure of whether the sum of forecast errors is reasonably close to
zero or not., The rationale of this approach is that if the fore-
cast is good, the cumulative (and also the mean error) will be
approximately zero, As discussed before, if the actual process
changes, the cumulative error would tend to drift away from this

zero level,
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This, in turn, makes the tracking signal to drift away considerably.
By setting the control limits, the tracking signal can be checked
for its variability. If the limits were exceeded for more than

two consecutive forecasts, re-evaluation of the forecasting model

may be necessary.

However, D. W. Trigg (5), of Kodak, Ltd., pointed out two serious
faults with Brown's definition of this statistic even though he

agreed with the approach, To quote Trigg,

Mewew two serious difficulties arise:

108 Once the tracking signal has gone out of
control, it will not necessarily return
within Timits even though the forecasting
system itself comes back in control,
Consequently, interventicon is necessary to
set the cumulative error back to zero if
future false alarms are to be avoided.
Such interventions can be tedious and ex-
pensive when several hundred items are

involved.

2. Ironically, if the system starts to give
exceptionally accurate forecasts, the track-
ing signal may go out of limits, |f per-~

fect forecasts begin to occur, the mean
absolute error will tend to zero while the
sum of errors will remain unaltered; this
leads to the tracking signal tending to
infinity. ' (5).

As remedial measures he suggested that the tracking signal be
defined as,

Tracking signal = Smoothed error | |
Smoothed mean abs, deviation




19

Both the above drawbacks were thus eliminated, Hereafter, in this

research, this modified definition of tracking signal

is used,
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CHAPTER 3

THE TRACKING SIGNAL

As stated in the previous chapter, in most of the cases, but not
always, the distribution of the forecast errors is normal. One
desirable feature, though, is that the mean of the error distribu~-
tion should be zero. The concept of the tracking signal statistic
can be used to determine whether it is so or not. Also, the signif-
icance of the computed value of the high order coefficients in a
polynomial model can be checked. The distribution of this statistic,
thus, assumes a significant measure in determining an allowance

for forecast errors in actual forecasting problems, From the
definition, it is quite obvious that this statistic should be cen-
tered about zero if the error distribution has a zero mean. In

what follows Trigg's (5) definition of the tracking signal is used,

SMOOTHED ERROR:

The errors occuring in the forecasting system are assumed to be
serially uncorrelated (purely random noise) and normally distrib-

uted with a zero mean and a constant variance, O , |If of is the

smoothing statistic of the forecasting system, such that

ﬁ =1 - and (xn S Raal v Xolg s ee ee Xy Xg ) are the

errors respectively dafing backwards, then the smoothed error is,
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That is, smoothed error = o (latest error) % [3 (previous
smoothed error)

2
Since, x;——N (0, 0),  ax;~—n (0, 2070 ¥

n ;
- 2 2
And similarly, Pnf—-vN [0, ( E (04 ﬁ ' ) O_Z:I
I = O

i.e. the smoothed error P_ is distributed normally with zero

mean and variance of,
n .
2 2 21 2
o;,n-(Eo«.p)o‘.
1 = 0 .

Considering the series,

«?t uPp?t o{zﬂhi_ R o(zﬁzn,

(nt 1 terms )

)
p
[o}]
<
]
Q
N
e
[p%]
1}

dzi ﬂzi
i = o

5 1 ﬁ;Zn + 2
1 -'B2

(1

=

1

< st N (O,U'z) denotes that X has Normal distribution.
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For a stabilized system, i.e., for a practically infinite data

series, the above series approaches the limit of

2 of .
- e <
<) 3 — , since 0(,ﬁ I,

Thus, for a stabilized forecast system,

Y [0, 2 G'Z:I

where 2 is a factor as defined above, and the probability

density function for P < p can be written as,

2
p

| ) I
fi(p) = T ET xp (= 35T T ) ... (1)

SMOOTHED MEAN ABSOLUTE DEVIATION:

This statistic plays an important role in computing the average
allowance for error in the used forecasting system, The reasons
being that it is easier to compute and also that its expectation

is propértional to the standard deviation of the system errors

to a first degree of approximation. In most applfcations, the
smoothed mean absolute deviation changes slowly with time, and it
also has a statistical distribution; but at any particular instance
the value may be regarded as‘constant for all practical purposes,
Normal ity of errors is assumed hére, and this may be an essential

factor to be considered,
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]

Since SMAD = o {latest absolute error) + (1-®) previous SMAD,
cx[xnl t p an}

a‘xn‘ +o<(5|xn_]| . +o<!3“.\xo| .

Qn

Since  x; ——N (0, 0'2) " ’xil’“‘—’Nf {05 0'2)
where Ng¢ represents the folded normal distribution (4)., Thus
in terms of 0'2, the pfobability density function of lxil may be

written as,

2
Xi i
2 1 -
'Fz( IXi| ) = s . E‘ L exp ( 20-»2 ) § -00<Xi<00

2
I and 017 are the mean and variance values of the random
variable w = ‘x l , where x ~—N ( 0, 0"2), it can be shown that,

(&)

.0 = 0,7979 O

e

iy o=
(12)

and 0—-12 - __z_T_:;_T_z____ 0"2 = 0.363140_2

and the probability density function of w, in terms of (/| and

U]Z , can be expressed as, (see Appendix B for the proof)

; 3 2 2

fw) T M
2 - g 2 2 EXP(“ 2 2 2

2 ([ + 0y ) B o)

} »

0 sw< 20 cees (13)
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At this stage if we define a constant V such that ,

R

M

the above equation can be written as,

2
T
f2(w) = exp (- i

2 My (1 +v?)? B (14 vh?

This constant V in general represents the dispersion of the
given or associated distribution in relation to the standard

normal distribution.

