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INTRODUCTION

Previous investigations of the crystal structure of sodium

hyponitrite (Chang, 1963 ) have indicated a trans structure in

the N 2
02~ ion as opposed to a cis or isoelectronic configuration.

Crystals grown from an aqueous solution were determined to be an

octahydrate which decomposed to a pentahydrate on contact with

air, and further decomposed to sodium carbonate.

The unit cell parameters of the pentahydrate form were

determined through X-ray diffraction studies. Cell axes were

chosen such that a space group of the highest possible symmetry

consistent with observed reflection conditions could be assigned.

The final magnitudes of the monoclinic cell parameters were:

a = 7.22+.03A b = 17.10+.07A c = 6.01+.02A 7 = 107. 5±.
4°

with the space group P2j
L
/b. This space group is shown in Plate

I. The symmetry elements consist of two-fold screw axes, ());

inversion centers, (0); and a glide plane at z = £.

Chang also prepared a table of observed structure factor

magnitudes, scaled absolutely and corrected for isotropic thermal

vibration. This list is presented in Table 1.

The purpose of this research was to proceed from this in-

formation to a more complete structure determination of sodium

hyponitrite pentahydrate.

X-RAY DIFFRACTION

At this stage of the structure determination the list of

observed structure factor magnitudes becomes the focal point of



EXPLANATION OF PLATE I

Fig. 1. The symmetry elements associated with space
group P2}/b. Circles represent inversion
centers and the curly symbols represent
2-fold screw axes.

Fig. 2. Graphical representation of the equivalent
positions of the space group. The numbers
show the z coordinates and the comma-
symbols represent left-handed molecules.
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Table I, The observed structure factors of NQ2N2O2 as rendered to

absolute scale and corrected for thermal vibration.

1 1

2 5.94
4 18.92
6 63.53
8 5.61

10

12 89.68
14 18.40
16 40.59

19.34
2 15.75
4 8.93
6 . 14.41
8 56.46

10 30.70
12 25.95
14

16 24.48

2 76.85
2 2 19.70
2 4 20.77
2 6

2 8 51.74
2 10 8.63
2 12 21.53
2 14 54.33

3 29.07
3 2 23.60
3 4 - 20.98
3 6 15.65

4

4 2 7.22
4 • 4 35.24
4 6

4 8 81.45
4 10 29.28

5 • 9.88
5 2 0.

5 4

5 6 26.24
5 8 38.83

1

6

6 2 14.92
6 4 28.92

7 24.42
7 2 18.26

T 4 • 47.32
T 6 59.09
1 8 17.44

1 10 16.36
T 12 14.12
1 14 41.26
1 16 ' 43.81

2. 2 9.49
2 4 . 109.51
2 6 129.86
2 8 23.74
1 10

2 12

2 14 25.68
2" 16 73.83
2 18 42.81

3 2 31.62
3 4 4.97
3 6 74.64
3 8 0. 64.38
3 10

3 12 ,

3 14

3 16 8.50

4 " 2 80.31
4 4 96.55
4 6 19.92
4 8 20.36
4 10

4 12

4 14

4 16 35.27

5 2 • 38.18
5 4 23.12

5 6 8.15
5 8 8.50

5 10

5 12
5- 14 23.28

6 2

6 4 9.09

6 6

6 8 122.66
6 10 16.76

7 2 18.97
7 4 26.83
7 6

7 8 15.47

2 1 18.35

3 1 51.39
4 1 22.05
5 1 8.81
6 1 23.12
7 1 25.86
8 1 45.04
9 1 56.72

10 1 19.17
11 1 33.86
12 , 1 19.37
13 1 33.69
14 1 8.92
15 1 15.14
16 1 8.09

1 1 4.72
1 1 1 50.75
1 2 1 12.91
1 3 1 21.63
1 4 L 52.88
1 5 L 4.58
1 6 ;L 10.25
1 7 ]L 24.94
1

'

8 3L 22.25
1 9 ]I

1 10 3 l 23.72
1 11 3 L 17.17
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Tabic I (Cont.)

h Ic 1 |P| . I h k 1 F : h k 1 F|

1 12 1 15.59 4 9 1 12.65 2 1 1 72.43
1 13 1. 23.93 4 10 1 12.09 2 2 1 9.01
1 14 . 1 4 11 1 20.57 2 3 1 30.27
1 15 1 4 12 1 9.08 2 4 1 28.26
1 16 1 19.54 2 5 1 4.33

5 1 29.32 2 6 1 48.52
2 1 22.31 5 1 1 2 7 1 54.33
2 1 1 36.33 5 2 1 2 8 1 8.02
2 2 1 98.71 5 3 1 12.80 2 9 1 50.00
2 3 1 60.63 5 4 1 . 2 10 1 43.57
2 4 1 20.34 "

5 5 1 2 11 1 23.10
2 5 1 109.54 5 6 1 21.96 2 12 1

2 6 1 42.22 5 7 1 2 13 1 21.70
2 7 1 5 8 1 2 14 1 8.98
2 8 1 22.69 5 9 L 18.98 2 15 1

• 2 9 1 11.60 5 10 1 8.43 2 16 1

2 10 1 2 17 I

2 11 L ' 6 L 18.26 2 18 L 14.24
2 12 L 9.07 6 1

'

L 24.25
2 13 L 12.28 6 2 :L 11.05 • 3 l :L 21.77
2 14 L 27.61 6 3 :L 22.53 3 2 :L 32.67

6 4 :L . 3 3 :L•30.L 7.21 6 5 :L 14.16 3 4 ]L 27.24
.•'... 3 i :L 56.90 6 6

. ;L 13.08 3 5 ]L'.32:L 20.38 3 6 ]L 13.65
3 3 :I 42.77 7 ]L 15.57 3 7 ]L 29.11
3 \ 4 :L 18.43 ' 7 1 ]L • 3 8 ] 24.81
3 5":L .14.91 • .. 7 2 ]L 6.59 3 9 ] 44.83

• 3 6 ..:L 18.72 • 3 10 ] 7.53
3 7 ]L 44.03 1 .1 ] 13.06 3 11 ] 33.21
3 8 ]L 8.78 1 •

.'

2 ] 9.49 3 12 ] 8.58
... 3 9 ]L 12.76 13 ] 12.24 . 3 13 ] 9.02

3 10.]i 20.49 1 4 ] . 3 14 ] 18.23
3 11 ] 1 5 1 3 15 1 27.99
3 12 .. ] 1 6 ] 15.59 3 16 1 8.37
3 13 ] 7.84 1 7 ] 10.86 3 17 1 10.57
3 .14 ] 13.87 1 8 1 - 46.48

• 1 9 1 0. 4 1 1 41.68
4 1 13.61 I 10 . 1 12]08 4 2 1 34.35
4 1 1 34.73 I 11 1 4 3 1 24.09
4 2 1 12.88 1 12 1 4 4 1 14.03
4 3 1 7.79 1 13 1 17.79 4 5 1 18'. 82
4 4 1 27.04 '..

