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Abstract

In this work, we present a model for the kinetics of amyloid fibril aggregation. In the

model we mapped the process of Hydrogen bond (H-bond) formation and breakage to a

random-walk. we captured the effect of side chains using position dependent H-bonds free

energies which allows us to calculated the residence time for different binding alignments

with the fibril. The residence time can be compared to the diffusion-limited attachment

rate to give net aggregation stability. This stability increases exponentially with increasing

number of bonds or binding energy in homopolymer chains, however for chains with pat-

terned sequences, the residence time shows strong effects of the binding alignment. Using

the residence time for uniform structures combined with estimate of the diffusion rate, we

modeled and simulated the kinetics of amyloid aggregation. Results of the simulations gives

the bond energies and concentrations required for the onset of growth of aggregates.
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Chapter 1

Introduction

Amyloid fibrils are insoluble, degradation resistant assemblies formed from the aggregation

of soluble proteins. These misfolded proteins deposit in organs and tissues, disrupt nor-

mal organ function and causes different diseases including many neurological disorders or

systemic diseases. Alzheimer’s disease, atrial amyloidosis, spongiform encephalopathies (e.g.,

Mad cow disease), primary systemic amyloidosis, senile systemic amyloidosis, haemodialysis-

related amyloidosis, hereditary nonneuropathic systemic amyloidosis, type II diabetes, injection-

localized amyloidosis, secondary systemic amyloidosis, hereditary cerebral amyloid angiopa-

thy, finnish hereditary systemic amyloidosis, familial amyloid polyneuropathy I and ll, aging

pituitary, prolactinomas, and British familial dementia are examples of these diseases[2–

4, 6].

Because of the effect of protein aggregation in causing many diseases, understanding the

mechanism in which proteins and peptides act in the dense in-vivo environment has received

much attention. It is a question as to how, even in environments with high concentrations

act in the way that is less favorable for aggregation [4]. The structure of amyloid fibrils

and their stability has been studied and the improvement of experimental tools is suggest-

ing better models for the mechanism of formation. These studies started in the mid-19th

century, when Schleiden and Vichow gave the term “amyloid” for description of the iodine

stained deposits in investigation of a liver at autopsy [6]. Although at first investigation

they were thought to be carbohydrate, later the existence of nitrogen cast doubt on this

idea and the improvement of detection methods proved their proteinaceous content. Later
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X-ray fiber diffraction patterns helped to reveal the structures, once separated from the

blurring effect of tissues. Invention of material analysis methods later proved that amyloid

fibrils are found in many diseases. This discovery motivated biologists to investigate all

kind of diseases and identify particular amino acids that cause aggregation using statistical

approaches. The defining characteristic of amyloid fibril is an ordered structure of cross-β

conformation in their polypeptide backbone. Statistical analysis has defined sequence de-

pendent characteristic affecting the propensity to form amyloid [5].

Understanding the mechanism of formation of amyloid fibril from the first steps to com-

pletely mature insoluble form, has motivated many theoretical models and experimental

studies. Investigations showed the mechanism is a delicate function of the physicochemical

condition of system. In the other words, the system undergoes different trajectories with

different conditions. These trajectories determine which final form amyloid fibril will have.

These steps are important, because they are points for formation of metastable structure

and start of new more complicated structure[6–10].

Many models have been proposed for the aggregation sequence leading from soluble proteins

to fibrils. These include various states such as folded and unfolded monomers, dimer, trimer,

protofibril and fibril. Many of these states are metastable, but most evidence implicates some

form of metastable aggregate as the toxic species responsible for disease progression. Still

there is much debate on the nature of the toxic species and the aggregation pathway.

It is important to determine whether the insoluble form of β-sheets are the start of disease,

or are actually the end point. Research showed there is correlation between Alzheimer’s

disease and soluble Aβ structures [14]. In other words, this correlation says soluble non-

fibrilar intermediates are causing diseases. Also, attempts for more accurate ways to un-

derstand which part of polypetide strands are aggregation prone, started with investigating

the structural information banks of amyloid fibrils. These attempts resulted in the creation

of bioinformatic tools for predicting aggregation prone regions of strands. The principle of

these bioinformatic methods are different. Some of them like TANGO and PAGE tried to

predict aggregation prone regions based on physicochemical properties of amino acids. The

TANGO algorithm emphasizes physicochemical rules behind β-sheet formation and defines

a probability score for finding particular peptide segments in different conformations such as

α-helix, β-strand, turn, random coil, and β-aggregate[17]. PAGE computes the aggregation
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score for a given amino acid sequence based on propensity and absolute aggregation rates.

The PASTA model emphasizes on statistical information based on the propensity of par-

ticular residues in aggregates and defining energy functions [5]. These three are just a few

among many attempts. There are several important insights that have come from these data

analyses: First, aggregation prone regions avoid charged or polar residues. In other words,

charged residues favor the soluble state. Second, the net charge of motifs is reported to

have an inverse relation with their aggregation propensity. Third, another important result

is that aggregation-prone regions often are full of aromatic and hydrophobic β branched

residues [14–17].

