

A SIMULATION FRAMEWORK TO ENSURE DATA CONSISTENCY IN SENSOR

NETWORKS

by

NIKHIL JEEVANLAL SHAH

B.E., University of Pune, 2005

A REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2008

Approved by:

Major Professor

Dr. Gurdip Singh

Abstract

The objective of this project is to address the problem of data consistency in sensor network

applications. An application may involve data being gathered from several sources to be

delivered to multiple sinks, resulting in multiple data streams with several sources and sinks for

each stream. There may be several inter-stream constraints to be satisfied in order to ensure data

consistency. In this report, we model this problem as that of variable sharing between the

components in an application, and propose a framework for implementing variable sharing in a

distributed sensor network. In this framework, we define the notion of variable sharing in

component based systems. We allow the application designer to specify data consistency

constraints in an application. Given an application, we implement a tool to identify various types

of shared variables in an application. Given the shared variables and the data consistency

constraints, we provide an infrastructure to implement the shared variables. This infrastructure

has tools to synthesize the code to be deployed on each of the nodes in the physical topology.

The infrastructure has been built for the TinyOS platform. We have evaluated the framework

using several examples using the TOSSIM simulator.

 iii

Table of Contents

List of Figures .. iv

Acknowledgements ... v

CHAPTER 1 - Introduction .. 1

CHAPTER 2 - Project Description ... 5

2.1 Specification of Components in NesC .. 6

2.2 Specification of a Configuration in NesC ... 7

2.3 What is Variable Sharing? .. 8

2.4 AppGraph.xml - The Input Application Graph File .. 9

2.2.1 Application Graph Parameters ... 9

2.3 Network Topology .. 11

2.3.1 Topology Connectivity .. 11

2.5 Mapping of application components to network nodes .. 12

CHAPTER 3 - Labeling Algorithm .. 14

3.1 Identifying Shared Variables .. 15

3.2 Building an adjacency list for the network topology .. 17

3.3 Identifying the Accumulator and Distributor Nodes .. 18

3.4 Analyzing Various Consistency Constraints .. 19

CHAPTER 4 - Consistency Framework ... 21

4.1 specs.txt File Format ... 21

4.2 Consistency Framework Implementation ... 22

CHAPTER 5 - Performance Results ... 25

References ... 39

 iv

List of Figures

Figure 1.1 Architecture of the Components of the Framework .. 3

Figure 2.1 Examples of various types of Components .. 6

Figure 2.2 Sample component code from Blink.nc file ... 6

Figure 2.3 Example of a simple Blink Application ... 7

Figure 2.4 Example of a simple Blink.nc configuration files ... 8

Figure 2.6 AppGraph.xml file with input wiring information .. 9

Figure 2.7 topo.txt file with Input Topology graph information .. 11

Figure 2.8 mapping.txt file with Input Mapping information .. 12

Figure 2.9 causal.txt file with Causal Consistency Constraints ... 13

Figure 3.1 Examples of variable sharing ... 14

Figure 3.2 Examples of variable sharing ... 16

Figure 3.3 Application Graph Example 1 ... 16

Figure 3.4 Network Graph Example 1 ... 18

Figure 4.1 Specification File structure Example 1 ... 21

Figure 5.1 Application Graph Scenario 1 ... 25

Figure 5.2 Network Graph Scenario 1 .. 26

Figure 5.3 Generated specs.txt file for Scenario 1 .. 26

Figure 5.4 Application Graph Scenario 2 ... 28

Figure 5.5 Network Graph Scenario 2 ... 29

Figure 5.6 Generated specs.txt file for Scenario 2 .. 29

Figure 5.7 output for Scenario 2 .. 31

Figure 5.8 Tabular representation of Performance Results 1 ... 33

Figure 5.9 specs.txt file generated for Scenario 3 ... 35

Figure 5.10 Generated specs.txt file for Scenario 4 .. 36

Figure 5.11 Tabular representation of Performance Results .. 37

 v

Acknowledgements

I would like to take this opportunity to express my gratitude to some important

people who have inspired and guided me to complete this project.

Firstly, I thank my Major Professor and Advisor, Prof. Gurdip Singh for his

continued support and guidance throughout this project. I thank you for your patience, for

always being willing to point me in the right direction.

I thank my committee members, Prof. Daniel Andersen and Prof. John Hatcliff for their

support.

Finally, I would like to thank my family and friends for their unrelenting support and

encouragement, and for raising my spirits whenever I needed it.

 1

CHAPTER 1 - Introduction

Sensor network applications are often formed by putting together different components to

form high level configurations. A configuration is used to assemble components together

by connecting the interfaces used by components to interfaces provided by others. The

structure of most of the sensor network applications involves, various sensor nodes sensing

attributes such as temperature and humidity which are then propagated to different nodes where

these values are processed and finally collected at sink node for further analysis and possible

actions. We can see most of these applications involve data flowing between different

components.

The TinyOS system, libraries, and applications are written in NesC, a new

language for programming structured component-based applications. The NesC language is

primarily intended for embedded systems such as sensor networks. It has a C-like syntax, but

supports the TinyOS concurrency model, as well as mechanisms for structuring,

naming, and linking together software components into robust network embedded systems.

The principal goal is to allow application designers to build components that can

be easily composed into complete, concurrent systems. NesC applications are built out

of components with well-defined, bidirectional interfaces

In NesC, a sensor network application is designed by composing one or more components

whose ports are linked together. A component is defined by a set of ports, where each port may

offer a set of interfaces. Each interface has an operation and an event associated with it. A sensor

application may involve data being gathered from several sources to be delivered to multiple

sinks, resulting in multiple data streams with several sources and sinks for each stream. There

may be several inter-stream constraints to be satisfied in order to ensure data consistency.

