
 

 

A SIMULATION FRAMEWORK TO ENSURE DATA CONSISTENCY IN SENSOR 

NETWORKS 

 

 

by 

 

 

 

NIKHIL JEEVANLAL SHAH 

 

 

 

B.E., University of Pune, 2005 

 

 

 

A REPORT 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

MASTER OF SCIENCE 

 

 

Department of Computing and Information Sciences 

College of Engineering 

 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2008 

 

Approved by: 

 

Major Professor 

Dr. Gurdip Singh 



 

 

Abstract 

The objective of this project is to address the problem of data consistency in sensor network 

applications. An application may involve data being gathered from several sources to be 

delivered to multiple sinks, resulting in multiple data streams with several sources and sinks for 

each stream. There may be several inter-stream constraints to be satisfied in order to ensure data 

consistency. In this report, we model this problem as that of variable sharing between the 

components in an application, and propose a framework for implementing variable sharing in a 

distributed sensor network. In this framework, we define the notion of variable sharing in 

component based systems. We allow the application designer to specify data consistency 

constraints in an application. Given an application, we implement a tool to identify various types 

of shared variables in an application. Given the shared variables and the data consistency 

constraints, we provide an infrastructure to implement the shared variables. This infrastructure 

has tools to synthesize the code to be deployed on each of the nodes in the physical topology.  

The infrastructure has been built for the TinyOS platform.  We have evaluated the framework 

using several examples using the TOSSIM simulator.  
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CHAPTER 1 - Introduction  

Sensor network applications are often formed by putting together different components to 

form high level configurations. A configuration   is    used   to   assemble    components  together 

by  connecting  the interfaces  used  by  components  to  interfaces  provided  by  others. The 

structure of most of the sensor network applications involves, various sensor nodes sensing 

attributes such as temperature and humidity which are then propagated to different nodes where  

these values are processed and  finally collected at sink node for further analysis and possible 

actions. We can see most of these applications involve data flowing between different 

components. 

The   TinyOS   system,   libraries,   and   applications   are   written   in   NesC,   a   new 

language for programming structured component-based applications. The NesC language is 

primarily intended for embedded systems such as sensor networks.  It  has  a  C-like syntax,   but   

supports   the   TinyOS   concurrency   model,   as   well   as   mechanisms   for structuring,  

naming,  and  linking  together  software  components  into  robust  network embedded   systems.   

The   principal   goal   is   to   allow   application   designers   to   build components   that   can   

be   easily   composed   into   complete,   concurrent   systems.   NesC applications are built out 

of components with well-defined, bidirectional interfaces 

In NesC, a sensor network application is designed by composing one or more components 

whose ports are linked together. A component is defined by a set of ports, where each port may 

offer a set of interfaces. Each interface has an operation and an event associated with it. A sensor 

application may involve data being gathered from several sources to be delivered to multiple 

sinks, resulting in multiple data streams with several sources and sinks for each stream. There 

may be several inter-stream constraints to be satisfied in order to ensure data consistency. 

This paper addresses the problem of data consistency in sensor networks. We 

consider networks in which there are three types of nodes: those that are producing data (writers), 

those that are consuming data (readers) and intermediate nodes which consume data and then 

produce data (performing intermediate computations). A significant amount of research has been 

done in developing algorithms/protocols for data collection and dissemination in sensor 
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networks. A large body of this work has focused on mechanisms to ensure least amount of 

energy consumed (such as setting up shortest paths from producers to consumers, and to 

share/aggregate data in-transit to reduce the amount of data propagated). There has also been 

work done to address data consistency issues. However, this work has mainly been in the context 

of a single stream (or same data). For example, there has been work on addressing QoS issues 

such as latency, freshness of data, error probability, and approximation. These issues are 

desirable and relevant in cases where independent users are accessing the sensor networks for 

information, and each user may have different constraints.  

Query mechanisms have been proposed which allow one to specify queries which 

get data from a particular sensor or sensors in a specific area.  Researchers have  looked at how 

overlap between different queries can be exploited to reduce the amount of information 

propagation.  

The problem of data consistency across data streams due to constraints within the 

same application has not been addressed. This problem, similar to distributed shared memory, 

has been studied extensively in distributed computing. However, problems specific to sensor 

networks have not been looked at. In particular, in the standard DSM, all data is treated in the 

same way (that is, all data is required to be consistent). In the case of sensor networks, only some 

data may have to be delivered in a consistent manner. .  

In this report, we model this problem as that of variable sharing between the 

components in an application, and propose a framework for implementing variable sharing in a 

distributed sensor network. Fig 1.1 shows the architecture diagram for the proposed framework. 
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Figure 1.1  Architecture of the Components of the Framework  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first stage processes the various input files and extracts the necessary information. 

The Application Graph represented in the form of AppGraph.xml file is analyzed to build the 

shared variable information table. The Network/Topology graph file, topo.txt, is analyzed to 

build the node adjacency list. The component to node mapping information given in the file, 

mapping.txt, is used to build a table containing the component- to node mapping. Various 

consistency requirements such as causal consistency, atomic consistency are specified in the 

files, causal.txt and atomic.txt, respectively which are used to build the consistency mechanisms.  

All of the information obtained from the various files is given as input to the Labeling 

Algorithm which then produces a file, specs.txt, which contains information on how messages for 

each identified shared variable are to be processed. This specs.txt file is then used by the 

Consistency Framework to satisfy various consistency requirements. 

 

This report is organized as follows -  

1. Chapter 2 explains the following files: AppGraph.xml file which is the file users use to 

specify application graph information, topo.txt file users use to specify network topology 
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information, mapping.txt file users use to specify mapping information between application 

graph and topology graph, causal.txt and atomic.txt specifying causal and atomic consistency 

constraints. 

2. Chapter 3 explains the Labeling Framework which is the most important component of this 

framework.  

