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Abstract

BACKGROUND AND PURPOSE: Alzheimer’s disease is currently a neurodegenerative

diseases without any effective treatments to slow or reverse the progression. To develop

any potential treatments, the need of a good statistical model to assess the progression of

Alzheimer’s disease is becoming increasingly urgent. This study proposed a latent transition

model to monitor the progression of Alzheimer’s disease which can help the development of

a given proposed treatment.

METHOD: A latent transition model was used to assess the progression of Alzheimer’s

disease. The volume of Hippocampus and fluorodeoxyglucose-PET (FDG) were employed

as biomarkers in this model. These two biomarkers are very sensitive to the pathological

signs of the Alzheimer’s disease. The proposed latent transition model was performed with

real data from Alzheimer’s Disease Neuroimaging Initiative (ADNI), which contain 2,126

participants from 2005 to 2014.

RESULTS/FINDINGS: The latent transition model suggested six states of disease pro-

gression and two different pathological profiles. One progression profile was mainly deter-

mined by the biomarker of FDG and the other by the volume of Hippocampus.

CONCLUSION: The results revealed the existence of various progression profiles of

Alzheimers disease, suggesting a new way to evaluate the disease progression.
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Chapter 1

Introduction

Alzheimer’s Disease (AD) is one type of age-related, neurodegenerative disorder which slowly

destroys memory, brain function, and, eventually, leads to loss of independence and total

disability (Batsch et al., 2012). In the United States, the prevalence of AD is predicted to be

over 14 million by 2050 (Alzheimer’s, 2012). AD is also one of the costliest chronic diseases

to American society. In 2016, the direct costs to Americans in caring for AD patients were

estimated to be 236 billion dollars, with half of the costs borne by Medicare (Alzheimer’s,

2016). However, there is no effective treatment so far to slow or reverse the progression of

AD.

To develop any potential treatments, the need of an accurate statistical model to assess

the progression of AD is becoming increasingly urgent. Modeling patterns of AD progres-

sion is an essential component, because it enables advanced understanding of the pathology

of AD and helps the development of potential treatments. Recently, this topic is of high

interest to biomedical researchers (for example, see Holford, 2014; Johnson et al., 2014; Li

et al., 2015; Schmidt-Richberg et al., 2015). Many of these studies often used three clinically

diagnostic stages: Normal (NC or pre-symptomatic stage), mild cognitive impairment (MCI

or prodromal stage) and AD stage. In NC or pre-symptomatic stage, individuals are clin-

ically normal but may have AD pathology (Johnson et al., 2014; Schmidt-Richberg et al.,

2015). The presymptomatic period (NC stage) refers to a pathophysiological process that
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is progressing towards developing cognitively and behavioural impairment of AD (Li et al.,

2015). In MCI or prodromal stage, patient’s cognition is impaired but the daily functions

may not be undermined. The AD clinical symptoms such as losing functions in activities

appear in AD stage (Alzheimer’s, 2012).

However, recent evidence from both genetic and clinical studies revealed that the patterns

of disease progression profile could be more complicated than only three clinical stages,

suggesting there may exist more states particularly between presymptomatic and prodromal

stage. Li et al. (2015) suggested that the pathological process of AD begins before the

symptoms appear. Mufson et al. (2016) mentioned that neurofibrillary tangles (NFTs), as

a primary marker of AD, could be detected before the AD symptoms emerge. Li et al.

(2016) suggested that the gene BACE1, as a sensitive biomarker of early neuropathology,

has abnormal expression before the AD symptoms appear. All of these studies indicated that

some of AD biomarkers show abnormalities in the presymptomatic stage of AD. Hence, there

is a need for a more comprehensive model to evaluate the disease progression and thereby

gain new insight into AD.

For this comprehensive model, it is vital to assess the disease states with sensitive

biomarkers. Here, the disease state is a general term that refers to any quantifiable variable

describing disease progression at a particular point in time (Holford, 2014). It is vital to

assess the disease states with sensitive AD biomarkers. Many studies have evaluated the AD

progression with various sets of biomarkers in order to find the biomarkers that have high

sensitivity to detect AD (Biagioni and Galvin, 2011). For examples, Escudero et al. (2011)

suggested using machine learning analysis to assess the pattern of AD progression with Mag-

netic resonance imaging (MRI) and Cerebrospinal fluid (CSF) biomarkers and Iordanescu

et al. (2012) used an automatic plaque segmentation algorithm to classify plaque-related

disease states. Madsen et al. (2015) studied the disease states with CSF-tau and Amyloid-β

levels. Although the sensitive biomarkers can be selected for the model based on the lit-

erature, there are still some questions about AD pathological progression that are under

investigation, for example, the transitioning profiles of AD progression are still unclear.