One question that arises is: how reliable are available detection techniques for the investi-

gation of these structures? There is a debate that detection techniques can only give some

aspect of the species and some other aspects remain hidden. For example NMR and X-ray

techniques are efficient methods for the detection of crystalline structure, but before the

creation of crystalline structure there are many initial important steps in amyloid fibril for-

mation that are inaccessible to NMR and X-ray studies.

In this work we tried to model the protein aggregation process. Experiments, have shown

that aggregate growth is a function of concentration and structure of polypeptides [5]. Al-

though many physical factors other than those mentioned previously are also effective, in

this work we attempted to focus on these two factors. This thesis is structured as follows:

In chapter (2) I present the random-walk model of aggregation and develop the transfer

matrix method for calculating residence times. Next, dimer and trimer structures are de-

fined and residence times for peptides with these symmetries are calculated. Chapter (3)

includes simulations of the model with stochastic aggregation process. Also, growth rate

and average length of registry versus concentration graphs are shown for uniform chains.

The non-uniform structures are left for future work.
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Chapter 2

Residence Time Models for

Uniform and Non-uniform

Structures
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Figure 2.1: A schematic diagram of β-sheet structure, parallel and antiparallel [1].

2.1 Uniform Structure

2.1.1 Calculation of Residence Time in Uniform Structures

Our theory of amyloid aggregation is based on the model first introduced by Schmit [2].

In that work, the formation and breakage of hydrogen bonds (H-bond) between strands

is mapped to a random-walk. To accomplish this mapping, the rates of bond formation

and breakage are related to the free energy using detailed balance [1, 2]. According to

the principle of detailed balance, for a system with states with different free energies, the

transition rates are related by:

k2/k1 = e−(ε2−ε1)/kBT . (2.1)

Where kB is Boltzmann constant, T temperature, ε2 and ε1 are free energies of states and

k2 and k1 are rates that system moves to states 2 and 1. Schmit assumed one polypeptide,
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Bonds: 0 1 2 3 4 5 6 

Bonds: 0 1 2 3 4 5 6 

Figure 2.2: The number of H-bond is a good reaction coordinate. We model the number
of H-bond (left) as a random walk (right). The number of bonds can change from x to x-1
or x+1. The number of bonds change between 0 (a dissociated molecules) to N (a fully
bounded state).

after having contact with fibril, starts forming bonds between its backbone and the exposed

peptide groups on the fibril. In uniform chains, all the amino acids have the same sidechains,

so all the bonds have the same strength. Assuming that polypeptide makes x H-bond with

the fibril, (x=2) at the top panel of the Figure. 2.2. Then system can make additional bonds

or break bonds, leading to the situation with x+1 or x-1 bonds. So the variable x, would

perform a random walk [23], between 0 to N, where N is the maximum number of possible

bonds, (this number depends on the length of the molecule and the alignment between

the incoming molecule and the fibril template). Hereafter we refer to the alignment as the

“registry”. Starting with the situation of x bonds, the peptide can form an additional bond

with the ratio:

k+/k− = e−εb/kT . (2.2)

Where −εb is the thermodynamic stability of H-bond. Defining P(x,t) as the probability

that a system with x H-bond at time =0 has neither made or broken any additional bonds

at time t, obeys the equation:

dP (x, t)

dt
= −(k− + k+)P (x, t) (2.3)
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Which has the trivial solution P (x, t) ∝ e−t(k−+k+). The mean residence time before any

change in x is given by:

τ =

∫ ∞
0

tP (x, t)dt =
1

k− + k+
(2.4)

It also can be shown that τ , is the average residence time for both systems that eventually

reach x+1 or x-1 bond. The probability of these two outcomes are:

p+ =

∫ ∞
0

k+P (x, t)dt =
k+

k− + k+
(2.5)

p− =

∫ ∞
0

k−P (x, t)dt =
k−

k− + k+
(2.6)

The mean time required for a particle starting at x=0 to reach an absorbing boundary at

x=0 satisfies the recursion relation:

t(x) = p+t(x+ 1) + p−t(x− 1) + τ (2.7)

reflecting that after waiting one time step τ the particle that has started at x, starts a

new random walk at x+1 with the probability p+ or at x-1 with the probability p−. This

inhomogeneous equation is hard to solve, so we transform it to a homogenous form.

Θ(x) = p+Θ(x+ 1) + p−Θ(x− 1) (2.8)

Where the transformed variable is given by:

t(x) = Θ(x)− x τ

p+ − p−
(2.9)

Equation 2.8 can be written as the vector product:

V (x+ 1) = MV (x) (2.10)
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Where V is given by:

V (x) =

 Θ(x)

Θ(x− 1)

 (2.11)

And the transfer matrix (M) is given by:

M =

 1
p+

−1 + 1
p+

0 1

 (2.12)

We can calculate the residence time on the Nth site by repeating the multiplication:

V (N) = MNV (1) (2.13)

Which can be done

V (N) = U(U−1MU)NU−1V (1) (2.14)

The diagonal form of transfer matrix (Md = U−1MU) is 1:

U−1MU =

 −1 + 1
p+

0

0 1

 (2.15)

And the matrix U is:

U =

 −1 + 1
p+

1

1 1

 (2.16)

1Appendix 1,Part A
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2.1.2 Boundary Condition in Uniform Structure

To calculate the residence time we require two boundry conditions, when all bonds are

broken, the residence time is zero, so t(0) = Θ(0) = 0. At the end of strand, we don’t have

possibility to form more bonds. Therefore we have:

p+ =
k+

k+ + k−
= 0→ k+ = 0 (2.17)

p− =
k−

k+ + k−
= 1 (2.18)

based on these two equations, the waiting time for the last site (see Eq 2.7) is given by:

τend =
1

k−
(2.19)

We calculate this τend to use Eq (2.9) with n or n-1 jumps and calculate the amount of Θ1:

V (N) = MNV (1) = UMn
d U
−1V (1) (2.20)

V (N − 1) = MN−1V (1) = UMn−1
d U−1V (1) (2.21)

V (N) =

 Θ(N)

Θ(N − 1)

 (2.22)

V (N − 1) =

Θ(N − 1)

Θ(N − 2)

 (2.23)

t(N) = t(N − 1) + τend (2.24)

Θ(N)− (N)
τ

p+ − p−
= Θ(N − 1)− (N − 1)

τ

p+ − p−
+ τend (2.25)

→ Θ(1) =
( 1
p+
− 1)n(p+ − 1)(2p+ − 1 + τk−)

p+(2p+ − 1)k−
(2.26)

9



2.2 Dimer Structure

2.2.1 Calculation of Residence Time in Amyloid Fibril with Dimer

Structures, Definition of Structure and Interactions

In this part we consider we have two kind of sidechaines, hydrophobic and polar (or charged)

shown in Figure.2.3 with red (R) and green (G) respectively. We also assume if two hy-

drophobic sidechaines, H and H (hydrophobic and hydrophobic, RR in the figure) meet each

other and form bond, that bond would be stronger than if two sidechaines with different

kind meet, H and P or P and P (GR in the figure). As it mentioned before, polar residues

favor high solubility and hydrophobic residues are more prone for aggregation [4, 5]. Dill

also based on lattice statistical mechanics, suggested a theory for the folding of heteropoly-

mer molecules. Folding considered to be driven by the association of solvophobic monomers

to avoid solvent and opposed by the chain configurational entropy [13].

Weak Weak Weak 

Weak Strong 

Figure 2.3: A schematic diagram of aggregation of peptid with dimer periodicity. Sidechaines are
are color coded as green (polar) or red (hydrophobic). Also, strong interactions are shown with
blue and weak interactions are shown with yellow color.

First, consider starting from strong bond at x, so the next bond which we have to form

is a weak bond. We assume that the rate of bond formation is limited by diffusion through

the solvent and therefore is independent of the bond strength. Therefore, the site dynam-

ics only differ in the bond breakage ratio. We have “slow” sites for which bond breakage

requires rapturing a strong bond, and “fast” sites for which x denotes a weak bond. We

have two forms of recursion relation in new “RG” structure (for simplicity we label the

site-specific quantities as “s” for strong and “w” for weak), (p+s), (p−s) and (p+w), (p−w) in

these equations represent the probability for motion from strong and weak bonds to right

and left respectively:

10



t(x− 1) = p+wt(x) + p−wt(x− 2) + τ1, (2.27)

t(x) = p+st(x+ 1) + p−st(x− 1) + τ2, (2.28)

t(x+ 1) = p+wt(x+ 2) + p−wt(x) + τ1. (2.29)

Where:

p+w =
k+w

k+w + k−w
, (2.30)

p−w =
k−w

k+w + k−w
, (2.31)

p−s =
k−s

k+s + k−s
, (2.32)

p+s =
k+s

k+s + k−s
, (2.33)

Eqs. 2.27, 2.28 and 2.29 τ1 and τ2 are the average time for random walk steps starting from

weak and strong sites respectively. Using Eq. 2.27 and Eq. 2.29 to eliminate t(x − 1) and

t(x + 1) from Eq. 2.28 give us an equation including t(x − 2) and t(x + 2) which can be

written in the form of:

t(x) =
p+wp+st(x+ 2)

(1− p−wp+s − p+wp−s)
+

p−wp−st(x− 2)

(1− p−wp+s − p+wp−s)
+

τ1 + τ2
(1− p−wp+s − p+wp−s)

.

(2.34)

Now defining:

p′+ =
p+wp+s

(1− p−wp+s − p+wp−s)
, (2.35)

p′− =
p−wp−s

(1− p−wp+s − p+wp−s)
, (2.36)

τ ′ =
τ1 + τ2

(1− p−wp+s − p+wp−s)
, (2.37)

And considering jumps with two steps (we named every two steps a supercell in our calcu-
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lation, in other words supercell includes the symmetry of the system and get repeated with

the dimer pattern) with equation:

V2(x+ 2) = M ′V2(x) (2.38)

Where

V2(x) =

 Θ(x)

Θ(x− 2)



In dimer structure the transformation to a homogenous recursion relation is accomplished

with: 2

t(x) = Θ(x)− x

2

τ ′

p′+ − p′−
. (2.39)

2For additional calculations refer to appendix, part A
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2.2.2 Boundary Condition in Dimer Structure

The boundary conditions are derived as in the calculation of section 1.1.2 for uniform struc-

ture. Here, we also need to account for the dimer periodicity of the lattice. If we start from

a strong bond and try to break a weak bond, is faster than starting from a weak bond and

try to break the strong bond. We have two kind of motion, fast to go forward or backward

from strong to weak bond with the probabilities respectively p+s and p−s and slow to go

forward or backward from weak to strong bond with the probabilities respectively p+w and

p−w.

