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Abstract

The global population is estimated to reach 9.1 billion by 2050. Together with climate
change, insuring food security for this population presents a significant challenge to agriculture.
In this context, a large number of breeding objectives must be targeted. The focus of the work
presented here is to explore genomic approaches for tapping exotic germplasm for valuable
alleles to increased yield, disease resistance and abiotic stress tolerance.

The loss of genetic diversity in bread wheat (Triticum aestivum L.) due to bottlenecks
during polyploidization, domestication and modern plant breeding can be compensated by
introgressing novel exotic germplasm. Here, the potential of genomic selection (GS) for rapid
introgression of synthetic derived wheat is evaluated in field trials. Overall, the GS models had
moderate predictive ability. However, prediction accuracies were lower than expected likely due
to complex and confounding physiological effects. As such, implementation of rapid cycle GS
for introgression of exotic alleles is possible but might not perform very well with synthetic
derived wheat.

Disease resistance is another important trait affecting grain yield. Stem rust (Puccinia
graminis f. sp. tritici) has historically caused severe yield loss of wheat worldwide. In a
quantitative trait loci (QTL) mapping study with a synthetic-derived mapping population, QTLs
for resistance to stem rust races TRTTF and QTHJC were identified on chromosomes 1AS, 2BS,
6AS and 6AL. Some of these genes could be new resistance genes and useful for marker-assisted
selection (MAS).

In addition to food insecurity through lack of sufficient source of calories, nutrient
deficiency is considered the ‘hidden hunger’ and can lead to serious disorders in humans.

Through biofortification, essential nutrients are increased in staple crops for improved quality of



food and human health. A high-throughput elemental profiling experiment was performed with
the same synthetic derived mapping population to study the wheat ionome. Twenty-seven QTL
for different elements in wheat shoots and two QTL in roots were identified. Four “hotspots” for
nutrient accumulation in the shoots were located on chromosomes 5AL, 5BL, 6DL and 7AL.
Overall, exotic germplasm is a valuable source of favorable alleles, but improved

breeding methodologies are needed to rapidly utilize this diversity.
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Chapter 1 - Genetic mapping of race-specific stem rust resistance in
synthetic hexaploid W7984 x Opata M85 mapping population

This chapter has been published as following journal article:

Dunckel, Sandra M., Eric L. Olson, Matthew N. Rouse, Robert L. Bowden, and Jesse A. Poland

(2015). Genetic Mapping of Race-Specific Stem Rust Resistance in the Synthetic Hexaploid
W7984 x Opata M85 Mapping Population. Crop Science. doi: 10.2135/cropsci2014.11.0755

Abstract

Stem rust (caused by Puccinia graminis f. sp. tritici) has historically caused severe yield
losses of wheat (Triticum aestivum L.) worldwide and has been one of the most feared diseases
of wheat and barley (Hordeum vulgare L.). Stem rust has been controlled successfully through
the use of resistant varieties. However, stem rust lineage Ug99 and its derivatives are virulent to
many widely deployed stem rust resistance genes including Sr31. Doubled haploid lines from the
Synthetic W7984 x Opata M85 wheat reference population were screened for seedling resistance
to P. graminis f. sp. tritici races TRTTF and QTHIJC. The phenotypic data were adjusted to a 1 to
5 scale and genes for resistance to races TRTTF and QTHJC were localized using composite
interval mapping (CIM). Major effect quantitative trait loci (QTLs) for resistance to stem rust
races TRTTF and QTHIJC were identified on chromosome arms 1AS, 2BS, 6AS, and 6AL. The
gene for resistance to both races on 2BS could potentially be a new stem rust resistance gene.
The QTLs for resistance on 1AS and 6AL might be other new genes or alleles while the QTL on
6AS is likely an S8 allele. Future work will determine if the resistance loci on 1AS, 2BS, and
6AL are novel. As shown here, the well-studied Synthetic x Opata reference population is a
valuable source of potentially novel resistance genes for stem rust that can be leveraged in

resistance breeding programs.



Introduction

Wheat stem rust caused by Puccinia graminis Pers. f. sp. tritici Eriks. & E. Henn. (Pgt),
has historically been a devastating disease of wheat and barley. Globally, stem rust has caused
large losses of wheat yields in the 20th century in Europe and North America (Singh et al.,
2006). Through eradication of the alternate host, barberry (Berberis vulgaris L.), and the
deployment of varieties with genetic resistance, the yield and economic losses due to stem rust
were reduced substantially (Singh et al., 2011). For decades, resistance to stem rust has relied on
a handful of genes, including resistance gene Sr3/ (Singh et al., 2006).

In 1999, an isolate of Pgt virulent to Sr3/ was discovered in Uganda and named Ug99
(Pretorius et al., 2000). The original Sr3/-virulent Ug99 isolate is designated as race TTKSK
based on the North American nomenclature (Jin et al., 2008; Roelfs and Martens, 1987). Stem
rust race TTKSK and variant races TTKST (virulent on Sr24) and TTTSK (virulent on Sr36) are
virulent to most known resistance genes (Jin et al., 2008, 2009; Singh et al., 2006, 2008; Visser
et al., 2010). Since its first discovery, the Ug99 race group has been detected in Kenya (2001),
Ethiopia (2003), Sudan and Yemen (2006), Iran (2007), Tanzania (2009), and South Africa and
Zimbabwe (2010) (Hale et al., 2012; Jin et al., 2009; Nazari et al., 2009; Pretorius et al., 2010,
2012). It is estimated that more than 66% of the global wheat growing area is environmentally
conducive for the development of stem rust, and in much of this area, susceptible cultivars are
grown (Pardey et al., 2013). Therefore, the discovery of new resistance genes with development
of markers to facilitate marker-assisted breeding and strategic deployment in gene pyramids is
critical.

The genetic diversity for resistance to stem rust in the hexaploid bread wheat gene pool is
rather limited (Singh et al., 2011). A natural whole-genome hybridization of cultivated tetraploid

wheat (7. turgidum L.) (2n = 4x = 28, AABB) and diploid wild species Aegilops tauschii Coss.



(2n =2x = 14, DD) about 8000 yrs. ago gave rise to the allohexaploid species known as bread
wheat (2n = 6x =42, AABBDD) (Dvorak et al., 1998; Kihara, 1944; McFadden and Sears, 1946;
Talbert et al., 1998). Cultivated bread wheat went through multiple genetic bottlenecks during its
evolution and domestication process and the diversity within modern wheat varieties has been
narrowed further through modern crop improvement (Marcussen et al., 2014; Warburton et al.,
20006).

Genetic diversity in the hexaploid germplasm pool can be increased through the
production of synthetic hexaploid wheat by crossing tetraploid 7. turgidum wheat with diploid
Ae. tauschii. The development of synthetic hexaploids was first demonstrated by McFadden and
Sears (1946). The technique has been iteratively improved and several research programs like
International Maize and Wheat Improvement Center’s (CIMMYT’s) wide cross program have
developed hundreds of primary synthetic bread wheat lines to capture genetic diversity from
wheat progenitors (Reif et al., 2005; Zhang et al., 2005). Even though the primary synthetics
generally have poor agronomic performance, they are known for harboring genes for tolerance to
a range of biotic and abiotic stresses (Arraiano et al., 2001; Mujeeb-Kazi et al., 2004).

Triticum turgidum, has been a good source of new stem rust resistance genes including
Sr2, Sr9d, Sr9e, Sr9g, Sril, Sri2, Sri3, Sri4,and Sri7 (Singh et al., 2011). Genes conferring
resistance to race TTKSK are Sr2, Sri3, and Sri4 (Mclntosh, 1988; Simons et al., 2011; Singh et
al., 2006, 2011). Sr2 confers slow rusting adult plant resistance and is linked with the pseudo-
black chaff (PBC) phenotype (Singh and Rajaram, 2002). It confers partial resistance to race
TTKSK when homozygous and under low to moderate disease pressure (Mago et al., 2010;
Singh et al., 2006). The recessive resistance gene Sr2 is the primary component of the highly

effective “Sr2 complex” of several minor genes (Hare and McIntosh, 1979). Resistance gene



Sri13 confers resistance to race TTKSK (Jin et al., 2007). The sources of this gene are the
Ethiopian land race ST464 and the emmer wheat cultivar Khapli (Klindworth et al., 2007; Knott,
1962). Like Sri3, Sri4 was introduced from emmer wheat Khapli (Knott, 1962; McIntosh,
1980).

Six stem rust resistance genes or alleles from Ae. tauschii have been described including
Sr33, Sr45, Sr46, SrTA1662, SrTA1017 , and SrTA10187 (Kerber and Dyck, 1979; Olson et al.,
2013a, 2013b; Rouse et al., 2011). All are effective against TTKSK. Resistance genes Sr33 and
Sr45 were incorporated into synthetic wheat by Kerber and Dyck (1979). Both, Sr33 and Sr45
originated from Ae. tauschii accessions found in Iran (Olson et al., 2013b). Resistance to several
Pgt races has recently been identified in 98 Ae. tauschii accessions (Rouse et al., 2011).
However, Rouse et al. (2011) were not able to postulate the presence of Sr33, Sr45, Sr46, or new
genes in the accessions because of the complexity of the stem rust phenotypes. Recently, Olson
et al. (2013a, 2013b) transferred SrTA1662, SrTA1017, and SrTA10187 from Ae. tauschii by
direct crossing between diploid Ae. tauschii and hexaploid 7. aestivum.

Two synthetic wheat reference populations have recently been reconstructed by Sorrells
etal. (2011). One is a doubled haploid population (named SynOpDH) and one consists of
recombinant inbred lines (named SynOpRIL). Both populations were developed by crossing
synthetic hexaploid line W7984 and elite bread wheat cultivar Opata M85 (Sorrells et al., 2011).
The SynOpDH and RIL mapping populations were developed from the same parents as the
original mapping population in the late 1980s. That population was also known as M6 x Opata,
Synthetic x Opata, and ITMI mapping population. Here, we evaluated the recreated synthetic
wheat doubled haploid mapping population (SynOpDH) for resistance to several stem rust races

at the seedling stage to identify potentially new stem rust resistance genes.



Materials and Methods
Mapping population
The SynOpDH mapping population was developed by Sorrells et al. (2011). The pedigree
of the population is synthetic W7984 (Altar 84/Ae. tauschii (219) CIGM86.940)/Opata M85. The

population consists of 215 lines.

Genotypic Data

Genome-wide marker data on the SynOpDH mapping population was generated using a
two-enzyme genotyping-by- sequencing (GBS) approach by Poland et al. (2012). The publicly
available map and marker data were used to perform the QTL analysis. The previously
constructed map consisted of 1485 single nucleotide polymorphisms (SNPs). Complete
information about data filtering, SNP calling and map construction can be found in Poland et al.
(2012). The female parental alleles from Synthetic W7984 were coded as “A”, the male parental
alleles from Opata M85 as “B”. We verified the original assignment of the GBS markers to
chromosomes and chromosome arms in Poland et al. (2012) by aligning the tags to the recently
published draft sequence of the wheat genome (The International Wheat Genome Sequencing
Consortium, 2014). The linkage groups from GBS markers corresponding to chromosomes 1B,
1D, 2A, 5B, 6D and 7A were inverted to match the correct short and long chromosome arms,
respectively. An updated map with corrected linkage group orientation and chromo- some arm

assignments is available in Supplemental Table S3 online.

Pgt Inoculation and Evaluation of Seedling Infection Types
The parents of SynOpDH, Synthetic W7984 and Opata M85, and a subset of the mapping

population were screened with 14 Pgt races of diverse geographical origin at the USDA-ARS

Cereal Disease Laboratory, Saint Paul, MN. Foreign Pgt races were evaluated in a biosafety



level 3 containment facility at the University of Minnesota. Based on the observed segregation
pattern, Pgt races TRTTF (from Yemen) and QTHJC (United States) were targeted for further
mapping experiments.

Reactions to Pgt races TRTTF (isolate 06YEM34—1) and QTHIJC (isolate 7SND717C)
were evaluated in St. Paul, MN, following protocols described previously. The experimental
design was a randomized complete block design (RCBD) with two replications of 10 seedlings
per DH line for races TRTTF and QTHJC. Seedling infection types (ITs) to races TRTTF and
QTHJC were evaluated in 127 and 100 doubled haploid lines, respectively. The stem rust
susceptible wheat line LMPG-6 and the 20 lines of the North American Pgt differential set were
included in the experiments as controls (Jin et al., 2008).

Urediniospores stored at —80°C were heat-shocked in a water bath at 45°C for 5 min and
suspended in Soltrol 170 isoparaffin oil (Chevron Phillips Chemical Company LP, The
Woodlands, TX). The suspension was sprayed onto 7- to 9-day- old seedlings and inoculated
seedlings were placed in mist chambers overnight at 20+1°C at 100% humidity and then
transferred to a greenhouse bench with a 16 h light/8 h dark cycle at 18+£2°C. Infection types to
both races were scored 14 d after inoculation using the scale of Stakman et al. (1962). Seedlings
showing low and intermediate ITs up to 2+3- were considered resistant and seedlings showing
high ITs of 3 to 4 were considered susceptible. The avirulence/virulence formula for TRTTF was
8a, 24, 31/5, 6, 7b, 9a, 9b, 9d, 9e, 9¢g, 10, 11, 17, 21, 30, 36, 38, McN, Tmp, |IRS"™€° and for
QTHIC 7b, 9a, 9e, 24, 30, 31, 36, 38, Tmp, 1RS*™E/5, 6, 8a, 9b, 9d, 9g, 10, 11, 17, 21, McN
(Jin et al., 2008; Olivera et al., 2012a).

The qualitative phenotypic data using the Stakman scale were converted to a 1 to 5

quantitative scale to enable analysis with QTL mapping algorithms that assume an ordered



phenotypic distribution (Table 1.1). Low ITs with hypersensitive flecking including; ;, 0;,
;1,1+,;2-,;2,:2+, 2-;, and ;12, were classified as 1. ITs of 2- to 2 were classified as 2. Lines
displaying 2+ were classified as 3. Lines scoring ITs ranging from 2+3- and 32+ to 3 were
scored as 4. High susceptible ITs of 3+ or 4 were scored as 5. The Stakman scale was converted
for each replicate and then averaged across replicates. SynOpDH lines with missing data or
inconsistent phenotypes (indicating mixed seed source) between replicates were removed before
further analysis. The repeatability of the experiments was tested with the Pearson correlation

coefficient after conversion to the 1 to 5 scale.

Quantitative Trait Loci Analysis

Identification of stem rust resistance QTLs was performed in the R software environment
(R Core Team, 2013) using the R-package R/qtl (Broman et al., 2003). The most significant
markers were identified with stepwise regression separately for both Pgf races. Composite
Interval Mapping (CIM) was implemented applying a Haley—Knott regression using forward
selection of marker covariates and a window size of 10 cM for both stem rust races. Three
marker covariates were used for CIM for races TRTTF and QTHJC. The map position and
markers of QTLs identified by single interval mapping (SIM) and CIM were used in multiple
quantitative trait loci mapping (MQM) (Arends et al., 2010) to confirm identified resistance loci
and to refine their position. MQM was implemented in R/qtl to obtain estimated QTL effects.
The genome-wide logarithm of the odds value (LOD) for declaring significant QTL for each race
was determined by 1000 permutations. The parental alleles for Synthetic W7984 and Opata M85

were coded as —1 and 1, respectively, as described by Broman and Saunak (2009).



Results
The parents of the SynOpDH population showed a wide range of ITs when tested with 14

Pgt races (Table 1.2). Both parents were observed to be susceptible to races TTKSK, TTKST,
and TTTSK. However, both parents showed resistance to several Pgt races including TRTTF and
QTHIC (Table 1.2). The observed IT of the synthetic parent to Pgt race TRTTF was 22-, and ; to
QTHIC. Elite parent Opata M85 showed ITs of 22+ and 2 to races TRTTF and QTHJC,
respectively.

To test the repeatability of the experiments the Pearson correlation coefficient » was
calculated for the DH lines.  values of 0.84 and 0.9 for QTHJC and TRTTF, respectively,
indicated good repeatability of each experiment. The SynOpDH mapping population segregated
for distinct resistance ITs to Pgt race TRTTF (Figure 1.1 a, Supplemental Table S1 online).
Under the binary, resistant/susceptible IT designation, the SynOpDH population segregated

108:19 resistant/susceptible for race TRTTF (Table 1.3) not significantly different from a 7:1

ratio (XZ =0.70, P=0.40), suggesting three resistance genes were segregating. Mapping revealed
three QTLs for resistance to race TRTTF with a genome-wide LOD of 4.20 at a 5% error rate as
determined by 1000 permutations. The three loci identified with CIM are located on 2BS, 6AS,
and 6AL (Figure 1.2). The QTL on 2BS is located proximal (most significant GBS marker is
synopGBS355 at 53.8 cM). The other two QTLs are located on 6AS (GBS marker
synopGBS1019 at 0.8cM) and 6AL (GBS marker synopGBS85 at 130.6cM) (Table 1.4).

The segregation pattern of resistance to stem rust race QTHJC showed a relatively larger
proportion of lines was resistant to race QTHJC compared to race TRTTF (Figure 1.1 b). The

SynOpDH population segregated 92:8 resistant/susceptible, which is not significantly different

2 2
from either 7:1 or 15:1 ratios (y =1.85, P=0.17;x =0.52, P =0.47), suggesting three or four



resistance genes were segregating. Quantitative trait locus mapping with CIM identified one
QTL on 2BS (Figure 1.2) with a genomewide LOD of 3.70 at a 5% error rate. The marker with
the highest LOD score on 2BS is located at 44.1cM (GBS marker synopGBS616). A second
resistance QTL was located at 27.9cM on chromosome 1AS (most significant GBS marker
synopGBS665) (Table 1.4).

The MQM is a useful tool to obtain estimates on phenotypic variance, QTL, and allele
effects. The allelic state of the markers with the highest LOD score at each QTL was used to
represent the allelic state of the QTL. For race TRTTF, a model with three genes and no
interaction explained more than 60% of the phenotypic variance. The resistance genes on 2BS,
6AS, and 6AL explained 23, 13, and 26% of the estimated phenotypic variation, respectively
(Table 1.5). The estimated allele effects show that the resistance to race TRTTF is conferred
through alleles from both the synthetic and elite wheat parent (Figure 1.3). The estimated QTL
effect for the resistance gene on 2BS is 0.53 and 0.4 for the gene on 6AS with the resistant allele
coming from the synthetic parent for both of these genes (Table 1.5 and Figure 1.3). The
resistant allele at the locus on 6AL was contributed by Opata and had an estimated effect of —
0.57 (Table 1.5). Analysis of race TRTTF confirmed that resistant lines of phenotype classes 1 to
3 have either all three resistant alleles, or any combination of two out of the three identified
resistance alleles.

