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Abstract 

The dynamic environments, varying production practices, and general biological 

uncertainty associated with bovine reproduction makes informed, strategic decision making 

regarding the implementation of bovine reproductive technology a great challenge for producers. 

One might also argue that traditionally, ET’s primary focus of genetic improvement has greatly 

overshadowed any consideration of short to mid-term financial gain.  

To accomplish the objective of creating an economic risk analysis tool for user-defined 

embryo transfer (ET) programs, a circumstantial, stochastic prediction model utilizing @Risk© 

software to generate comparable economic values as an aid in the ET decision making process has 

been created. More realistic than the use of means in deterministic models, distributions defining 

the biological uncertainty for a multitude of reproductive outcomes are estimated through 

extensive literature review and limited industry sources. Applying the Latin Hypercube variation 

of Monte Carlo simulation, a sample value from the descriptive distribution associated with each 

stochastic variable is included in an iteration of the simulation. Through large numbers of iterations 

with dynamic combinations of variables, the process culminates in a distribution of possible values 

for the net present value (NPV), annuity equivalent net present value (ANPV), and return on 

investment (ROI) associated with the model described scenario of in-vivo derived (IVD) or in-

vitro produced (IVP). Finally, using the distributions of NPV, ANPV, and ROI a decision maker 

can assess the economic risk linked to a user-defined ET program. 

 To further complicate matters, cattle producers are now presented with a choice between 

two primary methods of ET. IVD ET describes the traditional method of ET that involves follicular 

stimulation and insemination of a donor female followed by the collection of fertilized embryos 

from the uterus. IVP commonly refers to the method of generating transferable embryos by 



  

collecting oocytes by ovarian aspiration; in-vitro fertilization of the collected oocytes; and 

incubated maturation of the fertilized oocytes. Encompassed within the two methods of ET exist 

several different sub-techniques, principally regarding the exception or inclusion of follicular 

synchronization and/or stimulation before ovum pick-up (OPU) in IVP procedures. Ultimately, 

operators must decide whether ET programs, of any type, serve as an economically viable means 

to increase rate of genetic improvement or take advantage of marketing opportunities. Although 

several economic value predictors for ET programs already exist (Beltrame et al. 2010), the 

opportunity remains to create more applicable models for Bos taurus beef production and varying 

marketing avenues in the U.S. This circumstantial, stochastic simulation model can serve as an aid 

in the ET decision making process by generating output that allows for the financial risk and 

sensitivity analysis of a user-defined ET program.  
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Preface 

In the business world, the ability to project the potential range of investment profit or loss 

and mitigate risk, before making an initial investment, serves as a crucial step towards the success 

or failure of an enterprise. The cattle feeding segment of the beef industry has adopted similar 

techniques with advanced breakeven projections that utilize a combination of performance 

predictors and risk management practices. Conversely, a majority of the seedstock sector, 

particularly as it pertains to the use of embryo transfer (ET) technology in seedstock operations, 

seems to place more trust in intuition and optimism rather than proven methods of investment 

analysis.  

 Whereas it stands to reason that numerous, highly successful seedstock operations must 

implement some degree of strategic scrutiny before committing the extensive amount of both 

financial and labor resources into ET programs; the depth of the evaluation comes into question, 

especially for operations without years of experience to reinforce assumptions. The lack of 

financial investigation can be rationalized. Hasler (2003) stated that although the quantity seems 

to be declining, traditionally a significant volume of beef ET was conducted by hobby farmers 

funded through sources not directly related to the beef business. One also might argue that ET’s 

primary focus of genetic improvement has greatly overshadowed any consideration of short to 

mid-term financial gain. In addition, dynamic environments, small sample size, poor record 

keeping, and the immense variability associated with bovine reproduction account for several more 

potentially limiting factors.  

 To further complicate matters, cattle producers are now presented with a choice between 

two primary methods of ET. In-vivo derived (IVD) ET describes the traditional method of ET that 

involves follicular stimulation and insemination of a donor female followed by the collection of 
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fertilized embryos from the uterus. In-vitro production (IVP) commonly refers to the method of 

generating transferable embryos by collecting oocytes by ovarian aspiration; in-vitro fertilization 

of the collected oocytes; and incubated maturation of the fertilized oocytes. Encompassed within 

the two methods of ET exist several different sub-techniques, principally regarding the exception 

or inclusion of follicular synchronization and/or stimulation before ovum pick-up (OPU) in IVP 

procedures. Ultimately, operators must decide whether or not ET programs, of any type, serve as 

an economically viable means to increase rate of genetic improvement or take advantage of 

marketing opportunities. Although several economic value predictors for ET programs already 

exist (Beltrame et al. 2010), the opportunity remains to create more applicable models for Bos 

taurus beef production and varying marketing avenues in the U.S. 

 To conduct economic risk analysis of user-defined ET programs, a circumstantial, 

stochastic prediction model utilizing @Risk© software to generate comparable economic values 

as an aid in the ET decision making process has been created. More realistic than the use of means 

in deterministic models, distributions defining the biological uncertainty for a multitude of 

reproductive outcomes are estimated through extensive literature review and limited industry 

sources. Applying the Latin Hypercube variation of Monte Carlo simulation, a sample value from 

the descriptive distribution associated with each stochastic variable is included in an iteration of 

the simulation. Through large numbers of iterations with dynamic combinations of variables, the 

process culminates in a distribution of possible values for the net present value (NPV), annuity 

equivalent net present value (ANPV), and return on investment (ROI) associated with the model 

described scenario of IVD or IVF. Finally, using the distributions of NPV, ANPV, and ROI a 

decision maker can assess the economic risk linked to a user-defined ET program. 
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Chapter 1 - Literature Review 

 Brief History of Bovine Embryo Transfer Techniques 

In-vivo Derived Embryo Transfer 

While the concept of embryo transfer (ET) has existed for centuries, even millennia, its 

realization, especially in commercial application, is still relatively recent (Betteridge, 2003). 

Walter Heape’s 1890 transfer of rabbit embryos from one breed of doe to another, immediately 

following embryo collection represents the first recorded transfer of mammalian embryos to result 

in live progeny (Heape, 1891). More than 60 years later, in 1951, the first embryo transfer derived 

calf was born through the efforts of Elwyn Willet and his team at the University of Wisconsin 

(Betteridge, 2003). At the time, ET technology was still in its early, inefficient stages of application 

(Betteridge, 2003) Thus, much of the efforts of bovine ET pioneers, including Willet’s, were 

redirected to artificial insemination (A.I.) because of its industry perception as a more practical 

application towards genetic advancement (Betteridge, 2003).  

The surge in the importation of “exotic”, continental European beef breeds by North 

American breeders during the early 1970s finally sparked the commercial application of ET as a 

means of propagating expensive genetics rare to the North American continent (Hasler, 2003). 

During this time, surgical collection and transfer of bovine embryos was the most common practice 

(Hasler, 2003). It was not until the mid- to late 1970s that nonsurgical collection (flushing) and 

transfer techniques became a commercially viable means of ET, which expanded its use from in-

lab procedures to on-farm practice (Hasler, 2003). The use of pituitary hormone extracts to 

stimulate the ovulation of multiple follicles, allowing for multiple ovulation embryo transfer 

(MOET) and the development of prostaglandins to aid in the timing of ovulation also started in the 
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1970s (Bó and Mapletoft, 2014). Over the years, superovulation protocols have continued to 

improve in respect to convenience and time efficiency (Bó and Mapletoft, 2014). 

Beginning in the early 1980s, the ability to successfully freeze and thaw embryos made 

embryo recipient management much more efficient, as embryos could be transferred at a later date 

if the number of available recipients did not meet or exceed the number of fresh embryos available 

for transfer (Hasler, 2003). ET technology cemented its place in the cattle industry with incredible 

growth within both the beef and dairy industries during the 1980s (Table 1) (Betteridge, 2003; 

Hasler, 2003). Today, North America, the U.S. in particular, remains the largest producer of in-

vivo derived (IVD) embryos. 

Table 1. Number of embryonic transfer (ET) calves registered by three US breed associations 

during selected years between 1973 and 1988. 

Birth Year Simmental (n) Angus (n) Holstein (n) 

1973-75 1,558 0 21 

1976-78 4,163 53 1,234 

1979-81 7,786 1,552 13,103 

1982-84 13,916 8,303 43,253 

1985 4,068 4,680 20,991 

1988 1,879 5,940 22,070 

Adapted from Hasler(2014) (From Baker, 8th AETA Conference 1989 and compliments of Simmental, Angus, and 

Holstein Associations. 

 

Both Betteridge (2003) and Hasler (2014) voice some concern over the stagnation of 

progress in the now mature industry of conventional IVD ET. While the annual number of IVD 

collections has fluctuated in recent years, there has been little to no growth. (Table 2, Table 4). 

Furthermore, “The mean number of transferrable embryos from reproductively normal cows has 

remained relatively unchanged during the past 30 years for both beef and dairy cows” (Table 3) 

(Hasler, 2014). Looney (1986) calculated a mean of 6.2 “good” embryos per collection from more 
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than 2,000 flushes of beef donors from a sampling of 14 different breeds (Proceedings of 5th AETA 

Conference 1986) (Hasler, 2014). In 2014, an average yield of 7.0 transferable embryos per 

collection from a total of 31,333 IVD collections of beef donors in the U.S. was reported to the 

International Embryo Transfer Society (IETS) Data Retrieval Committee (Table 5) (IETS, 2014). 
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Table 2. Number of in-vivo embryo collections in North America by year, from 1997-2012 (includes beef and dairy). 

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

50,527 55,981 42,238 47,638 52,855 65,520 64,711 68,633 67,684 52,921 51,735 54,837 52,701 57,735 58,934 

Adapted from 2012, 2013, 2014 Statistics of Embryo Collection and Transfer in Domestic Farm Animals, George Perry- IETS Data Retrieval Committee Chair 

 

Table 3. Average number of transferrable in-vivo embryos collected per collection in North America by year, from 1997-2012 

(includes beef and dairy). 

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

5.69 5.64 6.28 5.89 6.07 5.99 6.42 6.18 6.20 6.57 6.54 6.62 6.75 6.80 6.74 

Adapted from 2012, 2013, 2014 Statistics of Embryo Collection and Transfer in Domestic Farm Animals, George Perry- IETS Data Retrieval Committee Chair 
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Table 4. North American bovine in-vivo derived embryo activity 2009-2014. 

Year 
Embryo 

Collections 

Transferrable 

Embryos 

% global 

embryos 

Fresh 

Transferred

Embryos 

Frozen 

Transferred 

Embryos 

Total 

Transferred 

Embryos 

% global 

transfers 

2009 52,921 347,531 49.48 111,106 137,599 248,705 46.57 

2010 51,735 338,540 46.23 106,400 147,271 253,671 42.95 

2011 54,837 362,781 49.50 109,197 139,418 248,615 43.44 

2012 52,701 355,866 50.87 100,354 134,990 235,344 46.52 

2013 57,735 392,530 53.83 115,832 161,785 277,617 48.31 

2014 58,934 397,306 64.66 107,700 163,646 271,346 58.41 

Adapted from 2009, 2010, 2011, 2012, 2013, and 2014 IETS Statistics and Data Retrieval Committee Report  

Table 5. United States dairy and beef cattle in-vivo derived embryo activity 2012-2014. 

Year 
Dairy Embryo 

Collections 

Beef Embryo 

Collections 

Dairy- 

Transferable 

Embryos 

Beef- 

Transferable 

Embryos 

2012 15,443 23,342 96,515 160,429 

2013 16,252 28,433 100,479 201,192 

2014 15,217 31,333 93,460 219,335 

Adapted from 2012, 2013, and 2014 IETS Statistics and Data Retrieval Committee Report 

 

In-vitro Produced Embryo Transfer 

While the IVD ET industry may have matured over the past several decades, the later 

developing in-vitro produced (IVP) embryo industry has experienced substantial growth since the 

late 1990s and early 2000s (Table 6, Table 7). The process of IVP can be broken down into 3 

distinct in-vitro procedures: 1) In-vitro maturation (IVM) describes the process of maturing 

oocytes prior to fertilization; 2) In-vitro fertilization (IVF) is the process of sperm capacitation and 
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subsequent fertilization of the oocyte; and 3) In-vitro culture (IVC) describes the growth of the 

fertilized oocyte to blastocyst stage (Hasler, 2000). Finally, as with IVD the option exists for either 

fresh transfer or cryogenic freezing of the embryos produced. Several methods regarding follicular 

synchronization and/or stimulation exist in the pre-ovum pick-up (OPU) procedure. Potential 

advantages of IVF protocols, when compared with IVD ET include: the ability to aspirate during 

gestation; the ability to fertilize several hundred oocytes with a single straw of semen; follicular 

synchronization/stimulation is optional, but not required; and the potential to generate embryos in 

prepubertal heifers. 

In 1959, the first live, IVF offspring were generated in rabbits (Hasler, 2000; Chang, 1968). 

The first IVF produced calf was born in 1981 (Bracket et al., 1982), and Hanada et al. (1986) 

describes 2 calves born from IVF embryos following culture in a rabbit oviduct; however, the first 

live calves generated from the full process of IVP were not produced until 1987 (Fukuda et al., 

1990; Hasler, 2000). OPU, the technique of ultrasound-guided follicular aspiration for the non-

surgical collection of oocytes from live donors was developed in 1988 and remains the most 

common procedure for oocyte collection (Pieterse et al., 1988; Hasler, 2000).  