2,2
If K2 = 2( 1 +v9) , we get
m

1 2

fz(w) =
K 2k §

) , Osw<oo ... (15)

The moment generating function of this distribution is,

a0
B0 = £ (e 2 fo 5
o
2 ,,2 .2
K t
T
= | exp (—-/-le—) ... (16)
| K pp ¢
Expanding the term, exp ( 5 ) , with a Taylor's series

the moments of the distribution can be obtained.
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Returning back to the statistic, smoothed mean absolute dev.,
(SMAD), the above function can be modified to represent the prob-
ability density function for Q < q and large value of n,

If v = aw, the moment generating function of y will be,

E (etY)

P, (t)

E (et - %(at) = ‘é_g_ exp (— Kzazt.l?tz

from equation (16). Thus the mean of the distribution of the
variable y = aw is ap; where p, is the corresponding mean of

w alone. And the moment generating function for Gy will be,

Za ()

E (eq”t)

E (exp (xw, tfw _; t ... ...+7c>f]'5nwo))

= Ef(e . e

and since Wo s Wi s onne oo0 W ooare all serially uncorrelated,

that is, independent and identically distributed,

n
Ly (0) Aty g (e %P eIt L E(e “P o)

E (e

n

Hence, C/’qn(t) @ (et). %( obAE) cus suv mue %( o([:)nt)

(g)nﬂ. exp zl{(uﬁ)z 2 2

V7T 1 n
(_z_k_)n‘i"] .exp 'é' K2t2a2 ( z ﬂZI
i=o
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Thus the series Q, < q_ is identically distributed with a mean,

by @ /(%0“2 21y "

For a stabilized system,

ba = 7ozt = Pp

The statistical distribution function of SMAD for Q < q can be,
thus, written as

2
1 q
exp (-—2—?—2—) , for 0 <q < oo,

2 R

fa(q)

[ 1]

And since K2 =7 and ”_ul = 02 (from eq (2)) above eqt
2

reduces to,

fo(q) = '/g "-Jlﬁ" exp ( = —'—2——5) vee {17)

TRACKING SIGNAL:

Let us denote the tracking signal by R, and its general value by r,
Then we have R = P / Q.

It could be noted that we need to have only previous sﬁoothed
statistics and the latest error in order to be able to compute the
tracking signal., To find the statistical distribution of R r,

the following procedure is adopted:
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Let us make a transformation from the statistics (p,q) to the

statistics (r,s) defined by,
r= B and s = ;
. q

This allows us to express the joint probability function of (r,s)
in terms of that of (p,q). Integration of this joint distribution
function with respect to s over its entire domain will, then,

yield the statistical distribution function of R < r.

Thus, if T(p,q) represents the transformation giving (r,s), we

have,
(r,s) = T (p,q)
where T is a vector transformation Fuﬁction having two components,
r=T, (pba) = p/ q and s =T, (P,a) = q.

If g(r,s) represents the joint density function of (r,s) and

f(p,q) that of (p,q), then we have,

g (r,s) = __1 f(p,q)
[V(p,q)l
where the Jacobian J(p,q) is given by,
a7y 3'T2
2p dp
J (Psq) =
ZAR 2Ty
2q 2q
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Trigg (5) assumed that the smoothed error and the smoothed mean
absolute deviation are independent and uncorrelated. With the
same assumption, the joint statistical distribution for (p,q) can
be written from equations (11) and (17) as,

1
f(p,q) = _-_'_-—2 L oXp (1 (% + q2)).
ol o 2% 02

and the Jacobian is,

1
- 0
J (p,q) = = % =% '
s B ]
q

which yields, g (r,s) = s. f(p,q) .
With a transformation multiplier A (incorporated to account for
any possible change in the mapping domain, we get,

At exp (- —

2 2
— (rc + 1) s%) ...(18)
ol g2 20?2

g(r,s) =

To obtain the statistical distribution of R <« r from g(r,s),
equation (18) will be integrated over the entire domain of s,

Hence, o

A //Q |
g(r) = 5 5 '-/ S8ip o ~ -

(r2 + 1)s?) ds

20> 02
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The probability density function for R < r, from equation (19),
has a Cauchy form of distribution, From the definition of the
tracking signal it should be noted that the range of variation of
r will be the closed interval (-1,1). Thus, the multiplier A can
be evaluated for this mapping space of the tracking signal, R,

The following points to be noted:

1. The cumulative probability at any point inside
the domain should be less than unity,

and 2., The probability over the entire sample space is one,

These conditions respectively give,

r

G(r) = f g(r) dr < 1

1

and / g(r) dr = 1 .

From the second equation of the above,

' 1
|:arc:tan r]
=1

STp
i
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Hence, g(r) = 1 y, = PO <<r < ool (19)

A 1
T4 r?

The probability density function for R < r, from equation (19),
has a Cauchy form of distribution, From the definition of the
tracking signal it should be noted that the range of variation of
r will be the closed interval (-1,1). Thus, the multiplier A can
be evaluated for this mapping space of the tracking signal, R.

