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CHAPTER I
INTRODUCTION

Carrier-dispatching probleﬁ is one of the most frequently occuring
real-world problems in the transportation field. The problem is of in-
terest because it can be applied not only to the trucking industry but also
to railways, airlines and waterway shipping. It is worth mentioning that
the average annual expenditure of trucking industry alone is over §42
billion annually. Hence, the development of an economical transportation
system becomes more necessary.

Several approaches have been applied to carrier-dispatching problems
in recent year, but neither one is powerful enough to handle one of the
realistic size problems. It is not that these problems are mathematically
very complicated to state, but they can usually be formulated into a
simple mathematical programming form, for which methods of solution are
readily available. Obviously, the difficulty lies in the combinatorial
nature of the problem,

The carrier-dispatching problem can be viewed as a special case of
a classical traveling salesman problem under resource constraints. It
is a problem of determining the optimal delivery or pick-up routes in
which a number of destinations or demand points to be covered by various
carriers such that a certain objective is optimized. Among the objectives
usually considered are: (1) the minimization of total time traveled, (2)
the minimization of total traveling cost, (3) the minimization of total
traveled distance, and (4) the minimization of total number of dis-

patched carriers. The carrier-dispatching problem has been approached



by branch-and-bound, simulation, integer programming, dynamic pro-
gramming, and heuristics.

In this research, the carrier-dispatching problem has been solved
by a heuristic algorithm. The objective is to minimize the total
traveling cost. This indicates that the number of dispatched carriers

in the routes is to be minimized at same time.

1.1 Problem Definition:

The simplest form of carrier-dispatching problems may be the clas-
sical traveling salesman problem in which a salesman may visit each of
n destinations or demand points Dl’ D2’ Y Dn’ once, and only once,
starting from and terminating at the same depot or office. In generazal,
the salesman may be a vehicle, school bus, truck, or an airplane. The
operation may be one of "delivery" (e.g. merchandise delivery), one of
"pick-up (e.g. trash service), one combining both "delivery" and "pick-
up" {e.g. distilled water service), or one involving neither (e.g. house
calls of physician).

In real-world situations, the classical traveling salesman problem
may be modified by some added characteristics {resource constraints).
For example, there may be a limited cost (distance for each trip) Thus,
the salesman must determine his route within a minimized cost as well
as satisfying the limitation., Moreover, as in problems involving de-
livery or pick-up of commodities dl’ d2, - dn, at destinations
Dl’ DZ’ saey Dn’ and usually there is a capacity q of each carrier and
when di > g, it will be necessary to make one or more return to the

depot or office to get some more commodities.



When dl, d2, e dn represent the quantities of commodity to be
delivered or picked-up at destinations Dl' D2, sies y Dn’ various situ-
ations arise depending on whether the entire quantity must be served in
a single visit or whether the splitting of the total requirement into
two or more partial serving is permissible. Furthermore, in some dis-
patching problems there is a whole set of entities to be dispatched,
as for instance, a number of carriers or a set of crews. Another im-
portant variation among carrier-dispatching problems concerns the ob-
jective function. A solution with respect to the minimum distance
traveled, least time of travel, or minimum number of dispatching
carriers, may be desired.

According to the nature of the carrier-dispatching problem, it can be
briefly categorized as follows:

1. 8ingle-depot problems. There are several destinations or de-

mand points and only one depot in which commodities are stored. The
salesman determines optimal routes which cover every destination or de-
mand point, starting from and ending at the depot, delivering or picking-
up the commodity.

2. Multi-depot problems. It is a combination of single-depot prob-

lems, There are more than one depot, a carrier can start from any omne
of them but must return back to the same depot, several routes are
formed which satisfy the demand of every destination or demand point
under certain constraints.

3. Line-haul problems. Such problems are modification of multi-

depot problems. Every destination or demand point can be used for



shipping as well as recelving commodity to and from each other, that is,
every destination can be a depot as in single-and multi-depot problems.
The problem perhaps can be stated as follows: it is required to deliver
or pick-up commodity to their respective destinations or demand points

such that the total traveled cost (distance) is minimized.

1.2 Literature Review

The carrier-dispatching problem is a generalized traveling sales-
man problem as stated above. The major methods proposed for solving the
carrier-dispatching problem are branch-and-bound [9]? simulation [2,9,14,17],
integer programming [1,7], dynamlc programming [11], and heuristic pro-
gramming [3,4,5,6,9,10,15,16].

Hayes [9] has employed the branch-and-bound approach proposed by
Little et., al. [13] for solving the traveling salesman problem. The
method is also applicable for non-symmetrical cost or distance matrix.

In this algorithm, Hayes incorporated two of the possible modifications
which were suggested by Little, et al. The first was a "go to the right"
modification which enabled more nodes to be examined with decreased
computation time. Since the size of the tree grew so fast with an in-
crease in the number of demand points, the second modification was "throw
away the tree" modification of the '"'go to the right" method. This mod-
ification reduced the number of nodes which had to be stored in memory
during the solution process. This method is not successfully applied to
large size carrier-dispatching problems.

Braun [2] has formulated a simulation approach to the carrier-

dispatching problem. It begins with a random generation of the sequence



of stops and assigns available carrier with sufficient capacity to them
and then using a traveling salesman problem technique to find optimal
tours. It was noted that poor solution was obtained as the problem size
increases.

Integer programming seems to be an appropriate method to solve the
carrier-dispatching problem. Balinski and Quandt [1] have developed an
integer programming model based on Gomory's algorithm [7]. They define
m activities Ai, i=1, 2, ..., m, and an n-dimensional column vector
a,

ij

activity, a,, = 1; otherwise, ayy = 0. If Ci’ where 1 = 1, 2, ..,, n,

ij

is the cost of an activity, the carrier-dispatching problem can be formu-

» with 0 and 1 variable. When the j-th demand point is in i-th

lated as:

m
Minimize } w.C,
121 1
n
Subject to 121 Wiaij =1 where j = 1, 2, ..., n,

where n is the number of demand points and m is the number of routes.

Wi is zero-one variable having a value 1 if the activity Ai is used; zero
otherwise‘the limitation of this method are : (1) the model consists of

a large number of constraints even for a small size problem, (2) it

makes the solution undesirable when the problem has other constraints
because it just considers the activity constraint. It is possible to

improve this method by using linear programming to obtain a lower bound

on the total cost and then using 0-1 integer programming to solve it.



Held and Karpr[lll have formulated a dynamic programming model to
the traveling salesman problem and mentioned that it may be extended to
a multi-loop traveling salesman problem (a traveling salesman problem
with more than one salesman). Hayes [9] has examined such an idea and
developed a "straight forward" method to solve the carrier-dispatching
problems. It is also just good for small size problems.