In 1990s North America, commercial uptake of IVP was slow as oocytes per OPU hovered 

around only 5 oocytes and effective culture media was notorious for generating abnormally large 

calves and increased abortion rates in recipients (Hasler, 2014). This condition is often termed 

Large Offspring Syndrome (LOS) (Hasler, 2014). Until the mid to late 2000s, most cattle breeders 

and ET practitioners within the U.S. viewed IVP as a last resort for high value donors whose 

fertility issues led to limited or no response to traditional IVD procedures (Hasler, 2014). By 2011, 

emphasis of the leading ET companies in the U.S. had shifted from problem donors to IVP 

production using reproductively sound donors, often utilizing OPU during early pregnancy 
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(Hasler, 2014). Hasler (2014) cited communication with Trans Ova stating that most donors were 

stimulated with follicle stimulating hormone (FSH) pre-OPU resulting in a yield of 18 to 20 

oocytes per OPU followed by a blastocyst development rate of roughly 25%. While there is limited 

literature on the recent reduction in LOS occurrence, the state of the industry indicates that changes 

in culture medium have helped to alleviate some of the concern (Hasler, 2014). 

In Brazil, the world leader in IVP production, different cattle types and industry conditions 

led to an increased rate of IVP commercialization. Successful, large scale IVP production first 

occurred in the late 1990s, when several reproductive companies in Brazil began specializing in 

the production and transfer of IVP embryos (Viana et al., 2012). Driven primarily by the 

motivation to find an alternate method of ET for Bos indicus cattle, a species with a typically poor 

response to the FSH superovulation protocols required with MOET, and the tendency for Bos 

indicus cattle to yield a significantly greater number of oocytes per non-FSH stimulated OPU, the 

Brazilian cattle industry was the first to prove the technology’s widespread application (Viana et 

al., 2012; Hasler, 2014). 
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Table 6. Number of OPU in-vitro embryos collected in North America and South America by year, from 2000- 2014 (includes beef 

and dairy). 

Region 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

N.A. 1,741 0 20,378 27,413 2,385 29,243 134,162 137,958 17,747 20,390 43,058 48,474 74,242 112,300 206,139 

S.A. 12,667 668 51,063 63,341 80,833 143,916 204,469 211,496 220,465 256,033 268,310 325,349 355,205 376,459 356,960 

Adapted from 2012, 2013, 2014 Statistics of Embryo Collection and Transfer in Domestic Farm Animals, George Perry- IETS Data Retrieval Committee Chair 

 

Table 7. Number of transferred in-vitro embryos in North America and South America by year, from 2000- 2014 (includes beef and 

dairy). 

Region 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

N.A. 1,915 576 494 2,153 2,119 1,469 4,309 9,252 13,142 18,657 28,100 20,780 40,546 66,602 92,930 

S.A. 12,527 401 48,670 63,164 80,333 129,408 196,791 195,920 220,441 256,348 269,123 323,157 335,994 304,928 251,273 

Adapted from 2012, 2013, 2014 Statistics of Embryo Collection and Transfer in Domestic Farm Animals, George Perry- IETS Data Retrieval Committee Chair 
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 Factors Influencing ET Program Success 

IVD Embryo Production 

The first, and perhaps most obvious, contributor to the success of any ET program is the 

ability to generate transferable embryos. IVD and IVP, as described in the preceding pages, are 

the primary methods of embryo production (excluding somatic cell nuclear transfer to create 

cloned embryos and the practice of embryo splitting to produce multiple embryos from a single 

original). Although a conglomerate of factors, including breed, age, and reproductive soundness 

of a donor impact the success of an ET system; several human controlled elements of the embryo 

production process, including hormone protocol, interval between embryo or oocyte collections, 

control of follicular wave dynamics, and in-lab procedures influence the ultimate success or failure 

of embryo production.  

Beginning in the early 1970s, equine chorionic gonadotropin (eCG) was the primary means 

of ovarian stimulation to cause multiple follicular ovulation, followed shortly thereafter by the 

addition of prostaglandin (PGF2α) to aid in control of the estrous cycle (Bó and Mapletoft, 2014). 

By the late 1970s, it was discovered that donors maintained an endocrine profile that was both 

more normal and conducive to multiple ovulation through FSH stimulation rather than eCG (Bó 

and Mapletoft, 2014). Pituitary extracts containing FSH have a variable ratio of FSH to luteinizing 

hormone (LH) concentration unless they are purified (Bó and Mapletoft, 2014). Chupin et al., 1984 

reported that lower levels of LH improved response to ovarian FSH stimulation. Looney et al. 

(1988) found that exogenous stimulation utilizing DNA recombinant FSH containing no LH 

caused high superovulatory response suggesting that exogenous LH is not beneficial and perhaps 

detrimental to superovulation (Bó and Mapletoft, 2014). Today, a typical superovulation schedule 

may include twice daily intramuscular injection of some form of FSH for 4 to 5 days with PGF2α 
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treatment to cause luteolysis given at 48 to 72 hours following the start of FSH treatment (Bó and 

Mapletoft, 2014). Often, a progestin insert is included to prevent donors from coming into estrus 

ahead of schedule (Bó and Mapletoft, 2014). Estrus should occur 36 to 48 hours following PGF2α 

injection with insemination occurring at both 12 and 24 hours following the onset of estrus (Bó 

and Mapletoft, 2014). Ovarian follicular waves play another important role in superovulation. 

Traditionally, gonadotropin treatment for follicular stimulation has been initiated between 8 and 

12 days following estrus, which typically coincides with the timing of emergence for the second 

follicular wave of a 2-wave cycle; however, studies have reported that initiation of ovarian 

stimulation treatment that is not timed exactly with the day of follicular wave emergence has 

decreased effect (Bó and Mapletoft, 2014). Most superovulation treatments now incorporate a 

means of controlling follicular wave emergence through exogenous control (Bó and Mapletoft, 

2014). 

There are several exogenous methods of follicular wave control. In countries where 

estradiol is available for use, a treatment combining estradiol with progesterone serves as the most 

common means to cause regression of the current follicular wave and emergence of the next wave 

roughly 4 days later, at which time gonadotropin treatment starts (Bó and Mapletoft, 2014). A 

method more common in the U.S. is dominant follicle removal (DFR) by physical ablation using 

ultrasound guided follicle aspiration. If a skilled technician or ultrasound equipment are not 

available, several variations of gonadotropin releasing hormone (GnRH) protocols have proven 

effective in stimulating the emergence of a new follicular wave (Bó and Mapletoft, 2014). With 

both DFR and GnRH protocols a new follicular wave usually emerges 1 to 2 days following 

ablation or ovulation of the dominant follicle (Bó and Mapletoft, 2014).  
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While the traditional protocols call for donor females to have a minimum of 2 estrous 

cycles between superovulation treatments creating an interval of roughly 60-70 days between 

embryo collections, recent studies indicate that comparable results can be attained through 

protocols with a superovulation interval of 30-40 days (Hasler, 2010; Bó and Mapletoft, 2014). Bó 

and Mapletoft (2014) reported no difference in embryo production from donor superovulation 

intervals ranging from 28-30 days to intervals 90 days or greater. 

As mentioned before, while many of the preceding adaptions to superovulation protocols 

can help increase embryo production per unit of time and improve convenience by reducing the 

need for estrus detection and allowing for more on-farm protocol administration, the number of 

embryos collected per superovulation has remained relatively unchanged (Bó and Mapletoft, 

2014). Hasler (2003) states, “I believe that the current success level of superovulation represents 

a significant obstacle to the future growth of the ET industry. As long as mean embryo production 

remains at less than 6, with a range of (0 to >60), with 20% of donors producing 0 embryos, 

superovulation will remain an expensive, inefficient procedure.” Bó and Mapletoft (2014) shared 

a similar view, “…Thus, a high degree of unpredictability in superovulatory response still exists 

more than 35 years later, creating problems which affect the efficiency and profitability of 

commercial embryo transfer.” 

Influence of Semen Quality on IVD Embryo Production 

Semen quality also impacts embryo production, with the substitution of sex-sorted semen 

for conventional, unsorted semen typically having a negative effect. In single ovulating heifers, 

the fertility of low dose, sex-sorted semen tends to be 60%-90% of conventional, unsorted semen 

(Schenk et al., 2006). Although there is not a definite answer to the cause of this concern, it may 

be caused by added stress applied to spermatozoa when undergoing the process of sorting X- and 
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Y-chromosome bearing sperm (Schenk et al., 2006) and the lower dose. Following insemination, 

Mitchell et al. (1985) found that >90% of inseminate was no longer capable of fertilization 12 

hours after insemination and that >99% was no longer capable of fertilization after 24 hours within 

the female bovine genital tract. Furthermore, it has been demonstrated that increasing the number 

of inseminated sperm increases number of accessory sperm (sperm found in the zona pellucida of 

the oocyte but not responsible for fertilization) and fertilization rate (Nadir et al., 1993; Hawk, 

1988).  

 In a study of MOET in Angus cows and heifers comparing non-sexed versus sex-sorted, 

freeze-thawed semen the mean number of transferable embryos was significantly reduced when 

using sex-sorted semen (Schenk et al., 2006). The mean transferrable embryo yield of non-sexed 

semen was 8.7 embryos per flush, while the mean transferrable embryos per flush for sex-sorted 

semen at a dose of 10 x 106 and 2 x 106 sperm per inseminate was 4.1 and 3.3 transferrable 

embryos, respectively (Schenk et al., 2006). The numeric improvement in embryo production for 

the higher dose of sex-sorted semen was not significant (Schenk et al., 2006). Hayakawa et al. 

(2009) demonstrated that MOET of Holstein heifers using sex-sorted, freeze-thawed semen 

generated a numeric reduction in the total number of transferrable embryos and fertilization rate 

in one experiment and a numeric reduction in the number of transferrable grade 1 embryos in 

another experiment.  

IVP Embryo Production 

 To increase embryo production per OPU from IVP, more viable oocytes must be aspirated 

and/or a greater percentage of cultured oocytes must develop to the blastocyst stage. While roughly 

80% of naturally occurring, single ovulating oocytes develop into embryos following in-vivo 

fertilization and roughly 60% of oocytes following superovulation develop into embryos, the range 
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of embryo development percentage for OPU-IVP embryos tends to range from 10% to 40%, 

depending on oocyte and semen quality (Merton et al., 2003; Pontes et al., 2010; Morotti et al., 

2014). Another point to consider is the number of embryos generated over a specific time span. 

Three factors can be readily manipulated to influence the number of oocytes collected per OPU or 

in a set time span from a specific donor: OPU interval, synchronization of follicular wave 

emergence, and ovarian stimulation protocol. 

 The goal of OPU is to perform the aspiration at a time in the estrous cycle that the current 

follicular wave has as many developmentally competent, retrievable oocytes as possible. 

Successful OPU retrieves all follicles ≥2-3 mm in diameter. Synchronization of follicular wave 

emergence has been shown to improve both the number of oocytes collected per OPU and the 

percentage of oocytes that reach blastocyst stage (Antonio de Carvalho Fernandes et al., 2014). 

One way to manipulate the synchronization of follicular waves is by managing the time interval 

between OPU sessions. When considering methods without ovarian stimulation, several different 

approaches to OPU interval are common in the industry today, depending on the production goals 

and restrictions of a program.  

One option is a twice weekly OPU schedule in which donors are aspirated at 3-4 day 

intervals. This protocol allows for OPU to be performed before the differentiation of a dominant 

follicle at day 5 or 6 and the subsequent atresia of the remaining follicles in the cohort (Merton et 

al., 2003; Chaubal et al., 2006). Several studies have shown that larger follicles undergoing 

prematuration, and even slightly atretic follicles, whose oocyte ultrastructure resembles that of 

oocytes during prematuration, have a greater developmental competence than smaller follicles 

(Lonergan et al., 1994; Merton et al., 2003; Machatkova et al., 2004). With a twice weekly OPU 

schedule, follicles will have a diameter <8 mm with reduced developmental competency when 
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compared to follicles approaching preovulatory stage with a diameter >13mm. (Merton et al., 

2003; Hagemann et al.,1999). The labor required for the frequent OPU, in-lab procedures, and 

potential recipient synchronization make man hours an important element to consider with this 

schedule.  

Extending the interval between OPU to one week allows for the development of a dominant 

follicle and regression of some subordinate follicles (Chaubal et al., 2006). Although there is some 

discrepancy within the literature as to the differences between once-weekly and twice-weekly OPU 

as it pertains to a per session basis on the number of oocytes retrieved (Table 8), blastocyst rate, 

and number of embryos produced; Chaubal et al. (2006) and Ding et al.(2008) reported no 

difference between the mean number of oocytes retrieved and blastocysts produced. When using 

a once-weekly interval the number of embryos in a set time span tends to be reduced when 

compared to twice-weekly OPU (Chaubal et al., 2006); however, again, availability of labor and 

recipients may dictate that this interval is the most efficient option for a specific operation.  

Further lengthening the OPU interval to 2 weeks, without hormonal interference or 

follicular ablation, sets OPU during the 2nd follicular wave (Ding et al., 2008). Given that the 

second follicular wave emerges somewhere between 7 to 11 days after ovulation, there will be 

variation between donors regarding the exact physiological stage of the follicular wave when OPU 

is performed with the follicular wave somewhere between 3 and 7 days post-emergence. Ding et 

al. (2008) reported no difference in mean number of recovered oocytes per OPU when comparing 

OPU twice-weekly, every 5 days, once-weekly, every 10 days, and once in 2 weeks; although 

numerically, the mean for twice-weekly OPU was lower than the mean of the other intervals.  

