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Abstract 

Soybean [Glycine max (L.) Merr.] production currently faces several challenges linked to 

global food security (both quantity and quality) raised by an overgrowing human population, 

limited cropland, and diversified dietary in developed regions. To sustain seed yield and high 

protein levels, soybeans depend on large nitrogen (N) uptake, which is mostly attained by the 

symbiotic N fixation (SNF) process. Although SNF has been extensively investigated with single 

assessments during the season, just a few recent reports looked at the temporality of N sources 

(soil and SNF) while taking into consideration seasonal dry matter accumulation and soil nitrate 

(NO3) and ammonium (NH4) availability. Furthermore, it is still unclear how the overall changes 

in N uptake dynamics supports yield formation and seed components among canopy portions, 

especially considering the branches as potential contributors for high yield in modern genotypes.  

Following this rationale, this project presents two overall objectives: 1) to identify the 

impact of soil NO3 and NH4 temporal availability on seasonal SNF [N derived from the 

atmosphere (Ndfa)], N uptake, and dry matter accumulation (herein called study 1); and 2) to 

characterize seed yield, protein, oil, amino acids (AA), and fatty acids (FA) from the main stem 

and branches (herein called study 2) for different commercial soybean varieties. To address the 

first objective, four genotypes were field grown at Manhattan (Kansas, US) during 2019 and 

2020 growing seasons. Dry matter, N concentration, N uptake, Ndfa, fixed N, soil NO3, and NH4 

(60-cm depth) were measured at six phenological stages, along with seed yield, protein, and oil 

concentration at harvest time. Seasonal exposure to NH4 (area under the curve) showed a 

stronger suppression of Ndfa at the end of the season than NO3. However, a mid-season NO3 

peak delayed uptake from soil and SNF, but only decreased maximum uptake rates from SNF. 

Additionally, dry matter was used as a seasonal linear predictor of fixed N to simplify the 



  

process model. However, this relationship was deeply affected by soil N availability across 

environments (boundary functions) and also by a potential dry matter threshold around 5 Mg ha-1 

across genotypes and site-years. For the second objective, another four genotypes were field-

grown during the 2018 and 2019 growing seasons at Ashland Bottoms and Rossville (Kansas, 

US), respectively. At harvest time, seeds from the upper, middle, lower main stem, and branch 

nodes were manually separated and assessed for yield, seed size, protein, and oil (seed content 

and concentration), abundance of limiting AA within protein, and FA ratio (oleic / linoleic + 

linolenic). The accumulation of protein was more responsive to node position than oil, 

determining high protein concentration in the upper main stem and high oil concentration in the 

lower main stem nodes. However, the protein quality (limiting AA) was higher in the lower main 

stem, while the FA ratio (oil quality) was greater in the upper section of the plant. Branches 

presented the less-rich seed composition relative to the main stem, but their contribution to yield 

was positively associated with oil and limiting AA abundance across genotypes.  

In summary, the main outcomes of the present thesis are related to 1) the importance of 

soil NO3 and NH4 to regulate Ndfa during the season, 2) the timing of Ndfa assessment or 

prediction for an accurate fixed N calculation throughout the season, and 3) the underlaying 

effect of branch yield allocation on the seed composition of the whole soybean plant, plausibly 

moderating changes across genotypes, environments, and management practices. A better 

understanding of soybean N acquisition and allocation for yield and quality formation within the 

plant is important to sustain the yield increase, offset protein decay, and assure cropping systems 

sustainability and food security in a long-term standpoint. 
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Chapter 1 - General Introduction 

Soybean [Glycine max (L.) Merr.] global production doubled over the past 20 years, 

reaching ca. 334 Tg in 2019, after increasing harvested area and seed yield mainly in Brazil, 

USA, and Argentina (FAO, 2021). After the 1980s, the US yield increase was approximately 30 

kg ha-1 yr-1, which was mainly attained by the release of modern genotypes (Specht et al., 2015). 

High yields are accompanied by a large N requirement (80 kg Mg-1 of seeds), which is partially 

attended (50-60%) by symbiotic N fixation (SNF) and complemented by the indigenous soil N 

supply (Ciampitti and Salvagiotti, 2018). During the seed filling period, remobilization rates to 

the seed exceed the plant ability to uptake N and significant senescence of vegetative organs 

takes place (Sinclair and De Wit, 1975). This behavior indicates a tight relationship between the 

N sources and sink in order to sustain seed yield and protein levels. Therefore, modern genotypes 

under high-yielding conditions are responsive to greater N uptake, especially towards the end of 

the season (Gaspar et al., 2017). However, increasing total N uptake in soybeans has been proven 

difficult mainly for two reasons: 1) increasing the soil N supply via N fertilization inhibits SNF 

(Salvagiotti et al., 2009) showing minor effects on yield (Mourtzinis et al., 2018b); and 2) 

management practices to improve SNF itself are not consistently efficient in the US (Carciochi et 

al., 2019). Although a greater availability of soil N has similar effect as N fertilization, just a few 

reports have investigated the temporal relationship between soil nitrate (NO3) and ammonium 

(NH4) availability with the uptake from SNF and soil N supply. The natural variation in soil N 

availability could improve soybean N uptake, compensating shortages on fixed N when SNF is 

being established or shutting down towards the end of the growing season. 

Remarkably, a single pre-sowing assessment of soil N has weaker relationship with SNF 

than N fertilization, highlighting the importance of a temporal characterization of N availability 
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(de Borja Reis et al., 2021). In addition, plant breeding has not altered the Ndfa levels of modern 

genotypes (Donahue et al., 2020), leaving the control of SNF contribution up to the environment 

and management. As a moderator of changes in environment and management, dry matter has 

been proposed as a linear predictor of fixed-N throughout the season (Córdova et al., 2019). 

However, different from the prediction of N uptake, which follows a relatively stable dilution 

process, fixed N is governed by the Ndfa levels, which are variable during the season and across 

site-years. Despite an expected weaknesses of using dry matter to predict fixed N, a 

simplification of the seasonal model of SNF can benefit future research investigating interactions 

with soil N dynamics. Furthermore, a deeper understanding on the SNF evolution could lead to 

improved N uptake to support high yield without protein decay, sustain positive or neutral N 

balances, and assuring the sustainability of soybean production systems. 

Further from improving N uptake and SNF, it is crucial to unravel the N allocation within 

the plant canopy (node position), defining the concentration of different components and 

attaining modern industrial requirements. Despite the unintended consequences of plant 

breeding, such as a decay on seed protein concentration (de Borja Reis et al., 2020), modern 

genotypes are more competitive under high plant densities and also compensate the absence of 

plants with branching (Suhre et al., 2014). However, the branching process is usually neglected, 

especially considering the overall effect of this physiological change on soybean seed 

composition (Huber et al., 2016). Furthermore, besides the accumulation of protein and oil, the 

amino acids (AA) and fatty acids (FA) profiles are critical to determine monogastric weight gain 

from soybean rations (Mourtzinis et al., 2018a), and oil quality for specific industrial objectives 

(Gao et al., 2009). For instance, changes on yield allocation within the plant architecture caused 

by genotype, management, or environment, could moderate overall soybean seed composition. 
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The increasing soybean demand have been raising commodity prices and it is possible premium 

payments or preferential markets are established in the near future for farmers producing high 

quality seeds (Brumm and Hurburgh, 2006). Although significant research has been recently 

executed to uncover external factors of soybean seed composition, just a few reports have looked 

at variations within the plant canopy and how producers could take advantage of that. Finally, 

understanding the internal allocation of seed components could bring insights into soybean 

nitrogen (N) nutrition and the balance between N sources to attend total uptake. 

The present study was design to develop two aspects of soybean production with 

emphasis on N uptake sources and seed component allocation within the plant considering main 

stem and branches. The main objectives of Chapter 2 were to 1) describe seasonal changes on 

soil-plant N dynamics among genotypes with contrasting genetic background, 2) asses the 

influence of soil NO3 and NH4 on the temporal SNF changes, and 3) quantify the variation on N 

uptake and fixed N as a function of seasonal dry matter accumulation. The main objectives of 

Chapter 3 were to 1) characterize seed yield and composition (protein, oil, AA, and FA) at three 

segments of the main stem (vertical canopy profile) and stem branches; and 2) quantify the 

impact of canopy yield allocation on seed composition, focusing on branches as potential 

contributor for high yields in modern genotypes. 
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Chapter 2 - Temporal Variation of Soil N Availability Defines N 

Fixation in Soybeans 

 Abstract 

Soybean [Glycine max (L.) Merr.] plays a critical role in global food security and 

agriculture sustainability, acquiring most of the nitrogen (N) required for growth and high-

protein seeds from symbiotic N fixation (SNF). However, there is scarce information on how soil 

N supply interacts with the proportion of N derived from the atmosphere (Ndfa, %) and fixed N 

(kg ha-1) throughout the growing season. This study aims to 1) describe seasonal changes on soil-

plant N dynamics among genotypes with contrasting genetic background, 2) asses the influence 

of soil nitrate (NO3) and ammonium (NH4) on the temporal SNF changes, and 3) quantify the 

variation on N uptake and fixed N as a function of seasonal dry matter accumulation. Four 

genotypes were field-grown during two growing seasons. Bayesian non-linear models described 

seasonal change on dry matter, N uptake, Ndfa, soil NO3, and NH4 (0-60 cm depth). Seasonal 

exposure to NH4 (given by the area under the curve, AUC) suppressed end-season Ndfa four-fold 

more than NO3. A mid-season NO3 peak was associated with a 20-day delay in maximum N 

fixation rates compared to an early-season NO3 peak. In addition, the mid-season NO3 peak did 

not increase uptake rates from the soil supply but suppressed maximum uptake from SNF (fixed 

N). Using dry matter as a predictor of fixed N simplifies the seasonal model to a slope-only 

equation (N requirement). However, in-season Ndfa variations controlled by soil N availability 

challenge the effectiveness of dry matter predicting fixed N across environments. Furthermore, a 

slope change around 5 Mg ha-1 (beginning of seed filling, R5 growth stage) points out the need 

for two Ndfa assessments during the season. Future research must explore high-yielding and 
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broader SNF conditions for understanding to what extent soil N can suppress SNF without 

decreasing seed yield in soybeans 

 