. I 14 1 17.96 4 6 1

4 5 1 44.62 I 15 1 8.92 4 7 1 17.48
4 6 1 15.48 1 16 1 4 8 1

4 7 1 1 17 1 18.14 4 9 1 5.56
4 8 1 1 18 1 14.65 4 10 1 37.87



Tabic I (Cont.) :

h k 1 F : h k 1 F ; h k 1 F

4 11 1 30.21 6 2 20.11 3 5 2

4 12 1 27.02 • 7 2 4.23 3 6 2 44.93
4 13 1 59.88 8 2 73.23 3 7 2

4 14 1 20.61 9 2 60.51 3 8 2

4 15 1 19.31 10 •• 2 16.87 3 9 2 9.98
4 16 1 20.86 11 2 37.36 3 10 2 26.04

— •
12 2 9.79 3 11 2

5 1 1 24.92 13 2 3 12 2

5 2 1 14 2
'

3 13 2 29.00
5 3 1 9.95 15 . 2 . 16.63
5 4 1 19.04 16 2 40.69 4 2 32.13
5' 5 1 .• • 4 1 2 32.13
5 6 1 17.54 1 2 19.03 4 2 2

5 7 1 28.05 1 1 2 51.50 4 3 2

5 8 I 1 2 2 65.99 4 4 2 22.72
5 9 L 34.50 1 3 2 5.33 4 5 2 19.12
5 10 I o •

1 4 2 5.01 4 6 2 33.80
5 ii :L 19.16 1 5 2 37.91 '

4 7 2 69.84
5 12 ;L 23.89 1 6 2 4 8 2 20.48
5 13 ;L 10.80 1 7 2 34.60 4 9 2 17.12
5 14 ]L 1 8 2. .

• 4 10 2

5- 15 ]L 15.87 1 9 2- 4 11 2 7.46
1 10 2

6 1 ]L 31.94 1 11 2 5 2 9.71
6 2 ]l 30.32 1 12 2 21.88 5 1 2

6 3 : 1 13 2 34.90 5 2 2 11.98
6 -4 '

]
1

5 3 2 34.12
6 . 5 ] 25.83 2 2 54.51 5 4 2 27.86

'. 5 5 2

6 5 ] 2 1 2 12.76 5 6 2 32.66
6 7 I

' 2 .2 2 14.66 5 7 2 11.06
6 8 1

' 2' 3 2. 8.00. 5 8 2 .

6 9 1 2 4 2 64.76 5 9 2 6.43
6 10 1 28.23 2 5 2

6 11 . 1 . 24.51 2 6 2 6- 2 43.11
6 12 • 1 2 7 2 8.22 6 1 2 19.08
6 13 1 18.37 2 8 2 39.91 6 2 2 9.43

, 2 9 2 16.25 6 3 2

7 1 1 12.71 2 10 2 39.84' 6 4 2

7 2 1 13.11 2 11 2 37.04 6 . 5 2
7 3 1 2 12 2 6 6 2 17.16
7. 4 1 13.42 '

2 13 2 9.16

7 1 2 15.16
1 2 31.31 3 2 10.89
2 2 14.14 3 1 2 53.98 1 1 2 12.27
3 2 70.55 3 2 2 18.23 • 1 2 2 36.33
4 2 56.15 3 3 2 14.60 • 1 3 2 28.09
5 2 4.82 3 4 2 15.57 I 4 2 . 5.06



Tabic I (Concl.) :

PI k 1 k

5 2 25.50
• 1 6 2 5.38

7 2 19.67
8 2 40.35
9 2

10 2 35.34
11 2 :41.30

12 2 31.06
13 2 21.78
14 2 25.80
15 2

.
9.39.

16 2

17 2 14.04

2 1 2 15.43
2 .. 2 2 36.99
2 3 2 44.73
2 4 2 4.99
2 5 2 5.38
2 6 2 9.07
2 7 2 40.84
2 8 2 51.60
2 9 2 29.35
2 10 2

2 11 2

2 12 2 21.96
2 13 2

.
11.91

2 14 2 21.64
2

2

15

16

2

2

76.67
48.48

3 ,1 2 6.13
3 2 2 22.36
3 3 2 37.94
3 4 2

3 5 2 "28.81

3 6 2 13.58
3 7 2 14.44
3 8 2

.
28.62.

3 9 2 18.38
3 10 2

3 11 2 33.04
3 12 2 21.41
3 13 2

3 14 2 37.22
3 IS 2 9.24
3 16 • 2.

3 17 2 6.81

4 1 2 38.54
4 2 2 29.00
4 3 2 21.87
4 4 2 16.47
4 5 2 49.66
4 6

'2 34.55
4 7 2

4 8 2 47.04
4 9 2 18.98
4 10 2

4 11 2

4. 12 2 27.48
4 13 2

4 14 2 9.38
4 15 2 • 27.02
4 16 2 • 9.07

6 1 2 9.60
5 2 2

5 3 2 26.19
5 4 2

5 5 2 27.82
5 6 2

5 7 .2 9.66
5 8 2 9.84.

5 9 2 29.84
5 10 2 33.66
5 11 2 o. •

5 12 .2 '

5 13 2

5 14 2

5 15 2. 17.98

6 1 2

6 2 2

6 3 2

6 4
'

2 21.97
6 . 5 2 13.90
6 6 2

•

6 7 2 15.00
6 8 2 31.74
6 9 2 . 24.92
6 10 2

6 11 2 33.92
6 12 2 32.58

7 1 2

7 2 2

7 3 2

7 4 2

7 5 2

7 6 2

7 7 2

7 8 • 2

7 9 2

7 10 2

12.35

24.89

11.87

23.36
15.16

33.86
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interest. A structure factor represents the amplitude and phase

of a wave scattered from a particular set of crystal planes.

Each is a function of all the positions of the atoms within a

unit cell. The nature of this relationship will be shown here.

Atomic Scattering Factor

An electron struck by an unpolarized beam of x-rays oscil-

lates and re-emits radiation in all directions. This scattered

radiation has the same wavelength as the incident radiation and

the scattered intensity, I, exhibits an angular dependence as

shown in the J.J. Thomson scattering 'equation:

i 2
t t ® /l +cps20} (i\

e = electronic charge
r = distance from oscillating electron
m = electronic mass
c = velocity of light

26 = scattering angle

Given an aggregate of electrons, as in an atom, each will

re-emit radiation according to this formula, but now the fact

that the electrons are situated at different points in space

introduces phase differences between the scattered waves.

Clearly, at a scattering angle of , the phase differences of

all scattered waves will be zero as each wave travels the same

distance before and after scattering. At scattering angles

different from zero, however, path length differences produce

partial interference with a resulting loss in net amplitude. -



The quantity which describes the efficiency of a given atom

type to scatter in a given direction is called the "atomic scat-

tering factor" and is defined as

f = amplitude of scattering from the atom /£)
amplitude of scattering from one electron

In the forward direction, then, f will equal Z, the number of

electrons in the atom, since all electrons scatter in phase.

As the scattering angle increases, f decreases due to inter-

ference effects. Quantitative considerations of the scattering

from the orbital electrons of the various elements yields theo-

retical expressions for the atomic scattering factors (McLachlan,

1957). Curves and tables of these have been determined for all

atomic numbers in all scattering angles. Shown in Plate II are

three such curves. These are the scattering factor values used

in this structure problem, where singly ionized sodium, Na+ , and

singly ionized oxygen, 0", were assumed.

The selection of these ions was based on trial-and-error

computations; other degrees of ionization were tried, and this

combination was the one which produced the best fit of the data.