The final approach to non-stimulated OPU is the application of a random OPU schedule. 

While variation in the retrieval of oocytes (Table 9) and production of embryos is likely because 
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of the inconsistency of follicular wave status between donors, added flexibility, convenience, and 

a potential improvement in labor efficiency make this a feasible option in some scenarios. Merton 

et al. (2003) reported that in the breeding herd at Holland Genetics, in The Netherlands, 41 

pregnant heifers produced an average of 14 oocytes with random OPU and no DFR preceding 

OPU. Oocyte yield fell to 9 oocytes per OPU over the next 3 sessions once a 3-4 day interval was 

established. Cows within the same herd showed no difference in oocyte yield between random 

OPU and OPU sessions with a 3-4 day interval. The random approach may fit best into a program 

that is aiming for sheer quantity of embryos from a large group of donors with little concern for 

the embryo production of a specific donor. 
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Table 8. Mean number of viable oocytes per non-stimulated OPU session. 

Mean number of viable 

oocytes 

Number of OPU 

sessions 
Interval (days) Study 

3.9 96 3-4 
De Roover et al., 1997 

(abstract) 

7 24 3-4 
Guyador Joly et al., 

1997, (abstract) 

6.7 169 3 
Hanenberg et al., 1997 

(abstract) 

7.2 516 3 
Hanenberg et al., 1997 

(abstract) 

9.3 192 3 
Hanenberg et al., 1997 

(abstract) 

5.6 162 4 
Hanenberg et al., 1997 

(abstract) 

6.6 502 4 
Hanenberg et al., 1997 

(abstract) 

8 182 4 
Hanenberg et al., 1997 

(abstract) 

9.1 48 7 
Hanenberg et al., 1997 

(abstract) 

7.8 75 3-4 De Ruigh et al., 2000 

5.9 75 3-4 De Ruigh et al., 2000 

7 236 3-4 
Wagtendonk-de Leeuw 

et al., 2000 

8.6 1753 3-4 
Wagtendonk-de Leeuw 

et al., 2000 

8.4 446 3-4 
Wagtendonk-de Leeuw 

et al., 2000 

(cont.) 
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Table 8 (cont.). Mean number of viable oocytes per non-stimulated OPU session.  

Mean number of viable 

oocytes 

Number of OPU 

sessions 
Interval (days) Study 

7.6 4308 3-4 
Wagtendonk-de Leeuw 

et al., 2000 

7.8 2015 3-4 
Wagtendonk-de Leeuw 

et al., 2000 

3.8 60 3-4 Chaubal et al., 2006 

4.1 1396 3-4 De Roover et al., 2008 

4.96 24 3-4 Ding et al., 2008 

6.19 36 14 Ding et al., 2008 

 

Another potential approach to an IVP program is ovarian FSH stimulation with the timing 

of stimulation based upon follicular wave emergence. The complement of wave synchronization 

with FSH stimulation improves the number of oocytes (Table 10) and subsequent number of 

embryos generated when compared to IVP procedures without stimulation and with or without 

follicular wave synchronization (Antonio de Carvalho Fernandes et al., 2014). Although there are 

various protocols depending on practitioner and producer preference, a typical protocol may begin 

with the initiation of a follicular wave by either DFR through follicular ablation or hormonal 

control using either a GnRH or estradiol-progesterone based technique, depending on availability 

of estradiol, followed 2 to 3 days later by twice daily treatment of FSH for 2 consecutive days (De 

Roover et al., 2008). A 48-hour coasting period between the final FSH treatment and OPU has 

been shown to improve blastocyst development rates of cumulous oocyte complexes (COCs) 

(Sirard et al., 1999). While the control of follicular wave emergence allows for the interval between 

OPUs to vary, a typical interval is 14 days (Hasler, 2014; De Roover et al., 2008). De Roover et 

al. (2008) reported that stimulated OPU done at 14 day intervals, using DFR, generates 
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significantly more oocytes per session and embryos per session, while significantly increasing 

blastocyst development percentage when compared to twice weekly non-stimulated OPU.  

Table 9. Number of viable oocytes per OPU session performed at random. 

Mean number of 

viable oocytes 

Number of OPU 

sessions 
Interval (days) Study 

14.0 41 
First OPU, no 

interval, no DFR 
Merton et al., 2003 

8.0 1,138 
Random, Minimum 

15 d interval 
Pontes et al., 2010 

5.4 44 

First OPU, no 

interval, no Pre-OPU 

DFR 

Antonio de Carvalho 

Fernandez Fernandez 

et al., 2014 

10.04 925 
First OPU, no 

interval, no DFR 

Stevenson Sputnik, 

2014 
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Table 10. Number of viable oocytes collected per OPU session with pre-OPU follicular wave 

synchronization and FSH stimulation. 

Mean number of 

viable oocytes 

Number of OPU 

sessions 
Study 

13 12 
Guyador Joly et al., 

1997 (abstract) 

14.8 20 
Lacaze et al., 1997 

(abstract) 

13.2 30 De Ruigh et al., 2000 

11.8 640 
De Roover et al., 

2008 

11.9 42 

Antonio de 

CarvalhoFernandez et 

al., 2014 

10.4 32 
Barceló-Fimbres et 

al., 2015 

9 32 
Barceló-Fimbres et 

al., 2015 

8.6 24 
Barceló-Fimbres et 

al. 2015 

11 78 
Barceló-Fimbres et 

al. 2015 

 



20 

Influence of Semen Quality on Blastocyst Rate 

Semen quality also influences the blastocyst rate of cultured oocytes. Everett et al. (1978) 

demonstrated a significant difference in the semen characteristics of ejaculate volume, sperm 

concentration per ml, percent motile sperm, and total sperm per ejaculate when compared across 

sires, months of the year, and days between ejaculates. While semen quality is subject to variability 

even in conventional, non-sorted semen, the greatest concern for semen quality comes with sex-

sorted semen; whether it is sorted before freezing or reverse-sorted (Palma et al., 2008; Morotti et 

al., 2014). Although Zhang et al. (2003) found no significant difference in blastocyst rate between 

sex-sorted sperm and unsorted sperm following IVF, Palma et al. 2008, demonstrated that when 

compared to the control non-sexed sperm, sex-sorted sperm from 4 out of 5 sires differed 

significantly in blastocyst rate of IVF embryos. In Palma et al. (2008), the control unsorted sperm 

was not from the same sires as the sex-sorted sperm. Xu et al. (2006) found significant bull to bull 

variation in the fertility of sex-sorted sperm based on blastocyst rate. It was also demonstrated that 

when individualized concentration of heparin treatment was applied to sex-sorted sperm there was 

no significant difference compared to the unsorted sperm from the same sire, in 3 out of 4 bulls; 

however, the fertility of sex-sorted sperm was numerically lower than unsorted sperm for each 

sire. Considering freeze-thawed reverse sorted semen, Morotti et al. (2014) not only reported 

blastocyst rates ranging from 15% to 48% in comparison of 11 different sires, but, in a separate 

analysis, also demonstrated a significant reduction in blastocyst rate for reverse-sorted semen when 

compared to sex-sorted, freeze-thawed semen from the same bull. 

Semen quality also impacts the efficiency of semen use in IVF. In Palma et al. (2008), 

when both non-sexed and sexed semen had a concentration of 10 x 106 spermatozoa per straw, 35-

120 oocytes could be fertilized with 1 straw of sexed-semen, while 210-320 oocytes could be 
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fertilized with non-sorted semen, differing significantly. In situations where a primary goal for the 

use of IVP is to generate as many embryos as possible from expensive or rare semen, semen 

efficiency plays a significant role in success or failure of the program. 

Bos taurus vs. Bos indicus 

Breed of cattle also greatly influences the success of an ET program, which helps explain 

the differing dynamics between the South American, especially Brazilian, and North American 

embryo transfer industries. The distinct differences between the ovarian characteristics and 

folliculogenesis of Bos taurus and Bos indicus, particularly Nelore, females have been well 

documented over the years, even if those differences are not particularly well understood (Pontes 

et al., 2009). Bos indicus females tend to respond poorly to the exogenous stimulation of 

superovulation protocols of traditional IVD ET (Hasler, 2014). On the other hand, Bos indicus 

females tend to have 3 follicular waves per estrous cycle and a population of more small follicles 

(<5 mm), compared to Bos taurus cattle that usually have 2 waves (Pontes et al., 2009). Antonio 

de Carvalho Fernandes et al. (2014) reported that Bos indicus cattle produced more embryos per 

OPU, but follicular wave synchronization could increase oocyte and embryo production in both 

subspecies. Follicular stimulation by exogenous FSH was shown to improve oocyte and embryo 

production only in Bos taurus cattle (Antonio de Carvalho Fernandes et al., 2014). Pontes et al. 

(2011) reported a mean of 23 viable oocytes per non-stimulated OPU using Nelore donors, with 

one donor generating 128 viable oocytes. When considering Holstein donors, Pontes et al. (2010) 

reported a mean of 8 viable oocytes per non-stimulated OPU.  

Pregnancy 

 The value of live, marketable, or genetically superior calves determines the ultimate worth 

of an embryo transfer program. Thus, successful gestation of transferred embryos is vital. Like 
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most biological events, a multitude of factors contribute to the success or failure of pregnancy 

following embryo transfer, including origin of embryos, embryo quality, nutritional and 

production status of the recipient, donor-recipient synchrony, and skill of the transfer technician, 

just to name a few. 

Following embryo transfer and rectal palpation at 50 to 60 days, Hasler et al. (1995) found 

a significant difference between the pregnancy rate of fresh versus frozen grade 1, day 7, IVD 

embryos; whereas Chagas e Silva et al. (2002) found no significant difference. Also in Hasler et 

al. (1995), a significant improvement was demonstrated in pregnancy rate with the transfer of fresh 

over frozen grade 1, day 7, IVF embryos. On the other hand, Markette et al. (1998) found no 

difference in pregnancy rate between fresh and vitrified IVF embryos at 30 or 60 days after estrus; 

although the sample size was small with only 14 embryos transferred fresh and 33 transferred after 

thawing. 

 Traditionally, the survival of IVP embryos following cryopreservation has been shown to 

improve with the implementation of vitrification over slow-freezing (Nedambale et al., 2004), 

however, vitrification has not always been readily adopted because of the slower thawing 

procedures that are not conducive to on-farm thawing (Caamaño et al., 2015). Recently, methods 

have been reported to both improve the survival of IVP embryos (Bruyère et al., 2012) and develop 

a more convenient method of warming vitrified IVP embryos (Caamaño et al., 2015). Furthermore, 

recent industry reports indicate an increased use of slow-freezing and direct transfer of IVP 

embryos, suggesting more acceptable pregnancy rates following transfer. 

Cumulatively, over all embryo grades and fresh or frozen embryos, a significant difference 

has been shown between pregnancy rate following the transfer of all IVD embryos and all IVF 

embryos (Table 11) (Hasler et al., 1995; Farin and Farin et al., 1995). Similarly, Pontes et al. (2009) 
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reported a significant reduction in the pregnancy rate of 910 IVP transfers when compared to 289 

MOET transfers at both 30 and 60 days post-estrus. In contrast,  Wagtendonk-de Leeuw (2000) 

reported no statistical difference between MOET and IVP embryos at 73 days post-estrus (Table 

18). The data describing pregnancy differences between embryos of the same grade indicate that 

there are non-visual differences between embryos. The retrospective study Hasler et al. (1995), 

also shows a significant improvement in the pregnancy rate of day 7 IVF embryos when compared 

to day 8 embryos. 

Donor-Recipient Factors Influencing Pregnancy 

In regards to Bos taurus cattle breeds, Hasler (2001) reported no difference in recipient 

pregnancy based upon donor breed (Table 12). When considering recipient type a significant 

difference in the pregnancy rate of dairy cows resulted when compared to dairy heifers, beef 

heifers, and beef cows (Hasler, 2001). It has been well documented that as the milk production of 

dairy cows has increased, fertility has decreased, while the fertility of dairy heifers has remained 

relatively constant (Hasler, 2001). In contrast, Hasler et al. (1987) showed no significant difference 

between post-transfer pregnancy rate of lactating dairy cows, non-lactating dairy cows, and beef 

cows (Table 13). Age of recipient also contributes to pregnancy rate. A significant improvement 

in pregnancy rate was found in recipients 3-14 years of age compared to virgin heifers, first-calf 

heifers, and recipients >15 years of age (Hasler et al., 1987). 
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Table 11. Pregnancy rate following transfer of fresh and frozen IVD and IVF embryos 

(pregnancy determined 50-60 days post-transfer). 

Embryo 
Age 

(Days) 

No. 

Transfers 

Grade 1 

(% preg) 

Grade 2 

(% preg) 

Grade 3 

(% preg) 

All Grades 

(% preg) 

IVF-Fresh 7 1,884 59a 45a ---- 56a 

IVF-Fresh 8 362 48b 30b ---- 43b 

IVF-Fresh 9 22 41 ---- ---- 41 

IVF-Frozen 7 67 42b ---- ---- 42b 

IVF-Frozen 8 30 20e ---- ---- 20e 

IVD-Fresh 7 320 76c 65c 54 66c 

IVD-Frozen 7 325 67d ---- ---- 67c 

Adapted from Hasler et al. (1995). a,b,c,d,e Values within a column with different superscripts 

differ significantly (P<0.01, c vs d: P<0.05) 
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Table 12. The effect of embryo breed and recipient breed and parity on pregnancy rates of fresh 

and frozen-thawed IVD embryos. 