 Introduction 

Soybean [Glycine max (L.) Merr.] production is essential for global nourishment and 

agriculture sustainability due to a high seed protein and oil concentration and low reliance on 

nitrogen (N) fertilization [less than 30% of the US cropped area receives about 20 kg N ha-1 

(USDA, 2018)]. The symbiotic association with Bradyrhizobium spp. contributes to 50-60% of 

the soybean N uptake (Salvagiotti et al., 2008), with the remaining demand mainly attained by 

the soil N supply. However, a substantial yield increase over the last decades raised concerns on 

symbiotic N2 fixation (SNF) effectiveness to sustain yields while maintain protein levels (de 

Borja Reis et al., 2020). Unfortunately, the well-known antagonism of soybean N sources is a 

challenge to increase N uptake, particularly to provide an adequate level of N supply during the 

seed filling (Sinclair and De Wit, 1975). Increasing soil N supply via N fertilization 

downregulates the proportion of N derived from the atmosphere (Ndfa), jeopardizing potential 

benefits in field conditions (Mourtzinis et al., 2018). Recently explored strategies to enhance 

SNF [e.g., in-season re-inoculation (Carciochi et al., 2019), and co-inoculation with 

Azospirillum spp. (de Borja Reis, unpublished)] seem ineffective in producing yield benefits in 

the US. Although sparse in the current literature, a seasonal characterization of soybean N 

sources (Ciampitti et al., 2021) could shed light on the plant strategy of N acquisition and 

provide new insights for designing soybean systems with improved N uptake, yield, and seed 

composition. 
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While there is evidence that plant breeding did not affect soybean Ndfa levels (Donahue 

et al., 2020), soil and weather conditions (mediated or not by plant growth) seem to control SNF 

across environments (de Borja Reis et al., 2021). The higher yields in modern genotypes depend 

on greater remobilization and N uptake, especially during the seed filling, with the latter also 

increasing protein concentration (Gaspar et al., 2017). Thus, if genetics have not improved Ndfa, 

genotype choice could be less relevant for overcoming a negative partial N balance in soybean 

(Donahue et al., 2020). The soil naturalization of highly efficient Bradyrhizobium spp. strains 

have also limited potential benefits of inoculation under field conditions (Ambrosini et al., 2019; 

McLoughlin et al., 1990), leaving up to environmental factors the regulation of Ndfa. Schipanski 

et al. (2010) found soil texture explaining 20% of Ndfa variation across fields in the US. Drought 

and flooding are known to strongly suppress SNF during the vegetative or reproductive growth 

(Pasley et al., 2020; Purcell et al., 2004; Santachiara et al., 2019). Soil temperature, fallow 

precipitation, and air temperature during the seed filling also impact SNF contributions to N 

uptake (Collino et al., 2015; Lindemann and Ham, 1979). 

Many recent reports have in common is a strong SNF suppression by N fertilization 

aiming to recreate a condition of high soil mineral N supply (Moro Rosso et al., 2021; 

Santachiara et al., 2018; Tamagno et al., 2018). Latimore et al. (1977) reported both NO3 and 

NH4 reduced nodule energetic supply, but NO3 had a greater impact on nitrogenase activity. Also 

under greenhouse conditions, a better uptake mechanism of NO3 than NH4 could be responsible 

for stronger SNF inhibition by NO3 in peas (Pisum sativum) and alfalfa (Medicago sativa) 

(Houwaard, 1980; Richardson et al., 1957). However, the metabolism of NO3 is slower and 

energetically more expensive than NH4 due to the need of reductive amination, unless NH4 is 

supplied in luxurious amounts (Street and Sheat, 1958). Under field conditions, seed yield 
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response to starter N fertilizer is small (5% or 0.15 Mg ha-1) or inconsistent across environments 

(Osborne and Riedell, 2006; Starling et al., 1998) and growth stages (Wesley et al., 1998; Wood 

et al., 1993). Only a temporal assessment and modeling (statistically or mechanistically) of NO3 

and NH4 can identify potential interactions with SNF and N uptake. For instance, de Borja Reis 

et al. (2021) found no relationship between SNF and soil NO3 or NH4 at sowing when N 

fertilization still suppressed the relative abundance of ureides (RAU). It is possible the 

temporality of soil N availability has a strong control over SNF and fertilization responses. 

Dry matter accumulation regulates N uptake due to the role N plays in plant growth 

(Novoa and Loomis, 1981). Investments in structural tissue (low N concentration), leaf 

expansion (metabolic tissue with high N concentration), and finally reproductive organs decrease 

the ratio between metabolic and structural compartments (Greenwood et al., 1990). Therefore, 

shoot N concentration follows a dilution process as the plant develops and accumulates dry 

matter (Lemaire and Gastal, 1997). Although after pod setting the N dilution curve is attenuated 

in soybeans (Divito et al., 2016), crop phenology itself is not a good predictor of N concentration 

changes. Following these lines, Ratjen et al. (2018) has shown that dry matter is a better 

predictor of plant N status than crop phenology, for capturing its allometric relationship with the 

leaf area index for both maize (Zea mays) and wheat (Triticum aestivum). Furthermore, Córdova 

et al. (2019) proposed dry matter throughout the growing season as the best predictor of fixed N, 

potentially moderating the effect of other factors on N fixation. A slope-only equation describing 

fixed N as a function of dry matter (N requirement) could provide quantitative data on the Ndfa 

variation at similar dry matter levels during the season.  

This study aims to 1) describe seasonal changes on soil-plant N dynamics among 

genotypes with contrasting genetic background, 2) assess the influence of soil nitrate (NO3) and 
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ammonium (NH4) on the temporal SNF changes, and 3) quantify the variation on N uptake and 

fixed N as a function of seasonal dry matter accumulation. 

 

 Materials and methods 

 Experimental design and growing conditions 

Field experiments were performed during the 2019 and 2020 growing seasons, located at 

39.2° North, 96.6° West, 330 m elevation, in Manhattan, Kansas, US. Both experimental areas 

have been under a soybean-corn (Zea mays) rotation with conventional tillage performed prior to 

sowing. Both soils were from the Wymore series, with Fine, Aquertic Argiudolls taxonomic 

classification. Initial soil characterization (texture and chemical properties) was obtained 30 days 

before the onset of the experiment (Table 2.1). Climate was classified as Cfa (humid subtropical) 

presenting evenly distributed precipitation throughout the year (Köppen, 2011). Weather data 

was retrieved from a weather station located 500 m from the sites (Kansas Mesonet, 2017). 

Weather variables (Table 2.1) were summarized for different periods: 30 days prior emergence 

[VE stage (Fehr and Caviness, 1977)], from VE to full flowering (R2), from R2 to beginning 

seed filling (R5), and from R5 to physiological maturity (R7). The phenological stages were 

weekly recorded from 10 targeted plants in each experimental unit.  

Sowing dates were June 4 in 2019 and June 8 in 2020, with crop emergence 5 days after 

sowing, on June 9 and June 13, respectively. Soybean genotypes composed the single treatment 

factor, with four levels: Williams 82 [maturity group (MG) 3.8, released in 1981], P34T43R2 

(MG 3.4, 2014), P35T75X (MG 3.5, 2019), and P37T51PR (MG 3.7, 2019) (Corteva 

Agriscience, Johnston, IA, US). Genotype selection aimed contrasting genetic backgrounds, with 

variability on year of release (Williams 82) and seed composition (high-oleic trait in the 
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P37T51PR). However, all genotypes had similar MG and presented minimum differences on 

phenology throughout the season. Experimental design was a randomized complete block with 

four repetitions in both site-years, herein called 2019 and 2020. Experimental units were 

composed by four rows spaced 0.75 m apart with total area of 25 m2. Seeding rate was 300,000 

seeds ha-1 and ca. 240,000 plants ha-1 composed final stands. Seed inoculation was done before 

sowing with Vault HP Rhizobia Inoculant (BASF, Ludwigshafen, Germany), containing 3.0 × 

109 colony forming unit mL-1 of Bradyrhizobium japonicum. Management of weeds, insects, and 

diseases followed best agronomic practices (Ciampitti et al., 2016). 

 

 Samplings and laboratory analysis 

Six sampling stages were targeted: late vegetative (seventh leaf, V7); R2; pod setting 

(R4); R5; full seed (R6); and R7 (Fehr and Caviness, 1977). For 2019, samplings corresponded 

to 30, 46, 57, 68, 86, and 99 days after emergence (DAE); while for 2020 they corresponded to 

24, 38, 52, 62, 79, and 97 DAE. The DAE were chosen to describe seasonal time due to 1) 

simple interpretation in non-linear model parameters; 2) to fit soil processes which are less 

dependent on soybean growth and development; and 3) similar temperature, sowing dates, and 

phenology between the two site-years. At each targeted stage, soil and plant samples were 

collected from all experimental units. Soil samples were collected from a 60-cm depth layer (six 

cores per plot) and stored in an icebox until further laboratory analysis. The NO3 and NH4 were 

extracted from 2 g of dry grounded soil (2 mm sieve) with a potassium chloride solution (KCl, 1 

mol L-1) and quantified (mg dm-3) by colorimetric procedures in a flow analyzer (Brown, 1998). 

Shoot samples were collected from a 0.5 m2 area, excluding border rows, and dried in an air-

forced oven (65 °C) until constant weight for estimating aboveground dry matter (Mg ha-1). A 
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sub-sample of five plants was ground in a micro-mill (0.1 mm particle size) and subjected to 

chemical analysis. The Ndfa (%), a time-integrated measurement of the proportion of 

atmospheric N within the plant tissue, was estimated using the natural abundance method 

according to the following equation (Unkovich et al., 2008): 

 

𝑁𝑑𝑓𝑎(%) = !!""#$%&$&%&'(&)*+',-!!""#$.#/0&+'.
!!""#$%&$&%&'(&)*+',-12+*3&

× 100 ,                                                                             (1) 

 

in which δ15N is the natural excess of the 15N isotope in the plant tissue. Two options of 

reference plants were sampled: 1) a non-nodulating genotype (Lee, MG 5.6) randomized within 

each block; and 2) an unfertilized corn strip at the side of the experiment. Unfertilized corn and 

non-nodulating Lee provided similar Ndfa values despite potential phenology differences (Sup. 

