
A robust test of homogeneity in zero-inflated models for count data

by

Nadeesha R. Mawella

B.S., University of Peradeniya, 2010

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Statistics
College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2018



Abstract

Evaluating heterogeneity in the class of zero-inflated models has attracted considerable

attention in the literature, where the heterogeneity refers to the instances of zero counts gen-

erated from two different sources. The mixture probability or the so-called mixing weight

in the zero-inflated model is used to measure the extent of such heterogeneity in the pop-

ulation. Typically, the homogeneity tests are employed to examine the mixing weight at

zero. Various testing procedures for homogeneity in zero-inflated models, such as score test

and Wald test, have been well discussed and established in the literature. However, it is

well known that these classical tests require the correct model specification in order to pro-

vide valid statistical inferences. In practice, the testing procedure could be performed under

model misspecification, which could result in biased and invalid inferences. There are two

common misspecifications in zero-inflated models, which are the incorrect specification of

the baseline distribution and the misspecified mean function of the baseline distribution.

As an empirical evidence, intensive simulation studies revealed that the empirical sizes of

the homogeneity tests for zero-inflated models might behave extremely liberal and unstable

under these misspecifications for both cross-sectional and correlated count data.

We propose a robust score statistic to evaluate heterogeneity in cross-sectional zero-

inflated data. Technically, the test is developed based on the Poisson-Gamma mixture model

which provides a more general framework to incorporate various baseline distributions with-

out specifying their associated mean function. The testing procedure is further extended

to correlated count data. We develop a robust Wald test statistic for correlated count data

with the use of working independence model assumption coupled with a sandwich estimator

to adjust for any misspecification of the covariance structure in the data. The empirical

performances of the proposed robust score test and Wald test are evaluated in simulation

studies. It is worth to mention that the proposed Wald test can be implemented easily with



minimal programming efforts in a routine statistical software such as SAS. Dental caries

data from the Detroit Dental Health Project (DDHP) and Girl Scout data from Scouting

Nutrition and Activity Program (SNAP) are used to illustrate the proposed methodologies.
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Chapter 1

Introduction

Zero-Inflated models have gained a considerable attention in a variety of fields due to their

capability of handling excess zeros in count data. They are useful extensions of the classical

generalized linear models and have been widely used in many areas of science, finance,

epidemiology, agriculture and biomedical sciences (for example, see Farewell and Sprott,

1988; Ridout et al., 1998; Böhning et al., 1999; Yip and Yau, 2005; Hu et al., 2011).

Zero-Inflated models provide a parametric framework to accommodate heterogeneity in

a population, in which the heterogeneity is referred to zeros generated from two different

sources. Specifically, zeros are assumed as being generated from a degenerate distribution

at zero and a discrete distribution (or so-called baseline distribution). The mixing weight of

the zero-inflated model measures the extent of this type of heterogeneity in the population.

In real applications of the zero-inflated models, the question typically interested to ad-

dress is whether the mixing weight or so-called mixture probability adequately represents

the inherent heterogeneity in the population. Intuitively, a zero mixing weight indicates that

zeros are only generated from the non-degenerate distribution. Therefore, evaluating the

hypothesis that mixing weight equals to zero is equivalent to evaluating the homogeneous

model against the heterogeneous model.

In practice, as a goodness-of-fit, homogeneity tests are often used to evaluate the hypoth-

esis of zero mixing weight. One popular homogeneity test in the literature for this class of
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models is score test. Score test has an advantage that the parameter estimation is required

only for the model under the null hypothesis which makes the test easy to perform in some

cases. Several studies in the literature have used score tests for testing heterogeneity under

this class of models. For example, Van den Broek (1995) proposed a score test to evaluate

whether a constant mixing weight equals to zero under Zero-Inflated Poisson models. A

similar work under Zero-Inflated Binomial models was proposed by Deng and Paul (2000).

As an extension, Jansakul and Hinde (2002) proposed a score test under the framework of

Zero-Inflated Poisson model using an identity link function to relate mixing weight to co-

variates in order to improve the power of the test. However, the identity link function is

seldom used in practice and requires an additional constraint on the likelihood function if

the true mixing weight is between 0 and 1. Without using the identity link function, Todem

et al. (2012) developed a more general score test using a novel transformation and allowing

the mixing weight to depend on covariates to improve the power.

It is known that a valid score test requires the assumption of correct specification of the

model under the null hypothesis. This assumption might not be satisfied in practice and the

violation of this assumption could lead to unreliable statistical inferences. Misspecification in

hypothesis testing is a general issue which has been pointed out in several studies under dif-

ferent classes of models. For example, Godfrey (1991) showed the impact of misspecification

on the Lagrange multiplier test for the regression models. Bera and Yoon (1993) mentioned

that the score test is not robust when the nuisance parameter is locally misspecified. Liang

and Self (1996) also indicated that the nuisance parameter may be misspecified in likeli-

hood functions, which affects the validity of the likelihood ratio test. DiRienzo and Lagakos

(2001) showed that score test and Wald test under Cox’s proportional hazards model will

not be asymptotically valid when the model is misspecified. To our knowledge, the impact

of misspecification of homogeneity tests under the class of zero-inflated models has not been

discussed in the literature.

In this study, we evaluate two common types of misspecification on the homogeneity tests

under zero-inflated models: (1) Misspecification of the mean function of the null model and

(2) Misspecification of the baseline distribution of the null model. To address these issues of
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misspecification, we propose a new robust score test of homogeneity for cross-sectional zero-

inflated data. The proposed test can be performed without specifying the mean function

and hence avoids the impact of any possible misspecification of conditional mean under the

null model. Technically, the test assumes a more general model as the baseline model, thus,

it is also robust to the misspecification of the baseline distribution.

The proposed testing procedure is further extended for correlated count data with excess

zeros as the zero-inflation may present in data simultaneously with correlation due to the

hierarchical nature of the study design or the data collection procedure such as repeated mea-

surements on subjects. To account for such data, a robust Wald test statistic is developed.

Under the same model formulation proposed in this study, a working independence model

assumption accompanying a sandwich estimator is used to accommodate the correlation in

data. Despite the alternative approach of directly modeling the correlation structure in data

using the random effect terms with a conditional model (Hall, 2000; Min and Agresti, 2005;

Lee et al., 2006; Xiang et al., 2006), a working independence model approach is used due

to the possible impacts on the mean structure by the former approach when the random

effects are integrated out (Hsu et al., 2014). Instead of integrating over the distributions

defined by random effects, the proposed approach along with the sandwich estimator of the

variance-covariance matrix allows to execute the estimation process in a computationally

tractable manner using standard software such as SAS.

In Chapter 2, we evaluate the impact of the two types of misspecification on the perfor-

mances of homogeneity score test by intensive simulations. A new robust test for testing

heterogeneity under zero-inflated models is introduced in Chapter 3. The performance of

the proposed test is evaluated by simulation studies and then applied to dental caries data

from the Detroit Dental Health Project (DDHP) and Girl Scout data from Scouting Nutri-

tion and Activity Program (SNAP). In Chapter 4, we extend the proposed methodology to

accommodate the dependency in count data along with the zero-inflation by introducing a

robust Wald test for correlated count data with extra zeros. The empirical performance of

the proposed Wald test is assessed though simulation studies and longitudinal dental caries

data are used to illustrate the proposed Wald test. In Chapter 5, we discuss the advantages
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and the limitations of the proposed methodology and the possible extensions of the proposed

test for future work.
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Chapter 2

Impact of misspecification on the

homogeneity tests for zero-inflated

models

2.1 Introduction

In this chapter, we evaluate the impact of two common types of misspecification on homo-

geneity tests under zero-inflated models. The first type of misspecification occurs when the

mean function is not well specified in the model under null hypothesis. It is often assumed

that the mean of the null model depends on covariates through an appropriate link function,

but it could be misspecified. The second type of misspecification occurs when the working

baseline distribution is not correctly specified. For instance, if the working baseline distri-

bution is assumed to be Poisson but the true underlying distribution is Negative Binomial

distribution. As it is well known that count data often show over dispersion compared to

the Poisson distribution, if the over dispersion was not incorporated by the baseline model

appropriately, the homogeneity test for zero-inflated data may provide unreliable conclusions

about the population. We evaluate the performances of score test under these two types of

misspecification through intensive simulations.
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This chapter is organized as follows. In Section 2.2, we describe the general formulation of

zero-inflated model and in Section 2.3, the score test statistic for testing heterogeneity. Two

common types of misspecification are discussed in Section 2.4. The simulations investigating

the impact of misspecification are given in Section 2.5. Discussion based on the simulation

studies is given in Section 2.6.

2.2 Zero-Inflated model

Suppose we randomly select a sample of n independent subjects with count responses Yi, i =

1, ..., n from a population represented by a zero-inflated model. The responses Yi are assumed

as generating from a mixture of degenerate distribution at 0 and a discrete distribution

with probability mass function g(θ), where θ is a vector of unknown parameters. The

corresponding distribution of Yi is a two component mixture with the probability mass

function given below,

P (Yi = yi) =


ωi + (1− ωi) gi(0;θ) if yi = 0

(1− ωi) gi(yi;θ) if yi = 1, 2, 3, ...,

where ωi is the mixing weight or so-called mixture probability.

In general, under zero-inflated models, mixing weight is considered as bounded between

0 and 1 such that 0 ≤ ωi ≤ 1, for i = 1, ..., n. However, under the marginal representation of

the model, mixing weight is constrained as −gi(0;θ)/(1− gi(0;θ)) ≤ ωi ≤ 1, for i = 1, ..., n,

which allows to accommodate both zero-inflation and zero-deflation (see Todem et al., 2012).