The latent transition models, where the unobserved membership at each time point is
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measured with a set of manifest items, could be an ideal method for modeling AD develop-

ment. Sukkar et al. (2012) proposed a hidden markov model which is also a latent transition

model, to monitor the progression of AD with observed biomarkers and compare the hidden

states with clinical diagnostic stages. But in their study, the transition probabilities and the

profiles of disease progression have not been discussed in detail.

In this study, a latent transition model is employed to model AD progression profiles

with a set of biomarkers. The volume of hippocampus and the Fluorodeoxyglucose-PET

(FDG) are selected in this study for AD progression modeling. In these selected biomark-

ers, the volume of hippocampus represents structural or functional AD biomarkers and the

Fluorodeoxyglucose-PET (FDG) represents pathological AD biomarkers. Our results indi-

cate that AD progression is not as simple as the clinically diagnostic stages but a more

complicated system, suggesting two profiles of AD progression. One of them is primarily

characterized by FDG and the other by the volume of hippocampus. This latent transition

model provides more details about the pattern of intermediary transitions between states.

This report is organized as follows. In Chapter 2, we briefly introduce the latent transition

models and parameters estimation with EM algorithm. In Chapter 3, Alzheimers Disease

Neuroimaging Initiative (ADNI) database is introduced as well as the biomarkers selection

for modeling disease progression. The analysis results are given in Chapter 4. Finally, some

conclusions and discussion of these two pathological profiles are given in Chapter 5.
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Chapter 2

Statistical methods

2.1 Latent Transition Models

Modeling the progression of Alzheimer’s Disease plays an important role in the development

of potential treatments. Many studies of AD progression modeling used the three clinically

diagnostic stages. For example, a genetic logistic regression model to predict the progression

of AD three clinical stages was presented by Johnson (Johnson et al., 2014). The quantile

regression models were employed to describe the conversions from NC to MCI as well as from

MCI to AD with the evolution of quantitative biomarkers (Guercio et al., 2015). Schmidt-

Richberg et al. (2015) used an apathy evaluation scale to predict the conversion from MCI

to AD with the apathy value. However, there is a need for a more comprehensive statistical

model which can detect more disease states to evaluate the disease progression.

Latent transition models, as one of the analyses of stage-sequential processes, can be used

to assess the progression of Alzheimer’s Disease. The latent transition models has been well

discussed in the public health field (Chen and Page, 2016). Currently, many studies used

latent transition models to evaluate the latent classes and the progression of disease such as

AIDS (Dagne, 2016; Sweeting et al., 2010).

In this study, we use the latent transition models to monitor the progression of AD.

This method assumes that the latent states at each time point are unobserved, but can be
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measured with a set of manifest items (categorized biomarkers). The latent transition model

is an extension of latent class models, suggesting it can not only provide the latent classes

but also the associated transition probabilities (Chung et al., 2005). Therefore, we can use

the latent transition model to assess the transitioning profiles of the disease.

For our real data analysis, we consider only two biomarkers and two time points. The

details of biomarkers and data can be found in Chapter 3.

2.2 Statistical Model of Latent Transition Analysis

We first introduce the latent transition models in general. We use the similar notation

of Chung’s paper (Chung et al., 2005, 2008). Assuming the model with n latent states

can be measured at T times, the biomarker responses of ith individual for all the times

t = 1, 2, 3, ..., T is:

Yi = (Y i1,Y i2, · · · ,Y iT ),

where Y it = (Yi1t, · · · , YiMt), is a vector of M items (biomarkers) and the biomarker response

Y imt = k, k ∈ {1, · · · , J}. Let Li = (Li1, Li2, Li3, · · · , LiT ) be the latent class membership

of ith individual at t = 1, 2, · · · , T and Lit ∈ {1, · · · , s}. Simply, Lit is ranging from 1 to s,

denoting the state of disease. The class variable Lit can be measured by Y it.