Assume that we have started from one weak bond and the strand is formed of pairs, so the

last dimer unit there would be one strong bound, but the strand is finished, so we only can

have k−w. But this condition doesn’t exist for motion from the previous bond and we still

are allowed to jump one more time. In this condition our boundary condition determine the

τ ′ in this form:

p+s = 0 (2.40)

p−s = 1 (2.41)

Based on these two equations:

τ2 =
1

k−s
(2.42)

τ1 =
1

k+w + k−w
(2.43)

τ ′end =

1
k−s

+ 1
k−w+k−w

1− k+w

k+w+k−w

(2.44)

Where this τ ′end is the relation for τend for the structure with the ”Dimer” symmetry.

13



Similarly we can find the value of Θ1 with the Eq. 2.39:

Θ(1) =
( 1
p′+
− 1)n/2(p′+ − 1)(k−w(2p′+ − 1 + τ ′k−s) + (2p′+ − 1)(k−s + k+s)

p′+(2p′+ − 1)k−sk−w
. (2.45)

14



2.3 Trimer Structure

2.3.1 Calculation of the Residence Time in Amyloid Fibril with

Trimer Structures

Figure 2.4: A schematic diagram of the aggregation of peptides with trimer periodicity. Three
types of amino acids are represented with green, red and brown colors.

Considering a poly-peptide with a repeating pattern of three amino acids (Figure 2.4), we

have three forms of recursion relations. If we start from a bond located at x, the probability

for forward and reverse steps are p+1 and p−1 respectively and average time for moving from

this step τ1. Similarly if we start from the bond located at x+ 1, we can go forth and back

with the possibilities p+2 and p−2, and time constant τ2 and finally for the bond located at

x + 2, we can go forth and back with the possibilities p+3 and p−3, and time constant τ3.

The rest of calculations is briefly in this form:

t(x) = p+1t(x+ 1) + p−1t(x− 1) + τ1, (2.46)

t(x+ 1) = p+2t(x+ 2) + p−2t(x) + τ2, (2.47)

t(x+ 2) = p+3t(x+ 3) + p−3t(x+ 1) + τ3. (2.48)

Where:

p+1 =
k+1

k+1 + k−1
, (2.49)

p−1 =
k−1

k+1 + k−1
, (2.50)

p+2 =
k+2

k+2 + k−2
, (2.51)
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p−2 =
k−2

k+2 + k−2
, (2.52)

p+3 =
k+3

k+3 + k−3
, (2.53)

p−3 =
k−3

k+3 + k−3
, (2.54)

And τ1, τ2 and τ3 are average waiting time for starting motion from x, x+1 or x+2. Sub-

stituting equations 2.46 and 2.48 into Eq. 2.47 will give us the relation in term of t(x − 3)

and t(x+ 3):

t(x) =
p+1p+2p+3t(x+ 3)

(1− (p−2p+1 + p−3p+2 + p−1p+3))
+

p−1p−2p−3t(x− 3)

(1− (p−2p+1 + p−3p+2 + p−1p+3))
+

τ1 + τ3p−1 + τ2p−1p−3 + τ2p+1 − τ1p−3p+2 + τ3p+1p+2

(1− (p−2p+1 + p−3p+2 + p−1p+3))
.

(2.55)

Also similar to the dimer structure we can define p′+ and p′− for this trimer structure. A

straightforward calculation confirms that p′+ + p′− = 1 3.

p′+ =
p+1p+2p+3

(1− (p−2p+1 + p−3p+2 + p−1p+3))
(2.56)

p′− =
p−1p−2p−3

(1− (p−2p+1 + p−3p+2 + p−1p+3))
(2.57)

τ ′ =
τ1 + τ3p−1 + τ2p−1p−3 + τ2p+1 − τ1p−3p+2 + τ3p+1p+2

(1− (p−2p+1 + p−3p+2 + p−1p+3))
(2.58)

In jumping over three steps we have:

V3(x+ 3) = M ′′V3(x) (2.59)

Where:

V3(x) =

 Θ(x)

Θ(x− 3)


3Appendix 1, Part B
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In this case:

t(x) = Θ(x)− x

3

τ ′

p′+ − p′−
(2.60)

We have three kind of motion, with possibility to go forward or backward p+1, p−1, p+2, p−2,

p+3 and p−3from different positions A, B or C. Assume that we start from the bond number

1 (A) so the last bond would be the bond number 3 (C type), after the last bond forms

no more forward steps are possible so, we only can have p−3 = 1. In this condition the

boundary condition determines the τ ′end in this form:

p+3 = 0

k+3 = 0

p−3 = 1

based on these equations:

τ3 =
1

k−3

but still we have:

τ1 =
1

k+1 + k−1

τ2 =
1

k+2 + k−2

τ ′end =

[
1−

[
(

k−2

k+2 + k−2
)(

k+1

k+1 + k−1
) + (

k+2

k+2 + k−2
)

]]−1

×
[
(

1

k+1 + k−1
) + (

1

k−3
)(

k−1

k+1 + k−1
) + (

1

k+2 + k−2
)(

k+1

k+1 + k−1
)

+(
1

k+2 + k−2
)(

k+1

k+1 + k−1
)− (

1

k+1 + k−1
)(

k+2

k+2 + k−2
)

+
1

k−3

k+1

(k+1 + k−1)

k+2

(k+2 + k−2)

]
. (2.61)

After finding Θ1 in the form of:

Θ(1) =
1

k−1k−2k−3(2p′+ − 1)p′+
×
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[(
1

p′+
− 1)n/3(p′+ − 1)(k−2k−3 + k+1(k−3 + k+2)(2p′+ − 1)+

k−1(k−3 + k+2)(2p′+ − 1) + k−2(2p′+ − 1 + k−3τ
′)]. (2.62)

Using this initial function and equation 2.60 would give us the residence time in any part

of strand.4.

4Appendix 1 part B
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2.4 Residence Time for Uniform and Non-uniform Struc-

tures with Different Length of Registries

We have calculated the residence time for different structures and varying registries. First

we consider a uniform strand with the length of 26 molecules with Ebind = 0.28kBT . The

residence time for molecules attached by a single bond (x = 1) is short, and exponentially

increases with increasing the number of bonds. However, after particular number of bonds

we observe saturation for the amount of time. This is because the residence time is a
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Figure 2.5: Residence time of two strands with the length of 26 molecules with Ebind = 0.28KBT
as a function of the initial number of bonds. System with more than ' 10 will eventually reach the
fully bound state before detaching.

weighted average of two outcomes: (1) a quick detachment before many bonds form, and

(2) breakage of all bonds from a (nearly) fully bound state. The reason we get a saturating

behavior is that outcome (1) gets less likely as more bonds form. Therefore, above a certain

number of bonds, outcome (2) is the only option.
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It is trivial that if we compare the saturation time (keeping the energy of binding con-

stant) and change the total length of strand, the saturation time for different lengths shows

an exponential increase. Also if we compare final residence time for all 26 bonds for different

strands with different Ebind we expect for higher binding energy, the longer saturation time.
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Figure 2.6: The residence time depends exponentially to the molecule length(Ebind = 0.28KBT ),
longer molecule needs more time resulting in an Arhenius dependence.
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Also we can have the same plot in logarithmic time scale versus different length of registry

2.7 that clearly shows exponential increase at longer length of registry.
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Figure 2.7: Log plot of the residence time showing the exponential dependence on molecule length
(Ebind = 0.28KBT ).
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Figure 2.9: Residence time for fully bonded molecules of length L=26 as a function of Ebind.

Also we can have the same plot in logarithmic time scale versus different length of registry

2.10 that clearly shows exponential increase at longer length of registry.
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Figure 2.10: Log plot of saturation residence time, showing the exponential dependence on Ebind.

For the non-uniform structure, we assumed there are different kind of interactions be-

tween three kind of side chains. Strong between hydrophobic and hydrophobic (named HH),

and weak between polar and polar (named PP). Figure 2.11 shows how the shift in registry

position causes a weak structure with all weak interaction between strands or a stronger

structure which is built with combination of weak and strong interactions. In the figure,

the red color is representative for hydrophobic (H) and green color for polar (P) and for

the interactions blue color is representative for strong interactions and yellow color for the

weak interactions. It can be seen that for length of registry equal to three (attachment

starts from the head), strands make three weak bonds, but for length of registry equal to

two bonds (attachment starts from the head), strands make one strong and one weak bond.

This important feature shows longer length of registry doesn’t necessarily cause an increase

in the time of residence if the structure is more complicated. This claim can be proved with

looking at saturation residence times for different length of registries in Figure. 2.11.

There is a strong even-odd effect in the residence time. This is the result of the fact that

odd registries prevent the formation of HH contacts. This means that all of the bonds will

be weak, resulting in short residence time. For this example we used Ebind = 0.2kBT for

PP and HP interactions and Ebind = 0.8kBT for HH interaction.
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Weak Weak Weak

Weak Strong

Figure 2.11: Binding energy depends on molecule alignment for patterned sequence. Red color is
representative for hydrophobic (H) and green color for polar or charged (P), also for the interactions
blue color is representative for strong interactions and yellow color for weak interactions. In the top
panel miss-alignment of the H and P residues results in the weak binding energies. In the bottom
panel alignment of the H residues results in strong binding.
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Figure 2.12: Plot of the saturation residence time for dimer structure as a function of the length
of registry for structure of figure 2.11. The even-odd effect is a result of the lack of strong bonds
with odd registries.
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We can repeat the analysis for peptides that have a repeating sequences with every three

amino acids. Considering a strand with a ”HPP” (hydrophobic-polar-polar) pattern along

the strand, see Figure 2.13). Clearly if two strands meet each other in the form that every

HPP face with another HPP, the bonds will have a strong-weak-weak pattern. This is more

stable than the condition when a HPP is paired with PPH or PHP resulting in all weak

interactions.