Dantzig and Ramser [5] have first applied heuristic programming
to the carrier-dispatching problem. In this method, each demand point
is assigned to a fixed route and combined into pairs to detect likely
links in the distance (cost) matrix based on the proximity of any two
demand points. And then the constraints of the links are checked. After
all demand points are in respective route, the total distance (cost) of
each route is minimized by a traveling salesman problem technique. Clarke
and Wright [3] have felt that Dantzig and Ramser ignored the idea of
the minimizing total traveled distance (cost), so they have shifted the
emphasis to minimizing total traveled distance (cost) by using the savings
technique. Their method is feasible for solving practical size problems.
Cochran [4] has modified Clarke and Wrights' method. He has added a
route restriction on the traveled distance of each trip as a constraint
and developed a truck reassignment routine to improve the previous as-
signment. This method has been successfully extended by Hering [10]
by using a "look ahead feature'" for forming routes. |

The literature mentioned above are concerned with the single-depot
carrier-dispatching problems. A multi-terminal delivery problem al-

gorithm, developed by Tillman [15], is based on the savings concept as



in Clarke and Wrights' [3]. At present, there is little research on the

multi-terminal delivery problem.

1.3 Proposed Research

As shown above, the carrier-dispatching problem can be solved by
many methods. By examining these approaches,it appears that the heuristic
programming approach is the most practical procedure at present because
of their computational feasibility. With this in mind, we propose a
heuristic algorithm based on the graph-theoretical concept.

In this report, two algorithms using the minimum arboresence to
form an optimal tour covering all demand points and then partitioning
the tour into several subtours to satisfy the capacity constraints, are
proposed. Both single-and multi-depot carrier-dispatching problems have
been considered. The algorithm is illustrated by sample problems. In
addition, a geometrical search to thesavings approach will be examined.
It is conjectured that this seareh will help reduce the computational

effort involved.



CHAPTER I1
NON-SYMMETRIC SINGLE-DEPOT CARRIER-DISPATCHING PROBLEMS

The purpose of this chapter is to develop a heuristic method for
solving the non-symmetric single-depot carrier-dispatching problem.
This approach is based on minimum l-arborescence and trial-and-error

method.

The concept, definitions, and notation are provided in the balance
of this chapter. A sample.problem will demonstrate clearly the approach

and the associated algorithm stated in formal steps.

2.1 Basic Concepts

The non-symmetric single depot carrier-dispatching problem is basically

one of determining routes for a number of carriers, delivering or picking-
up commodities from a depot (terminal) to a set of given destinations (de-
mand points) such that the total traveling cost is minimized and the fol-
lowing conditions are satisfied: (1) the number of available carriers
and the carrying c#pacities are known, (2) the demand of each demand
point is known, (3) a given demand point can only appear on one route,
and (4) the routes to be determined must all be either "delivery" or
"pick-up" routes and mot both.

The proposed approach consists of two main phases. Phase 1 consists
of developing a minimum l-arborescence graph to find the optimal tour
for all destinations or demand poigts. In phase II, the resulted tour
is decomposed by trial-and-error to a number of subroutes such that all

constraints are satisfied. 1In order to follow the discussion easily,



it is necessary to introduce some definitions as follows:
Tree. A tree is defined as a connected graph of n points with
n-1 edges,

Arborescence. An arborescence is a directed graph on the vertex

set 1, 2, ..., n such that exactly one edge is directed into each
vertex, there is no cycle pass through any vertex.

Spanning arborescence. A spanning arborescence for a graph is

one which covers the graph (that is, it consists of every point of the
graph).

l-arborescence., A l-arbhorescence is an arborescence with an ad-

ditional node connected to it by two edges. The one with a minimum cost
is the minimum l-arborescence.

Degree of node. The number of arcs which connect to a node is

referred to as the degree of a node.

Qut-of-kilter node. A node has more than two degrees is considered as

out-of-kilter high. A node has one degree is considered as out-of-kilter low.

In-kilter node. A node of degree two with both edges having the

same direction.

Front-end-of-edge rule. In an arborescence, each edge has to be

directed toward only one of the nodes.

The objective in this approach is to find out a tour or a route from
the minimum l-arborescence graph and then decompose the tour to some sub-
routes. Each tour is a l-arborescence and a l-arborescence is a tour if,
and only if, each of the nodes is in-kilter. It is, therefore, true

that a minimum l-arborescence which is a tour, is a solution to the carrier-
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dispatching problem given that all demand points are in one tour. Consider
a vector 7 and a gap function f(7) are associated with the minimum 1~
arborescence. Let 7 be a real column vector having all zero elements

in the initial state of the minimum l-arborescence. Each element
represents the cost of the difference between two different states. A

gap function f(r) is a function which is equal to the difference between
the cost of a minimum tour with respect to a weight vector 7 and minimum

l-arborescence with respect to the same weight 7. Hence,

n
f(m) = w + 2 z
i=1

n
m - win [D + -Z modpls (1)
i=1
where W is the cost of a minimum tour with respect to the cost elements
d(i,j), Dk is the cost of the k-th l-arborescence with respect to the
cost elements d(i,j) and d;p, 1s the degree of node in the l-arborescence.
The appropriate choice of the vector 7 which minimizes the gap function

f(m) will eventually lead a minimum l-arborescence to an optimal tour.

From (1), we get

n
f(r) =w - min [D, + ] = (4, - 2)]- (2)
i=1
Let
n
min [D, + ] 7, (d;, - 2)] =w(r) and dp = 2= vy
i=1

This problem is equivalent to the following linear programming problem:
Maximize w(m)

n
Subject to w Dk + Z T Vip (3

A

where k=1, 2, ..., q.
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Dualizing, we obtain

Minimize X D, ¥
p k7R

Subject to ¥y, 2 0

Iy, =1 %)
kk
and z (_vik) ¥ = 0
where 1i=2, 3, ..., n-1,

2.2 Sample Problem

The proposed algorithm for the non-symmetric single-depot carrier-
dispatching problem is illustrated by a sample problem. Consider a
problem of 6 demand points. The corresponding cost matrix and resource
constraints aré given in Tables 2.1 through 2.3. The solution is formed
step by step as follows:

Step 1. Construct the initial minimum l-arborescence. First, a
minimum spanning arborescence of the cost matrix is constructed and then
two links are drawn from the arcs associated with the demand point Dy
connected to the minimum spanning arborescence. The minimum spanning
arborescence is constructed by choosing the minimum cost elements from
the cost matrix. Also, it is important that each of nodes 2,3, ..., 6
is in the spanning arborescence and there is no locop formed by the node
and each link has to be directed toward only one of the nodes. 1In con-
structing the minimum l-arborescence, the last two links are chosen from

node 1 satisfying the condition that the sum of two links has a minimum



Table 2.1 Cost Matrix of the Sample Problem

From
To T 1 2 3 4 S 6
T - 2 7 4 8 11 10
1 3 - 27 43 16 30 26
2 6 7 - 16 1 30 25
3 3 20 13 - 15 5 0
4 6 21 16 25 - 18 18
5 10 12 46 27 48 - 5
6 15 23 5 S 9 5 -
Table 2.2 Demand of Each Point
Demand
point 1 2 3 4 5
Quantity
required 12 12 10 8 10

Table 2.3 Truck Allocation

Capacity 25
Available 3
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value of } d(1,J) + d(I,1) I,J =2,3, ..., 6 and there is no conflict
to the front-end-of-edge rule. If there are more than one spanning
l-arborescence with the same cost, the corresponding l-arborescence is
formed for each one and the one with the minimum cost is the minimum
l-arborescence. The minimum spanning arborescence and the minimum
l-arborescence are shown on Figure 2.1a and 2.lb. We set level L = 0

and compute the lower bound at this level such that
0 0
c = I dp, ), (p,q) € A",
P»q

where A0 is the initial l-arborescence, or

CO

d(1,4) + d(2,1) + d(6,2) + d4(3,6) + d(3,5) + d(4,3)

16+7+5+0+ 5+ 25 = 58,

Step 2. Identify the out-of-kilter nodes of the minimum l-arbore-

scence. In this sample problem, node (5) is out-of-kilter low and node (3)
is out-of-kilter high.

Step 3. Compute the cost increments of the out-of-kilter nodes.
If node (k) is out-of-kilter low using the following formula is used:

s°(k) = min | [d(k,0) - max (d(x,s))],
(k,£)eA

where (k) # (x), (s) and (r,s) is a set of links which can be replaced
by link (k,£) without forming a loop among nodes 2,3, ..., 6 but a loop
must be formed at node 1 and the link (k,£) must satisfy the front-end-

of-edge rule. In our example,

8%(5) = a(5,6) - a(3,6) = 5.
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However, if node (R) is out-of-kilter high, the increment of the cost

of the minimum l-arborescence is computed such that

s¥(k) = min

P [min (d(r,s) - d(k,8)],
JL)eA

where (r,s) is a set of links which can possibly replace arc (k,£)
without forming a loop over nodes 2,3, ..., 6 but form a loop with node

(1) and which does not create any conflict with the front-end-of-edge rule.

Node (3) is out-of-kilter high and hence, the increment is

8%3) = a(5,6) - 4(3,6) = 5.
Step 4. Select a node having the minimum cost increment

§(k) = min %R 1,

or

* *
§ (3) d§ (5) = 5.
As a tie exists between nodes (3) and (5), we select node (5) by random,

and then set L = 1, The corresponding lower bound is updated such that

*
by g%y = 58+ 5 = 63,

Step 5. Find the optimal tour. Since at this level all nodes are
in-kilter, the tour is then obtained such that 1 + 4 + 3 - 5+ 6 + 2 =+ 1.
The cost of the optimal tour is C* = C]'= 63 (see Figure 2.1c at L = 1).
1f the search is failed, repeat step 2 till a minimum l-arborescence
represents a tour.

Step 6. Calculate all the cost d(Si) of the possible subroutes



Pigure 2.1a MHinimum Spanding Arborescence

Figure 2.1, Minimum Tour
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about the depot including one demand point only and arrange it in de-

scending order

;= (ps 1, 1) where R =1, 2, ..., n,
i=1,2, ..., n,
or
8§, = (g, 6, 1) d(s;) = 25
S, = (ip, 5, 17) d(s,) = 21

S5 = (ips 4, 1) d(s;) = 14
5, = (ip, 2, 1) d(s,) = 13
S = A, 5, L) asy) = 7
Sg = (g 1, 1) d(s.) = 5.

The available carrier with the largest capacity to the first subroute
Sl is then assigned.

Step 7. Expand the subroute Sl by adding some demand points one
by one according to the related position in the resulted tour about node
(6). Each added nade should satisfy the capacity of the carrier; other-
wise, another new subroute has to be set up by 52. The capacity of the
carrier is checked with the total demand in one route till all demand

points have been covered in the routes. In our sample problem, it can

be stated as follows:

‘ Total
S1 S3 SZ Cost
T+6-+2-+T T+1+4-+T T+3+5+T 64

T+5+6-=+T T+2+1~+T T+4+3->T 82



Pigure

21

d

Minimum Delivery Route
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Step 8. Find the optimal solution. The best solution can be

found by choosing the one with a minimum total cost. As in Figure 2.1d,

Cost Demand Carrier Capacity
T>>6-+2~+T 24 20 1 25
T>1->4->T 19 20 1 25
T+>3+5->T 21 20 1 25
Total 64 60 3

2.3 Computational Algorithm

In summary, the computational algorithm is stated step by step as

follows:

Step 1 Construct the initial minimum l-arborescence.

1.1

1.2

1.3

1.4

Set level L = 0.
construct a minimum spanning arborescence over demand

points D2’ D R Dn by choosing n-2 links

3, L B ]
Find the last two links associated with node (1) in

the minimum l-arborescence by choosing two edges with

- a minimum sum of d(1, J) + 4(I, 1). I, J =2, ..., n

and the frent-end-of-edge rule is satisfied.
Compute the corresponding lower bound on the tour cost

such that

cl = Ja(k,2), (k,0) ¢ A"

Step 2 Identify the out-of-kilter nodes

18



2.1

2.2

19

If there is only one minimum l-arborescence identify
all out-of-kilter nodes and go to step 3.

If there are more than one minimum l-arborescence
identify out-of-kilter nodes on each minimum l-arbore-

scence and go to step 3.

Step 3 Compute the cost increment.

3.1

3‘2

If node (k) is out-of-kilter low, compute the increment

such that

§“(k) = min _[d(k,0) - maxdr,s)],
(k,2)eA

where (k) # (r), (8) and {(r,s)} is a set of candidate
links.
If node (k) is out-of-kilter high, compute the incre-

ment such that

sL(fz) = min , [min (d(r,s)) - d(k,8)],
(R,L)eA

where {(r,s)} is a set of candidate links.

Step 4 Select a weight substitute links.