This paper addresses the problem of data consistency in sensor networks. We

consider networks in which there are three types of nodes: those that are producing data (writers),

those that are consuming data (readers) and intermediate nodes which consume data and then

produce data (performing intermediate computations). A significant amount of research has been

done in developing algorithms/protocols for data collection and dissemination in sensor

 2

networks. A large body of this work has focused on mechanisms to ensure least amount of

energy consumed (such as setting up shortest paths from producers to consumers, and to

share/aggregate data in-transit to reduce the amount of data propagated). There has also been

work done to address data consistency issues. However, this work has mainly been in the context

of a single stream (or same data). For example, there has been work on addressing QoS issues

such as latency, freshness of data, error probability, and approximation. These issues are

desirable and relevant in cases where independent users are accessing the sensor networks for

information, and each user may have different constraints.

Query mechanisms have been proposed which allow one to specify queries which

get data from a particular sensor or sensors in a specific area. Researchers have looked at how

overlap between different queries can be exploited to reduce the amount of information

propagation.

The problem of data consistency across data streams due to constraints within the

same application has not been addressed. This problem, similar to distributed shared memory,

has been studied extensively in distributed computing. However, problems specific to sensor

networks have not been looked at. In particular, in the standard DSM, all data is treated in the

same way (that is, all data is required to be consistent). In the case of sensor networks, only some

data may have to be delivered in a consistent manner. .

In this report, we model this problem as that of variable sharing between the

components in an application, and propose a framework for implementing variable sharing in a

distributed sensor network. Fig 1.1 shows the architecture diagram for the proposed framework.

 3

Figure 1.1 Architecture of the Components of the Framework

The first stage processes the various input files and extracts the necessary information.

The Application Graph represented in the form of AppGraph.xml file is analyzed to build the

shared variable information table. The Network/Topology graph file, topo.txt, is analyzed to

build the node adjacency list. The component to node mapping information given in the file,

mapping.txt, is used to build a table containing the component- to node mapping. Various

consistency requirements such as causal consistency, atomic consistency are specified in the

files, causal.txt and atomic.txt, respectively which are used to build the consistency mechanisms.

All of the information obtained from the various files is given as input to the Labeling

Algorithm which then produces a file, specs.txt, which contains information on how messages for

each identified shared variable are to be processed. This specs.txt file is then used by the

Consistency Framework to satisfy various consistency requirements.

This report is organized as follows -

1. Chapter 2 explains the following files: AppGraph.xml file which is the file users use to

specify application graph information, topo.txt file users use to specify network topology

 4

information, mapping.txt file users use to specify mapping information between application

graph and topology graph, causal.txt and atomic.txt specifying causal and atomic consistency

constraints.

2. Chapter 3 explains the Labeling Framework which is the most important component of this

framework.

3. Chapter 4 explains specs.txt file generated by Labeling framework that NesC consistency

simulation framework uses to initialize share variable information tables associated with each

node. And explains how it can be used as a part of execution of applications using this

framework.

 5

CHAPTER 2 - Project Description

This chapter aims to give a detailed description of how the different features of

the Labeling framework have been implemented. The description will be divided into the

following categories:

• Specification of components and configurations and how we define variable sharing in a

given application configuration.

• Description of the "Application Graph File" that contains all information

regarding a configuration including the wiring information describing the

interconnection of the ports of different components.

• Description of the "Topology Graph File” containing information about how the

different nodes in the physical topology are connected with each other.

• Description of the “Mapping File” containing mapping information of various

components onto various nodes.

• Description of the “Causal Consistency constraints File” containing information of the

causal consistency constraints to be imposed between different ports of a component.

• Description of the “Atomic Consistency constraints File” containing names of all the

composite components requiring atomic execution.

 6

2.1 Specification of Components in NesC

An application consists of a set of components. Each component has a set of input and

output ports. We now give some examples of different types of components

Figure 2.1 Examples of various types of Components

(I) (II) (III)

Component Main shown in Fig 2.1(I) has only one provides (output) port stdcontrol.

Such component acts as a writer component. Component ‘BlinkM’ shown in Fig 2.1(II) has one

uses (input) port stdcontrol and two provides (output) ports Timer and Leds respectively. Such a

component serves as an intermediate component which reads values written on its input port,

processes them and makes it available on an output port. ‘LedsC’ component shown in Fig

2.1(III) has one uses (input) port Leds. Such a component acts as a reader component. Fig 2.2

shows a sample NesC code for component BlinkM.

Figure 2.2 Sample component code from Blink.nc file

Output port Input port

 7

2.2 Specification of a Configuration in NesC

A configuration is a collection of components. Configurations are used to build

applications by assemblying a set of components together and connecting interfaces used by

components to interfaces provided by other components. This interconnection of prts is called

wiring. A configuration can have nested sub-configurations. A port of a configuration can be

equated to port of a component inside it.

Now we will see an example of how does a configuration looks like and how various

components are wired together to form an application using a sample NesC configuration file.

Figure 2.3 Example of a simple Blink Application

 8

Fig. 2.3 shows us an example of a simple Blink application where different components

are wired together to form a configuration as shown. The purpose of this application is to blink

the led whenever a timer gets fired. Fig.2.4 shows a sample Blink.nc configuration file.

Figure 2.4 Example of a simple Blink.nc configuration files

2.3 What is Variable Sharing?

Now that we have looked at components and configurations, we will see how we define

variable sharing between them. Each component C has a set, C.in, of input ports and a set ,

C.out, of output ports. Each input port p in C.in is associated with a variable, p.var, which is read

by C. Each output port p is also associated with a variable p.var that is written by C.

As we saw earlier, a configuration is defined by a set of components and wiring between

the ports of the components. Data sharing is specified by the wiring between the components.

When an output port, p1, of a component C1 is connected to input port p2 of component C2, then

C1.p1.var and C2.p2.var are mapped as a single shared variable. A configuration may also have

input ports and output ports. An input port of a configuration Conf can be bound to an input port

of one or more components. In this case again, all of these input ports are mapped to the same

variable that is associated with the input port of the configuration. Similarly, the output port of a

configuration can be bound to the output ports of more than one component, and in this case as

well, all of these variables are mapped to the same shared variable written by the components.