Strong Weak Weak 

Weak Weak Weak Weak 

Figure 2.13: Comparison of different lengths of registry for trimer structure. The alignment
between the molecule and fibril determines the sequence of strong and weak bonds formed.
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Figure 2.14: Plot of the saturation residence time for trimer structure as a function of the length
of registry for structure of figure 2.13.

2.5 Discussion

Our calculations show that polypeptides dissimilar to fibril structure disturb the growth of

amyloid fibril. In other words, the existence of polypeptides with the same symmetry as the

fibril, gives a better chance for fibril growth. Also, it is obvious that for those fibrils which

have more hydrophobic amino acid side chains, there is more chance for growth.
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Chapter 3

Results of Simulation for

Protein Aggregation Process

3.1 Definition of the Physical Characteristics and Prin-

ciples in Simulation

3.1.1 The assumption about diffusion time and concentration

Using the Stoke-Einstein expression, the diffusion constant of a sphere is given by:

D =
RT

6πηRh
(3.1)

Where RT is the gas constant multiplied by temperature (R = kBNA, NA is Avogadro’s

number), η is the viscosity of the solvent in a dilute solution and Rh is hydration radius of

the sphere. Hong L and Lei J, based on an analysis of 37,000 protein structures, found that

the radius of native proteins scales with the chain length, according to [26, 27]:

Rn(N) = 2.24N0.392 (3.2)

Where N is the number of amino acids in protein and Rn has units of angstrom. However in

a different study, Tyn and Gusek demonstrated that the diffusion properties of proteins are

approximated by Rh = 1.45Rn [26, 28]. This model is for free and naturally folded protein in
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dilute environment. In dense in-vivo environment molecules have more obstacles around for

moving in their trajectories. At high protein concentration the crowding effect will increase

the effective viscosity of the media, leading to an increase in the diffusion time. This effect is

initially linear in the concentration becomes strongly non-linear at higher concentration[29].

To calculate the diffusion time from the diffusion constant we employ the Smoluchowski

result for the protein creating a spherical absorbing surface.

tdiff =
1

4πacDp
(3.3)

Where a is the radius of the absorbing surface (the protofilament radius ' 2nm), c is

the concentration far from the surface, and Dp is the diffusion constant of the particles

[2, 31, 32], In our simulation we use tdiff as the independent variable which contains the

combined effects of protein concentration on the reduction of diffusion caused by molecular

crowding. We model the aggregation process as a series of steps in which the fibril can either

add a molecule or lose one. The probability for adding another strand to the aggregate, is

Padd =
Kdiff

Kdiff +Kres
(3.4)

Where Kres is 1
tres

and tres is the residence time from section 2.1.1 . In other words, if time

of residence is long enough and diffusion time is short enough, the chance of association is

more likely to grow than shrink.
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3.1.2 Assumptions for Considering the Stochastic Nature of the

Process

Whether we are investigating formation of hundreds of different kinds of molecules from

initial materials or formation of aggregation from similar proteins, the Gillespie algorithm is

a reasonable efficient method for determining the outcomes of a “well-stirred” reaction [33].

In this work we consider that there are only two reactions in the experiment, aggregation

and dissociation. We assume that the system is large enough that aggregation or dissoci-

ation of proteins don’t change the concentration of proteins. However as we consider the

effect of stochasticity with factor C in the process, so random nature of process still is kept.

It is also important to mention that volumetric concerns in Gillespie algorithm for simplifi-

cation is not taken into account.

Making decision for conditional selection of time steps in simulation can accelerate sim-

ulation and lower time costs. This means that considering big time steps when nothing

happens or small time steps when the process is happening can make the simulation work

much closer to real process and more efficient in simulation. If particular reaction happens

with the rate of K it means that the time step should be selected not bigger than this time

step. For the case that several reactions are happening selecting sum of all rates can make

the smallest leap time and safest selection. Considering that we have two rates Kres and

Kdiff (that later will be explained profoundly) will give time step:

τ =
1

Kres +Kdiff
(3.5)

However it is better to consider stochasticity in selecting time steps too. Therefore time

step is considered as a exponential distribution around this amount:

τ = − 1

Kres +Kdiff
log(r). (3.6)

Where r is uniform random number in the region (0,1]. By this selection the leap time in the

simulation is a fraction of the average time for the reaction which derives by two diffusion

and residence processes.
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3.1.3 Energy Scales

All energy scales are given in units of thermal energy at room temperature (300◦K), it has

assumed that the strength of H-bonds in the aqueous environment is less than 0.1 of H-bond

strength in the gas phase The strength of H-bond, in case of having bond between amino

group (N-H) and Oxygen in dilute environment is 0.8 kJ/mole [35].