For race QTHJC a model considering only one QTL on 2BS explains 26.7% of the
estimated phenotypic variation. Including the QTL on 1AS, the estimated phenotypic variation
increases to 35.5%. Searching for further QTLs by means of MQM did not result in any LOD
peaks over the set threshold. However, the LOD profile suggests the presence of a third

resistance QTL on chromosome arm 1DL at 154.6¢cM, barely below the threshold of 3.70 at an



error rate of 5%. The estimated effect for the QTL on 2BS is 0.520 and 0.318 for the 1AS QTL.
Based on the estimated allele effects both resistance QTLs are contributed by the synthetic parent

(Table 1.5 and Figure 1.3).

Discussion

This study identified three QTLs on chromosome arms 2BS, 6AS, and 6AL for resistance
to Pgt race TRTTF and two QTLs on 1AS and 2BS for resistance to race QTHJC in the newly
reconstructed synthetic hexaploid W7984 x Opata M85 wheat reference population. The
estimated allele effects showed that resistance was conferred through alleles from both the
synthetic hexaploid and the bread wheat parents. Based on the deduced chromosomal locations
and the pedigree of the mapping population, only a few previously described resistance genes
from durum wheat and bread wheat could be candidates for the QTLs identified here.

The resistance QTL on 2BS that was detected with race TRTTF was derived from the
synthetic hexaploid parent and mapped to position 53.8 cM (Figure 1.2 and Figure 1.3). The
resistance QTL for race QTHJC was initially mapped at 44.1 cM on 2BS. Applying MQM, the
position of the gene was refined and newly positioned to 51.8 cM. Given the close proximity, it
is possible that these effects for the two races are from the same resistance gene. Chromosome
arm 2BS harbors at least seven numerically designated stem rust resistance genes, but many are
on alien translocations (McIntosh et al., 2012). Resistance genes on 2BS from common wheat
and durum include Sr10, Sri19, Sr20, and Sr23. Based on its position and presence in CIMMYT
germplasm (MclIntosh et al., 1995), Sr10 is a potential candidate for the 2BS resistance QTL.
However, both races TRTTF and QTHJC are virulent on Sr/0, which, there- fore, can be ruled
out. Canadian spring wheat variety Marquis is the source of Sr/9 and Sr20 (MclIntosh et al.,

1995) and has been used in crosses made at CIMMYT (Smale, 1996). Virulence was reported to
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be very common on Sr/9 and Sr20 (McIntosh et al., 1995), but neither can be ruled out as
candidates for the 2BS QTL. Stem rust resistance gene Sr23 is completely associated with Lr/6
(McIntosh et al., 1995). However, Lr16 was mapped at the distal end of chromosome 2BS
(McCartney et al., 2005). Consequently, the mapped gene is likely not Sr23 due to the different
map position. Additional data are needed to determine the allelic relationship between the QTL
mapped on 2BS and the numerically designated genes on 2BS.

The QTL for resistance to race TRTTF identified on 6AS was placed at 11cM distal
following MQM. Based on its location, the QTL mapped to 6AS is probably conferred by Sr8a
or Sr8b (Mcintosh, 1972; Mclntosh et al., 1995). Sr8a was first characterized from bread wheat
and was widely used in lines developed in Europe and Mexico (Mclntosh et al., 1995). The
location of Sr§ is at the distal end of chromosome 6AS (GrainGenes2, 2013) and its location
matches the resistance QTL. However, based on the allele effect of —0.402 for allele A the
resistance gene was contributed by the synthetic parent. Sr8b is known to be present in durum
wheat (Bhavani et al., 2008). Race TRTTF is avirulent to Sr8a whereas race QTHIJC is virulent.
The response of both races to Sr8b is unknown. Additional data are needed to determine the
relationship between the QTL on 6AS and the two Sré8 alleles.

The gene located on 6AL maps to the region of Sr/3, which is known to confer resistance
against TTKSK and its variants TTKST and TTTSK (Klindworth et al., 2007). However, both
parents showed susceptible ITs to all three races (Table 1.1) indicating that this identified
resistance locus is not Sr/3. Furthermore, TRTTF is virulent on Sr/3 (Olivera et al., 2012b).
Therefore, the gene mapped on 6AL is likely a new gene or a novel allele of Sr/3.

For race QTHJC, segregation ratios of 7:1 and 15:1 suggest three or four resistance

genes. However, only two resistance QTLs on chromosomes 1AS and 2BS were identified with
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confidence. Based on the LOD profile, two additional QTL may be on chromosome arms 1DL
and 7DS. Opata is known to carry the pleiotropic gene designated Lr34/Yr18/Sr57, which is an
adult plant resistance gene on 7DS. It is possible that S»57 has a detectable effect at the seedling
stage, especially in combination with other genes. One resistance gene has been reported on 1AS
that originated from the 1AL.1RS wheat-rye translocation (Lein, 1975; Mclntosh et al., 1998).
However, this mapping population does not harbor this translocation, and, therefore, the
resistance QTL identified here might be conferred by a new resistance gene. It is possible that
the allele effect of each susceptible allele was not properly estimated due to some other gene(s)
conferring resistance. This might lead to confounding estimations of the number of resistance
genes. Further experiments will be needed to determine the mechanism of resistance to race
QTHIJC before proceeding with fine mapping and marker development for marker-assisted
selection.

Through screening the SynOpDH reference mapping population for stem rust resistance,
we have identified multiple resistance loci to the highly virulent Pgt race TRTTF and United
States race QTHJC. Based on the virulence patterns and locations of known resistance genes, we
conclude that the QTL on 6AL and 1AS could be new genes or new alleles of known genes.
Additional data are needed to determine the relationship between the QTL on 2BS and 6AS and
known genes on these chromosome arms. With the continued identification and marker tagging
of effective stem rust resistance genes, the tools available to breeders for developing resistant

breeding material and new varieties will further improve.

Supplemental information Available

Supplemental information is available with the online version of this manuscript.
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Figure 1.1 Phenotypic distribution of seedling infection types (ITs)

Phenotypic distribution of seedling infection types (Its) to stem rust race TRTTF after
conversion of the Stakman scale to a 1 — 5 scale as described earlier. Lines falling into
categories 1 to 3 are considered resistant and lines in categories 4 and 5 are susceptible
to stem rust race TRTTF (A) and QTHIJC (B).
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Stem rust resistance to race TRTTF and QTHJC in the SynOpDH population
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Figure 1.2 Logarithm of the odds (LOD) profile
The logarithm of the odds (LOD) profile for stem rust resistance to both races TRTTF and QTHJC shows the identified resistance

genes for race TRTTF in orange on chromosomes 2BS, 6AS and 6AL (LOD 5% = 4.20), and for stem rust race QTHJC in turquoise
on 2BS (LOD 5% = 3.70).
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Figure 1.3 Estimated allele effect at each QTL

Estimated allele effects at each identified resistance QTL for both stem rust races TRTTF
(above) and QTHIC (below). Allele A is the allele contributed by the synthetic parent, allele B
by the elite parent Opata MSS.
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Table 1.1 Assessment of the resistance of the parents (Synthetic W7984 and Opata
MS85) of the mapping population with 14 different Pgt races from diverse origin

Race Isolate Origin Synthetic W7984 Opata M85
TTKSK 04KEN156/04 Kenya 3 33+
TTKST 06KEN 19-V-3 Kenya 33+ 3+
TTTSK 07KEN 24-4 Kenya 3+ 3+
TRTTF 06YEM34-1 Yemen 22- 22+
TTTTF 01MNB84A-1-2 United States 3 4
TPMKC 74MN1409 United States 2+3- 2+3-
RKQQC 99KS76A-1 United States ;1 0;
RCRSC 7TIND82A United States 2=51 ;1
QTHIC 75ND717C United States ; 2
QFCSC 06ND76C United States 0; 0;
MCCEFEC 59KS19 United States ;1- ;1-
QCCSM 75WA1652-A United States 0; 0;/;1+
QCCJB 01SD80-A United States 0; ;1
SCCSC 09ID73-2 United States ;13- 0

Table 1.2 Conversion of Stakman infection types
to a 1 — 5 scale for mapping purposes

Stakman Infection Types Conversion
550,51, 51+, 52-52, 52+, 2-;, ;12 Class 1
2-t02 Class 2
2+ Class 3
2+3-and 32+ to 3 Class 4
3+to 4 Class 5

Table 1.3 Number, segregation ratio, y* and corresponding p-values of SynOpDH
lines showing resistance and susceptibility to Pgt races TRTTF and QTHIC

2

Resistant Susceptible Segregation ratio X p-value
TRTTF 108 19 7:1° 0.70 0.40
QTHIJC 92 8 7:1 1.85 0.17
15:1° 0.52 0.47

? Segregation ratio for 3 gene model
® Segregation ratio for 4 gene model
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Table 1.4 GBS marker and QTL position for identified
resistance QTL to races TRTTF and QTHIJC

Race Chromosome GBS Marker Position

TRTTF 2BS synopGBS355 53.8cM
6AS synopGBS1019 11.0cM
6AL synopGBS85 130.6cM

QTHIC 1AS synopGBS665 27.9cM
2BS synopGBS616 51.8cM

Table 1.5 Estimated phenotypic variance explained by each gene, estimated QTL
and allele effects for detected resistance QTL to races TRTTF and QTHJC

Race Chromo  Phenotypic QTL Effect Effect Resistance
some variance effect allele A allele B from parent

TRTTF 2BS 23.1 % 0.53 0.06 -0.53 0.53 Synthetic
6AS 13.0%  0.40 0.06 -0.40 0.40 Synthetic
6AL 264%  -0.57 0.06 0.57 -0.57 Opata M85

QTHIC 1AS 9.7 % 0.32 0.08 -0.32 0.32 Synthetic
2BS 244 % 0.52 0.09 -0.52 0.52 Synthetic
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Chapter 2 - Mapping the wheat ionome

Abstract

Nutrient deficiency can lead to serious disorders in humans. Through biofortification,
essential nutrients are increased in staple crops for improved quality of food and human health.
Within HarvestPlus, a major focus is biofortifying bread wheat. Biofortification requires
inexpensive high-throughput elemental profiling to study a plant’s ionome. Ionomics is a very
useful tool to obtain a snapshot of the functional status of any plant tissue. Here, we describe a
hydroponics experiment followed by elemental profiling for bread wheat (7riticum aestivum L.)
on shoots and roots. The ionomics data were used for quantitative trait loci (QTL) mapping. We
identified 27 QTL for different elements in the shoots and two QTL in the roots. Four
“hotspots” for nutrient accumulation in the shoots were identified on chromosomes 5AL, SBL,
6DL and 7AL. The hotspot on SAL controls Cd, Cu, Mn, S and Zn, while the other three
hotspots control two elements each (Se and P, Ca and Sr, P and Zn). Furthermore, we identified a
hotspot for Ni and Na uptake on chromosome 2BS in the roots. None of the hotspots showed
antagonistic pleiotropic effects. Furthermore, we identified one possible novel QTL for Cd
concentration in wheat shoots on chromosome 4BS. This comprehensive wheat ionomics study
provides more supporting evidence of the usefulness of ionomics in wheat, confirms previously
described QTL and identifies new QTL. The described QTL, particularly the hotspots, could be

used for marker —assisted selection (MAS) in plant breeding for a wide range of applications.

Key words

quantitative trait loci, genotyping-by-sequencing, wheat ionome, ionomics, crop

improvement, biofortification

24



Introduction

Deficiency in one or more essential mineral elements can lead to serious deficiency
disorders in humans. Two billion people suffer from malnutrition or “hidden hunger” globally.
Iron, vitamin A, iodine and zinc deficiencies are considered among the most significant. Iron and
zinc deficiencies affect physical growth, development and cognitive functions. Over 30% of
children in developing countries are stunted as a consequence of malnutrition and an estimated
190 million are affected by preventable early childhood blindness due to vitamin A deficiency
(Gainhealth, 2015). Biofortification is the process of increasing essential nutrients in staple crops
for improved quality of food and human health. The quantity and/or quality of food are improved
during crop production by biological means such as plant breeding, biotechnology, or agronomy
(WHO, 2015). An example of biofortification through biotechnology is vitamin A fortified
golden rice (Burkhardt et al., 1997, Potrykus, 2001, Goldenrice, 2015). However, the deployment
of golden rice has not been as successful because of controversy surrounding genetically
modified organisms (GMOs).

Wheat is the major cereal crop consumed in many regions of the world and provides over
20% of all calories consumed globally (FAO, 2015, Shiferaw et al., 2013). Many regions of the
world, notably in South Asia, where wheat is a major staple, also have high incidence and risk of
malnutrition and micronutrient deficiency. Improving the quality of wheat through
biofortification would benefit human health. The HarvestPlus program is currently supporting
the biofortification several crops such as wheat (7Triticum aestivum L.), rice (Oryza sativa L.),
maize (Zea mays L.) and pearl millet (Pennisetum glaucum L.) to help reduce the micronutrient
malnutrition in Africa and Asia (HarvestPlus, 2015). Within HarvestPlus, a major focus is

biofortifying bread wheat for zinc (Zn) and iron (Fe) (Velu et al., 2011). In this context, ionomics
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represents a powerful tool to identify potential genes and quantitative trait loci (QTL)
responsible for nutrient uptake, transport and accumulation in plants.

Ionomics is defined as the “quantitative and simultaneous measurement of the elemental
composition of living organisms and changes in this composition in response to physiological
stimuli, developmental state and genetic modification” (Salt et al., 2008). Ionomics is one of the
elements of functional genomics, which is composed of proteomics, metabolomics,
transcriptomics and ionomics (Salt, 2004). However, the four “omics” are interconnected and are
the sum of all expressed genes, proteins and metabolites in an organism. The aim of ionomics is
to provide a snapshot of the status of mineral in various tissues and cells of any complex
biological organism under different conditions. The different conditions can be based on
genetics, developmental stage of the organism or biotic and abiotic (stress) factors (Salt et al.,
2008). Studying the ionome of whole plants provides information about the mineral nutrition
status and productivity of a plant, which ultimately influence the concentration of nutrients
available for consumption.

The development of inductively coupled plasma technologies (ICP) and ability to
simultaneously measure and analyze important elements in plants has enabled the high-
throughput study of the ionome. Briefly, an aqueous sample is transformed into an aerosol by a
nebulizer in the instrument. The aerosol is then brought into the plasma by an argon gas stream
(carrier gas). Once in the plasma, all atoms in the same sample are ionized into singly charged
positive ions. At this stage, the ionized atoms are detected by ICP (through optical emission
spectrometry or mass spectrometry) (Salt et al., 2008).

Ionomics studies to date were performed in Arabidposis thaliana (L.) Heynh. on shoots

(Baxter et al., 2009, Baxter et al., 2008, Lahner et al., 2003) and seeds (Vreugdenhil et al., 2004),
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soybean seeds (Glycine max L. Merr.) (Ziegler et al., 2013), Lotus japonicus (Regel) K. Larsen
shoots (Chen et al., 2009), rice and pearl millet grain. One study using X-ray fluorescence
spectrometry measuring the concentration of Zn, Fe and Se was conducted on whole kernels of
wheat (Paltridge et al., 2012).

Here, we analyze the wheat ionome of shoots and roots in the newly reconstructed
biparental hexaploid SynOpDH mapping population (Sorrells et al., 2011) under stable and
controlled conditions in a hydroponic growth chamber experiment by surveying all mineral

elements of biological relevance in wheat shoots and roots.

Materials and Methods
Mapping population
The Synthetic W7984 x Opata M85 (Altar84/A4egilops tauschii (219) CIGM86.940) /
Opata M85) biparental mapping population developed in the late 1980s served as a resource for
multiple QTL mapping studies in the wheat community (Sorrells et al., 2011). Two synthetic
wheat reference populations with the same pedigree were recently reconstructed by Sorrells et
al., (2011). One population consists of double haploids (named SynOpDH) and the other of

recombinant inbred lines (named SynOpRIL). 154 SynOpDH were included in the experiment.

Genotypic data
The SynOpDH mapping population was genotyped using a two-enzyme genotyping-by-

sequencing (GBS) approach by Poland et al., (2012). The previously constructed map consisted
of 1,485 single nucleotide polymorphisms (SNPs). Detailed information about data filtering,
SNP calling and map construction can be found in Poland et al. (2012). The female parental
alleles from Synthetic W7984 were coded as “A”, the male parental alleles from OpataM85 as

“B”. Dunckel et al. (2015) verified the original assignment of the GBS markers to chromosomes
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and chromosome arms in Poland et al., (2012) by aligning the tags to the recently published draft

sequence of the wheat genome (The International Wheat Genome Consortium, 2014).

Experimental design

The experiment was performed in a growth chamber as a randomized complete block
design (RCBD) with three replicates of each line spread across four tubs. The data was analyzed
using JMP Pro 11 Statistical Software (JMP®, 1989-2015). The model used to calculate BLUEs
was yijx = U+ g; + tj + e;j where y; ;i is the analyzed element, g; is the fixed effect for each
genotype, t; is the fixed effect of the ™ tub, and e; jk 1s the random error with N(0, a2). A
random effects model was applied to estimate variance components for heritability calculations

%

of each element. Heritability on an entry means basis was calculated as H? = — where aj is
o2+-£
9 ¢

the genotypic variance, ¢ is the number of tubs, 7 is the number of replicates, and ¢ is the error
variance (Bernardo, 2010).

The plants were grown hydroponically under optimal conditions with a 12h day/night
setting at 25/20°C. The nutrient solution (Table 2.1) was developed by Cobb et al. (2015) and
was designed to deliver adequate amounts of micro- and macronutrients as well as sub-toxic
amounts of heavy metals/metalloids of interest. The pH was held constant at pH 6.0 by adjusting
it every second day. The plants were grown for 3 weeks before harvesting the seedling and
separating roots and shoots the same day. Roots and shoots were rinsed with deionized water
before harvesting and drying to avoid contamination from the nutrient solution. The tissue was
dried in a 60°C oven for seven days. Thereafter, the dried tissue was digested in batches using a

60/40 perchloric/nitric acid solution, diluted and analyzed by Inductively Coupled Plasma -
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Optical Emission Spectrometry (ICP-OES) (Fassel, 1974, Hou and Jones, 2000, Salt et al.,
2008).