ﬁll

4.3

Find the minimum increment substitute such that

s*(k) = min [s4(k) 1.

*
Make a substitute by a link associated with & (k).

If there is a tie, select any by random.

Set level L = L + 1 and update the lower bound on the

cost of the minimum l-arborescence such that
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*
et = Mo 5

Step 5 Search for the minimum tour.

Step 6

Step 7

Step 8

5.1

5.2

Find

6!1

6.2

Find

7.1

7.2

Find

8.1

8.2

If all nodes in any minimum l-arborescence are in-kilter,
identify the tour and the corresponding cost such that
C* = CL. Then go to step 6.

If no one minimum l-arborescence has all of its nodes
in-kilter, go to step 2.

the initial subroute about the depot.

compute the cost of all possible subroutes including
one demand point only and arrange it in ascending order.
Assign a carrier with maximum capacity to the first
subroute Sl'

the feasible solution.

Insert a set {M} which is a set of sequenced demand
points associated with the optimal tour and check the
resource constraints.

If total demand in a route is larger than the carrier's
capacity, assign another carrier to the second initial
route and go to step 7.1 until all demand points have
been assigned.

the optimal solution.

Compute the total cost of each set of the feasible
solutions.

Find the minimum travelled cost.
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CHAPTER III

NON-SYMMETRIC MULTI-DEPOT CARRIER-DISPATCHING PROBLEMS

The non-symmetric multi-depot carrier-dispatching problem can be
considered as a generalization of the single-depot problem. The main dif-
ference between these two problems is that there are more than one depot
in the multi-depot case. Hence, it can be stated as follows: determine
the best delivery or pick-up routes about the depots covering a set of des-
tinations (demand points) such that the total traveling distance, cost,
or time is minimized. There are some required conditions: (1) the cost
matrix is non-symmetrie, (2) the number of available carriers and the
carrying capacity are known, (3) the demand of each demand point is known
and must be fulfilled, (4) every demand point can only appear once on
the routes, and (5) the routes to be determined out will be either "de-
livery" or "pick-up" and not both or a mix of these two. The proposed re-
search is to develop a practical algorithm for the non-symmetric multi-
depot problems. A sample problem and a formal algorithm are given in this

chapter.

3.1 Basic Concepts

Since the multi-depot carrier-dispatching problem is a generalization
of the single~depot case, the proposed algorithm is based on the one shown
in chapter II.

There are three major procedures concerned with this proposed algo-

ritﬁm. In phase 1, an optimal tour covering all the demand points but
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the depots is formed by the minimum l-arborescence algorithm. In phase 2,
several routes including the depots are constructed by the resulted tour. 1In

phase 3, the feasible solution is improved by a "trial-and-error" method.

3.2 Sample Problem

The proposed algorithm for the non-symmetric multi-depot carrier-
dispatching problem is demonstrated by a sample problem consisting of 10
demand points and 2 depots. The cost matrix and resource constraint are
given in Tables 3.1, through 3.3. The objective is to find a set of routes
such that the total traveling cost is minimized. The solution is formed
step by step as follows.

Note that steps 1 through 5 in the proposed algorithm of Chapter II
are used to construct an optimal tour covering the 10 demand points from
which a minimum spanning l-arborescence is constructed. The summary of

these steps is displayed in Table 3.4. The optimal tour is

1+9+5+6+4-+>7+10+2+3~+6~>1,

and the total traveling cost is 33.
Step 6. Find the initial subtour for every depot. Calculate the
cost of all possible routes for each depot and arrange it in ascending

order. In our sample problem all initial routes are given such that

8; = (iTt, ik’ iTt) where k = 1,n
i=1,n
t=1,m

or



Table 3.1 Cost Matrix of Sample Problem

From 1 2 3 4 5 6 7 8 9 10

To
1 - 51 55 90 41 63 77 69 0 23
2 50 - 0 69 8 53 0 46 73 72
3 30 77 - 21 25 51 47 16 0 60
4 65 0 6 - 2 9 17 5 26 42
5 0 94 0 5 - 0 41 31 59 48
6 79 65 0 0 15 - 17 47 32 48
7 76 96 48 27 34 0 - 0 25 0
8 0 17 9 27 46 15 84 - 0 24
9 56 7 45 39 0 93 67 79 - 38
10 30 0 42 56 49 77 76 49 23 -

23



Table 3.2 Cost from the Demand Points to the
Depots, and the Demand of each Point.

B

. 51

1 52
52

2 53
48

3 50
68

4 70
10

5 5
70

6 75
60

7 57
50

8 60
51

9 40
55

10 30

*
An illustration, cost from demand point 1 to depot T

depot T,

Demand

T,

40
30

60
80

70
60

65
50

45
40

35
51

g5
41

31
45

40
35

51
25

to demand point 1 is 5l.

20

15

16

17

10

14

1 is 52 and from

24



Table 3.3 Truck Allocation

Available
Carrier 2 2 2

Capacity 50 40 30

20

25
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Figure 3.1

A Minimum Tour of the Sample Problem 2

27



10

11

12

13

14

15

a(s,)
a(s,)
as,)
a(s,)
aes)
a(s,)
a(s.)
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S1g = (1T2, 3, 1T2) d(sy,) = 130

5, = (iTl, by i) d(s;;) = 138
1

S,g = (iTz, 2, 1) d(s,g) = 140
2

819 ™ (1T1, 6 1y ) d(s;g) = 145
1

8,0 = (iTl, 8 1T1) d(s,,) = 147 .

Then a carrier which has the largest capacity is assignedrto the first route
Sl'
Step 7. Find the feasible solution for all depots by the position

of demand points in the resulted tour.

Expand the subroute Sl by adding some demand points one by one ac-
cording to the related position in the resulted tour sbout node (5). Each
added node should satisfy the capacity of the carrier; otherwise, another
new subroute has to be set up by 32- The capacity of the carrier is
checked with the total demand in one route till all demand points have

been covered in the routes. In our sample problem it can be stated as

follows:

Ty -5-6-4-7-T,

T1 -10-2-3-8~1- Tl

T2 -9 - T3



=}
|

9-5-6-4-T

1 1
Tl -10-2-3-8-1- T1
T2 -7- T2

T - 10

|
%]
I
W
1
co
I
-

Step 8. Improve the feasible solutions. Reassign the demand points
in the routes to different depots if the new assignment can have better

solutions. In our sample problem they cam be improve as:

T1 -5-6-4-7- T1

T2 -10-2-3 -.8 =i L = T2
T2 -9 - ’I'2

TZ -9-5-6-4- T2

T2 -10-2-3-8-1 - T2
T, -7-T

2 2

30



) 4
igure 3.2 Minimal Routes of the Sample Problem 2
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2 1-9-5-6- T2

H
|

2 10-2-3-28- '1'2

3
I

I,-4-7-1,

Tl -7-10-7-3 - Tl

T2 -§-1-9-~- T2

Tl -5-6-4 - Tl

Compute the total cost of each set of solutions, the minimum one is

Cost Demand Carrier  Capacity
T, - 7-10-2-3 - T1 110 45 1 50
T2 -8-1-9- T2 66 44 1 50
Tl -5=-6-4 - T1 80 32 1 40
Total 256 121 3

Figure 3.2 depicts the best routes which we found.