 9

Fig 2.5 shows examples of variable sharing. Fig 2.5(1) shows wiring between a writer and a

reader component. As these components share a variable between them we say that C2.P2 reads

from C1.P1. In Fig 2.5(2) as we can see that we have configuration Conf with nested sub-

configuration C3 where port P1 of Conf can be equated to port P3 of component C3. So we can

say that C3.P3 reads from C2.P2. Similarly, in Fig 2.5(3) port P3 of C3 is equated with P1 of

Conf.

2.4 AppGraph.xml - The Input Application Graph File

We represent sensor network application information in a file, AppGraph.xml, in the

XML format. This contains information about input/output ports available for each component

and its connection with other ports.

2.2.1 Application Graph Parameters

Fig. 2.4 illustrates the format of the application graph parameters which can be

specified in AppGraph.xml. Following is an example of AppGraph.xml file of the configuration

shown in Fig. 2.3

Figure 2.5 AppGraph.xml file with input wiring information

<Info>

 <components>

 <HOME>

 <name>D</name>

 <input_ports>

 <wire>

 <port>P2</port>

 <connected_to>

 <wire_to>P1</wire_to>

 <node>C</node>

 </connected_to>

 <equated_to>

 <wire_to>P4</wire_to>

 <node>E</node>

 </equated_to>

 <equated_to>

 <wire_to>P5</wire_to>

 <node>F</node>

 </equated_to>

 </wire>

 </input_ports>

 10

The following points explain the different XML tags in the AppGraph.xml file from Fig. 2.6 –

1. The tag Name specifies the name of the component

2. The tag output_ports specifies all of the ports which are provided by the

component

3. The tag input_ports specifies all of the ports used by the component

4. The tag Port specifies the port name of the current component defined by name

tag, the tag connected_to specifies the component name and the tag wire specifies

the port name it is connected to .For example, the connection A.P1 -> C.P4 is

expressed as follows (multiple wiring’s are similarly added by adding new wire

tags)

 <name>A</name>

<output_ports>

 <wire>

 <port>P1</port>

 <connected_to>

 <wire_to>P2</wire_to>

 <node>D</node>

 </connected_to>

 </wire>

 </output_ports>

5. The tag equated_to specifies wiring information of composite component which

can be equated to nested components within it

 <output_ports>

 <wire>

 <port>P1</port>

 <connected_to>

 <wire_to>P2</wire_to>

 <node>D</node>

 </connected_to>

 </wire>

 </output_ports>

 <nested_comp>

 <name>G</name>

 <name>H</name>

 </nested_comp>

 </HOME>

 </components>

 <commands>

 </commands>

</Info>

 11

6. The tag nested_comp specifies list of nested sub-components present within a

component

2.3 Network Topology

The file topo.txt is used to describe the topology of the network on which the application

is to be deployed. The network topology is specified using the following parameters:

• Connectivity between the nodes,

• Coordinates of each of the nodes.

Both of these pieces of information are related. Given the coordinates of the nodes and the

communication model used, one can determine the pair of nodes which can communicate with

each other. At present, we require this information to be specified separately.

2.3.1 Topology Connectivity

Fig. 2.5 illustrates the format of the topology file, topo.txt, which specifies the

connectivity between the nodes. .

Figure 2.6 topo.txt file with Input Topology graph information

The following points explain the format of the file:

1. The number of nodes in the actual network is specified by the keyword

numnodes.

2. The node connectivity of the network is specified as follows –

i. The first parameter is id of the node whose connectivity information is being

provided (e.g. the first line is specifying information about node 1).

ii. The subsequent numbers on the same line indicate the ids of the nodes which are

connected with the current node e.g. the first line of topo.txt file specifies that

numnodes 8

1 3 5 7

2 3

3 5 6

4 6

6 7

 12

node 3, node 5 and node 7 are connected with node 1. Similarly, each new line

contains connectivity information of that node.

2.5 Mapping of application components to network nodes

To deploy an application on a network topology, we need to know the nodes where each

of the application components is to be deployed. We assume that this information is provided by

the application designer. This is specified in the file, mapping.txt. When developing an

application in Cadena, it is possible to associate an attribute, location, with each component, and

the designer can specify the locations when designing the application. This information is stored

in an internal Cadena data structure along with the application scenario information. It is possible

to derive this information (and hence, construct the file mapping.txt) from the application

information. At present, we assume that this file is available to our tool. We require that at most

one component is mapped to each node. Fig. 2.6 illustrates the format of the mapping file

parameters that can be specified in mapping.txt.

Figure 2.7 mapping.txt file with Input Mapping information

The following points explain the format of the file mapping.txt from Fig. 2.8 –

1. The number of components in the application graph are specified by the keyword

numcomponents.

2. The component - node mapping can be specified as follows –

i. First parameter is the component name which is mapped onto node Number

specified in second parameter e.g. component ‘a’ is mapped onto node number 1

numcomponents 4

a 1

b 2

c 4

d 6

 13

2.6 Causal.txt - Causal Consistency Constraints

Each component can specify the consistency requirements for its incoming data. Causal

consistency constraint is defined as follows. Let p1 and p2 be uses ports of a component C.

Causal delivery (p1, p2): Let e1 and e2 be two events (containing values v1 and v2

respectively) delivered on p1 and p2 respectively. Then, there must exists a value v1’ such that

v1’ is more recent than v1 and v2 depends on v1’.

This information can be specified in causal.txt file. The format of causal.txt file is as shown in

Fig 2.9.