Structure Factor

Given an arrangement of atoms, each will scatter according

to its atomic scattering factor. However, the spatial differ-

ences in atomic positions now yield further interference con-

ditions. If all atoms are situated randomly, all scattered

waves add with random phases, giving a diffuse scattering effect.
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If the atomic arrangement is periodic, however, the finite

number of interference conditions in a given unit cell will be

repeated in the next cell, reinforcing the maxima and minima.

With a large number of such cells the diffraction pattern ap-

proaches a representation in delta functions. A diffraction

spot from a particular orientation of a crystal is labeled with

the Miller indices- of the set of planes which satisfy the Bragg

condition for that orientation. The quantity which describes

the relative amplitude and phase of the radiation producing the

diffraction spot is termed the "structure factor" for that par-

ticular orientation. The structure factor is found by summing

the contributions from all atoms in a unit cell. This, in com-

plex notation, becomes

F(hk/) = JTj fnexp(2ni<t)n ) (3)

where the exponential factor accounts for the phase of a wave

from a particular atom, in reference to the unit cell origin.

The phase factor of an atom located at fractional coordinates

(x,y,z) may be shown to be (Cullity, 1959)

= hx+ky+/z (4)

It is seen, then, that F is defined as a ratio of amplitudes

F = amplitude of scattering from unit cell (c)
amplitude of scattering from electron

and will be independent of the shape and size of the unit cell.
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Measurement of Diffraction Lines

There are five other factors, besides the scattering, that

affect the intensity of diffraction lines. These are

(1) polarization
(2) multiplicity
(3) Lorentz effect
(4) absorption
(5) temperature

In an actual measurement of diffracted intensities the correc-

tions for these may be readily applied (Cullity, 1959), with the

possible exception of the last factor. The first four are ob-

tainable from parameters of the experiment, e.g., diffraction

angle, crystal morphology, and structure. The temperature

factor is a measure of atomic thermal vibration and is often

treated as an unknown, to be determined along with the atom

positions. Since the temperature effect is generally quite

small the structure determination proceeds without this correc-

tion until the refinement phase is reached. At this point the

temperature factor is introduced in the form of a perturbation

on the structure factors.

X-ray diffraction patterns are generally recorded on photo-

graphic film or by radiation counters which count in proportion

to the number of quanta received per unit time. These methods

yield the intensity of the diffraction line. However, as is

well known, the intensity will determine only the square of the

amplitude of the diffracted wave, since

I~F*F. (6)



H

Data reduction then yields a table of structure factor magni-

tudes. The phases of the diffracted waves are undetermined by

these methods; the data are incomplete. This is the fundamental

problem of crystallography and referred to as the phase problem.

The Phase Problem

The phase of a wave diffracted from a set of planes is

measured relative to a wave scattered from parallel planes which

pass through the origins of the cells. A knowledge of this

phase determines the absolute placement of the given set of

planes within the unit cells. This concept is basic to the

elegant 3-dimensional Fourier series representation of the

structure. To illustrate this, consider a one-dimensional

crystal having structure factors

F(h) = IZ f
i
exp(2TrihjCj)

. (7)

Instead of assuming discrete atoms, assume a continuous distri-

bution of electrons along a,. The series representing scattered

waves is now replaced by an integration from to a.

a

F(h) = y^>(x)exp(2nihx)dx (g)

This is recognizable as a Fourier coefficient of the series

_ 1
00

/o(x)=|E F(h)exp(-2trihx). (9)
' h=-oo

In the three dimensional analysis this becomes
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/Mx) = ^ JZ £ H F(hki)exp(-2tri(hx+ky+iz)). (10)

In this manner a knowledge of the structure factors allows an

electron density map to be synthesized. The regions of maximum

electron density are chosen as the atom locations.

However, the determination of shape and size of the unit

cell does not fix the location of the unit cell origin with

respect to an atom or set of planes. It may well be that a cer-

tain choice of origin will be such as to take advantage of

relations between atom positions, giving an analytical expres-

sion to the position of one or more in terras of another. These

relations are the symmetry operations of a space group and can

reduce the number of unknown positions by their simplification

of the structure factor equations. These also yield conditions

on certain sets of structure factors; indeed, it is the recog-

nition of a particular set of these conditions that yields the

space group determination.

The abject futility of attempting to guess the unknown

phases may be illustrated by a realistic example. Given a

typical structure, some four hundred independent reflections

may be present. If space group symmetry is such that phases are

limited to +180°, (F is real, but undetermined in sign) this

yields 2^ variables to be simultaneously chosen. A high speed

computer guessing and checking at the rate of one set per second

would require roughly 2^°9 centuries to arrive at the correct

set. More devious methods must be applied and some of these

will be discussed later as they were applied in this structure

problem.
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EXPERIMENTAL PROCEDURE

Reduction of Equations

The P2}/b space group has equivalent atoms at coordinates

(xyz), (xyz), (x,£-y,£*z), (x,£+y,£-z). This is immediately

seen to be a centro symmetric structure. Substitution of these

relations into the structure factor equations yields the follow-

ing conditions:

h+k+£ » n
(F(hki) is real

(F(hk/) F(hkJ)

k+i = 2n : F(hki) = F(hkJ); F(hkJ) = F(hki)

k+i = 2n+l : F(hk/) = -F(hkJ) F(hki); F(hki) = -F(hk^)

with the requirements on nonzero reflections that

/• : k = 2n

h = k = : i=2n

The equations of interest have the particular form

F(hk/) =2T fjcos 27r(hXj+kyj+iZj) (11)

where the sum does not include centrosymmetrical partners, and

MXjj^z) • E£ 2Z 1 |F(hki) cos 2rKhx+ky+iz) (12)
( h k lT Ih k f
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Determination of Cell Density

Chemical Method. In order to properly use the structure

factor equations, it is vital to know the number and type of

molecules per unit cell. The number of molecules/unit cell, n,

is usually determined by the formula

3 3
n u (N molecules/mole) (/ogm/cm ) (V cm /unit cell ;

(A gm/mole)

This requires accurate determination of and V, and knowledge of

the chemical formula, so that A may be found. Density measure-

ments of the compound, using the Karle-Fischer reagent technique

(Stucky, Lambert, and Dragsdorf, 1966), did not confirm the

original hypothesis of $ waters/molecule, but indicated that the

so-called "pentahydrate" contained 3^ waters/molecule, with 4

molecules/unit cell.

While the 4 molecules/cell determination is fairly certain,

the reproducibility of the measurements was not such as to pin

down the number of waters per molecule. Although the hypothesis

of 3i seemed most probable, error limits allowed all choices

from two to five. The methods of chemistry seemed inadequate to

determine these elusive parameters more accurately, and such

methods were abandoned at this point.

Statistical Method . Hauptmann and Karle (1953) attacked
©

the phase problem by a direct statistical approach. In their

work they used a "normalized" structure factor defined by

E2 ( hk/) = \ngn\
2

(i3)

;£f^(hki)
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where £ takes on the value of 1 or 2 in this problem, depending

upon the reflection in consideration. Among other properties,

to be treated later, was the existence of average values of

functions of the |E(hki)'| and probability distributions of this

quantity. For a random structure the theoretical statistical

averages are

Centrosymmetric Non-Cent rosymmetric

<|E|> = .798 .886

<|E-l|> = .968 .736

<E2> = 1.000 1.000

Recognizing that the E values are dependent upon the number

of atoms per unit cell, it was decided to calculate these aver-

ages and distributions for assumed waters of hydration from none

through five in half-integral steps. The calculation was done

on the IBM 1410 computer. The results of this calculation are

graphically displayed on Plate III and were seen to be incon-

clusive, insofar as to determine the exact number of waters.