3. Chapter 4 explains specs.txt file generated by Labeling framework that NesC consistency 

simulation framework uses to initialize share variable information tables associated with each 

node. And explains how it can be used as a part of execution of applications using this 

framework. 
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CHAPTER 2 - Project Description 

This  chapter  aims  to  give  a  detailed  description  of  how  the  different  features  of  

the Labeling framework  have  been  implemented.  The description will be divided into the 

following categories:  

 

• Specification of components and configurations and how we define variable sharing in a 

given application configuration. 

 

• Description   of   the   "Application Graph File"   that   contains all information 

regarding a configuration including the wiring information describing   the 

interconnection of the ports of different components. 

 

• Description of the "Topology Graph File” containing information about how the 

different nodes in the physical topology are connected with each other.  

 

• Description of the “Mapping File” containing mapping information of various 

components onto various nodes.  

 

• Description of the “Causal Consistency constraints File” containing information of the 

causal consistency constraints to be imposed between different ports of a component. 

 

• Description of the “Atomic Consistency constraints File” containing names of all the 

composite components requiring atomic execution.  
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2.1 Specification of Components in NesC 

An application consists of a set of components. Each component has a set of input and 

output ports. We now give some examples of different types of components 

 

Figure 2.1  Examples of various types of Components 

                    

 

               

 

(I)                                                  (II)                                           (III) 

 

Component Main shown in Fig 2.1(I) has only one provides (output) port stdcontrol. 

Such component acts as a writer component. Component ‘BlinkM’ shown in Fig 2.1(II) has one 

uses (input) port stdcontrol and two provides (output) ports Timer and Leds respectively. Such a 

component serves as an intermediate component which reads values written on its input port, 

processes them and makes it available on an output port. ‘LedsC’ component shown in Fig 

2.1(III) has one uses (input) port Leds. Such a component acts as a reader component. Fig 2.2 

shows a sample NesC code for component BlinkM.  

 

Figure 2.2  Sample component code from Blink.nc file 

 

Output port Input port 
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2.2 Specification of a Configuration in NesC 

A configuration is a collection of components. Configurations are used to build 

applications by assemblying a set of  components together and connecting interfaces used by 

components to interfaces provided by other components. This interconnection of prts is called  

wiring. A configuration can have nested sub-configurations. A port of a configuration can be 

equated to port of a component inside it. 

 

Now we will see an example of how does a configuration looks like and how various 

components are wired together to form an application using  a sample NesC configuration file. 

 

Figure 2.3  Example of a simple Blink Application 
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Fig. 2.3 shows us an example of a simple Blink application where different components 

are wired together to form a configuration as shown. The purpose of this application is to blink 

the led whenever a timer gets fired. Fig.2.4 shows a sample Blink.nc configuration file. 

 

Figure 2.4  Example of a simple Blink.nc configuration files 

 

2.3 What is Variable Sharing? 

Now that we have looked at components and configurations, we will see how we define 

variable sharing between them. Each component C has a set, C.in, of input ports and a set , 

C.out, of output ports. Each input port p in C.in is associated with a variable, p.var, which is read 

by C. Each output port p is also associated with a variable p.var that is written by C. 

As we saw earlier, a configuration is defined by a set of components and wiring between 

the ports of the components. Data sharing is specified by the wiring between the components. 

When an output port, p1, of a component C1 is connected to input port p2 of component C2, then 

C1.p1.var and C2.p2.var are mapped as a single shared variable. A configuration may also have 

input ports and output ports. An input port of a configuration Conf can be bound to an input port 

of one or more components. In this case again, all of these input ports are mapped to the same 

variable that is associated with the input port of the configuration. Similarly, the output port of a 

configuration can be bound to the output ports of more than one component, and in this case as 

well, all of these variables are mapped to the same shared variable written by the components.  
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Fig 2.5 shows examples of variable sharing. Fig 2.5(1) shows wiring between a writer and a 

reader component. As these components share a variable between them we say that C2.P2 reads 

from C1.P1. In Fig 2.5(2) as we can see that we have configuration Conf with nested sub-

configuration C3 where port P1 of Conf can be equated to port P3 of component C3. So we can 

say that C3.P3 reads from C2.P2. Similarly, in Fig 2.5(3) port P3 of C3 is equated with P1 of 

Conf. 

2.4 AppGraph.xml - The Input Application Graph File  

We represent sensor network application information in a file, AppGraph.xml, in the 

XML format. This contains information about input/output ports available for each component 

and its connection with other ports.  

2.2.1 Application Graph Parameters 

Fig. 2.4 illustrates the format of the application graph parameters which can be 

specified in AppGraph.xml. Following is an example of AppGraph.xml file of the configuration 

shown in Fig. 2.3 

 

Figure 2.5  AppGraph.xml file with input wiring information 
 

 

 

 

 

 

<Info> 

  <components> 

 <HOME> 

      <name>D</name> 

      <input_ports> 

   <wire> 

    <port>P2</port> 

     <connected_to> 

            <wire_to>P1</wire_to> 

            <node>C</node> 

          </connected_to> 

     <equated_to> 

            <wire_to>P4</wire_to> 

            <node>E</node> 

          </equated_to> 

    <equated_to> 

            <wire_to>P5</wire_to> 

            <node>F</node> 

         </equated_to> 

   </wire> 

 </input_ports> 
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The following points explain the different XML tags in the AppGraph.xml file from Fig. 2.6 – 

 

1. The tag Name  specifies the name of the component 

2. The tag output_ports specifies all of the ports which are provided by the 

component 

3. The tag input_ports  specifies all of the ports used by the component 

4. The tag Port  specifies the port name of the current component defined by name 

tag, the tag connected_to  specifies the component name and the tag wire specifies 

the port name it is connected to .For example, the connection  A.P1 -> C.P4 is  

expressed as follows (multiple wiring’s are  similarly added by adding new wire 

tags) 