 Figure 2.8 causal.txt file with Causal Consistency Constraints

C P4 P5

The causal consistency constraints between different input ports of a component are

specified by

1. First parameter is the component name

2. Rests of the parameters are the names of the input ports whose data values should

satisfy causal consistency constraints. e.g. In Fig 2.9 Ports P4 and P5 of component C

should satisfy causal consistency constraints

2.7 atomic.txt - Atomic Consistency Constraints

If a component is a composite component, the designer may specify atomic execution of

the component. This implies that for any execution, there exists an equivalent execution in

which all actions executed in response to an event arriving at a uses port are atomic with respect

to the rest of the system. Names of such composite components can be specified on different

lines in atomic.txt as shown in Fig. 2.10

 Figure 2.10 atomic.txt file with Atomic Consistency Constraints

D

 This specifies that the execution of operations of the nested components within

component D should be atomic with respect to rest of the system.

 14

CHAPTER 3 - Labeling Algorithm

The Labeling algorithm is one of the most important parts of the framework. We perform

graph analysis to come up with labeling for each node which then is used by the nesC

infrastructure during execution. Fig 3.1 shows various phases of a Labeling algorithm.

Figure 3.1 Examples of variable sharing

The first task of the Labeling algorithm is to use the file App_Graph.xml, described in

Chapter 2, as an input and identify the shared variables present in the application graph. . Next, it

reads the file topo.txt file to build up an adjacency list representing topology graph information

given in the file. We then extract the mapping information of application components to nodes

in the topology graph from mapping.txt file and link it with the topology graph adjacency list. All

these data structures along with the given consistency requirements are then analyzed by the

Labeling algorithm to come up with the labels for each shared variable to generate e the file

specs.txt.

This chapter aims to describe in detail the mechanism used to identify the shared

variables and then how labeling framework indentifies accumulators and distributors nodes in the

 15

topology graph and message processing type based on the given consistency requirements.

 3.1 Identifying Shared Variables

We now define how the variables are shared between the components. We define a

mapping, reads_from, from input ports to output ports. As shown in Fig 3.1(1) if the output port

p1 of C1 is wired to the input port p2 of C2, then we say that C2.p2 reads_from C1.p1. If input

port p1 of a configuration Conf is mapped to port p2 of C2, then p2 is mapped to all ports which

Conf.p1 is mapped to. Thus, if Conf.p1 reads_from C3.p3 then C2.p2 Reads_from C3.p3, as

shown in Fig 3.1(2). Let output port p1 of a configuration Conf be mapped to port p2 of C2. If

C3.p3 reads_from Conf.p1 then C3.p3 reads_from C2.p2, shown in Fig 3.1(3)

If a set, P1, of ports read from a set, P2, of ports, then we introduce a new variable, x,

with all ports in P2 as writers of x, and all ports in P1 as readers of x. Note that each port in P1

must read from all ports in P2 and not any other additional ports. If P1 is a singleton set, then x is

a single-reader, multiple-writer variable. If P2 is a singleton set, then x is a multiple-reader,

single-writer variable. We will use xc to denote the port on C which reads or writes x.

We have three cases to consider:

1. Multiple-writer, single-reader variable

2. Single-writer, multiple-reader variable

3. Multiple-writer, multiple-reader variable

 16

Figure 3.2 Examples of variable sharing

We analyze the application graph file to determine the variables identified above. We

build the following tables from this analysis:

• Accumulator shared variable table: This table contains name of components

involved in multiple writer single reader scenario

• Distributor shared variable table: This table contains name of components

involved in multiple reader single writer scenario

Multiple-writer single-reader scenarios can be found out by looking at wiring information

of input ports of all the components. If any input port is connected to more than one output port

of other components then this is added to the Accumulator shared variable information table. On

the similar lines, we can identify multiple-reader singlewriter scenarios by looking at output port

wiring information of each port. If any output port is wired to more than one input port of other

components then this will get added to the Distributor shared variable information table. After

going through all the components and their wiring information, we are able to build the Shared

Variable Information Tables for each type of shared variable we are trying to identify in a given

application graph. This design gives us the flexibility of extending current implementation to

support other types of shared variables which can be identified from the application graph in

future.

Figure 3.3 Application Graph Example 1

1) C2.P2 reads from C1.P1

2) C3.P3 reads from C2.P2

P1 P2

P2

P1

P1
P2

3) C2.P2 reads from C3.P3

 17

Consider above scenario in Fig. 3.1 where output port (provides) P1 of component A is

connected to the input ports (uses) P2 and P4 of components B and C respectively. Also, value

read by component B on port P2 is written onto port P3. Values read by component C on input

ports P4 and P5 should be causally consistent. Component D is composed of nested sub-

components. Component D should satisfy atomic consistency. Port P7 of component D can be

equated with input port P8 of component E also port P14 is equated with port P13 of component

G. For atomic consistency one needs to delay delivery of message with sequence number n until

messages with sequence number n-1 are delivered to component G.

After analyzing this application graph as we can see that there is one Distributor shared

variable present between components A, B and C. This information is stored in the Distributor

information table as A -> B -> C i.e. the first node in the list will always be the node which is

acting as a distributor followed by the list of all the reader components.