For this model, we assume the following: (1) Yi1t, · · · , YiMt are conditionally independent

given Lit; (2) the sequence of Lit constitutes a first-order markov chain for t = 1, · · · , T .

Under those assumptions, the complete likelihood function of Y i and Li is given by:

P (Y i1 = yi1, · · · ,Y iT = yiT ,Li = li)

= δli1τli2|li1 · · · τliT |li,T−1

M∏
m=1

J∏
k=1

T∏
t=1

ρ
I(yimt=k)
mkt|lt

= δli1

T∏
t=2

τlit|li,t−1

M∏
m=1

J∏
k=1

T∏
t=1

ρ
I(yimt=k)
mkt|lt ,

where δli1 = P (Li1 = li1) and τlit|li,t−1
= P (Lit = lit|Li,t−1 = li,t−1) and the I(y = k) as the
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indicator function which equals 1 if y equals k and 0 otherwise. The marginal probabilities

of each membership at time t(t > 1) can be computed as

δlit = P (Lit = lit) =
s∑

li1=1

...
s∑

li,t−1=1

δli1

T∏
t=2

τlit|li,t−1

Therefore, the contribution of the ith individual to the likelihood function of Y i1, ...,Y iT is

given by

P (Y i1 = yi1, ...,Y iT = yiT )

=
s∑

li1=1

...
s∑

liT=1

P (Y i1 = yi1, ...,Y iT = yiT ,Li = li)

=
s∑

li1=1

...
s∑

liT=1

δli1

T∏
t=2

τlit|li,t−1

M∏
m=1

J∏
k=1

T∏
t=1

ρ
I(yimt=k)
mkt|lt

The following sets of parameters are estimated from latent transition models: i) δ param-

eters : latent states membership probabilities at baseline time point; ii) τ parameters :

probabilities of transitions between latent states over time; iii) ρ : item-response probabil-

ities conditional on latent status membership and time. In addition, the ρ parameters can

explain the correspondence between the observed items and the latent states when covariates

are included.

In this study, we only consider two biomarkers (M = 2) and two time points (T = 2).

2.3 Parameters Estimation with EM Algorithm

The parameters of latent transition model can be estimated using an EM algorithm. The

expectation-maximization (EM) algorithm is an iterative method which is for finding the

maximum likelihood estimation of parameters in statistical models (Dempster et al., 1977).

The iteration of EM algorithm alternates between two steps: expectation (E) step and

maximization (M) step. The E step is to create the expectation of the log-likelihood function

with the current estimate for the parameters. The M step is to computer the parameters
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that can maximizing the expected log-likelihood from E step.

For our example (T = 2 and M = 2), the E-step, we compute the conditional probability

that each individual is a member of class l1 at t = 1 and class l2 at t = 2 given the biomarkers

yi = (yi1, yi2) of ith subject,

ξ̂i(l1,l2) = P [L1 = l1, L2 = l2|y1, y2] =

δl1τl2|l1

2∏
t=1

2∏
m=1

J∏
k=1

ρ
I(ymt=k)
mkt|lt

s∑
l1=1

· · ·
s∑

lT=1

δl1τl2|l1

2∏
t=1

2∏
m=1

J∏
k=1

ρ
I(ymt=k)
mkt|lt

In the M-step, the updated parameter estimates by

δ̂l1 =
η̂
(1)
l1

n
, τ̂l2|l1 =

η̂l1,l2

η̂
(1)
l1

, ρ̂mkt|l =
η̂
(1)
mkt|l + η̂

(2)
mkt|l

η̂
(1)
l + η̂

(2)
l

where η̂l1,l2 =
∑

i ξ̂i(l1,l2), η̂
(1)
l1

=
∑

l2
η̂l1,l2 , η̂

(2)
l2

=
∑

l1
η̂l1,l2 , η̂

(1)
mkt|l =

∑
l2

∑
i I(ymt = k)ξ̂i(l,l2)

and η̂
(2)
mkt|l =

∑
l1

∑
i I(ymt = k)ξ̂i(l1,l). Finally, iterating between these two steps provides a

sequence of parameter estimates that can converge to maximum of the likelihood function.

2.4 SAS package

The SAS modeling package we used in this study is from methodology center at Pennsylvania

State University. The SAS code is given in Appendix.