The following points to be noted:

1. The cumulative probability at any point inside
the domain should be less than unity,

and 2. The probability over the entire sample space is one.

These conditions respectively give,

r

G(r) = -/ g(r) dr < 1

=]

and d/[ g(r) dr = 1,

=1

From the second equation of the above,

' 1
[érctan r:}
=]

N>
I
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and hence, A

Thus, the statistical distribution function of the tracking signal

is given by the modified Cauchy distribution function as,

g(r) = N . ,lrlg_l ven. (20

2
m I+ r2
The statistics of the distribution can readily be found:

() Mean = E (r) = J/4 r.g(r) dr = 0
-]
1
and (b) Variance = E (rz) = ,/- r2 g(r) dr = 0,273
-1

[t can be concluded from this that if the errors are distributed
normally around zero mean with a fixed variance, the tracking sig-
nal is also distributed symmetrically about zero. However, the
distribution is independent of the forecasting system, and has a
fixed variance, |n other words, the)tracking represents the
beh;vior of the errors, irrespective of the system they occur in,
and in doing so, scales down the error distribution to a small

range.

PHYSICAL SIGNIFICANCE OF THE RESULT:

The above result presents numerous advantages for adoption of
tracking signal as a measure of allowance of errors in the fore-

casting system,
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First, the irregularities in the errors are reduced and smoothed
to a smaller range of variation without distorting the basiﬁ
nature of their behavior, Thus, the close confidence limits will
serve to judge any irratic behavior or intensity of the system

errors,

Second, once the error distribution is decided from the available
data, there will not be any further necessity to store and accumu-
late the successive changes in the data, since, once the relative
measure is fixed between the original error magnitudes and the
tracking signal magnitudes, the same measure will remain effective
in judging the accuracy of the forecasting system. This advantage
may not be quite apparent as long as the occurance of the errors
remains random and within the decided limits, However, whenever
any assignable cause exists, the statistic immediately undergoes
the corresponding variation through the comparative measures with-
out actually having to re-evaluate the change iﬁ the distribution

of the errors,

And third, it is possible to compare the different prediction sys-
tems on the same common level and domain of their precision, This
facilitates the comparative approach of the accuracy of different

systems and the steps towards the betterment,

At this stage, one fact needs to be mentioned, |In computing the

smoothed statistics for the tracking signal it is assumed that the
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same value of the smoothing constant is used in both the cases,
This is not absolutely necessary, but it simplifies the matter a
great deal, However, it is quite desirable that ot used for the
smoothed error should be equal to or larger than that used fbr the
smoothed mean absolute deviation, as it is possible otherwise for
the tracking signal to exceed the set control limits for very

accurate forecasts, which is quite undesirable,
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CHAPTER 4

EXPER IMENTAL RESULTS AND CONCLUSIONS

Testing the suitability of the developed theory in practice assumes

an important aspect of the research. Accordingly, a computer simu-

lation was programmed to probe the validity of the applications

of the research,

The preceding theory is based on the following two major assump-

tions:
1. All errors are independent and normally distributed
with a zero mean,
and 2, The smoothed error and the smoothed mean absolute

deviation statistics are uncorrelated,
Accordingly, the experiment consisted of three phases. The

computer subroutines and programs are in Appendix C.

PHASE 1:

The forecast system was simulated assuming independent and nor-
mally distributed observations having constant mean and variance
values. |In other words a constant process and normality of the
super imposed process noise were assumed. Random normal deviates

were generated as observations,
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Forecasts were generated over a unit lead time using single expo-
nential smoothing. The process was simulated over 2000 observa-
tions (steady state) for different values of o ., Errors were the
difference between the observations and their prior forecasts.

The tracking signal statistic was computed for each forecast. An
error autocorrelogram and a tracking signal frequency histogram

were obtained in each case, Following results were apparent:

1. Forecast errors were serially uncorrelated (i.e., indepen-
dent and identically distributed). Fig. & represents a

sample autocorrelogram for this phase of the experiment,

2, Frequency histograms revealed that the tracking signal
has a symmetrical distribution with a peaked concentration
about its mean for small values of o, For higher values
of 0¢, the peak flattens and the distribution spreads
over the variational range of the tracking signal., Also,
a practically symmetrical bimodality oflthe distribution
is exhibited. For very high value of o ( o« = 0.90) , the

distribution becomes U-shaped,

Fig. 5,6 illustrate the results of this phase of the experiment
in comparison with the theoretical distribution., The results were

not par expectation,
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PHASE 11:

In this phase, the first assumption was incorporated, Instead of
generating the normally distributed observations, normally distrib-
uted errors were generated, The process was again simulated over
2000 values for different values of & . Tracking signal frequency
histogram was obtained for each value of & . Following results

were apparent:

V. Error autocorrelogram showed that the errors were serially

uncorrelated as desired.

2. Frequency histograms revealed that the tracking signal has
a peaked symmetrical distribution about its mean for small
values of o, As o takes higher values, the distribu-
tion tends to flatten, its spread widens and a tendency

towards bimodality becomes quite apparent,

Fig. 7, 8 illustrate the results of this phase of the experiment

in comparison with the theoretical distribution, Results not as

expected,

PHASE 111:

In this phase, both the theoretical assumptions were incorporated,
Two different seeds were provided to the uniform random number
generator, and two distinct and independent series of random nor-

mal deviates were generated,
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Both these series of numbers had a zero mean and the same variance

value,

Each series was simulated to 2000 numbers and was used for

obtaining independent smoothed error and smoothed mean absolute

deviation statistics respectively. Serial autocorrelogram for

each series and the tracking signal frequency histogram were ob-

tained for different values of o« . Following are the conclusions

of this phase of the experiment,

I,

Autocorrelogram of either series showed that the

generated numbers were serially uncorrelated as desired,

Two series being independent and distinct, the smoothed

"error statistic and the smoothed mean absolute deviation

statistic were uncorrelated.