3.2 Building an adjacency list for the network topology

This phase reads the topology graph information given in the file topo.txt file and

constructs an adjacency list representation of the physical topology. This adjacency list

representation is then used to find shortest paths of each pair of nodes. This path information is

then used to identify accumulator/distributor nodes. An accumulator node is one whose input

port is connected to output ports of more than one different component. A distributor node is one

whose output port is connected to input ports of more than one different component. An

 18

accumulator node is identified for each multiple-writer, single-reader variable. Ideally, this

variable must be a node whose distance to the writer nodes is the minimum. A distributor node is

identified for each multiple-reader, single-writer variable. Ideally, this variable must be a node

whose distance to the reader nodes is the minimum. This phase also reads the mapping

information from mapping.txt file and maintains a table of mapping of each component on each

node. We also provide an API which when given a component name returns the node number on

which it is deployed which can be used at the time of labeling nodes.

get_mapping_information(component_name)

Consider following network graph where components are mapped onto different nodes as labeled

in the Fig. 3.2

Figure 3.4 Network Graph Example 1

3.3 Identifying the Accumulator and Distributor Nodes

After we have all the data mentioned in Section 3.1 and Section 3.2, we start identifying

accumulator and distributor nodes for each shared variable. This is done by finding the nearest

common node between all the nodes on which the components involved in writing to a shared

variables are mapped.

e.g. If we take an example mentioned in Fig 3.1 where component involved in writing are

mapped like this B �2; C� 4

 19

Then, we find the nearest common node between nodes 2 and 4 (from the topology graph

adjacency list containing all pair shortest path information) which can distribute values to the

reader components . The nearest common node obtained is the Distributor node for shared

variable under consideration is represented as DIS (X1) where X1 is the shared variable

associated with this reader-writer set. .

Similarly, for each accumulator shared variable, we find the node nearest to all the nodes on

which the components involved in writing a shared variable are mapped.

Labeling for accumulator nodes is also done on the similar lines where only the assigned label is

different. Similarly, we will go through all the shared variables identified in section 3.1 and after

finding nearest common node we will label it as Acc(x) or Dis(x).

3.4 Analyzing Various Consistency Constraints

 Various consistency constraints such as causality and atomicity can be read from the

causal.txt and atomic.txt. For given Example 1 under consideration network graph in Fig 3.4, it

can be seen that causal consistency can be violated at C. Consider a scenario where B receives x

from A and then sends y to C. C also receives x directly from A. Here it is possible to receive

value of y that is dependent on more recent value of x. For causal consistency, the Labeling

algorithm reads different input ports information which require causality to be ensured and

identifies paths along which causality can be violated. . E.g. If it is specified that ports P4 and P5

of a component C should satisfy causality, then the Labeling algorithm first identifies the source

component A connected to port P4 on which values read by P4 and P5 are dependent on. After

identifying the source component, it will try to find an alternative path from port P5 to

component A and add labels for each node along this path to propagate sequence numbers. That

is, a sequence number is generated at A and each node along this alternative path copies the

incoming sequence number on to the outgoing message. This enables us to propagate

dependency information along the path. .

The node with component C on it will have label indicating that the message delivery be delayed

to ensure causal consistency for this node.

Atomic consistency can be specified for component D. Labeling algorithm first identifies

all the nested components whose ports are equated with input port of component D. All nodes

having these components will be labeled asking to copy sequence number of incoming message

 20

on to each outgoing message. Other nested components such as G which read from more than

one component will have label indicating that the message delivery be delayed to ensure delivery

of messages with sequence number n until we have delivered messages with sequence number n-

1 on both input ports of G.

All this labeling information is then written into specs.txt which can then be used by

NesC Consistency framework for further processing.

 21

CHAPTER 4 - Consistency Framework

This is another important phase of this project which makes use of the specs.txt file

generated from the Labeling framework mentioned in chapter 3. The purpose of specs.txt file is

to build the shared variable processing tables at each node which can be used by Consistency

framework to ensure data consistency. This will be done by reading the table information from

the specification file

Before we look at how this framework makes use of the specs.txt file we will first go

over the format of this file.

4.1 specs.txt File Format

Figure 4.1 illustrates the format of the sample specification file produced after applying

the Labeling algorithm for the example discussed in Chapter 3.

Figure 4.1 Specification File structure Example 1

 numnodes 9

nodeid 1

1 2 -1

end

nodeid 4

1 5 -1

end

nodeid 3

1 1 4 -1

end

nodeid 2

1 3 -1

end

nodeid 4

2 2 -1

end

nodeid 5

2 3 -1

End

nodeid 6

2 2 -1

end

nodeid 7

2 5 -1

end

nodeid 8

2 1 -1

en

 22

The following points will explain the node table parameters from Fig. 4.1 -

1) The number of nodes in the network specified by the keyword

numnodes.

2) The node shared variable table information can be specified as follows -

i. The node id under consideration is specified by keywork nodeid followed by

the node number

ii. The shared variable information begins with the shared variable number

iii. Following that the first integer specifies the processing_type given shared

variable belongs to i.e. 0 indicates shared variable belongs to forwarder

message processing type, 1 indicates it belongs to accumulator message

type, 2 indicate it belongs to distributor message type etc…

iv. After that we may have list of parameters that one needs for processing of

given processing_type terminated by -1 to indicate end of parameters

v. After the information for all the shared variables have been specified, the end

of the shared variable information must be indicated by keyword end

4.2 Consistency Framework Implementation

After looking at the structure we will now see how this file is actually used in the

framework implementation. Simulation framework read the shared variable information

associated and loads it into the internal table each node is maintaining only if, node id read from

the specs.txt file is same as the TOS_LOCAL_ADDRESS. This means each node will just load

the information associated with it and not other nodes.

After initializing service tables maintained by all the nodes (maintaining shared variable

information) the job is to just intercept all the messages received from the communication layer

comm and process them based on the processing information present in the service table by

identifying processing type of the message by looking at message structure fields. We can have

messages of various types like forwarder messages, accumulator messages etc… We will now

look at how these messages are identified from specs.txt

 23

Processing_type 1: Forward messages containing shared variable x to neighbor y

Processing _type 2: When message containing variable x arrive assign it a sequence

number and forward

Processing _type 3: When messages containing variable x arrive store the sequence

number in the message and when sending the message containing variable y, include this

sequence number

Processing _type 4: When message containing variable x arrives store the variable

locally. When a message containing y is being sent piggyback the value of x

Processing _type 5: Delay message delivery to ensure causal consistency

This processing type mechanism is really helpful as it can be easily extended to support

messages of different processing types by just adding the processing code for newly added

processing type. Any application which wants to ensure consistency can make use of the send

and receive interfaces provided by given framework.