The data analysis for this paper was generated using SAS software, Version 9.4 of the

SAS System for Windows. Copyright c©2013 SAS Institute Inc. SAS and all other SAS

Institute Inc. product or service names are registered trademarks or trademarks of SAS

Institute Inc., Cary, NC, USA.
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Chapter 3

Real data application

3.1 ADNI data

In this study, the proposed latent transition model is performed with real data from Alzheimers

Disease Neuroimaging Initiative (ADNI). The ADNI database was launched in 2003 as a

public-private partnership, which was led by the principal investigator Michael W. Weiner,

MD (Liu et al., 2016). The main goal of ADNI is to investigate whether serial magnetic

resonance imaging (MRI), positron emission tomography (PET), other biological markers

could be used to measure the progression of Alzheimers disease (AD) (Liu et al., 2016). The

development of the ADNI database is in three stages: ADNI1, ADNI GO and ADNI2. The

ADNI1, as the earliest stage, is aimed to find out more accurate diagnose method to detect

AD in the earliest or pre-diagnosis stage. The biological biomarkers in ADNI1 contain PET

(Positron Emission Tomography) and MRI (Magnetic Resonance Imaging), Cerebrospinal

fluid (CSF), biomarkers from blood tests, neuropsychological tests and scores from tests of

psychiatric function for mood (Grill et al., 2013). These biomarkers have been widely used

in disease modeling studies. ADNI GO, as the second stage, was launched from June 2009

to 2011. Based on ADNI 1, ADNI GO aims at developing standardized methods for clinical

tests and mostly focus on cognitive decline of AD. The third stage is ADNI2 which started

in 2011. It mainly focus on comparing CSF and genetics biomarkers of non-symptomatic
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Table 3.1: Summary Table of ADNI database

Normal Control MCI AD

Mean of Age (S.D.) 74.67 (5.75) 73.98 (7.61) 75.06 (7.89)
Gender Ratio (M/F) 213/217 354/225 204/164

population and symptomatic population. Recently, the ADNI database has been used in

various studies of AD (Platero and Tobar, 2016).

The data employed in this study are from ADNI1. The longitudinal data performed in

this study with the latent transition model contain 2,126 participants from 2005 to 2014 who

were examined with repeat visits every 6 months for a period of up to 108 months. The

summary statistics of our data is presented in Table 3.1.

3.2 Biomarkers Selection

We use the pathologically sensitive biomarkers for disease progression modeling. The ideal

bio-markers should be able to detect specific pathological features of AD. Overall, AD

biomarkers can be categorized into following groups: pathological, structural or functional,

and clinical. The pathological group of biomarkers such as CSF, Amyloid-β, tau, usually

appears in the presymptomatic phase of AD. The structural or functional group reflects

neuronal structure and functions appearing in the late presymptomatic or early prodromal

phase. The clinical group (behavior, cognition and function) suggests dementia with im-

pairment and loss of function in activities, which usually appears in the prodromal phase of

AD (Biagioni and Galvin, 2011). The entire ADNI dataset includes pathological biomark-

ers such as CSF, tau and structural and functional biomarkers such as the FDG-PET and

volume of hippocampus.

In this study, we select the volume of hippocampus and FDG for AD progression mod-

eling. The volume of hippocampus represents structural or functional AD biomarkers and

the FDG represents pathological AD biomarkers.

Fluorodeoxyglucose (FDG)-PET:
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Positron emission tomography (PET) with 18F-2-deoxy-2-fluoro-D-glucose as a marker

(FDG-PET) has been employed in a number of AD studies to examine regional crerbral

metabolism

(Wang et al., 2013). Many studies have demonstrated that the decreased regional cerebral

metabolism is indicative of who will progress to AD (Alzheimer’s, 2016). The FDG, as an in-

dicator of synaptic dysfunction and neurodegeneration in AD, suggests the hypo-metabolism

in regional cerebral appearing in the MCI stage and exacerbating in AD stage. Some studies

suggest the brain hypo-metabolism is related to the progression of synaptic pathology in

AD (Mosconi et al., 2008). The distribution of FDG and the spaghetti plot of FDG for our

data are given in this report (Fig. 3.1 and Fig. 3.2).