 
   <name>A</name> 

<output_ports> 

   <wire> 

        <port>P1</port> 

    <connected_to> 

            <wire_to>P2</wire_to> 

            <node>D</node> 

          </connected_to> 

        </wire> 

 </output_ports> 

5. The tag equated_to  specifies wiring information of composite component which 

can be equated to nested components within it 

   

    <output_ports> 

   <wire> 

        <port>P1</port> 

    <connected_to> 

            <wire_to>P2</wire_to> 

            <node>D</node> 

          </connected_to> 

        </wire> 

 </output_ports> 

     <nested_comp> 

 <name>G</name> 

 <name>H</name> 

     </nested_comp> 

    </HOME> 

  </components> 

  <commands> 

  </commands> 

</Info> 
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6. The tag nested_comp specifies list of nested sub-components present within a 

component 

2.3 Network Topology 

The file topo.txt is used to describe the topology of the network on which the application 

is to be deployed. The network topology is specified using the following parameters: 

• Connectivity between the nodes,  

• Coordinates of each of the nodes. 

Both of these pieces of information are related. Given the coordinates of the nodes and the 

communication model used, one can determine the pair of nodes which can communicate with 

each other. At present, we require this information to be specified separately.  

2.3.1 Topology Connectivity 

Fig. 2.5 illustrates the format of the topology file, topo.txt, which specifies the 

connectivity between the nodes. . 

 

 

Figure 2.6  topo.txt file with Input Topology graph information 

 

 

 

 

 

 

 

 

The following points explain the format of the file:  

1. The  number  of  nodes  in  the  actual network  is specified  by  the  keyword  

numnodes. 

2. The node connectivity of the network is  specified as follows –  

i. The first parameter is id of the node whose connectivity information is being 

provided (e.g. the first line is specifying information about node 1).                  

ii. The subsequent numbers on the same line indicate the ids of the nodes   which are 

connected with the current node e.g. the first line of topo.txt file specifies that 

numnodes  8 

1 3 5 7 

2 3 

3 5 6 

4 6 

6 7 
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node 3, node 5 and node 7 are connected with node 1.  Similarly, each new line 

contains connectivity information of that node. 

 

2.5  Mapping of application components to network nodes  

To deploy an application on a network topology, we need to know the nodes where each 

of the application components is to be deployed. We assume that this information is provided by 

the application designer. This is specified in the file, mapping.txt. When developing an 

application in Cadena, it is possible to associate an attribute, location, with each component, and 

the designer can specify the locations when designing the application. This information is stored 

in an internal Cadena data structure along with the application scenario information. It is possible 

to derive this information (and hence, construct the file mapping.txt) from the application 

information. At present, we assume that this file is available to our tool. We require that at most 

one component is mapped to each node. Fig. 2.6 illustrates the format of the mapping file 

parameters that can be specified in mapping.txt. 

 

Figure 2.7  mapping.txt file with Input Mapping information 

 

 

 
 

 

 

 

The following points explain the format of the file mapping.txt from Fig. 2.8 –  

 

1. The number of components in the application graph are specified by  the keyword 

numcomponents. 

 

2. The component - node mapping can be specified as follows –  

i. First parameter is the component name which is mapped onto node Number 

specified in second parameter e.g. component ‘a’ is mapped onto node number 1 

 

numcomponents  4 

a  1 

b  2 

c  4 

d  6 
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2.6  Causal.txt - Causal Consistency Constraints  

 

Each component can specify the consistency requirements for its incoming data. Causal 

consistency constraint is defined as follows. Let p1 and p2 be uses ports of a component C.  

Causal delivery (p1, p2): Let e1 and e2 be two events (containing values v1 and v2 

respectively) delivered on p1 and p2 respectively. Then, there must exists a value v1’ such that 

v1’ is more recent than v1 and v2 depends on v1’.  

This information can be specified in causal.txt file. The format of causal.txt file is as shown in 

Fig 2.9. 

  Figure 2.8  causal.txt file with Causal Consistency Constraints 

C P4 P5 

The causal consistency constraints between different input ports of a component are 

specified by   

1. First parameter is the component name 

2. Rests of the parameters are the names of the input ports whose data values should 

satisfy causal consistency constraints. e.g. In Fig 2.9 Ports P4 and P5 of component C 

should satisfy causal consistency constraints 

 

2.7  atomic.txt - Atomic Consistency Constraints  
 

If a component is a composite component, the designer may specify atomic execution of 

the component. This implies that for any execution, there exists an equivalent execution in 

which all actions executed in response to an event arriving at a uses port are atomic with respect 

to the rest of the system. Names of such composite components can be specified on different 

lines in atomic.txt as shown in Fig. 2.10 

  Figure 2.10 atomic.txt file with Atomic Consistency Constraints 

D 

 This specifies that the execution of operations of the nested components within 

component D should be atomic with respect to rest of the system. 
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CHAPTER 3 - Labeling Algorithm 

The Labeling algorithm is one of the most important parts of the framework. We perform 

graph analysis to come up with labeling for each node which then is used by the nesC 

infrastructure during execution. Fig 3.1 shows various phases of a Labeling algorithm. 

 

Figure 3.1  Examples of variable sharing 

 

 

The first task of the Labeling algorithm is to use the file App_Graph.xml, described in 

Chapter 2, as an input and identify the shared variables present in the application graph. . Next, it 

reads the file topo.txt file to build up an adjacency list representing topology graph information 

given in the file.  We then extract the mapping information of application components to   nodes 

in the topology graph from mapping.txt file and link it with the topology graph adjacency list. All 

these data structures along with the given consistency requirements are then analyzed by the 

Labeling algorithm to come up with the labels for each shared variable to generate e the file 

specs.txt. 

This chapter aims to describe in detail the mechanism used to identify the shared 

variables and then how labeling framework indentifies accumulators and distributors nodes in the 
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topology graph and message processing type based on the given consistency requirements. 