Donors 
No. Transfers 

(Fresh) 

% Pregnant 

(Fresh) 

No. Transfers 

(Frozen) 

% Pregnant 

(Frozen) 

Dairy 7,457 68.5 4,038 58.8 

Beef 1,566 67.3 1,259 57.2 

Recipients     

Dairy Heifers 6,612 70.5a 3,477 60.9a 

Dairy Cows 844 52.8b 518 47.1b 

Beef Heifers 267 65.9a 252 60.0a 

Beef Cows 835 68.6a 461 58.6a 

Adapted from Hasler et al. (2001). a,b Values in columns without common superscripts differ 

significantly (P<0.001) (chi-square analysis) 
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Table 13. The effect of breed, fertility, lactational status and age of donor on the pregnancy rate 

of recipients following transfer of IVD embryos. 

Donor No. Transfers No. Pregnant Percent Pregnant 

Dairy Cows- 

Lactating 
3,809 2,786 73 

Dairy Cows-  

Non-lactating 
1,698 1,235 73 

Beef cows 1,311 941 72 

Age    

Virgin heifers 69 47 68ab 

First-calf heifers 87 60 69ab 

3-6 years 2,406 1,755 73a 

7-10 years 2,347 1,715 73a 

11-14 years 780 560 72a 

>15 years 98 54 55b 

Fertility Status    

Normal 5,126 3,730 73 

Infertile 1,264 889 70 

Adapted from Hasler et al. (1987). a, b Age groups with different superscripts differ in pregnancy 

rate (p<.005).  
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 Estrous synchrony between donor and recipient may also impact the establishment of 

pregnancy following embryo transfer. Hasler et al. (1987) demonstrates a significant improvement 

in pregnancy rate between IVD embryo recipients that are in estrus synchrony with the donor or 

plus (recipient estrus prior to donor) up to 36 hours when compared to recipients that are minus 

(recipient estrus after donor) 24 hours or more. A significant difference in pregnancy rate was also 

reported in Hasler (2001) for recipients both plus 1 day or minus 1 day compared to recipients in 

synchrony with the donor.  

The ability to reuse recipients that do not become pregnant after 1 embryo transfer also 

influences management decisions and economics. In a study analyzing a large sample of recipient 

transfers, it was demonstrated that failing to become pregnant 1 or 2 times prior did not affect 

pregnancy rate for recipients receiving an embryo for a second or third time (Table 14) (Hasler et 

al., 1987). Nelson et al. (1980) and Looney et al. (2006) (Table 15) found contrasting results; 

whereas, Remsen et al. (1982) found similar results. 

Table 14. The effect of the number of previous unsuccessful transfers on pregnancy rate of 

transferred embryos. 

No. of times used as 

recipient 
No. transfers No. Pregnant % Pregnanta 

1 5,196 3,771 73 

2 1,351 977 72 

3 83 56 67 

4 4 2 50 

Adapted from Hasler et al. (1987). a No differences (P>.05) 
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Table 15. Pregnancy rates of beef recipients after three consecutive embryo transfers followed 

by natural mating (Ovagenix, Bryan, TX). 

No. consecutive ET services No. recipients No. pregnant (%) 

1 753 489 (65) a 

2d 420 222 (53) b 

3e 193 79 (41) c 

Natural mating f 253 209 (83) 

Values with unlike letters (a-c) within column differ P< 0.01; analyzed by Pearson’s Chi-square 

test. 
d Recipients not pregnant to first transfer were resynchronized for the second transfer. 
e Recipients not pregnant to second transfer were resynchronized for the third transfer. 
f After three consecutive non-successful ET, recipients were exposed to bulls for 60 days. 

Adapted from Looney et al. (2006) 

 

 Obviously, for a recipient to have the opportunity to become pregnant, she must receive an 

embryo. For a recipient to receive an embryo, she must be deemed to have a corpus luteum (CL) 

of high enough quality and progesterone producing potential to maintain pregnancy, while being 

in suitable estrous synchrony with the donor. With recipient management and synchronization cost 

comprising a considerable expense, the percentage of recipients deemed eligible to receive an 

embryo following estrous synchronization greatly contributes to the cost effectiveness of an ET 

program. When comparing pregnant to non-pregnant recipients, Spell et al. (2001) found no 

statistical difference in mean CL diameter, luteal volume, or plasma progesterone level. This 

suggests that specific CL characteristics do little to affect pregnancy status; whereas, the most 

influential factors on recipient quality are simply the occurrence of estrus, ovulation, and the 

presence of a CL (Spell et al., 2001).  

 Many different protocols exist for recipient estrous synchronization. Originally, the 

treatment of recipients with PGF to lyse a PGF receptive CL served as the primary means of estrous 

synchronization. Since then, several protocols utilizing progesterone with estradiol and/or GnRH 
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in conjunction with progesterone releasing controlled internal drug release (CIDR) inserts and PGF 

have been developed to control both follicular wave emergence and luteal regression (Looney et 

al., 2006). With these newer protocols, fixed-time ET without estrus observation, has become 

possible. Looney at al. (2006) discovered that a greater percentage of transferred recipients became 

pregnant following a single PGF injection and observed estrus when compared to an estradiol-

progesterone-PGF-CIDR protocol, however, because the percentage of recipients receiving an 

embryo was greater when using the latter protocol, the total pregnancy rate was greater for the 

estradiol-progesterone-PGF-CIDR protocol (Table 16) (Table 17). 

Table 16. Embryo transfer service and pregnancy rate of recipients with either a PGF single 

injection or CIDR + P4/E2 + PGF + E2 (Ovagenix, Bryan, TX). 

 
No. 

synchronized 

Mean days to 

estrus 

Detected 

in estrus 

(%) 

ET service 

rate 

ET service 

pregnancy 

rate (%) 

25 mg PGF 1,390 3.6 50 93 a 63 a 

7 d CIDR + 

P4/E2 

+ PGF + E2 

753 2.1 97 83 b 53 b 

Values with unlike letters (a, b) within column differ P < 0.01; analyzed by Pearson’s Chi-square 

test. 
a Defined as the percentage of total potential recipients to which an embryo was transferred. 
b Defines as the percentage of recipients to which an embryo was transferred that were 

subsequently confirmed pregnant. 

Adapted from Looney et al. (2006) and Looney (2017). 
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Table 17. Pregnancy rate to ET by duration of CIDR (5,6,7, or 8 days) exposure in recipient 

cows (Ovagenix, Bryan, TX). 

Duration of 

CIDR 

No. 

synchronized 

No. rejected 

(%) 
No. transferred 

No. ET 

pregnant (%) 

5 123 18 (15.1) 105 43 (41) 

6 240 27 (11.3) 213 102 (48) 

7 1,533 182 (12.0) 1,350 743 (55) 

8 380 44 (11.8) 336 178 (53) 

Total 2,276 272 (11.9) 2,004 (88%) 1,066 (46.8) 

a Defined as the percentage of recipients to which an embryo was transferred that were 

subsequently confirmed pregnant. 

Adapted from Looney et al. (2006) 

 

Pregnancy Loss 

 Embryonic Mortality 

 When there is potential to reuse recipients or to increase the probability of any female being 

pregnant at the end of the breeding season, not only is pregnancy status important, but the timing 

of pregnancy failure and whether there is still time in the breeding season for another mating 

opportunity also plays a key role in success or failure. Innskeep and Dailey (2005) reported that 

following successful fertilization of an oocyte, embryonic mortality (pregnancy loss up to d 42 of 

gestation) accounts for 57% of pregnancy failures in cattle, presumably referring to A.I. or natural 

service. As summarized by Innskeep et al. (2004), late embryonic loss, d 27 to d 42 of gestation, 

occurred in 2% to 6% of pregnancies in dairy heifers and beef cattle following A.I. or natural 

service. This agrees with the values found in Lamb (2002) and Beal et al. (1992), although 

Stevenson et al. (2003) was numerically higher at 10.5% pregnancy loss between roughly d 29-33 

and d 54-61 of gestation (Table 19). 
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One could logically surmise that because embryos are transferred after development to 

blastocyst stage and morphological evaluation for normality, that embryonic mortality would be 

less than or equal to that of natural service; however, as with most reproductive technologies, the 

literature suggests that reproductive success is lower than that of natural service, assuming healthy 

breeding animals. Following the transfer of 673 good/excellent IVD embryos, Markette et al. 

(1985) reported that by d 46.5 post-estrus, pregnancy loss had occurred in 14.6% of recipients that 

were pregnant at d 24. In some cases, embryonic mortality is even greater. Heyman (1985) found 

an embryonic mortality rate of 32% between d 24 and d 60 after 28 pregnancies were initiated 

following IVD embryo transfer. In the same study, no significant difference was found in the 

embryonic mortality rate of fresh versus frozen IVD embryos between d 21 and d 90 post-estrus, 

which agrees with Chagas e Silva et al. (2002). Chagas e Silva et al. (2002) also reported a 

significant decrease in late embryonic (d 21 to d 60) mortality after the transfer of IVD embryos 

into dairy heifers, when compared to dairy cows. Based on work by Markette et al. (1985) and 

King et al. (1985), Markette et al. (1985) estimated that following the surgical transfer of 1000 

IVD embryos, 63 pregnancies would fail between d 24 and d 60 post-estrus, resulting in an 8.6% 

late embryo mortality rate. 

Throughout the industry, concern has also been raised about the survivability of IVP 

embryos. Farin and Farin (1995) reported that through d 215 post-transfer the probability of 

embryonic survival was similar between grade 1 IVD, grade 2 IVD and grade 1 IVP embryos. For 

grade 2 IVP embryos, however, there was a substantial decrease in probability of survival, with 

only 1 of 9 recipients pregnant 14 days after transfer. Wagtendonk-de Leeuw et al. (2000) found 

that transferred IVP co-culture and IVP synthetic oviduct fluid (SOF) cultured embryos had an 
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embryonic loss of 30% and 18.5%, respectively, between d 24 and d 52; while transferred MOET 

embryos underwent an embryonic loss of 23% over the same period of gestation (Table 18).  

Table 18. Return pattern of recipients after transfer of an MOET, IVP co-culture, or IVP SOF 

embryos at the Holland Genetics recipient herd. 

Parameter 
MOET 

(n=465) 

IVP co-culture 

(n=157) 

IVP SOF 

(n=101) 

Total Return (%) 253 (54.4)a 85 (51.5)a 47 (46.1)a 

% return 0-31 d1 80.6a 68.2a 80.9a 

                11-18 d2 10.8a 19.0b 13.2a 

                19-23 d2 72.0 50.0 73.7 

                 24- 31 d2 17.2 31.0 13.2 

% return 32-52 d1 13.1 20.0 10.6 

% return 53-73 d1 5.1 8.3 8.5 

% return> 73 d 1.2 3.5 0.0 

1 Calculated as percentage of total return. No significant difference in distribution of returns over 

the 4 classes (0-31 d, 32-52 d, 53- 73 d, and > 73 d) among the 3 groups. Difference in 

distribution of return over 2 classes (0-31 d and > 31 d) among the 3 groups is statistically 

significant (P=0.05; Chi- square analysis). 
2 Calculated as percentage of return 0-31 d. Difference in distribution of return over the 3 classes 

is statistically significant (P<0.05; Chi-square analysis) among the 3 groups. 
ab data with different superscripts in the same row are significantly different (P<0.05; Chi-square 

analysis) 

Adapted from Wagtendonk-de Leeuw et al. (2000) 
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Fetal Loss 

Reaching the fetal stage of development does not guarantee a successful pregnancy. 

Bellows et al. (1979) reported that of 10,595 natural service pregnancies determined at the 

conclusion of the breeding season, 2.8% resulted in fetal pregnancy loss. Following the transfer of 

IVD embryos, King et al. (1985) reported that out of 1776 2-month pregnancies 5.29% had aborted 

by month 7 of gestation. Chagas e Silva et al. (2002) found no significant difference in fetal 

mortality for fresh versus frozen IVD embryos, with a fetal mortality rate of 5.90% and 7%, 

respectively.  

In one study, Wagtendonk-de Leeuw et al. (2000) concluded no difference between the 

abortion rate of AI (1.3% of 5,353 pregnancies) and MOET (1.1% of 2,242 pregnancies), while 

both differed significantly from IVP co-culture embryos (2.6% of 1,452 pregnancies) (Table 20). 

In a separate study, there was no difference between the abortion rate of AI (0.5%), IVP co-culture 

(0%) and IVP SOF (1.3%) (Wagtendonk-de Leeuw et al., 2000). Accounting for sexed IVF 

embryos, Xu et al. (2006) found no difference in fetal abortion rate between non-sexed IVF, sexed 

IVF, and IVD embryos. As is the case for most traits in cattle production, environment and 

management practices have great influence on the scale and variability of a specific trait, such as 

pregnancy loss. 
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Table 19. Late embryonic and fetal losses in lactating beef cows and primigravid beef heifers 

(A.I. or natural service). 