Fig. S1). In addition, the non-nodulating soybean roots were checked to assure the absence of 

nodules and used for final Ndfa calculations. The B-value of -2.54 was chosen as the reported 

median of previous literature (Balboa and Ciampitti, 2020). Along with δ15N, total N 

concentration was estimated using an isotope ratio mass spectrometer, allowing for calculation of 

N uptake (kg ha-1), fixed N, and N uptake from the soil (as the remaining uptake). At harvest 

time, two central adjacent rows covering 2 m2 were manually collected from each plot and 

machine threshed for obtaining seed samples and estimating seed yield (Mg ha-1) and seed 

weight (mg seed-1, herein called seed size), both adjusted to 130 g kg-1 moisture basis. 

 

 Statistical analyses 

Hierarchical Bayesian models were employed for all response variables. In this 

framework, observations (y) were assumed to come from a normal distribution centered in the 
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true state (z) (data model), described by a process model, and including parameter models 

(distribution of process model parameters) (Wikle et al., 2019). Linear mixed models were used 

to describe the end-season data (seed yield and size). Site-year and genotype were included as 

fixed effect factors and generated eight treatment means for each parameter. The blocks were 

assigned with a random intercept, accounting for a portion of the variance as random effect 

factors. Linear model assumptions were checked with posterior predictive and residual plots. The 

same uninformative prior distribution was set to all model parameters (treatment means), 

according to the response variable. Posterior distributions were compared based on high-density 

continuous intervals (95% probability) using pairwise hypothesis testing. Finally, a Tukey adjust 

compared genotypes within site-years and site-years within genotypes, simplifying the 

presentation and interpretation of posterior distributions contrast analysis. 

Non-linear equations were adopted as process models for all in-season response 

variables, using DAE to account for time (x, independent variable) and assigning a random 

intercept for blocks. Besides primary model parameters, secondary parameters (derived 

quantities) were calculated based on all posterior draws for each site-year and genotype 

interaction. Comparison of non-linear parameter posterior distributions was done in similar 

fashion as for linear mixed models aforementioned. For dry matter and N uptake, the following 

logistic equation described the temporal process (process model): 

 

𝑧 = 4
56&#$(&#')

 ,                                                                                      (2) 

 

in which m is the asymptote or maximum predicted value; k controls the growth rate; and g 

controls the timing of maximum growth rate during the season. Two secondary parameters were 

calculated: maximum growth rate (r); and predicted value at R7 (f). Uninformative truncated 
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normal distributions were set as priors to all primary parameters, restricting posterior samples to 

positive values. The Ndfa was assigned with a gaussian growth equation, as follows: 

 

𝑧 = 𝑚𝑒
#(&#))*

&+*  ,                                                                                            (3) 

 

in which m also represents the maximum predicted value (peak), t is the timing of the peak, and c 

controls the growth and decay rates. Four secondary parameters were calculated: timing of 

maximum growth (g), maximum growth rate (r), predicted value at R7 (f), and area under the 

curve (AUC). Truncated normal distributions were used as priors and shown in Sup. Fig. S2. Soil 

NO3 and NH4 were modeled with the gaussian peak function, intending to capture an in-season 

increase from the baseline condition, described by the following equation: 

 

𝑧 = 𝑏 +𝑚𝑒
#(&#))*

,*  ,                                                                                       (4) 

 

in which b is the baseline concentration, and w controls the growth and decay rates (width). Only 

the AUC was calculated as secondary parameter, representing the overall crop exposure to soil N 

supply during the growing season. All prior distributions were uninformative and bounded by 

zero (truncated normal), assuming a potential peak during the season. 

The shoot N concentration (total and fixed) was described as a function of dry matter 

using the dilution curve (Greenwood et al., 1986), an exponential equation from Lemaire et al. 

(2008). In addition, N uptake (total and from SNF) was predicted from dry matter using the 

slope-only function from Córdova et al. (2019), simplifying the seasonal process model. The 

slope-only model was also employed over the 10th and 90th percentiles to explore potential 
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variation on N uptake and fixed N across dry matter levels. The slope estimates are expressed as 

the amount of N per unit of dry matter, herein called N requirement (kg Mg-1). The slopes ratio 

(fixed N over N uptake) was considered as an estimation of overall Ndfa throughout the season 

and compared to 1) observed Ndfa at R7, 2) ratio of fixed N and N uptake predicted at R7 by the 

logistic models, and 3) end-season gaussian growth model prediction. 

All linear and non-linear models were evaluated in terms of R2, and root mean squared 

error (RMSE). Markov chain Monte Carlo (MCMC) was used to obtain posterior draws using 

the brms package (Bürkner, 2018, 2017) in R software (R Core Team, 2021). For all model 

parameters, two-thousand posterior samples were generated before and six-thousand after 

algorithm warm-up, discarding four every five samples (thinning) to improve chain mixing (four 

total) and reduce correlation of consecutive samples (Hooten and Hefley, 2019). 

 

 Results 

 Seed yield, dry matter, and N uptake 

With a relatively late sowing in both site-years, seed yields averaged 3.2 Mg ha-1 and did 

not differ among any treatment levels (Table 2.2). Seed size did not differ among genotypes 

within site-years, but it was overall 10% greater in 2020 (140 mg seed-1) than 2019 (125 mg 

seed-1). Dry matter accumulation was described (R2 = 0.90) by the logistic model (Fig. 2.1A-B), 

with no difference in the main primary parameters [asymptote (m), and timing of maximum 

growth (g)] and maximum growth rate (r) coming from either genotype or site-year (Supp. Table 

S1). However, the level of dry matter predicted at R7 (f) was ca. 25% greater in 2020 (8.9 Mg ha-

1) than 2019 (7 Mg ha-1) for all genotypes. Total N uptake at R7 was overall 15% greater in 2020 

than 2019 (Fig. 2.1C-D), but only significant for P37T51PR (with 215 and 165 kg ha-1, 
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respectively). Although genotypes did not differ within site-years, Williams 82 had smaller N 

uptake from the soil supply at R7 in 2020 than 2019, with 65 and 95 kg ha-1, respectively (Fig. 

2.1E-F). Temporal changes on fixed N were remarkably different between site-years, with 2020 

reaching R7 values of ca. 120 kg ha-1 and 2019 about 90 kg ha-1 (35% difference), not significant 

for the P35T75X genotype (Fig. 2.1G-H). For 2019, genotypes also differed on R7 fixed N, with 

P35T75X presenting the greatest (110 kg ha-1) and P37T51PR the smallest value (70 kg ha-1). All 

parameter medians followed by the Tukey results for site-years and genotypes total N update, 

uptake from soil and SNF are shown in Supp. Table S2. 

 

 Ndfa and soil mineral N 

Besides modeling N uptake and fixed N, Ndfa seasonal changes were described (R2 of 

0.76) with the gaussian growth function (Fig. 2.2A-D). Prediction credible intervals shows large 

variability on the posterior samples, making most of the primary and secondary parameters 

statistically similar among genotypes within site-years (RMSE of ca. 25%). The AUC was 

almost two-fold in 2020 compared to 2019, with the former presenting a peak within the season 

(ca. 85 DAE) and the latter peaking after R7. The Ndfa maximum rate (r) was ca. 65% higher in 

2020 (1.65 kg ha-1 day-1) than 2019 (1 kg ha-1 day-1) (not significant for the P35T75X genotype). 

Remarkably, Ndfa values at R7 were similar between site-years (ca. 55%), except for Williams 

82, which reached ca. 20% less Ndfa in 2019 (44%) than 2020 (64%). Overall, Ndfa at R7 did 

not differ across genotype and site-year combinations (Supp. Table S3). 

Both NO3 and NH4 presented contrasting site-year seasonal availability, but genotypes 

only differed on the NO3 peak (m) in 2019, with Williams 82 reaching ca. 25 mg dm-3 and 

P34T43R2 ca. 15 mg dm-3 (Fig. 2.2E-H). The site-year 2019 presented a NO3 peak around 50 
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DAE (R3 stage), while the NH4 peak was estimated after R7 (Fig. 2.2J-M). On the other hand, 

2020 showed a NO3 peak around 7 DAE, with NH4 peaking approximately 30 DAE (R1 stage). 

In terms of NH4, site-years differed on the baseline values, with 2019 showing ca. 6 mg dm-3 and 

2020 ca. 4.3 mg dm-3. Although 2020 reached an NH4 peak during the season, the AUC was 

larger for 2019. The AUC, as an indicator of soybean exposure to mineral N, had a negative 

relationship with Ndfa at R7 (f) for both NO3 (Fig. 2.2I) and NH4 (Fig. 2.2N). In 87% of the 

posterior draws, slope estimates were negative for NO3 AUC and Ndfa, with a 3.1% Ndfa decay 

every 100 mg dm-3 day. The relationship was stronger for NH4, showing a 11.7% decay every 

100 mg dm-3 day (negative at 98% of the times). All primary and secondary parameter medians 

followed by the CLD (Tukey test at p < 0.05) are presented in Supp. Table S4. 