The Volume of Hippocampus:

The hippocampal atrophy is an indicator of Alzheimer’s disease pathology and a poten-

tial marker to detect the progression of AD (Schuff et al., 2009). The decreasing of the

hippocampal volume appears in the MCI stage and gets worse in the AD stage. The dis-

tribution of hippocampal volume and the spaghetti plots of hippocampus for our data are

given in this report (Fig. 3.1 and Fig. 3.2).

In addition, gene APOE4 is considered as a covariate for modeling disease progression.

Many studies revealed that the expressions of AD-related genes play an important role in

the disease progression such as gene APOE4 (Cacciottolo et al., 2016; Koster et al., 2016).

Therefore, this gene should be considered as one of covariates for AD progression modeling.
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Chapter 4

Results: Latent transition models for

ADNI data

4.1 Model selection

In practice, the number of latent classes of a latent transition model is often unknown, some

model selection methods can be used for this purpose. In this study, Bayesian information

criterion (BIC) and Akaike information criterion (AIC) are used to determine the number of

latent states. BIC and AIC are most commonly used methods of assessing model fit penalized

for the number of estimated parameters and the criteria for model selection among a finite

set of models. The model with the lowest BIC or AIC is preferred.

Table 4.1: Model Selection

State AIC BIC

3 5573.20 5822.32
4 4889.06 5313.71
5 4197.14 4842.61
6 3909.76 4821.34
7 3769.83 4992.83

AIC, Akaike information criterion;
BIC, Bayesian information criterion
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The details of AIC and BIC for models selection is given in Table 4.1. Among the five

possible models, the model selection criterion, BIC, suggests 6 unobserved disease states

based on the ADNI data.

4.2 Latent class and transition probabilities

Using latent transition models, the pattern of disease progression contains six latent states.

The latent state of each individual can be determined by the posterior probabilities. Based

on the sample characteristics of each states, we label them as Normal, H1, H2, F1, F2

and AD. Normal state suggests that both of FDG and hippocampus are normal (both of

hippocampus and FDG with highest values among these six states); H1 state suggests that

the hippocampal appears abnormality but the FDG doesn’t appear abnormality (FDG with

high value and the hippocampus with low value); H2 state represents that the abnormality

of hippocampus worse than H1 but the FDG are still normal (FDG with high value but

the hippocampus with lower value than H1); F1 suggests that the FDG appearing abnormal

but the hippocampus are still normal (FDG with low value but the hippocampus with high

value); F2 represents that the abnormality of FDG worse than F1 and the hippocampus is

also with low value, but overall, the abnormality of FDG is dominant (FDG with lower value

than F1 and the hippocampus with low value, but the abnormality of FDG is dominant); AD

means that both of FDG and hippocampus are abnormal (both of FDG and Hippocampus

with lowest values).

The latent transition model suggests two different pathological profiles based on the

transition probabilities of each disease states in two years. One of them is determined by the

volume of hippocampus (blue trajectory). The other is by the FDG (red trajectory) which

is characterized by the FDG abnormality. The FDG profile has these following underlying

disease states: Normal, F1, F2 and AD. The hippocampus profile has the following disease

states: Normal, H1, H2 and AD.

Specifically, the normal state has two different transitioning trajectories. One is con-

verting to H1 state and the other is to F1 state, revealing the existence of two different
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pathological profiles. The conversion of participants classified in normal state at baseline

time point is presented in Fig.4.2. In Hippocampal progression profile, the participants

classified in H1 state at baseline time point only retain or convert to H2 in two years (see

Fig.4.3). For the participants in H2 state at the beginning, they only retain or transit to

AD state in two years (see Fig.4.4). Similarly, in FDG profile, the participants classified in

F1 state at baseline year mostly retain or transit to F2 (see Fig.4.5), and very few of the

participants transit to H2 (see Fig.4.1), suggesting there is very few overlap between these

two profiles. The participants in F2 state retain or transit to AD state (see Fig.4.6) in two

years. All of the participants classified in AD by our model at baseline time point remain in

AD state in two years, indicating AD is an irreversible disease (see Fig.4.7).