Number of 

Pregnancies 

Days of 

gestation 

at 1st 

diagnosis 

Days of 

gestation 

at 2nd 

diagnosis 

Interval 

(days) 

Pregnancy 

Loss % 

Pregnancy 

loss (% 

per day) 

Reference 

Lactating 

Cows 
      

138 25 45 20 6.5 0.33 
Beal et al. 

(1992) 

223 29-33 54-61 ~26 10.8 0.42 

Stevenson 

et al. 

(2003) 

Primigravid       

149 30 60 30 4.0 0.13 
Lamb 

(2002) 

271 35 75 40 4.1 0.10 
Lamb 

(2002) 

105 30 90 60 4.8 0.07 
Lamb 

(2002) 

Overall: 525 30-35 60-90 30-60 
4.2  

(4.0- 4.8) 

0.09  

(0.07-0.13) 
 

Adapted from Santos et al. (2004) 
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Table 20. Percentage abortions, caesarian sections (C-sections), male calves, and calves with a 

congenital malformation in Study 1 and 2a. 

 Study 1   Study 2   

Parameter AI MOET 
IVP co- 

cul 
AI 

IVP co- 

cul 
IVP SOF 

% Abortions 
1.3 

(5,353)2a 

1.1 

(2,242)a 

2.6 

(1,452)b 

0.5 

(1,764)a 

0  

(110)a 

1.3  

(152)a 

% 

Congenital 

malformation 

0.8 

(5,353)a 

1.5 

(1,089)b 

3.7 

(1,129)c 

0.6 

(1,764)a 

3.7  

(81)b 

1.0 

(97)ab 

% C- 

sections 

1.5 

(3,313)a 

8.4 

(1,107)b 

11.2 

(1,179)c 

0.7 

(1,764)a 

3.8  

(80)b 

8.3  

(96)b 

% Male 
49.8 

(5,353)a 

53.7 

(2,194)b 

52.9 

(1,415)b 

52.8 

(1,764)a 

56.1  

(110)a 

54.9  

(152)a 

ab data with a different superscript in the same row within each study are significantly different 

(P<0.05; Chi-square analysis). 1co-cul: co-culture; 2 numbers between brackets. 

Adapted from Wagtendonk-de Leeuw et al. (2000) 

 

Calf Loss 

 Of course, pregnancy survival to term does not ensure calf survival to its marketing 

endpoint. Bellows et al. (1979) reported that of 10,300 calving cows who conceived via natural 

service, 8% of calves died in the perinatal period and 2.9% died between the perinatal period and 

weaning. King et al. (1985) found that neonatal calf loss, birth weight, and calving assistance were 

similar between IVD ET calves and non-IVD ET calves. Wagtendonk-de Leeuw et al. (2000) 

found that when compared to AI calves, perinatal mortality was not affected by MOET; although 

calving ease was significantly reduced and gestation length was significantly increased.  

 Since its commercial application , much concern has been raised regarding the survival of 

IVP calves. Wagtendonk de Leeuw et al. (2000) reported that IVP calves tended to have higher 

perinatal mortality when compared to AI calves and significantly higher perinatal mortality when 
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compared to MOET calves. Similar results were found in Kruip and den Daas (1997). Significant 

increases in birth weight, gestation length and calving difficulty of IVP calves when compared to 

both AI and MOET calves were also found by Wagtendonk de Leeuw et al.(2000) (Table 21).  

Table 21. LSM and SE of different parameters per type of calf (number of observations) 

produced by the statistical model of 282 OPU procedures by Holland Genetics at 2 different 

locations. 

Parameter AI (n) MOET (n) IVP co-culture (n) 

Birth weight (kg) 42.7 ± 0.2a  (4,878) 43.4 ± 0.3a  (1,058) 47.1 ± 0.3b  (1,049) 

Gestation length (d) 281.2 ± 0.2a  (4,946) 282.1 ± 0.2b  (2,139) 283.6 ± 0.2c  (1,358) 

Perinatal mortality 

(%) 
5.3 ± 0.4ab  (4,949) 4.6 ± 0.7a  (2,180) 7.5 ± 0.7b  (1,374) 

Ease of calving1 2.4 ± 0.04a  (4,861) 2.7 ± 0.07b  (991) 3.2 ± 0.05c  (971) 

1 ease of calving was scored in 6 different classes (1= easy, to 6= very difficult). 
a,b,c data with a different superscript in the same row are significantly different (P<0.05) 

Adapted from Wagtendonk de Leeuw et al. (2000) 

 

Abnormal Offspring Syndrome 

 Much of the concern regarding the survival of an IVP embryo from time of transfer through 

the neonatal period has been attributed to Abnormal Offspring Syndrome (AOS). AOS can be split 

into four categories. Type I AOS is associated with embryonic loss before day 42 of gestation; 

Type II describes fetal loss up to roughly 280 days of gestation; Type III is defined as neonatal 

mortality; and Type IV describes a surviving calf that exhibits a congenital defect that may or may 

not be anatomically or physiologically observable (Farin et al., 2015). The first indication of 

abnormality from IVP embryos was the occurrence of exceptionally large offspring at birth (Farin 

et al., 2015). Thus, AOS was originally termed, and is often still referred to, as Large Offspring 

Syndrome (LOS) (Farin et al., 2015); however, as noted previously, AOS is associated with much 

more than just increased birthweight. Conversely, as it relates to postnatal growth rate, origin of 

embryo and birthweight had no impact on performance (Wilson et al., 1995; McEvoy et al., 1998).  
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 AOS is thought to be rooted in changes in epigenetic regulation because of differences 

between the maternal environment and that of maturation, fertilization, and culture media (Farin 

et al., 2015). Much of the blame for AOS has been placed upon the inclusion of serum into culture 

medium and somatic cell co-culture (Hill, 2014). In some cases, specific medium formulation has 

been found to play a role in the prevalence of AOS (Wagtendonk-de Leeuw et al., 2000), while in 

others it has not (Hasler, 2000).  

 Wagtendonk-de Leeuw et al. (2000) showed a statistical increase in caesarian sections (C-

sections), birthweight, and calving difficulty in calves derived from IVP using co-culture and 

serum when compared to either calves from IVP using Synthetic Oviduct Fluid (SOF) or MOET 

(Table 22) (Table 23). When comparing TCM 199-BRL co-culture medium with serum to 

Ménézo’s B2 (B2) co-culture with or without serum for the first 72 h of culture, Hasler (2000) 

found no difference in pregnancy loss, calving ease, or congenital defects. While the scope of 

adoption of IVP in recent years indicates a reduction in AOS concerns, there exists little to no 

literature on the current industry prevalence of AOS (Hasler, 2014). 
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Table 22. Percentage of abortions, perinatal mortality, caesarian sections (C-sections), stillborn, 

male calves and calves with a congenital malformation from embryos transferred into the 

recipient herd of Holland Genetics. 

Parameter MOET (n=34) 
IVP co-culture 

(n=32) 
IVP SOF (n=33) 

% Abortions 5.9a 3.1a 6.0a 

% Perinatal mortality 2.9a 3.1a 3.0a 

% Congenital 

malformation 
0a 3.1a 0a 

% C- sections 2.9a 25.0b 0a 

a,b data with the same superscript in the same row are not significantly different (P>0.05; chi- 

square analysis). 

Adapted from Wagtendonk-de Leeuw et al. (2000) 

 

Table 23. LSM and SE of different parameters per type of calf (number of observations) from 

embryos transferred into the recipient herd of Holland Genetics. 

Parameter MOET (n) IVP co-culture (n) IVP SOF (n) 

Birth weight (kg) 41.3 ± 1.0 (30)a 46.4 ± 1.0 (30)b 42.3 ± 1.0 (30)a 

Gestation length (d) 279.9 ± 1.3 (30)a 279.2 ± 1.3 (30)a 279.6 ± 1.2 (30)a 

Ease of calving 2.9 ± 0.18 (29)a 4.0 ± 0.20 (22)b 3.4 ± 0.17 (30)c 

1 ease of calving was scored in 6 different classes. 
a,b,c data with a different superscript in the same row are significantly different (P<0.05). 

Adapted from Wagtendonk-de Leeuw et al. (2000) 

 

Natural Service 

 If an operation wishes to calve out its recipients and capture added value from those that 

did not become pregnant via embryo transfer or experience embryonic mortality after the 

establishment of pregnancy, a producer may choose to expose the recipient herd to a natural service 

sire. Assuming a healthy, fertile bull, the fertilization rate of a natural service sire should fall 
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between 90-100%; however, for reasons described in the preceding pages, approximately 70% of 

fertilizations will result in a live calf (Lamb, 1999). Typically, the pregnancy rate at the end of the 

breeding season is much higher than what the percentage of surviving fertilizations indicates 

because cows usually have multiple opportunities to conceive within a given breeding season. In 

a 14-year summary of 12,827 cows, Bellows et al. (1979) reported a natural service pregnancy rate 

of 82.6%, following the breeding season, with the number of calves weaned per cow exposed at 

71%. Other literature reports a post-breeding season pregnancy rate ranging from 59.3% to 98.8% 

(Lamb et al., 2008). Of course, cow type, natural environment, and management play a pivotal role 

in all reproductive outcomes.  
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Chapter 2 - Embryo Program Business Model  

 Just as a multitude of strategies and techniques exist as a means of embryo production and 

subsequent transfer, the business model of ET also offers an array of options. Whether an entity 

owns only donors, only recipients, both, or neither, represents the first of many flexible 

management decisions. Marketing also comes into question. Is the end-product a saleable embryo, 

a pregnant recipient, a weaned calf, or a developed yearling? An operation should design a business 

model that best combines both feasibility and profitability. 

 The ownership option involving the least number of business entities is to own both donors 

and recipients. While this may require a greater amount of feed, labor, and land resources available 

to the operation in question, it also allows for the most direct control over cattle management and 

health.  

Another common practice is the implementation of a cooperator herd. Typically, in this 

scenario, a contract is agreed upon between the owner of the donor females/embryos and the owner 

of the recipients. The embryos produced by the donors of one operation are transferred into 

recipients of another operation. Oftentimes, the agreement includes details pertaining to calf 

health, data collection, and overall herd management. In many cases, the cooperator herd will sell 

the resulting progeny back to the owner of the donor females/embryos at weaning or sometime 

thereafter for an agreed upon premium over market price that is typically set as either dollars per 

cwt over market price or a flat bonus over the market value of the progeny in question. As always, 

there are distinct variations in the specific cooperator agreements and to try to account for them all 

is beyond the scope of this paper. 

Many enterprises within the ET industry specialize in the commercial creation of pregnant 

recipients. These custom recipient operations might also be involved in commercial embryo 
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production or they may simply own and manage a recipient herd with the owners of embryos 

sending the custom recipient operator embryos that are set to be transferred. Typically, an 

agreement between the owner of embryos and the commercial recipient operation is made before 

the transfer of embryos to ensure that the embryo owner is obliged to purchase either the 

subsequent pregnant recipient or weaned calf from the custom recipient operator. A specific day 

of gestation is usually set as the day upon which pregnant recipients qualify to be purchased by 

the embryo owner. Weaned calf agreements may follow closely with the cooperator agreements 

that were previously described.  

Many of the standard marketing options for an ET program have already been touched on, 

but they can be described further. If an operation owns a highly valuable donor, it may choose to 

sell an MOET flush or IVP session on that female. Often, included in the transaction is a guarantee 

of number of embryos or subsequent pregnancies. Taking it one step down the production chain, 

if a program has an over-abundance of embryos or wishes to capitalize on the embryos of a highly 

valuable mating, it may choose to sell frozen or fresh embryos before they are transferred. Another 

option is to sell pregnant recipients in the commercial recipient scenario as described previously, 

or the owner of the donor and/or embryos may also market pregnant recipients. If an operation 

chooses to calve out pregnant recipients, calves are often sold either around the time of weaning 

or developed until the time of a production sale.  

 Economics 

In the business world, the ability to project the potential range of investment profit or loss 

and mitigate risk before making an initial investment serves as a crucial step towards the success 

or failure of an enterprise. The cattle feeding segment of the beef industry has adopted similar 

techniques with advanced breakeven projections that utilize a combination of performance 
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predictors and risk management practices. Conversely, a majority of the seedstock sector, 

particularly as it pertains to the use of embryo transfer (ET) technology in seedstock operations, 

seems to place more trust in intuition and optimism rather than proven methods of investment 

analysis.  

 Whereas it stands to reason that numerous, highly successful seedstock operations must 

implement some degree of strategic scrutiny before committing the extensive amount of both 

financial and labor resources into ET programs, the depth of the evaluation comes into question, 

especially for operations without years of experience to reinforce assumptions. The lack of 

financial investigation can be rationalized. Hasler (2003) stated that although the quantity seems 

to be declining, traditionally a significant volume of beef ET was conducted by hobby farmers, 

funded through sources not directly related to the beef business. One also might argue that ET’s 

primary focus of genetic improvement has greatly overshadowed any consideration of short to 

mid-term financial gain. In addition, dynamic environments, small sample size, poor record 

keeping, and the immense variability associated with bovine reproduction account for several more 

potentially limiting factors. 