Particularly, when ωi>0, there exists many zeros than the zeros expected from the discrete

distribution g(θ), then the model is called the zero-inflated model. If ωi<0, there exists

too few zeros than the expected zeros from the discrete distribution g(θ) which results in

zero-deflated model. When ωi = 0, the model reduces to the homogeneous model which

corresponds to discrete distribution g(θ). For different discrete distributions g(θ), there

are several popular zero-inflated models such as Zero-Inflated Poisson model, Zero-Inflated
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Negative Binomial model and Zero-Inflated Binomial model. Lambert (1992) proposed Zero-

Inflated Poisson model where g(θ) is a Poisson distribution,

gi(yi;θ) = gi(yi;λi) =
e−λiλyii
yi!

, yi = 0, 1, 2, 3, ...,

and λi is the mean such that λi = eX
T
i β for unknown parameter vector β and a matrix of

covariates X. In this model, θ = β.

For Zero-Inflated Negative Binomial model, the baseline distribution g(θ) is specified as,

gi(yi;θ) = gi(yi;λi, α) =
Γ(yi + α−1)

yi! Γ(α−1)

αyiλyii
(1 + αλi)yi+α

−1 , yi = 0, 1, 2, 3, ...,

where θ = (α,β) and α is the dispersion parameter, λi is the mean such that λi = eX
T
i β for

unknown parameter vector β and a matrix of covariates X. If g(θ) is a Binomial distribution,

the resulting model is a Zero-Inflated Binomial model (See, for example, Farewell and Sprott,

1988).

2.3 Score test of homogeneity

We are often interested to evaluate whether the mixing weight is zero under the class of

zero-inflated models. In the literature, many testing procedures assume constant mixing

weight such that ωi = ω for all i. For example, Van den Broek (1995) proposed a score

test under Zero-Inflated Poisson models assuming a constant mixing weight. Under Zero-

Inflated Binomial model, a score test assuming a constant mixing weight was discussed in

Deng and Paul (2000). For ω=0, heterogenous model reduces to the homogeneous model

that corresponds to the baseline distribution. Thus, for testing whether the homogenous

model is adequate, we are typically interested in evaluating the hypothesis ω = 0.

For testing the hypothesis ω = 0, score test is often used under this class of models

as it requires parameter estimation only under the null hypothesis which is an advantage

in practice. Under this class of models, assuming a sample of independent observations
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y1, ..., yn, the associated log-likelihood function l(y, θ, ω) with ωi = ω for all i is

l(y, θ, ω) =
n∑
i=1

[
I(yi=0) log{ω + (1− ω)gi(0; θi)}+ I(yi>0) log{(1− ω)gi(yi; θi)}

]

To conduct the score test, we can follow the standard procedures in asymptotic theory.

The score vector can be derived based on the log-likelihood function l(y, θ, ω).

S(θ, ω) =

Sθ(θ, ω)

Sω(θ, ω)

 =

∂l(y, θ, ω)

∂θ
∂l(y, θ, ω)

∂ω


The expected Fisher information matrix I(θ, ω) can be partitioned as

I(θ, ω) =

Iθθ(θ, ω) Iθω(θ, ω)

Iωθ(θ, ω) Iωω(θ, ω)

,

where the elements Iθθ(θ, ω), Iθω(θ, ω)=Iωθ(θ, ω)Tand Iωω(θ, ω) are

−E
[
∂2l(y, θ, ω)

∂θ∂θT

]
, −E

[
∂2l(y, θ, ω)

∂θ∂ω

]
and −E

[
∂2l(y, θ, ω)

∂ω2

]
, respectively.

Under the null hypothesis ω = 0, the score test statistic is then

ST = Sω(θ̂, 0)T V̂ −1Sω(θ̂, 0),

where Sω(θ̂, 0) =

[
∂l(y, θ, ω)

∂ω

]
ω=0,θ=θ̂

=
∑n

i=1

{
I(yi=0)

gi(0; θ̂)
− 1

}
and V̂ = Iωω(θ̂, 0) − Iθω(θ̂, 0)T Iθθ(θ̂, 0)−1Iθω(θ̂, 0). Here θ̂ is the maximum likelihood esti-

mate of θ under the null hypothesis. With the assumption of constant mixing weight, this

score test statistic will have an asymptotic χ2
1 distribution under the null hypothesis.

As examples, under the Zero-Inflated Poisson model assuming a constant mixing weight, the

score test statistic is

ST =

{∑n
i=1

[
I(yi=0)

eλ̂i
− 1

]}2

∑n
i=1(eλ̂i − 1)− λ̂TX[XTdiag(λ̂)X]

−1
XT λ̂

,
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where λ̂ = (λ̂1, λ̂2, ..., λ̂n), λ̂i is the estimated Poisson mean such that λ̂i = eX
T
i β̂ and β̂ is the

maximum likelihood estimate of β under the null hypothesis and X is a matrix of covariates

(for details, see Van den Broek, 1995).

Under the Zero-Inflated Negative Binomial model assuming a constant mixing weight, the

score function is

Sω(θ̂, 0) =
n∑
i=1

[
I(yi=0)

(1 + α̂λ̂i)−α̂
−1
− 1

]
,

where θ̂ = (α̂, β̂), the maximum likelihood estimates under H0. This involves estimating

extra parameter α which is the dispersion parameter. This is a special case of the score test

proposed by Jansakul and Hinde (2008) under the Zero-Inflated Negative Binomial model

relating mixing weight to covariates, where the mixing weight is assumed as a constant.

2.4 Misspecifications

Two common types of misspecification on the homogeneity tests under zero-inflated models

are (1) Misspecification of the mean function of the null model and (2) Misspecification of

the baseline distribution of the null model.

The mean of the null model is often related to covariates through an appropriate link

function. However, in practice, the mean function could be misspecified when the nuisance

parameters are misspecified. For instance, if the true mean λ∗ = exp(β0 + β1X1 + β2X2)

where X1 and X2 are two independent covariates, the working mean in the test may define

as λ = exp(β0 + β1X1). Mean of the null model could be misspecified also when the link

function is not appropriate to relate covariates to the mean.

Baseline distribution under the null model could be also misspecified in the testing proce-

dure. For instance, if the true underlying distribution under the null hypothesis is Negative

Binomial distribution, but the working baseline distribution is assumed as the Poisson dis-

tribution. But it is worth to mention that if the true baseline distribution is Poisson but

assumed as Negative Binomial in the testing procedure, it is not a real misspecification. It

9



is known that Poisson is a special case of Negative Binomial when the dispersion parameter

goes to 0.

We investigate the impact of misspecification of null model on the validity of homogeneity

score test under zero-inflated models. Specifically, we evaluate the size of the test results

from a model which is misspecified in terms of the mean and the baseline distribution under

the null hypothesis. Simulation studies are conducted separately for the two cases, first, to

evaluate the size of the test when the mean is misspecified but the baseline distribution is

correctly specified and secondly to evaluate the size of the test when the baseline distribution

is misspecified but the mean is correctly specified.

2.5 Numerical study

We investigate the impact of misspecification on the validity of score test using simulation

studies. Throughout the simulations, we perform the score test that assumes a constant

mixing weight in the zero-inflated model. The validity of the score test is evaluated based

on the agreement with the asymptotic χ2
1 distribution under the null hypothesis. Empirical

type I error rate of the test is evaluated under the two types of misspecification mentioned

previously. As a comparison, type I error rate under the well-specified null model is also

evaluated.

2.5.1 Misspecification of mean function of the null model

To evaluate the empirical type I error rate of score test under the misspecification of mean

function, we generate data from a homogeneous Poisson distribution with sample sizes 50,

100, 200 and 1000. The true underlying Poisson mean is assumed as λ∗ = exp{0.75 −

1.45X1 − 0.8X2} where X1 and X2 are two independent covariates with X1 ∼ U(0,1) and

X2 ∼ Bin(n,0.6). All simulations are replicated 1000 times.

Three types of misspecification of Poisson mean are considered: (1) Excluding covariates

which should be included in the mean function, (2) Including covariates which should not

10



be included in the mean function and (3) Using a different functional form of the mean.

Empirical type I error rates of the score tests are evaluated under different working mean

functions which correspond to those misspecifications.

Table 2.1 presents the empirical type I error rates at 5% nominal level of the score test

under the true model and different working models. We can clearly see that the size of the

score test is stable around the nominal level (α = 0.05) under the null model with correctly

specified mean function. In contrast, the size can not be well maintained at the nominal

level when the mean function is misspecified in the null model. For an over-fitted mean

function of the null model, the size is stable compared to these models with under-fitted

mean functions. However, the over-fitted mean function may result in unnecessary loss of

power to detect the heterogeneity in the population because of the loss of efficiency. When

a different functional form of the mean is used, for instance, if a non-linear mean function is

used instead of a true linear mean function of the null model, the size of the test can not be

maintained at the nominal level.

Table 2.1: Empirical sizes of the score test statistics at α=0.05 based on 1,000 samples
generated from Poisson with true mean log(λ∗) = 0.75− 1.45X1 − 0.8X2.

Models for log(λ) n=50 n=100 n=200 n=1000
Correct Specification:
log(λ) = β0 + β1X1 + β2X2 0.050 0.053 0.050 0.048
Over-fitted model:
log(λ) = β0 + β1X1 + β2X2 + β3X3 0.062 0.057 0.047 0.046
Misspecification:
log(λ) = β0 0.177 0.292 0.520 0.986
log(λ) = β0 + β1X1 0.074 0.123 0.161 0.633
log(λ) = β0 + β2X2 0.077 0.116 0.193 0.675
log(λ) = β0 + β3X3 0.160 0.271 0.511 0.985
log(λ) = β0 + β1X1 + β3X3 0.058 0.108 0.154 0.623
log(λ) = β0 + β2X2 + β3X3 0.069 0.109 0.177 0.663

log(λ) = exp
{

β1X1

1+e−(β0+β2X2)

}
0.755 0.954 0.999 1.000

log(λ) = exp
{
β0 + β1e

−β2X2
}

0.589 0.827 0.931 0.947
X1 ∼ U(0, 1), X2 ∼ Bin(n, 0.6) and X3 ∼ N(0, 1) with X3 ∈ (-1,1).
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2.5.2 Misspecification of baseline distribution

We evaluate the impact of the misspecification of baseline distribution on the validity of score

test in two different scenarios: (1) Under the framework of Zero-Inflated Poisson model and

(2) under the Zero-Inflated Negative Binomial model. We generate data with sample sizes

50, 100, 200, 500, 1000 and pre-specified mean functions λ∗ = exp{−0.15}, λ∗ = exp{−0.15+

0.1X1}, λ∗ = exp{−0.15 + 0.1X1− 0.25X2} and λ∗ = exp{−0.15 + 0.1X1− 0.25X2 + 0.4X3}.