 3.1 Identifying Shared Variables 

We now define how the variables are shared between the components. We define a 

mapping, reads_from, from input ports to output ports. As shown in Fig 3.1(1) if the output port 

p1 of C1 is wired to the input port p2 of C2, then we say that C2.p2 reads_from C1.p1. If input 

port p1 of a configuration Conf is mapped to port p2 of C2, then p2 is mapped to all ports which 

Conf.p1 is mapped to. Thus, if Conf.p1 reads_from C3.p3 then C2.p2 Reads_from C3.p3, as 

shown in Fig 3.1(2). Let output port p1 of a configuration Conf be mapped to port p2 of C2. If 

C3.p3 reads_from Conf.p1 then C3.p3 reads_from C2.p2, shown in Fig 3.1(3) 

 

If a set, P1, of ports read from a set, P2, of ports, then we introduce a new variable, x, 

with all ports in P2 as writers of x, and all ports in P1 as readers of x. Note that each port in P1 

must read from all ports in P2 and not any other additional ports. If P1 is a singleton set, then x is 

a single-reader, multiple-writer variable. If P2 is a singleton set, then x is a multiple-reader, 

single-writer variable. We will use xc to denote the port on C which reads or writes x.  

We have three cases to consider:  

1. Multiple-writer, single-reader variable 

2. Single-writer, multiple-reader variable 

3. Multiple-writer, multiple-reader variable 
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Figure 3.2  Examples of variable sharing 

 

 

 

 

 

 

 

 

 

 

 

  

We analyze the application graph file to determine the variables identified above. We 

build the following tables from this analysis:  

• Accumulator shared variable table: This table contains name of components 

involved in multiple writer single reader scenario 

• Distributor shared variable table: This table contains name of components 

involved in multiple reader single writer scenario 

Multiple-writer single-reader scenarios can be found out by looking at wiring information 

of input ports of all the components. If any input port is connected to more than one output port 

of other components then this is added to the Accumulator shared variable information table. On 

the similar lines, we can identify multiple-reader singlewriter scenarios by looking at output port 

wiring information of each port. If any output port is wired to more than one input port of other 

components then this will get added to the Distributor shared variable information table. After 

going through all the components and their wiring information, we are  able to build the Shared 

Variable Information Tables for each type of shared variable we are trying to identify in a  given 

application graph. This design gives us the flexibility of extending current implementation to 

support other types of shared variables which can be identified from the application graph in 

future.  

Figure 3.3 Application Graph Example 1 

1) C2.P2 reads from C1.P1 

2) C3.P3 reads from C2.P2 

 

P1       P2 

P2 

P1 

P1 
P2 

3) C2.P2 reads from C3.P3 
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Consider above scenario in Fig. 3.1 where output port (provides) P1 of component A is 

connected to the input ports (uses) P2 and P4 of components B and C respectively. Also, value 

read by component B on port P2 is written onto port P3. Values read by component C on input 

ports P4 and P5 should be causally consistent. Component D is composed of nested sub-

components. Component D should satisfy atomic consistency. Port P7 of component D can be 

equated with input port P8 of component E also port P14 is equated with port P13 of component 

G. For atomic consistency one needs to delay delivery of message with sequence number n until 

messages with sequence number n-1 are delivered to component G. 

After analyzing this application graph as we can see that there is one Distributor shared 

variable present between components A, B and C. This information is stored in the Distributor 

information table as A -> B -> C i.e. the first node in the list will always be the node which is 

acting as a distributor followed by the list of all the reader components.  

3.2 Building an adjacency list for the network topology 

This phase reads the topology graph information given in the file topo.txt file and 

constructs an adjacency list representation of the physical topology. This adjacency list 

representation is then used to find shortest paths of each pair of nodes. This path information is 

then used to identify accumulator/distributor nodes. An accumulator node is one whose input 

port is connected to output ports of more than one different component. A distributor node is one 

whose output port is connected to input ports of more than one different component. An 
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accumulator node is identified for each multiple-writer, single-reader variable. Ideally, this 

variable must be a node whose distance to the writer nodes is the minimum. A distributor node is 

identified for each multiple-reader, single-writer variable. Ideally, this variable must be a node 

whose distance to the reader nodes is the minimum. This phase also reads the mapping 

information from mapping.txt file and maintains a table of mapping of each component on each 

node. We also provide an API which when given a component name returns the node number on 

which it is deployed which can be used at the time of labeling nodes. 

get_mapping_information(component_name) 

Consider following network graph where components are mapped onto different nodes as labeled 

in the Fig. 3.2 

 

Figure 3.4  Network Graph Example 1 

 

 

 

3.3 Identifying the Accumulator and Distributor Nodes 

After we have all the data mentioned in Section 3.1 and Section 3.2, we start identifying 

accumulator and distributor nodes for each shared variable. This is done by finding the nearest 

common node between all the nodes on which the components involved in writing to a shared 

variables are mapped.  

e.g. If we take an example mentioned in Fig 3.1 where component involved in writing are 

mapped like this B �2; C� 4  
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Then, we find the nearest common node between nodes 2 and 4 (from the topology graph 

adjacency list containing all pair shortest path information) which can distribute values to the 

reader components . The nearest common node obtained is the Distributor node for shared 

variable under consideration is represented as DIS (X1) where X1 is the shared variable 

associated with this reader-writer set. . 

Similarly, for each accumulator shared variable, we find the node nearest to  all the nodes on 

which the components involved in writing a shared variable are mapped. 

Labeling for accumulator nodes is also done on the similar lines where only the assigned label is 

different. Similarly, we will go through all the shared variables identified in section 3.1 and after 

finding nearest common node we will label it as Acc(x) or Dis(x). 