All measurements were taken separately for root and shoot tissue. The ICP-OES takes
three independent measurements of a small sample and reports the mean. The precision of the
measurements is defined through the average percent relative standard deviation (%RSD, =
associated variance of the three samples) and indicates how consistent any element in the
analysis is measured by ICP-OES over repeated measurements (Salt et al., 2008). Precision is
essential as our goal is to detect differences in the ionome due to genotype and not experimental
errors. We excluded measurements with %RSD higher than 15%. The accuracy of the analysis is
defined through the lower limit of detection of every element. The average %RSD and lower
limit of detection of all elements are shown in Table 2.2. Adjusting for the dilution volume and
biomass of the analyzed sample normalizes raw ICP-OES data. The final data is expressed in
terms of pg of element per gram dry weight tissue. Elements analyzed are aluminum (Al),
arsenic (As), barium (Ba), boron (B), cadmium (Cd), calcium (Ca), chromium (Cr), cobalt (Co),
copper (Cu), iron (Fe), lead (Pb), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel
(Ni), phosphorus (P), potassium (K), selenium (Se), silicon (Si), sodium (Na), strontium (Sr),

sulfur (S), zinc (Zn).

QOTL analysis

Quantitative trait loci (QTL) mapping was performed separately for ion concentrations in
roots and shoots in the R software environment (R Core Team, 2014) using R-package R/qtl
(Broman et al., 2003). The same methods were applied as described in Dunckel et al., (2015).
Briefly, QTL were mapped using Single Interval Mapping (SIM) and Composite Interval

Mapping (CIM). The most significant markers were identified through stepwise regression. CIM
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was implemented applying a Haley-Knott regression using forward selection of marker
covariates and a window size of 10cM for all traits. Multiple QTL Mapping (MQM) was used to
confirm identified QTL, refine their position and obtain estimated QTL effects phenotypic
variance components (Arends et al., 2010). Additional QTL not identified through SIM and CIM
were mapped through MQM. The allelic state of the markers with the highest LOD score at each
QTL was used to represent the allelic state of the QTL. The genome-wide logarithm of the odds
value (LOD) for declaring a QTL was determined by 1,000 permutations. The parental alleles for
Synthetic W7984 and Opata M85 were coded as -1 and 1 respectively (Broman and Saunak,

2009).

Results

To test the repeatability of the experiment, we calculated heritability on an entry mean
basis separately for each element and for roots and shoots (Table 2.3). Dry weight biomass
(dw_mg) of roots and shoots was included in the analysis and subsequent QTL mapping. There
was contrasting difference in heritability among the elements and tissues. For example, the
heritability is high for Cd (0.75), P (0.73) and Mn (0.67) measured in the shoots and lower for
roots (0.25, 0.34 and 0.10 respectively). The phenotypic distribution follows a normal
distribution for elements measured from the shoots and is slightly skewed to the left for the root
data (Figure 2.7 — Figure 2.14). We observed highly significant correlations of several elements
indicating clusters and connected networks of traits (Figure 2.1 and Figure 2.2).

We identified 27 QTL for different elements in the shoots and two QTL in the roots. QTL
mapped initially through SIM and CIM were confirmed and their position refined applying
MQM. Furthermore, several additional QTL were identified through MQM. A summary of all

QTL including LOD, estimated phenotypic variance, and allele effects is available in Table 2.5
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and Table 2.6. The LOD profiles in Figure 2.3 — Figure 2.6 are based on LOD scores obtained
through CIM.

We identified one QTL each for Ni and Na in the roots (Figure 2.3). The QTL for Na and
Ni mapped to GBS marker synopGBS894 on chromosome 2BS at 78.7cM. MQM was used to
obtain estimates on phenotypic variance, allele effects and refined position of the QTL. The QTL
for Na explained 10.74% of the phenotypic variance and the QTL for Ni 9.24% respectively
(Table 2.6). The estimated allele effects show that the allele conferred by the synthetic parent
(allele A) increases the accumulation of Na and Ni in the roots.

We were able to map 27 QTL for As, Ba, Cd, Ca, Cu, Mn, Mo, P, Se, Sr, S and Zn in the
shoots (Table 2.6, Figure 2.4 — Figure 2.6). Two QTL for biomass (dw_mg) were identified on
chromosomes 1AL and 2BL explaining 17.89% of the estimated phenotypic variance. We were
interested in mapping this trait to assure no QTL for any other element was confounded with
biomass. No other QTL were mapped at the same marker positions.

Some QTL for different elements were identified in close proximity on the same
chromosome (Table 2.6). QTL for P and Zn were mapped on chromosome 7AL at 85.5¢cM and
88.1cM explaining 7.13% and 8.46% of the estimated phenotypic variance, respectively.
Chromosome 6DL harbors QTL for Ca and Sr at 120.0cM and 120.3¢cM, which contribute
16.50% and 13.09% of the estimated phenotypic variance, respectively. Elements P, Mo and Se
have each a QTL on 5BL at 92.0cM, 84.8cM and 88.3cM. The QTL mapped for P explains
16.80 % of the estimated variance, while the QTL for Mo and Se 10.28 % and 12.65 %
respectively. Furthermore, four QTL for Cd, Cu, Mn, and Zn mapped to GBS marker
synopGBS429 on chromosome SAL at 127.9cM. The QTL explained 9.84 %, 17.56 %, 27.1%,

and 14.13% of the estimated phenotypic variance for Cd, Cu, Mn, and Zn, respectively. A QTL
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for S was mapped in very close proximity on the same chromosome at 125.4cM explaining
8.90% of the estimated phenotypic variance.

We mapped seven QTL for P in the shoots. Two were identified by SIM and CIM and
five QTL above the significance threshold were added by MQM (Table 2.6). The model with 7
QTL was the best fit and explains 66.62 % of the estimated phenotypic variance. The estimated
allele effects show that alleles conferred by the synesthetic parent increased the P concentration
in shoot tissue for QTL on chromosomes 1BL, 3DL, 4AS and 7AL, while having a negative
effect on P concentration at the other QTL.

We mapped three QTL for Ca on chromosomes 6AL, 6DL and 7BS explaining 35.72%
of the estimated phenotypic variance. The alleles conferred by the synthetic parent increased the
Ca accumulation at two QTL, while reducing it at the QTL on chromosome 6AL. Two QTL
were mapped for Ba, Cd, Cu, Mn and Zn. The QTL for Ba on chromosomes 4AS and 5BS
explain 24.18 % of the estimated phenotypic variance. The two QTL for Cd mapped on
chromosomes 4BS and SAL and explain 42.78% of the estimated phenotypic variance, while the
QTL on chromosomes SAL and 7DS for Mn explain 25.89%. Furthermore, two QTL for Zn
were identified on chromosomes SAL and 7AL explaining 22.76% of the estimated variance, and
two QTL for Cu on SAL and 5BS explaining 25.4%. The estimated allelic effects indicate that
the synthetic parent decreased the accumulation of Mn at both QTL and increased it for the QTL

mapped for Zn on chromosome 7AL.

Discussion

We mapped 27 QTL in wheat shoots for As, Ba, Cd, Ca, Cu, Mn, Mo, P, Se, Sr, S and Zn

and two QTL in wheat roots for Ni and Na in the newly reconstructed synthetic hexaploid
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W7984 x Opata M85 DH wheat reference population. The estimated allele effects show that both

parents contributed alleles affecting the mineral nutrient concentration in both tissues.

Pleotropic loci

We identified four loci with co-localizing QTL, or hotspots, in shoots and one hotspot in
roots. The elements in each hotspot were highly correlated (Table 2.4, Figure 2.1 and Figure
2.2). None of them showed antagonistic pleiotropy, meaning that the estimated allele effects
were always positively correlated. We did not identify any co-localizing where a given allele

hotpot increased the concentration of one element but decreased concentration of another.

Hotspot for Cd, Cu, Mn, S and Zn
A QTL identified on chromosome SAL at 127.9cM is a “hotpot” controlling the

concentration of the four elements Cd, Cu, Mn, and Zn in wheat shoots. Our correlation analysis
shows significant positive correlations of all elements (Figure 2.1 and Figure 2.2). Furthermore,
a QTL for S was mapped in very close proximity to 125.4cM and is likely the same QTL. This
hotspot is linked to increased Cd concentration in shoots. Cd is a toxic heavy metal and thought
to share the nutrient uptake pathways with Zn. Increasing the Zn concentration through
biofortification could possibly increase the Cd concentration in wheat as well (Palmgren et al.,
2008). Furthermore, proteins involved in Cd uptake and translocation are related to Fe, Zn and
Mn transport (Nakanishi et al., 2006; Sasaki et al., 2012). Guttieri et al. (2015) showed that the
concentration of Cd in grain could be predicted by the Cd concentration in plant tissue at
anthesis. This was not true for Zn. Furthermore, they showed that grain Cd and Zn are not highly
correlated and concluded that breeders should be able to breed wheat with low Cd concentration

without affecting Zn concentration in the grain.
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Cadmium

Cd is a heavy metal, toxic and a naturally occurring non-essential element. The Cd
concentration in some soils has increased through agricultural use. Roots take up Cd from
contaminated soils and transport it to other parts of wheat, mainly the shoots and grain. This
leads to higher Cd concentrations in the grain and Cd contamination of food (Clemens et al.,
2013, Grant et al., 1998, McLaughlin et al., 1999). Harris et al. (2013) studied the changes in
whole-plant Cd accumulation and allocation to different tissues during grain filling in durum
wheat (Triticum turgidum L.). No difference of Cd uptake between high- and low-Cd lines was
found. However, there were differences in root-to-shoot translocation indicating genetic variation
underlying the Cd accumulation in the grain. Furthermore, they found a direct pathway from
root-to-grain via xylem-to-phloem.

Guttieri et al. (2015) reported QTL for Cd accumulation in bread wheat on chromosome
SAL at 88.70 — 89.95¢cM. We identified the hotspot at 127.9cM and conclude this is likely not
the same QTL. Furthermore, we identified a second QTL for Cd concentration in shoots on
chromosome 4BS at 32.9cM explaining 33.19% of the estimated phenotypic variance. This QTL
has not been reported in other studies and could be novel. The allele contributed by the synthetic
parent decreased the Cd concentration for the QTL on chromosome SAL. However, the synthetic
allele at this QTL is also decreased concentrations of desirable elements Cu, Mn, S and Zn and
would likely not be useful for breeding. The opposite was observed for the QTL on 4BS, the
allele conferred by the synthetic parent increased Cd concentration in the shoots and could be

tracked with markers to avoid during selection.

Zinc

One QTL for Zn was mapped to the hotspot described above and a second QTL on

chromosome 7AL at 88.1cM. These QTL are interesting relative to the micronutrient objectives
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of HarvestPlus. The synthetic parent contributed the allele for increased Zn concentration for the
QTL on chromosome 7AL and decreased Zn concentration on SAL. Peleg et al. (2009) reported
QTL for Zn concentration in the grain of durum wheat on chromosomes 5A at 25.8 £22.0 cM
and 7AL at 65.8 £ 4.6 cM. Two QTL for increased Zn concentration in the grain were identified
on chromosome 7A in a T. boeoeticum/T. monococcum RIL mapping population (Tiwari et al,
2009). One QTL was mapped at 72.6 cM and one at 153.8 cM. Aligning both maps showed that
the previously described QTL at 72.6cM and the QTL identified here are probably not the same.
Other studies identified multiple QTL for Zn accumulation in shoots and grain of bread wheat on
chromosomes 2A, 3A, 4A, 4B, 4D, 5A, 6A, 6B, 7A, 7B and 7D but none matched the QTL we
identified (Balint et al., 2007, Genc et al., 2009, Xu et al., 2012). Therefore, these might be novel
QTL for Zn accumulation in wheat shoots. The QTL on 7AL contributed by the synthetic parent
could be particularly interesting for marker-assisted selection in the context of biofortification

and breeding for wheat with increased Zn concentration.

Copper, Manganese and Sulfur

QTL for copper accumulation were previously reported on chromosomes 1AL, 1BL, 2A,
2DS, 3B, 4AS, 4B, 5A, 5BL, 5DL, 6A, 6B, 7A, 7B and 7DS (Bélint et al., 2007, Peleg et al.
2009). Here, we only report one QTL for Cu on SAL at 127.9cM. The QTL identified on 5A was
previously mapped at 12.6 = 11.2 ¢cM does not match the location of the QTL reported here. QTL
for Mn 1n grain and shoots were previously identified on chromosomes 2B, 3BL and 7B (Balint
et al., 2007, Peleg et al. 2009). In our study, we identified one QTL for Mn on chromosomes
SAL and 7DS. Both QTL might be novel. Peleg et al. (2009) reported QTL for macronutrient S

on chromosomes 1A, 2A, 3A, 4A, 5A, 5B, 6B, 7A and 7B. They reported a QTL on
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chromosome 5A at 95.3 + 11.5¢M, which is located in close proximity to the QTL on SAL we
reported here.

The usefulness of the hotspot on chromosome SAL for MAS is questionable, because the
alleles contributed by the synthetic parent decrease the concentration of all desired elements.
However, this hotspot controls the concentration of multiple elements in wheat shoots and we

conclude that it might be a functional gene worth studying.

Hotspot for P and Zn
The QTL on chromosome 7AL at 85.5 ¢cM for P and 88.1 cM Zn for concentration are

most likely the same QTL and represent the second hotspot. This QTL controls the concentration
of P and Zn in the shoots. The estimated allelic effect shows that the synthetic parent contributed
alleles for increased P and Zn. This hotspot could be of particular interested. We are interested in
increased phosphorous uptake (PUP), phosphorous use efficiency (PUE) and Zn in wheat.
Increased PUP could reduce As uptake, increased PUE reduce the P fertilizer requirement, and

increased Zn is desirable for biofortification to increasing human health.

Phosphorous

Modern agriculture depends on phosphorus derived from phosphate rock. This is a non-
renewable resource and may be depleted globally in only 50 to 100 years (Cordell et al., 2009).
Therefore, it is important to breed crops with high PUP and PUE. We identified seven QTL in
shoots for P on chromosomes 1BL, 3DL, 4AS, 5A, 5BL and 7AL (Table 2.6, Figure 2.6). The
synthetic parent contributed the QTL on 1BL, 3DL, 4AS and 7AL. Weidong et al., (2001)
studied the PUE in the same mapping population in a hydroponic experiment. They mapped
QTL related to PUP under high and low P conditions in shoots and whole plant tissue (roots and

shoots) and reported five QTL on chromosomes 1B, 2D, 3B, 5A and 6D in the shoots.
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Furthermore, they identified four QTL on chromosomes 2B, 2D, 5A and 7A from whole plant
tissue. The QTL they identified on 1B is located around 40cM and Opata M85 conferred the
positive allele effect. We mapped our QTL at 62.2c¢M but identified the synthetic parent as the
donor of the allele with positive effect. The QTL they reported on chromosome 5A in shoots is
located between 30 — 45cM and the QTL form the whole plant at 45¢cM. These QTL might be the
same, mainly because of their close proximity and because the synthetic parent contributed them
both. We mapped our QTL on chromosome SAL at 87.7cM and identified Opata M85 as the
donor parent. Based on the estimated allele effects they are probably different QTL. However,
the QTL Weidong et al., (2001) identified on chromosome 7A could be the same QTL we
identified on 7AL at 85.5cM. In both cases, the synthetic parent conferred the allele. We did not
identify any QTL on chromosomes 2D, 3B or 6D but mapped four more QTL on chromosomes
3DL, 4AS and 5BL.

In a more recent study Su et al., (2009) mapped seven reproducible QTL regulating PUP
and six regulating PUE under high and low P conditions across multiple field experiments in a
DH mapping population developed from two Chinese winter wheat varieties. Furthermore, they
mapped QTL for other important agronomic traits and found that some were highly correlated
with QTL for PUP and PUE. This suggests that by improving PUP and PUE, other important
agronomic traits can be improved. It has to be noted that increasing PUP and PUE can be
difficult due to their negative correlation. However, Su et al. (2009) found a few QTL positively
linked for PUP and PUE that could be used in plant breeding through MAS. One of them was
mapped on chromosomes 5A. Comparing the position of their QTL on 5A with ours shows that
these are most likely the same QTL (GrainGenes database, Carollo et al. (2005)). Su et al.,

(2009) identified this QTL as one of their candidates for PUP and PUE and linked the QTL to
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tiller number and shoot dry weight as well. They mapped several QTL we were not able to map,

however, the QTL we report on 3DL, 4AS and SBL might be novel.

Arsenic

Arsenic is a toxic heavy metal and the accumulation in wheat is one way of human
exposure to As from the environment. The concern is mostly for wheat growing on As
contaminated soil (Zhao et al., 2010). As is taken up by plants as arsenate across the plasma
membrane via the phosphate (Pi) transport system (Dixon, 1996). P and As compete for plant
resources. Pigna et al. (2010) showed that increased levels of P in the plant tissue reduced the
toxicity of As by inhibiting the accumulation of As in wheat shoots and grain. Furthermore, Zhu
et al. (2006) found that the As uptake varies across lines in a biparental wheat population, and
even decreased over time for some lines. This has implications on the cropping system but also
on plant breeding. Applying MAS would enable plant breeders to identify and select lines with
QTL increasing PUP and PUE and reducing the As accumulation in wheat.

To reduce As accumulation in wheat, lines with low As uptake and/or accumulation and
the identification of alleles reducing As uptake are of interest. We mapped one QTL for As on
chromosome 3B at 96.6cM explaining 13.27 % of the estimated phenotypic variance. The allele
reducing the As concentration was contributed by the synthetic parent. A recent study in maize
showed that As accumulation in leaves, stems and kernels is controlled by different QTL and
molecular mechanisms (Ding et al., 2011). Lines with low As concentration in the kernels and
high As concentration in the stems and leaves could be useful for phytoremediation of As
contaminated soils. However, we did not map any QTL for As in wheat roots and are not able to

make the same observation in wheat.

Hotspot for Ca and Sr
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Another hotspot was identified on chromosome 6DL. We mapped a QTL for
macronutrient Ca at 120.0cM and one for Sr at 120.3 ¢cM and conclude that this is the same QTL
as well. Furthermore, we identified two more QTL for Ca on chromosomes 6AL and 7BS. Other
QTL for Ca have been reported on chromosomes 1A, 2B, 4A, 4B, 5B, 6B and 7B (Peleg et al.,
2009). We located the QTL on 7BS at 10.8cM, while Peleg at al. (2009) reported their QTL at

23.0 £ 7.8cM.