In the first simulation study, we generate data from a Poisson distribution. For each

simulated dataset, working model is considered with well-specified mean function but the

working baseline distribution is considered as the Negative Binomial distribution. In other

words, under the null hypothesis, the mean is considered as well-specified but the baseline

distribution is not well-specified. Empirical type I error rates are presented in Table 2.2. We

can see that all tests have well controlled type I error rates at 5% nominal level when the null

model is well specified. When the baseline distribution is specified as Negative Binomial,

interestingly, the empirical sizes tend to be conservative but relatively stable. This result is

expected because it is known that Poisson is a special case of Negative Binomial. Therefore,

the tests are conservative simply due to the efficiency issue.

Table 2.2: Empirical sizes of the score test statistics with well specified working mean
function based on 1,000 samples generated from Poisson regression model with mean λ∗

at α=0.05.

n
Working

log(λ∗) Model 50 100 200 500 1000
−0.15 Poisson 0.043 0.045 0.048 0.053 0.050

NB 0.026 0.024 0.028 0.025 0.025

−0.15 + 0.1X1 Poisson 0.047 0.046 0.049 0.045 0.053
NB 0.029 0.027 0.024 0.026 0.025

−0.15 + 0.1X1 − 0.25X2 Poisson 0.046 0.045 0.046 0.047 0.048
NB 0.038 0.029 0.029 0.028 0.023

−0.15 + 0.1X1 − 0.25X2 + 0.4X3 Poisson 0.045 0.051 0.049 0.050 0.052
NB 0.039 0.038 0.031 0.028 0.026

X1 ∼ U(0, 1), X2 ∼ Bin(n, 0.6) and X3 ∼ N(0, 1) with X3 ∈ (-1,1).
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In the second simulation study, we generate data from a Negative Binomial distribu-

tion. For each simulated dataset, working model is considered with the well-specified mean

function but the baseline distribution in the working model is assumed as the Poisson distri-

bution. Table 2.3 reports the empirical sizes of the score test when the baseline distribution

is misspecified. It is worth to note that, if the working baseline distribution is assumed to

be Poisson but the true underlying distribution is Negative Binomial distribution, the type

I error rates can not be well-maintained at the 5% nominal level, type I error rate increases

as the sample size increases.

Table 2.3: Empirical sizes of the score test statistics with well specified working mean
function based on 1,000 samples generated from Negative Binomial regression model with
mean λ∗ at α=0.05.

n
Working

log(λ∗) Model 50 100 200 500 1000
−0.15 NB 0.045 0.049 0.046 0.052 0.048

Poisson 0.562 0.814 0.978 1.000 1.000

−0.15 + 0.1X1 NB 0.047 0.051 0.052 0.054 0.052
Poisson 0.554 0.872 0.987 1.000 1.000

−0.15 + 0.1X1 − 0.25X2 NB 0.045 0.047 0.045 0.045 0.050
Poisson 0.447 0.759 0.962 1.000 1.000

−0.15 + 0.1X1 − 0.25X2 + 0.4X3 NB 0.043 0.051 0.050 0.049 0.048
Poisson 0.372 0.753 0.967 1.000 1.000

X1 ∼ U(0, 1), X2 ∼ Bin(n, 0.6) and X3 ∼ N(0, 1) with X3 ∈ (-1,1).
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2.6 Discussion

Score tests for evaluating heterogeneity under zero-inflated models primarily rely on the as-

sumption of well-specified model under the null hypothesis. In this chapter, we evaluated

the impact of misspecification on the validity of score test under zero-inflated models. Simu-

lation results indicate that the empirical type I error rates can not be well maintained at the

nominal level when the mean function is incorrectly specified under the null model. Addi-

tionally, score test tends to be very unstable under severe misspecification such as when the

baseline distribution is assumed as Poisson but the true underlying distribution is Negative

Binomial. Therefore, a close attention to the model under the null hypothesis is needed

when performing the homogeneity score test under Zero-Inflated models.
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Chapter 3

A robust score test of homogeneity

for zero-inflated count data

3.1 Introduction

Score test has been suggested by many authors as a homogeneity test under the class of

zero-inflated models due to the fact that it only requires the model fit under the null model

(for example, see Van den Broek, 1995; Deng and Paul, 2000; Jansakul and Hinde, 2002;

Todem et al., 2012). However, the general limitation of score test is that the score test relies

on the assumption of a well-specified null model. As discussed in Chapter 2, when the null

models are not correctly specified, score tests could lead to unreliable statistical inferences.

In this chapter, we propose a new score test of homogeneity which is robust to the

misspecifications under zero-inflated models. Technically, the test is developed under the

framework of Poisson-Gamma mixture model which provides a general framework to in-

corporate the baseline distributions under the Zero-Inflated Poisson (ZIP) or Zero-Inflated

Negative Binomial (ZINB) models. Our test can be performed without specifying the mean

function and hence avoid the impact of any possible misspecification of mean under the null

model. The proposed test assumes a more general model as the baseline model, thus, it is

robust to the misspecification of the baseline distribution.
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The rest of this chapter is organized as follows. In Section 3.2, we introduce the new

robust test for evaluating heterogeneity under zero-inflated models. The performance of the

proposed test is evaluated by simulation studies under the possible misspecification of the

mean and baseline distribution in Section 3.3. The proposed test is then applied to dental

caries data from the Detroit Dental Health Project (DDHP) and Girl Scout data from

Scouting Nutrition and Activity Program (SNAP) by Rosenkranz et al.(2010). We compare

the performance of the proposed test with the existing homogeneity tests in Section 3.4.

Discussion based on the simulation study and the real data analysis is included in Section

3.5.

3.2 Robust homogeneity test for zero-inflated models

We are interested in evaluating the hypothesis of zero mixing weight in order to evaluate the

homogeneous model against the heterogeneous model under the framework of zero-inflated

models. Simulation results in Chapter 2 indicated that the homogeneity score test may result

in unreliable statistical inferences under the misspecification of mean and the baseline dis-

tribution of the null model (see Table 2.1, 2.2, 2.3). To address the issue of misspecification,

we develop a robust homogeneity score test for zero-inflated models. The proposed test is

developed under the framework of Poisson-Gamma mixture model based on the modeling

framework discussed by Kassahun et al. (2014).

3.2.1 Kassahun’s model

A more general model for zero-inflated data which can accommodate zero-inflation, over-

dispersion and correlation was proposed by Kassahun et al. (2014) which is called the Zero-

inflated over-dispersed hierarchical Poisson model. Let Yij be the jth outcome measured for
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subject i. The model of Kassahun et al. (2014) is,

Yij|θij ∼


0 with prob πij

Poisson(λij = θijKij) with prob 1− πij,

where πij is the mixing weight, θij ∼ Gamma(α, β) such that α and β are shape and scale

parameters and Kij = exp(XT
ijη+ZT

ijbi) such that η is a vector of unknown coefficients with

Xij and Zij are vectors of known covariates. Random effects bi ∼ N(0, D), where D is the

associated covariance matrix.

3.2.2 The proposed robust test

In this study, we consider the case for independent data but the test can be extended to

handle correlated data. Based on the Kassahun’s model, we consider that Yi (i = 1, ..., n)

are independent observations from a mixture of degenerate distribution at 0 and a Poisson

distribution with a random mean Λi such that,

Yi|Λi ∼


0 with prob ωi

Poisson(Λi) with prob 1− ωi,

where ωi is the mixture probability and Λi ∼ Gamma(α, β) with α and β are shape and

scale parameters respectively. The marginal distribution fY (y) is given by,

fY (y) =

∫ ∞
0

fY,Λ(y, λ) dλ =

∫ ∞
0

fY |Λ(y|λ) fΛ(λ) dλ.
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Thus, the zero-inflated distribution can be re-expressed as

P (Yi = yi) =


ωi + (1− ωi) fYi(0) if yi = 0

(1− ωi) fYi(yi) if yi = 1, 2, 3, ...,

(3.1)

where

fYi(yi) =
Γ(yi + α)

yi! Γ(α)

(
β

1 + β

)yi( 1

1 + β

)α
, yi = 0, 1, 2, 3, ...

It is worth to mention that the baseline distribution is a Negative Binomial.

Assuming a sample of independent observations y1, ..., yn, the log-likelihood function

l(y, α, β, ω) corresponds to probability mass function (3.1) with ωi = ω for all i is,

l(y, α, β, ω) =
n∑
i=1

[
I(yi=0) log

{
ω + (1− ω)(1 + β)−α

}
+ I(yi>0)

{
log(1− ω) + log Γ(yi + α)− log Γ(α)

− log Γ(yi + 1) + yi log β − (yi + α) log(1 + β)
}]
.