3.4 Analyzing Various Consistency Constraints 

 Various consistency constraints such as causality and atomicity can be read from the 

causal.txt and atomic.txt. For given Example 1 under consideration network graph in Fig 3.4, it 

can be seen that causal consistency can be violated at C. Consider a scenario where B receives x 

from A and then sends y to C. C also receives x directly from A. Here it is possible to receive 

value of y that is dependent on more recent value of x. For causal consistency, the Labeling 

algorithm reads different input ports information which require causality to be ensured and 

identifies paths along which causality can be violated. . E.g. If it is specified that ports P4 and P5 

of a component C should satisfy causality, then the Labeling algorithm first identifies the source 

component A connected to port P4 on which values read by P4 and P5 are dependent on.  After 

identifying the source component, it will try to find an alternative path from port P5 to 

component A and add labels for each node along this path to propagate sequence numbers. That 

is, a sequence number is generated at A and each node along this alternative path copies the 

incoming sequence number on to the outgoing message. This enables us to propagate 

dependency information along the path. . 

The node with component C on it will have label indicating that the message delivery be delayed 

to ensure causal consistency for this node. 

Atomic consistency can be specified for component D. Labeling algorithm first identifies 

all the nested components whose ports are equated with input port of component D. All nodes 

having these components will be labeled asking to copy sequence number of incoming message 
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on to each outgoing message. Other nested components such as G which read from more than 

one component will have label indicating that the message delivery be delayed to ensure delivery 

of messages with sequence number n until we have delivered messages with sequence number n-

1 on both input ports of G. 

All this labeling information is then written into specs.txt which can then be used by 

NesC Consistency framework for further processing. 
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CHAPTER 4 - Consistency Framework 

This is another important phase of this project which makes use of the specs.txt file 

generated from the Labeling framework mentioned in chapter 3. The purpose of specs.txt file is 

to build the shared variable processing tables at each node which can be used by Consistency 

framework to ensure data consistency. This will be done by reading the table information from 

the specification file 

Before we look at how this framework makes use of the specs.txt file we will first go 

over the format of this file. 

4.1 specs.txt File Format 

 

Figure 4.1 illustrates the format of the sample specification file produced after applying 

the Labeling algorithm for the example discussed in Chapter 3. 

 

Figure 4.1 Specification File structure Example 1 

 

 numnodes 9 

nodeid 1 

1 2 -1 

end 

nodeid 4 

1 5 -1 

end 

nodeid 3 

1 1 4 -1 

end 

nodeid 2 

1 3 -1 

end 

nodeid 4 

2 2 -1 

end 

nodeid 5 

2 3 -1 

End 

nodeid 6 

2 2 -1 

end 

nodeid 7 

2 5 -1 

end 

nodeid 8 

2 1 -1 

en 
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The following points will explain the node table parameters from Fig. 4.1 -  

 

1)   The  number  of  nodes  in  the  network  specified  by  the  keyword  

numnodes.  

2)   The node shared variable table information can be specified as follows -  

i. The node id under consideration is specified by keywork nodeid  followed by 

the node number  

ii. The shared variable information begins with the shared variable number 

iii. Following that the first integer specifies the processing_type given shared 

variable belongs to i.e. 0 indicates shared variable belongs to forwarder 

message processing type, 1 indicates it belongs to accumulator message 

type, 2 indicate it belongs to distributor message type etc… 

iv. After that we may have list of parameters that one needs for processing of 

given processing_type terminated by -1 to indicate end of parameters 

v. After the information for all the shared variables have been specified, the end 

of the shared variable information must be indicated by keyword end 

 

4.2 Consistency Framework Implementation 

After looking at the structure we will now see how this file is actually used in the 

framework implementation. Simulation framework read the shared variable information 

associated and loads it into the internal table each node is maintaining only if, node id read from 

the specs.txt file is same as the TOS_LOCAL_ADDRESS. This means each node will just load 

the information associated with it and not other nodes. 

After initializing service tables maintained by all the nodes (maintaining shared variable 

information) the job is to just intercept all the messages received from the communication layer 

comm and process them based on the processing information present in the service table by 

identifying processing type of the message by looking at message structure fields. We can have 

messages of various types like forwarder messages, accumulator messages etc… We will now 

look at how these messages are identified from specs.txt 
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Processing_type 1: Forward messages containing shared variable x to neighbor y 

Processing _type 2: When message containing variable x arrive assign it a sequence 

number and forward 

Processing _type 3: When messages containing variable x arrive store the sequence 

number in the message and when sending the message containing variable y, include this 

sequence number 

Processing _type 4: When message containing variable x arrives store the variable 

locally. When a message containing y is being sent piggyback the value of x 

Processing _type 5: Delay message delivery to ensure causal consistency 

 

This processing type mechanism is really helpful as it can be easily extended to support 

messages of different processing types by just adding the processing code for newly added 

processing type. Any application which wants to ensure consistency can make use of the send 

and receive interfaces provided by given framework. 

 Now we will go over the specs.txt file in Fig 4.1. As specified from causal.txt file we 

know component C needs to ensure causal consistency. We will see how it will get satisfied by 

looking at only those labeling entries in the specs.txt file for all the nodes having entries for this 

particular identified shared variable. 

nodeid 1 

1 2 -1 

end 

nodeid 4 

1 5 -1 

end 

nodeid 3 

1 1 -1 

end 

nodeid 2 

1 3 -1 

end 

 

Node1 is acting as a distributor node for components B and C. So it has a label with 

processing_type 2 indicating it needs to assign sequence number to messages before sending 

them out. Node 2 is having 3 as a processing_type label for shared variable 1 indicating it needs 

to copy the incoming sequence number from data received from node 1 while it is sending the 

outgoing message. Similarly node 3 will act as a forwarder and it will forward the incoming data 

to node 4. Node 4 which has component C mapped onto it has a label with processing_type  5 
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indicating it needs to delay the delivery of messages with sequence number n until it receives 

messages with sequence number n-1. This will ensure that node 4 (component C) will process 

messages belonging to same time stamp ensuring causal consistency. 