 

 Seasonality of uptake rates 

Maximum N uptake from the soil supply (Fig. 2.3A-D) occurred before the peak of N 

fixation (Fig. 2.3F-I), almost 30 days between peaks in 2019 (mid-season NO3 peak, R3 stage) 

and about 20 days in 2020 (early season NO3 peak, 7 DAE). In 2019, maximum soil and SNF 

uptake rates were delayed, occurring ca. 50 (R3 stage) and 80 DAE (R6 stage), respectively. For 

2020, maximum soil and SNF uptake rates happened around 40 (V7 stage) and 60 DAE (R4 

stage). Besides temporal differences, maximum uptake rates of fixed N were almost three-fold in 

2020 (7.5 kg ha-1 day-1) compared to 2019 (2.5 kg ha-1 day-1), while uptake rates from the soil 

were similar across genotypes and site-years (ca. 3 kg ha-1 day-1). For 2020, uptake rates of fixed 

N were greater for P34T43R2 and smaller for the P37T51PR genotype, 8.2 and 3.6 kg ha-1 day-1, 

respectively. Although soil NO3 peak and timing of maximum uptake from soil coincided in 

2019 (ca. 50 DAE at the R3 stage), maximum rates were not significantly greater than 2020 (Fig. 
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2.3E), with positive slope estimates only 74% of the times (median of 0.013 kg ha-1 day-1). On 

the other hand, when the NO3 peak was delayed a day, uptake rates from fixation decreased 0.08 

kg ha-1 day-1 across genotypes and site-year combinations (negative slope at 100% of the times) 

(Fig. 2.3J). Inference on the temporal effect of NH4 peak was not explored due to a relatively flat 

availability in 2019 (peak likely happened after R7) (Fig. 2.2J-M). 

 

 Dry matter as predictor for N uptake 

Instead of using time (DAE) as a seasonal descriptor of N uptake and fixed N, dry matter 

accumulation simplifies the process model to a slope-only equation. In addition to modeling the 

true state (z), boundary functions over percentiles are useful to define potential scenarios of 

maximum and minimum variation. Across genotypes and site-years, N uptake had a potential 

variation of ca. 60% while fixed N varied almost 400% throughout the season (Fig. 2.4A). For 

instance, at 3 Mg ha-1 dry matter (roughly the R2 stage) fixed N could vary 40 kg ha-1, while at 6 

Mg ha-1 (R5 stage), it could vary 90 kg ha-1. Because N dilution curves are similar across 

genotypes (Supp. Fig. S3), plant N concentration produced relatively low variability in total N 

uptake. On the other hand, Ndfa introduced large variation into the fixed N, because of its 

sensitivity to soil N availability (Figs. 2.2-2.3). Based on the boundaries, seasonal Ndfa could 

range from 15 to 90% across dry matter levels. Furthermore, fixed N observations below 5 Mg 

ha-1 (R4-R5) produce a smaller slope than observations up to maturity (R7) or after 5 Mg ha-1, 

possibly related to the SNF establishment (Fig. 2.4B). This breaking point also challenges dry 

matter as a linear predictor of fixed N, indicating a need for Ndfa assessments.  

The slope-only model was able to predict N uptake (R2 = 0.95) and fixed N (R2 = 0.84), 

even though the latter displayed wider credible intervals (Fig. 2.4C-D). While a linear regression 
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might oversimplify plant N dynamics early in the season (high N concentration and neglectable 

SNF), the slopes ratio (fixed N over N uptake) produces an overall Ndfa estimate. Remarkably, 

the slopes ratio was comparable (95% credible intervals) to Ndfa observations and predictions at 

the end of the season (Fig. 2.4E), likely due to a smaller impact of low dry matter observations 

(below 5 Mg ha-1). Finally, slope estimates can be translated into N requirement (kg N Mg-1 of 

dry matter). The site-year 2020 had an overall lower N requirement to produce dry matter (26 kg 

Mg-1) but presented more fixed N per unit of dry matter (15 kg Mg-1). For 2019, the genotype 

P37T51PR had the smallest requirement of total N (26 kg Mg-1) and fixed N (9 kg Mg-1), while 

the other genotypes required ca. 29 kg Mg-1 and 13 kg Mg-1, respectively. 

 

 Discussion 

The present study expands previous findings on seasonal SNF characterization by 

modeling NO3 and NH4 availability, which had significant impact on the N uptake sources. In 

addition, we exposed potential limitations of dry matter as a linear predictor of fixed N 

throughout the season, proposing a Bayesian modeling framework for future studies.  

Our results opposed those of a previous report on soybean under greenhouse conditions, 

which shows greater SNF suppression from NO3 than NH4 (Latimore et al., 1977). Here, the 

seasonal exposure to NH4 (AUC) suppressed Ndfa four-fold more than NO3, possibly explained 

by a lower energetic cost of NH4 assimilation under continuous supply compared to NO3 

(Streeter, 1972). Remarkably, field studies controlling NO3 and NH4 supply as a treatment factor 

are scarce due to inherent N dynamics in the soil. Our results with contrasting NO3 and NH4 

availability between site-years allowed novel inference about their relationship with soybeans 

SNF. Besides a mid-season NO3 peak delaying N uptake from SNF, the temporal match of N 
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uptake from soil supply and high NO3 availability did not increase uptake rates from the soil but 

strongly suppressed the ones from SNF. Although Cafaro La Menza et al. (2020) reported 

temporal dynamics for N fixation and soil N supply, it was unclear how temporal soil N 

availability could interact with uptake timings and rates. Furthermore, inconsistent yield 

responses to N fertilization (Mourtzinis et al., 2018) could be connected to seasonal N 

availability, but also explained by the compensation of these N sources over time. 

Despite the complex relationship between soil water dynamics and NO3 availability, 

excessive precipitation could have delayed the mineralization process in 2019 (Linn and Doran, 

1984). However, those differences in early-season precipitation might have also shifted the NO3 

peak from early to mid-season and impaired SNF. Interestingly, an NH4 peak was not observed 

before the NO3, indicating a quick immobilization into the soil microbiota (released after crop 

residue decomposition) or a prompt nitrification process. Furthermore, it is important to 

acknowledge the indissociable character of N uptake and growth (Briat et al., 2020), and how 

environmental factors such as precipitation could interact with either of these factors. 

Simplifications on modeling SNF seasonal changes are desirable and a slope-only 

equation can be useful in conditions of stable Ndfa (Córdova et al., 2019). However, over 

simplifying SNF prediction overlooks that fixed N variation increases with plant biomass, 

substantiating the end-season observations from Ciampitti and Salvagiotti (2018) (Supp. Fig. 

S4). In addition, the linear relationship had two different phases, before and after the 5 Mg ha-1 

threshold (early seed filling), possibly related with an attenuation of fixed N concentration within 

the plant, as observed for total N after pod setting (Divito et al., 2016). It is worth noting that N 

uptake prediction with mechanistic models (Archontoulis et al., 2020) is reasonably 

straightforward compared to fixed N because N uptake is not as much affected by SNF 
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(Santachiara et al., 2018) as Ndfa by environmental factors. Therefore, the approach from Fig. 

2.4 could couple N uptake simulations with Ndfa assessments to obtain accurate fixed N 

estimations across environments, relaying on fewer (potentially two) Ndfa assessments. Finally, 

the N uptake and fixed N slopes ratio (overall Ndfa) matches the end-season observations and 

predictions by other non-linear models, indicating a timing for single Ndfa assessment. 

We acknowledge the small number of genotypes as a potential limitation to characterize 

contrasting yield levels and variations in soybean seed composition. In addition, most of the 

environmental differences (soil mineral N) originated from site-years and not from a controlled 

treatment. Due to the weather conditions, both experiments reached similar and intermediate 

yield levels, leaving a knowledge gap under higher N uptake (and yield) scenarios. While 

accounting for the limitations of the present study, future research should focus on 1) describing 

in more details (statistically or mechanistically) processes involved with soil N availability (e.g., 

mineralization, denitrification, immobilization) as the timing of NO3 peak could eventually 

impair SNF and reduce N uptake; 2) identifying environmental factors controlling Ndfa that are 

not directly translated into dry matter changes, and; 3) validating the proposed dry matter 

threshold for predicting fixed N throughout the season with a small number of Ndfa assessments 

(or predictions), highly relevant for rapid phenotyping. Although challenging, SNF enhancement 

must be a priority for the overall sustainability of soybean production systems, from both 

standpoints of food security (yield) and biofortification (seed quality). 

 

 Conclusions 

The availability of soil N seems to be the primary driver of seasonal Ndfa changes and 

temporal compensation between N sources (soil supply and SNF). Furthermore, soybeans 
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exposure to NH4 and NO3 significantly suppress Ndfa throughout the growing season. 

Remarkably, a late NO3 peak (mid-season) delayed soil N uptake and SNF, but only reduced the 

latter. Although dry matter accumulation simplified the process to model N uptake and fixed N 

(slope-only equation), Ndfa variations across dry matter levels represent a challenge for the 

seasonal prediction of fixed N across environments. Future studies under a wide seed yield 

gradient are necessary to undercover the actual compensation mechanisms of N sources in 

satisfying the plant demand under contrasting soil N availability and SNF status, quantifying 

potential impacts on yield and nutritional quality. 
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 Figures 

 