(3.2)

The score vector can be derived by the first-order derivatives of log-likelihood function and

is given by,

S(α, β, ω) =


Sα(α, β, ω)

Sβ(α, β, ω)

Sω(α, β, ω)

 =


∂l(y, α, β, ω)

∂α
∂l(y, α, β, ω)

∂β
∂l(y, α, β, ω)

∂ω

,

where

∂l(y, α, β, ω)

∂α
=

n∑
i=1

{
I(yi=0)

−(1− ω)(1 + β)−α log(1 + β)

[ω + (1− ω)(1 + β)−α]
− I(yi>0)[dg(yi + α)− dg(α)− log(1 + β)]

}
∂l(y, α, β, ω)

∂β
=

n∑
i=1

{
I(yi=0)

−α(1− ω)(1 + β)−α−1

[ω + (1− ω)(1 + β)−α]
− I(yi>0)

[
yi
β
− (yi + α)

(1 + β)

]}
∂l(y, α, β, ω)

∂ω
=

n∑
i=1

{
I(yi=0)

[1− (1 + β)−α]

[ω + (1− ω)(1 + β)−α]
− I(yi>0)

1

(1− ω)

}
,
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where dg(yi + α) =
∂ log Γ(yi + α)

∂α
and dg(α) =

∂ log Γ(α)

∂α
(see, details in Appendix A).

The expected Fisher information matrix I(α, β, ω) can be partitioned as

I(α, β, ω) =


Iαα Iαβ Iαω

Iβα Iββ Iβω

Iωα Iωβ Iωω

,

where the elements Iαα, Iβα=ITαβ, Iωα=ITαω, Iωβ=ITβω, Iββ and Iωω are such that,

Iαα = −E

[
∂2l(y, α, β, ω)

∂α2

]
, Iβα = ITαβ = −E

[
∂2l(y, α, β, ω)

∂α∂β

]
,

Iωα = ITαω = −E

[
∂2l(y, α, β, ω)

∂α∂ω

]
, Iββ = −E

[
∂2l(y, α, β, ω)

∂β2

]
and Iωω = −E

[
∂2l(y, θ, ω)

∂ω2

]
,

respectively (see, details in Appendix A).

This requires second derivatives of the log-likelihood function (3.2) with respect to α, β

and ω and the facts E[I(yi=0)] = [ω+(1−ω)(1+β)−α] and E[I(yi>0)] = (1−ω)[1− (1+β)−α].

Under the null hypothesis H0 : ω = 0, the proposed robust score test is then,

S = STω V̂ω
−1

Sω ,

where

Sω =
n∑
i=1

[
I(yi=0)

{
(1 + β̂)α̂ − 1

}]
and

V̂ = Iωω(α̂, β̂, 0)− Iωαβ(α̂, β̂, 0)′I−1
αβ (α̂, β̂, 0)Iωαβ(α̂, β̂, 0) such that,

Iωαβ(α̂, β̂, 0) =

Iωα(α̂, β̂, 0)

Iωβ(α̂, β̂, 0)

 and Iαβ(α̂, β̂, 0) =

Iαα(α̂, β̂, 0) Iαβ(α̂, β̂, 0)

Iβα(α̂, β̂, 0) Iββ(α̂, β̂, 0)

,

where Iωω(α̂, β̂, 0), Iωα(α̂, β̂, 0), Iωβ(α̂, β̂, 0), Iαα(α̂, β̂, 0), Iββ(α̂, β̂, 0), Iαβ(α̂, β̂, 0) and Iβα(α̂, β̂, 0)

are elements of the Fisher information matrix evaluated under H0. Under the null hypothesis,

this score test statistic will have an asymptotic χ2
1 distribution.
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The proposed test assumes the mean of the baseline distribution is a random variable

which can be described by some density. Since the over-dispersion could be involved in data

which may not be adequately described by the null model under existing testing procedures,

the proposed test would be able to capture the potential over-dispersion in data appropri-

ately. Our test avoids the possible misspecification of mean function because the mean is

considered as a random variable rather than assuming as a function of covariates through a

link function. The baseline distribution in the proposed test is the Poisson-Gamma mixture

model and technically, the Poisson-Gamma mixture model can incorporate the Negative Bi-

nomial distribution and the Poisson distribution. Hence, the proposed test would be robust

to the misspecification of baseline distributions under the Zero-Inflated Negative Binomial

and Zero-Inflated Poisson models.

3.3 Simulation Study

Empirical performance of the proposed test is evaluated by investigating the type I error

rates of the test under the misspecification of mean and baseline distribution. To evaluate

the size of the test, data are generated with sample sizes 50, 100, 200, 400, 800 and 1500 under

several mean functions of the baseline distribution: log(λ∗) = 0.6, log(λ∗) = 0.6 + 0.45X1

and log(λ∗) = 0.6 + 0.45X1 − 0.2X2, where X1 and X2 are two independent covariates. The

covariate X1 is a continuous variable with uniformly distributed values on (0,1) and X2 is a

truncated normal random variable with values on (-1,1).

In the first simulation study, data are generated from zero-inflated Negative Binomial dis-

tribution with the dispersion parameter α=0.8 and various true mean functions. Simulation

is conducted with 1000 Monte Carlo samples and empirical type I error rate of the proposed

robust test is evaluated at the nominal level 0.05. The power of the test is evaluated under

the non-zero constant mixing weights (ω∗ = 0.1, 0.2) and results are given in Table 3.1.

From Table 3.1, we can clearly see that the proposed robust test maintains the size well

around the nominal level 0.05. The power of the test increases as the sample size increases

or the mixing weight (ω∗) increases. Clearly, the test is robust to any mean function used
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Table 3.1: Empirical sizes and power of the robust score test statistic based on 1,000 samples
generated from zero-inflated Negative Binomial regression model with mean λ∗, at the nominal
level 0.05.

n
log(λ∗) ω∗ 50 100 200 400 800 1500
0.6 ω∗ = 0 0.075 0.069 0.058 0.052 0.054 0.052

ω∗ = 0.1 0.127 0.161 0.184 0.221 0.282 0.461
ω∗ = 0.2 0.139 0.223 0.317 0.478 0.691 0.880

0.6 + 0.45 X1 ω∗ = 0 0.072 0.066 0.058 0.051 0.047 0.048
ω∗ = 0.1 0.155 0.167 0.198 0.218 0.349 0.524
ω∗ = 0.2 0.168 0.275 0.378 0.546 0.762 0.944

0.6 + 0.45 X1 − 0.2X2 ω∗ = 0 0.073 0.071 0.053 0.047 0.047 0.046
ω∗ = 0.1 0.119 0.137 0.154 0.209 0.294 0.467
ω∗ = 0.2 0.185 0.278 0.366 0.530 0.758 0.941

0.6 + 0.2e−0.2X2 ω∗ = 0 0.078 0.074 0.079 0.063 0.049 0.051
ω∗ = 0.1 0.119 0.135 0.160 0.189 0.246 0.283
ω∗ = 0.2 0.129 0.172 0.279 0.377 0.504 0.710

X1 ∼ U(0, 1) and X2 ∼ N(0, 1) with X2 ∈ (-1,1).

in the data generating process and performs well in all cases.

Second simulation study is conducted for data generated from zero-inflated Poisson dis-

tribution under the same mean functions and the results are given in Table 3.2.

In the Table 3.2, the size of the test tends to be conservative but remains stable as

the sample size increases. This result is not surprising as the proposed test has developed

under the framework of Poisson-Gamma mixture model which can provide a more general

framework to incorporate Poisson distribution. Therefore, the tests are conservative simply

due to the efficiency issue. The power of the test increases as the sample size increases and

as the mixing weight increases from 0.1 to 0.2.
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Table 3.2: Empirical sizes and power of the robust score test statistics based on 1,000
samples generated from zero-inflated Poisson regression model with mean λ∗, at the nominal
level 0.05.

n
log(λ∗) ω∗ 50 100 200 400 800 1500
0.6 ω∗ = 0 0.045 0.031 0.031 0.033 0.043 0.051

ω∗ = 0.1 0.062 0.074 0.093 0.154 0.411 0.754
ω∗ = 0.2 0.169 0.332 0.527 0.737 0.787 0.793

0.6 + 0.45X1 ω∗ = 0 0.029 0.028 0.026 0.031 0.023 0.025
ω∗ = 0.1 0.096 0.158 0.254 0.505 0.771 0.889
ω∗ = 0.2 0.351 0.605 0.793 0.865 0.886 0.893

0.6 + 0.45X1 − 0.2X2 ω∗ = 0 0.020 0.024 0.023 0.022 0.020 0.024
ω∗ = 0.1 0.108 0.169 0.276 0.496 0.774 0.890
ω∗ = 0.2 0.355 0.604 0.812 0.888 0.902 0.903

0.6 + 0.2e−0.2X2 ω∗ = 0 0.038 0.036 0.039 0.031 0.035 0.032
ω∗ = 0.1 0.091 0.181 0.252 0.301 0.451 0.642
ω∗ = 0.2 0.126 0.256 0.494 0.707 0.827 0.848

X1 ∼ U(0, 1) and X2 ∼ N(0, 1) with X2 ∈ (-1,1).

3.4 Real Data Application

3.4.1 Dental Caries Data

To illustrate the proposed test we use dental caries data from the Detroit Dental Health

Project (DDHP) which was designed to assess dental caries severity of children (Tellez et al.,

2006). The target population of this study is low-income African-American children under

age of six and their main caregivers who resided in Detroit, Michigan. Although the study is

longitudinal in nature, we use cross-sectional data of 897 children surveyed in the first wave

of examinations conducted between 2002 and 2003. In our analysis, the outcome variable is

considered as DS which represents the number of decayed tooth surfaces and sugar intake

and age are used as covariates. We compare the results of proposed test with the results

from existing testing procedures proposed by Van den Broek (1995) and Jansakul and Hinde

(2008) assuming a constant mixing weight.
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Score test proposed by Van den Broek (1995) is performed specifying the distribution

under the null model as Poisson distribution and the mean of the null model as a function

of covariates Age (child’s age in years), SI (the child’s sugar intake), and interaction Age∗SI.