Profitability of an ET program depends on the marketability of an ET program’s end-

product (embryos, pregnant recipients, progeny, etc.) and the resource expense required to produce 

marketable animals or embryos. The previous descriptions of the variability in the outcomes of 

embryo production, pregnancy rate, and other biological factors indicate a great deal of uncertainty 

in the number of marketable animals or embryos that can be generated per flush or aspiration or 

over a specific time-period. The financial risk associated with such biological uncertainty requires 

adequate understanding for an ET program to establish realistic expectations rather than emotional 

decision making based on optimistic hope or over-exaggerated pessimism.  
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Ultimately, operators must decide whether ET programs of any type serve as an 

economically viable means to increase rate of genetic improvement or take advantage of marketing 

opportunities. To date, few tools have been created to establish the realistic expectations required 

for sound decision making, especially when comparing MOET and IVP of Bos taurus cattle in a 

temperate climate.  

 Stochastic Modeling 

Latin Hypercube Sampling 

One method applicable in accounting for the previously described biological uncertainties 

is the use of stochastic modeling and simulation. In contrast to deterministic modeling that uses 

fixed input variables, typically a mean value, to conduct an analysis and thus, generates outcomes 

that are almost nonexistent in the natural world, stochastic modeling utilizes a sampling of possible 

variable values from a defined probability distribution. Based upon the distribution, a likelihood 

of occurrence is tied to each variable value.  

Simulation strategies have been developed to appropriately sample stochastic variables 

from a defined distribution. Applying the Latin Hypercube Sampling (LHS) variation of Monte 

Carlo simulation (Iman and Shortencarier, 1984), a sample value from the descriptive distribution 

associated with each stochastic variable is included in an iteration of the simulation. Through large 

numbers of iterations with dynamic combinations of variables, the process culminates in a 

distribution of possible outcome values. Unlike simple random sampling, LHS prevents clustering 

by accounting for the probability of drawing a value from a set range of values. This is 

accomplished by segmenting the probability density so that the area under the curve is the same 

for each segment (Figure 1).  
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Consider k variables, with the probability density of each variable split into n segments. 

Applying LHS, one value for variable X1 is randomly selected from each of n segments. These n 

values are then randomly paired with n values from X2. The X1, X2 pairs are then combined 

randomly with X3 values and so on, for all k variables in question. The number of intervals within 

the probability or cumulative density function is equal to the number of iterations to be run, so that 

at the conclusion of the simulation a single value has been sampled from each interval (Epix 

Analytics). Iman and Shortencarier (1984) explain the intricacies in further detail.  

Figure 1. Graphical depiction of LHS methodology. 

 
From epixanalytics.com 

Identical data is represented by each graph. 

F(x) represents the fraction of values numerically less than or equal to the corresponding value 

on the horizontal axis, cumulative density function (cdf).  

f(x) represents the probability of selecting a value along the horizontal axis and under the curve, 

probability density function (pdf). 

The area between each pair of line segments and under the curve is equal. 
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Application of Stochastic Modeling 

Beltrame et al. (2010) applied stochastic Monte Carlo simulation to an economic analysis 

of MOET and IVP in Brazil, presumably based upon Nelore production statistics. The goal of the 

simulation was to analyze the economic impact of recipient management and synchronization 

protocols in both MOET and IVP production systems. By allowing economic and production 

parameters to be altered, Beltrame et al. (2010) conducted a sensitivity analysis to determine the 

influence of different variables. Based on the simulation model’s output of NPV from the 

marketing of pregnant recipients, it was determined that optimizing the number of recipients per 

donor was the most effective means of reducing cost per pregnancy. Of further interest, Beltrame 

et al. (2010) found that in this Bos indicus based model, the IVP program produced more 

pregnancies than MOET in all evaluated scenarios. Fixed-time embryo transfer (FTET) also 

eliminated the need for estrus detection and reduced the number of unused recipients, which 

lowered the cost per pregnancy (Beltrame et al., 2010).  

 Investment Analysis  

 Business enterprises have several capital budgeting/investment analysis techniques 

available for use. One of the most common and the most conceptually correct (Briggeman, 2014) 

is net present value (NPV), with the equation: NPV=∑
𝐴𝑁𝐶𝐹𝑛

(1+𝑖)𝑛
𝑁
𝑛=1  + 

𝑅𝐸𝑆𝐼𝐷𝑁

(1+𝑖)𝑁
-INV; where N=life of 

investment; i= discount/interest rate; ANCF= annual net cash flows; RESID= residual value; and 

INV= original investment cost. The basis of NPV encompasses the idea that future cash flow is 

discounted to today’s value at the opportunity cost of capital, relative to the initial investment 

outlook to represent the economic profit of the proposed investment (Briggeman, 2014).  
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An NPV greater than zero represents positive economic profit; whereas, a negative NPV signifies 

economic loss. Comparison between investments using NPV is only possible if the investments in 

question have identical time horizons. For potential investments with different investment lives, 

NPV can be adjusted to a measure of annual economic profit. Annuity equivalent NPV is 

represented by the equation: ANPV=NPV[
𝑖

1−(1+𝑖)−𝑁
]; where i= discount/interest rate; and N= 

investment life in years.  

Financial feasibility must be assessed by analyzing the ratio of projected cash flows to debt 

payments due for a specific time frame (Briggeman, 2014).  

Risk Analysis 

 At its most fundamental understanding, risk is a subjective measure where an identical 

situation may represent different levels of risk for different individuals. Thus, the nature of risk 

makes it difficult to quantify in a numerical sense. Levy (2006) offers a definition of financial risk: 

“A risky position is a situation in which there is more than one financial outcome, say x1, x2, …, 

xn and, for at least one value xi, 0 < 𝑝(𝑥𝑖) < 1, where p denotes a probability of xi, occurring. Note 

that if there is one value such that 0 < 𝑝(𝑥𝑖) < 1, there must be at least one more observation, xj, 

with 0 < 𝑝(𝑥𝑗) < 1. The total probability must be equal to 1; ∑ 𝑝𝑖 = 1. By this definition, the 

future value of a risky asset may have more than one value xi, with 0 < 𝑝(𝑥𝑖) < 1.” Furthermore, 

noting the difference between risk and uncertainty, Knight (1921) defines risk “as a pair of values 

(x, p(x)) (with at least one value xi for which (0 < 𝑝(𝑥𝑖) < 1)) such that both x and p(x) are known. 

Uncertainty is a pair (x, p(x)) such that the possible value of x are known but p(x) is unknown,” 

(Levy, 2006). Therefore, because the likelihood of a specific outcome in most biological traits, 

including most bovine reproduction measures, is merely an estimate, biological uncertainty, rather 
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than biological risk, represents the primary concern of most beef production systems. That said, it 

is still acceptable to use the terms risk and uncertainty interchangeably (Levy, 2006). 

Ample effort has been applied to overcoming the inherent challenge of ranking investment 

or financial scenarios based on risk level. One method of accounting for risk within an NPV 

calculation is to adjust the risk-free rate, typically represented by the return on treasury bills, by 

incorporating the standard deviation of a business’s normal risk and the standard deviation of a 

project’s expected return (Briggeman, 2014). Levy (2006) reviews several other existing methods 

for the numerical ranking of financial risk. Domar and Musgrave Risk Indexes, Roy’s Safety First 

Rule, Baumol’s Risk Measure, Value at Risk, and Minimax Regret, all mathematical attempts at 

creating the most appropriate technique for quantifying risk, are detailed in Levy (2006). Perhaps, 

the most useful means of providing the end-user with the information needed to make an 

individualized risk assessment is through the interpretation of mean and variance and/or the 

evaluation of a distribution of probability density.  

 Synopsis 

 Since its inception as a commercial application, ET has had a profound impact on the cattle 

industry by creating a means to propagate the genetics of elite females. More recently, through 

sexed-semen technology, ET has allowed for progressive producers to respond to market signals 

by predetermining the sex of resulting progeny. While the adaptation of technology serves as a 

crucial mode of industry advancement and improvement, financial feasibility and risk must be 

assessed when developing a strategy for implementation. The potential inefficiencies and 

biological uncertainties associated with ET make such financial risk assessment a challenging 

prospect. Producers are not only faced with the decision of whether to apply ET to a breeding 

program, but on what scale; whether to rely on MOET or IVP; use unsorted or sex-sorted semen; 
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whether to utilize superovulation and/or estrous synchronization; and if or how to market the 

resulting product of an ET program. To accomplish the objectives of conducting risk and 

sensitivity analysis, along with the potential for optimization, a circumstantial, stochastic 

prediction model utilizing @Risk© software to generate comparable economic values as an aid in 

the ET decision making process has been created. 
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Chapter 3 - Materials and Methods 

To accomplish the objective of creating an economic risk analysis tool for user-defined ET 

programs, a circumstantial, stochastic prediction model utilizing @Risk© software to generate 

comparable economic values as an aid in the ET decision making process has been created. User-

defined, deterministic parameters are accompanied by stochastic variables of economic importance 

to generate a flexible model. More realistic than the use of means in deterministic models, 

distributions defining the biological uncertainty for a multitude of reproductive outcomes are 

estimated through extensive literature review and limited industry sources. Applying the Latin 

Hypercube Sampling (LHS) variation of Monte Carlo simulation, a sample value from the 

descriptive distribution associated with each stochastic variable is included in an iteration of the 

simulation. Through large numbers of iterations with dynamic combinations of variables, the 

process culminates in a distribution of possible values for the annuity equivalent net present value 

(ANPV) associated with the model described scenario of IVD or IVP. Finally, using the probability 

distribution of ANPV, a decision maker can assess the economic risk linked to a user defined ET 

program. The model can be applied as a tool to compare different user-defined parameters and ET 

production methods or protocols, to answer the question of if and/or how a producer should carry 

out an ET program. 

The outcome of an ET program is an accumulation of a multitude of steps in the production 

process. Tied to these steps are decisions that need to be made. First, a producer must decide how 

to generate embryos. Will MOET or IVP be used? Will a follicular stimulation and/or follicular 

synchronization protocol be implemented? Next, a decision must be made between the use of 

conventional, unsorted semen or semen sorted for sex. Once healthy embryos have been generated 

it must be determined if those embryos are to be transferred into recipients as fresh embryos or 
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cryogenically frozen and transferred later. If the decision is made to transfer embryos fresh, a 

population of recipients must be in estrous synchrony with the donors for the embryos to be 

successfully implanted. As described in the literature review, each combination of decisions may 

have an alternate impact on production success, depending on management, cattle type, and luck. 

Once embryos are transferred to recipients, pregnancy is not a guarantee. In some cases, 

the embryo never properly implants into the uterus or is not recognized by the recipient and she 

comes into estrus again, with the timing of her normal estrous cycle. In other situations, the 

pregnancy may be lost or aborted later in the gestation period. For recipients that either return to 

estrus early enough in the breeding season, there is opportunity to either receive another embryo 

or be naturally serviced by a clean-up bull. The establishment of pregnant recipients also presents 

a marketing opportunity for many operations. If the pregnant recipient is retained through full 

gestation, the parturition process brings a multitude of other risk factors into play. Frequency of 

dystocia, death in the perinatal period, or other health concerns can be influenced by whether the 

calf is a result of MOET, IVP, or natural service. 

A live calf at birth must then survive to weaning. At that time, a marketing plan must be 

executed. Will all calves be marketed at weaning or only the natural service and cull calves? A 

producer may wish to add value to calves by developing them and selling them later.  

Throughout this entire process, ownership or contracting decisions must be made. While it 

is common for one operation to own the entire production process from donors to recipients to the 

resulting progeny; other operations may send embryos to a separate operation and buy back the 

subsequent pregnant recipients or establish a contract where ET calves are purchased after being 

weaned. 
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The process of ET allows for immense flexibility accompanied by a great deal of variability 

in results. An operation should strive to make the most appropriate combination of process 

decisions to fit their desired outcome. 

 Model 

The model allows for the comparison and analysis of the production and economic factors 

of eight primary ET protocols. 

1. MOET: Unsorted Semen 

2. MOET: Sex-Sorted Semen 

3. IVP: No Ovarian Stimulation (NS), Random OPU Interval, Unsorted Semen 

4. IVP: No Ovarian Stimulation (NS), 3-4 d or 14 d OPU Interval, Unsorted Semen 

5. IVP: Follicular Synchronization and Ovarian Stimulation (SS), Unsorted Semen 

6. IVP: NS, Random OPU Interval, Sex-Sorted Semen 

7. IVP: NS, 3-4 d or 14 d OPU Interval, Sex-Sorted Semen 

8. IVP: SS, Sex-Sorted Semen 

In all sections of the model, unless otherwise noted, the number of embryos, recipients, 

pregnancies, calves, etc. are determined using a binomial distribution with n number of trials and 

success probability, p. For each iteration of the simulation, probability, p, is sampled per LHS from 

the distribution around the mean for the trait in question. 

It is assumed that all donors, recipients, and bulls are healthy and fertile with all females 

having a 21 d estrous cycle. Also, assume all purchases occur on d 1 of the fiscal year. 

Figure 2 depicts the production system of MOET IVD ET (protocols 1 and 2); while Figure 3 

depicts the IVP ET production system (protocols 3 through 8). All the economically relevant 

probability distributions described in the “Distributions of Biological Uncertainty” section 

illustrate the potential range of possibilities when transitioning (arrows in Figure 2 and Figure 3) 

from one stage of production (rectangles in Figure 2 and Figure 3) to another. The results of each 

stage of production serve as inputs for the subsequent transition to the next stage of production. 
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Figure 2. MOET IVD ET production system 
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Figure 3. IVP ET production system 
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MOET: Unsorted Semen Embryo Production 

 Using the deterministic variable for the number of donors in the ET program as a starting 

point, the number of donors collected following each round of superovulation is calculated using 

a binomial distribution with n number of donors in the ET program and probability, p, of a donor 

showing signs of estrus and being subsequently inseminated and flushed. The probability, p, of a 

donor showing signs of estrus equals 1 minus the probability of donors not showing estrus after 

superovulation; this is sampled stochastically per LHS from the probability distribution of the 

mean rate of donors not showing signs of estrus following superovulation. The number of donor 

superovulations is entered as a user-defined deterministic variable. The number of embryos 

collected per flush is sampled stochastically per LHS using the negative binomial distribution 

describing the number of embryos retrieved per collection.  