Frequency histograms of the tracking signal had peak values
about the mean of the distribution for small values of o,
For increased values of « , the frequency histograms
showed the flattening and wide-spreading tendency of the
distribution, Also, the distribution became bimodal,

For higher value of ©¢, the tracking signal statistic
exceeded the theoretical limits of (~1,1)., This is be-
cause the two smooth statistics were not the outcome of

the same series of random numbers, and hence the above

limits will not be valid.

Fig. 9, 10 present the results of this phase of the experiment in

comparison with the theoretical distribution.
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The results were not par expectation.

This gap between the theoretical results and the simulation results

can be explained as follows:

For simplicity of the procedure and ease of derivation it is as~-
sumed that the successive error values are uncorrelated. However,
they are correlated in actual practice, Due to the nature of the
adaptive forecasting techniques all the forecasts are correlated.
Since the forecast errors are the interactions between the observa-
tions and the delayed forecasts, the errors also are serially cor-
related. Hence, the results of the first phase of the simulation
did not agree with the theoretically expected values. Also, the
theory assumes the two smoothed statistics to be independent

whereas the simulation experiment did not account for this.

The second phase of the experiment dealt with the assumed indepen-
dence of the forecast errors. But the smoothed statistics were vet

correlated, The results obtained were, hence, not as expected,

The third phase of the experiment tried to deal with both the
theoretical assumptions. However, the two smoothed statistics
generated did not result from the same error values as in the theory,
Hence, this phase failed to obtain the expected results,

Uniform Random Number Generator was tested for uniformity and random-

ness. The results of the test were satisfactory. (See Appendix D.)
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Cross-correlation between the smoothed error and the smoothed mean
absolute deviation was also checked for various values of in
phases | and 1l. Following table shows the computer results in

this respect.

Table: Cross=correlation coefficients between the
Smoothed error and the smoothed mean absolute

deviation.
Correlation Coefficients
Value of Phase | Phase ||
0.05 0.0811 0.2490
0.10 0.1334 0.2523
0.20 0.1307 0.2530
0.25 01332 0,2589
0.40 0.0930 0.2498
0.60 -0.,0466 0.2560

There exists practically a constant correlation between the two
smoothed statistics p and q when the normal errors were

generated,
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CONCLUS IONS:

The results of this experiment are similar to the conclusions
Trigg (5) arrived at.
l. The distribution of the Tracking Signal depends
ﬁpon the smoothing parameter of ,
2. For higher values of o, the distribution tends to

be bimodal.

However, Trigg's conclusions resulted from the simulation outputs
although he decided the confidence limits for the Tracking Signal
theoretically, Whereas the smoothed mean absolute deviation was
theoretically either approximated as a constant, or assumed to be
independent of the smoothed error, the experiment simulated the
practical situation wherein these two smoothed statistics are highly
correlated, Hence, the confidence limits decided by Trigg may not

be valid in their practical applicability,

The present research also brough out the same fact. Further
theoretical work in this respect will be applicable if it incorpo-

rates the correlation between the smoothed statistics,
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APPEND IX A

NORMAL ITY OF FORECAST ERRORS

The following proof is due to Ronald Howard.
( "Smoothing, forecasting and prediction of the discrete time

series," R, G. Brown. (1). )

Consider a linear, discrete, time invariant forecasting system,
Any such system can be represented by an impulse response function
h(n). The input to the system is a time series of observations
u(t), the output will be various forecasts ﬁ(t). Let us denote
the output by v(t), which can be represented by the convolution

equation,

oo

v(t) = E h(n).u(t=-n) .

n=20o

The output and the corresponding input are statistically related.
An infinite set of joint probability density functions is re=
quired to describe the statistics involved; and even if the inputs
were statistically independent, the output may exhibit a high

order of serial correlations.
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Let f;(u) be the density function of the input amplitude u(t) and
fz(v) be the first order density function of the output v(t). The
characteristic function of the input ﬂu(w) is the Fourier transform

of the density function,
(= <]

B, W) = E [e"WU) = V//;'w” f(u) du

—o0

The first order characteristic function of the output is similarly

given by,
oo

ﬂv(w) = E (e™V) = " fao(v) dv

—00
The output characteristic function can be written as,

oo
g = €| T exp -(w.h(n).u(t-n)ﬂ
nso

Since the successive values of u(t) are independent, the expected
value of the product may be written as the product of the expected

values, Therefore,

o0

By (w) = nﬂ By (w.h(n))

= 0

The first order characteristic function of the output can be ob-
tained by multiplying together the characteristic functions of the
input with w replaced by w times the successive values of the

impulse response,



51

The kth moment of v, viz, 3# , can be expressed in terms of the

der ivatives of the characteristic function of v at the origin by,

k
oL 2w
- BWk W = O
The mean of the output function is
v ® u EE h(n)
n=o

When the input values are independent, the average value of the
output is the average value of the input multiplied by the sum of

the values of the impulse response, The variance is, -

c? . 2 =2
vioF e =)
n = o

Thus, under the same conditions of independent input values, the
variance of the output is proportional to the input variance, the
constant of proportionality being the sum of impulse response

squares,

Now, let us suppose that u(t) is normally distributed with mean

m, and variance of 0‘2 . Then
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sz 2 e =2
and @, (w) = exp - [: 5 :Zgg h%(n) + w.m, ::ég h(h{]
n =z o n=-zo

Therefore, by comparison of the characteristic functions, it is

apparent that the output v(t) is normally distributed with mean,

— (2]

Voimy =

n =z o

and variance of 0;2 - 0L2':§§E h2 (n)
n) .