The score test proposed by Jansakul and Hinde (2008) is conducted specifying the distri-

bution under the null model as Negative Binomial distribution and with the same mean

function. Our proposed robust test does not require the mean of the null model as a func-

tion of covariates and the test can be performed without specifying the baseline distribution

specifically as Poisson distribution or Negative Binomial distribution. The results are given

in Table 3.3.

Table 3.3: Comparison of score test statistics, degrees of freedoms and associated p-values
of homogeneity tests for dental caries data.

Van den Broek Jansakul and Hinde Robust
test test test

df 1 1 1
Test statistic 30098.21 0.0106 19.0774

p-value <0.001 0.9178 <0.001

The proposed test statistic and the score test proposed by Van den Broek (1995) reject

the null hypothesis at 5% significance level, supporting the hypothesis of heterogeneity. The

test statistic of Jansakul and Hinde (2008) also fails to reject the homogeneity hypothesis.

Their test averages the mixing weights over the space of covariates under the assumption

of constant mixing weight which may lose the power of the test when both deflation and

inflation are present in the data. These data had been studied by Todem et al. (2012)

and they revealed that there was an inflation of zero dental caries for younger children and

deflation of zero dental caries for older children. When inflation and deflation at zero appear

to be of the same magnitude, the test is not powerful enough to capture the heterogeneity

in data (Todem et al., 2012). Interestingly, even under this scenario, our proposed test

still can have power to detect the heterogeneity. It is worth to mention that rejecting the

hypothesis of homogeneity under the Van den Broek (1995) test does not give evidence that

the zero-inflated poisson model provides the best fit for the data.
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3.4.2 Girl Scout Data

The use of proposed score test is illustrated with girl scout data from the study of Scouting

Nutrition and Activity Program (SNAP) by Rosenkranz et al. (2010). The objective of the

study is to evaluate the effectiveness of an intervention program designed to improve the

physical activity and nutrition environment in Girl Scout troops. In this study, seven Girl

Scout troops were randomized to intervention (3 troops with 34 girls) and to control (4

troops with 42 girls). In the intervention, troop leaders were trained to implement policies

promoting physical activity and healthful eating opportunities at troop meetings. At each

troop meeting during seven meetings from October, 2007 to April, 2008, a trained research

assistant observed and counted Health and Nutrition Promotions implemented by troop

leaders. Research assistants were blind to the condition of each troop.

For our analysis, we focus on the Nutrition Promotion activities. The number of nu-

trition promotions implemented by troop leaders in every 5 minutes at the troop meeting

are considered as the count outcome variable. We conduct our proposed score test along

with the score tests proposed by Van den Broek (1995) in which the baseline distribution

is Poisson and by Jansakul and Hinde (2008) in which the baseline distribution is Negative

Binomial, assuming a constant mixing weight. For Van den Broek’s test and Jansakul and

Hinde’s test, the mean is considered as λ = exp(β0 +β1X1) where X1 is an indicator variable

for the intervention (1=intervention group, 0=control group).

Table 3.4: Comparison of score test statistics, degrees of freedoms and associated p-values
of homogeneity tests for Girl Scout data.

Van den Broek Jansakul and Hinde Robust
test test test

df 1 1 1
Test statistic 56.8558 0.0302 0.057

p-value <0.001 0.8620 0.8110
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Score test proposed by Van den Broek (1995) rejects the null hypothesis at 5% significance

level. Our proposed robust test and the score test proposed by Jansakul and Hinde (2008)

fail to reject the null hypothesis, which are in favor of the homogeneous model under the

null hypothesis. To evaluate these test results, we compare several count models by Akaike

Information Criteria (AIC). The results are given in Table 3.5. Mean function in each

count model is considered as λ = exp(β0 + β1X1) where X1 is an indicator variable for the

intervention. Compared to other count models, Negative Binomial (NB) model shows the

smallest AIC. Additionally, the observed proportion of the count outcome and the fitted

proportions by the Negative Binomial model indicate that NB model fits the data well (see,

Figure 3.1). This result is consistent with the results of our robust test and Jansakul and

Hinde’s test. We also conduct a stratification analysis to investigate whether both zero

inflation and deflation are present in data. Figure 3.2 presents the observed proportions and

the predicted proportions for the intervention group and the control group. Moreover, we

examined the mixing weights under both groups. The mixing weight for the intervention

group was not significant (Wald test, p-value=0.7930) and it was same for the control group

(Wald test, p-value=0.9913). Thus, there is no evidence of the presence of zero-inflation or

zero-deflation in the data.

It is interested to mention that the coefficient of X1 in NB is significant (estimated co-

efficient=1.965, p-value< 0.001, Table 3.5) indicating that the intervention program has a

significant effect on the Nutrition Promotions implemented by girl scout leaders.

3.5 Discussion

The proposed robust score test can address the misspecification issue under the class of zero-

inflated models and performs reasonably well under the misspecifications. The test does not

require a specification of mean function of the baseline distribution or the specification of

baseline distribution specifically as Poisson or Negative Binomial when performing homo-

geneity score test. This test might not work well if the true baseline model is Binomial. It
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Table 3.5: Fits of different count models for Girl Scout data.

Estimated
Model coefficient of intervention effect AIC

β̂1 ω̂
Poisson 1.965 - 354.86

(< 0.001)
NB 1.9646 - 271.61

(< 0.001)
ZIP 1.7754 0.4872 304.02

(< 0.001) (< 0.001)
ZINB 2.0225 -2.6896 273.61

(< 0.001) (0.8609)
Note: p-value of the Wald test is given in the parentheses.
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Figure 3.1: Observed vs fitted proportions for Girl Scout data by the NB model.

would be of interest to study the extensions of the test when the true underlying distribution

is Binomial or any other count distribution. Further, this test can be extended to incorporate

correlated count data. Since the true models are often unknown a priori, the robust test

approach would be an efficient approach to detect heterogeneity under zero-inflated models.
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Figure 3.2: Observed vs fitted proportions by the NB model for intervention group and
control group in Girl Scout data.
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Chapter 4

A robust homogeneity test for

correlated count data with excess

zeros

4.1 Introduction

Count data with excess zeros often exhibit correlation due to the hierarchical nature of the

study design or due to the data collection procedure with repeated measurements on subjects.

These data are commonly encountered in Biomedical and Health Care applications where

the count outcomes often represent repeated measurements on the patients or the outcomes

of the patients who are typically clustered within the physicians or hospitals (for example,

see Wang et al., 2002; Hur et al., 2002; Yau and Lee, 2001; Moulton et al., 2002; Min and

Agresti, 2005).

Zero-Inflated models are often used in practice to accommodate these data with excess

zeros. In literature, under the class of zero-inflated models, two approaches are commonly

used to incorporate correlation in the data. In the first approach, random effects are included

into the model and use the full likelihood for the parameter estimation (Hall, 2000; Wang

et al., 2002; Hur et al., 2002; Yau et al., 2003; Lee et al., 2006) and in the second approach, a
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quasi-likelihood function derived from a working independence model is used with a sandwich

estimator of the variance-covariance matrix (Moulton et al., 2002; Hsu et al., 2014).

In many applications of Zero-Inflated models, as a goodness of fit, homogeneity tests are

used to test for the zero-inflation or deflation in data. In these tests, the mixture probability

or the mixing weight that represents the extent of heterogeneity is examined at zero. Par-

ticularly, a zero mixing weight indicates that zero counts are generated from a homogeneous

population. There is a considerable literature on testing for heterogeneity on cross-sectional

zero-inflated data (Van den Broek, 1995; Deng and Paul, 2000; Jansakul and Hinde, 2002;

Todem et al., 2012). For longitudinal zero-inflated count data, there is a homogeneity score

test proposed by Xiang et al. (2006) and a homogeneity Wald test proposed by Hsu et al.

(2014). However, in the classical testing procedure, it is required to have a correct model

specification to provide valid statistical inferences. To our knowledge, there is no homo-

geneity test which is robust to the misspecifications under the zero-inflated models. In this

chapter, we propose a homogeneity test which is robust to a misspecified conditional mean

or an incorrect baseline distribution in the testing procedure. As an addition to the com-

monly used score test, we propose a Wald test which can be easily performed in practice

with minimal programming efforts. Technically, the proposed Wald test is developed under

the framework of Poisson-Gamma mixture model which can provide a more general frame-

work to incorporate various baseline distributions without specifying the mean function. We

accommodate the correlation in data using a quasi likelihood approach under the working

independence model coupled with the sandwich estimator of the variance-covariance matrix

to adjust for any misspecification of variance-covariance matrix while conducting the test.

The rest of this chapter is organized as follows. In Section 4.2, we describe the zero-

inflated model for correlated count data and the quasi likelihood approach which is used

in the proposed methodology. In Section 4.3, we propose a robust homogeneity Wald test

for evaluating heterogeneity under zero-inflated models. We conduct numerical studies to

evaluate the finite sample properties of the proposed Wald test with an application to the

longitudinal dental caries data from Detroit Dental Health Project in Section 4.4.
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4.2 Zero-inflated model for correlated count data

Suppose that Yij is a random variable which represents a count response of the jth subject in

the ith cluster such that i = 1, ..., n are independent clusters and j = 1, ...,mi are correlated

observations within the cluster. The outcome Yij is assumed as drawn from a mixture of a

degenerate distribution at 0 and a non-degenerate distribution hij(yij;θ) such that,

P (Yij = yij) =


ωij + (1− ωij) hij(0;θ) if yij = 0

(1− ωij) hij(yij;θ) if yij = 1, 2, 3, ...,

where ωij is the mixing weight which is constrained as −hij(0;θ)/(1− hij(0;θ)) ≤ ωij ≤ 1,

for i = 1, ..., n, which accommodates both zero-inflation and zero-deflation (see Todem et al.,

2012). In practice, hij(.) is often defined as the Poisson distribution or Negative Binomial

distribution (see for example, Farewell and Sprott, 1988; Lambert, 1992; Van den Broek,

1995; Jansakul and Hinde, 2008) and θ is the finite parameter vector which dominates the

baseline distribution hij(.).