 Now we will look at how atomic consistency will get ensured with the labels present in 

specs.txt file in Fig 4.1. Labeling framework identifies it as a shared variable 2. We will look at 

all the nodes having entries for shared variable 2. 

nodeid 4 

2 2 -1 

end 

nodeid 5 

2 3 -1 

nodeid 6 

2 2 -1 

endend 

nodeid 7 

2 5 -1 

end 

nodeid 8 

2 1 -1 

end 

 

Node 4 and Node 6 will assign sequence number to the outgoing messages. Node 5 will copy the 

incoming sequence number while sending the outgoing message. Node 7 which has component 

G mapped onto it has a label with processing_type  5 indicating it needs to delay the delivery of 

messages with sequence number n until it receives messages with sequence number n-1. This 

will ensure that node 7 (component G) will process messages belonging to same time stamp 

ensuring atomic execution. 
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CHAPTER 5 - Performance Results 

In this chapter we will analyze the overhead of our framework by looking at number of 

additional messages needed, amount of energy consumed etc… for various different scenarios. 

First we will analyze the impact of increasing number of components in a given scenario 

by keeping the ratio of number of components to number of constraints same as in example 1 in 

chapter 3. For this first we will consider an application graph shown in Fig 5.1 which is put 

together after serial replication of example 1 discussed in chapter 3. Similarly we have the 

network graph shown in Fig 5.2 

 

Figure 5.1 Application Graph Scenario 1 

 

 
 

In given application graph Components D1 and D2 needs to satisfy atomic consistency and 

components C1 and C2 needs to satisfy causal consistency.  
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Figure 5.2 Network Graph Scenario 1 

 

 

After running labeling algorithm on given application graph specs.txt file shown in Fig 5.3 gets 

generated which will has labels for all the nodes in the network graph based on the consistency 

requirements mentioned earlier. 

Figure 5.3 Generated specs.txt file for Scenario 1 

 

numnodes 18 

nodeid 1 

1 2 -1 

end 

nodeid 4 

1 5 -1 

end 

nodeid 3 

1 1 4 -1 

end 

nodeid 2 

1 3 -1 

end 

nodeid 4 

2 2 -1 

end 

nodeid 5 

2 3 -1 

End 

nodeid 6 

2 3 -1 

end 

nodeid 7 
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2 5 -1 

end 

nodeid 8 

2 1 -1 

nodeid 9 

2 1 -1 

nodeid 10 

3 2 -1 

end 

nodeid 13 

3 5 -1 

end 

nodeid 12 

3 1 13 -1 

end 

nodeid 11 

3 3 -1 

end 

nodeid 13 

4 2 -1 

end 

nodeid 14 

4 3 -1 

End 

nodeid 15 

4 3 -1 

end 

nodeid 16 

4 5 -1 

end 

nodeid 17 

4 1 -1 

nodeid 18 

4 1 -1 

end 

 

 

Now we will modify the scenario 1 by increasing the number of components. Consider 

following application graph in Fig 5.4 which is put together after parallel and serial replication of 

example 1 discussed in chapter 3. Similarly we have the network graph shown in Fig 5.5 
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Figure 5.4 Application Graph Scenario 2 

 

 

 

 

 

In given application graph Components D1, D2 and D3 needs to satisfy atomic consistency and 

components C1, C2 and C3 needs to satisfy causal consistency. As we can see scenario 2 has 

more number of components compared to scenario 1 but constraint to component ratio is same 

for both the scenarios which will help us in analyzing impact of increase in number of 

components on the consistency framework. 
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Figure 5.5  Network Graph Scenario 2 

 

 

 

After running labeling algorithm on given application graph specs.txt file shown in Fig 5.6 gets 

generated which will has labels for all the nodes in the network graph based on the consistency 

requirements mentioned earlier. 

 

Figure 5.6 Generated specs.txt file for Scenario 2 
 

numnodes 28 

nodeid 1 

1 2 -1 

end 

nodeid 4 

1 5 -1 

end 

nodeid 3 

1 1 4 -1 

end 

nodeid 2 

1 3 -1 

end 

nodeid 4 

2 2 -1 

end 

nodeid 5 

2 3 -1 

End 

nodeid 6 

2 3 -1 

end 

nodeid 7 
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2 5 -1 

end 

nodeid 8 

2 1 -1 

nodeid 9 

2 1 -1 

nodeid 10 

3 2 -1 

end 

nodeid 13 

3 5 -1 

end 

nodeid 12 

3 1 13 -1 

end 

nodeid 11 

3 3 -1 

end 

nodeid 13 

4 2 -1 

end 

nodeid 14 

4 3 -1 

End 

nodeid 15 

4 3 -1 

end 

nodeid 16 

4 5 -1 

end 

nodeid 17 

4 1 -1 

nodeid 18 

4 1 -1 

nodeid 20 

5 2 -1 

end 

nodeid 23 

5 5 -1 

end 

nodeid 22 

5 1 23 -1 

end 

nodeid 21 

5 3 -1 

end 

nodeid 23 

6 2 -1 

end 

nodeid 24 

6 3 -1 

End 

nodeid 25 

6 3 -1 

end 

nodeid 26 

6 5 -1 
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end 

nodeid 27 

6 1 -1 

end 

 

 Power consumed by each node is calculated by making use of the power profiling available in 

TOSSIM. It is calculated by subtracting the power available with each node at the end from the 

power available at each node in the beginning. Power available at each node can be seen by 

executing tinyos application with following command line options. 

export DBG= power,usr1 

./build/pc/main.exe -p 28  

 

Figure 5.7 output for Scenario 2 

 