Since the output v(t) has been shown to be the sum of independent
samples from fl(u) weighted by the values of the impulse response,
one should expect from the central limit theorem that, for a very
large class of input distributions f,(u), the output v(t) would

be approximately normally distributed,

The mean of the noise is zero and the forecasting processes are
linear, so that the superposition theorem holds. Hence, the mean
of the forecasts will be the expected value of the 'true' process,
For simplicity if a case be considered when the input signal is |
the noise, the mean will be zero and the variance will be the
variance of the noise, and no serial correlations, The variance
of the forecasts will be proportional to the noise variance, the

constant of proportionality being the sum of squares of the impulse
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responses, The error variance will be the sum of the noise variance
and the forecast variance, since, for the moment, one may reason-

ably stipulate that the noise samples have no serial correlations,
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APPEND X B

FOLDED NORMAL DISTRIBUT ION

The following derivation is due to the author,
For other details of the distribution, refer to "Folded Normal

Distribution' by R. C. Elandt, (&)

If a random variable X is distributed normally with zero mean

2

and variance of 00 ©, a variable W defined by W

[X |, has a
folded normal distribution. In fact, any normal variable gives
rise to a folded normal variable if its domain be truncated. To
explain mathematically, if x-ﬁ;—’N( F’ 0'2) , =a ég}cs;i:; another
random vari%ble defined as W = | X-k! has a folded normal distri-
bution, the original distribution being folded along x = k,
~a=ks< b, The case presently under consideration Is a special

case called 'Half Normal Distribution,"

f(x)

‘t////////,/Haif Normal

Normal




A general equation to this type of distribution curve can be.

written as,

f(w) = C. exp(-D.w?)

where W =< w. € and D are constants in terms of distribution

statistics, To decide the exact form of the distribution, C and

D need be determined.

If Fi is the mean of the half normal distribution and 0}2 the

variance,
g
by = ‘u}f;t exp (-Dwz) dw
R oo
1 2
= C|=- — exp (-Dw):]
l: 2D 0
= b
2 . (A)
)
Also, 0]2 = h}/;zc exp (-Dw?) dw - F?
)
2 2 2 2 2
Thus, F1 + GT = E (w Y = w°C exp {(=Dw") dw ... (B)

[¢]

To solve the above equation, consider the following integral,

o0

| = exp (-sz) dx .

55



Since this is independent of the integration variable, we can

00 00
12 & //exp (-D(x2 t yz)) dx dy
o o

Changing the rectangular coordinates to the polar coordinates

write

X = r cos 8
0Lr< oo, 08 s;-%?

= r s5in ©

L
1

And the double integration can be written as,

-
z W
I2 i//i>/rexp (-Drz) r dr d6

5 a
s A
B Lp
o0
Hence, the integral, | = Uj/;xp (-sz) dx = f%

o
Now differentiating both sides of the equation (C) above with

respect to D we get,

[~e]
d_ exp (-0x2) dx = 4 |/ |
dp dD Lp
o ag
2 2 | 7T
(o] - = - - ——— —
r \,//; exp (-Dx*%) dx 7a V =

o

2 C ‘}ﬂ
And, E (x°) = T35l 5 + which yields |,

(c)
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(D)

Solving equations (A) and (D) above for C and D we get,

3

C = ZTPI
) 2 (r? t 0]2)2

2

D = nF]
Y (Ff t 0722

Thus, the probability density function of w

. R 2 . .
its own statistics rl and U] , is given as

3
T
flw) = i exp

2 (F? t 012)2

Ix I, in terms of

57
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APPENDIX C

COMPUTER PROGRAMS AND SUBROUTINES

Main Program : Phase |
Main Program : Phase 1|
Main Program : Phase 111

Subroutine PARZN

Parzen routine to compute autocorrelation coefficients

Subroutine SPLOT

Autocorrelogram plot routine

Subroutine RANDU

Uniform random number generator

Subroutine RTNORM

Random Normal variate generator

Subroutine RANORD

Random Normal variate generator

Program for testing the Uniform random number generator

Main and subroutine INT

Program for crosscorrelation coefficient between p and q
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FORTRAN IV G LEVEL 18 MATIN DATE = 70105

0C01 DIMENSION FREQ(30),X(2000) 4XHAT(2000) ,ERR(2000)
0002 DIMENSION SSE(2C00),SMAD(2CCO),TRSIG{2000)
0C03 READ 9,1V

0C04 9 FORMAT(I9)

0C05 READ 10, MEAN,STDDEV,NCOUNT

CC06 10 FORMAT(I5,F7.1,18)

0C07 DO 202 M = 146

cCcos READ 11,ALPHA

0C09 11 FORMAT (F4.,2)

0C10 BETA = 1. = ALPHA

0c11 SSE(1) = O.