Hotspot for Mo, Se and P
The QTL mapped for Mo, Se, and P on chromosome 5BL are located at 84.8cM, 88.3cM

and 92.0cM, respectively, and could be the same QTL. Se is essential for animals and humans,
and can lead to deficiency related disease but has adverse health effects if the Se intake is
chronically too high. However, the synthetic parent contributed the allele reducing the Mo, Se
and P concentration in wheat shoots. Therefore, this QTL will probably not find any application

in MAS.

Conclusion

With this study, we provide new information and insight into the wheat ionome. We have
measured 23 elements in two different plant tissues in high-throughput fashion and mapped
multiple QTL. Several hotspots controlling the concentration of multiple elements were
identified here. Here, we analyzed the elemental composition of shoot and root tissue, which
allows to draw some conclusions regarding nutrient translocation. However, experiments that are
more specific might be needed, especially to assess nutrient sequestration to the wheat grain.
While some of these hotspots might find their application in plant breeding through MAS, others
may be more useful to study their functionality. Some hotspots might be functional genes,

however this will have to be confirmed. The next step is to better understand the overlap between
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the different networks, identify possible markers for MAS and develop gene hypotheses based on

comparative genetics.
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Figure 2.1 Correlation analysis shoots

Red indicates strong positive correlation of elements, white no correlation and blue
strong negative correlation. Ni, K, Pb are positively correlated with each other
while not or negatively with all other elements. Cd, Cu, Mn, Zn showed positive
correlations indicating a cluster of elements. Several other traits are positively
correlated (i.e. Ca and Sr, P and Se, and As and Fe).
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Figure 2.2 PCA biplot based on the correlations of elements in shoots

The PCA biplot is based on the correlations of all elements in the shoots. The
two major principal components accounted for 38.9 % of the variation in the
data set. PC1 explained 26.2% and was positively loaded for most elements
while PC2 explained 12.7 % of the variation. Several correlated elements such
as for example Cd, Cu, Mn, Zn and Si cluster together.
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lonomics LOD profile roots
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Figure 2.3 Logarithm of the odds (LOD) profile roots
The logarithm of the odds (LOD) profile for the root tissue shows one QTL for Ni (orange) and

Na (turquoise) on chromosomes 2BS (LOD 5% =3.00 and 3.01 respectively).
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Figure 2.4 Logarithm of the odds (LOD) profile for Ca, Se, Sr, Mo and P in the shoots

The LOD profile for the shoot tissue shows two QTL for Ca (blue) on chromosomes 6AL, 6DL

and 7BS (LOD 5% = 3.16), one for Se (green) on chromosome SBL (LOD 5% = 3.08), one QTL

for Sr (olive) on chromosome 6DL (LOD 5% = 3.14), three for P (red) on 1BL, 5BL and 5SDL

(LOD 5% =2.99) and one QTL for Mo on 5BL (LOD 5% = 3.00). Furthermore, MQM identified

four more QTL for P on chromosomes 4AS, 3DL, 5A and 7AL.
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lonomics LOD profile As, Ba, dw
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Figure 2.5 Logarithm of the odds (LOD) profile for As, Ba and biomass (dw) in the shoots
The LOD profile for the shoot tissue shows one QTL for As (green) on chromosome 3B (LOD
5% =3.07), two for biomass (blue) on chromosomes 1AL and 2BL (LOD 5% = 3.14), two QTL
for Ba (red) on chromosomes 4AS and 5BS (LOD 5% = 3.12).
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lonomics LOD profile Cd, Cu, Mn, S, Zn
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Figure 2.6 Logarithm of the odds (LOD) profile for Cd, Cu, Mn, S and Zn in the shoots

The LOD profile shows one QTL hotspot for Cd (olive), Cu (green), Mn (red), and Zn (pink) on
chromosome 5AL at 127.9cM. A QTL for S (blue) was mapped in very close proximity at
125.4cM. The LOD significance thresholds at o = 0.05 are 3.15, 3.08 and 3.20 for Cu, S and Zn
respectively, and 3.09 and 3.07 for Mn and Cd. Another QTL for Zn was identified on
chromosome 7AL, one QTL for Cd was mapped on chromosome 4BS and one for Mn on 7D.
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Figure 2.7 Phenotypic distributions of BLUEs of Al, As, Ba, B, Cd and Ca shoot tissue
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Figure 2.11 Phenotypic distributions of BLUESs of Al, As, Ba, B, Cd and Ca root tissue
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Figure 2.13 Phenotypic distributions of BLUEs of Mg, Mn, Mo, Ni, P and K root tissue
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Table 2.1 Nutrient solution wheat hydroponics

Element [uM] [pM_adj]

Ammonia NO3 8981.8 8981.8
Ammonium NH4 500.0 500.0
Arsenic As 4.0 4.0
Boron B 12.5 12.5
Buffer (K) MES 1000.0 1000.0
Buffer (Zn) HEDTA 77.0 77.0
Cadmium Cd 0.1 0.1
Calcium Ca 4000.0 4000.0
Chlorine Cl 50.0 50.0
Chromium Cr 0.1 0.1
Cobalt Co 0.1 0.1
Copper Cu 1.0 1.0
Todine I 1.0 1.0
Iron Fe 77.0 77.0
Lead Pb 0.1 0.1
Lithium Li 0.1 0.1
Magnesium Mg 250.0 250.0
Manganese Mn 2.0 2.0
Molybdenum Mo 0.1 0.1
Nickel Ni 0.1 0.1
Phosphorus P 250.0 250.0
Potassium K* 587.0 587.0
Rubidium Rb 0.1 0.1
Selenium Se 2.0 2.0
Silicon Si 5.0 5.0
Sodium Na*** 312.2 612.2
Strontium Sr 0.1 0.1
Sulfur S** 250.5 2250.5
Zinc Zn 2.0 2.0

To hold the solution at pH 6.0 more K (*) was added as a
result of pH adjustment of the MES buffer. MES contributes
another ~2000 uM sulfur (**), and another 300 uM sodium
(***) is added by the NaOH in the iron solution.
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Table 2.2 Average % RSD and lower limit of detection (LOD)

Element Avg. % RSD LOD
Aluminum Al 3.57 -
Arsenic As 2.85 0.0383
Barium Ba 7.21 -
Boron B 6.01 0.1463
Cadmium Cd 2.71 0.0044
Calcium Ca 3.03 0.2913
Chromium Cr 121.35 0.0219
Cobalt Co 3.14 0.0028
Copper Cu 291 0.0053
Iron Fe 2.54 0.2399
Lead Pb 2.41 0.0077
Magnesium Mg 3.79 1.2190
Manganese Mn 3.44 0.0009
Molybdenum Mo 2.15 0.0034
Nickel Ni 7.76 0.0028
Phosphorus P 659.20 2.7940
Potassium K 2.23 6.8640
Selenium Se 2.61 0.0142
Silicon Si 2.92 0.0886
Sodium Na 659.70 -
Strontium Sr 4.73 0.0008
Sulfur S 660.00 0.5086
Zinc Zn 2.99 0.0651
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Table 2.3 Mean, standard deviation (Std. Dev.), coefficient of variation (CV), and

heritability on entry mean basis for all elements

Element Shoots Roots

Mean Std. Dev. CV H* Mean Std. Dev. CV H’
Al 9.26 2.20 23.72 0.36 24.00 13.91 57.94 0.25
As 6.57 1.13 17.14 0.45 95.83 40.08 41.82 0.30
Ba 0.81 0.17 21.68 0.62 0.44 0.27 60.89 0.33
B 26.24 4.41 16.79 0.32 24.15 14.47 59.94 0.43
Cd 0.33 0.06 18.73 0.75 6.21 2.83 45.58 0.25
Ca 6277.61 1063.79 16.95 0.65 2667.98 1177.41 44.13 0.35
Cr 1.64 0.15 8.95 0.03 12.84 7.04 54.81 0.31
Co 0.03 0.02 54.26 0.17 0.59 0.26 43.79 0.23
Cu 8.20 1.02 12.40 0.66 10.79 4.90 45.42 0.32
dw 711.05 200.87 28.25 0.73 139.86 47.84 34.21 0.50
Fe 72.14 8.70 12.06 0.15 212.86 98.90 46.46 0.38
Pb 0.16 0.09 56.01 0.20 1.02 1.18 116.40 0.35
Mg 1181.33 118.26 10.01 0.57 2914.70 1440.42 49.42 0.17
Mn 115.23 18.73 16.26 0.67 232.10 139.38 60.05 0.10
Mo 3.20 0.42 13.15 0.66 0.90 0.48 52.97 0.39
Ni 0.21 0.14 65.57 0.44 0.30 0.17 56.87 0.01
P 10054.50 1054.39 10.49 0.73 8229.54 3554.57 43.19 0.34
K 49234.03 15992.60 32.48 0.58 46599.15 2305091 49.47 0.26
Se 10.56 1.14 10.84 0.62 80.11 32.89 41.06 0.38
Si 61.76 21.55 34.90 0.75 15.63 12.61 80.65 0.65
Na 119.70 25.33 21.16 0.60 455.58 213.51 46.86 0.37
Sr 1.30 0.21 16.42 0.45 1.68 0.74 44.26 0.43
S 2651.21 193.97 7.32 0.38 3057.46 1296.68 42.41 0.34
Zn 22.87 2.49 10.89 0.54 59.89 25.46 42.51 0.28
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Table 2.4 Pairwise correlations between all elements in the shoots

Element Al As Ba B Cd Ca Cr Co Cu dw Fe Pb Mg Mn Mo Ni P K Se Si Na Sr S ZIn

Al 1.00 0.05 0.156* -0.44*** (.05 0.01 0.10 -0.24*** 0,09 -0.21*%* 013 -0.03 -0.06 0.05 0.06 -0.19*  -0.05 0.19**  0.08 0.60*** 0.21**  0.07 -0.06 0.09
As 1.00 0.36*** 0.10 0.14 0.52%**  0.39%** 021** 0.12 -0.22%*  0.66*** -0.01 0.31***  -0.03 0.26*** 0.11 0.47*%*  -0.12 0.45%**  0.02 0.36%**  0.54%%*  (37*** (.14
Ba 1.00 -0.08 -0.06 0.51*** (.19**  0.08 0.24**%  _020** 0.36*** -0.10 0.46***  0.26*** (.43%**  _(.15* 0.33%** _(.15*% (.28%** (25%%* (024** 0.65*** 0.09 0.10

B 1.00 -0.03 0.18* 0.36*** 021* -0.01 0.09 0.05 0.03 0.12 -0.03 0.02 0.23**  0.16* -0.27*** 0.10 -0.27*** -0.07 0.13 0.19* -0.13
Cd 1.00 0.04 0.15* -0.05 0.43%%*%  021**  022** 0.09 0.10 0.55%**  0.29*** 0.07 0.11 0.01 0.02 0.13 -0.06 0.01 0.28*** (), 55%%*
Ca 1.00 0.32%*+  023**  (0.15* -0.03 0.51*** -0.02 0.57***  0.14* 0.22**  0.02 0.18* -0.19*  0.27*** 0.04 0.44%*% (. 85%** (37*** 003
Cr 1.00 -0.01 0.12 -0.15%  0.45*** 0.16* 0.29***  0.14* 0.20%*  0.24*** 043*** 0.05 0.25*** 0.11 0.13 0.37*%*%  027*** (.12
Co 1.00 -0.04 -0.08 0.19**  -0.09 0.15* -0.04 0.03 0.13* 0.06 -0.31%%* 0.12% -0.26%*** 0.13* 0.17* 0.10 -0.09
Cu 1.00 0.13 0.25*** 0.15* 0.32%**  0.57*** 048*** -0.03 0.26***  0.06 0.21**  0.24***  -0.06 0.21%%  0.37*%*  0.61***
dw 1.00 -0.19*  -0.07 0.01 0.27***  0.07 0.04 -0.24*** 0,01 -0.27*** _0.21** -0.17*  -0.18* 0.15* 0.22*
Fe 1.00 -0.08 0.44%**  020%*  036%** 0.01 0.41%**  0.13 0.44***  0.16* 0.49%%* (. 52%%% () 44%%k* () 27%**
Pb 1.00 -0.14 0.04 -0.15%  045***  -0.02 0.54***  -0.07 -0.01 -0.41*** 0.11 0.03 -0.01
Mg 1.00 0.29%**  45%**  _(.14%  (.25%** _028*** 020** 0.11 0.38%%% (. 45%%%  (26%** (28%**
Mn 1.00 0.48**  -0.02 0.17* -0.01 0.06 0.25%=*  0.12 0.12%%  0.28**%* (.47***
Mo 1.00 -0.18%  0.38%**  _034%%* (33%**  (023** 017 0.19%%  0.34%*%*  (.40%**
Ni 1.00 0.04 0.35%**  .0.07 -0.29%**  _0.40*** 0.12 0.07 -0.09
P 1.00 -0.13 0.59*** 0.07 0.12* 0.30%*%*  0.26%*%*  (.30%**
K 1.00 -0.13 0.02 -0.44%** 0,01 -0.02 0.05
Se 1.00 0.26%**  0.26%** 0.28*** (36%** 0.08

Si 1.00 0.26**  0.10 0.07 0.16*
Na 1.00 0.24**  020** 0.05

Sr 1.00 0.32***  0.00

S 1.00 0.32%**
Zn 1.00

Asterisks indicate significance at * p < 0.05, ** p < 0.001, *** p <0.0001
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Table 2.5 Summary of identified QTL for elements measured in the roots

Element Chr GBS Marker Pos LOD LoD Pl?eno QTL SE Effect A EffectB
(cM) 0=0.05 variance effect
Nickel 2BS synopGBS894 78.7 3.22 3.00 9.24%  -0.05 0.013 0.05 -0.05

Sodium  2BS synopGBS894 78.7 3.65 3.01 10.74 %  -69.58 16.60 69.58 -69.58

GBS markers, QTL positions Pos (cM), LOD, LOD at the 5% significance threshold score, estimated phenotypic
variance explained by QTL, estimated QTL effect and allele effects (effect A and effect B) for all QTL. QTL are
sorted based on chromosome and location. The LODs reported here are LODs calculated through MQM.
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Table 2.6 Summary of identified QTL for elements measured in the shoots

Pos LOD Pheno QTL
Element Chr GBS Marker (M) LOD offect SE Effect A Effect B
0=0.05 wvariance
dw_mg IAL  synopGBS1113 882  3.24 3.14 839  -58.14  14.84 58.14 -58.14
Phosphorus IBL  synopGBS151 622 3.16 2.99 466 -23589 6205 23589  -235.89
dw_mg 2BL  synopGBS565 787  3.64 3.14 9.50 61.56 1477 -61.56 61.56
Arsenic 3B synopGBS697 926 476 3.07 13.27 041  0.09 -0.41 0.42
Phosphorus 3DL  synopGBS963 719 929 2.99 1506  -943.00 137.92  934.00  -943.00
Phosphorus 3DL  synopGBS416 86.9  g51 2.99 851 91460 140.60  -914.60  914.60
Barium 4AS  synopGBS923 09 487 3.12 12.35 0.07  0.01 -0.07 0.07
Phosphorus 4AS  synopGBS620 33.8  5.00 2.99 756  -299.63  61.85  299.63  -299.63
Cadmium 4BS  synopGBS885 329 1480 3.07 33.19 -0.04  0.01 0.04 -0.04
Phosphorus SA synopGBS836 87.7 4.6l 2.99 6.90 29021 6251  -290.21 29021
Sulfur SAL  synopGBS147 1254 3.09 3.08 8.90 56.63  14.75 -56.63 56.63
Cadmium SAL  synopGBS429 127.9  4.99 3.07 9.59 0.02 0.0l -0.02 0.02
Copper SAL  synopGBS429 1279  7.10 3.13 17.52 0.44  0.07 -0.44 0.44
Manganese SAL  synopGBS429 127.9  12.40 3.09 17.57 10.02 1.20 -10.02 10.02
Zinc SAL  synopGBS429 1279 544 3.20 14.32 099  0.19 -0.99 0.99
Molybdenum  5BL  gynopGBS1229 848  3.63 3.00 10.28 0.13 0.03 -0.13 0.13
Selenium SBL  synopGBS835 883  4.52 3.08 12.65 039  0.08 -0.39 0.39
Phosphorus SBL  synopGBS1018 920 10.20 2.99 1680 43730  60.62  -437.30 43730
Copper 5BS  synopGBS72 0.8 3.80 3.13 7.88 029  0.07 -0.29 0.29
Barium SBS  synopGBS1229 848  4.67 3.12 11.83 0.07 0.0l -0.07 0.07
Calcium 6AL  synopGBS1401 95.6  4.50 3.16 1017 35347 7189  -353.47  353.47
Calcium 6DL  synopGBS1323  120.0  7.02 3.16 1650  -44583 7096 44583  -445.83
Strontium 6DL  synopGBS322 1203 4.69 3.14 13.09 -0.08  0.02 0.08 -0.08
Phosphorus 7AL  synopGBS452 855 472 2.99 713 29655 6417 29655  -296.55
Zinc 7AL  synopGBS1053 88.1 332 3.20 8.46 -0.75  0.19 0.75 -0.75
Calcium 7BS  synopGBS1380 108 4.04 3.17 9.05 -326.96  70.51 32696  -326.96
Manganese DS synopGBS761 725 425 3.09 8.32 5.63 1.24 -5.63 5.63

GBS markers, QTL positions Pos (cM), LOD, LOD at the 5% significance threshold score, estimated phenotypic
variance explained by QTL, estimated QTL effect and allele effects (effect A and effect B) for all QTL. QTL are
sorted based on chromosome and location. The LODs reported here LODs calculated through MQM.
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Chapter 3 - Genomic selection for increased yield in synthetic

derived wheat

Abstract

The loss of genetic diversity in bread wheat (Triticum aestivum L.) due to bottlenecks
from polyploidy, domestication and modern plant breeding can be compensated by introgressing
novel exotic germplasm. A successful approach to capture genetic diversity is the production of
primary synthetic bread wheat, which are contemporary reconstitutions of the ancestral genomes
of wheat from diverse wild relatives. To this end, wheat breeding and genetics programs around
the world have developed many primary synthetics. However, this diverse germplasm has many
undesirable characters, making direct use in breeding programs difficult. To increase the speed
of introgression of exotic germplasm, genomic selection approaches could be applied to enable
rapid cycles of selection. To test this approach, selected lines from double haploid (DH) and
recombinant inbred line (RIL) populations between six different primary synthetics and the elite
cultivar Opata M85 were evaluated for grain yield and other important agronomic traits. Field
trials were conducted at CIMMYT (International Center for Maize and Wheat Improvement)
over two years in irrigated, heat, and drought-stressed environments. Several synthetic derived
lines outperformed the elite parent Opata M85 in all environments indicating that the primary
synthetics contribute alleles increasing yield. Whole genome profiles were generated using
genotyping-by-sequencing (GBS) to generate whole-genome prediction models in elite by
synthetic populations. Five different whole-genome prediction models that can be applied for
genomic selection (GS) were evaluated for prediction accuracy using cross-validation. Overall,

the prediction models had moderate predictive ability. However, the prediction accuracies were
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slightly lower than expected based on the heritability of the traits. As such, rapid cycle GS for
introgression of exotic alleles might not perform as well as expected with synthetic derived

wheat due to complex and confounding physiological effects.