 Now we will go over the specs.txt file in Fig 4.1. As specified from causal.txt file we

know component C needs to ensure causal consistency. We will see how it will get satisfied by

looking at only those labeling entries in the specs.txt file for all the nodes having entries for this

particular identified shared variable.

nodeid 1

1 2 -1

end

nodeid 4

1 5 -1

end

nodeid 3

1 1 -1

end

nodeid 2

1 3 -1

end

Node1 is acting as a distributor node for components B and C. So it has a label with

processing_type 2 indicating it needs to assign sequence number to messages before sending

them out. Node 2 is having 3 as a processing_type label for shared variable 1 indicating it needs

to copy the incoming sequence number from data received from node 1 while it is sending the

outgoing message. Similarly node 3 will act as a forwarder and it will forward the incoming data

to node 4. Node 4 which has component C mapped onto it has a label with processing_type 5

 24

indicating it needs to delay the delivery of messages with sequence number n until it receives

messages with sequence number n-1. This will ensure that node 4 (component C) will process

messages belonging to same time stamp ensuring causal consistency.

 Now we will look at how atomic consistency will get ensured with the labels present in

specs.txt file in Fig 4.1. Labeling framework identifies it as a shared variable 2. We will look at

all the nodes having entries for shared variable 2.

nodeid 4

2 2 -1

end

nodeid 5

2 3 -1

nodeid 6

2 2 -1

endend

nodeid 7

2 5 -1

end

nodeid 8

2 1 -1

end

Node 4 and Node 6 will assign sequence number to the outgoing messages. Node 5 will copy the

incoming sequence number while sending the outgoing message. Node 7 which has component

G mapped onto it has a label with processing_type 5 indicating it needs to delay the delivery of

messages with sequence number n until it receives messages with sequence number n-1. This

will ensure that node 7 (component G) will process messages belonging to same time stamp

ensuring atomic execution.

 25

CHAPTER 5 - Performance Results

In this chapter we will analyze the overhead of our framework by looking at number of

additional messages needed, amount of energy consumed etc… for various different scenarios.

First we will analyze the impact of increasing number of components in a given scenario

by keeping the ratio of number of components to number of constraints same as in example 1 in

chapter 3. For this first we will consider an application graph shown in Fig 5.1 which is put

together after serial replication of example 1 discussed in chapter 3. Similarly we have the

network graph shown in Fig 5.2

Figure 5.1 Application Graph Scenario 1

In given application graph Components D1 and D2 needs to satisfy atomic consistency and

components C1 and C2 needs to satisfy causal consistency.

 26

Figure 5.2 Network Graph Scenario 1

After running labeling algorithm on given application graph specs.txt file shown in Fig 5.3 gets

generated which will has labels for all the nodes in the network graph based on the consistency

requirements mentioned earlier.

Figure 5.3 Generated specs.txt file for Scenario 1

numnodes 18

nodeid 1

1 2 -1

end

nodeid 4

1 5 -1

end

nodeid 3

1 1 4 -1

end

nodeid 2

1 3 -1

end

nodeid 4

2 2 -1

end

nodeid 5

2 3 -1

End

nodeid 6

2 3 -1

end

nodeid 7

 27

2 5 -1

end

nodeid 8

2 1 -1

nodeid 9

2 1 -1

nodeid 10

3 2 -1

end

nodeid 13

3 5 -1

end

nodeid 12

3 1 13 -1

end

nodeid 11

3 3 -1

end

nodeid 13

4 2 -1

end

nodeid 14

4 3 -1

End

nodeid 15

4 3 -1

end

nodeid 16

4 5 -1

end

nodeid 17

4 1 -1

nodeid 18

4 1 -1

end

Now we will modify the scenario 1 by increasing the number of components. Consider

following application graph in Fig 5.4 which is put together after parallel and serial replication of

example 1 discussed in chapter 3. Similarly we have the network graph shown in Fig 5.5

 28

Figure 5.4 Application Graph Scenario 2

In given application graph Components D1, D2 and D3 needs to satisfy atomic consistency and

components C1, C2 and C3 needs to satisfy causal consistency. As we can see scenario 2 has

more number of components compared to scenario 1 but constraint to component ratio is same

for both the scenarios which will help us in analyzing impact of increase in number of

components on the consistency framework.

 29

Figure 5.5 Network Graph Scenario 2

After running labeling algorithm on given application graph specs.txt file shown in Fig 5.6 gets

generated which will has labels for all the nodes in the network graph based on the consistency

requirements mentioned earlier.

Figure 5.6 Generated specs.txt file for Scenario 2

numnodes 28

nodeid 1

1 2 -1

end

nodeid 4

1 5 -1

end

nodeid 3

1 1 4 -1

end

nodeid 2

1 3 -1

end

nodeid 4

2 2 -1

end

nodeid 5

2 3 -1

End

nodeid 6

2 3 -1

end

nodeid 7

 30

2 5 -1

end

nodeid 8

2 1 -1

nodeid 9

2 1 -1

nodeid 10

3 2 -1

end

nodeid 13

3 5 -1

end

nodeid 12

3 1 13 -1

end

nodeid 11

3 3 -1

end

nodeid 13

4 2 -1

end

nodeid 14

4 3 -1

End

nodeid 15

4 3 -1

end

nodeid 16

4 5 -1

end

nodeid 17

4 1 -1

nodeid 18

4 1 -1

nodeid 20

5 2 -1

end

nodeid 23

5 5 -1

end

nodeid 22

5 1 23 -1

end

nodeid 21

5 3 -1

end

nodeid 23

6 2 -1

end

nodeid 24

6 3 -1

End

nodeid 25

6 3 -1

end

nodeid 26

6 5 -1

 31

end

nodeid 27

6 1 -1

end

 Power consumed by each node is calculated by making use of the power profiling available in