0C12 SMAD(1) = 0.7979%STDDEV

0C13 TRSIG(1) = O.

0Cl4 XHAT(1) = MEAN

0C15 Sw = 0.

0Cl6 WRITE (3,1B)}ALPHA,STDDEV

0C17 18 FORMAT (1Hls' ALPHA = ' F4.2,10X ' STD DEV = 'Fé.1)
ocls DD 14 J = 1,25

0019 14 FREQ(J) = 0.

0C20 DO 201 1 = 1,NCOUNT

0c21 X(1) = RTNORM{STDDEV,MEAN,IY,SW)

0022 ERR(I) = X{I) — XHAT(I)

0C23 Z = ABS(ERR(I))

0C24 SSE(I+1) = ALPHA%ERR(I) + BETA®SSE(I)
0c2s SMAD (I+1) = ALPHA%Z + BETA%SMAD(I)
0C26 TRSIG(I+1) = SSE(I+1)/SMAD(I+1)

0c27 XHAT{1+41) = ALPHA®X(1) + BETA%XHAT(I)
0c28 IM = 11 + 10%TRSIG(I+1)

0C29 201 FREQUIM) = FREQIIM) + 1.

0C30 G0 15 J = 1,21

0C31 16 FORMAT (' FREQUENCY(' I2,' ) = ' F6.0)
0C32 15 WRITE (3,16) J,FREQ(J)

0033 202 CALL PARZINL(ERR,NCOUNT,NCOUNT,10G)
0C34 STOP

0C35 END

59



FORTRAN IV G

cCcol
ccoz2
CCo3
CCo4
0C05
0CC6
ocCo7
ocos
€cos9
cC10
0C11
0C12
0c13
0Cl4
0C15
0Cleé
-0CL7
cC18
0Cl9
¢Cz20
0c21
0cz2z2
0C23
0C24
0C25
cc26
ccz21
0czs
0029
0C30
0C31
0C32

LEVEL

9

10

11

18

14

201

16
15
202

18 MAIN DATE = 70104 06,

DIMENSION FREQ(30),ERR(2C00) i
CIMENSION SSE(2C00),SMAD(2CC0),TRSIG(2000Q)
READ 9,1Y,12

FORMAT(219)

READ 10, MEAN,STDDEV,NCOUNT
FORMAT{I54F7.1,18)

DO 202 M = 1,46

READ 11,ALPHA

FORMAT (F4.2)

BETA = 1. = ALPHA

SSE(1) = 0.

SMAD(1) = 0.7979%STODEV

TRSIG(1) = 0.

SW = 0.

WRITE (3,18)ALPHA,STDDEV

FORMAT (1H1," ALPHA = ' F4.2,10X ' STD DEV = 'Fb6.1)
DD 14 J = 1,25

FREQ{J) = 0.
DO 201 I = 1,NCOUNT
ERR(I) = RTNORM(STUDEVyMEAN, IY,SW)

Z = ABS(ERR{I}}

SSE(I+1)} = ALPHAXERR(I) + BETA*SSEI(I)
SMAD (I+1) = ALPHA*Z + BETA*SMADI(I) ’
TRSIG{I+1) = SSE(I+1)/SMAD(I+1)

IM = 11 + 10*TRSIG(I+1)

FREQ(IM) FREQ(IM) + 1.

Co 15 J 1,21

FORMAT (' FREQUENCYI(*® I2,' ) = ' F6.0)
WRITE (3,16) JyFREQ(J)

CALL PARZN1 [ERRyNCOUNT yNCOUNT,100)
sSTap -

END

noun
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FORTRAN IV G LEVEL

cCol
0Co2
cco3
0CO4
0CO05
0Coé
0co7
0cos8
0Co9
0C10
cCl11
0Cl12
0C13
CCl4
0C15
0Clé6
CCl7
0cls
0C19
0cz20
0C21
0Cc22
0cz23
0C24
0Cc25
0C26
cc27
0C28
0c29
0C30
0031
0032
0C33
0C34

10

11

18

14

201

16
15

202

18 MAIN DATE

DIMENSION FREQ{30),ERR(2000),GAP(2CC0)
DIMENSION SSE(2000),SMAD(2000),TRSIG(2000)
READ 9,1Y,I7¢

FORMATI(219)

READ 10, MEAN,STDDEV.NCOUNT
FORMAT{IS5,F7.1,18)

DO 202 M = 1,6

READ 11, ALPHA

FORMAT (F4.,2)

BETA = 1. - ALPHA

-SSE(1) = 0.

SMAD{1l} = 0.7979*%STDDEV

TRSIG{1) = O.

SW = 0.

WRITE (3,18)ALPHA,STDDEVY

FORMAT (lHl,® ALPHA = ' F4.2,10X ' STD DEV
DO 14 J = 1,425

FREQtJ) = 0.