4.3 The proposed robust test for correlated zero-inflated

count data

We are specifically interested in the two-sided hypotheses,

H0 : ωij = 0 for all i, j vs H1 : ωij 6= 0 for some i, j

Under the assumption of constant mixing weight ω for all i, j, we consider a working in-

dependence model in which Yijs are independent random observations from a mixture of
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degenerate distribution at 0 and a Poisson distribution such that,

Yij ∼


0 with prob. ω

Poisson(Λij) with prob. 1− ω,

where Λij ∼ Gamma(α, β) with α and β are shape and scale parameters.

By integrating over the gamma random effects, the marginal distribution fYij(yij) under the

working independence model is

fYij(yij) =
Γ(yij + α)

yij! Γ(α)

(
β

1 + β

)yij( 1

1 + β

)α
, yij = 0, 1, 2, 3, ...

The quasi-likelihood function Lquasi(yi, ζ) for cluster i under working independence model is

Lquasi(yi, ζ) =

mi∏
j=1

P (Yij = yij),

where yi = (yi1, yi2, ..., yimi) and ζ = (ω, α, β)t is a finite parameter vector.

It is well known that with the correct specification of the marginal distribution fYij(yij), ζ̂

would be a consistent estimate of ζ∗ which is the true value of ζ. Further, ζ̂ is asymptotically

normally distributed such that,

√
n(ζ̂ − ζ∗)

d−→ N(0,Ω),

where Ω = limn→∞ n[I(ζ∗)]−1Υ(ζ∗)[I(ζ∗)]−1 with [I(ζ∗)] = −E

[∑n
i=1

∑mi
j=1

∂Sij(ζ)

∂ζ

]
,

Υ(ζ∗) =
∑n

i=1 E

[∑mi
j=1 Sij(ζ)

] [∑mi
j=1 Sij(ζ)

]t
and Sij(ζ) =

[
∂ log(P (Yij = yij))

∂ζ

]
evaluated

at ζ = ζ∗.

A consistent estimator of the asymptotic variance-covariance matrix that can adjust for any

misspecification of the true association structure is called the Huber sandwich estimator

which was proposed by Huber (1967). In particular, the variance-covariance estimation is
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combined with its corresponding empirical version in a sandwich form such that,

V̂ (ζ̂) = [Î(ζ̂)]−1Υ̂(ζ̂)[Î(ζ̂)]−1,

where Î(ζ̂) = −
[∑n

i=1

∑mi
j=1

∂Sij(ζ)

∂ζ

]
evaluated at ζ = ζ̂, Υ̂(ζ̂) =

∑n
i=1

[∑mi
j=1 Sij(ζ̂)

] [∑mi
j=1 Sij(ζ̂)

]t
and Sij(ζ̂) =

[
∂ log(P (Yij = yij))

∂ζ

]
evaluated at ζ = ζ̂. The estimated variance-covariance

matrix V̂ (ζ̂) is the Huber sandwich estimator which yields consistent estimate of the asymp-

totic variance-covariance matrix Ω (for details, see Freedman, 2006).

Based on these settings, the hypotheses can be rewritten as a linear combination of the

parameter vector ζ such that,

H0 : Cζ = 0 vs H1 : Cζ 6= 0

where C is a contrast matrix such that C=[1 0 0] and ζ = (ω, α, β)t.

A Wald test statistic of homogeneity that accommodates correlated count data can be

defined as,

Wn = (Cζ̂)t{CV̂ (ζ̂)Ct}−1(Cζ̂),

where ζ̂ are consistent estimates of the parameter vector ζ and V̂ (ζ̂) is the Huber sandwich

estimator of the variance-covariance matrix.

Under the null hypothesis, this Wald test statistic follows a χ2 distribution with rank(C)

degrees of freedom. Hence, under the assumption of constant mixing weight, the test statistic

follows a χ2
1 distribution.

4.4 Numerical Studies

We generate correlated count data from zero-inflated Negative Binomial and zero-inflated

Poisson distributions separately. True means of the Poisson process and the Negative Bino-

mial process take the forms log(λ∗ij) = β∗0 , log(λ∗ij) = β∗0 +β∗1x1i, log(λ∗ij) = β∗0 +β∗1x1i+β
∗
2x2i,
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log(λ∗ij) = β∗0 + β∗1x1i + β∗2x2i + β∗3x3i and log(λ∗ij) = β∗0 + β∗2x2ie
−β∗2x2i where β∗0 , β

∗
1 , β

∗
2 , β

∗
3

are regression parameters, i = 1, ..., n and j = 1, ...,m. The covariates x1i, x2i and x3i are

constant across all j = 1, ...,m and generated from a uniform distribution on (0,1), Binomial

distribution with success probability 0.3 and a standard normal distribution respectively.

To introduce correlation between the data from the same cluster i, we use a Bernoulli ran-

dom variable coupled with the independent zero-inflated Negative Binomial or zero-inflated

Poisson distributions. Specifically, we define Yij = (1 − bij)Y ind
ij + bijui where bij is an in-

dependent Bernoulli variable with success probability p∗ = 0.7 and ui is an independent

random variable with the same distribution as Y ind
ij . The observations from the same cluster

i share the same ui and induce correlation in data. For each parameter setting, we consider

n = 50, 100, 200, 500 and 1000 clusters with m = 3 observations within each cluster.

(1) Impact of misspecification on the validity of classical Wald test

To evaluate the empirical type I error rate of the classical Wald test under the misspecifica-

tion of the conditional mean, we generate correlated data from a Poisson distribution with

sample sizes 50, 200, 500 and 1000. The true underlying Poisson mean under the working

independence model is assumed as λ∗ = exp{0.3 + 0.5X1 + 0.2X2}. Empirical type I error

rates of the classical Wald tests are evaluated under the correctly specified conditional mean

and in the situations where the conditional mean is not well-specified. Empirical type I error

rates are presented in Table 4.1. When the mean is well specified tests have well controlled

type I error rates at 5% nominal level, however, when it is not well-specified, the classical

Wald tests result in inflated type I error rates.
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Table 4.1: At the 5% significance level, the empirical type I error rates of the classical Wald
test under the misspecification of the conditional mean with data generated from a Poisson
process with true mean log(λ∗) = 0.3 + 0.5X1 + 0.2X2.

n
Working mean 50 200 500 1000

misspecified: log(λ) = β0 + β1X1 0.080 0.095 0.110 0.190
correctly specified: log(λ) = β0 + β1X1 + β2X2 0.043 0.052 0.051 0.049
misspecified: log(λ) = β0 + β1X1 + β2X2 + β3X3 0.071 0.083 0.090 0.089
X1 ∼ U(0, 1), X2 ∼ Bin(n, 0.3) and X3 ∼ N(0, 1).

To evaluate the impact of misspecification of the baseline distribution, we generate cor-

related data from a Negative Binomial distribution with sample sizes 50, 200, 500 and

1000 and mean functions λ∗ = exp{1.5 + 0.35X1}, λ∗ = exp{1.5 + 0.35X1 + 0.2X2} and

λ∗ = exp{1.5 + 0.35X1 + 0.2X2 + 0.3X3}. For each simulated dataset, working model is con-

sidered with well specified mean function but the working baseline distribution is considered

as the Poisson distribution. Empirical type I error rates are presented in Table 4.2. We can

see that the test has a well controlled type I error rate at 5% nominal level when the null

model is well specified. However, when it is not well-specified, the classical Wald test result

in inflated type I error rate.

Table 4.2: At the 5% significance level, the empirical type I error rates of the classical Wald
test under the misspecification of the baseline distribution.

True baseline distribution: NB process n
Working baseline distribution: Poisson process 50 200 500 1000
log(λ) = β0 + β1X1 0.910 0.976 0.996 0.998
log(λ) = β0 + β1X1 + β2X2 0.890 0.979 0.990 0.995
log(λ) = β0 + β1X1 + β2X2 + β3X3 0.081 0.440 0.830 0.962
X1 ∼ U(0, 1), X2 ∼ Bin(n, 0.3) and X3 ∼ N(0, 1).

(2) Empirical size and power of the proposed robust test

We conduct simulation studies to evaluate the proposed Wald test in terms of the type I error

rate and the power to detect heterogeneity in the population under the misspecifications. The
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robust Wald test is conducted assuming the constant mixing weight under the alternative

and all simulations are replicated 1000 times. We evaluate the type I error rate of the

proposed Wald test at 5% nominal level when the true mean function takes various linear

and non-linear forms. Size of the test is evaluated separately for the cases where the true

baseline distribution is Poisson or Negative Binomial. We further study the empirical power

of the test to detect the heterogeneity in the population and evaluate the power of the

test when the true mixing weight is constant and when it depends on covariates. Results

are given in Table 4.3 and Table 4.4 for the correlated zero-inflated Negative Binomial and

correlated zero-inflated Poisson data respectively. This quasi-likelihood approach can be

easily implemented in SAS NLMIXED and the parameter estimation can be done routinely

with the use of ‘EMPIRICAL’ option to obtain the sandwich estimator along with the options

‘QPOINTS=1’ and ‘NOAD’ for using the working independence model (Hsu et al., 2014).

From Table 4.3, we can see that the proposed Wald test maintains the size well around

the nominal level 0.05. The power of the test increases as the sample size increases or the

mixing weight (ω∗) increases. The test is capable enough to detect the heterogeneity in the

population when the true mixing weight is constant or when it depends on covariates. Fur-

ther, the test is robust to any linear or non-linear mean function used in the data generating

process.

From Table 4.4, when the true baseline distribution is Poisson, the size of the proposed

robust test tends to be conservative but stable as the sample size increases. The power of

the test increases as the sample size increases. In both situations where the true mixing

weight is covariate dependent or constant, the test performs well. The proposed Wald test

is robust to any linear or non-linear mean function used in the data generating process.