 
Figure 2.1.  Dry matter accumulation for the site-year in 2019 (A) and 2020 (B), total N uptake 
(C and D), uptake from the soil N supply (E and F), and from the N fixation process (G and H). 
The logistic model described seasonal changes for all response variables and genotypes. Points 
represent observation means across the six sampling stages. The stages of seventh leaf (V7), full 
flowering (R2), beginning of seed filling (R5), and full seed (R6) are shown within the panels. 
Solid lines represent the posterior prediction median and shaded area represents the 95% credible 
interval. The coefficient of determination (R2) and root mean squared error (RMSE) are 
presented as a measure of goodness-of-fit for each response variable. 
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Figure 2.2.  Seasonal changes on N derived from the atmosphere (Ndfa, A-D), soil nitrate (NO3, 
E-H) and ammonium (NH4, J-M) at a 60-cm depth layer across site-years (2019 and 2020) and 
genotypes. The coefficient of determination (R2) and root mean squared error (RMSE) were 
presented for the gaussian growth (Ndfa) and gaussian peak models (NO3 and NH4). Points 
represent observation means (six sampling stages), solid lines represent posterior prediction 
medians, and shaded areas the 95% credible intervals. The stages of seventh leaf (V7), full 
flowering (R2), beginning of seed filling (R5), and full seed (R6) are shown within the panels. 
The Ndfa prediction at physiological maturity (R7) (f) was regressed over NO3 (I) and NH4 (N) 
area under the curve (AUC). Median of slope estimates are followed by the probability of 
negative values considering regressions over all posterior draws. 
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Figure 2.3.  Nitrogen uptake rates from the soil (A-D) and N fixation supply (F-I) throughout the 
2019 and 2020 growing seasons (site-years) for each genotype. Solid lines represent posterior 
prediction medians, and shaded areas represent the 95% credible intervals from the logistic non-
linear models. The maximum uptake rate from the soil N supply (E) and N fixation (J) was 
regressed over the timing of soil nitrate (NO3) peak. Median of slope estimates are followed by 
the probability of either positive (E) or negative (J) values considering regressions over all the 
posterior draws. The stages of seventh leaf (V7), full flowering (R2), beginning of seed filling 
(R5), and full seed (R6) are shown within the upper panels. 
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Figure 2.4.  Relationship between seasonal dry matter and nitrogen (N) uptake with boundary 
functions over the 10th and 90th percentiles (A). Breaking point of fixed N requirement (solid 
line) over dry matter as compared to the overall seasonal requirement (dashed line) (B). Total N 
uptake and fixed N for the 2019 (C) and 2020 (D) site-years across genotypes. Solid lines 
represent posterior prediction medians and shaded areas the 95% credible intervals (CI). Slope 
medians of posterior distributions are presented at the end of the lines and followed by letters 
from the Tukey test (p < 0.05). Uppercase letters compare site-years within genotypes, and 
lowercase letters compare genotypes within site-years. Posterior medians and 95% CI of N 
derived from the atmosphere (Ndfa, %) predicted by different models (E). 
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 Tables 

Table 2.1.  Soil and weather conditions for Manhattan (KS) during the 2019 and 2020 soybean 
growing seasons (site-years). Composite soil samples were collected approximately 30 days 
before sowing from a 0.15 m depth layer, except for nitrate (NO3), ammonium (NH4), and sulfate 
(SO4), measured from a 0.60 m depth layer. Weather variables were summarized for different 
periods of the crop development, considering crop emergence (VE), full flowering (R2), 
beginning of seed filling (R5), and physiological maturity (R7). 

Variable 2019 2020 

Pre-sowing soil   
 pHa 6.3 7.1 
 Pb, mg dm-3 18 16 
 SOMc, g kg-1 32 26 
 CECd, cmolc dm-3 30 21 
 Clay, g kg-1 300 290 
 Sand, g kg-1 130 120 
 Silt, g kg-1 570 590 
 NO3, mg dm-3 3.2 4.3 
 NH4, mg dm-3 8.0 8.9 
 SO4, mg dm-3 3.9 2.7 
Weather variables   
 Precipitation, mm   
  30 days prior VE 168 128 
  VE to R2 297 170 
  R2 to R5 138 65 
  R5 to R7 146 68 
 Soil mean temperature, °C   
  30 days prior VE 20 21 
  VE to R2 25 26 
  R2 to R5 26 25 
  R5 to R7 25 22 
 Air mean temperature, °C   
  30 days prior VE 20 22 
  VE to R2 25 26 
  R2 to R5 26 25 
  R5 to R7 25 22 
 Solar radiation, MJ m-2   
  30 days prior VE 343 393 
  VE to R2 656 555 
  R2 to R5 250 298 
  R5 to R7 282 373 
a Water based; b Phosphorus extracted by Mehlich-3; c Soil organic matter via loss on ignition 
(LOI); d Cation exchange capacity. 
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Table 2.2. Soybean seed yield, seed size, seed number, protein, and oil concentration for each 
genotype during the 2019 and 2020 growing seasons (site-years). Values represent the median of 
estimated marginal means (emmeans) posterior distributions, and letters represent Tukey test 
results (p < 0.05) within the Bayesian statistical framework. Uppercase letters compare site-years 
within genotypes, while lowercase letters compare the genotypes within site-years. Letters were 
omitted when treatment levels did not differ. 

Genotype Yield Seed size a Seed number b Protein Oil 
 Mg ha-1 mg seed-1 seed m-2 g kg-1 g kg-1 
2019      
 Williams 82 2.90 122 B 2360 435 Aa 206 B 
 P34T43R2 2.99 132 A 2250 432 Aab 199 B 
 P35T75X 3.11 124 B 2500 420 Abc 201 B 
 P37T51PR 2.95 125 B 2320 406 Ac 202 B 
2020      
 Williams 82 3.24 137 A 2370 410 Ba 228 A 
 P34T43R2 3.52 142 A 2460 400 Bab 223 A 
 P35T75X 3.43 137 A 2500 399 Bab 220 A 
 P37T51PR 3.63 144 A 2500 392 Bb 222 A 
a Soybean seed weight; b Seed number was calculated based on seed yield and seed size. 
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Chapter 3 - Vertical Canopy Profile and the Impact of Branches on 

Soybean Seed Composition 

 Abstract 

Soybean [Glycine max (L.) Merr.] seeds are of global importance for human and animal 

nutrition due to their high protein and oil concentrations, and their complete amino acid (AA) 

and fatty acid (FA) profiles. However, a detailed description of seed composition at different 

canopy portions (i.e., main stem and branch nodes) is currently lacking in scientific literature. 

This study aims to (1) characterize seed yield and composition (protein, oil, AA, and FA) at the 

main stem (exploring a vertical canopy profile) and stem branches and (2) quantify the impact of 

canopy yield allocation on seed composition, focusing on branches as a potential contributor for 

higher yields. Four genotypes were field-grown during the 2018 and 2019 seasons, with seeds 

manually harvested from all the branches and three main stem segments (lower, middle, and 

upper). Seed samples were analyzed for seed yield (Mg/ha), seed size (mg/seed), protein and oil 

content (mg/seed) and their respective concentrations (g/kg), and AA and FA concentrations 

within protein and oil (g/100 g), herein called abundance. The upper main stem produced greater 

protein (25%) and oil (15%) content relative to the lower section; however, oil concentration 

increased from top to bottom while protein concentration followed the opposite vertical gradient. 

Limiting AAs (lysine, cysteine, methionine, threonine, and tryptophan) were more abundant in 

the lower main stem, while the oleic/(linoleic + linolenic) ratio was greater in the upper segment. 

Overall, branches produced seeds with inferior nutritional quality than the main stem. However, 

the contribution of branches to yield (%) was positively related to limiting AA abundance and oil 

concentration across soybean genotypes. Future research studies should consider the 
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morphological process of stem branching as a critical factor intimately involved with soybean 

seed composition across environments, genotypes, and management practices. 

 

 Introduction 

High concentrations of seed protein and oil have expanded soybean [Glycine max (L.) 

Merr.] production worldwide. In 2018, 345 Tg of soybean seeds were produced (FAO, 2021). 

Considering a safe protein intake of ~60 g/adult/day (WHO/FAO/UNU, 2007), soybeans alone 

can supply roughly 75% of the global protein need and contribute to 30% of global vegetable oil 

production (FAO, 2021). In the United States (US), dry basis protein and oil concentration are 

about 400 and 215 g/kg, respectively (Rotundo et al., 2016). Environmental conditions are 

known to modify protein and oil concentrations by roughly 20% (Rotundo and Westgate, 2009), 

with these factors dominating the variation on soybean seed composition (Assefa et al., 2019). 

However, changes in seed composition within the plant canopy (Collins and Cartter, 1956) have 

received less attention, especially considering seeds from the branches. 

Modern soybean genotypes not only produce high yields under high plant density but 

also compensate for the absence of plants with enhanced branching (Suhre et al., 2014). This 

flexibility might favor yield stability (Agudamu and Shiraiwa, 2016), especially under adverse 

conditions of stand establishment in northern latitudes (Lamichhane et al., 2020). Along with 

yield increase, soybeans have been reported to have decreased protein and increased oil 

concentration (Rincker et al., 2014). However, it is unclear that how branches contributed to the 

yield-protein-oil relationship in soybeans. Furthermore, the concentration of a seed component is 

a consequence of its content, which depends on assimilate supply (Rotundo et al., 2009) and 

varies within the canopy. Despite genotype leaf characteristics, greater net radiation is found in 
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the upper section of the canopy, and greater temperature, smaller vapor-pressure deficit (VPD), 

and smaller carbon dioxide (CO2) concentration, all relative to lower canopy (Baldocchi et al., 

1983, 1985). 

Genetics and the environment have a great influence on stem branching in soybeans 

(Shim et al., 2017, 2019). Remarkably, low plant density enhances branching (Carpenter and 

Board, 1997), possibly associated with radiation quality (e.g., red to far-red ratio) at the ground 

level (Toyota et al., 2017). Branch leaves unroll about 30 days after sowing and develop under 

continuous shading, presenting thinner leaves compared to the main stem (Koller, 1972). In 

addition, branch nodes have late flowering and pod set but similar physiological maturity 

compared to the main stem (Munier-Jolain et al., 1994). This internal ontogenesis variation 

relates to reproductive abortion, seed-filling rate and duration, and yield (Egli and Bruening, 

2006a,b). During the seed filling, 30% of a leaf carbon (C) assimilate is remobilized to pods on 

the same node and the other 30–40% to the four neighbor nodes (Stephenson and Wilson, 1977). 

Therefore, differences in source for C assimilation might prevail on the seed composition of a 

stem segment, mainly for protein due to the strong nitrogen (N) remobilization process (Sinclair 

and De Wit, 1975). 

At physiological maturity, upper main stem nodes have greater protein and lower oil 

concentration than the lower main stem (Sharma et al., 2013), but little is known about the 

concentration of seed components in the branches. Under low plant densities, this vertical 

gradient for seed composition is reduced but still maintained (Huber et al., 2016). Protein and oil 

vertical profiles are consistent regardless of soybean growth type (determinate or indeterminate) 

and genotype protein level (Escalante and Wilcox, 1993a,b). A few reports have explored the 

concentration of amino acids (AAs) and fatty acids (FAs) as a measure of the soybean nutritional 
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value. Bennett et al. (2003) found a greater concentration of sulfur-containing AAs in the lower 

main stem seeds, while seeds in the upper main stem nodes presented higher oleic acid. Greater 

oleic concentration in the top main stem nodes was confirmed by Bellaloui and Gillen (2010), 

contributing to heat stability and shelf life for food preparation and biodiesel industry (Carrera 

and Dardanelli, 2017). Sulfur AAs (cysteine and methionine) are among the five limiting AAs 

(with lysine, threonine, and tryptophan) often supplemented in monogastric dietary (Thakur and 

Hurburgh, 2007). 