DO 201 1 = 14NCOUNT

GAP(I) RANORD{STDDEV,MEAN,1Z,5W)
ERR(I) RTNORM{STDDEV MEAN,1Y)

Z = ABS(ERRI(IN)

SSE(I+1) = ALPHA*GAP(I)+BETA*SSE(I)
SMAD (I+1) = ALPHA*Z + BETA*SMADI(I)
TRSIG(I+1) = SSE{I+1)/SMAD(I+1)

IM = 11 + 10*TRSIG(I+1)

FREQ{IM) FREQ(IM) + 1.

po 15 J 1,21

FORMAT (' FREQUENCY(Y 12,%" ) = ' F6.0)
WRITE (3,16) J,FREQ(J)

CALL PARZN1 (GAP,NCUOUNT,NCOUNT,200)
CALL PARZN1 (ERR,NCOUNT,NCOUNT,2C0)
sTOP

END

Won

61

70104

'F6.1)

06y



FORTRAN IV G LEVEL

cCol
¢Co2
0003
CCO4
0CO05
0006
cco7
ccos
0Co9
0010
0C11
QcClz2
0C13
CCl4
CC15
0Cle6
0017
cC1is
0019
0020
0cC21
0cz22
0c23
0C24
0C25

W N -

18 PARZIN1

SUBROUTINE PARZINL (XyNeNQeM)
FORMAT(214)
FORMAT(4XsF5.044X3F5.0)
FORMAT(F12.5,12X4F12.5)
DIMENSION X(1)

REAL RLI400)/7400%0.0/
DATA D1,D3/0.0,0.0/
MM=0

DO 5 I=14N
D1=D1+X(])#*%2

CONT INUE

FM=M+1

DO 7 KK=1,MM

KK1=KK-1

NM=N+KK~1

NK=N~-KK+1

SUM1=0.0

D0 6 JL=1,4NK
SUM1=SUML+X{JL)¥X{JL+KK1)
CONT INUE

R1L(KK)=SUM1/D1

CONTINUE

CALL SPLDT (M4R1,1)
RETURN

END
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FORTRAN IV G LEVEL

0co1

0Co2
0Co3

0CO4
CCOo5
0C06
QC07
ccos
0Co9
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6C11
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Cc22
cc23
0C24
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102

99
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106
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18 MAIN DATE = 70104 0

SUBROUTINE SPLOT(NgX,NC)

THIS ROUTINE IS USEC TO MODIFY THE RESULTS FROM THE PARZE
SO THAT THEY CAN BE GRAPHED BY SUBROUTINE PLOT.

DIMENSION X (2000),0UT{501):YPR{50),ANG(10),PLT(4000),Y{200G0
FORMAT(1H ,* AUTOCORRELATION PLOT ', (/8F1l4.5))

INITIALIZE VALUES
P1=3.1415927

K=0

M=2

IF (ND.NE. 3) GO TO 10
DO 106 I=1,N
IF(X(1))100,100,99
X{I1)=ALOG(X (1))

GO TO 106

X(1)==10.0

CONTINUE

DO B I=1,N

PLT(I)=I%PI/N
PLT(I+N)=X(1)

CONT INUE

DO 11 I=1,N

PLTII)=1

PLT(I+N)=X(1)

CONT INUE

WRITE(3,102) (X{I)sI=1,N)
RETURN

END -
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0Co1 FUNCTION RANDU(TY)

0002 IY = IY*¥97119

cCo3 IF(IY.LT.0) IY = IY + 2147483647 + 1
CCo4 RANDU = IY * .4656613E~9

0C05 RETURN

CCosé END

6l
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FORTRAN IV G LEVEL

CCo1l
0coz2
0CO3 1
CCo4
0cCo5
0C06
cCco7
occos 3
0Co9
0C10 2
0Cl1
cC12
0013 4
0Cl4

18
FUNCTION
IF (SW)
U = SQR
U2 = 6.4
X1 = U
X2 = U=
SW = 1.
RTNDRM =
RETURN
X1l = X2
GO 7O 3
RETURN
END

RTNORM

ANDULIB)

X1#STDDEV + MEAN

65

RANDU(IB)))

DATE

STODEVMEAN,IB,SHW)

QVVEI RN

4

70104

Q¢



FORTRAN [V G LEVEL 18 RANORD DATE = 70104 06,

0col1 FUNCT ION _RANBRD (STDDEV yMEAN TAySW)

0C02 IF {(SW)71 412 v
0003 1 V = SQRT{HALOGKRANDULIAY)) v ey -
CCO4 W = 642830 NDULIA)

0C05 Y1 = v

0C06 Y2 = v %

0co7 SW = L.

ccos 3 RANORD = Y1#STDDEV + MEAN

0C09 RETURN

0C10 2 Y1 = Y2

0Cl1 SW = 0.

0C12 GO TO 3

0C13 4 RETURN

0Cl4 END
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0col OIMENSION ICEL(100),LCEL(20,20),KCEL(50)IEXT(50)
0Qo2 READ(1,2)NNOs ICLSyNCELKCLSsIXsNEXP,IRNJ
0Co3 2 FORMATI{TIS)

CCOo4 CHI1=0.0

0005 CHIZ2=0.0

0C06 CALL INT(ICEL,ICLS)

0Co7 CALL INT(KCEL,KCLS)

0Cos CALL INT{IEXT,KCLS)

0Co9 DO 1 K=1,NCEL

0C10 DO 1 N=1,NCEL

0011 LCEL(K,N)=0

0C12 1 CONTINUE

0C13 RJ=FLOAT(KCLS)/FLOAT{IRNJ)

0Cl4 DO 15 IN=1,NNO

0C15 R=RANDU(IX)