4.5 Real Data Application

The proposed Wald test is applied to longitudinal data from Detroit Dental Health Project

(DDHP) which focused on the oral health of low-income African-American children and

their caregivers (Sohn et al., 2007). For this study, the eligible participants were 1021
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Table 4.3: Empirical size and power of the robust Wald test statistics at the nominal level
0.05, based on 1,000 samples of correlated zero-inflated Negative Binomial data with mean
λ∗.

n
log(λ∗) ω∗ 50 100 200 500 1000
1.5 ω∗ = 0 0.065 0.058 0.052 0.048 0.051

ω∗ = 0.1 0.680 0.822 0.874 0.910 0.964
ω∗ = 0.2 0.774 0.858 0.890 0.950 0.983
ω∗ = 0.1− 0.2X1 0.451 0.572 0.820 0.970 0.999

1.5 + 0.35X1 ω∗ = 0 0.047 0.049 0.051 0.054 0.048
ω∗ = 0.1 0.670 0.850 0.890 0.930 0.970
ω∗ = 0.2 0.760 0.870 0.920 0.970 0.990
ω∗ = 0.1− 0.2X1 0.413 0.630 0.872 0.975 0.993

1.5 + 0.35X1 − 0.1X2 ω∗ = 0 0.058 0.060 0.056 0.057 0.055
ω∗ = 0.1 0.770 0.881 0.960 0.981 0.997
ω∗ = 0.2 0.883 0.962 0.978 0.989 0.998
ω∗ = 0.1− 0.2X1 0.530 0.593 0.820 0.980 0.996

0.3 + 0.5e−0.2X2 ω∗ = 0 0.060 0.057 0.056 0.048 0.051
ω∗ = 0.1 0.671 0.802 0.880 0.974 0.986
ω∗ = 0.2 0.680 0.820 0.951 0.979 0.998
ω∗ = 0.1− 0.2X1 0.552 0.665 0.783 0.960 0.991

X1 ∼ U(0, 1) and X2 ∼ Bin(n, 0.3)

families with a child under age of 6 and his/her main caregiver. Dental examinations were

conducted and the participants were followed up in three waves in 2002-2003 (Wave1), 2004-

2005 (Wave2) and 2007 (Wave3). The data consist of oral health related characteristics and

general health related information of the participants. Some participants have not completed

the follow-up examinations and it was identified that there was no systematic difference

between the participants who completed the follow-up examinations and who dropped out.

For our analysis, data collected on 1021 children are considered. As the outcome variable, we

consider the DS score which represents the number of decayed tooth surfaces of each child.

Dental caries scores collected across children are independent but the scores collected on the

same child across the waves are correlated. Hence, the data are longitudinal in nature. As
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Table 4.4: Empirical size and power of the robust Wald test statistics at the nominal level
0.05, based on 1,000 samples of correlated zero-inflated Poisson data with mean λ∗.

n
log(λ∗) ω∗ 50 100 200 500 1000
0.3 ω∗ = 0 0.035 0.038 0.042 0.036 0.041

ω∗ = 0.1 0.730 0.871 0.910 0.953 0.974
ω∗ = 0.2 0.762 0.890 0.962 0.980 0.990
ω∗ = 0.1− 0.2X1 0.571 0.734 0.890 0.972 0.990

0.3 + 0.5X1 ω∗ = 0 0.023 0.028 0.034 0.027 0.053
ω∗ = 0.1 0.740 0.830 0.920 0.960 0.980
ω∗ = 0.2 0.860 0.950 0.970 0.981 0.990
ω∗ = 0.1− 0.2X1 0.530 0.831 0.913 0.980 0.991

0.3 + 0.5X1 − 0.1X2 ω∗ = 0 0.038 0.035 0.048 0.052 0.049
ω∗ = 0.1 0.652 0.892 0.960 0.985 0.992
ω∗ = 0.2 0.861 0.940 0.989 0.996 0.998
ω∗ = 0.1− 0.2X1 0.590 0.622 0.910 0.960 0.991

0.3 + 0.5e−0.2X2 ω∗ = 0 0.040 0.038 0.043 0.039 0.042
ω∗ = 0.1 0.833 0.951 0.987 0.992 0.994
ω∗ = 0.2 0.930 0.968 0.989 0.995 0.998
ω∗ = 0.1− 0.2X1 0.370 0.532 0.811 0.982 0.996

X1 ∼ U(0, 1) and X2 ∼ Bin(n, 0.3)

covariates, we consider the child’s age at the baseline year (Age), child’s sugar intake (SI)

and indicator variables for the follow-up examinations.

The proposed Wald test does not require the mean of the baseline model as a function

of covariates and the test can be conducted without specifying the baseline distribution as

Poisson or Negative Binomial. As the true baseline distribution is unknown in practice, for

comparison, we also conduct the classical homogeneity Wald test under the Zero-Inflated

Negative Binomial (ZINB) model with constant mixing weight and using the sandwich esti-

mator of the variance-covariance matrix. The baseline mean λij is defined as log(λij) = x
′
ijβ

where xij is a vector of covariates including Age, SI, Age* SI, Wave2, Wave3, Age*Wave2,

Age*Wave3, where Wave2 and Wave3 are indicator variables for the Waves and β is a vec-

tor of regression parameters. The overdispersion parameter under the Negative Binomial
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distiribution is κ. The results of the proposed Wald test and the classical Wald test under

ZINB model are given in Table 4.5. Parameter estimates of the model with corresponding

standard errors are given in Table 4.6. The overdispersion parameter κ under the ZINB

model is significant (κ̂=1.3989, p-value<0.0001).

The proposed Wald test statistic rejects the null hypothesis at 5% significance level

supporting the hypothesis of heterogeneity. The classical Wald test under ZINB model fails

to reject the null hypothesis at 5% significance level. To evaluate the results further we

conduct a stratification analysis by waves. As indicated by Figure 4.1, there is no strong

evidence of inflation at zero in Wave 1, Wave 2 and Wave 3. As a result, the homogeneity

test conducted under the Zero-Inflated Negative Binomial model has not been able to detect

the heterogeneity under the assumption of constant mixing weight while the proposed robust

Wald test has been able to detect the slight heterogeneity. The result from the proposed

test is consistent with the findings from Hsu et al. (2014) who used the same dataset and

applied a Wald test for heterogeneity assuming the mixing weight depend on covariates and

supports for the existence of heterogeneity in the population. Even with the constant mixing

weight in the zero-inflated model, the proposed robust Wald test has been able to identify

the heterogeneity in the population.

Table 4.5: Comparison of Wald test statistics and associated p-values of the homogeneity
tests for longitudinal dental caries data.

Test Statistic p-value
Robust Wald test 390 <0.0001

Classical Wald test under ZINB with log(λij) 2.37 0.1238
(assuming constant ω)
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Table 4.6: Fitted constant mixing weight models for longitudinal dental caries data.

ZINB Working Independence model
Parameters Estimates S.E. Estimates S.E.
β0 −0.9242∗ 0.2083 - -
β1 4.2680∗ 0.3174 - -
β2 2.0567∗ 0.6182 - -
β3 2.1609∗ 0.1798 - -
β4 2.6758∗ 0.1962 - -
β5 −3.0576∗ 0.2856 - -
β6 −4.0864∗ 0.3129 - -
β7 −2.6886∗ 0.9852 - -
ω 0.0475∗ 0.0308 0.2644∗ 0.0134
κ 1.3989∗ 0.1335 - -
α∗∗ - - 1.1709∗ 0.0789
β∗∗ - - 6.7135∗ 0.4650
κ indicates the overdispersion parameter under the ZINB model
α∗∗ and β∗∗ are the parameters under the working independence model
* indicates p-value < 0.05
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Figure 4.1: Observed vs fitted proportions by waves under the NB model for Detroit dental
caries data.
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Chapter 5

Discussion

5.1 Summary

This study has extended the literature by developing two homogeneity tests for evaluating

heterogeneity under zero-inflated models. The classical testing procedures of homogeneity

under this class of models require the correct specification of the baseline model, which may

be subject to misspecification. In most of the existing testing procedures the conditional

mean under the baseline model is assumed to be linearly related to covariates though the

log link function. Such an assumption may not be reasonable in some situations where the

linearity assumption may not correctly identify the true mean function. Depending on the

nature of the response, the specified baseline distribution under the model could be also

incorrect resulting unreliable statistical inferences. The proposed testing procedure address

these issues of misspecification by developing a score test based on a more general parametric

framework, which can incorporate various baseline distributions also without specifying the

associated mean function. The proposed methodology is extended to incorporate correlated

count data with excess zeros by developing a Wald test for testing heterogeneity under this

class of models.

The proposed tests have some limitations as the mixing weight under the proposed

methodology is assumed to be constant which may not be realistic for the heterogeneity
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that varies with the covariate profile. In other words, such an assumption may not be rea-

sonable when the true mixing weights are related to covariates. Although the proposed

methodology naturally embedded the testing for both zero inflation and deflation, it should

be noted that the one-sided version of the test might be desirable for testing zero-inflation

alone. If the alternative ω 6= 0 is replaced by ω > 0, the reference distribution of the score

test statistic would not be a χ2
1 distribution, instead, the limiting distribution would fol-

low a mixture of a degenerate point mass at zero and a χ2
1 distribution with equal mixing

proportions.

In terms of the proposed Wald test statistic which relies on the working independence

assumption in the estimation coupled with the sandwich estimator, the Generalized Esti-

mating Equations (GEE) approach under a specified working correlation matrix would be

an alternative approach to account for the correlation in data. Such approach, however, can

be computationally demanding in practice.

From the practical standpoint, the proposed Wald test can be implemented in a com-

mercial software such as SAS with minimal programming effort. The advantage of only

having to estimate few parameters compared to the existing homogeneity tests would be

useful in practice. The proposed Wald test would be a useful extension for the literature on

homogeneity tests for correlated count data with excess zeros.