Although a majority of the soybean industry does not reward superior nutritional quality 

(protein, oil, AA, and FA) (Brumm and Hurburgh, 2006), the increasing demand for sustainable 

food production could disseminate premium payments, promote seed-quality segregation at the 

field level, and enhance competitiveness, and marketability. Differences in seed yield and 

composition from the main stem and branches should be explored to understand potential 

unintended changes in these critical plant traits at the whole plant level. Following this rationale, 

the aims of this study were to (1) characterize the seed yield and composition (protein, oil, AA, 

and FA) at three segments of the main stem (vertical canopy profile) and stem branches; and (2) 

quantify the impact of canopy yield allocation on seed composition, focusing on branches as a 

potential contributor for high yields in modern genotypes. 

 

 Materials and Methods 

 Experimental Design and Growing Conditions 

Field experiments were performed during the 2018 and 2019 growing seasons, at the 

Ashland Bottoms Agronomy Farm (39.14° North, 96.64° West, 315 m elevation, in Manhattan, 

Kansas, US) and Kansas River Valley Experimental Field (39.12° North, 95.92° West, 280 m 
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elevation, in Rossville, Kansas, US), respectively. Conventional tillage was performed before 

sowing, and composite soil samples were collected to characterize texture and initial chemical 

properties (Table 3.1). Both fields have been under soybean-corn (Zea mays) rotation, and 

irrigation was not adopted during the growing season. Climate is classified as Cfa (humid 

subtropical) with evenly distributed precipitation throughout the year (Köppen, 2011). 

Four genotypes with contrasting branching potential were selected: P31T11R [maturity 

group (MG) 3.1, released in 2014]; P34T43R2 (3.4, 2014); P35T58R (3.5, 2013); and P39T67R 

(3.9, 2013) (Corteva Agriscience, Johnston, Iowa, US). Experimental design followed a 

randomized complete block with four repetitions in both site-years. Treatment factors were (1) 

genotype (four levels) and (2) canopy portion from which seeds were produced (lower, middle, 

and upper main stem segments and the branches altogether). Herein, we use the term branches to 

represent a morphological structure accounting for a fraction of the seed yield, not the process of 

branching itself. Experimental plots consisted of six rows spaced 0.75 m and a plot size of 60 m2. 

The sowing dates were April 29, 2018, and June 9, 2019. All genotypes were sown at 300,000 

seeds/ha that resulted in approximately 240,000 plants/ha at harvest time. Soybean seeds were 

inoculated before sowing with Vault HP Rhizobia Inoculant (BASF, Ludwigshafen, Germany) 

containing at least 3.0 × 109 colony-forming unit/ml of Bradyrhizobium japonicum. Weeds, 

insects, and diseases were managed according to the best agronomic practices. 

Weather variables were retrieved from the DAYMET database (Thornton et al., 2020) 

and summarized from soybean emergence (VE) to physiological maturity (R7 stage, one pod in 

the main stem had reached mature pod color) (Fehr and Caviness, 1977) according to Correndo 

et al. (2021) (Table 3.1). The soybean cycle reached ~120 days in 2018 and ~105 days in 2019. 

Differences in MG across the tested genotypes introduced an overall season-length variation of 
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less than a week. The sowing date affected the seasonal weather conditions, with Rossville 2019 

(late sowing) presenting lower temperatures and solar radiation. Ashland 2018 was less humid 

and had greater VPD and lower precipitation compared to Rossville 2019. 

 

 Measurements and Laboratory Analysis 

At harvest time (R8 stage), three central adjacent rows covering ~3.4 m2 were manually 

harvested from each plot. Main stems were divided into three segments (lower, middle, and 

upper), with five to six nodes in each segment. Cotyledonary and unifoliolate nodes were not 

considered due to the absence of pods. Branches were collected as a unique segment, adding up 

to the four canopy portions evaluated. Samples were machine threshed and taken to the 

laboratory for determining seed yield (Mg/ha) and seed weight (mg/seed, herein called seed 

size), both adjusted to 130 g/kg moisture basis. Seed number (1,000 seeds/m2) was calculated 

based on yield and seed size. Finally, seed samples (~500 g) were oven-dried (65°C) until 

constant weight is obtained and ground to 0.1 mm particle size. Protein, oil, AA, and FA 

concentrations were determined via near-infrared spectroscopy (NIR) using the Perten DA7200 

Feed Analyzer (Perten Instruments, Stockholm, Sweden). The ground material was scanned 

between 1,000 and 2,500 nm wavelength, and normalized reflectance readings were used to 

estimate each seed component. The calibration method was based on Honigs et al. (1985) and 

evaluated with cross-validation using the coefficient of determination (r2). After accounting for 

protein and oil, the remaining seed size was classified as residue fraction, mostly carbohydrates. 

Besides dry basis concentration (g/kg), seed components were expressed in content 

(mg/seed), a consequence of the seed-filling process, speaking to industry and agronomists. The 

AA and FA concentrations were expressed within protein (g/100 g protein) and oil (g/100 g oil), 
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respectively, as a measure of abundance within each component (Gerde and White, 2008). 

Because NIR does not differentiate asparagine and aspartate, or glutamine and glutamate, these 

AAs were expressed as aspartic and glutamic acid, respectively. Therefore, the 20 primary AAs 

were analyzed as a total of 18 types and then added within three groups: (1) non-essential 

(alanine, arginine, aspartic acid, glutamic acid, glycine, proline, serine, and tyrosine); (2) 

essential non-limiting (isoleucine, leucine, histidine, phenylalanine, and valine); and (3) essential 

limiting (lysine, cysteine, methionine, threonine, and tryptophan) following Pfarr et al. (2018). 

The abundance of those five limiting AAs (LAAs, g/100 g protein) was considered the main 

descriptor of protein quality hereafter. Five FAs were determined: linoleic, oleic, palmitic, 

linolenic, and stearic. However, the oleic/(linoleic + linolenic) ratio was the main descriptor of 

oil quality (Gao et al., 2009). Whole plant and main stem data were calculated as the weighted 

average of the containing portions, considering respective yields. 

 

 Statistical Analysis 

Linear mixed models related dependent (e.g., yield and protein content) with independent 

variables (i.e., genotype and canopy portion). Those variables were tested using three models, 

considering different levels of the plant canopy: (1) whole plant (only testing the effect of 

genotype); (2) two canopy portions (also comparing main stem and branches); and (3) four 

canopy portions (lower, middle, and upper main stem segments and the branches). For the first 

model, genotype was the only fixed effect (four levels), with a random intercept for site-year, 

block, and block within site-year. For the other two models, fixed effects were canopy portion, 

genotype, and their interaction, with random effects also including genotype nested in block × 

site-year, because canopy portions were observed on the same plant sample. To investigate the 
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relationship between seed yield of the whole plant or entire main stem and the contribution of 

branches to yield, a regression model was proposed across all soybean genotypes. In this case, 

seed yield (Mg/ha) was the dependent, and branch-yield contribution (%) was the independent 

variable, both continuous and with a random intercept for site-year. 

Finally, and related to the second objective, seed yield of the whole plant and branch-

yield contribution were tested as fixed effects (independent variables) describing protein and oil 

concentrations, LAA abundance, and oleic/(linoleic + linolenic) ratio (four dependent variables). 

A random intercept for site-year was also included, and dependent variables were considered at 

the whole plant level or by canopy portion (checking for interactions). This model intends to 

dissect the effect of branches from the effect of yield variation on soybean seed composition. The 

independent variables were centered (subtracted by the mean) and scaled (divided by the 

standard deviation) before model fitting and ANOVA. The center-scale transformation was 

performed due to contrasting variable magnitude, which could impair the hypothesis testing. 

Statistical analysis was performed in the R software (R Core Team, 2020). For all 

variables, normality and homogeneity of variance were checked using Shapiro–Wilk and 

Bartlett's test, and data transformations were not employed. The lme4 package (Bates et al., 

2015) was used to fit the models, and the car package (Fox and Weisberg, 2019) was used to 

perform type III ANOVA. Significant effects represented p value < 0.05 (F-test). A protected 

Fisher's least significant difference (LSD) test was adopted for means comparison using the 

multcomp package (Hothorn et al., 2008). The least-square means (LSMEANS) were computed 

for all the treatment combinations. The figures presented in this manuscript were generated using 

the ggplot2 package (Wickham, 2016). 
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 Results 

 Seed Yield and Macrocomponent Content 

Results from the three linear mixed models, comparing genotypes and canopy portions, 

are displayed using bar charts that resemble a soybean plant (Figure 3.1A). Remarkably, across 

the tested soybean genotypes greater yields were attainable as the branch contribution to seed 

yield increased (Figure 3.1B), at the expense of seed yield derived from the main stem. At the 

whole plant level, seed yield differed among genotypes, ranging from 3.7 to 4.7 Mg/ha (Figures 

3.2A–D), mainly driven by seed number rather than seed size (Supplementary Figures 3.1A–D). 

Although the main stem produced most of the yield (~70%), significant yield differences among 

genotypes were only captured in the branches, ranging from 0.6 to 1.9 Mg/ha. The high-yielding 

genotypes (P35T58R and P39T67R) produced greater seed yield coming from the branches 

(Figures 3.2C,D). Seed size in the main stem was also similar across genotypes but was variable 

in the branches (Figures 3.2F–I). The lower main stem yielded overall 25% less than the middle 

and upper (Figure 3.2E) segments, while branches yielded more than the main stem segments in 

the P35T58R and P39T67R (genotypes with high branch yield, ~37% contribution to yield), and 

the same or less in the P31T11R and P34T43R2 (genotypes with low branch yield, ~24% 

contribution to yield). Yield variations within the main stem were not connected to seed number, 

but to seed size, decreasing ~17% from top to bottom nodes (Figure 3.2J). On the other hand, the 

yield from branches was more proportional to changes in seed number, as seed size was similar 

to the entire main stem. The ANOVA coefficients for the mixed models testing genotype and 

canopy portion are shown in Supplementary Table 1. 