However, the calculation does indicate, quite definitely, that

the structure is indeed centrosymmetric.

On the basis of such difficulties, it was hypothesized that

the waters of hydration are bonded loosely and do not occupy

well-defined positions in the structure. In the extreme case of

complete randomness of the water positions, the effect on the

diffraction pattern would be only to increase background inten-

sity; the space group for the remaining atoms would be un-

affected. This hypothesis is strengthened by the apparent



EXPLANATION OF PLATE III

<|E|>
, <|E

2
-l)> , and <E2> related to the number of

waters of hydration in the hyponitrite crystal. Also
indicated are the theoretically expected values for a
centrosymmetric crystal.



PLATE III

20

1.5 I ~

-.968

Number of waters
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mobility of the waters in their ability to leave the lattice

completely, i.e., the instability of the "pentahydrate."

The problems imposed by lack of knowledge of cell density

are by no means insurmountable. The methods of structure deter-

mination adapt to treatment of this added unknown and such work

began at this point.

Direct Solution of the Structure

Ignoring the waters for the time being, it was seen that

six atom positions were to be determined. The other 18 posi-

tions would be determined by the symmetry relations. There were

eight reflections in the OkO class and seven in the hOO class.

The structure factor equations reduce to one-dimensional equa-

tions under such conditions. An attempt to solve these two

nonlinear systems was made to determine the x and y coordinates

of the six unknown atoms. The systems were overdetermined but

the indeterminacy of signs on the F (hk^) was present. It was

hoped that only one combination of signs would yield a consis-

tent system. Efforts to invert the system to obtain explicit

equations for the (x,y) coordinates were fruitless, so a brute-

force technique was employed. The computer was programmed to

select values systematically for the variables, substitute into

the equations, and determine the goodness of fit. The results

were inconclusive as many combinations of variables produced the

same degree of success.
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Statistical Analysis

A direct approach to the phase problem has been described

by Karle and Hauptmann (1953)* This process involves the nor-

malized structure factors, E2 (hki), which have been defined

earlier by Equation (13).

The basis of this procedure rests on the relation

sE(h+h', k+k', L+%) = sE(hk^)-sE(h'k'/').

s = "sign of"

The probability that a sign determined by this relation is

positive is given by

P+ (E(hk^)) =

tanh (E(hki)) E£E£U-h\ k-k», l-k ) -E(h'k' /'

)

h' k» V

(14)

i+*
/n

N = number of interactions

The larger the magnitudes of the interacting factors, the

greater is the probability of success. Three large and linearly

independent structure factors were selected to initiate the

process and chosen to be positive. (Three such signs may be

chosen arbitrarily; other signs will depend on this choice.)

As the signs of other structure factors were determined with

high reliability, they were included in the interaction equa-

tions. The possible number of determinations was limited by a

shortage of z-data; the i Miller index (See Table 1) included

values only to two. Consequently, this approach did not
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determine enough signs to be of significant value and was

abandoned.

Patterson Function

One of the most widely used devices in crystallography is

the "Patterson function," introduced by A. L. Patterson in 1935*

In three dimensions it has the form

P(x,y,z) = ^JTj^(u+x,v+y,w+z) /<D(u,v,w)dudvdw (15)

V = cell volume

p> = electron density

The integration is taken over one unit cell. This function is

seen to be a self-convolution of the electron density function.

Patterson showed that the function may also be expressed in

the form

P(x,y,z) =EES |F(hki)|
JI

cos 2rr(hx+ky+iz) (16)
h k T

which is seen to be centrosymmetric. The Patterson function

may be computed with no knowledge of the phase values of the

F(hki). If one of the coordinates is assigned a constant value,

a "section" of the function in the plane of the constant co-

ordinate is obtained. If one of the indices is assigned a zero

value, the summation includes contributions from planes parallel

to the conjugate coordinate axis, and a "projection" of the

function onto the plane perpendicular to that axis is obtained.

Sections and projections are the most usable forms of the
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Patterson function.

More insight into the nature of the function may be gained

by noting the following. In general

F(hk£) - C fj exp(27ri(hXj+kyj+izj)) (17)

j

F2 (hki) - EE f^axpiMlhl^l+klyi-^+Kii-ijrt)

Just as F(hki.) represents the Fourier transform of a structure

having atoms of scattering factors fj located at (xj,y.j,Zj),

so does F(hki) represent a structure having "atoms" of

scattering factor f^f., located at (r^-r.). The density peaks

of the Patterson function are not located at the positions of

the original atoms but. at the vectorial differences of the atom

positions. The Patterson function of a structure containing n

distinct atoms will contain n(n-l) distinct peaks; the original

structure is repeated n times in the Patterson map. The most

expedient method in which to display a Patterson function is in

the form of a topographical map. This allows the visualization

of possible molecular configurations as well as quantitative in-

formation, when so desired. A high-speed computer mapping pro-

gram was prepared by R. L. Hollis and used to make the Patterson

function maps for this crystal. Plate IV shows the projection

along the z axis. The unit cell has been divided into a network

of grids and the functional value computed for the center of each

grid. Each character on the map represents the functional

density interval into which the value of the function falls at
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that point. Contour lines have been drawn to indicate isobars

of functional density.

Simply stated, one attempts to select a set of peaks from

the Patterson map that, when self- convoluted, will reproduce

the entire map. The absolute positioning of the set of points

within the unit cell is not determined by this but may be aided

by symmetry and chemical considerations. The exploitation of

symmetry properties of this crystal is outlined below.

Choice of Trial Structure

As previously noted, there exist positions of equivalence

in the P2^/b space group. That is, for a given atom at posi-

tion r, there will.be identical atoms at positions r+£^(r),

where i = 1,2,3. With this in mind, the Patterson function is

written down and investigated.

P(x) =
fff f>(r) yP(^x)dr (19)

It is seen from the equation that if x is one of the vectors

£;(£) f
tne Patterson function will represent the folding of an

atom at r with its space group neighbor of identical kind. If

such peaks are recognized in the Patterson function, the equa-

tions for the jg. ( r ) may be inverted to obtain possible locations

for atoms. The height of such peaks will determine what kinds

of atoms they represent. Explicit investigation of the sym-

metries of this crystal may lend more clarity to this proposi-

tion.

The equivalent positions are given by
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1) (x,y,z)

2) (x,y,z)

3) (x,£-y,£+z)

4) (x,i+y,i-«).

The explicit Patterson function is given by

P(u,v,w) k ffj o(x,y,z) /s(x+u,y+v,z+w)dxdydz (15)

Consider a folding of atom 1) with atom 3). This will take

place when the arguments of the integral are such that

x+u x

y+v = i>-y (20)

z+w = £+z.

Solving these equations yields the coordinates of the Patterson

map at which this peak appears.

u = -2x

v = £-2y (21)

w = i

Similarly, the folding of atoms 2) and 4) appears at Patterson

coordinates

u = 2x

v - 2y+£ (22)

w = £. .