Given that the true underlying baseline distribution and the relation between the mean

of the response and covariates is usually unknown in practice, the proposed general approach

that does not specify the form of the relation a priori appears to be a more robust approach

in practice. Extensions of the test when the true underlying distribution is Binomial or

any other count distribution would be of interest. This extension and generalization of

the methodology for the cases that the true baseline distribution is a member of the linear

exponential family may be the subject of further research.
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Appendix A

Score function and second derivatives

of log likelihood function for Robust

score test

Based on the log-likelihood function L = l(y, α, β, ω),

∂L

∂ω
=

n∑
i=1

{
I(yi=0)

1

[ω + (1− ω)(1 + β)−α]
[1− (1 + β)−α]− I(yi>0)

1

1− ω

}
Sw =

(
∂L

∂ω

)
ω=0

=
n∑
i=1

{
I(yi=0)

[1− (1 + β)−α]

(1 + β)−α
− I(yi>0)1

}
=

n∑
i=1

{
I(yi=0).1− I(yi=0)(1 + β)−α − I(yi>0)(1 + β)−α

(1 + β)−α

}
=

n∑
i=1

{
I(yi=0) − (1 + β)−α

(1 + β)−α

}
=

n∑
i=1

{
I(yi=0)

(1 + β)−α
− 1

}
=

n∑
i=1

{
I(yi=0)(1 + β)α − 1

}
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∂2L

∂ω2
=

n∑
i=1

{
I(yi=0)

−[1− (1 + β)−α]2

[ω + (1− ω)(1 + β)−α]2
− I(yi>0)

1

(1− ω)2

}
−E
(
∂2L

∂ω2

)
=

n∑
i=1

{
[1− (1 + β)−α]2

[ω + (1− ω)(1 + β)−α]
+

[1− (1 + β)−α]

(1− ω)

}
Iωω = −E

(
∂2L

∂ω2

)
ω=0

= n

{
[1− (1 + β)−α]2

(1 + β)−α
+ [1− (1 + β)−α]

}
= n

{
[1− (1 + β)−α]

[
[1− (1 + β)−α]

(1 + β)−α
+ 1

]}
= n

{
[1− (1 + β)−α]

(1 + β)−α

}
= n

{
1

(1 + β)−α
− 1

}
= n

{
(1 + β)α − 1

}

∂2L

∂ω∂α
=

n∑
i=1

{
I(yi=0)

(1 + β)−α log(1 + β)

[ω + (1− ω)(1 + β)−α]
+

[1− (1 + β)−α](1− ω)(1 + β)−α log(1 + β)

[ω + (1− ω)(1 + β)−α]2

}
−E
[
∂2L

∂ω∂α

]
=

n∑
i=1

{
− (1 + β)−α log(1 + β)− [1− (1 + β)−α](1− ω)(1 + β)−α log(1 + β)

[ω + (1− ω)(1 + β)−α]

}
Iωα = −E

[
∂2L

∂ω∂α

]
ω=0

= n{−(1 + β)−α log(1 + β)− [1− (1 + β)−α] log(1 + β)}

= n{−(1 + β)−α log(1 + β)− log(1 + β) + (1 + β)−α] log(1 + β)}

= −n log(1 + β)
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∂2L

∂ω∂β
=

n∑
i=1

{I(yi=0)
α(1 + β)−α−1

[ω + (1− ω)(1 + β)−α]
+

[1− (1 + β)−α](1− ω)α(1 + β)−α−1)

[ω + (1− ω)(1 + β)−α]2
}

−E
(
∂2L

∂ω∂β

)
=

n∑
i=1

{−α(1 + β)−α−1 − [1− (1 + β)−α](1− ω)α(1 + β)−α−1)

[ω + (1− ω)(1 + β)−α]
}

Iωβ = −E
(
∂2L

∂ω∂β

)
ω=0

= n{−α(1 + β)−α−1 − [1− (1 + β)−α]α(1 + β)−α−1)

(1 + β)−α
}

= n{−α(1 + β)−α−1 − α(1 + β)−1 + α(1 + β)−α−1)}

=
−nα
1 + β

∂2L

∂α∂β
=

n∑
i=1

{
I(yi=0)

(ω − 1)(1 + β)−α−1[1− α log(1 + β)]

[ω + (1− ω)(1 + β)−α]

− (1− ω)2α(1 + β)−α log(1 + β)(1 + β)−α−1

[ω + (1− ω)(1 + β)−α]2
− I(yi>0)

1

1 + β

}
−E
(
∂2L

∂α∂β

)
=

n∑
i=1

{
I(yi=0) − (ω − 1)(1 + β)−α−1[1− α log(1 + β)]

+
(1− ω)2α(1 + β)−α log(1 + β)(1 + β)−α−1

[ω + (1− ω)(1 + β)−α]
+ (1− ω)

[1− (1 + β)−α]

1 + β

}
Iαβ = −E

(
∂2L

∂α∂β

)
ω=0

= n

{
(1 + β)−α−1[1− α log(1 + β)] + α log(1 + β)(1 + β)−α−1

+ [1− (1 + β)−α](1 + β)−1

}
= n

{
(1 + β)−1

}
=

n

1 + β
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∂2L

∂β2
=

n∑
i=1

{
I(yi=0)

(1− ω)α(α + 1)(1 + β)−α−2

[ω + (1− ω)(1 + β)−α]
− (1− ω)2α2[(1 + β)−α−1]2

[ω + (1− ω)(1 + β)−α]2

+ I(yi>0)

[
−yi
β2

+
(yi + α)

(1 + β)2

]
−E
(
∂2L

∂β2

)
=

n∑
i=1

{
− (1− ω)α(α + 1)(1 + β)−α−2 +

(1− ω)2α2[(1 + β)−α−1]2

[ω + (1− ω)(1 + β)−α]

− (1− ω)[1− (1 + β)−α]

[
−yi
β2

+
(yi + α)

(1 + β)2

]}
Iββ = −E

(
∂2L

∂β2

)
ω=0

=
n∑
i=1

{
− α(α + 1)(1 + β)−α−2 + α2(1 + β)−α−2 − [1− (1 + β)−α]E

[
−yi
β2

+
(yi + α)

(1 + β)2

]}
=

n∑
i=1

{
− α(1 + β)−α−2 − [1− (1 + β)−α]E

[
−yi
β2

+
(yi + α)

(1 + β)2

]}

∂2L

∂α2
=

n∑
i=1

{
−(ω − 1) log(1 + β)2(1 + β)−α

[ω + (1− ω)(1 + β)−α]
− (1− ω)2[(1 + β)−α log(1 + β)]2

[ω + (1− ω)(1 + β)−α]2

+ I(yi>0)[trigamma(yi + α)− trigamma(α)]

}
−E
(
∂2L

∂α2

)
=

n∑
i=1

{
(ω − 1) log(1 + β)2(1 + β)−α +

(1− ω)2[(1 + β)−α log(1 + β)]2

[ω + (1− ω)(1 + β)−α]

− (1− ω)[1− (1 + β)−α][trigamma(yi + α)− trigamma(α)]

}
Iαα = −E

(
∂2L

∂α2

)
ω=0

=
n∑
i=1

[(1 + β)−α − 1][E(d2lgamma(yi + α))− E(d2lgamma(α))],

where trigamma(yi+α) = d2lgamma(yi+α) =
∂2 log Γ(y + α)

∂α2
and d2lgamma(α) =

∂2 log Γ(α)

∂α2

50



Appendix B

Sample R Code: Robust score test

##########Robust score test###################

library(maxLik)

n=dim(y)[1]

g=matrix(1,n,1)

df1=dim(g)[2]

a_initial=1

b_initial=1

alpha=0.05

Likhood=function(param){

a_par=param[1]

b_par=param[2]

return(sum(lgamma(y+a_par)-lgamma(a_par)-lgamma(y+1)

+y*(log(b_par)-log(1+b_par))-(a_par*log(1+b_par))))

}
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A=matrix(rbind(c(1,0),c(0,1)),2,2)

B=matrix(rbind(0,0),2,1)

mle_results=maxLik(Likhood,start=c(a_initial,b_initial),

constraints=list(ineqA=A,ineqB=B))

alpha_res=mle_results$estimate[1]

beta_res=mle_results$estimate[2]

sw=sum((((y==0)*1)*((1+beta_res)^alpha_res))-1)

Iww=n*(((1+beta_res)^alpha_res)-1)

Iwa=-n*log(1+beta_res)

Iwb=(-n*alpha_res)/(1+beta_res)

Iwab=rbind(Iwa,Iwb)

vc=vcov(mle_results)

v=Iww-(t(Iwab)%*%vc%*%Iwab)

#score test statistic

s_robust=sw^2/v

s_robust=c(s_robust)

p_value=pchisq(s_robust,df1,lower.tail = FALSE)

s_robust

p_value

#######################################

B.1 Sample SAS Code: Robust Wald test

%MACRO modelFit(y);
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ods output Contrasts=testStat;

proc nlmixed data=d2 empirical noad qpoints=1 MAXITER=1000;

parms alpha=0.1 beta=0.1 wi=0;

bounds alpha >0;

bounds beta >0;

/*Robust test log-likelihood function*/

if y=0 then

ll=log(wi+(1-wi)*((1+beta)**(-alpha)))+b0 ;

else ll= log(1-wi)+lgamma(y+alpha)-lgamma(alpha)-lgamma(y+1)+y*log(beta)

-(y+alpha)*log(1+beta)+b0;

model y~general(ll);

random b0~normal(0,1) subject=SubjectID;

contrast "F-test" wi;

run;

ods output close;

%MEND modelFit;

data d2;

set dental_data;

SubjectID=subjectid;

%modelFit(y);

run;
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