Introduction

Domestication and modern plant breeding led to the reduction of genetic diversity in
cultivated crops, including in bread wheat (7riticum aestivum L.) (Reif et al. 2005). Cultivated
bread wheat (2n = 6x =42, AABBDD) arose from a natural whole-genome hybridization of
cultivated tetraploid wheat (Triticum turgidum L.) (2n = 4x = 28, AABB) and diploid wild
species Aegilops tauschii Coss. (2n = 2x = 14, DD) about 8,000 years ago (Kihara 1944;
McFadden and Sears 1946; Dvorak et al. 1998; Talbert et al. 1998; Marcussen et al. 2014). This
speciation event resulted in the first genetic bottleneck and was followed by multiple genetic
bottlenecks during its domestication process. The diversity of modern bread wheat varieties has
been further narrowed through strong selection in breeding programs. It is well recognized that
maintaining genetic diversity is crucial for sustaining gains through plant breeding and wild
germplasm is a valuable source of novel genes for disease resistance, tolerance to abiotic stresses
and increased yield (Mujeeb-Kazi et al. 2004, Reif et al., 2005).

A successful method to compensate the loss of genetic diversity in bread wheat is the
production of synthetic hexaploid wheat as first described by McFadden and Sears (1946). Since
then several breeding programs have improved the technique. The CIMMY T wide-crossing
program has developed over a thousand new primary synthetics from more than 600 different
Aegilops tauschii accessions (Zhang et al. 2005). The value of landraces and synthetic derived

wheat to improve genetic diversity has recently been demonstrated in wheat breeding programs
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at CIMMYT as the use of synthetics resulted in a slight increase in genetic diversity (Warburton
et al. 2006).

A synthetic derived mapping population from the cross between Synthetic W7984 (Altar
84 / Aegilops tauschii (219) CIGM86.940) and elite wheat cultivar ‘Opata M85’ was developed
in the late 1980s and widely used in the wheat community. This original population is known as
‘ITMI’ or ‘M6’ mapping population. Recently, Sorrells et al. (2011) reconstructed two synthetic
wheat reference populations with the same pedigree as the original ITMI mapping population.
One population consists of doubled haploids (named SynOpDH) and one of recombinant inbred
lines (named SynOpRIL) (Sorrells ef al. 2011). Even though primary synthetics carry favorable
genes associated with tolerance to a range of biotic and abiotic stresses, they often harbor
unfavorable alleles associated with poor agronomic performance and low yield and need to be
backcrossed to an elite cultivar or breeding line (Arraiano et al. 2001; Mujeeb-Kazi et al. 2004).
Once backcrossed and intensively selected, the newly created plant material can start to be
incorporated into the elite wheat breeding program for cultivar development. This process is
very time-consuming, limiting the use of new genetic diversity in the breeding program. A
previously proposed approach to introgress exotic germplasm more rapidly is through advanced
backcross quantitative trait loci (QTL) mapping (Narasimhamoorthy ef al., 2006). However,
number of identified QTL for yield and yield-related traits was low. Here we explore the
potential for applying genomic selection for introgression of primary synthetics into the elite
wheat breeding program.

Important agronomic traits, such as yield, are complex quantitative traits controlled by
many loci of small effect. Traditionally, QTL mapping studies have been performed to identify

loci underlying these traits. However, QTL mapping has failed to identify all loci controlling
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them because the contribution of small effect loci to the total genetic variance cannot be detected
applying traditional QTL mapping by linkage analysis (Meuwissen ef al. 2001). Only loci with
relatively large effect are identified by QTL mapping. In contrast, genomic selection (GS) can
be used to predict complex quantitative traits in animal and plant breeding by omitting
significance testing and modeling all marker effects. With all marker-marker effects
simultaneously estimated across the entire genome, genomic estimated breeding values (GEBVs)
can be calculated (Meuwissen et al. 2001; Heffner et al. 2009). Parents for the next cycle can
then be chosen based on their GEBVs prior to phenotyping (Meuwissen et al. 2001; Heffner et
al. 2009; Meuwissen 2009). With rapid selection on seedling plants, applying GS can
significantly reduce selection cycle time (Heffner et al. 2010). Over the last several years, GS
has been shown to increase the breeding efficiency in several crops using different types of
populations (Heffner ef al. 2011; Wiirschum et al. 2013; Rutkoski et al. 2014; Spindel et al.
2015; Zhang et al. 2015).

The underlying assumption for GS to work is extensive linkage disequilibrium (LD)
between markers and QTL, at least one marker is assumed to be in LD with each QTL affecting
a trait. This requires large numbers of genetic markers such as single nucleotide polymorphisms
(SNPs). The rapid development and low cost of Next Generation Sequencing (NGS)
technologies make it possible to include genotypic data into the equation and increase the
information available to make more targeted selections. With inexpensive, whole-genome
profiling, GS can be implemented as an effective approach to increase population size when
traits are expensive to phenotype and reduce time to selection when traits are difficult or time

consuming to measure (Poland et al. 2012b).
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Abundant genetic diversity for agronomically important traits is found in wild relatives of
most cultivated crops (Zamir 2001). One of the main limitations to use exotic germplasm in
modern crops is the time it takes to introgress favorable alleles into elite material. Bernardo
(2009) estimated duration of 10 — 20 years for successful introgression of exotic germplasm into
elite maize. These numbers are not encouraging and most breeders will not exploit the use of
exotic germplasm. Several breeding strategies such as selection in F,, BC; and BC,, recurrent
selection of F,, advanced backcross QTL mapping, exotic libraries etc. have been proposed for
the introgression of exotic germplasm in different crops such as wheat, corn, sorghum, cowpea
and maize (Crossa and Gardner 1987; Ehlers and Foster 1993; Zamir 2001; Narasimhamoorthy
et al., 2006; Feuillet et al. 2008; Ochanda et al. 2009). The most popular and recommended
breeding strategy for an elite x exotic cross is to start phenotypic selection after the first or
second backcross. In a simulation study in maize, Bernardo (2009) tested different breeding
strategies to determine the most adequate for rapid introgression and improvement of a
quantitative trait in an elite x exotic cross applying genome-wide selection with comparison of
F,, BC, and BC; populations. The most successful strategy for rapid introgression was when
selection started in the F; followed by 7 — 8 cycles of GS. In this scenario, favorable alleles from
the elite parent were increased while maintaining favorable alleles from the exotic parent. This
was true even when the elite parent contributed many more favorable alleles than the exotic
parent (Bernardo 2009). Furthermore, gains from 7 — 8 cycles of GS were larger than gains from
two cycles of testcross phenotypic selection. Most importantly, the time to successfully
introgress exotic germplasm applying GS could be reduced to three years following development

of cycle 0 and the ability to advance three generations per year. This is a remarkable reduction
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from the usual 10 — 20 years. Genome-wide selection has the potential to speed up the pre-
breeding process and the introgression of exotic alleles into elite material.

Our goal is the development of a fast cycling biparental GS scheme for pre-breeding to
rapidly introgress favorable alleles from primary synthetics into the elite bread wheat-breeding
program. The proposed breeding scheme consists of two different genomic selection cycles GS1
and GS2 (Figure 3.1). GS1 represents the first cycle of our breeding scheme. Six synthetic
derived populations are our base populations consisting of lines described in Table 3.1.
SynOpDHs and SynOpRILs were added to increase the population size for the first cycle of GS.
In GS2, we test newly derived synthetic material developed by crossing the top two lines of each
population with elite CIMMYT cultivars. The goal of this breeding scheme is the development
of a rapid cycle biparental GS to move synthetic derived lines faster into the elite wheat breeding
program. In this study, we focus mainly on GS1 to test two hypotheses; (i) exotic alleles do
contribute yield-promoting alleles and (ii) GS can be applied to exotic germplasm of diverse

genetic background.

Materials and Methods
Plant material

All field trials were grown at CIMMYT’s Norman E. Borlaug Research Station in Ciudad
Obregon, Mexico. Synthetic derived spring wheat lines from 6 different biparental populations
were used for this study. Table 3.1 includes the pedigrees and population sizes of the material in
yield trials during seasons 2012/2013 and 2013/2014. All lines in population Synthetic 6 in
Table 3.1 have the same pedigree and are part of the original Synthetic W7984 x Opata M85
population (also known as ‘ITMI’ or ‘M6’ population), and the new Synthetic W7984 x Opata

M85 double haploid (SynOpDH) and recombinant inbred lines (SynOpRIL) mapping
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populations (Sorrells ef al. 2011). The other five populations have different synthetic parents but
share the elite parent Opata M85. The plant material is very diverse and the range for days to
flowering (DAYSFL) and plant height (PTHT) is large. All lines were grown in hill plots during
season 2011/2012 and selected only for DAYSFL and PTHT to obtain meaningful yield trials by
reducing the range of those two traits. A total of 429 lines were selected with reasonable height

and maturity to include in yield trials during subsequent years.

Experimental Design

The conditions at CIMMYT’s station in Cd. Obregon, Mexico are favorable to generate
heat and drought stress. The soils are fertile but there is only very little precipitation during the
off-season and no precipitation during the season. This allows controlling the irrigation precisely

and simulating different growing conditions.

Irrigation

The irrigated trials were planted in early December and watered optimally with ~600mm per
season to avoid drought stress at any stage of the experiment. The trials were harvested every
year early May. The experimental design for the irrigated trials was a row-column spatially
analyzable design with two replicates (Williams et al. 2006). In this design, the repeated checks
and entries are randomly distributed in each replicate to prevent clustering of checks. The elite
parent Opata M85 and other elite CIMMYT lines were included as repeated checks. The

irrigated trials were planted in two-row plots of dimensions 0.8m x 3.0m (2.4m2).

Drought

Drought stress trials were planted and harvested at the same time as the irrigated trials. Over the
course of the season the drought trials were only irrigated with half the water accumulating

~300mm per season. To avoid plot-edge effects the drought trials were planted in larger six-row
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plots of 1.2m x 3.0m (3.6m2). Due to larger plot size and limited field space the drought trials
were planted as augmented designs (Federer 1956). The included repeated checks were

composed of different elite CIMMYT lines including OpataM85.

Heat

In contrast, the heat stress trials were planted in late February to expose the wheat to post-
anthesis heat stress. However, to avoid confounding effects of drought stress, the trials were
watered optimally with ~600mm per season. The heat trials were harvested late June and plants
exposed to temperatures ranging from 35 — 40°C. In comparison, the irrigated and drought trials
were exposed to maximal daytime temperatures of 25 — 30°C. The nighttime temperature was on
average around 22°C. The experimental design and plot size for the heat trials were the same as

for the irrigated trials.

Data collection and statistical analysis

We collected data on several important agronomic traits using the Field Book app (Rife and
Poland 2014). Traits collected were days to heading date (DTHD), days to flowering (DASFL),
days to maturity (DAYSMT), plant height (PTHT), grain weight per plot (GRWT) and grain
yield per hectare (GRYLD). DTHD, DAYSFL and DAYSMT were recorded when more than
50% of the plants headed, flowered or reached maturity, respectively. PTHT was measured with
a ruler and the average of three measurements recorded. GRWT refers to the weight of the
harvested grain per plot. GRYLD was calculated based on GRWT per plot area (m?) and
extrapolated to t/ha. The data analysis was carried out using the statistical software R (R Core
Team 2014). To calculate Best Linear Unbiased Estimators (BLUEs) we used ASReml for R for

mixed model analysis (Gilmour ef al. 2009).
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BLUESs were calculated for all traits across both years. The model used to calculate

BLUE:s for the irrigated and heat trials was:

Yijk = 1+ gi + mj + (gm)j + (mr) i + e [1]

where y; i is the phenotypic trait analyzed, g; is a fixed effect for each genotype, m; is
the random effect of the jth year, (gm);; is the random interaction effect of the i genotype with
the | year assumed N(O, Iajm), (mr) ji is the k™ replicate nested within j" year and e; jk 1s the
random error with N(0, I62). For the augmented drought trial only a few checks were repeated
multiple times and the model to calculate BLUEs adjusted to

Yijk = u+ g + mj + (gm);; + ¢ + ey [2]

where g; is the fixed effect for each experimental line (replicated only once), (gm);; is
the interaction of the i entry with the j™ year and ¢y, is the fixed effect of each replicated check.

Broad sense heritability (F°) was calculated on a entry means basis according to Bernardo,

(2010) as
2
H? = —— [3]
oZ+-9X42¢
y 1y

2 . . . 2 . . . . .
where o is the genotypic variance, g, is the genotype by year interaction variance, y is

the number of years, r is the number of replicates, and 6 is the error variance (Bernardo 2010).

Genotyping, imputation and quality control

We genotyped all lines with genotyping-by-sequencing (Elshire et al. 2011) using the two-
enzyme approach (Poland ef al. 2012a). Briefly, 44,421 single-nucleotide polymorphisms
(SNPs) with up to 70% missing data were retained in the data set and the tags aligned to the

recently published draft sequence of the wheat genome (The International Wheat Genome
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Consortium, 2014) using POPSEQ (Chapman et al. 2015). SNPs with minor allele frequency
(MAF) of less than 5% were excluded from the dataset. Imputation of the ordered marker data
was performed using Beagle v.4 (Browning and Browning 2013). The parameters were set as
described by Jordan et al., (2015): window = 5,000 overlap = 500 burnin-its =10 impute-its = 10.
SNPs monomorphic for both parents were excluded and finally, a total of 7,427 SNPs were used
for GS. The relatedness of lines was assessed with a phylogenetic tree using R package ape with

standard settings (Paradis et al. 2004).

Genomic Selection

We analyzed the predictive ability of synthetic derived wheat in two sets. The first set was
comprised of bi-parental population Synthetic 6 with 242 individuals referred to as Set 1 (old
“M6”, “SynOpDHs” and “SynOpRILs”). The second set, referred to as Set 2, included 396 lines

from all six synthetic populations

Predictive Models
We applied five statistical methods for GS embedded in R package GSwGBS (Gaynor 2015):

Ridge Regression of marker effects (RRBLUP) and Reduced Kernel Hilbert Space Regression
(RKHS) implemented through r package rrBLUP (Endelman 2011), Partial Least Squares
Regression (PLSR) applying r package pls (Mevik and Wehrens 2007), Elastic Net (ELNET)
using r package glmnet (Friedman et al. 2010), and Random Forest with 1000 trees generated
with r package randomForest (RF) (Liaw and Wiener 2002).

RRBLUP is a shrinkage model assuming equal variance of all markers and therefore shrinks all

marker effects equally. RKHS is another shrinkage model combining the classical additive
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genetic model with kernel functions. RKHS does not assume linearity. Here the Euclidean
distance matrix is used for Gaussian kernel predictions and genomic predictions are made by
estimating line effects (referred to as G-BLUP in Endelman 2011). PLRS is a dimension
reduction method attempting to construct a good model from variables with less well-understood
relationships. Latent variables are extracted as linear combination of predictors and used to
predict the response (Lorenz ef al., 2011). ELNET combines the penalties from ridge regression
(shrinkage of marker effects) and the LASSO (least absolute shrinkage and selection operator)
cost function. This results in a sparse model that allows for grouping effects of variables. RF is
a machine-learning algorithm making use of regression trees grown on bootstrap samples. The
prediction of a given observation is obtained by averaging the predictions over trees for which
the given observation was not used to build the tree (Lorenz et al., 2011). For a more
comprehensive description of the genomic selection prediction models, we refer to Lorenz ef al.,

2011 and Heslot et al., 2012.

Assessing prediction accuracy

Five-fold cross validation (CV) was performed by randomly assigning 80% of the lines as
training population (TP) and the remaining 20% as selection candidates (SC). The whole
process was repeated 20 times. The prediction accuracy was measured as Pearson correlation

between the BLUE and the GEBV.
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Results

Marker data and quality control
Analysis of the genotypic data revealed that 15 of the new SynOpRILs are selfs of the

elite cultivar Opata M85, and 18 lines from the old M6 population are genetically unrelated and
not progeny of Synthetic W7984 x Opata M85. The two sets of lines split into two distinctive
clusters apart from the rest of the population (Figure 3.4). A complete list including line
identification of the 33 lines in question is available in Table 3.2. After removing the 33 lines,

we retained 396 lines for further analysis.

Heritability and line performance

The phenotypic correlations across two years for DAYSFL, DAYSMT, DTHD, GRYLD
and PTHT are shown in Table 3.3. The correlations are high and significant for most traits and
environments. Broad sense heritability H2 on an entry mean basis, grand mean, least significant
difference (LSD) and coefficient of variation (CV) are shown in Table 3.4. Heritabilities are high
for DAYSFL, DAYSMT and DTHD (0.88 — 0.98) across all environments. Heritabilities for
GRYLD are lower for the drought (0.42) and irrigated (0.76) trials but remain high for the heat
(0.94) trial. The heritability of PTHT was lower for all trials (0.57-0.78). The high heritability
for most traits and environments indicate high repeatability of our experiments across years.

Several synthetic derived lines outperformed elite parent Opata M85 in all environments
(Figure 3.2 and Figure 3.3). Looking at the entire population, the distribution of the synthetic
derived line performance relative to Opata M85 was highest under irrigation and lowest under
drought stress (Figure 3.3). Under optimal conditions, 37.1% of synthetic derived lines
outperformed elite parent Opata M8S5. A relative smaller portion of lines outperformed Opata

M85 under heat and drought stress. While still 30.6% of synthetic derived lines had a higher
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yield than Opata M85 under heat stress, only 19.2% outperformed Opata M86 under drought

stress.