Figure 4.1: The transition probabilities for our model. The profile determined by the volume
of hippocampus is labeled in blue. The profile dominated by the FDG is labeled in red.
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Figure 4.2: The left graph is the distribution of FDG and hippocampus of participants
classified as Normal at baseline time point and the right one is for the same participants after
two years. H1, the state of hippocampal abnormality; F1, the state of FDG abnormality.
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Figure 4.3: The left graph is the distribution of FDG and hippocampus of participants
classified as H1 at baseline time point and the right one is for the same participants after two
years. H1, the state of hippocampal abnormality; H2, the state of Hippocampal abnormality
worse than H1.
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Figure 4.4: The left graph is the distribution of FDG and hippocampus of participants
classified as H2 at baseline time point and the right one is for the same participants after two
years. H1, the state of hippocampal abnormality; H2, the state of Hippocampal abnormality
worse than H1.
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Figure 4.5: The left graph is the distribution of FDG and hippocampus of participants
classified as F1 at baseline time point and the right one is for the same participants after two
years. F1, the state of FDG abnormality; F2, the state of FDG abnormality worse than F1.

Baseline Time (Year 0)

3

4

5

6

7

5000 6000 7000 8000 9000
Hippocampus

F
D

G
−P

E
T

F2

Two Years Later (Year 2)

3

4

5

6

7

5000 6000 7000 8000 9000
Hippocampus

F
D

G
−P

E
T

AD
F2

Figure 4.6: The left graph is the distribution of FDG and hippocampus of participants
classified as F2 at baseline time point and the right one is for the same participants after two
years. F1, the state of FDG abnormality; F2, the state of FDG abnormality worse than F1.
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Figure 4.7: The left graph is the distribution of FDG and hippocampus of participants
classified as AD at baseline time point and the right one is for the same participants after
two years.
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4.3 Two profiles

Compared the distribution of FDG and Hippocampus by the clinical results, the distribution

classified by latent states are clearly distinct (see Fig. 4.8). The decreasing Hippocampal

value suggests the abnormality of hippocampus. The H1 state has the volume of hippocam-

pus value decreased but the FDG-PET value retain. The H2 state has the hippocampus

value decreases more than H1, indicating worse hippocampal abnormality than H1. Simi-

larly, the decreasing FDG value imply the abnormality of metabolism in cerebral. The F1

state suggests the hypo-metabolism in cerebral and F2 state is worse than F1. The AD state

has both lowest hippocampal value and FDG value.

The distributions of the FDG profile and hippocampal profile are clearly distinct which

suggest the existing of two progression profiles (see Fig. 4.9).

The participants with normal clinical diagnosis are classified by our model in the states

other than normal, indicating the abnormalities of FDG and hippocampus appear in presymp-

tomatic stage (see Fig. 4.10). The participants with MCI clinical diagnosis are classified in

other states by our model, suggesting more latent disease state may exist (see Fig. 4.11).

Among the participants with AD clinical diagnosis, some of them are classified in the states

other than AD by our model, indicating a more complicated disease progression pattern (see

Fig. 4.12).
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Figure 4.8: The top graph is the distribution of FDG and hippocampus by clinical results
at baseline time (Year 0): CN, clinical normal; MCI, Mild Cognitive Impairment; AD,
Alzheimer’s disease. The bottom graph is the distribution of FDG and hippocampus by our
model at baseline time (Year 0)
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Figure 4.9: The first graph is the distribution of the FDG profile at baseline time (Year
0). The second graph is the distribution of the hippocampal profile at baseline time (Year
0). H1, the state of hippocampal abnormality; H2, the state of hippocampal abnormality
worse than H1; F1, the state of FDG abnormality; F2, the state of FDG abnormality worse
than F1.