Seeds from the upper main stem accumulated 25% more protein (Figure 3.2O) and 15% 

more oil (Figure 3.2T) contents than the lower main stem. However, the vertical gradient of 
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protein content was attenuated for the soybean genotypes presenting high branch yield. Across 

the tested genotypes, protein content within the branches was slightly greater than the main stem 

(without separation by the means comparison test) and usually similar to the middle main stem 

(Figures 3.2F–J). Branch oil content was the same as that of the main stem, with values ranging 

between the lower and middle segments (Figure 3.2T). Although protein and oil content did not 

differ at the whole plant level, segment means (main stem and branches) differed among 

genotypes, with an evident trade-off for the genotype P34T43R2 (Figures 3.2L,Q). The residue 

content followed a similar pattern as the protein and oil, with lower values in the lower section of 

the main stem and greater content in the upper main stem segment (Supplementary Figure 1J). 

Remarkably, protein was the seed component with the greatest content variation among canopy 

portions, relative to oil and residue. 

 

 Nutritional Quality of Soybean Seeds (Concentration) 

In the soybean industry, nutritional quality is evaluated in a unit of mass (concentration), 

not in terms of content per seed. In this scenario, a high concentration can be achieved with 

increased content of a given component or with decreased content of the other components. For 

protein, the upper main stem concentration was ~9% greater than the lower main stem, with the 

middle stem and branches reaching similar values (Figure 3.3E). Despite genotype interactions, 

oil concentration was almost 3% greater in the lower main stem than in the upper main stem 

(Figure 3.3J). Comparing the entire main stem and branches, protein concentration was similar 

for those fractions; however, oil decreased from 233 to 227 g/kg, respectively. Genotypes 

differed on the portion means (main stem and branches) for both protein and oil concentration, 

with the genotype with the smallest yield (P34T43R2) presenting high protein (Figure 3.3B) and 
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low oil (Figure 3.3G) concentrations. Across genotypes, oil concentration ranged from 219 to 

240 g/kg and protein concentration ranged from 368 to 386 g/kg. The residue concentration 

(Supplementary Figure 1O) followed the oil trend, highlighting protein as the seed component 

with the greatest canopy variation. 

Besides protein and oil concentration, soybean nutritional value is determined by protein 

and oil quality. Here, the protein quality is expressed as the abundance of LAA within a protein 

and oil as the oleic/(linoleic + linolenic) ratio. Both variables differed across genotypes, with 

LAA abundance ranging from 15.0 to 15.3 g/100 g protein and the FA ratio ranging from 0.27 to 

0.34. The low-yielding genotype (P34T43R2) had the smallest LAA abundance (Figure 3.3L), 

while the lower FA ratio was found in the P39T67R (Figure 3.3S) genotype. Genotypes did not 

interact with the canopy portion for either LAA or FA. The LAA abundance in the lower stem 

section was ~3% greater than the upper stem section, while branches were ~0.5% lower than the 

entire main stem. The oleic/(linoleic + linolenic) ratio was slightly lower in the branches 

(without separation on the means comparison test), but the upper main stem surpassed the lower 

segment by ~30%. Because protein decreased from top to bottom main stem segments while 

LAA increased, the vertical gradient of protein concentration and protein quality was opposite, 

similar to the oil concentration and quality (measured as the FA ratio). 

 

 Branch-Yield Contribution Affects Seed Composition 

The whole plant yield was positively associated with the branch-yield contribution 

(Figure 3.1B), increasing about 30 kg/ha when branch contribution increased by 1%. Due to the 

yield-branch significant relationship, a simple linear regression exploring the effect of branches 

on seed components would likely confound the two factors. Therefore, protein, oil, LAA 
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concentration, and the oleic/(linoleic + linolenic) ratio were modeled as a function of both 

variables. Branches had lower oil concentration, LAA abundance, and FA ratio than the main 

stem (Figure 3.3). However, when there was more yield coming from branches, the FA ratio was 

not affected, while oil concentration and LAA abundance increased at the whole plant level 

(Table 3.2). For protein, neither yield nor branches had significant slopes. Only yield was found 

to have a negative relationship with the FA ratio, with more yield meaning poor oil quality. 

However, for oil concentration and LAA abundance, branch-yield contribution alone was related 

to greater values, with positive slopes of 0.59 and 0.01, respectively. Considering branch 

contribution to yield ranged from ~10 to 50%, oil concentration was predicted to increase 23.6 

g/kg from low to high branch-yielding conditions. Although the LAA had a smaller rate of 

change, it represented 0.4 g/100 g protein, matching the overall genotype range presented in 

Figure 3.2. The ANOVA coefficients are shown in Supplementary Table 2. 

 

 Discussion 

Results from this study showed the importance of branch-yield contribution for soybean 

seed composition, expanding previous findings on protein and oil vertical gradient in the main 

stem. Additionally, this study provides novel analysis, including a characterization of the 

abundance of limiting AA and oleic/(linoleic + linolenic) ratio, as parameters of protein and oil 

quality. We acknowledge some limitations of this study, such as the limited number of tested 

genotypes and collinearity between yield and branch-yield contribution. However, manipulating 

branches under field conditions while attaining comparable seed yield is difficult and highly 

sensitive to genotype, environment, and management (G × E × M) interactions. 
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A vertical gradient of seed protein and oil concentration was expected. Escalante and 

Wilcox (1993a) found more protein in the upper main stem (~40 g/kg) than in the lower main 

stem. Additionally, the same authors documented genotypes with contrasting protein 

concentration increased ~7 g/kg/node from lower to upper main stem (Escalante and Wilcox, 

1993b). Bellaloui and Gillen (2010) found more protein and less oil concentrations in the upper 

nodes, with differences attributed to changes in genotype and light distribution within the 

canopy. Sharma et al. (2013) observed the same protein-oil vertical gradient going beyond 

physiological maturity and affecting composition during storage. Our results confirm the main 

stem vertical gradient widely reported, with protein concentration decreasing (~9%) and oil 

concentration increasing (~3%) both from top to bottom main stem nodes. However, greater oil 

concentration in the lower nodes was not associated with greater seed oil content but with a 

proportionally greater reduction in protein content than both oil and residue compounds. Protein 

was the seed component with the greatest variation among canopy portions, pointing to protein 

accumulation as a critical process determining the concentration of others seed components 

within the plant. 

Assimilate supply and ontogenesis temporal variation might be the complementary 

factors defining protein and oil content among nodes. Our genotypes presented slightly greater 

protein content in the branches than the main stem and greater seed size in the upper nodes than 

the lower nodes. Indeterminate soybean genotypes start setting pods from lower to upper nodes 

(Egli and Bruening, 2006a) and later in branches than the main stem (Munier-Jolain et al., 1994). 

However, a possibly shorter seed-filling period might be compensated by a greater accumulation 

rate (Egli et al., 1978), since seeds from upper nodes are not necessarily smaller (Parvej et al., 

2016), and there is no clear association between timing of fruit initiation and seed size (Egli, 
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2012). Greater seed size might be connected to CO2 assimilation and N concentration in upper 

leaves (Boon et al., 1983), as the protein content in the branches could be driven by greater light 

exposure relative to the lower main stem. On the other hand, considering protein is accumulated 

before oil (Poeta et al., 2014), a shorter seed-filling duration in branches and upper nodes could 

limit the oil deposition, affecting its overall final accumulation (evidenced by a relative stability 

of oil compared to protein). 

Greater protein quality (LAA abundance) was found in the lower main stem, while 

greater oil quality (FA ratio) was found in the upper main stem. These differences might be 

related to microclimatic canopy changes, especially temperature and light (both are greater in the 

upper canopy). Higher temperatures promote the synthesis of oleic acid at the cost of linoleic and 

linolenic (Wolf et al., 1982). Because LAAs are less dependent on carbon supply, their 

abundance is maintained or increased under shading conditions (Pfarr et al., 2018). Within the 

plant, low mobility of sulfur could enhance the differences on LAA along the main stem (Sexton 

et al., 2002), since two out of the five LAAs are rich in sulfur (cysteine and methionine). 

Regarding branches, our results confirm the expected FA trend, with a lower oleic/(linoleic + 

linolenic) ratio, possibly due to reduced temperature compared to the upper main stem. However, 

branches presented a smaller LAA abundance relative to the entire main stem, possibly 

indicating greater light exposure than the lower main stem nodes, decreasing the abundance of 

LAA (Pfarr et al., 2018). 

Our results point to branch yield as an underlying factor of seed composition. It is 

possible that a greater branch yield favors the accumulation of oil and LAA at the whole plant 

level, even though branch seeds have a lower concentration of those components. The 

importance of branch yield for seed yield formation and stability has been highlighted by 
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Carpenter and Board (1997) and Suhre et al. (2014), but information on seed quality changes was 

lacking. From our study, we demonstrated that more branch yield drove the whole plant seed 

composition toward the lower main stem characteristics (high oil concentration and LAA 

abundance); however, the overall branch seed composition is not similar to the lower main stem. 

Changes in plant density and arrangement could affect the branch length and microclimate 

within the canopy, making branch seeds similar to either lower or middle-upper main stem 

segments. However, under a reduced row spacing (0.45 m) branch seed composition was 

consistent with our results (Werner et al., 2021). 

Changing the yield allocation among canopy portions could be manipulated by plant 

breeding and management practices. For instance, enhanced branching in modern genotypes 

could be related to stable LAA concentration despite protein decay over the last 40 years (de 

Borja Reis et al., 2020). Future research must consider to study the branching process (initiation, 

progress rate and duration, dry matter, and harvest index) as a potential moderator of soybean 

seed composition, plausibly benefitting human nutrition with improved AA profile and oil 

concentration. Findings of this study denote two relevant points from a breeding standpoint: (i) 

expanding assessment on seed quality to include not only protein and oil but also AA and FA 

and (ii) acknowledging the contribution of the breeding process on branching, exploiting genetic 

variation on this trait to assess potential improvements in seed quality. 