Other combinations are not as interesting. The thing to
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recognize is that folding of all equivalent atoms appears at the

Patterson section w = &. (This is not to say that folding of

unlike atoms will not also be present.) If a peak in the Patter-

son section at w = £ is interpreted as an equivalent atom fold-

ing, it is an easy matter to invert the Patterson coordinates

of the peak to obtain the unit cell coordinates. From the above

equations,

*

x = u/2
(23)

y = (v-4)/2

x = u/2
(24)

y = (v-£)/2

are the possibilities for atom positions. Note that this pro-

cedure says nothing about the z position of the atoms. This is

not prohibitive, however, for the structure may be treated in

two dimensions at a time.

A tabulation of all peaks in the Patterson section at

w = £, then, will produce all possibilities of unique atom loca-

tions in the unit cell. This section is shown in Plate V, and

from this was eventually chosen the trial structure which pro-

duced the best fit of the data. Such choices are in no way

random, for molecular bond lengths must agree with previous

knowledge and, in th is case, the molecular shape had to be con-

sistent with previous indications of a trans configuration.

Once a trial structure has been selected the problem be-

comes one of testing its validity and making refinements if it
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appears to hold promise. Such techniques are outlined below.

The Reliability, R, Factor

The substitution of trial coordinates and the atomic scat-

tering factors into the crystalline structure factor equation

for each observed reflection will yield the structure factors of

the proposed structure. The magnitudes of these structure fac-

tors are compared with those observed. A concise way of expres-

sing the agreement is desirable and this is accomplished by use

of the "R factor." The R factor is defined as

Fr o F
c

(25)

F
o

h,k,l

F = observed F(hki)

Fc = calculated F(hk£)

Experience has shown that a trial structure yielding an R value

of .50 or less is worthy of an attempt at refinement. Further-

more, a refined structure having an R value of .05 or less may

be considered to be the correct structure. That is, no wrong

structure will yield an R value this low (Buerger, 1962).

The trial structure eventually refined had an initial R

value of .49 for the z projection. Recall that this projection

is acquired by using the hkO structure factors. Several methods

of refinement were used.
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Electron Density Map

If the trial structure yields a reasonable R value, it is

only because the observed and calculated magnitudes of the

F(hk£) are in good agreement. This is particularly true of the

larger F(hkZ). The next step is to choose those reflections

which do agree in magnitudes and apply the signs of the calcu-

lated F values to the observed magnitudes. This yields a

partial set of structure factors which may be substituted into

the electron density series. The electron density function may

then be calculated for all points in the unit cell. Even though

the function may suffer from this series termination, it may well

be that the peaks are sharp enough to indicate a shift in the

atomic coordinates from the trial structure. Furthermore, and

this is the greatest advantage, previously unspecified atom

locations may show up while others are suppressed. A new struc-

ture is chosen from the electron density peaks and the structure

factors re-calculated. If the trial structure has been close

enough to the correct one, the new value of R is lower, with

more of the structure factors being in agreement. From this

now, more complete, set of structure factors the electron den-

sity function is again calculated; an iterative process.

This process is most effective in the initial stages of

the structure determination, and only a very few iterations

brought the value of R from .49 to .36. The electron density

functions were created in the form of topographical maps via

the computer programs of R. L. Hollis.
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This procedure was unable to pinpoint the positions of the

waters. Although the position of the Na2N202 molecule was rela-

tively unchanged throughout succeeding iterations, the water

positions were more nebulous as the electron density peaks for

these shifted from iteration to iteration.

The R Map

A procedure was devised to attack the problem of the shifty

water molecules. Assuming that the coordinates representing

the Na2N 2 2 molecule were essentially correct, these coordi-

nates were fixed and the value of R calculated for this partial

structure. A water molecule was placed at a given point in the

unit cell and the value of R calculated for this new configura-

tion. This was done for the water molecule in all positions in

the unit cell. The position yielding the lowest R value was

chosen as the proper position. Now this set of coordinates was

fixed, another water molecule brought in and the procedure

repeated.

Again, the method used was the topographical map technique

with computations being performed on the computer. The results,

unfortunately, were no more conclusive nor enlightening than

those of the electron density map technique. The most satis-

fying results were obtained for 3 waters of hydration, and it

was decided to proceed with refining techniques on the assump-

tion that no atoms were greatly misplaced and the hope that the

problem with the water positions would be explained by appli-

cation of corrections for anisotropic thermal vibrations.
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Taylor Expansion and Least Squares

Once the structure has been roughly established it remains

only to make small shifts in the atom positions to yield the

correct structure. Rather than make these shifts randomly, a

procedure may be employed which guarantees that the changes are

such as to lower the R value. This procedure is now derived.

Consider a function g(x-^,X2, . . •xn >yi>y2> • • ,vn^ ~ 0»

A small change in the x^ and y^ will make this approximation

an equality. That is

glx-j+^x-p X2+4x2 >* •'^n
+£^n^

= ° ^ 2^

The problem is to find the &x^ and Ay^ which will produce this

result. To this end the function is expanded in a Taylor

series, keeping only first order terms.

g(x
1
+Ax

1
,x

2
+Ax

2 , . . .yn
+&yn )

= g(xi ,yi ) +^x12fI
^2||-

+ ...^yn|^ (27)

•

This equation is linear in the kx^ and &y±. Given 2n such

equations, the system may be solved for these quantities.

In this particular case

gU^y^ = F
c
(hki) - F (hk.£) (23)

There is one of these functions for every observed reflection,

which yields more than the desired 2n equations, in general. To

best fit such an overdetermined system, the method of least
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squares is used. The sum of the functions g^Xj+Ax-pyj+Ay^)

is required to be a minimum with respect to the variables Ax^

and £*&!'

k
K

SY
3 toc^

9 Y
*a*x2

a y
8Ayn

' (29)

This yields 2n equations in the 2n unknowns. More specifically,

5^ " 2^ (3^ Sk«i+ g% sk^x2+ ...+ g^g^y^g^^ = o.

The system may be solved by the methods of matrix algebra and

the coordinates changed accordingly. It has been assumed that

these changes will be small, and if this is not the case the

structure must be re-examined for major errors. Furthermore,

the signs of the F
Q

values must be correct, since we are no

longer dealing with magnitudes. Since the object of it all is

to determine these signs, the problem appears to be circular.

This is not the case, however. A partial set of structure

factors may be used to initiate the procedure. If the majority

of these signs are correct, the coordinate shifts will be of
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sufficient accuracy to lower the R value. As the structure be-

comes more correct, more signs may be transferred from the

calculated F values to the observed magnitudes and the co-

ordinate shifts become more exact.

This is by nature an iterative process, even with a fixed

number of F values, due to the Taylor Series 1 termination. The

entire iterative procedure was programmed for the IBM 1410 (see

Appendix I). For some reflections that were initially given the

wrong sign, the refinement procedure indicated that these were

indeed wrong by producing an F value much smaller in magnitude

than that observed. This indicated that the number wanted to go

through zero and back up the other way. Some F values fluctu-

ated in sign, while others were very stable.

A typical run of the program had results as shown below.

The base coordinates were taken from an electron density map.

Table 2. No. of reflections = 72.