800
J

mole
× 1mole

6.02× 10−23molecule
× kBT

4.14× 10−21 J
= 3.2

kBT

molecule
. (3.7)

Experimental data also shows that the stability of Aβ40 fibrils with N=24 is Nεb = 13.1kBT

[36]. So I chose the energy scales to be around 0.32kBT and as the interaction of residues are

smaller than hydrogen bonds, it is considered the interactions are weakening or strengthening

bonds by 0.1 of this energy scale.
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3.2 Definitions of the Physical Assumptions in the Sim-

ulation and Results

In this simulation we start with uniform structure. As shown in Figure 3.1, blue arrows show

the registry coordinate and green arrows show the direction which aggregation grows. With

Figure 3.1: Schematic of aggregation process and two important direction in simulation. “Y”
direction which is shown with green color and shows the growth of fibril, the “X” direction shows
the position of registry. The next strand at the upper section is attached at the position of registry=5
and length of registry=4. In the bottom section of figure, the next strand is attached at the position
of registry=6 and the length of registry=3.

the histograms below the effect of concentration Kdiff on the incorporation of molecules

with various registries can be seen. At low concentration only we can see random lengths

of registry find the chance of growth and some of them never find this chance, however in

higher concentration we see all lengths of registry happens almost with the same amount.

This simulation is done with accumulation time t = 0.01s. It can be seen that during the

increment of concentration (Kdiff) at low concentration we have only stochastic behavior

for attachment of strands at different lengths of registry. However we see that at high

concentration, all lengths happen with the same chance.
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Figure 3.2: Histogram of the number of strands attached at different length of registry at the
concentration corresponding to Kdiff = 10−3( 1

s
).
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Figure 3.3: Histogram of the number of strands attached at different length of registry at the
concentration corresponding to Kdiff = 10−2( 1
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Figure 3.4: SHistogram of the number of strands attached at different length of registry at the
concentration corresponding to Kdiff = 10−1( 1

s
).
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Figure 3.6: Histogram of the number of strands attached at different length of registry at the
concentration corresponding to Kdiff = 102( 1

s
).
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Figure 3.7: Histogram of the number of strands attached at different length of registry at the
concentration corresponding to Kdiff = 103( 1
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Figure 3.8: Histogram of the number of strands attached at different length of registry at the
concentration corresponding to Kdiff = 104( 1

s
).
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Figure 3.9: Histogram of the number of strands attached at different length of registry at the
concentration corresponding to Kdiff = 105( 1
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Figure 3.10: Histogram of the number of strands attached at different length of registry at the
concentration corresponding to Kdiff = 106( 1

s
).

Also it is interesting to compute the amount of average of growth versus concentra-

tion during 1 million of time steps defined at the section 3.1.2 for 100 runs. As shown in

Figure 3.11, at low concentration the stochastic nature of the process can be seen with rela-

tive standard deviation (standard deviation/average), but its nature changes to completely

deterministic phase at higher concentration.
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Figure 3.11: Growth average versus concentration for L = 31 and Ebind = 0.28kBT .
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In giving an idea about the reason for growth, it can be said that two effective phenomena

in growth at particular concentration arrive to the point that two probabilities of adding

(Padd) and loosing (Ploose) for a fibril gets equal. This point is the start point for growth.

Then at higher concentration, Padd is more than Ploose and so growth can proceed. For

one single step we can show this schematic (figure 3.12). Referring to this figure 3.12,

considering a molecule with the length of 30 peptides, and assuming all 30 peptides make

bond, the concentration necessary for the start of growth is between 4.1- 4.2 in the graph

where the top line corresponding to the residence time of molecule with the length of 30 cut

the diffusion time graph. This result is consistent with the results shown in the figure 3.11
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(Ebind = 0.28kBT ).
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Chapter 4

Conclusion and Future

Directions

The result of simulation shows completely deterministic behavior at higher concentration.

However at low concentration that the process of aggregation starts the behavior is stochas-

tic. This amount of concentration for the start of process depends on the amount of binding

energy that we consider. At lower binding energy we need higher concentration for the start

of the aggregation process, however the critical concentration decreases with increasing en-

ergy for the start of the aggregation process. This simulation is done for uniform structure

that doesn’t have any complexity and all the bonds have the same binding energy. It is

obvious that the non-uniform structure will result in more complex behaviour.

Our suggestion for future works is continuing simulation with non-uniform structure. Al-

though the model neglects many aspects of the aggregation process, we have captured the

fundamental process of molecular diffusion and the sampling of incorrect binding states.

Refinement of the model in my suggestion should be started from section 3.1.2 where we

considered only constructive effect of the concentration. In this work we observed only a

direct relationship between the concentration and growth rate, it is also possible to have an

inverse relationship when increasing the concentration, it results to decrease in the growth

rate. This is possible when proteins with wrong alignments inhibit the binding of properly

bound proteins. Although it is said that protein aggregation and in our work amyloid have

crystalline structure, it doesn’t mean also the environment behaves like crystal and we can’t
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neglect the effect of alignment in the environment which provides molecules for aggregation.