Genomic Selection

We used five different statistical models for genomic selection (RRBLUP, RKHS, PLSR,
ELNET, RF). The prediction accuracies are reported in Table 3.5 for all models, traits and trials.
Generally, the prediction accuracies were highest for the heat trial across both sets. The
prediction accuracies were higher in Set 2 (including 6 populations) than Set 1 (only one
biparental population) under irrigation and drought. The opposite was observed for the heat trial,
all traits had higher prediction accuracies in Set 1 than Set 2.

The GS models predicted traits in the irrigated and drought trials moderately well, while
performing slightly better for traits in the heat trial. GS accuracies were highest in all trials for
DAYSFL, DAYSMT and DTHT. GRYLD was predicted better than PTHT in the irrigated and
heat trials, while the opposite was found for the drought trial. Prediction accuracies varied
depending on the applied GS model and data set. ELNET and RF were generally the better
performing models (Table 3.5 The performance difference between ELNET, RF and the other
three models was largest for DAYSFL, DAYSMT and DTHD. Depending on the GS model
used, the prediction accuracies for DAYSFL ranged from 0.41 — 0.54 for irrigation, from 0.39 —
0.49 under drought and from 0.48 — 0.57 under heat stress in Set 2. The prediction accuracies for
these traits were generally slightly lower in Set 1 under irrigation and drought. However, the
heat trial still had the highest accuracies and the drought trial the lowest. The difference in
prediction accuracies between the two sets was more pronounced in the irrigated and drought
trials while both sets had similar accuracies in the heat trial. The GS accuracies were in the same

range in both sets for DAYSMT and DTHD.
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A similar trend was observed for PTHT. Generally, PTHT was poorly predicted across
all trials. The highest prediction accuracies for PTHT were obtained with GS models RF,
ELNET and RRBLUP. However, the predictive ability of GRYLD was different. While RF still
performed best across all trials, ELNET was outperformed by RKHS and RRBLUP in both sets.
Generally, RHKS competed very well with RF to predict GRYLD under all conditions.
Prediction accuracies for GRYLD using different GS models ranged from 0.22 —0.35, 0.21 —
0.32 and 0.28 — 37 for the irrigated, drought and heat trial respectively in Set 2. The prediction
accuracies of GRYLD in Set | for the heat trial were slightly higher than those of Set 2. The
opposite was observed for the irrigated and drought trial where higher prediction accuracies

where obtained in Set 2.

Discussion
Synthetics contribute yield-promoting alleles

Our study confirms that synthetic derived wheat harbors yield-promoting alleles for
wheat grown in different environments (Figure 3.2 and Figure 3.3). The agronomic performance
and end-use quality of most synthetic derived lines are rather poor and in most cases, synthetics
need to be backcrossed to elite bread wheat. The high yielding material identified here could be
utilized for breeding in a broad variety of environments.

The obvious choices are to cross synthetic material with high yield under heat and or
drought to elite bread wheat with good end-user quality but poor heat and or drought tolerance.
However, the synthetic derived lines outperforming Opata M85 in all three environments are of
particular interest. Lines performing well under stressed and optimal conditions could be
suitable for several environments. These synthetics could be especially suitable for regions

where wheat is grown in rain-fed farming systems with occasional periods of drought or heat.
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Elite wheat lines derived from these synthetics would have a high yield potential under well-
watered conditions and provide a “safety net” for the farmer in case of a period of heat or
drought. However, the production of new synthetic lines and subsequent selection of material

suitable for any elite bread-wheat breeding program is tedious and time consuming.

Potential of genomic selection in wheat pre-breeding

Genomic selection has the potential to increase genetic gain in plant breeding by reducing
the time per breeding cycle significantly (Meuwissen ef al. 2001; Heffner et al. 2009). GS is an
interesting option for pre-breeding because of two reasons, (i) by estimating GEBVs we can
reduce the years per cycle and (ii) synthetic derived material has a larger genetic variance then
most elite lines and therefore, GS should work well for synthetic derived material. Even though
GS prediction worked for our synthetic derived wheat, the prediction accuracies were slightly
lower than we expected based on the high heritably for individual traits. The predictability of a
GS model depends among other factors on the genetic architecture of the trait we are predicting.
The underlying genetic architecture differs between traits and therefore, it is not surprising that
different statistical models showed variable performance depending on the trait.

We found that prediction models ELNET and RF best predicted DAYSFL, DAYSMT
and DTHD. The same models predicted PTHT best but the predictability of both models was
lower than expected. Grain yield, in contrast, is controlled mostly by many loci of small effect.
Large effect QTL are often confounded with QTL of grain-yield related traits such as plant
height (Maccaferri et al. 2008). Here, GRYLD was predicted best by RF, RKHS and RRBLUP.
Overall, we found that ELNET and RF are the models with the best predictive ability across all

traits and trials in our synthetic derived material.
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Another important aspect defining the predictive ability of a GS model is the population
structure. Set 1 is comprised of only one biparental population and does per se not show any
population structure. In Set 2, we included lines from 6 synthetic derived populations, which all
share one common parent, Opata M85, and can be regarded as half-sibs. A recent study within a
maize diversity panel identified population structure as sole source of prediction accuracy
(Windhausen ef al. 2012). Another study in maize reported expected prediction accuracies
within full-sib families, whereas reduced accuracies for predictions within half-sibs. Noticeably,
significantly better results were obtained if half-sibs in the TP represented both instead of just
one parent (Riedelsheimer ef al. 2013). According to Meuwissen et al. (2009) the prediction of
GEBVs should be relatively simple if the TP and SC are from the same biparental population.
Similar marker alleles will be found in the TP and SC (Meuwissen 2009). Several studies
reported high predictions accuracies for GS in small biparental populations, in one case as small
as 35 individuals (Bernardo and Yu 2007; Wong and Bernardo 2008; Heffner et al. 2011; Combs
and Bernardo 2013). Results reported here are for GS performed across 6 biparental populations
with one common parent (Set 2). We ran the analysis separately for population Synthetic 6
comprised of 242 biparental individuals (Set 1). Generally, prediction accuracies in Set 1 were
lower than in Set 2 for the irrigated and drought trials, while the prediction accuracies were
higher in Set 1 than Set 2 under heat. Furthermore, the smallest differences of prediction
accuracies between the two sets were observed in the heat trial for all traits. GS accuracy is a
function of the training population size Np, heritability h® on entry-mean basis, number of QTL
underlying the trait of interest, the genetic architecture and the number of markers available Ny

(Daetwyler et al. 2008; Daetwyler ef al. 2010; Combs and Bernardo 2013).
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Combs and Bernardo (2013) studied the effect of Nrp, h? and Nu in different types of
populations and crops. They reported high GS prediction accuracies in a bi-parental barely
(Hordeum vulgare) population of only 96 individuals with 223 polymorphic markers. Working
with bi-parental populations in this study, we could expect higher prediction accuracy for yield
based on the relatively heritability. However, it is likely that there are many confounding
physiological factors in this population such that there are many combinations of alleles that lead
to the same plant architecture and grain yield. Not having a globally optimal maximum in highly
diverse populations such as these is likely to lower the accuracy of predicting complex traits.

The heritability for traits measured here, training population size, effective population
size and marker number, are sufficient to obtain better prediction accuracies. The synthetic
derived lines are very diverse and we observed large differences in plant types in the field. Our
results suggest that GS works but might not perform as well as expected with synthetic derived
wheat and other exotic materials, due to complex and confounding physiological effects. In an
elite wheat breeding program it is likely that we have one global maximum with physiology and
plant architecture for high yield. However, it is possible that there are multiple confounding
physiologies and different architectures in the synthetic derived wheat. It appears that the GS
models do have good predictive ability but are not able to adequately account for this
complexity, leading to lower overall predictive ability. While promising, the complexity and
extreme diversity may limit the use of GS for rapid introgression of favorable exotic alleles from

wild relatives in wheat breeding.
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Figure 3.1 Breeding scheme for rapid cycle biparental genomic selection of exotic
germplasm

Our six base populations are labeled pink. Population S6 has the same pedigree as SynOpDH
and SynOpRIL, which were added to increase the initial population size for genomic selection.
GS1 represent the first cycle of our breeding scheme. GS2 focuses on predicting newly derived
synthetic material (blue) developed by crossing the top two lines of each population with three
elite CIMMYT cultivars.
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Yield comparison in different environments
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Figure 3.2 Yield comparison of synthetic derived lines with elite parent Opata M85 under
heat, drought and irrigation

The x-axis is yield under irrigation, the y-axis yield under drought stress and the color gradient
yield under heat stress. The blue lines indicate the yield of Opata M85 (set to 0) and triangles

synthetic lines outperforming Opata M85 under heat stress. Yield differences are reported in
t/ha.
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Figure 3.3 Distribution of synthetic derived line performance under heat, drought and
irrigation

The blue lines indicate Opata M85 and yield differences are reported in t/ha. The green colored
part of each histogram indicates the relative portion of liens outperforming Opata M85.
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Figure 3.4 Dendrogram of a subset of SynOpRIL, SynOpDH and old M6
The two distinctive clusters on the left show 15 lines that are OpataM85 self and 18 lines that are not part of these populations.
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Table 3.1 Plant material included in two years of yield trials

Population Pedigree Population size
Synthetic 1 CPI8/GEDIZ/3/GOO//ALB/CRA/4/AE. TAUSCHII (208)/5/OPATA 52
Synthetic 2 YAV _3/SCO//JO69/CRA/3/YAV79/4/AE.TAUSCHII (498)/5/OPATA 38
Synthetic 3 D67.2/P66.270//AE.TAUSCHII (257)/3/OPATA 31
Synthetic 4 GAN/AE.TAUSCHII (897)//OPATA 20
Synthetic 5 DOY1/AE.TAUSCHII(458)//OPATA 13
Synthetic 6 ALTAR 84/AE.TAUSCHII(219)//OPATA 242
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Table 3.2 List of 15 possible Opata M85 selfs and 18 unrelated lines.

GID Pedigree Line identification
6778781  ALTAR 84/AE.TAUSCHII(219)//OPATA MU-1429-SYnOpRIL-1541  OpataM85 self
6778783  ALTAR 84/AE.TAUSCHII(219)//OPATA MU-1430-SYnOpRIL-1542  OpataM85 self
6778785  ALTAR 84/AE.TAUSCHII(219)//OPATA MU-1431-SYnOpRIL-1543  OpataM85 self
6778787  ALTAR 84/AE.TAUSCHII(219)//OPATA MU-1432-SYnOpRIL-1544  OpataM85 self
6778795  ALTAR 84/AE.TAUSCHII(219)//OPATA MU-1440-SYnOpRIL-1549  OpataM85 self
6778805 ALTAR 84/AE.TAUSCHII(219)//OPATA MU-1457-SYnOpRIL-1556  OpataM85 self
6778807 ALTAR 84/AE.TAUSCHII(219)//OPATA MU-1458-SYnOpRIL-1557  OpataM85 self
6778817 ALTAR 84/AE.TAUSCHII(219)//OPATA MU-1472-SYnOpRIL-1563  OpataM85 self
6778823  ALTAR 84/AE.TAUSCHII(219)//OPATA MU-1479-SYnOpRIL-1567  OpataM85 self
6778835  ALTAR 84/AE.TAUSCHII(219)//OPATA MU-1496-SYnOpRIL-1575  OpataM85 self
6778845  ALTAR 84/AE.TAUSCHII(219)//OPATA MU-1510-SYnOpRIL-1582  OpataM85 self
6778849  ALTAR 84/AE.TAUSCHII(219)//OPATA MU-1512-SYnOpRIL-1584  OpataM85 self
6778867 ALTAR 84/AE.TAUSCHII(219)//OPATA MU-1538-SYnOpRIL-1596  OpataM85 self
6778877 ALTAR 84/AE.TAUSCHII(219)//OPATA MU-1550-SYnOpRIL-1603  OpataM85 self
6778879 ALTAR 84/AE.TAUSCHII(219)//OPATA MU-1552-SYnOpRIL-1604  OpataM85 self
214596 Unknown 214596 Self
214599 Unknown 214599 Self
214602 Unknown 214602 Self
269397 Unknown 269397 Self
269412 Unknown 269412 Self
292766 Unknown 292766 Self
915887 Unknown 915887 Self
915920 Unknown 915920 Self
915991 Unknown 915991 Self
916095 Unknown 916095 Self
916142 Unknown 916142 Self
916148 Unknown 916148 Self
916184 Unknown 916184 Self
916191 Unknown 916191 Self
916204 Unknown 916204 Self
916226 Unknown 916226 Self
916227 Unknown 916227 Self
916244 Unknown 916244 Self

GBS analysis identified 33 lines that are either Opata M85 selfs or selfs of a more distantly related line to
SynOpDHs, SynOpRILs and old M6. The lines were excluded from further analysis.
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Table 3.3 Phenotypic correlation across two years per trait and environment

Trial DAYSFL DAYSMT DTHD GRYLD PTHT
Drought Corr 0.65 0.78 0.73 0.38 -0.09
Heat Corr 0.73 0.71 0.74 0.78 0.55
Irrigation Corr 0.80 0.70 0.81 0.53 0.61

Table 3.4 Broad sense heritability (H?) on an entry mean basis, grand mean,
least significant difference (LSD) and coefficient of variation (CV) per trait

and environment

Trial DAYSFL DAYSMT DTHD  GRYLD PTHT

Drought H? 0.88 0.95 0.91 0.42 0.57
mean  78.30 106.73 75.56 1.83 69.86

LSD.05 3.41 2.80 3.17 0.64 8.15

CV 2.22 1.34 2.14 17.98 5.95

Heat H? 0.98 0.95 0.98 0.94 0.78
mean  59.21 87.35 56.37 1.64 60.44

LSD.05 1.80 2.60 1.69 0.41 6.04

CcV 1.55 1.52 1.53 12.83 5.09

Irrigation H? 0.93 0.84 0.93 0.76 0.78
mean  85.72 125.73 81.18 5.10 100.13

LSD.05 4.71 4.79 4.60 1.07 7.26

CV 2.80 1.94 2.89 10.65 3.70
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Table 3.5 Genomic selection prediction accuracies

Environment  GS model DTHD DAYSFL DAYSMT GRYLD PTHT
Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2
Irrigation H* 0.93 0.93 0.93 0.93 0.84 0.84 0.76 0.76 0.78 0.78
RRBLUP 0.34 0.41 0.30 0.43 0.33 0.42 0.20 0.28 0.10 0.12
RHKS 0.34 0.40 0.25 0.41 0.29 0.39 0.13 0.31 0.06 0.10
PLSR 0.31 0.42 0.28 0.41 0.28 0.42 0.19 0.22 0.11 0.10
ELNET 0.55 0.54 0.52 0.54 0.41 0.47 0.16 0.27 0.14 0.12
RF 0.53 0.52 0.47 0.51 0.47 0.52 0.24 0.35 0.18 0.21
Drought H’ 0.91 0.91 0.88 0.88 0.95 0.95 0.42 0.42 0.57 0.57
RRBLUP 0.30 0.36 0.30 0.39 0.29 0.42 0.15 0.23 0.27 0.21
RHKS 0.26 0.33 0.27 0.38 0.27 0.39 0.15 0.24 0.27 0.18
PLSR 0.25 0.31 0.24 0.32 0.27 0.40 0.12 0.21 0.22 0.18
ELNET 0.43 0.46 0.40 0.48 0.31 0.50 0.13 0.21 0.25 0.29
RF 0.41 0.48 0.43 0.49 0.38 0.50 0.18 0.32 0.31 0.31
Heat H’ 0.98 0.98 0.98 0.98 0.95 0.95 0.94 0.94 0.78 0.78
RRBLUP 0.54 0.51 0.54 0.53 0.51 0.52 0.37 0.33 0.27 0.17
RHKS 0.52 0.50 0.52 0.51 0.47 0.50 0.37 0.35 0.26 0.15
PLSR 0.51 0.46 0.51 0.48 0.47 0.47 0.34 0.28 0.22 0.14
ELNET 0.67 0.57 0.66 0.57 0.61 0.59 0.34 0.31 0.24 0.18
RF 0.55 0.55 0.57 0.55 0.57 0.55 0.38 0.37 0.28 0.25

Accuracies of five different GS models (RRBLUP, RKHS, PLS, ELNET and RF), three environments and five traits (DAYSFL, DAYSMT, DTHD, GRYLD
and PTHT) in Set 1 (gray) and Set 2. All correlations are significantly different from 0 with p-values < 0.001 at significance levels o = 0.05 and o = 0.01

91



References

Arraiano, L.S., A.J. Worland, C. Ellerbrook, and J.K.M. Brown, 2001 Chromosomal location of
a gene for resistance to septoria tritici blotch (Mycosphaerella graminicola)in the hexaploid
wheat 'Synthetic 6x'. Theoretical and Applied Genetics 103 (5):758-764.

Bernardo, R., and J. Yu, 2007 Prospects for Genomewide Selection for Quantitative Traits in
Maize. Crop Science 47 (3):1082-1090.

Bernardo, R. 2009 Genomewide Selection for Rapid Introgression of Exotic Germplasm in
Maize. Crop Science 49: 419-425.

Bernardo, R., 2010 Breeding for Quantitative Traits in Plants. Woodbury, Minnesota: Stemma
Press.

Browning, B.L., and S.R. Browning, 2013 Improving the Accuracy and Efficiency of Identity-
by-Descent Detection in Population Data. Genetics 194 (2):459-471.

Chapman, J.A., M. Mascher, A. Bulug, K. Barry, E. Georganas, ef al. 2015 A whole-genome
shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome
Biology 16: 26.

Combs, E., and R. Bernardo, 2013 Accuracy of Genomewide Selection for Different Traits with
Constant Population Size, Heritability, and Number of Markers. The Plant Genome 6 (1).

Crossa, J. and C.O. Gardner, 1987 Introgression of an Exotic Germplasm for Improving an
Adapted Maize Population. Crop Science 27: 187-190.

Daetwyler, H.D., B. Villanueva, and J.A. Woolliams, 2008 Accuracy of Predicting the Genetic
Risk of Disease Using a Genome-Wide Approach. PLoS ONE 3 (10):e3395.

Daetwyler, H.D., R. Pong-Wong, B. Villanueva, and J.A. Woolliams, 2010 The Impact of
Genetic Architecture on Genome-Wide Evaluation Methods. Genetics 185 (3):1021-1031.

Dvorak, J., M.C. Luo, Z.L. Yang, and H.B. Zhang, 1998 The structure of the Aegilops tauschii
genepool and the evolution of hexaploid wheat. Theoretical and Applied Genetics 97 (4):657-
670.