0Cl16 JK=R*[CLS+1

0CL7 ICEL(JK)=ICEL(JK)+1

0Cis8 IF{IN-1)20,20,30

ocli9 20 K=R*NCEL+1

0c20 30 J=R*NCEL+1

0cz21 LCEL(KyJ)=LCEL(KyJ)+1

0022 15 K=J

0023 TRK=FLOAT (NNO)}/FLOAT(ICLS)

0C24 p03J=1,1ICLS

oczs CHI1=CHI1+(ICEL{J)-TRK)*#*2

0cz26 3 CONTINUE

0ca27 CHI1=CHI1/TRK

oczs TRIK=FLOAT(NNO-1)/FLOAT (NCEL*%*2)

0C29 DD 5 M=1,NCEL

0030 DO 5 N=14NCEL

0C31 5 CHI2 = CHIZ + (LCEL(MyN) = TRIK)*%*2

0C32 CHIZ=CHIZ2/TRIK

0033 WRITE(3,8)

0034 8 FORMAT(* UNIFORM DISTRIBUTION IN (0s1)'9//)
0C35 DO6M=1,+5

0C36 MM=20%(M-1)+1

oc37 . ML=MM+19

0Cc3s8 6 WRITE(3,9) (ICEL(J)yJ=MM,ML)

0C39 9 FORMAT(2016)

0040 WRITE(3,10)CHIL

0C41 10 FORMAT('-COMPUTED CHI-SQ VALUE =7',F10.3)
0042 WRITE(3,11)

0043 11 FORMAT('12-D CHI-SQ TEST FOR SERIAL CORRELATION',//)
0044 DO7I=1,NCEL

0C45 WRITE(3,9)(LCEL(I,J)+Jd=1,NCEL)

0046 T CONTINUE

0Ca7 WRITE(3+,10)CHIZ2

0C4a8 STOP

0C49 END
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0Co1
0co2
0C03
0C04
0CO05 1
0Co6
0co7

18 INT

SUBROUTINE INT(K,L)
DIMENSION K(1)
DO1I=1,L

K(I)=0

CONT INUE

RETURN

END
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APPENDIX D

CHI - SQUARE TEST FOR RANDOM NUMBER

GENERATOR,

UNIFORMITY TEST :

Since the generated random numbers are uniformly distributed, each
number in the generated random series should have an equal proba-
bility of occurence. The theoretical frequency histogram will be-
a rectangle, The actual histogram is compared with the theoretical
and Chi-square statistic is computed for the goodness of fit. The
whole uniform interval is divided in n subintervals and the Chi-

square statistic is,

){2 n 9
- f; (foi- fei)
izl
fei
where, foi = observed frequency for the jth subinterval,
fo; = expected (theoretical) frequency for the ith

subinterval,

If the chi-square value thus obtained is less than the critical
Chi-square value obtained from the tables, the uniformity of the

generated random numbers is satisfactory,
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The numbers generated by the subroutine (RANDU) were divided into
100 equal subintervals, The uniformity was tested for 9% confi-

dence, Thus, for this test the degrees of freedom = 99, and the

critical Chi~-square value = 123,230, The computed Chi-square

goodness~of~-fit statistic = 72.800. Hence, the uniformity of the
numbers generated by the Random Number Generator routine was

satisfactory.

RANDOMNESS TEST :

In essece, this test checks for uniformity of the successive lagged
pairs of random numbers. Also, it checks only high order decimal

digits of the random numbers for pairwise uniformity,

As in the uniformity test the interval is subdivided into n sub-

intervals, A k-by-k matrix is formed by determining the frequency

th

of numbers f that are in the i subinterval followed by a

oi’j

h

number in the jt subinterval ( i and j referring to row number and

column number of the matrix ). If N is the length of the ran-

f 2, the number of pairs /47

is determined for which the first

dom sequence, and v is a pow

(xi}xi+l)) i :])2; v

(log ® ) bits of x; had the value m and the first (log © )bits of

Xi41 had the value n; n,m assume values from 0 to ©-1., Chi~-

square statistic is,

M3
o]
i

=

X

1

el N
> (gt 0)Y( D2)
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The degrees of freedom for the critical Chi-square value is

192 - 1. For the test, 20 subintervals were formed, © = 19.
Degrees of freedom = 360, 99% confidence range was used. C(ritical
Chi-square value = 432,00, Computed Chi-square value = 349,768,

Hence, the numbers are satisfactorily random., This showed that

the Random Number Generator was satisfactory.

For details, refer to P, A, W, Lewis, A.'S. Goodman and J. M. Miller,
" pseudo-random Number Generator for System/360,'" IBM Systems

“Journal, vol. 8, No. 2, 1969,
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ABSTRACT

The thesis dealt with the statistical distribution of the Tracking
Signal which was conceptualized to smooth the forécast errors and
map'them to a fixed and a smaller variational range. It was pro-
posed to investigate the statistical behavior of the Tracking Sig-
nal. This, in turn, would facilitate defermination ofrapérOPriate

control limits to check on the magnitude of forecast error.

The procedure assumed,
a. norma]ity and independence of the forecast errors,
b, independence of the smoothed error and smoothed
mean absolute deviation.
The theoretical results indicated that,
1. the Tracking Signal statistic has a modified Céuchy
distribution,
2. the distribution was independent of the smoothing

parameter,

Simulation experiment was carried out to test the practical valid-
ity of the theoretical development, The experiment simulated a
steady state forecasting system. The conclusions were:
a, The Tracking Signal distribution is dependent upon
the smoothing parameter.
b. The distribution tends to be bimodal as o increases.
c. The theoretical assumptions were not justifiably

valid in practical situations.