With defining three-dimensional coordinates for this process can be a good exercise that also

can include the chance of having several aggregation process at different sides. We can also

explore more realistic diffusion model using physical values for 4πaDp (taken to be equal to

one) and including crowding effects.
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Appendix 1

(Part A) Dimer Structure Calculations (Checking impor-

tant principles)

p′+ + p′− = 1

p′+ =
p+wp+s

(1− p−wp+s − p+wp−s)
, (1)

p′− =
p−wp−s

(1− p−wp+s − p+wp−s)
, (2)

p′+ + p′− = 1→ p−wp−s + p+wp+s = 1− p−wp+s − p+wp−s →

p−wp−s + p+wp+s + p−wp+s + p+wp−s = 1

→ p+w(p+s + p−s) + p−w(p+s + p−s) = p+w + p−w = 1

Function x/2 in calculation is appropriate selection:

Having equations:

t(x+ 2) = Θ(x+ 2)− ((x+ 2)/2)
τ ′

p′+ − p′−
(3)

t(x− 2) = Θ(x− 2)− ((x− 2)/2)
τ ′

p′+ − p′−
(4)

will we have t(x) = p′+t(x+ 2) + p′−t(x− 2) + τ ′ ?

→ t(x) = p′+(Θ(x+ 2)− ((x+ 2)/2)
τ ′

p′+ − p′−
) + p′−(Θ(x− 2)− ((x− 2)/2)

τ ′

p′+ − p′−
) + τ ′

→ t(x) = p′+(Θ(x+ 2)− ((x+ 2)/2)
τ ′

p′+ − p′−
) + p′−(Θ(x− 2)− ((x− 2)/2)

τ ′

p′+ − p′−
) + τ ′

t(x) = p′+Θ(x+ 2) + p′−Θ(x− 2)− x/2 τ ′

p′+ − p′−
− (

p′+τ
′

p′+ − p′−
−

p′−τ
′

p′+ − p′−
) + τ ′.

where last two terms cancel each other and we have:

p′+Θ(x+ 2) + p′−Θ(x− 2)− x/2 τ ′

p′+ − p′−
= t(x). (5)
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Diagonalization of Transfer Matrix

The matrix M can be brought into diagonal form with:

U−1MU (6)

But finding U matrix can be done via mathematica, which gives U :

U =

 −1 + 1
p+

1

1 1

 (7)

So we can calculate U−1:

U−1 =

 1
1

p+
−2

−1
1

p+
−2

−1
1

p+
−2

( 1
p+
− 1)( 1

p+
− 2)

 (8)

U−1MU =

 −1 + 1
p+

0

0 1

 (9)

And also for checking unitary matrix U :

UU−1 =

 −1 + 1
p+

1

1 1


 1

1
p+
−2

−1
1

p+
−2

−1
1

p+
−2

( 1
p+
− 1)( 1

p+
− 2)

 =

 1 0

0 1

 (10)
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(Part B)Trimer Structure Calculations(Checking impor-

tant principles)

p′+ + p′− = 1

p′+ + p′− = 1,

p−1p−2p−3 + p+1p+2p+3 = 1− (p−2p+1 + p−3p+2 + p−1p+3),

p−1p−2p−3 + p+1p+2p+3 + p−2p+1 + p−3p+2 + p−1p+3 = 1,

(1− p+1)p−2p−3 + p+1p+2p+3 + p−2p+1 + p−3p+2 + p−1p+3

= p−2p−3 − p+1p−2p−3 + p+1p+2p+3 + p−2p+1 + p−3p+2 + p−1p+3

= (p−2 + p+2)p−3 − p+1p−2p−3 + p+1p+2p+3 + p−2p+1 + p−1p+3

= p−3 + (1− p−3)p+1p−2 + p−1p+3 + p+1p+3(1− p−2)

= p−3 + p+3p+1p−2 + p−1p+3 + p+1p+3 − p−2p+1p+3

= p−3 + p+3(p−1 + p+1) = 1.

Function x/3 in calculation is appropriate selection:

Having equations:

t(x+ 3) = Θ(x+ 3)− ((x+ 3)/3)
τ ′

p′+ − p′−
(11)

t(x− 3) = Θ(x− 3)− ((x− 3)/3)
τ ′

p′+ − p′−
(12)

will we have t(x) = p′+t(x+ 3) + p′−t(x− 3) + τ ′ ?

→ t(x) = p′+(Θ(x+ 3)− ((x+ 3)/3)
τ ′

p′+ − p′−
) + p′−(Θ(x− 3)− ((x− 3)/3)

τ ′

p′+ − p′−
) + τ ′

→ t(x) = p′+(Θ(x+ 3)− ((x+ 3)/3)
τ ′

p′+ − p′−
) + p′−(Θ(x− 3)− ((x− 3)/3)

τ ′

p′+ − p′−
) + τ ′

→ t(x) = p′+Θ(x+ 3) + p′−Θ(x− 3)− x/3 τ ′

p′+ − p′−
− (

p′+τ
′

p′+ − p′−
−

p′−τ
′

p′+ − p′−
) + τ ′
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where last two terms cancel each other and we have:

p′+Θ(x+ 3) + p′−Θ(x− 3)− x/3 τ ′

p′+ − p′−
= t(x).
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