Ehlers, J.D. and K.W. Foster, 1993 Introgression of agronomic characters from exotic cowpea
germplasm into blackeye bean. Field Crops Research 35: 43-50.

Elshire, R.J., J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto ef al., 2011 A Robust, Simple
Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 6
(5):¢19379.

Endelman, J.B., 2011 Ridge Regression and Other Kernels for Genomic Selection with R
Package rrBLUP. Plant Genome J. 4 (3):250.

92



Federer, W.T., 1956 Augmented (or hoonuiaku) designs. Hawaiian Planter’s Records 55 (191-
208).

Feuillet, C., P. Langridge and R. Waugh, 2008 Cereal breeding takes a walk on the wild side.
Trends in Genetics 24: 24-32.

Friedman, J., T. Hastie, and R. Tibshirani, 2010 Regularization Paths for Generalized Linear
Models via Coordinate Descent. Journal of Statistical Software 33 (1):1-22.

Gaynor, R., 2015 Genomic Selection for Kansas Wheat, pp. 57 in Department of Agronomy.
Kansas State University Manhattan, Kansas, USA.

Gilmour, A.R., B.J. Gogel, B.R. Cullis, and R. Thompson, 2009 ASReml user guide release 3.0.
Hemel Hempstead, UK: VSN Intl. Ltd.

Heftner, E.L., M.E. Sorrells, and J.L. Jannink, 2009 Genomic Selection for Crop Improvement.
Crop Science 49 (1):1-12.

Heftner, E.L., A.J. Lorenz, J.L. Jannink, and M.E. Sorrells, 2010 Plant Breeding with Genomic
Selection: Gain per Unit Time and Cost. Crop Science 50 (5):1681-1690.

Heftner, E.L., J.-L. Jannink, and M.E. Sorrells, 2011 Genomic Selection Accuracy using
Multifamily Prediction Models in a Wheat Breeding Program. Plant Gen. 4 (1):65-75.

Heslot, N., H.-P. Yang, M.E. Sorrells and J.-L. Jannink, 2012 Genomic Selection in Plant
Breeding: A Comparison of Models. Crop Science 52: 146-160.

Heslot, N., D. Akdemir, M. Sorrells and J.-L. Jannink, 2014 Integrating environmental covariates
and crop modeling into the genomic selection framework to predict genotype by environment
interactions. Theoretical and Applied Genetics 127: 463-480.

Jordan, K., S. Wang, Y. Lun, L.-J. Gardiner, R. MacLachlan ef al., 2015 A haplotype map of
allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome
Biology 16 (1):1-18.

Kihara, H., 1944 Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric
Hort 19:889-890.

Liaw, A., and M. Wiener, 2002 Classification and Regression by randomForest. R News 2
(3):18-22.

Lorenz, A.J., S. Chao, F.G. Asoro, E.L. Heftner, T. Hayashi et al., 2011 Chapter Two - Genomic
Selection in Plant Breeding: Knowledge and Prospects, p. 77-123 in Advances in Agronomy,
edited by L. S. Donald, Academic Press.

Maccaferri, M., M.C. Sanguineti, S. Corneti, J.L.A. Ortega, M.B. Salem et al., 2008 Quantitative
Trait Loci for Grain Yield and Adaptation of Durum Wheat (7Triticum durum Desf.) Across a
Wide Range of Water Availability. Genetics 178: 489-511.

93



Marcussen, T., S.R. Sandve, L. Heier, M. Spannagl, M. Pfeifer et al., 2014 Ancient
hybridizations among the ancestral genomes of bread wheat. Science 345 (6194).

McFadden, E.S., and E.R. Sears, 1946 The origin of Triticum spelta and its free-threshing
hexaploid relatives. J Hered 37:81-89.

Meuwissen, T.H.E., B.J. Hayes, and M.E. Goddard, 2001 Prediction of total genetic value using
genome-wide dense marker maps. Genetics 157 (4):1819-1829.

Meuwissen, T.H.E., 2009 Accuracy of breeding values of 'unrelated' individuals predicted by
dense SNP genotyping. Genetics Selection Evolution 41 (35).

Mevik, B.H., and R. Wehrens, 2007 The pls Package: Principal Component and Partial Least
Squares Regression in R. Journal of Statistical Software 18 (2):1-24.

Mujeeb-Kazi, A., R. Delgado, A. Cortes, S. Cano, V. Rosas et al., 2004 Progress in exploiting
Aegilops tauschii for wheat improvement. Annual Wheat News Letter 50:79-88.

Narasimhamoorthy, B., B.S. Gill, A.K. Fritz, J.C. Nelson and G.L. Brown-Guedira, 2006
Advanced backcross QTL analysis of a hard winter wheat x synthetic wheat population. Theor
Appl Genet 112: 787-796.

Ochanda, N., J. Yu, P.J. Bramel, A. Menkir, M.R. Tuinstra et al., 2009 Selection before
backcross during exotic germplasm introgression. Field Crops Research 112: 37-42.

Paradis, E., J. Claude, and K. Strimmer, 2004 APE: analyses of phylogenetics and evolution in R
language. Bioinformatics 20:289-290.

Poland, J., J. Endelman, J. Dawson, J. Rutkoski, S. Wu et al., 2012a Genomic Selection in Wheat
Breeding using Genotyping-by-Sequencing. Plant Gen. 5 (3):103-113.

Poland, J.A., P.J. Brown, M.E. Sorrells, and J.-L. Jannink, 2012b Development of High-Density
Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by-Sequencing
Approach. PLoS ONE 7 (2):e32253.

R Core Team, 2014 R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria.

Reif, J.C., P. Zhang, S. Dreisigacker, M.L. Warburton, M. van Ginkel et al., 2005 Wheat genetic
diversity trends during domestication and breeding. Theoretical and Applied Genetics 110
(5):859-864.

Riedelsheimer, C., J.B. Endelman, M. Stange, M.E. Sorrells, J.-L. Jannink ef al., 2013 Genomic
Predictability of Interconnected Biparental Maize Populations. Genetics 194: 493-503

Rife, T., and J. Poland, 2014 Field Book: An open-source application for field data collection on
Android. Crop Science 54 (4):1624-1627.

94



Rutkoski, J.E., J.A. Poland, R.P. Singh, J. Huerta-Espino, S. Bhavani et al., 2014 Genomic
Selection for Quantitative Adult Plant Stem Rust Resistance in Wheat. The Plant Genome 7 (3).

Sorrells, M.E., J.P. Gustafson, D. Somers, S. Chao, D. Benscher et al., 2011 Reconstruction of
the synthetic W7984 x Opata M85 wheat reference population. Genome 54 (11):875-882.

Spindel, J., H. Begum, D. Akdemir, P. Virk, B. Collard et al., 2015 Genomic Selection and
Association Mapping in Rice (Oryza sativa): Effect of Trait Genetic Architecture, Training

Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic
Selection in Elite, Tropical Rice Breeding Lines. PLoS Genet 11 (2):e1004982.

Talbert, L.E., L.Y. Smith, and N.K. Blake, 1998 More than one origin of hexaploid wheat is
indicated by sequence comparison of low-copy DNA. Genome 41 (3):402-407.

Warburton, M.L., J. Crossa, J. Franco, M. Kazi, R. Trethowan et al., 2006 Bringing wild
relatives back into the family: recovering genetic diversity in CIMMYT improved wheat
germplasm. Euphytica 149 (3):289-301.

Williams, E.R., J.A. John, and D. Whitaker, 2006 Construction of resolvable spatial row-column
designs. Biometrics
62 (1):103-108.

Windhausen, V.S., G.N. Atlin, .M. Hickey, J. Crossa, J.-L. Jannink et al., 2012 Effectiveness of
Genomic Prediction of Maize Hybrid Performance in Different Breeding Populations and
Environments. G3: Genes|Genomes|Genetics 2: 1427-1436.

Wong, C.K., and R. Bernardo, 2008 Genomewide selection in oil palm: increasing selection gain
per unit time and cost with small populations. Theoretical and Applied Genetics 116 (6):815-
824.

Wiirschum, T., J. Reif, T. Kraft, G. Janssen, and Y. Zhao, 2013 Genomic selection in sugar beet
breeding populations. Bmc Genetics 14 (1):1-8.

Zamir, D. 2001. Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2: 983-
989.

Zhang, P., S. Dreisigacker, A.E. Melchinger, J.C. Reif, A.M. Kazi ef al., 2005 Quantifying novel
sequence variation and selective advantage in synthetic hexaploid wheats and their backcross-
derived lines using SSR markers. Molecular Breeding 15 (1):1-10.

Zhang, X., P. Perez-Rodriguez, K. Semagn, Y. Beyene, R. Babu ef al., 2015 Genomic prediction
in biparental tropical maize populations in water-stressed and well-watered environments using
low-density and GBS SNPs. Heredity (Edinb) 114 (3):291-299.

95



Chapter 4 - QTL mapping for improved heat tolerance of bread

wheat in Kansas

Sandra Dunckel, Allan Fritz, P.V. Vara Prasad, Jesse Poland

Abstract

Wheat (Triticum aestivum L.) is the major cereal crop consumed in many regions of the
world. Estimated population growth and climate change present major challenges to agriculture.
Heat stress induces pollen sterility and seed abortion resulting in lower seed weight and seed
number. To increase heat tolerance in bread wheat in Kansas, several new mapping populations
have been developed through single seed decent (SSD). The most promising population with
pedigree Overley/Jefimija has been advanced to Fs.c recombinant inbred lines (RILs) and used
for a growth chamber experiment. Line performance of 203 RILs was assessed under heat stress
and optimal conditions and the data used for quantitative trait loci (QTL) analysis. We identified
13 QTL under optimal conditions and 11 QTL under heat stress for biomass, days to heading,
grain weight, grain number and thousand-kernel weight. Heat tolerant parent Jefimija contributed
all alleles increasing grain related traits under heat stress. Two “hotspots” controlling traits
related to heat tolerance were identified on chromosomes 2DS and 5A. The QTL on
chromosome 5A might be a functional gene controlling multiple traits. Multiple QTL in very
close proximity were mapped on chromosome 2DS. We compared the location of our GBS
markers on 2DS with Ppd-D1 and Rht8 and concluded that the QTL we identified are RAtS, and

possibly Ppd-D1.
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Introduction

Wheat (Triticum aestivum L.) is the major cereal crop consumed in many regions of the
world providing over 20% of all calories consumed globally (FAO 2015; Shiferaw et al. 2013).
The global population is estimated to reach 9.1 billion people by 2050. Together with climate
change, this presents a major challenge to agriculture. In the Unites States (U.S.), most wheat is
produced in the Great Plains. Estimated long-term climate trends show an increase of
temperature across the Great Plains by 2100 of 1.5 — 7 °C depending on emission scenario and
climate model (IPCC 2014). The total U.S. wheat production was ~58M tons in 2013 (~8.15% of
the global wheat production) (FAO 2015). The production of hard red winter wheat accounts for
~40% of the total U.S. wheat production and is grown primarily from Texas through Montana.

Heat stress during the reproductive development of wheat is a major constraint to wheat
production. Reduced photosynthesis and premature senescence are observed in heat susceptible
wheat. As a result, yield is reduced by induced pollen sterility and seed abortion leading to lower
seed weight, flour yield and quality (Hays et al. 2007). Heat stress can occur either chronically
over a long period of time (mean temperature 18 — 25 °C, max. 32 °C during grain filling) or by
an abrupt heat-shock (temperatures greater than 32 °C) (Wardlaw and Wrigley 1994). With every
1°C rise above 15 —20°C yield of heat susceptible wheat decreases 3 — 4%, and over 50% of the
total yield can be lost if temperatures reach above 32 — 38 °C (Paulsen 1994; Wardlaw et al.
1989). Heat tolerant wheat is able to maintain photosynthesis and high levels of chlorophyll
despite increased temperature. This results in higher number of grains per spike, stem
carbohydrate reserves, grain weight and extended period of grain filling (Yang et al. 2002a).

Adaption of wheat to higher temperatures through changes in agronomic practices will
not suffice to avoid negative impacts on wheat yield. New cultivars adapted to higher

temperatures need to be developed. Combining heat tolerant varieties with varieties harboring
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other desirable traits, such as disease resistance and good end-user quality, are a promising
strategy of adaptation. Heat tolerance is quantitatively inherited and associated with multiple
other traits such as grain weight, grain number, thousand-kernel weight, grain filling duration
and chlorophyll content (Hays et al. 2007; Talukder et al. 2014; Yang et al. 2002a, b).
Quantitative trait loci (QTL) mapping studies are useful to identify QTL and genes underlying
traits for heat tolerance. Identified genetic markers can be used in plant breeding through marker-
assisted selection (MAS) to select material harboring genes and QTL improving heat tolerance of
wheat.

In this study, we describe the development of new mapping populations and a growth
chamber experiment assessing the heat tolerance of the most promising populations with

pedigree Overley/Jefimija.

Materials and Methods

Development of mapping populations

Overley is a high yielding, early maturing, semi-dwarf hard red winter wheat cultivar released in
2003 lacking heat tolerance. Several Eastern European wheat cultivars with high heat tolerance
were identified by Ristic et al. (2008). Jefimija was the most heat tolerant cultivar. Multiple
crosses between Overley and heat tolerant Eastern European varieties Jefimija and Proteinka
were made in 2007. Other crosses included heat susceptible hard red winter wheat cultivar Karl
92 and hard white Australian heat tolerant cultivar Ventnor. F, seeds from eight different crosses
were available and advanced to recombinant inbred lines (RILs) from 2011 — 2015 through
single seed decent (SSD) (Table 4.1). All populations were advanced to F3 in the greenhouse in
2012 and the four most promising with pedigrees Overley/Jefimija (populations U6019 and

U6020), Overley/Proteinka, Karl92/(Karl92/Ventnor RIL 73) and Overley/(Karl92/Ventnor RIL
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73) were further advanced in head-rows in the field. Furthermore, populations U6019 and U6020
with pedigree Overley/Jefimija were advanced at the same time in the greenhouse to Fs. RILs
for a growth chamber experiment. This pedigree was considered the most promising and chosen

for a growth chamber experiment to map QTL for heat tolerance.

Plant material for QTL mapping study
Two biparental mapping populations, U6019 and U6020, with pedigree Overley/Jefimija

were used for this QTL mapping study. The mapping populations were developed by advancing
F, plants through SSD in the greenhouse to Fs.c RILs. The population size for the heat chamber
experiment was reduced by random selection of lines. Population U6019 consisted of 103 Fs.¢
and U6020 of 100 Fs.c. Both populations were characterized for heat tolerance by comparing line

performance under optimal and heat stress conditions.

Experimental Design

Seeds where germinated in 5x5 cm pots containing potting soil (Metro Mix; Hummert
Intl, Topeka, KS) in a greenhouse in January 2014. Ten-day old seedlings where vernalized at
4°C for 8 weeks. Subsequent to vernalization, each seedling was transplanted into its own pot of
diameter 6.4 cm and depth 25.4 cm. Plants were grown in a greenhouse under optimal conditions
and watered regularly to avoid drought stress. Fertilizer, fungicides and systemic insecticides
were applied as needed to avoid malnutrition and infestation by fungi or insects. Wheat grown in
Kansas is exposed mostly to post-anthesis heat stress. We started our experiment 14 days after
heading to assess post-anthesis heat stress tolerance. Plants were tagged at heading of the first
spike (defined as main spike, growth stage Feekes 10.3 (Miller 1992)) and moved to growth
chambers 14 days after heading. Grouping the plants based on days to heading (DTHD) accounts

for genetic variation of DTHD and enables direct comparisons of line performance by reducing
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confounding effects of flowering time. The plants were randomly allocated to four growth
chambers based on a randomized complete block design (RCBD) with two replicates per
temperature treatment. Two temperature treatments were applied: (i) high temperature simulating
heat stress, and (ii) optimal temperature as control. Each genotype was included three times per
treatment and replicate.

The control group was maintained under optimal growing conditions at day/night
temperature of 21/17°C £1.5°C with 16-hour photoperiod, relative humidity of 70-90%, and light
intensity of approximately 1000 umols™s™". Plants under heat stress were exposed to day/night
temperature of 36/30°C £2.0°C, same settings otherwise. All pots were placed in trays
containing 2-3 cm water at all times to avoid dehydration of plants and possible introduction of
drought stress. Heat stress was not limited to a set number of days and plants remained in their

respective growth chamber until harvest ready (Feekes 11.4).

Assessment of heat tolerance

We collected data on several traits to assess heat tolerance in both mapping populations.
Days to heading (DTHD) were collected at heading of the main spike. Tiller number (TINB) and
shoot dry biomass (BIOMASS) were counted and measured on a per plant basis, respectively.
Data on grain weight (GRWT), grain number (GRNB) and thousand-kernel weight (TKW) was
collected separately for the main spike (GRWT_S01, GRNB_S01, TGW_S01) and the rest of the
plant (GRWT_S02, GRNB_S02, TGW_S02). ‘S01” in the trait name indicates data collected on
the main spike and ‘S02’ data from the rest of the plant. Data was summarized to obtain a whole
plant assessment (no addition to trait name). State of the art scale and seed counters were used to

weigh (g) and count grain (Kirigwi et al. 2007; Pinto et al. 2010; Wang et al. 2009).
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Genotyping
We genotyped all lines with genotyping-by-sequencing (Elshire et al. 2011) using the

two-enzyme approach by Poland et al. (2012). Single-nucleotide polymorphisms (SNPs) were
called simultaneously for both populations. Briefly, 14,914 unique SNPs with up to 80% missing
data were optioned through GBS. SNPs with minor allele frequency (MAF) > 0.2 and less than
50% missing data were retained in the data set. Their tags were aligned to the recently published
draft sequence of the wheat genome (The International Wheat Genome Consortium, 2014) using
POPSEQ (Chapman et al. 2015). Imputation of the ordered marker data was performed using
Beagle v.4 (Browning and Browning 2013). The parameters were set as described by Jordan et
al. (2015): window = 5,000 overlap = 500 burnin-its =10 impute-its = 10. A total of 3,500 SNPs

for U6019 and 3,280 SNPs for U6020 were used for QTL mapping.

Statistical analysis

The data were analyzed separately for the heat and optimal treatment using JMP Pro 11

Statistical Software (JMP® 1989-2015). The model used to calculate BLUEs was y;; = u +
g; + 1; + e;j where y;; is the trait, g; is the fixed effect for each genotype, 7; is the random effect

of the jth replicate, and e;; is the random error with N(0, 02). Heritability on an entry means basis

2
g . . . . .
was calculated as H? = —Z where ng is the genotypic variance, r is the number of replicates

2,0
o5+

and 2 is the error variance (Bernardo 2010).