3.3 Computational Algorithm

Step 1 Construct the initial minimum l-arborescence.

1.1 Set level L =0

1.2 construct a minimum spanning arborescence over demand

points DZ’ D3, e ey Dn by choosing n-2 links.

1.3 Find the last two links associated with node (1) in

the minimum l-arborescence by chosing two edges with

32



Step 2

Step 3

33

a minimum sum of d(1, J) + d(1,1), I, J=2, ..., n,
and the front-end-of-edge rule is satisfied.
1.4 Compute the corresponding lower bound on the tour cost

such that

¢t = Va(e,b), (k,2) e AF
(R,£)

Identify the out-of-kilter nodes.

2.1 If there is only one minimum l-arborescence identify
all out-of-kilter nodes and go to step 3.

2.2 If there are more than one minimum l-arborescence
identify out-of-kilter nodes on each minimum l-arbore-
scence and go to step 3.

Compute the cost increment.,

3.1 If node (k) is out-of-kilter low, compute the increment

such that

sU(k) = min L[4k, 8) - max (x,9)],
(k,L)eA

where (k) # (r), (8) and {(r,s)} is a set of candi-
date links.
3.2 1f node (k) is out-of-kilter high, compute the incre-

ment such that

s'(k) = min | [min (d(r,s)) - d(k,D)],
(R,2)eA

where {(r,s)} is a set of candidate links.
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Step 4 Select a weight substitute links.

Step 5

Step 6

Step 7

4.1 Find the minimum increment substitute
*
§ (k) = min [67(R)].
k

*
4.2 Make a substitute by a link associated with § (R).

If there is a tie, select any by random.
4.3 Set level L = L + 1 and update the lower bound on the

cost of the minimum l-arborescence such that

*
el = o 5%y,

Search for the minimum tour.

5.1 If all nodes in any minimum l-arborescence are in kilter,
identify the tour and the coxresponding cost such that
C* = C. Then go to step 6.

5.2 If no one minimum l-arborescence has all of its nodes
in-kilter, go to step 2.

Find the initial subroutes for every depot.

6.1 Compute the cost of all possible routes for all depots
which including only one demand point and arrange them
as an ascent order.

6.2 Assign a carrier with largest capacity to the first
route Sl'-

Find the feasible solution for all depots.

7.1 Construct a route by inserting a number of demand

points which associated to the first subroute S1 one



Step 8

35

by one. Check the total demand Zd in the route with
the carrier capacity q, if 2d<q repeat this step.

7.2 Assign the second carrier with second largest capacity
to the second subroute 5,, go back to Step 7.1.

7.3 Check if all demand points are in the subroutes, if
not, go to Step 7.2.

Improve the feasible solutions to the best one.

8.1 According'to the feasible solutions, make the change
of depots of the routes if new depot will give a better

solution.
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CHAPTER IV
A GEOMETRICAL SEARCH TO THE SAVINGS APPROACH

Large size carrier-dispatching problems can be solved by Clarke and
Wrights' savings approach. But it must be preceded by the computation
and searching of a large matrix of the saving values. All potentially
significant links between destinations or demand points are considered
as candidates. Consequently, the computational time involved is con-
siderably high. In order to reduce the computer time, however, the
search from a large savings file can be eliminated by using a geo-
metrical search technique on an order list of the polar co-ordinates of
the destinations or demand points.

A proposed algorithm based on Yellow's ideas [18] is developed for
solving a symmetric and non-symmetric single-depot carrier-dispatching

problems. The multi-depot problem can be solved with suitable modifi-

cations.

4.1 Basic Concepts:

Consider a general saving value sij given by linking demand points

i and j such that

s;5 = dog + dp5 ~ 44 (1
where

Bij = saving value,

d., = distance from demand point 1 to depot,

01
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dij = distance between demand points i and j.

This formula can be transferred to polar co-ordinates related to the

depot such that

Pt

_ 2 2
Bij -y + rj J-ri + rj Zrirjcos(ei—ej) (2)

where (ri,ei) is the polar co-ordinate of a point i. From equation (2)

(ri + rj - sij)2 = (rf + r? - 2r rjcos(B j))
Zrirj (ri+rj) + 52 - —2rirjcos(ﬂi—9j)
21, (cos(8,-0,) + 1) - 28, (x ¥r,) + sij =0 (3)

let (R,¢) be the polar co-ordinate of a point on the locue. From (3)

it can be rewritten as:
ZRIi[cos (Bi -¢) +1] - 28 (E+ri) + 52 =0 (%)

Equation (4) shows that the locus of points give equal saving values

when demand point i is fixed, and the loci are hyperbolas. If

2
s -ZSri
1._-] > 25-211[1+cqs(9j—61)] * 5

where

a fixed demand point i,

L}

(r;s §)

(rj,ej) = a demand point j linked with demand point i.

Then the link (i,j) has a higher savings value. From inequality (5),

several candidate links can be found and with those links can form some
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routes to solve the carrier-dispatching problem.

4.2 Symmetric Sample Problem

The proposed algorithm for the symmetrical single-depot carrier-
dispatching problems is illustrated by a sample problem with 6 demand
points, the distance matrix and truck allocation are shown in Tables 4.1
and 4.2. Note thét any trip by a truck should not exceed 160 miles.,

Step 1. Transfer the rectangular co-ordinates of the demand points

to polar co-ordinates using the formula:

rij = dij
and
2 2 2
o o coed 201t Y05~ iy
ij 2d01doj
where eij = Si - Bj
or
912 = 0,90
913 = 0.27 823 = 0.62
614 = 1,02 624 = 0,12 634 = 0,76
615 = 0.56 625 = 0.30 935 = 0.40 945 = 0,46

916 = 0.85 826 = 0.00 836 = 0.93 846 = 0.19 656 = 0.59

Step 2. Compute the savings by



Table 4.1 Distance Matrix

Po
38 1
42 35 P,
56 22 33 Pg
63 54 22 45 P,
64 38 27 20 29 Pg
80 62 38 65 22 45 Pg
Table 4.2 Truck Allocation
Capacity 12 15 18
Available 2 1 1

39



40

Bij = + rj —j ri + ri - 2rirj cos (Bi - Bj)

or

512 = 45

B13 = 72 855 = 65

814 = 47 8y, = 83 8y, = 74

815 = 64 Syg = 79 835 = 100 8,5 = 98

816 = 56 856 = 84 846 = 71 846 = 121 Sgg = 99

Step 3. Find candidate links with higher savings. Compute the
value

s2 - 281'i
Vig = T1 T2 - 25,11 + cos (6, - )] ’

and consider only the wvalue Vi which is greater than zero. In ocur

J
sample problem V52, V62, V64 are greater than 0, so links (5,2), (6,2),
(6,4) are the candidates.