  A user-defined, deterministic variable with a minimum of 30 d, determines the time 

interval between flushes. To maintain a structured time frame for calving season within the model, 

the number of MOET flushes is limited to 3.  

 The number of embryos transferred is dependent on the number of embryos available and 

the number of synchronized recipients deemed qualified to receive an embryo. It is assumed that 

a round of fresh transfers accompanies every round of embryo collections. For the model in 

question, if there is an overabundance of embryos compared to recipients, the left-over embryos 

are frozen and transferred later, in the case that there are more available recipients than embryos 

in a later transfer round or in a specific frozen-thawed transfer session after all rounds of embryo 

collections have taken place. It is assumed that if unused embryos remain at the end of all transfer 

rounds, they are marketed as frozen embryos. 
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 The user-defined variable for the number of recipients purchased at the start of the ET 

program sets the size of the recipient herd. All recipients are purchased as open, fertile females 

without a calf at side. The number of recipients synchronized is determined using a sampled value 

from the distribution for the percentage of synchronized recipients qualified for transfer to estimate 

the number of synchronized recipients required to match the number of available embryos. 

Ultimately, the number of recipients deemed qualified for transfer is computed using a binomial 

distribution with probability, p, of a recipient being qualified for transfer drawn per LHS from the 

aforementioned distribution. 

 Embryo transfer pregnancy rate at 21 d (d 14 after transfer) following transfer of IVD 

embryos is split into fresh ET pregnancy rate and frozen-thawed ET pregnancy rate. After the 

establishment of a 21 d pregnancy, there is opportunity for pregnancy loss. The distribution for the 

mean of pregnancy loss is separated into a distribution for pregnancy loss between d 21 and d 60 

of gestation and a distribution for pregnancy loss between d 60 and term. 

 Assumed within the model, the earliest a recipient can return to estrus following a 

synchronized estrus, regardless of whether she cycled or received an embryo or not, is 21 d post-

synchronized estrus. Any recipient that is not pregnant at d 21 reenters the pool of available 

recipients, depending on whether the ET program has concluded for the breeding season in 

question. Recipients that experience pregnancy loss between d 21 and d 60 are eligible for exposure 

to a natural service sire, depending on the timeframe of the ET program; the time interval between 

transfer rounds; the transfer round that the recipients in question received transfer; and the length 

of bull exposure. All recipients, unless selling as a bred recipient with a confirmed 60 d pregnancy, 

are exposed to a natural service sire for a user-defined length of time after all transfer rounds have 

been completed. All recipients that experience pregnancy loss between d 60 of gestation and term 
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are considered open at the end of the breeding season and are not eligible for natural service. Any 

recipient that aborts a natural service pregnancy, regardless of the period of gestation, is considered 

open. For all recipients, it is assumed that pregnancy is determined by cyclicity or rectal 

palpation/ultrasound at d 60 of gestation. Final pregnancy and open totals are a result of binomial 

distributions using probabilities sampled from the pregnancy establishment and pregnancy loss 

distribution as characterized in the “Distributions of Biological Uncertainties” section. 

 MOET Sexed Semen Embryo Production 

 All methods and calculations for simulating the production of sexed, IVD embryos are 

identical to those used for the simulated production of unsorted, IVD embryos, except for the 

probability distribution of the number of embryos generated per flush. Sexed embryos are 

generated through the use of sex-sorted semen. 

IVP Embryo Production 

 Most of the structure of the simulation model for IVP embryo production is identical to the 

production of MOET embryos. The major difference in the model comes with two steps specific 

to IVP. The first distinct step is OPU by follicular aspiration. According to the user-defined number 

of donors and number of OPUs per donor, the number of viable oocytes collected per OPU is 

sampled per LHS from the probability distribution describing the number of viable oocytes 

collected per OPU. Next, the blastocyst development rate matching the relevant stimulation 

protocol and semen type is applied to the viable oocytes. 

The product of the number of viable oocytes and blastocyst development rate represents 

the number of transferrable embryos. Following transfer, distributions for the 21 d pregnancy rate; 

pregnancy loss between d 21 and d 60; and pregnancy loss between d 60 and term are applied for 
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either fresh IVP ET or frozen IVP ET, depending on embryo type. The remaining model 

organization remains constant for the differing types of embryo production. 

Revenues and Expenses 

 While the model may or may not generate different values for the following sections, 

depending on the scenario and appropriate distribution to be sampled per LHS, the basic structure 

of the simulation model is identical for all types of embryo production. 

 Cattle Maintenance Expenses- Bred Recipient 

The costs in this section are applied to the total program expense when marketing bred 

recipients. According to user-defined inputs, the average of individual purchase cost, annual health 

program cost, and annual feed cost are compiled to calculate a total expense for donors and bulls. 

Unless specified otherwise, donors and bulls are considered to be owned for a full fiscal year, as 

it is possible and rather likely that their useful life spans more than one iteration of a bred recipient 

marketing program. Average individual purchase cost and health program cost are summed across 

the herd to generate a total recipient expense. Feed costs are allocated based on the length of time, 

in months, that purchased recipients are owned before marketing. It is assumed that for the 

marketing of owned or purchased recipients the full time of ownership occurs in one fiscal year. 

 Cattle Expenses- Weaned Calf 

 As in the scenario above, the cost of purchase, feed, and health program are totaled for 

donors and bulls. To accurately portray different feed costs for cows that calve at different times 

of feed and forage availability, the annual feed cost for recipient females is split between feed cost 

for the length of the calving season before available grazing (see “IVD Unsexed Weaned Calf Feed 

Costs- Pre-Grazing Season Calving”) and the rest of the fiscal year. Annual feed costs are only 

applied to open females for the length of the fiscal year that they are still in the herd. In year one 
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of the program, purchase costs of recipients are totaled with feed and health program costs. For 

subsequent years of the ET program, recipient replacement cost (the cost of replacing open 

recipients to fit the recipient herd size defined by the user) is combined with recipient maintenance 

costs to generate a total recipient expense. 

 Weaned Calf Feed Costs- Pre-Grazing Season Calving 

 While calves born at the beginning of calving season tend to be heavier at weaning 

(assuming all calves are weaned on the same day, as in this model), there is also a potential trade-

off in the cost of required nutrients for early calving cows, depending on the relationship between 

calving season and the availability of forage and/or cost of feed. By incorporating user-defined 

inputs for ration cost, expected cow dry matter intake (DMI) for the third trimester of gestation, 

expected cow DMI postpartum, and the length of the calving season (in days) before the grazing 

season, the cow feed costs associated with calving at different times within the calving season can 

be estimated. The number of bred recipients from each respective round of ET and cycle of natural 

service dictate the dispersion of calving throughout the calving season. Thus, the number of third 

trimester and postpartum days before the grazing season can be determined based on when 

conception occurred during the breeding season. The resulting total pre-grazing season, calving 

season cost is built into the annual recipient feed cost that is used in the “IVD Unsexed Production 

Cattle Expenses- Weaned Calf” section. 

 Donor Protocol Cost 

The number of doses of exogenous reproductive hormones and the cost per dose, as user-

defined, are combined over the total number of superovulation protocols in one ET breeding 

season. Total semen cost, based on cost per dose and doses required is also accounted for, along 

with the total embryo collection cost based on number of procedures and cost per procedure. If 
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there is an overabundance of embryos compared to recipients, freezing costs are also accounted 

for. Furthermore, costs from non-vet labor hours required for superovulation and embryo 

collection are described in this section of the model. 

 Recipient Protocol Cost 

 With the user-defined costs of exogenous reproductive hormones, embryo transfer, 

pregnancy determination, determination of sex of pregnancy, and non-vet labor combined with the 

amount required of each respective resource, the total cost of recipient protocols can be applied. 

 Weaned Calf Preconditioning Cost 

 Several user-defined costs go into the estimation of weaned calf preconditioning costs. 

They include: Daily Backgrounding Cost per Head; Vaccine Cost per Head; and Treatment Cost 

per Head. The total number of head that go through the preconditioning program prior to marketing 

is determined from the simulated number of calves that survive to weaning. Total Backgrounding 

Head Days is calculated by multiplying the number of weaned calves by the user-defined 

preconditioning days. It is assumed that post-weaning mortality is zero.  

 Bull/Heifer Development Cost 

 Development Expense is determined by coupling the Vaccine Cost per Head; Treatment 

Cost per Head; Miscellaneous Development Cost per Bull (breeding soundness exam (BSE), 

ultrasound, registration, etc.); Miscellaneous Heifer Development Cost per Heifer (Brucellosis 

vaccination, reproductive tract score, registration, etc.); Daily Bull Development Cost; and Daily 

Heifer Development Cost with the number of bulls and heifers undergoing development and the 

duration (days) of development.  

It is assumed that all natural service sired calves are commercial; thus, all natural service 

sired calves are marketed after preconditioning according to weight and the feeder calf pricing 
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slide within the model. The user-defined cull rate determines the number of ET culls with respect 

to a simulation based on n (number of ET bulls and ET heifers) number of Bernoulli trials. Within 

the model, all cull calves are marketed as preconditioned feeder calves. The expense associated 

with the preconditioning of naturally sired and cull calves is determined in the same manner as 

described in the Weaned Calf Preconditioning Cost Section. 

 Total Expenses- Owned Donors 

 Subject to the scenario in question, expenses from the sections previously described are 

compiled for all scenarios in which the ET program under consideration owns the donor females 

used in the ET program. The specific costs included in the total program expense depend on 

embryo production strategy; ownership of recipients; and marketing strategy. 

 Total Expenses- Custom Recipient 

 Again, according to the specifics of a given scenario, expenses from the cost calculating 

sections previously described are combined for all scenarios in which the ET program does not 

own any donor females, but does own and manage a recipient herd. The particular expenses that 

are incorporated into the total depend upon the embryo production or purchase strategy and the 

marketing scheme. 

 Embryo Revenue 

 If embryo production out-paces the availability of recipients, excess embryos are frozen 

and marketed at a user-defined price per embryo. An individual price is assigned unsexed embryos, 

bull embryos, and heifer embryos. The number of excess embryos, as calculated by the appropriate 

embryo production page, is multiplied by the individual price for the appropriate embryo type. 

This dollar value is incorporated into the total revenue of the ET program. 
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 Bred Recipient Revenue 

 It is assumed that all bred recipients are marketed after d 60 of gestation at the expected 

value, as defined by the model user. An expected individual market value is assigned to a pregnant 

recipient carrying an embryo of unknown sex; a pregnant recipient carrying a bull embryo; a 

pregnant recipient carrying a heifer embryo; a pregnant female carrying a naturally sired calf; and 

an open female. The number of recipients of each pregnancy type is drawn from the appropriate 

embryo production page. Market uncertainty is not accounted for regarding revenue from the sale 

of bred or open females. Sale price is fixed. A binomial distribution within the model determines 

the number of ET pregnancies of each sex for each iteration of the simulation. For ET production 

using unsexed semen, an extra veterinary expense is applied for determination of the sex of 

pregnancy. Multiplying the number of females of each pregnancy type by their associated value 

and summing the total values yields a revenue value that is included in the total revenue of an ET 

program that markets pregnant recipients.  

 Weaned Calf Revenue 

 The market value per weaned calf is determined by the feeder calf slide (prices adjustable 

per current market) and a user-defined premium for ET bull calves and another user-defined 

premium for ET heifer calves. The price slide is based on the current market price of feeder steers. 

Heifer calves are discounted to 92% of the price per pound of steer calves (Schulz et al., 2009). It 

is also possible to base an ET calf premium on dollars/lb. All calves are weaned on the same day. 

Thus, to account for differences in weaning weight, ET rounds and natural service cycles are split 

according to expected calving date to form calving groups. Weaning weights are determined by 

the user-defined growth expectations of calves and the anticipated calf age (in days) at weaning. 

Growth expectations in terms of average daily gain (ADG) (pounds per day) are deterministic 
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variables. All weaned calves undergo a preconditioning period of a user-defined length, in days. 

Calf weight following preconditioning is a product of the number of days of preconditioning and 

the expected calf performance, as defined by the model user. 

The number of calves weaned within each calving group is calculated from the number of 

females carrying a pregnancy to term within each calving group and the percentage of calves that 

survive to weaning. The number of calves that survive to weaning is based on a binomial 

distribution with average probability of survival, p, and number of pregnancies, n, maintained to 

term. For unsorted semen, a binomial distribution also determines calf sex with the probability, p, 

of bull calves at 0.5 and n equal to the number of pregnancies maintained to term. 

By combining the applicable calf sex and weight with its associated price per pound and 

premium for ET calves, the individual calf value is determined. Summing the values associated 

with each calving group and combining that figure with the total value of open recipients yields a 

revenue figure that is incorporated into the total revenue of an ET program selling calves after 

weaning and a preconditioning period. 