OTL analysis

QTL mapping was performed separately for the heat and control treatment in the R
software environment (R Core Team, 2014) applying the R-package R/qtl (Broman K.W, Wu H.,

et al., 2003). The same methods were applied as described in the stem rust mapping paper by
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Dunckel et al., (2015) and the ionomics study described in Chapter 3 of this dissertation. Briefly,
QTL were mapped using Single Interval Mapping (SIM) and Composite Interval Mapping
(CIM). The most significant markers were identified through stepwise regression. CIM was
implemented applying a Haley-Knott regression using forward selection of marker covariates
and a window size of 10 cM for all traits. Multiple QTL Mapping (MQM) was used to confirm
identified QTL, refine their position, obtain estimated QTL effects and estimated phenotypic
variance explained by a QTL (Arends et al., 2010). Furthermore, MQM was applied to identify
additional QTL not mapped by SIM and CIM. The allelic state of the markers with the highest
LOD score at each QTL was used to represent the allelic state of the QTL. The genome-wide
logarithm of the odds value (LOD) for declaring a QTL was determined by 1,000 permutations.
The parental alleles for Overley and Jefimija were coded as -1 and 1 respectively (Broman and

Saunak, 2009).

Results

To test the repeatability of the experiment heritability on an entry mean basis, mean,
standard deviation (Std. Dev.) and coefficient of variation (CV) were calculated for all traits and
summarized in Table 4.2. Heritability differs between traits and treatments and was generally
higher for data collected on the main spike. The phenotypic distribution of BLUESs shows a
normal distribution in both treatments satisfying the condition of continuous traits for QTL
mapping (Figure 4.1 and Figure 4.2). The results of the correlation analysis show multiple highly
correlated traits. BIOMASS and DTHD were highly correlated in both trials, as well as with
most grain related traits (Figure 4.1 - Figure 4.4). GRNB and TGW are, as expected, negatively

correlated in both treatments.
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We identified 13 QTL for different traits under optimal conditions and 11 QTL under
heat stress. More QTL were mapped in U6019 than in U6020 in both treatments, however,
several QTL were overlapping across populations and treatments. QTL were mapped applying
SIM and CIM and their position refined applying MQM. Several additional QTL were identified
through MQM (Table 4.3 and Table 4.4). The LOD profiles for U6019 (Figure 4.5) and U6020
(Figure 4.6) are based on LOD scores obtained through CIM.

We mapped eight QTL for DTHD. Four QTL were identified in U6019 on chromosomes
1BL, 2BL and 5A under optimal conditions explaining 55.51 % of the estimated phenotypic
variance. Three QTL on 1DL, 2BL and 5A were mapped under heat stress explaining 36.98% of
the estimated phenotypic variance. The eighth QTL for DTHD was mapped on chromosome 2DS
in U6020 under heat stress. The estimated allele effect of the allele contributed by Overley was,
as expected, negative for most QTL for DTHD.

We identified four QTL for BIOMASS. One QTL was mapped on chromosome 2DS in
U6020 explaining 30.29% and 22.08% of the estimated phenotypic variance under optimal and
heat conditions, respectively. Three QTL were mapped on chromosomes 2DS, 5A and 6BS in
U6019 under heat stress explaining 36.98% of the estimated phenotypic variance.

We mapped two QTL for GRNB in U6019 under optimal conditions on chromosomes 3B
and SAL. Together they explain 31.73% of the estimated phenotypic variance. Based on the
allele effect, the QTL on 3B is conferred by Overley and the QTL on SAL by Jefimija. A QTL
for GRNB_S02 was mapped on 3B and is likely the same QTL as reported above for GRNB.
One QTL for TGW_SO01 was identified on 4BL in U6019 under optimal and heat stress
conditions. The QTL mapped under optimal conditions is located at 71.0cM, conferred by

Jefimija and explains 19.19% of the estimated phenotypic variance. Under heat stress, the
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mapped QTL was located in close proximity at 62.0cM. This QTL explains 14.12% of the
phenotypic variance and was also contributed by Jefimija, indicating that they are most likely the
same QTL.

Four QTL for grain related traits were mapped in U6020 under optimal conditions. We
mapped QTL for GRWT on chromosomes 2DS and 5A. The positive allele of the QTL on 2DS
explaining 18.85% of the estimated phenotypic variance was contributed by Overley. The allele
increasing GRWT at the QTL on SAL was conferred by Jefimija and explained 17.30% of the
phenotypic variance. Both QTL identified on SBL for TGW and TGW_S01 mapped to the same
GBS marker KSUheat9427 at 43.1cM and are the same. The allele was contributed by Overley
explaining 35.11% of the estimated phenotypic variance. Two QTL for GRNB_S01 and
GRWT _S01 were mapped on chromosome 5A under heat stress and mapped to GBS marker
KSUheat819 at 54.0cM. This QTL was conferred by Jefimija and explained 16.85% and 19.65%

of the estimated phenotypic variance of GRNB_S01 and GRWT S01, respectively.

Discussion
Mapping populations for heat trials available
We developed four RIL mapping populations through SSD in head-rows in the field
(Table 4.1). In summer 2015, we harvested one Fs head per line and will advance all populations
one more generation. All lines will be harvested in bulk 2016 and used for yield trials with Fe.;
materials. Furthermore, we are seed increasing of all parents to include them as replicated checks
in yield trials. Data on days to heading (DTHD) and plant height (PTHT) was collected on F4

plants and will be recollected during season 2015/2016.
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QTL for heat tolerance

We identified multiple QTL in both populations under optimal and heat stress conditions
for traits related to heat tolerance in wheat. Several QTL for GRNB, GRWT and TGW were
mapped on chromosomes 2DS, 3B, 4BL, 5A, 5AL, and 5BL (Table 4.3 and Table 4.4). Eastern
European parent Jefimija conferred alleles with positive estimated effect for QTL on 4BL, 5A
and SAL. Overley contributed favorable alleles for QTL on 2DS, 3B and 5BL. However, heat
tolerant parent Jefimija contributed all alleles positively associated with GRNB, GRWT and
TGW under heat stress (Table 4.4). Other studies have reported QTL for GRNB, GRWT and
TGW on chromosomes 3B, 4BL, 5A, SAL and 5BL (Pinto et al. 2010; Su et al. 2009; Wu et al.
2012; Xu et al. 2014).

We identified two pleiotropic QTL, or “hotspots”, on chromosomes 2DS and SAL. The
QTL identified in U6019 on chromosome 5A for BIOMASS under heat stress and DTHD under
optimal conditions, was mapped to GBS marker KSUheat13739 at 62.4cM. The QTL for DTHD
in U6019 under heat stress was located at 61.8cM and is most likely the same. In U6020, a QTL
for GRWT _S01 under optimal conditions explaining 17.30% of the estimated phenotypic
variance was also mapped to GBS marker KSUheat13739. Furthermore, the QTL for
GRNB_S01 and TGW_S01 identified under heat stress in U6020 is located at 54cM and in close
proximity to the QTL described above. Several other studies reported QTL for BIOMASS,
GRNB and GRWT on chromosome 5A (Pinto et al. 2010b; Su et al. 2009; Wu et al. 2012; Xu et
al. 2014). In all instances, heat tolerant parent Jefimija contributed the alleles related with yield
increase. We conclude that this might be a functional gene increasing yield under heat stress.

Another hotspot might be located on chromosome 2DS. We mapped QTL for BIOMASS,
GRWT S01 and DTHD in close proximity. The QTL for BIOMASS on chromosome 2DS

mapped in U6020 is located at 23.4cM and at 19.1cM for DTHD. Both QTL are close to the
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QTL mapped for BIOMASS in U6019 at 17.5¢M. The close proximity of these QTL indicate
that they are probably they same QTL. Furthermore, a QTL for GRWT_S01 under optimal
conditions was mapped in U6020 at 35.9cM. Other studies reported QTL for BIOMASS on
chromosome 2DS (Su et al. 2009). Xu et al. (2014) found that one of their QTL for biomass
coincided with RAt8. This gene has been mapped on chromosome 2DS in close proximity to
Ppd-DI (Korzun V et al. 1998). Biomass of wheat is defined by several traits, including plant
height and number of tillers. Plant height of winter wheat is controlled largely by the semi-
dwarfing genes RAt-B1 and Rht-D1 and other QTL of medium and small effect like RA¢8 and
photoperiod regulator Ppd-D1 (Wurschum et al. 2015; Zanke et al. 2014). Worland et al. (1998)
located the gene for photoperiod Ppd-D1 on chromosome 2DS at 20.9cM. Jefimija carries the
marker Xgwm?261-200 for RAt8 (GRIS 2015). We compared the location of our GBS markers
with Ppd-D1 and Rht8 and concluded that the QTL we identified are RA¢8, and possibly Ppd-D1
(Carollo et al. 2005; Worland et al. 1998; Xu et al. 2014 Langer eta 1. 2014). We mapped
aditional QTL for DTHD on chromosomes 1BL, 1DL and 2BL. Wang et al. (2009) described
QTL for flowering time on chromosomes 1BL and 2BL. The chromosome they describe at 1BL
could be the same QTL we mapped here, while the QTL on 2BL is located too distant to be the
same.

We developed valuable plant material for testing heat tolerance in the field and identified
several QTL underlying heat tolerance in bread wheat. Growth chamber experiments enable
identifying QTL without or little genotype-by-environment effect and studying the underlying
genetics of traits conferring heat tolerance in wheat. However, we recognize the limitations of
growth chamber experiments. The next step will be testing this material in the field to assess its

potential for heat tolerance under real field conditions.
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Figure 4.1 Correlation matrix with histograms and significance control treatment

The histogram shows the distribution of BLUESs for all traits. The lower panel of the
correlation matrix contains all scatterplots and the upper panel the Pearson correlation
coefficient r and significance test (*** =p <0.001, ** =p <0.01, *=p <0.05,.=p <O0.1).
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Figure 4.2 Correlation matrix with histograms and significance heat treatment

The histogram shows the distribution of BLUESs for all traits. The lower panel of the
correlation matrix contains all scatterplots and the upper panel the Pearson correlation
coefficient » and significance test (*** =p <0.001, ** =p <0.01, *=p <0.05, . =p <0.1).
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A: Control Treatment B: Heat Treatment
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Figure 4.3 Correlation plot control and heat treatment

The correlation analysis is clustered based on correlation. Red indicates strong positive
correlation of elements, white no correlation and blue strong negative correlation. BIOMASS
and DTHD are correlated in both trials (A: control, B: heat). Other traits such as GRNB,
GRWT and TGW are, as expected, correlated as well.
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A: Control Treatment B: Heat Treatment
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Figure 4.4 PCA biplots based on correlations of all traits in both treatments

The PCA biplot is based on the correlations of all traits. The two major principal components
accounted for 59.2 % of the variation in the data set under optimal conditions (A) and 57.4 %
under heat stress (B). Both PCI biplots show strong correlations among traits in both
environments.
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U6019 LOD profile
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Figure 4.5 LOD profile U6019 heat and control

The LOD profile for population U6019 shows QTL for DTHD on chromosomes 1DL, 2BL and 5A for heat (red) and optimal conditions
(pink). Two QTL for GRNB of the whole plant were mapped on chromosomes 3B and SAL (blue) and one for GRNB_S02 on 3B (turquoise)
under optimal conditions. QTL for TGW were mapped on chromosome 4BL under heat and optimal conditions (green). Furthermore, two
QTL for biomass were mapped on chromosomes 5A (hidden) and 6BS under heat stress (olive). QTL for DTHD on 1BL were not mapped by
CIM but through SIM and confirmed by MQM (not shown). Also, MQM confirmed one more QTL for biomass on 2DS.
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U6020 LOD profile
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Figure 4.6 LOD profile U6020 heat and control treatment

The LOD profile for population U6020 shows the QTL identified on 2DS for BIOMASS under heat (blue) and optimal conditions (purple) at
24.3cM. This QTL is located in close proximity to a QTL for DTHD at 19.1cM under heat stress (green) and GRWT _S01 under optimal
conditions positioned at 35.9cM (red). QTL for GRNB_S01 and GRWT _SO01 under heat stress are located at 54.0cM on chromosome 5A
(olive), and one QTL for GRWT _S01 under optimal conditions is mapped at 64.2cM (red). Furthermore, the QTL for TGW on 5BL is shown

in turquoise.
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Table 4.1 Population info and size of four populations available for trials

Population  Pedigree Status Fall 2015 Rank  Pop. size
U6019 Overley/Jefimija Fy 220
U6020 Overley/Jefimija Fy 214
U6018 Overley/Proteinka Fs 280
U6021 Overley/Proteinka Fg 113
U6025 Karl92/(Karl92/Ventnor RIL 73) Fs 423
U6022 Overley/(Karl92/Ventnor RIL 73) F, 485
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Table 4.2 Mean, heritability, standard deviation (Std. Dev.) and coefficient of variation (CV) for
all traits in both treatments

Trait Statistic Control Heat
BIOMASS H2 0.57 0.63
Mean 2.74 2.59
Std Dev 1.20 1.23
Ccv 43.84 47.50
DTHD H2 0.68 0.71
Mean 100.46 100.67
Std Dev 10.47 10.58
Ccv 10.42 10.51
GRNB_S01 H2 0.61 0.57
Mean 32.24 32.03
Std Dev 11.94 11.76
Ccv 37.03 36.71
GRWT S01 H2 0.60 0.49
Mean 1.21 1.02
Std Dev 0.48 0.47
Ccv 39.84 45.70
TGW_S01 H2 0.49 0.17
Mean 37.73 31.84
Std Dev 6.52 8.66
Ccv 17.29 27.21
GRNB_S02 H2 0.21 0.18
Mean 32.18 30.23
Std Dev 17.58 17.35
Ccv 54.63 57.37
GRWT S02 H2 0.25 0.27
Mean 1.03 0.81
Std Dev 0.61 0.60
Ccv 59.40 74.17
TGW_S02 H2 0.27 0.23
Mean 31.98 25.78
Std Dev 9.17 11.64
Ccv 28.68 45.14
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Trait Statistic Control Heat
GRNB H2 0.37 0.34
Mean 59.79 53.67
Std Dev 21.52 22.06
CVv 36.00 41.10
GRWT H2 0.35 0.35
Mean 2.10 1.60
Std Dev 0.78 0.83
Ccv 37.03 51.95
TGW H2 0.41 0.18
Mean 35.42 29.47
Std Dev 6.42 8.77
CVv 18.12 29.77
TINB H2 0.25 0.23
Mean 2.31 2.23
Std Dev 0.91 0.89
CVv 39.14 39.75
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Table 4.3 Summary of identified QTL for traits measured in both populations under optimal conditions

LOD Pheno QTL Effect Effect
Pop Trait Chr GBS Marker Pos(cM) LOD SE

0=0.05 variance effect A B
U6019 DTHD IBL KSUheat2921 63.1 348 3.30 7.82 -5.33 1.31 5.33 -5.33

IBL KSUheat6741 66.6 7.60 3.30 18.53 8.34 1.32 -8.34 8.34
2BL  KSUheat9649 135.0 4.87 3.30 11.31 5.35 0.74 -5.35 5.35

5A KSUheat13739 62.4 5.45 3.30 12.84 3.03 0.58 -3.03 3.03

GRNB 3B KSUheat5790 75.8 4.50 3.29 16.39 -5.49 1.66 5.49 -5.49

5AL KSUheat12934 133.5 4.25 3.29 15.43 6.04 1.32 -6.04 6.04

GRNB_S02 3B KSUheat2441 81.6 3.60 3.35 15.44 -3.96 0.94 3.96 -3.96
TGW_S01 4BL KSUheat6054 71.0 4.60 3.41 19.19 1.76 0.37 -1.76 1.76

U6020 BIOMASS 2DS  KSUheat11830 243 6.40 343 30.29 -0.43 0.07 0.43 -0.43

GRWT_S01 2DS KSUheat10738 359 3.99 3.31 15.85 -0.17 0.04 0.17 -0.17

5A  KSUheat13739 62.4 4.32 3.31 17.30 0.14 0.03 -0.14 0.14
TGW SBL KSUheat9427 43.1 3.92 3.49 18.37 -1.88 0.43 1.88 -1.88
TGW_S01 SBL KSUheat9427 43.1 3.54 3.30 16.74 -2.06 0.49 2.06 -2.06

GBS markers, QTL positions Pos (cM), LOD, LOD at the 5% significance threshold score, estimated phenotypic variance explained by
QTL, estimated QTL effect and allele effects (effect A and effect B) for all QTL. QTL are sorted based on chromosome and location.
The LODs reported here LODs calculated through MQM.
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Table 4.4 Summary of identified QTL for traits measured in both populations under heat stress

Pop Trait Chr GBS Marker Pos (cM) LOD Lob Pheno QTL SE Effect  Effect
0=0.05 variance effect A B

U6019 BIOMASS 2DS  KSUheat5627 17.5 3.9 3.2 12.63 -0.38 0.09 0.38 -0.38
5A KSUheat13739 62.4 3.8 3.2 12.40 0.32 0.07 -0.32 0.32

6BS KSUheat340 322 3.7 3.2 11.95 0.32 0.08 -0.32 0.32

DTHD IDL  KSUheat8204 91.8 8.7 34 22.29 3.99 0.58 -3.99 3.99

2BL  KSUheat9649 135.0 4.1 34 9.45 3.45 0.77 -3.45 3.45

5A KSUheat2710 61.8 8.2 34 20.65 3.87 0.58 -3.87 3.87

TGW_S01 4BL KSUheat13198 62.0 33 33 14.12 1.20 0.30 -1.20 1.20

U6020 BIOMASS 2DS  KSUheat11830 243 4.8 3.6 22.08 -0.41 0.08 0.41 -0.41
DTHD 2DS  KSUheat7222 19.1 3.2 3.1 15.28 -2.19 0.55 2.19 -2.19
GRNB_S01 5A  KSUheat819 54.0 3.6 33 16.85 2.88 0.69 -2.88 2.88

GRWT S01 SA  KSUheat819 54.0 3.6 33 19.65 0.09 0.02 -0.09 0.09

GBS markers, QTL positions Pos (cM), LOD, LOD at the 5% significance threshold score, estimated phenotypic variance explained by
QTL, estimated QTL effect and allele effects (effect A and effect B) for all QTL. QTL are sorted based on chromosome and location.
The LODs reported here LODs calculated through MQM.
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