Step 4. Find the feasible solution with candidate links.
Make the right combination of the candidate links which found from
step 3, form all possible routes, and assign a carrier to each route.
Check the capacity of the carrier with the total demand in the routes

and the traveled distance of any route should not be over 160 miles.

The feasible solutions are as follows:



Solution 1

T-6-2-T

T-1-T
T-3-T
T=-4-T
T-5-T
Total

Distance

160
76
112
126
_128

602

Solution 2

T-5
T-1
T-3
T-4
T -6
Total

41

Distance
133
76
112
126
_160

607

Step 5. Find the solution with minimum total traveled distance. Im-

prove the feasible solutions by combining some routes intc one and which

will not conflict the constraints. Calculate the total traveled distance

for each set of solutions.

our sample problem, the following solutions are:

Solution 1(a)
T-6-2-T

T-1-3-T

T-4-T
T-5-T
Total

The minimum one is then the best solution. 1In

Distance

160
116
126
128

830

Distance

160
156

76
112

504

15

18

12

12

18

15

12

12

Truck Capacity

Truck Capacity

1

1

Truck No.

Truck No.
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Solution 2 Distance Truck Capacity Truck No.
T-5-2-T 133 18 1
T-1~3-T 116 15 1
T-4-T 126 12 1
T-6-T 128 12 ok
Total 503 4

The best solution is then solution 2.

4.3 Non-symmetric Sample Problem

The proposed algorithm is also applicable for non-symmetric case.

For example, consider 4 demand peints. The associated distance and truck

allocation are shown in Tables 4.3 through 4.5.

Step 1. Transfer the rectangular co-ordinates of the demand points

to polar
r

ij

and

045
or
12
13
14
23
24

34

co-ordinates such that
= dij’

2 2 2
_ -1 %9 * 4y, - 4y,

cos 53 d
i0 0]

= 0.403 621 = (0,505
= 0.505 631 = 0.504
= 0,128 841 = 0.141
= 0.200 932 = 0.100
= 0,715 642 = 0.609
= (0.609 643 = (0.505



Step 2. Compute the savings such that

S35 = T10 + To; -_[rfo + rgj - 2ry Tos (8 - 8 (6)
where

LT distance from point i to depot 0,

roj distance from depot 0 to point j,
or

819 = 160 851 = 150

813 = 150 831 = 140

814 = 80 841 = 70

853 = 180 839 = 190

854 = 130 840 = 140

8q4 = 140 843 = 150.

Step 3. Find candidate links with higher saving. Compute the

value

2
8 - 28 rio

Vig " ti0 " 25 - 2ty I + cos (8

j_ei)] -

and consider only the value(s) which is greater than zero. In this

sample problem, V12’ V21, V13’ VZA' v34’ Vaz' and V43 a;e greater than

zero. Thus, links (1,2), (2,1), (2,4), (3,4), and (4,2) are candidates
Step 4. Determine the feasible solution.

Altermnative 1: T+ 2+ 1->T and T+ 3> 4> T,

43



Table 4.3 Distance Matrix
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From
To T 1 2 3 4
T - 100 100 100 100
1 100 - 40 50 120
2 100 50 - 20 70
3 100 60 10 - 60
4 100 180 60 50 -
Table 4.4 Demand of Demand Point
Demand point 1
Demand 6 6
Table 4.5 Truck Allocation
Capacity 15 10

Available
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Alternative 2: T+ 2->1~+T and T>+>1-+>3->T

Alternative 3: T+ 1> 2->T and T+3~+4~>T

Step 5. Find a best solution. In our sample problem the best

solution of the feasible solution is:

Cost Demand Capacity Carrier
Tiw 1+ 2% T 240 12 15 1
T3k L6 _8 10 1
Total 500 20 2

4.4 Computational Algorithm

The algorithm discussed above is stated below in formal steps:
Step 1. Construct polar co-ordinates of demand points
1.1 Transform the rectangular co-ordinates of the demand

points to the polar co-ordinates by

iy T Y450
and
2 2 2
-1 (Y01 T 9oy ~ diy
ei - Bj = cos 2d 3
oi Y03

Step 2. Compute the savings such that

sij = ri+rj ~j ri + r§ - 2rirjcos(ei - Bj)

Step 3. Find candidate links with higher savings.

3.1 Compute

32 - 28,,r
) 13 ~ "84T
i 2Bij - 2ri [1 + cos (Bi - ei)]

vij = r



3.2 If V., > 0 then the link (i,j) indicates the can-

ij
didate link i-j.
Step 4., Determine feasible solutions.

4.1 Combine the candidate links into several routes and
assign a truck to each route.

4,2 Check for conflict. If there is any conflict, an-
other combination of the routes is selected.

4.3 Check the capacity of the carrier with the total
demand in the routes. If Zdi > q, then assign an-
other carrier

Step 5. Find a best solution.

5.1 Improve the feasible solution by combining some
routes into one.

5.2 Check the comstraints and the capacity of carrier
with total demand in the new routes, If there is a
conflict, go to step 4.

5.3 Compute the total traveled distance for each set
of feasible solutions and find the one with the
least distance.

Note that in non-symmetryic case, dOi is replaced by diO’ L by Lio® and

rj by rOj'
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CHAPTER V

SUMMARY AND CONCLUSIONS

The carrier-dispatching problem is one of the most frequently oc-
curring real-world problems in the transportation area. This problem
may be defined as: finding a set of delivery or pick-up routes, in
which consists of a number of destinations or demand points to be
covered by a number of carriers. It is required to determine a set of
delivery or pick-up routes which satisfy the imposed constraints and
such that the total traveling cost is minimized. The problem under con-
sideration has deterministic demands and non-symmetric cost matrix.