Type
;

Base
1

coordinates : Cycle No. 1
1

Cycle
1

No. 2

X Y X Y X Y

Na • 540 .030 .531 .025 .528 .027
.635 .100 .631 .115 .636 .110
.840 .143 .335 .141 .835 .141
.930 .280 .937 .199 .933 .202
.662 .243 .676 .244 .674 .242
.035 .025 .023 .021 .020 .020

Na .059 .168 .054 .171 .050 .170
N .280 .080 .287 .082 .236 .081
N .372 .150 .374 .141 .366 .141

.632 .171 .523 .174 .519 .172

R .3838 R = .3473 R = .3312
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The most dramatic results occur in the first one or two

cycles. After three or four cycles, the R value is changed only

slightly and the data must be re-examined. More reflections may

be added and/or signs may be changed on some of the F values in

use. These new data are inserted with the latest set of co-

ordinates as a base and the program run again. After several

runs of the program, it is well to make a new electron density

map. In this way, some atoms may be re-identified as to their

type according to the size of the electron density peaks. Also,

previously unspecified locations may appear on the map—a result

not possible by use of the refinement program alone.

As may have been expected, the water molecules showed the

greatest shifts, their positions fluctuating almost randomly
i

and never actually settling into a stable configuration.

The advantage of this type of refinement is that the value

of R is lowered directly as the differences between F
Q

and F
c

are attacked. A disadvantage may crop up when the proper signs

have not been chosen for all the F values in use. In such a

case the coordinate shifts will be such as to lower R by ad-

justing the atomic coordinates improperly to accomplish this

purpose.

Differential Synthesis

Similar in concept to the Taylor expansion on F
c

- F , a

procedure termed "differential synthesis" is often used in re-

finement. The two procedures are much the same, but here the

function to be expanded is the first derivative of the electron
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density function. This first derivative will be zero at an

electron density peak, a local maximum. On the assumption that

the coordinates of the unrefined structure are close to these

peaks, a Taylor expansion is made, keeping only first order

terms.

.
We have

g(x+AX ,y+Ay) = g+fcx || +4y |fi (31)

In this case

8,

gU,y)

If

yielding two equations at the point (x,y),

(32)

Such a pair of equations may be written for each atom and solved

for ax and Ay. Since

/oU,y) - 12 2 F(hkO) cos 27r(hx+ky) (33)
' h k

(recall that the refinement is in the xy plane) the equations

in matrix form reduce to
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2*rY] h^C

2n%2 khC

2 tr>, hkC

2nr k2C'&

&x
a "-S

hS

"

ay

I— ..

C=F (hkO) coa27r(hx+ky)

S=F(hkO)sin27r(hx+ky)

(34)

The advantage of this method is that it will not strain the

lattice, as might the Taylor expansion on F
c

- FQ . Each atom

is treated individually, the corrections being made to place the

atom on the nearby electron density peak. There is no guarantee

that the R value will be lowered; if the closest peak to an atom

is a wrong one, it will be placed there anyhow. The effective-

ness of this procedure rests on the requirement that all atoms
i

are initially located on the gradients of their respective

electron density peaks. Enough of the F values must have the

correct sign so that the proper electron density terrain is pro-

duced. If there are not enough F values, the functional terrain

exhibits diffraction ripples, a series* termination effect.

These ripples produce many local maxima and minima and may well

cause the process to hang up. However, when this method is used

and the R value is lowered from iteration to iteration, it is

fairly certain that the structure is being correctly refined.

A computer program was written to utilize this technique,

(See Appendix II), and used in conjunction with other refining

procedures. Although it did not significantly lower the R value

when in use, it did provide supporting results. When used in

the region of R = .32, it did not significantly change atom
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positions. This indicated that the lattice was not strained

away from the electron density peaks, as might have been feared

earlier.

RESULTS AND CONCLUSIONS

The atom locations as they now stand are as follows:

Atom ' x

Na .823 .068
Na .057 .098

.651 .167

.245 .000
N • .542 .091
N .357 .071
W .350 .195
w .248 .263
w .090 .250

with an R value of .3179. An electron density map of the struc-

ture is shown in Plate VI. Many runs were made with the refine-

ment programs, with all conceivable sign changes on the F

values, until it became evident that this value of F was a lower

limit for the type of structure proposed, with the data avail-

able. This is not to say that the model should be discarded.

On the contrary, it is proposed that only minor changes need to

be made; most probably, changes that involve locating (or re-

locating) a water molecule. The proposed structure exhibits a

self-consistency and a symmetry which is appealing. Although

anisotropic thermal vibration corrections could be applied and

the R value certainly lowered further, it could not be done with

a clear conscience. This process is usually begun in the vicin-

ity of R = .20. It is assumed, however, that the water molecules

will exhibit large thermal vibration amplitudes, in light of



EXPLANATION OF PLATE VI

Fig. 1. The electron density map for R

Fig. 2. The final model with R = .3179.

* .34.
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present data.

The bond lengths, compared with values given in the Inter-

national Tables for X-ray Crystal lography . are as follows:

Type of bond Observed Expected

N-N 1.23 A 1.23-1.40 A

N-0 1.27 A 1.22-1.45 A

Na-0 2.42 A 2.3-2.4 A

From this it is to be inferred that the Na-0 bond is nearly-

parallel to the xy plane. The O-N-N-0 part of the molecule is

assumed to be planar, so it is not unreasonable to hypothesize

that the whole molecule is nearly parallel to the xy plane.

Further work in this area should be directed toward re-

solving the problem of loosely bound or free waters of hydra-

tion. After this, the z dimension of the crystal may be deter-

mined and anisotropic thermal vibration parameters taken into

account. Before this is attempted, though, new crystals should

be grown and an attempt made to gather more information for

higher values of the JL Miller index, as the present lack of

information on the c axis' rotation is inhibiting a complete

solution.
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APPENDIX I

The Least Squares Refinement Calculation

From earlier treatment it was seen that this type of

operation on functions g^ yields matrix equations of the

form

(I) - 1

k
3x

i

In this case

gh
= 2 Yl fj cos Znibxytrkj^) - F

Q
(hkO) (I) - 2

and the matrix elements are

2
a. . =21! I6trpf.f . sin 2Tr(hx,+ky. ) »sin 27r(hx.+ky.)
1J h.k

i J * i J J (I) - 3

h2 ; ife n, j&n

where p =
{ k2 ; i > n, j > n

hk; i&n, j>n or i> n, j 4. n

and

b.i
- IZ[Fc

(nkO) - F (hkO)"Unqf
i

sin 2tr(hx
i
+ky

i ) (I) - 4
h,k L -J

where q =
h; iwn

k; i > n
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In practice, the matrix equation was set up and solved by ele-

mentary row operations. The coordinates were incremented accord-

ingly and the process repeated. A cycle involving 22 coordi-

nates and 60 reflections would take approximately ten minutes.

Provisions were made so that the number of reflections

being used could be varied from the computer console while the

program was running. Another feature controlled from the con-

sole was one by which the sign of F could be changed if Fc indi-

cated that this was desirable. As the value of R was calculated,

during each cycle, it was printed on the console typewriter.

Thus, the operator could decide when the process should be

terminated and more data added or changes made.

The program could handle a variable number of unique atoms,

'up to 11, and up to 100 reflections. There is provision made

for three atom types. This much is completely general, applying

to the two-dimensional refinement of any centrosymmetric struc-

ture whose variables fall within the above bounds.