 

 Conclusions 

In conclusion, soybean seeds from the upper main stem segment accumulated more 

protein and oil than the lower main stem segment. However, the upper main stem section 

presented greater protein and lower oil concentrations relative to the lower main stem section of 
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this segment. Across genotypes with contrasting branch yield, seeds from the branches presented 

similar protein concentration as the main stem but lower oil concentration, oleic/(linoleic + 

linolenic) ratio, and LAA abundance. However, branch-yield contribution was related to greater 

oil concentration and LAA abundance across genotypes. This study highlights the importance of 

improving our knowledge on yield contribution and seed composition from different canopy 

portions for benefitting food production and soybean markets. 
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 Figures 

 

 

Figure 3.1.  (A) Soybean seed harvesting and bar chart representation of observed variables at 
three canopy levels: (1) whole plant, (2) entire main stem (green color) and stem branches 
(yellow color), and (3) upper (dark blue), middle (light blue), lower (white color) main stem 
segments and the branches. The bar chart representation was meant to resemble a soybean plant, 
concisely depicting the linear mixed models testing genotype and canopy portion. (B) Seed yield 
from the main stem (green) and branches (yellow color) relative to the branch-yield contribution 
(%). Regression lines were fit across genotypes and considered a random intercept for site-year. 
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Figure 3.2.  Soybean seed protein (A–E) and oil concentration (F–J), limiting amino acids 
(LAAs) abundance (K–O), and oleic/(linoleic + linolenic) ratio (P–T). Vertical black bars refer 
to the whole plant data in the y axis, with lowercase letters on top comparing genotypes (model 
1). Horizontal bars are centered on the black bar (x axis), referring to two canopy portions on the 
right side (main stem and branches) (model 2) and four canopy portions on the left side (lower, 
middle, and upper main stem segments and branches) (model 3). Diamonds represent the 
genotype mean of all canopy portions for models 2 and 3. Uppercase letters compare stem 
segments within genotype (interaction) or on the overall mean (portion effect). Lowercase letters 



57 

compare genotypes within canopy portions (interaction) or on the genotype mean, diamonds 
(genotype effect). Each panel row portraits three linear models of a response variable, for the 
whole plant, two and four canopy portions. Absence of letters represents no significant 
difference (p < 0.05). 
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Figure 3.3.  Soybean seed protein (A–E) and oil concentration (F–J), limiting amino acids 
(LAAs) abundance (K–O), and oleic/(linoleic + linolenic) ratio (P–T). Vertical black bars refer 
to the whole plant data, in the y axis, with lowercase letters comparing genotypes. Horizontal 
bars are centered on the black bar (x axis), referring to two canopy portions on the right side 
(main stem and branches) and four canopy portions on the left side (lower, middle, and upper 
main stem segments and branches). Diamonds represent canopy portion means on each side. 
Uppercase letters compare canopy portions within genotype (significant interaction) or on the 
overall mean (canopy portions single effect). Lowercase letters compare genotypes within 
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canopy portions (interaction) or on the genotype mean, diamonds (genotype single effect). The 
absence of letters represents no significant difference in the analysis of variance (p < 0.05). 
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 Tables 

Table 3.1.  Soil and weather variables characterizing Ashland Bottoms 2018 and Rossville 2019 
experimental sites. 

Variable Ashland 2018 Rossville 2019 

Soil variables   
 Soil texture, g kg−1   
  Clay 18.0 17.3 
  Sand 28.0 30.0 
  Silt 54.0 52.7 
 Water pH 7.6 7.0 
 SOM, g kg−1 a 21.0 15.0 
 NO3, mg dm−3 4.0 2.7 
 SO4, mg dm−3 1.0 2.3 
 P, mg dm−3 b 90.2 43.0 
Weather variables   
 Mean temperature, °C 25.7 24.3 
 Maximum temperature, °C 32.2 29.7 
 Minimum temperature, °C 19.1 18.9 
 Solar radiation, MJ m−2 day−1 1687 1296 
 Evapotranspiration, mm c 754 474 
 Rainfall precipitation, mm 338 518 
 Precipitation SDI d 0.59 0.65 
 Relative humidity, % 59.7 77.5 
 Mean VPD, kPa e 1.65 0.73 
a Soil organic matter via loss on ignition (LOI); b Phosphorus extracted by Mehlich-3; c 
Reference evapotranspiration; d Shannon-diversity index (Bronikowski and Webb, 1996); e 
Vapor pressure deficit. 
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Table 3.2.  Whole plant soybean seed protein, oil, and limiting amino acids (LAAs) 
concentration, and oleic/(linoleic + linolenic) ratio as a function of whole plant yield (Mg/ha) 
and branch contribution to the whole plant yield (%). 

Parameter  Estimate Standard  
error p-value Back transformed  

slope estimate 

Protein, g kg−1      
 Intercept  373.6 11.65 2.21e-02 *  
 Whole plant yield  -0.02 3.53 9.96e-01 -0.02 
 Branch contribution  -5.74 3.39 1.06e-01 -0.51 
Oil, g kg−1      
 Intercept  231.7 5.17 1.95e-02 *  
 Whole plant yield  -3.79 2.58 1.56e-01 -5.10 
 Branch contribution  6.63 2.49 1.48e-02 * 0.59 
LAA, g 100 g protein−1      
 Intercept  15.21 0.35 1.50e-02 *  
 Whole plant yield  0.02 0.05 6.98e-01 0.02 
 Branch contribution  0.10 0.04 3.77e-02 * 0.01 
Oleic / (Linoleic + Linolenic)      
 Intercept  0.31 0.02 5.62e-02  
 Whole plant yield  -0.02 0.01 2.55e-02 * -0.03 
 Branch contribution  0.01 0.01 4.23e-01 0.00 
* Estimate is significant at the 0.05 probability level (p < 0.05). 
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Chapter 4 - Conclusions and Future Implications 

The present study expanded the current understanding of the process of allocation of seed 

quality components within the soybean canopy and how yield and protein formation (SNF) is 

temporally affected by changes in SNF and soil N supply in the forms of NO3 and NH4. 

Regarding the temporal dynamics of N sources, the use of non-linear models to describe NO3 

and NH4 availability along with Ndfa was valuable to undercover their overall relationship. 

Remarkably, even though NH4 levels were smaller than NO3, the total NH4 exposure was more 

suppressive of Ndfa at physiological maturity than NO3. However, because NH4 did not present a 

strong and clear peak during the season in both site-years, we could only explore the temporal 

effect of NO3 on N uptake and SNF. A mid-season NO3 peak matched the timing of maximum N 

uptake from the soil supply, which did not benefit N uptake rates from soil but delayed and 

suppressed the fixed N by approximately 20 days. In an attempt to simplify the seasonal 

modeling of SNF, dry matter throughout the season was adopted as a predictor of fixed N instead 

of days after emergence (DAE). Although this approach resonates with the broadly characterized 

N dilution process, it overlooks seasonal variation on Ndfa and exposes difficulties for predicting 

fixed N across environments. For instance, our slope-only model (N requirement) had a change 

around 5 Mg ha-1 of dry matter in the pooled data for all genotypes and site-years. However, 

despite of the limitations, the approach presented here is valuable to guide future studies looking 

at temporal variations of Ndfa. Considering the rationale of crop growth models that follows the 

hierarchy of 1) environmental and management conditions modulating changes on dry matter, 

and 2) dry matter moderating N uptake, it would be reasonable to propose a third step, focusing 

on N uptake regulating fixed N. Therefore, the challenge becomes to predict or assess an Ndfa 

value that could be applicable throughout the entire season. According to our results, at least two 
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assessments would be needed, before and after 5 Mg ha-1 dry matter, which might need to be 

revisited under high yield conditions (yield levels > 4 Mg ha-1). 

Regarding the internal variation on soybean seed composition, a previously reported 

vertical profile was confirmed for protein and oil concentration. However, protein accumulation 

was more responsive to the vertical position than oil and residuals, causing variations in 

concentration in those three components. For instance, the upper canopy accumulates more 

protein in the seeds and has a large protein concentration than the bottom, which has less 

accumulation of protein and therefore a higher oil concentration. Furthermore, high 

concentration of either protein or oil is accompanied by a poor quality of the respective 

components inside of the plant. Seeds with high protein concentration in the upper nodes display 

a smaller abundance of limiting AA, because the higher carbon supply (light) from the upper 

leaves favors the production of non-limiting AA such as glutamic and aspartic acids. On the 

other hand, seeds in the bottom of the canopy produce less oleic acid compared to linoleic and 

linolenic, which is not desirable in the industry considering shelf life and heat stability. Most 

importantly, this is one of the few reports considering the seed yield from branches, which was 

found with lower oil concentration, low oleic / (linoleic + linolenic) ratio, and low limiting AA 

abundance. However, across the tested genotypes, a greater branch yield contribution was 

positively related with limiting AA and oil concentration at the whole canopy level. 

From the seed composition standpoint, the present research has implications for 

researchers, breeders, producers, and consumers. Considering plant architecture and possible 

yield allocation within the canopy as moderator of seed composition, future research should 

explore the impact of branching on the overall effect of other management practices on protein, 

oil, AA, and FA. Furthermore, soybean breeders must be aware of potential unintended effects 
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on seed composition coming from genotypes more prone to branching. Because canopy portion 

separation during harvest is currently unpractical with modern machinery, it is unlikely farmers 

and industry could take advantage of the internal variation directly, but new technologies will be 

able to segregate seed composition at the field level (by regions). From the SNF standpoint, this 

study highlights the importance of Ndfa assessment during the season to undercover a strong 

effect of soil N availability on N uptake. In addition, a simplified approach for predicting 

seasonal fixed-N should be further explored to indicate the advantages but also the limitations of 

predictions across environments, which must be sustained by at least two Ndfa assessments 

during the crop growing season. 