20



Clinical Result

5

6

7

8

5000 6000 7000 8000 9000 10000 11000
Hippocampus

F
D

G
−P

E
T

CN

Our Model

5

6

7

8

5000 6000 7000 8000 9000 10000 11000
Hippocampus

F
D

G
−P

E
T

AD
F1
F2
H1
H2
Normal

Figure 4.10: The top graph is the distribution of FDG and hippocampus of clinically normal
participants at baseline time (Year 0). The bottom graph is the distribution of biomarkers
of clinically normal participants by our model at baseline time (Year 0). H1, the state of
hippocampal abnormality; H2, the state of hippocampal abnormality worse than H1; F1, the
state of FDG abnormality; F2, the state of FDG abnormality worse than F1.
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Figure 4.11: The top graph is the distribution of FDG and hippocampus of MCI partici-
pants at baseline time (Year 0). The bottom graph is the distribution of biomarkers of
MCI participants by our model at baseline time (Year 0). H1, the state of hippocampal
abnormality; H2, the state of hippocampal abnormality worse than H1; F1, the state of FDG
abnormality; F2, the state of FDG abnormality worse than F1.
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Figure 4.12: The top graph is the distribution of FDG and hippocampus of AD participants
at baseline time (Year 0). The bottom graph is the distribution of biomarkers of AD
participants by our model at baseline time (Year 0). H1, the state of hippocampal ab-
normality; H2, the state of hippocampal abnormality worse than H1; F1, the state of FDG
abnormality; F2, the state of FDG abnormality worse than F1.
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Chapter 5

Discussion

The main findings of our study are as follows: i) the existence of six latent states of dis-

ease progression and two different pathological profiles. ii) FDG-PET and the volume of

hippocampus could be presymptomatic biomarkers.

5.1 Two profiles

This study revealed the existence of six latent states of disease progression and two different

pathological profiles. One progression profile is determined by the biomarker FDG-PET

and the other by the volume of hippocampus. The FDG-PET is widely used to investigate

the cerebral metabolic rate of glucose and it is a sensitive biomarker to discriminate AD

from other neurodegenerative diseases. A low FDG-PET suggests hypo-metabolism in cere-

bral (Herholz, 2003). Hence, the progression profile determined by FDG-PET is associated

with the hypo-metabolism in cerebral. The other profile which is determined by the volume

of hippocampus could be described by the hippocampal atrophy. Thereby, the profiles of

disease progression could be described by two different pathologies: i) hypo-metabolism in

cerebral, ii) hippocampal atrophy.

Although the patterns of structural and metabolic brain alterations in AD are being re-

fined, the exact relationships between hippocampal atrophy and hypometabolism in cerebral
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have not been well discussed in the literature. One related study suggested that the cerebral

hypo-metabolism could be related to the hippocampal atrophy and the relationship of them

depends on inducing factors such as the presence of Amyloid-β (Chtelat et al., 2008). This

study indicates the existence of these two different profiles of AD may be associated with

Amyloid-β. for the future study, it will be interesting to include Amyloid-β into the model.

5.2 Presymptomatic biomarkers

Since the pathological profiles of FDG and hippocampus suggest that the hypo-metabolism

and the hippocampal atrophy appear before the AD symptoms emerge, both of FDG-PET

and the volume of hippocampus could be presymptomatic biomarkers. This finding is

consistent with the literature. For examples, Mistur et al. (2009) suggested that the hy-

pometabolism occurs in the preclinical stage of AD and the FDG-PET could be a pathologi-

cal biomarker for early detection of AD. The presymptomatic biomarkers such as FDG-PET

are critical for developing potential treatments of AD in presymptomatic or minimally symp-

tomatic populations (Cummings and Jeste, 2007). Andrews et al. (2016) suggested that the

volume of hippocampus is one of presymptomatic biomarkers which is related to Amyloid-β.

Based on our findings, we may suggest that FDG and the volume of hippocampus can serve

as important biomarkersfor the early detection of AD.

5.3 Limitation and future study

Overall, this study revealed the existence of two different progression profiles of Alzheimers

disease, suggesting a new way to evaluate the disease progression.

The parameters in our study are estimated by EM algorithm. However, the latent tran-

sition analysis may contain some unusual features that can cause difficulties in the EM

algorithm especially when with small samples (Chung et al., 2008).

In addition, the model selection methods AIC and BIC can be highly unstable over

repeated sampling (Preacher and Merkle, 2012). Thus, selecting model by AIC and BIC
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should be more cautious.

The screening test for AD early detection is critical for the prevention of AD. For this,

it is essential to identify the most sensitive presymptomatic biomarkers that can detect the

early symptoms of AD or clinical impairment. This is the subject of future study.
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Appendix A

SAS code

/*LTA with AOPE4 covariates*/

proc lta data=ADfinal ;

title1 ’Model1’;

nstatus 6;

ntimes 2;

items FDG00ca MMSE00ca Hippocampus00ca

FDG24ca MMSE24ca Hippocampus24ca;

categories 3 3 3;

measurement times;

covariates1 APOE4x ;

reference1 1 ;

seed 592667;

run;
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