Advantage was taken of the symmetry relations of space

group P2-^/b, so that the equations in the program are not com-

pletely general. To adapt the program to another (centrosym-

metric) space group, the equations contained in the DO loop on

statement number 102 must be changed accordingly. This is the

portion of the program which calculates equation (23).

The listing of the program (Plate VII) does not read

easily; the approach is expedient towards speed and minimum

memory requirements.

Output consisted of the cycle number, the coordinates,

calculated and observed F values, and R.



EXPLANATION OF PLATE VII

The next four pages show the FORTRAN program
for least squares refinement.
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PLATE VII

MONSS JOB 1AYLUR FIT
C OATA IS LOADED AS FOLLOWS
C (l)CARO CONTAINING NUMBER OF ATOMS AND NUMBER OF REFLECTIONSi
C PER FORMAT 1

C (2JDECK OF COORDINATES AND ATOM TYPES, FORMAT 2

C (3)DECK OF H, K, ATOMIC SCATTERING FACTORS (3 ATOM TYPES).
C AND OBSERVED F VALUES, FORMAT 3

C
REAL Kl.
DIMENSION*! 100 ) ,X { 1 1 ) , Y { 1 1

)

,NT ( il ) , ASF ( 100 ,3

)

t H( 100)

,

1 KH100) ,F0( 100) t A( 22.22) V C( 100) ( D( 100)
1 F0RMAT(2I4)
2 F0RMAT(F5.3,2X*F5.3,2X,7X,12)
3 F0RMAT(2F3.0,3UX,F6.4) ,14X,E9.3)
5 FORMAT! 12X,F6.3,2X,F6.3,7X,I2)
8 FORMAT! 1HL,9X,20HITERATED C00RDINATES/14X, 1HX ,7X. 1HY.8X.

1 4HTYPE/)
9 FORMAT! IH1,10X,12HCYCLE NUMBER , 13 , 1H, ,2X , 13.
1 12HREFLECTI0NS)

10 FORMAT! 1HL,19X,2HR=,F6. 4)

11 FORMAT! IHL,3X, 1HH ,3X, 1HK , 3X, 1HL.9X, 10H0BSERVE0 F.5X,
1 12HCALCULATED F/)

12 FORMATl 1X,2I<»,3X,1H0,9X,F7.2,9X,F7.2)
™

1025 F0KMATUHL.18HMATRIX IS SINGULAR)
REWINDS
REWIN05
REWIND6
IC=1'
J C = ".

C»»«*LOAD DATA
READ! 1 ,

1

JNOA.NOB
N=2»N0A

n READ! 1,2)!X!I) ,Y(I) ,NT!I), 1=1, NOA)
U DG9S>l = l,N0B

99 READ(1,3)H(I),K1(I),(ASF{I,L),L=1,3),F0(I)
C»»«»BEGIN ITERATION LOOP, CREATE A AND B MATRICES BY COLUMNS

D093M0P=1,21
RN = G.
RD = G.
D050I=1,N0B

50 B( I)=0.
CALL C0NS0L(N0B,IC,JC)
MP=M0P-1
WRIT£(3,9)MP,N0B
WRITE! 3,8)
DO101I-I.N0A

101 WR1T£(3,5)XU) .Ytn.NTU) +

. . ... . , . . ,:.:;.. ...
> - • - - • - . - - - . . r- -
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WR I TC( 3, 11)
DG102J=l,NOA
M=NT(J)
Tl =6.28318 5307 1 7958468* X( J)

T2=6.28318530717958468»Y(J)
DO ICO 1 = 1, NOB
ARG1=T1*H( I)+T2*K1( I)

B( I > = B( I )+'. A SF( I,M)»C0S(ARG1)
100 C( I ) =25.1327<rl2287ie33872*ASF(I,M)»SIN(ARGl)

WR1TEI5) (CU), 1=1, NOB)
102 WRITEI6) (C(I), 1=1, NOB)

REWINDS
REWIND6
00U8J = 1,N0A
RE4G(5){DU),I = 1.N08)

118 WRITE(A) (D(I), 1=1, NOB)
R£WIN04
REWIND5
D0103I=1,NOB
J=H( I)

K=K1(I)
C WRITE CALCULATED AND OBSERVED F VALUES

150 IF( IC.EQ.0)G0TG151
F=B(I)»FO( I)

IF(F.LT.0.)FO( I)=-FOU)
151 IF( JC.E0.0)G0T0152

F=(6(I )-FO(I))/(B(I)+FOU))
IF(F:LE.-.30)FO( I)=-FO( I)

152 WRITE(3,12)J,K,F0(I),B(I)
F = ABS(B( I) )-ABS(FO(D)
B( I )=B(I)-FO(I )

c calculate residual r and write
rn=rm+abs(f)

103 rd=kd+abs(fo(i )

)

r=;<n/rd — " *"' :

NR=R»100000.
CALL POINT (NR)
WRITE(3,10)R

C«*»*ST0P HERE WHEN NUMBER OF ITERATIONS IS SATISFIED
IF(MOP.EQ.2)GOTO200

C««*»CREATE LEAST SQUARES SYSTEM FOR A AND B
L = A

M=5
D0112I=1,N0A
IP=1+N0A
READ(6) (C(K) t K=l,N0B)
D0111J=1,I

-- .-

- ..

, ,. »...—....
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, . i

JP=J+NOA
a(Ip,jp)=o.
A( IF, J 1 = 0.
A{l,J)=0.
REAU(H) (D(K) ,K=1,N0B)
00 110 K=1,N0R
F=C(K)«D(K)
A( IP, JP)=A( IP, JP)+F*Kl (K)»Kl(K)
A( IP,J)=A( IP,J)+F»K1(K)*H(K)

110 At I ,J)=A( I,J) + F*H(K)»H(K)
A( JP,IP)=A( IP, JP)
A( J,IP)=A( IP, J)

111 A( J,I)=A(I,J)
RCW1NDM

. . .... ......
K = L •

.

L = M
M=K

112 CONTINUE
REW1ND6
001131=1, NOB
D( I )=B( I )

113 B< I )=0.
001141=1, NOA
IP=I+NOA
REAG15) (C(J),J=1»N0B)
DG114K=1,NGB
F=C(K)»0(K)
B( I ) = B( I)+F»H(K)
B( IP)=B(IP)+F*KKKJ

114 CONTINUE
REWIN05

C«»««SOLVE MATRIX SYSTEM FOR THE DELTA X AND DELTA Y VALUES
D01003KK=2,N
K=KK-1

C*«*»»TEST FOR ZERO DIAGONAL, INTERCHANGE ROWS.
IF(A(K,K).NE.0.)GOTO1006
001005I=KK,N
IF(A( I,K).EQ.O.)GOT01005
F=B(K)
B(K)=B(I)
B { I ) = F

D01007J=K,N
F=A(K,J)

. A(K,J)=A(I, J)
1007 A( I,J)=F

GOT01006
1005 CONTINUE ~"*" ~

.:..
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WRITE(3, 1025)
STOP

(^•••••RCUUCC A TO UPPER TRIANGULAR
1006 D01001J=KK,N
1001 A{K,J)=A(K,J)/A(K,K)

B(K)=IJ(KJ/A(KiKJ
A(K,K)=1. ' '

0U1003l=KKiN
F=A(I,K)
00100?J=K,N

1002 Al I ,J)=AU,J)-F»A(K,J)
1003 R( I )=H( I )-F»B(K) •

IF( A(N,N).EQ.O.)WRITE(3 t 1025)
IF( A(N,N).EQ.0.)STOP
F=A(N,N)
A(N t N)=l.
R(N)=B(N)/F

C«»««»RGDUCE A TO IDENTITY
001010KK=2,N
I=KK-1
D01010K=KK,N
F=A(I,K)
B( I )=B( I )-F»B(K)
0O1010J=K,N

1010 AC I ,J)=A(I,J)-F«A(K,J)
C*»»MNCR£MCNT THE COORDINATES WITH THE DELTA X AND Y VALUES
C*«**«AND WRITE

DO«73l = l,NOA
XII)*X(I)+BII) ."