The carrier-dispatching problem may be regarded as a generalization
of the classical traveling salesman problem. The major methods proposed
for solving the single-depot problems are branch-and-bound (Hayes, 1967),
simulation (Braun, 1967), integer programming (Balinski and Quandt, 1964),
dynamic programming (Held and Karp, 1962) and heuristic programming
(Dantzig and Ramser, 1959; Clarke and Wright, 1964; Hering, 1970). The
methods available for multi~depot problems are heuristics (Tillman, 1969
and Hering, 1970). By examining these approaches, it appears that the
heuristic programming approach is the most practical procedure at present,
because of their computational feasibility. With this in mind, a minimum
l-arborescence algorithm for solving both single- and multi-depot carrier-
dispatching problems has been developed.

The proposed algorithm for solving multi-depot carrier-dispatching

problems consists of three main phases. In phase I, an optimal tour



covering all the demand points but the depots is formed by the minimum
l-arborescence algorithm. In phase II, several routes including the
depots are constructed by the resulted tour. In phase III, the feasible
solution is improved by a "trial-and-error" method.

A geometrical search of savings approach has been developed as a
criteria to choose the links for both symmetric and non-symmetric cases.

In this research, four test problems have been solved by the pro-
posed methods: (1) single-depot carrier-dispatching method, (2) multi-
depot carrier-dispatching method, and (3) geometrical search of savings

approach. And the results are shown in Table 5.1. No comparison with

48

other existing procedures is made because no non-symmetric sample problems

appear in the literature.

The proposed approach looks promising because of the relative success

obtained, specially, for small and medium size problems.



Table 5.1 Summary of Results

Problem No. No. of No.
Demand Points Depots
1 4 1§
2 5 1
3 6 1
4 10 1
5 4 2
6 5 2
7 6 2
8 10 2
9* 4 1
10* 6 1
i B 5 1
12% 10 1

Symmetric
or Non-sym.

non-sym.
non-sym.
non—-SsSym.
non-sym.
non-sym.
non-sym.
non-sym.
non-sym.
non-sym.
non-sym.
sym.

Syml

*
Problem solved by geometrical search of savings approach

Total

Cost

510

145

163

270

36

51

148

256

500

151

281

104
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APPENDIX I.

FLOW CHART OF ALGORITHM
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Figure B The Flow Chart of the
Single-Depot Algorithm
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Pigure A The Flow Cnart of the
Multi~Depot Algorithm
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APPENDIX II

CARRIER-DISPATCHING PROBLEM4S



PROBLEM 1

1 DEPOT 4 DEMAND POINTS
DEMAND POINT DEJAND AT
THE POINT
1 6
2 6
3 4
4 4
CARRIERS
CAPACITY NUMBER
15 1
10 1
COST MATRIX
7 1 2 3 4
T - 100 100 100 100
1 100 - 40 50 120
2 100 50 - 20 70
3 100 60 10 - 60
4 100 180 60 50 -
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FINAL SOLUTION

No. DEPOT ROUTES LOAD  COSt
1 1 134T 14 310
2 1 P2 I 6 200

TOTAL COST=510

CARRIER CAPACITY 15 10
AVAIBLE 1 1
ALLOCATED 1 1




PROBLEM 2

1 DEJAND 5 DEMAND POINTS
DEAAND POINT DEMAND AT
THE POINT
i 30
2 20
3 10
4 10
5 20
CARRIER
CAPACINY NUMBER
50 5
40 1
30 1
COST dalrRLX
T 1 2 3 4 5
n - 30 28 40 35 20
1 28 - 10 25 25 10
P 27 1 - 10 15 2
3 30 8 9 - 20 10
4 30 14 10 24 - 15
5 25 10 8 25 27 -



FINAL SOLUTION

No. DEPOT  ROUTES

LOAD COST

1 1 75237 50 68
2 1 i W 40 11
POTAL COST=145
CARRIER
CAPACLLY 50 40 30
AvAILABLE 2 1 1
ALLOCATED 1 1 0
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1 DEPOT

DEJAND POINT

CARRIER
CAPACITY

[« XN T W A s

1

v o~ M

60

50
40

PROoLEd 3

6 DEJAND POINTS

DEMAAND AT
THE POINT
17
11
27
16
11
21
NUMBER
2
1
1
COST MATRIX
1 Z 3 4 5 6

40

20
21
12
22

20
217

13
16

46

30 15 30 30
43 16 30 26

16 1 30 25
- 35 2 6
25 - 18 18
27 48 - 5
5 9 5 -
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#INAL SOLUTION

No. DEPOT ROUTES LOAD  COST
1 1 T214°T 44 63
2 1 T35 4 39 50
3 1 T 6 T 21 50

TOTAL COST=1b63

CARR Al 60 50 40
AVAILASLE 2 1 1
ALLOCATED ' 1 1




PROBLEY 4

1 DEPOT 10 DE4AND POINTS
DEMAND AT
DE4AND POIAT THE POINT
1 20
2 a5
3 8
4 16
- 7
& 9
7 i
o 10
: 14
10 &
CAPACLEY
OF CARRIERS NUMBER
60 2
50 2
30 2
20 1
COST MATRIX
7 1 2 3 4 5 6 7
T - 5 5% 50 70 5 75 57
1 51 - 55 55 90 41 63 17
2 52 50 = 0 69 8 53 0
3 48 30 77 - 21 25 51 47
4 68 65 0 6 - 2 9 7
5 10 o 94 0 5 - 0o 4
6 70 79 65 0 o 15 - 17
7 60 6 96 48 27 34 0 -
8 50 o 17 9 27 46 15 g4
9 51 56 7 45 39 0 93 o7
10 55 30 0] 42 56 49 17 b (]

60
69
46
16

31

79
49

40

13

26

59
26

25

25

30
23
72
60

48

24
38



FINAL SOLUTION

b1

§No. DEPOT ROUTES LOAD COST
1 1 *56 477 49 82
2 1 T102 38 1 1 58 97
3 1 ¢ 9 f 14 91

TOTAL COST = 270

CARRLER CAPAGCITY 60 50 30 20

AVAILABLE 2 2 2 1
1 1 Q 1

ALLOCATED
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PROBLEd 5

2 DEPOTS 4 DEMAND POINTS
DBMAND AT
DEAAND POINT THE POINT
1 ' 18
2 12
3 16
4 14
CARRIER CAPACITY NUMBER
40 3
COST MATRIX
1 2 3 4
1 - 4 2 3
¢ 5 - 2 b
3 3 5 - 4
4 4 3 B -