****NODE1****  

Number of messages recd = 0  

Number of messages sent = 10  

Power consumed = 110 mA 

****NODE2****  

Number of messages recd = 5  

Number of messages sent = 5  

Power consumed = 110 mA 

****NODE3****  

Number of messages recd = 10  

Number of messages sent = 10  

Power consumed = 224 mA 

****NODE4****  

Number of messages recd = 10  

Number of messages sent = 10  

Power consumed = 220 mA 

****NODE5****  

Number of messages recd = 5  

Number of messages sent = 5  

Power consumed = 98 mA 

****NODE5****  

Number of messages recd = 5  

Number of messages sent = 5  

Power consumed = 97 mA 

****NODE7****  

Number of messages recd = 5  

Number of messages sent = 10  

Power consumed = 164 mA 

****NODE8****  

Number of messages recd = 5  

Number of messages sent = 5  

Power consumed = 114 mA 

****NODE9****  

Number of messages recd = 0  

Number of messages sent = 5  

Power consumed = 57 mA 



 32

****NODE10****  

Number of messages recd = 0  

Number of messages sent = 10  

Power consumed = 110 mA 

****NODE11****  

Number of messages recd = 5  

Number of messages sent = 5  

Power consumed = 118 mA 

****NODE12****  

Number of messages recd = 10  

Number of messages sent = 10  

Power consumed = 235 mA 

****NODE13****  

Number of messages recd = 10  

Number of messages sent = 10  

Power consumed = 280 mA 

****NODE14****  

Number of messages recd = 5  

Number of messages sent = 5  

Power consumed = 130 mA 

****NODE15****  

Number of messages recd = 5  

Number of messages sent = 5  

Power consumed = 108 mA 

****NODE16****  

Number of messages recd = 5  

Number of messages sent = 10  

Power consumed = 178 mA 

****NODE17****  

Number of messages recd = 5  

Number of messages sent = 5  

Power consumed = 114 mA 

****NODE18****  

Number of messages recd = 0  

Number of messages sent = 5  

Power consumed = 65 mA 

****NODE19****  

Number of messages recd = 10  

Number of messages sent = 10  

Power consumed = 210 mA 

****NODE20****  

Number of messages recd = 10  

Number of messages sent = 10  

Power consumed = 234 mA 

****NODE21****  

Number of messages recd = 5  

Number of messages sent = 5  

Power consumed = 110 mA 

****NODE22****  

Number of messages recd = 10  

Number of messages sent = 10  

Power consumed = 224 mA 

****NODE23****  

Number of messages recd = 10  

Number of messages sent = 10  

Power consumed = 230 mA 

****NODE24****  

Number of messages recd = 5  
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Number of messages sent = 5  

Power consumed = 118 mA 

****NODE5****  

Number of messages recd = 5  

Number of messages sent = 5  

Power consumed = 125 mA 

****NODE26****  

Number of messages recd = 10  

Number of messages sent = 5  

Power consumed = 187 mA 

****NODE27****  

Number of messages recd = 5  

Number of messages sent = 5  

Power consumed = 113 mA 

****NODE28****  

Number of messages recd = 5  

Number of messages sent = 0  

Power consumed = 68 mA 

 

 

We can see that after increasing number of components in the application graph only the 

labeling information maintained at each node increases which will increase the time required to 

process each message by those nodes. This can be seen by looking at the generated output shown 

in Fig 5.8 comparing performance for Scenario1 and Scenario2, we can see some more nodes got 

added in Scenario 2 as we increased number of components for keeping information about added 

components.  

Following is the output showing tabular representation of performance results obtained 

for 2 different scenarios under consideration with different number of components. Each entry in 

scenario column represents a tuple of the form (Messages sent, Messages recd, Power 

Consumed, Total number of Bytes in Messages sent). 

 

Figure 5.8  Tabular representation of Performance Results 1 

 

Node Id Scenario 2 Scenario 2 

1 (0,10,110,100) (0,10,110,100) 

2 (5,5,110,100) (5,5,110,100) 

3 (10,10,225,200) (10,10,225,200) 

4 (10,10,220,200) (10,10,220,200) 

5 (5,5,120,100) (5,5,120,100) 

6 (5,0,72,50) (5,0,72,50) 

7 (5,10,180,150) (5,10,180,150) 

8 (5,5,114, 100) (5,5,114, 100) 
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9 (5,5,120,100) (5,5,120,100) 

10 (0,10,120,100) (0,10,120,100) 

11 (5,5,118,100) (5,5,118,100) 

12 (10,10,235,200) (10,10,235,200) 

13 (10,10,280,200) (10,10,280,200) 

14 (5,5,130,100) (5,5,130,100) 

15 (5,5,108,100) (5,5,108,100) 

16 (5,10,178,150) (5,10,178,150) 

17 (5,5,126,100) (5,5,126,100) 

18 (5,0,68,50) (5,5,120,100) 

19 - (10,10,210,200) 

20 - (10,10,234,200) 

21 - (5,5,110,100) 

22 - (10,10,234,200) 

23 - (10,10,230,200) 

24 - (5,5,107,100) 

25 - (0,5,53,50) 

26 - (10,5,169,150) 

27 - (5,5,110,100) 

28 - (5,0,68,50) 

 

 

After analyzing the number of messages send and received by making use of consistency 

framework it can be seen that this framework puts very minimal overload on the overall 

performance of the application as count of number of messages send and received by each node 

remains the same. Also as the ratio of constraints to components remains the same for both the 

scenarios the total number of bytes send in messages also remain the same. Scenarios 2 maintains 

some extra information as it has more number of components than Scenario .1 The nodes having 

various consistency constraints need to maintain some extra data structure and perform some 

computation to satisfy consistency and hence they consume very little extra power and memory 

space. But it can be seen that we need to add very minimal amount of information in order to 

ensure consistency. 

Now we will analyze the impact of keeping the number of components in a given 

application graph in Scenario 2 the same but varying the component to constraint ratio to analyze 

a change in the overhead.  We will carry out experiments by increasing number of constraints. 