TOSSIM. It is calculated by subtracting the power available with each node at the end from the

power available at each node in the beginning. Power available at each node can be seen by

executing tinyos application with following command line options.

export DBG= power,usr1

./build/pc/main.exe -p 28

Figure 5.7 output for Scenario 2

****NODE1****

Number of messages recd = 0

Number of messages sent = 10

Power consumed = 110 mA

****NODE2****

Number of messages recd = 5

Number of messages sent = 5

Power consumed = 110 mA

****NODE3****

Number of messages recd = 10

Number of messages sent = 10

Power consumed = 224 mA

****NODE4****

Number of messages recd = 10

Number of messages sent = 10

Power consumed = 220 mA

****NODE5****

Number of messages recd = 5

Number of messages sent = 5

Power consumed = 98 mA

****NODE5****

Number of messages recd = 5

Number of messages sent = 5

Power consumed = 97 mA

****NODE7****

Number of messages recd = 5

Number of messages sent = 10

Power consumed = 164 mA

****NODE8****

Number of messages recd = 5

Number of messages sent = 5

Power consumed = 114 mA

****NODE9****

Number of messages recd = 0

Number of messages sent = 5

Power consumed = 57 mA

 32

****NODE10****

Number of messages recd = 0

Number of messages sent = 10

Power consumed = 110 mA

****NODE11****

Number of messages recd = 5

Number of messages sent = 5

Power consumed = 118 mA

****NODE12****

Number of messages recd = 10

Number of messages sent = 10

Power consumed = 235 mA

****NODE13****

Number of messages recd = 10

Number of messages sent = 10

Power consumed = 280 mA

****NODE14****

Number of messages recd = 5

Number of messages sent = 5

Power consumed = 130 mA

****NODE15****

Number of messages recd = 5

Number of messages sent = 5

Power consumed = 108 mA

****NODE16****

Number of messages recd = 5

Number of messages sent = 10

Power consumed = 178 mA

****NODE17****

Number of messages recd = 5

Number of messages sent = 5

Power consumed = 114 mA

****NODE18****

Number of messages recd = 0

Number of messages sent = 5

Power consumed = 65 mA

****NODE19****

Number of messages recd = 10

Number of messages sent = 10

Power consumed = 210 mA

****NODE20****

Number of messages recd = 10

Number of messages sent = 10

Power consumed = 234 mA

****NODE21****

Number of messages recd = 5

Number of messages sent = 5

Power consumed = 110 mA

****NODE22****

Number of messages recd = 10

Number of messages sent = 10

Power consumed = 224 mA

****NODE23****

Number of messages recd = 10

Number of messages sent = 10

Power consumed = 230 mA

****NODE24****

Number of messages recd = 5

 33

Number of messages sent = 5

Power consumed = 118 mA

****NODE5****

Number of messages recd = 5

Number of messages sent = 5

Power consumed = 125 mA

****NODE26****

Number of messages recd = 10

Number of messages sent = 5

Power consumed = 187 mA

****NODE27****

Number of messages recd = 5

Number of messages sent = 5

Power consumed = 113 mA

****NODE28****

Number of messages recd = 5

Number of messages sent = 0

Power consumed = 68 mA

We can see that after increasing number of components in the application graph only the

labeling information maintained at each node increases which will increase the time required to

process each message by those nodes. This can be seen by looking at the generated output shown

in Fig 5.8 comparing performance for Scenario1 and Scenario2, we can see some more nodes got

added in Scenario 2 as we increased number of components for keeping information about added

components.

Following is the output showing tabular representation of performance results obtained

for 2 different scenarios under consideration with different number of components. Each entry in

scenario column represents a tuple of the form (Messages sent, Messages recd, Power

Consumed, Total number of Bytes in Messages sent).

Figure 5.8 Tabular representation of Performance Results 1

Node Id Scenario 2 Scenario 2

1 (0,10,110,100) (0,10,110,100)

2 (5,5,110,100) (5,5,110,100)

3 (10,10,225,200) (10,10,225,200)

4 (10,10,220,200) (10,10,220,200)

5 (5,5,120,100) (5,5,120,100)

6 (5,0,72,50) (5,0,72,50)

7 (5,10,180,150) (5,10,180,150)

8 (5,5,114, 100) (5,5,114, 100)

 34

9 (5,5,120,100) (5,5,120,100)

10 (0,10,120,100) (0,10,120,100)

11 (5,5,118,100) (5,5,118,100)

12 (10,10,235,200) (10,10,235,200)

13 (10,10,280,200) (10,10,280,200)

14 (5,5,130,100) (5,5,130,100)

15 (5,5,108,100) (5,5,108,100)

16 (5,10,178,150) (5,10,178,150)

17 (5,5,126,100) (5,5,126,100)

18 (5,0,68,50) (5,5,120,100)

19 - (10,10,210,200)

20 - (10,10,234,200)

21 - (5,5,110,100)

22 - (10,10,234,200)

23 - (10,10,230,200)

24 - (5,5,107,100)

25 - (0,5,53,50)

26 - (10,5,169,150)

27 - (5,5,110,100)

28 - (5,0,68,50)

After analyzing the number of messages send and received by making use of consistency

framework it can be seen that this framework puts very minimal overload on the overall

performance of the application as count of number of messages send and received by each node

remains the same. Also as the ratio of constraints to components remains the same for both the

scenarios the total number of bytes send in messages also remain the same. Scenarios 2 maintains

some extra information as it has more number of components than Scenario .1 The nodes having

various consistency constraints need to maintain some extra data structure and perform some

computation to satisfy consistency and hence they consume very little extra power and memory

space. But it can be seen that we need to add very minimal amount of information in order to

ensure consistency.

Now we will analyze the impact of keeping the number of components in a given

application graph in Scenario 2 the same but varying the component to constraint ratio to analyze

a change in the overhead. We will carry out experiments by increasing number of constraints.