COST TO DEPOT

DEMAND POINT T1 T2
i 10 8 g 10
g g 7 2 9
3 8 6 7 3
. g 10 o T

* M illustratatiom, cost from demand point 1 to depot T, is 8
and from depot ’]3.I to demand 1 is 10,



FINA L SOLUTIOH
No. DEPOT ROUTES LOAD CoOST
1 2 T2 2 3 T2 28 18
2 2 T 1 4 7, 32 18

TOTAL COST= 26

CARRInz CAPACITY

0

AVAILABL
ALTOC A/ ED

o
g

63



PROBLEd 6

2 DEPOTS S5 DEMAND POINTS
DEwAND AT
DEMAND POINT THE POINT
L 7
2 8
3 8
4 1
5 6
CARRIER CAPACITY NUMBER
18 : 1
15 1
12 1
GOST 4ATRIX
1 Z 3 3 5
1 - 5 13 13 15
2 2 - % 5 2
3 7 5 = 1 3
4 5 S 4 - T
5 o) Z 8 4 -

COST TO DEPOT

T

DEMAND POINT 1 2
; , L
) o7 o7
3 g 10 - 10
4 g ° g
5 _ . 8
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FINAL SOLUTIOJ

NO.  DEPOT ROUTES LOAD  COSt
1 1 T, 35 I 14 19
2 2 L, 41 %L, 14 17
3 1 T, 2 T, 8 15

TOTAL COST=51

CARRIER CAPACITY 18 19 12

AVAILABLE 1 1 1
ALLOCATED 1 1 1
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PROBLEA 7

2 DEPOTS 6 DEMAND POINTS
DEMAND AT
DEMAND POINT THE POINT
1 17
2 11
3 217
4 16
5 11
6 21
CARRIER CAPACITY NUMBER
60 2
50 1
40 1
COST HATRIX

1 - 27 43 16 30 26
2 i . 16 1 30 25
3 20 13 - 35 5 0
4 21 16 2% - 18 18
5 12 46 27 48 = 5
b 23 5 5 9 5 -

COST TO DEPOTS

DE4AND POINT Ty %)
1 40 8 TRE
5 gy 19 20 12
3 30 40 ag B
4 15 20 15 15
: s 15 ors T
6 50 20 55 25
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FINAL SOLUTION

NO. DEPOT ROUTES LOAD  COST
1 2 Té 2 14 L, 44 58
2 2 , 3571, 39 40
3 1 T1 6 I, 21 50

TOTAL COST=14z

CARRIER CAPACITY 60 50 40
AVAILABLE 2 1 1
- ALEOC AL ED 1 1 1




PROBLEYN 8

2 DEPOTS 10 DEMAND POLNTS

(see problem 4)

COST TO DrPOTS

DEMAND POIuT T1 TZ
3 L 30 40
2 53 2 go 0
3 50 48 g0 10
4 70 ©8 50 65
5 g @ g0 4
o 5 1 51 29
7 57 0 a2
8 0 P 45
9 0 2 35 40
10 0 22 25



FINAL SOLUTION

§NO.  DEPQT ROUTES _ LOAD  COST
1 1 T, 7102 31, 45 110
7 2 7,819, 44 60
3 1 T, 56 41, 32 86
CARRIER CAPACLTY 60 50 30 20
AVAILABLE 2 2 2 1
ALLOCATED 1 2 0 0
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1

DEPOT

PROBLEA 9
4 DEMAND POINTS

(see problem 1)

FINAL SOLUTION
OF GEOMETRICAL SEARCH OF SAvVINGS

NO. DEPOT ROUTES LOAD  COST

1
2

1 T 1 2 £ 12 240
1 T 3 4 7T 8 260

TOTAL COST=500

CARRIER CAPACITY 15 10

AVAILABLE 1 1
ALLOCATED 1 1
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PROBLEH 10

1 DEPOT 6 DEMAND POINTS

(see problem 3)

FINAL SOLUTICN
OF GEOMETRICAL SEARCH OF SAVINGS

NO. DEPOT ROUTES LOAD COST
1 1 T 51 o T 49 88
2 1 T 4 5 3 T 54 63

TORAL COST=151

CARRIER CAPACITY 60 50 40

AVAILABLE 2 1 1
ALLOCATED 1 1 1




1 DEPOT

DEMAND POLNT

CARRLER CAPACITY

40
30
COST MATRIX
Po
70 13
60 30
50 26
50 30
45 40

PROBLEM 11

5 DEMAND POINTS

DEJAND AT
THE POINT
7
8
8
g
S
NUMBER
1
1
P,
40 24 P4
50 26 30 P
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PINAL SOLUTION (GEOM4ETRICAL SEARCH)

NO. DEPOT ROUTES LOAD  COST
1 1 T 3 1 4 T 21 126
2 1 g 2 5 T 17 155

TOTAL COST=281

CARRIER CAPACITY 40 30
AVAILABLE ‘ 1 1
ALLOCATED 1 1




1 DEPOT

DE4{AND POINT

1

O 0O a0 e wh

-t
o

CARRIER CAPACITY

30

COST MATRIX

Fo

-~ =2 @O v O PN Wy

‘ —
W o =g un

12
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PROBLEM 12

10 DEMAND POINTS

DEMAND AT
THE POINT
10
4
g
T
12
6
5
10
8
15
NUMBER
3
Py i
10 124 P,
16 10 5 P
4 4 10 6 P,
11 6 19 14 9 g
7 8 8 4 4 1 By
9 7 14 9 6 7 6
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FINAL SOLUTION
OF GEPMETRICAL SEARCH OF SAVINGS

NO . DEPOT ROUTES LOAD _ COST
1 1 T102 8 1 ¥ 39 56
1 1 T 3954631 38 48

TOTAL COST=104

CARRIER CAPACITY 40
AVAILABLE
ALLOCATED 2

N
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ABSTRACT

This paper is concerned with carrier-dispatching problems which
consist of a number of destinations or demand points to be covered by
a number of carriers. It is required to determine a set of delivery
or pick-up routes which satisfy the imposed constraints and such that
the total traveling cost is minimized. The problem under comsideration
has deterministic demands and non-symmetric cost matrix. One of the
practical approaches is based on savings concepts. The computation by
such a procedure, however, is tedious because the links are chosen from
all possible potential candidates.

A heuristic algorithm based on the minimum l-arborescence concept
has been developed for solving both single- and multi-depot carrier-
dispatching problems. In addition, a geometrical search has been examined
for both symmetric and non-symmetric problems. Several sample problems
with single and multiple depots are used to illustrate the algorithm.

The results show that the proposed method requires little time when cal-

culated by hand.