Scenario3 specifying consistency constraint only for Component C1, Scenario4 specifying for 
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components C1, D1, C2 and Scenario2 we have already got the results by specifying constraints 

for components C1,D1, C2,D2, C3,D3. 

If we consider Scenario3 just specifying consistency constraint for component C1 then 

labeling algorithm generates labels for only those nodes involved in ensuring consistency at C1. 

Fig 5.9 shows generated specs.txt file. 

 

 

Figure 5.9 specs.txt file generated for Scenario 3 
 

nodeid 1 

1 2 -1 

end 

nodeid 4 

1 5 -1 

end 

nodeid 3 

1 1 4 -1 

end 

nodeid 2 

1 3 -1 

end 

 

As we have less number of entries present in specs.txt file, only those nodes having 

label’s present in specs.txt file will initialize the shared variable information table with labeling 

information. So at the time of execution only those nodes having labeling information present in 

their table will process messages to ensure consistency other nodes will process them as any 

other message without caring about the consistency requirements reducing the amount of 

overhead involved in processing each message based on the labeling information. The number of 

messages exchanged between nodes is not dependent upon the consistency constraints. 

Consistency constraints add up some extra processing that needs to be done while sending or 

receiving any message to ensure consistency consuming little extra power needed for processing. 

Similarly we can see that even after adding consistency constraints for components D1, 

C2 only the labeling information maintained at each node increases which will increase the time 

required to process each message by those nodes. This can be seen by looking at the generated 

output shown in Fig 5.11 comparing performance for Scenario2, Scenario3 and Scenario4 where 

we can see some decrease in the power consumed for nodes not maintaining any table for 

processing messages to ensure consistency under column for Scenario4. All nodes after node 

number 13 don’t have any labels generated for them and consume little less power compared to 
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the output in Fig 5.7 and the specification file looks similar to the file in Fig 5.6 but containing 

labels for nodes up to 13 only as shown in Fig 5.10 

 

Figure 5.10 Generated specs.txt file for Scenario 4 

 
numnodes 28 

nodeid 1 

1 2 -1 

end 

nodeid 4 

1 5 -1 

end 

nodeid 3 

1 1 4 -1 

end 

nodeid 2 

1 3 -1 

end 

nodeid 4 

2 2 -1 

end 

nodeid 5 

2 3 -1 

End 

nodeid 6 

2 2 -1 

end 

nodeid 7 

2 5 -1 

end 

nodeid 8 

2 1 -1 

nodeid 9 

2 1 -1 

nodeid 10 

3 2 -1 

end 

nodeid 13 

3 5 -1 

end 

nodeid 12 

3 1 13 -1 

end 

nodeid 11 

3 3 -1 

end 

nodeid 13 

4 2 -1 

end 

 

Following is the output showing tabular representation of performance results obtained 

for 3 different scenarios under consideration with different constraints to components ratio. Each 
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entry in scenario column represents a tuple of the form (Messages sent, Messages recd, Power 

Consumed, Total number of Bytes in Messages sent). We add an entry for Total number of Bytes 

in Messages sent because in some cases number of messages sent may be the same but number of 

bytes may be different. Each message is composed of sequence number, shared variable number, 

processing type and data fields. If there are no consistency constraints then the nodes not having 

any label’s will not make use of share variable number and processing type fields present in the 

message structure reducing on the total number of bytes sent in each message. 

Figure 5.11  Tabular representation of Performance Results 

 

Node Id Scenario 2 Scenario 3 Scenario 4 

1 (0,10,110,100) (0,10,107,100) (0,10,110,100) 

2 (5,5,110,100) (5,5,110,100) (5,5,110,100) 

3 (10,10,225,200) (10,10,220,200) (10,10,224,200) 

4 (10,10,220,200) (10,10,220,200) (10,10,220,200) 

5 (5,5,120,100) (5,5,98,60) (5,5,123,100) 

6 (5,0,72,50) (5,0,62,30) (5,0,69,100) 

7 (5,10,180,150) (5,10,161,90) (5,10,174,100) 

8 (5,5,114, 100) (5,5,97,60) (5,5,114,100) 

9 (5,5,120,100) (5,5,102,60) (5,5,124,100) 

10 (0,10,120,100) (0,10,108,60) (0,10,122,100) 

11 (5,5,118,100) (5,5,108,60) (5,5,118,100) 

12 (10,10,235,200) (10,10,198,120) (10,10,235,200) 

13 (10,10,280,200) (10,10,210,120) (10,10,268,200) 

14 (5,5,130,100) (5,5,110,60) (5,5,110,60) 

15 (5,5,108,100) (5,5,96,60) (5,5,96,60) 

16 (5,10,178,150) (5,10,160,90) (5,10,160,90) 

17 (5,5,126,100) (5,5,102,60) (5,5,102,60) 

18 (5,5,120,100) (5,5,104,60) (5,5,104,60) 

19 (10,10,210,200) (10,10,198,120) (10,10,198,120) 

20 (10,10,234,200) (10,10,228,120) (10,10,228,120) 

21 (5,5,110,100) (5,5,104,60) (5,5,104,60) 

22 (10,10,234,200) (10,10,224,120) (10,10,224,120) 

23 (10,10,230,200) (10,10,229,120) (10,10,229,120) 

24 (5,5,107,100) (5,5,107,60) (5,5,107,60) 

25 (0,5,53,50) (5,5,53,60) (5,5,53,60) 

26 (10,5,169,150) (10,5,169,90) (10,5,169,90) 

27 (5,5,110,100) (5,5,110,60) (5,5,110,60) 

28 (5,0,68,50) (5,0,68,30) (5,0,68,30) 
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As we can see from above table, as the constraints to component ratio increases the 

amount of power consumed along with the number of bytes sent in each message increases. 
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