*~

J=I+NOA
93 Y( I)=Y(I) +BU)

C*»**RECYCLE ON ITERATION LOOP
200 STOP

END

— ._

.
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APPENDIX II
*

The Differential Synthesis Calculation

The explicit equations for this calculation have already

been given. This is a much less complicated procedure than the

least squares approach, although not as effective in lowering

the R value. The program is completely general, applicable to

any centro symmetric space group, with one exception. The equa-

tion in which F
c (hk£} is calculated has been simplified by

taking advantage of the symmetry relations. Fc {bkl) has the

FORTRAN name, FC(I), in the program, and the calculation is con-

tained in the DO loop on statement number 98.

The program accepts up to 11 unique atoms of three differ-

ent types, and up to 72 reflections. Machine capacity was no

real problem, so that the number of reflections could be ex-

tended to 100 by changing the DIMENSION card. Each coordinate

correction involves solving a 2x2 matrix equation. A cycle

could be completed in 5 minutes for 22 coordinates and 60 re-

flections. Output consisted of coordinates, the x and y

values, calculated and observed F values, the R value, and the

root mean square correction. A printout of this program is

shown in Plate VIII.



EXPLANATION OF PLATE VIII

The next two pages show the FORTRAN program for
the differential synthesis refinement.
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PLATE VIII

MONti JUB DIFF SYNTH
DIMENSION AH(72),AK(72) ,ASF(72,3) ,FO(72) ,FC(72),X(li)|Y(ll)i

1 NT( I] ) ,A(2,2) ,B(2)
1 FORMAT (2 14)
2 FORMAT (F5.3 t 2X,F5.3i9X, 121
3 FUKMAT (2F3.0 t 3(4X f F6.4) tlAXt E9.3)
4 FORMAT! IHl, 10X,2?HOlFFERENTIAL SYNTHES I S , 10X, 14, 12H REFLECTI
IONS, 10X,5HCYCLt,l3//2 0X,llHCOORDINATES,lOX,llMCORRECriONS//
2 14X,4HTYPE,4X, IHX.6X, 1HY, 12X, 2H0X,5X,2HDY)

b FGRMATI15X, I2,2X,F5.3,2X,F5.3,9X,F5.3,2X,F5.3)
6 F0KMAT{/35X,6HSIGMA=,F6.4)
7 FORMAT! IHL, 1 2X , 1HH , 3X, 1HK, 3X , 1HL , 3X , 5HOBS F t 10X,6HCALC F/

I

« F0KMAT(10X,2I4',3X,1H0,1X,F7.2,9X,F7.2)
9 F0RMAT(/2?X,2HR=,F6.4)

RFA0( l v l)NOA,NOB
REAUd, 2)1X11) ,Y(I) ,NT(I),I=l,NOA)
DOlbl-ltHOB

15 READ(1,3)AH(I) , AK ( I ) , ( ASF ( I , M) ,M=*1 , 3) ,FO( I )

DO?00NCYCLE=l,3
RN = 0.

Q R0=0.
s«o.
00161=1, NOB

16 FCl I)=0.
K=NCYCLE-1
WRIT£(3,4)N0B t K
DOlO0J=l,N0A
B(l)=iO.
R(2)-0.
A(l,l)=0.
A(1,?)=0.
A(2,l)=0.
A(2,2)=0.
Tl=6.2831853071*X(J)
T2=6.2831853071»Y(J)
M=NT(J)
00981=1, NOB
ARG=T1*AH( I)+T2*AK( I)

FC( l) = FC( I)+4.»ASF(I,M)«C0S(ARG)
AT = FO( I )»COS(ARG)
BT=-FO(

I

)»SIN(ARG)
A( l,i)=A(l,l ) + AH( I)»AH( I)*AT
A( l,2)=A{ 1,2) + AH( I)*AK(I)*AT
A(2,2)=A(2 f 2)+AK(l)»AK(I)»AT
A(2,l)=A(l,2)
B( i)=B(l)+AH(I )*BT

98 B(2)=B(2)4AK(I)«BT
•

- ...

* • - ^- —- -- ——»...- .- - - ...... .
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•

D097I*l f 2
D097K=i,?

97 A( ItK)=6.2S3in53071»AU t K)

CALL SULN( A,n,?)
WW I 1E(3,5)M,X( J) ,Y( J), D(l) tB(2)
S = S + (IM l)«BI 1)+B(2)*B(2))
X( J )=X{ J)+0(1)

100 Y(J)=Y( J)+B(2)
S= SURT lS/( FLOAT (NOA)*2.))
WRlTE(3 f 6)S
W«ITG(3t7)
00 191 = 1 1 NOB
J=AH(I)
K = AK( I

)

19 WRITE(3,B) J,K,FO(I) ,FC( I)

002 11 = 1 1 NOB
RN=RN+ABS(ABS(FO(I) )-ABS(FC( I ) )

)

21 R0=RD+ABS(FO( I))
R=RN/KD
NR=R*100000.
CALL POINT(NR)
NS=S«100000.
CALL SIGMA(NS)

200 WRITE(3,9)R
• STOP
END

.
. ..,.. .
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Previous study of sodium hyponitrite has indicated a trans

structure in the N 2 2 ion. The unit cell parameters and space

group have been determined and a list of structure factor mag-

nitudes prepared. The cell is monoclinic with the space group

P2-j/b. The cell parameters are

a = 7.22 + .03 A

b = 17.10 + .07 A

o
c = 6.01 + .02 A

* = 107.5 + .4°

The statistical methods of Karle and Hauptmann were used

in an attempt to determine signs for the structure factors, but

failed due to lack of sufficient data for the L Miller index.

The Patterson function was computed for the structure and

indicated a high degree of symmetry. A trial structure was

selected from the Patterson section at w = \ and treated with

alternate electron density maps and structure factor calcula-

tions. The number of waters of hydration and their positions

were not well-defined, but refinement was attempted. Refine-

ment techniques included the least squares method and differ-

ential synthesis. Both of these were programmed for the IBM

1410.

The structure indicated has a present R value of .3179 and

coordinates as follows:



Atom Type X 1

Na .323 .063
Na .057 .093

.615 .167

.245 .000
N .542 .091
N .357 .071
W .350 .195
w .243 .263
w .090 .250

This structure must remain tentative until further data are

gathered on the 1 Miller indices and the problem of the water

positions is resolved. Extensions to be indicated involve the

solution for the z dimension and refinement techniques in-

volving thermal vibration parameters.