Scenario3 specifying consistency constraint only for Component C1, Scenario4 specifying for

 35

components C1, D1, C2 and Scenario2 we have already got the results by specifying constraints

for components C1,D1, C2,D2, C3,D3.

If we consider Scenario3 just specifying consistency constraint for component C1 then

labeling algorithm generates labels for only those nodes involved in ensuring consistency at C1.

Fig 5.9 shows generated specs.txt file.

Figure 5.9 specs.txt file generated for Scenario 3

nodeid 1

1 2 -1

end

nodeid 4

1 5 -1

end

nodeid 3

1 1 4 -1

end

nodeid 2

1 3 -1

end

As we have less number of entries present in specs.txt file, only those nodes having

label’s present in specs.txt file will initialize the shared variable information table with labeling

information. So at the time of execution only those nodes having labeling information present in

their table will process messages to ensure consistency other nodes will process them as any

other message without caring about the consistency requirements reducing the amount of

overhead involved in processing each message based on the labeling information. The number of

messages exchanged between nodes is not dependent upon the consistency constraints.

Consistency constraints add up some extra processing that needs to be done while sending or

receiving any message to ensure consistency consuming little extra power needed for processing.

Similarly we can see that even after adding consistency constraints for components D1,

C2 only the labeling information maintained at each node increases which will increase the time

required to process each message by those nodes. This can be seen by looking at the generated

output shown in Fig 5.11 comparing performance for Scenario2, Scenario3 and Scenario4 where

we can see some decrease in the power consumed for nodes not maintaining any table for

processing messages to ensure consistency under column for Scenario4. All nodes after node

number 13 don’t have any labels generated for them and consume little less power compared to

 36

the output in Fig 5.7 and the specification file looks similar to the file in Fig 5.6 but containing

labels for nodes up to 13 only as shown in Fig 5.10

Figure 5.10 Generated specs.txt file for Scenario 4

numnodes 28

nodeid 1

1 2 -1

end

nodeid 4

1 5 -1

end

nodeid 3

1 1 4 -1

end

nodeid 2

1 3 -1

end

nodeid 4

2 2 -1

end

nodeid 5

2 3 -1

End

nodeid 6

2 2 -1

end

nodeid 7

2 5 -1

end

nodeid 8

2 1 -1

nodeid 9

2 1 -1

nodeid 10

3 2 -1

end

nodeid 13

3 5 -1

end

nodeid 12

3 1 13 -1

end

nodeid 11

3 3 -1

end

nodeid 13

4 2 -1

end

Following is the output showing tabular representation of performance results obtained

for 3 different scenarios under consideration with different constraints to components ratio. Each

 37

entry in scenario column represents a tuple of the form (Messages sent, Messages recd, Power

Consumed, Total number of Bytes in Messages sent). We add an entry for Total number of Bytes

in Messages sent because in some cases number of messages sent may be the same but number of

bytes may be different. Each message is composed of sequence number, shared variable number,

processing type and data fields. If there are no consistency constraints then the nodes not having

any label’s will not make use of share variable number and processing type fields present in the

message structure reducing on the total number of bytes sent in each message.

Figure 5.11 Tabular representation of Performance Results

Node Id Scenario 2 Scenario 3 Scenario 4

1 (0,10,110,100) (0,10,107,100) (0,10,110,100)

2 (5,5,110,100) (5,5,110,100) (5,5,110,100)

3 (10,10,225,200) (10,10,220,200) (10,10,224,200)

4 (10,10,220,200) (10,10,220,200) (10,10,220,200)

5 (5,5,120,100) (5,5,98,60) (5,5,123,100)

6 (5,0,72,50) (5,0,62,30) (5,0,69,100)

7 (5,10,180,150) (5,10,161,90) (5,10,174,100)

8 (5,5,114, 100) (5,5,97,60) (5,5,114,100)

9 (5,5,120,100) (5,5,102,60) (5,5,124,100)

10 (0,10,120,100) (0,10,108,60) (0,10,122,100)

11 (5,5,118,100) (5,5,108,60) (5,5,118,100)

12 (10,10,235,200) (10,10,198,120) (10,10,235,200)

13 (10,10,280,200) (10,10,210,120) (10,10,268,200)

14 (5,5,130,100) (5,5,110,60) (5,5,110,60)

15 (5,5,108,100) (5,5,96,60) (5,5,96,60)

16 (5,10,178,150) (5,10,160,90) (5,10,160,90)

17 (5,5,126,100) (5,5,102,60) (5,5,102,60)

18 (5,5,120,100) (5,5,104,60) (5,5,104,60)

19 (10,10,210,200) (10,10,198,120) (10,10,198,120)

20 (10,10,234,200) (10,10,228,120) (10,10,228,120)

21 (5,5,110,100) (5,5,104,60) (5,5,104,60)

22 (10,10,234,200) (10,10,224,120) (10,10,224,120)

23 (10,10,230,200) (10,10,229,120) (10,10,229,120)

24 (5,5,107,100) (5,5,107,60) (5,5,107,60)

25 (0,5,53,50) (5,5,53,60) (5,5,53,60)

26 (10,5,169,150) (10,5,169,90) (10,5,169,90)

27 (5,5,110,100) (5,5,110,60) (5,5,110,60)

28 (5,0,68,50) (5,0,68,30) (5,0,68,30)

 38

As we can see from above table, as the constraints to component ratio increases the

amount of power consumed along with the number of bytes sent in each message increases.

 39

References

1. TinyOS website http://www.tinyos.net/

2. Kewei Sha and Weisong Shi: Modeling Data Consistency in Wireless Sensor Networks

3. Vijaykumar Krishnaswamy, Michel Raynal and David Bakken: Shared State Consistency for

Time-Sensitive Distributed Applications

4. Wendi Rabiner Heinzelman, Joanna Kulik, and Hari Balakrishnan: Adaptive Protocols for

Information Dissemination in Wireless Sensor Networks