 ET Bull/Heifer Development Revenue 

 ET Bull and ET Heifer Development Revenue accounts for ET programs that develop ET 

calves beyond preconditioning and sell them in a production sale or similar marketing strategy. 

All naturally sired calves are sold after preconditioning, in the same manner as described in the 

Weaned Calf Revenue section. A user-defined cull rate sorts off the appropriate percentage of ET 

calves of each sex to be sold after preconditioning. The weight associated with the cull calves in 

question is the average of the entire group of ET calves at the end of the preconditioning phase. 

All culling of ET calves is done at the conclusion of preconditioning. The number of ET calves of 
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each sex is determined using a binomial distribution, in the same manner as described in the 

previous section. 

 The distribution of the average price per ET bull and the distribution of the average price 

per ET heifer can be an estimated input based on expectations or can be constructed using past sale 

data. A random value, sampled per LHS, drawn from the price distribution for ET bulls and the 

price distribution for ET heifers is multiplied by the number of ET bulls and ET heifers, 

respectively, to generate a total ET calf value for each iteration. The value of ET bulls, ET heifers, 

cull ET bulls, cull ET heifers, natural service sired calves, and open recipients are summed to 

produce a revenue figure that is included in the total revenue for an ET program selling developed 

bulls and heifers. 

 Total Revenue 

 In this spreadsheet, revenue streams are combined for the scenario in question depending 

on marketing strategy. Potential marketing schemes include sale of embryos; sale of bred 

recipients; sale of weaned/preconditioned calves; and sale of developed ET bulls and developed 

ET heifers. If the operation in question owns the donor females, the revenue from the sale of any 

excess embryos is always combined with revenue from the sale of live animals. Within this model, 

an operation may only market live animals by one method within a set scenario, except for the sale 

of naturally sired calves and cull ET calves immediately following preconditioning in a developed 

ET bull/heifer marketing strategy. 

 Annual Cash Flow 

 Total expenses and total revenues are calculated on an annual basis. Excluding initial 

investment expense, the total expenses and total revenues for a given scenario are combined to 

yield an annual cash flow figure. Regarding the sale of ET progeny, whether sold after 
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preconditioning or development, it is assumed that revenue occurs in the same fiscal year as the 

birth of said calf. The final annual cash flow figure can then be used in Net Present Value (NPV) 

calculations.  

 Net Present Value/ Annuity Equivalent Net Present Value/ Return on Investment 

NPV, with the equation: NPV=∑
𝐴𝑁𝐶𝐹𝑛

(1+𝑖)𝑛
𝑁
𝑛=1  + 

𝑅𝐸𝑆𝐼𝐷𝑁

(1+𝑖)𝑁 -INV; where N=life of investment; i= 

discount/interest rate; ANCF= annual net cash flows; RESID= residual value; and INV= original 

investment cost is used to put ET program profitability into economic terms. N and i are user-

defined variables; while RESID and INV are calculated by multiplying the number of donors, 

recipients, and bulls by their associated, user-defined residual value per head and initial value per 

head, respectively. ANCF values are derived from the annual cash flow section previously 

described. 

Comparison between investments using NPV is only possible if the investments in question 

have identical time horizons. For potential investments with different investment lives, NPV is 

adjusted to a measure of annual economic profit. Annuity equivalent NPV is represented by the 

equation: ANPV=NPV[
𝑖

1−(1+𝑖)−𝑁]; where i= discount/interest rate; and N= investment life in 

years. The outcome of the model results in a probability distribution for ANPV and NPV based on 

the simulation iterations of the model. 

 Return on investment (ROI) is calculated as: 𝑅𝑂𝐼 =
𝑅−𝐸

𝐸
; where R= total revenue over the 

life of the investment; and E= total expense over the life of the investment. A probability 

distribution of ROI, constructed using the ROI for each iteration of the simulation, is a result of 

running the model. 

 Within @Risk ©, model outcome can be analyzed by designating specific cells as outputs. 

The corresponding output values of each iteration of the simulation for that particular cell can be 
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displayed using different types of graphs, including probability density, relative frequency, 

discrete probability, cumulative ascending, and cumulative descending. Furthermore, the raw 

iterative values can also be viewed as part of the statistical output. Any cell within the model that 

is calculated using input variable values is eligible to be viewed as an output cell.  

Assumptions 

 While many assumptions have already been mentioned in previous discussion, the 

following list contains all assumptions pertinent to the model. 

 General Model Assumptions 

 No correlation between traits/measurements 

 All recipients enter the system as purchased opens 

 All calves weaned same day 

 If calf lives to weaning, it lives through development 

 Reproductive Model Assumptions 

 Healthy donors, recipients, and bulls 

 21 d estrous cycles 

 ET on d 7 following the onset of estrus 

 Recipients synchronized within 24 h of donor 

 Normally cycling donors and recipients 

 ET program is seasonal, not continuous 

 MOET IVD is limited to 3 flushes/breeding season 

 Embryo Production Model Assumptions 

 Recipients that return to estrus on d 21 reenter available recipient population, depending 

on ET round and time interval between flush/OPU. 
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 ET recipients that experience pregnancy loss between 21 d and 60 d of pregnancy are 

eligible for natural service, depending on interval between transfers and length of bull 

turnout. 

 ET bred recipients that experience pregnancy loss between d 60 and term are not eligible 

for natural service. 

 Natural service bred recipients that experience pregnancy loss at any point after d 21 of 

gestation are not eligible for another natural service conception. 

 Revenue Model Assumptions 

 Bred recipients are sold carrying a minimum 60 d pregnancy with no calf at side. 

 Calf development revenue occurs in same fiscal year that calves are born. 

 Expense Model Assumptions 

 Expenses not included: 

o  Overhead or whole ranch costs 

o Facilities 

o Random vet costs (pulling calves, emergencies, etc) 

o Labor when not applied to ET program 

o Equipment Expense 

o Taxes 

By applying the methodology and calculations as described in the preceding pages, ET 

program scenarios are simulated to compare economic profit potential and analyze contribution 

factors. If a user feels that past production records for a certain operation or specific donor female 

better describe the reality of a variable than the stochastically sampled distributions, deterministic 

override options are available within the model interface.  
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 Distributions of Biological Uncertainties 

The primary challenge in creating this model is to account for the variability in the value 

of input factors found in the ET process that cannot be accurately described by one deterministic 

value, such as a mean. Furthermore, this model attempts to tie the entire ET production process 

together through a system of calculations that draw upon the outcome of the prior step in the 

production process.  

To determine the expected number of pregnant recipients resulting from a fresh transfer 

situation, one must first predict the number of transferable embryos produced by the donor(s) 

female(s) and what percentage of recipients will respond to synchronization and be deemed 

eligible to receive an embryo. Then the number of pregnant recipients is dependent upon the 

pregnancy rate of the recipients that received an embryo. Many factors out of the direct control of 

management have a powerful influence on the number of transferable embryos produced by the 

donor, the percentage of synchronized recipients that are eligible to receive an embryo, and the 

pregnancy rate of recipients. Much can be attributed to simple chance. Thus, even under what may 

seem to be identical conditions the number of transferable embryos produced by a donor can vary 

greatly from one occasion to the next. The same can be said for the percentage of synchronized 

recipients deemed eligible for transfer and the pregnancy rate of said recipients.  

To account for this variability one needs to create a probability distribution that estimates 

the probability of an outcome, such as the number of transferable embryos generated per flush. 

Then whatever value is drawn from the distribution of transferable embryos would be input into 

the calculation for the number of recipients needed. The number of embryos transferred would 

then be combined with a pregnancy rate drawn from the distribution of possible pregnancy rates 

to predict the number of pregnant recipients.  
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@Risk© is an Excel© add-in that allows for probability distributions to be built into an 

Excel© workbook and values drawn from said distributions through the simulation of an Excel© 

based model. @Risk© software is quite robust with extensive mathematical and statistical 

capability incorporated into the program. Furthermore, there are a great number of options 

available to the user to define how a simulation will be run, how many times it will be run, and 

what output a user wishes to see. Big picture methods of @Risk© application that are pertinent to 

this model are described in this thesis. For in-depth study of @Risk© details, refer to the user 

manual. 

The following sections describe the methodology behind the construction of distributions 

representing the variation of biologically uncertain variables deemed relevant to ET programs. It 

may be argued that in an ideal situation all data used to base distributions upon would be collected 

from contemporary groups in a homogenous environment; however, unless an environmental 

effect is quantified, data from a wide array of sources, years, and management practices more 

realistically describes true industry-wide variation (Long et al., 1975). The data used to estimate 

the following variable distributions is derived from extensive literature review and a couple of 

samples of industry reported data.  

Percentage of Donors Showing No Signs of Estrus Following Superovulation 

 Hasler et al. (1983) reported that 5.5% of 856 MOET Holstein donors failed to show signs 

of estrus following superovulation, and thus were not considered eligible for insemination or 

embryo collection. Hasler et al. (2010) found that 6% of 332 MOET Red Angus donors also failed 

to show signs of estrus following superovulation. By recreating the binomial data from these two 

studies and assigning 67 of 1188 donors a binary code of “1” and 1121 of 1188 donors a binary 

code of “0”, it was found that a mean of 5.6% of MOET donors, with a standard error of the mean 



69 

(SEM) of 0.0067, did not show signs of estrus following superovulation. A normal distribution of 

the mean, 0.056, and SEM, 0.0067, with a truncation point at 0, is built into the MOET embryo 

production model to account for potential donors that do not undergo embryo collection. 

Furthermore, to appropriately account for different number of donors (n) within the population of 

potential donors, a binomial distribution is in embedded into the model. The parameters of the 

binomial distribution are sample size n and probability of success, represented by the equation: 1- 

percentage of donors not undergoing embryo collection (sampled according to LHS from the 

normal distribution of the mean described above).  

An override option for the percentage of superovulated donors not undergoing embryo 

collection is also built into the model. All stochastic variables have an override option that allows 

the user to input a deterministic variable. This feature can be used for sensitivity analysis or if a 

user feels that a deterministic variable better represents the expected outcome than the default 

distribution that is derived from industry-wide data. The distributions of stochastic variables can 

also be modified, although not as easily. The model equations within Excel© appear as follows: 

Percentage of Donors Showing No Signs of Estrus Following Superovulation 

=RiskNormal(mean, standard error of mean or standard deviation depending on how distribution 

is to be used, additional parameters ex) truncation minimum and maximum limits) 

=RiskNormal(0.056,0.007,RiskTruncate(0,)) 

Number of Donors Undergoing Embryo Collection in Given Scenario 

=IF($B$10>=1,IF($B$15=1,RiskBinomial($G$10,1-$B$17),RiskBinomial($G$10,1-$B$13)))  

G10= Number of superovulation per donor 

B15= Override option (1= Yes, Otherwise No) 

B10= number, n, of donors receiving superovulation 

B17= Override value for percentage of donors showing no signs of estrus 

B13= Sample from normal distribution of the mean percentage of donors showing no signs of 

estrus (Figure 4) 
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.  

Table 24. Percentage of donors showing no signs of estrus following superovulation. 

% Donors showing no signs of estrus 

following superovulation 
n Breed Source 

5.5 856 Holstein Hasler et al., 1983 

6.0 332 Red Angus Hasler, 2010 

 

Table 25. Distribution parameters for the percentage of donors showing no signs of estrus 

following superovulation. 

Weighted Mean % Donors Showing No Signs of 

Estrus 
Weighted SEM (%) 

5.6 0.7 

 

 

Figure 4. Estimated probability distribution of the true mean for the percentage of donors 

showing no signs of estrus following superovulation. 

 

Table 26. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

true mean for the percentage of donors showing no signs of estrus following superovulation. 

5th Percentile Mode 95th Percentile 

0.044 0.056 0.067 
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Number of Embryos Collected per Flush Following Superovulation and 

Insemination Using Unsorted Semen 

Woolliams et al. (1995) explains that a negative binomial distribution appropriately models 

the distribution of the number of embryos collected per donor flushed because the shape of a 

negative binomial distribution properly accounts for the probability that a flushed donor generates 

zero transferrable embryos. When considering independent Bernoulli trials, a negative binomial 

can be described as the probability of k number of failures (or successes) occurring in sequence 

before r successes (or failures) occur (Stat Trek, 2012). Reversing logic and considering the 

collection of each transferrable embryo a “failure”, the data reported in Table 28 suggests that 

there is a 12% probability of 1 “success” (no transferrable embryo) before the occurrence of 1 

“failure” (transferrable embryo).  

The mean number of k failures (transferrable embryos) before r successes (no transferable 

embryos) can be calculated by the following formula:  

μk = r*Q/P 

µk= the mean number of failures (transferrable embryos) before successes (no transferable 

embryos) 

r= number of successes 

Q= probability of failure 

P= probability of success.  

The negative binomial distribution can be constructed using the geometric probability formula:  

g(x; P) = P * Qx-1 

x= number of independent Bernoulli trials 

P= Probability of success of each trial 
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Q= Probability of failure 

Keep in mind the logic of success and failure have been reversed for the situation of embryo 

collection. 

Using the formula for the mean of a negative binomial as described previously, a mean of 

7.33 embryos are collected before a collection attempt results in zero embryos. This can be 

interpreted as a mean of 7.33 embryos per flush, which was determined to reasonably describe the 

population mean, when compared to Table 30. The standard deviation of the negative binomial, 

7.8, also followed closely with Table 30. Applying the geometric formula for a negative binomial, 

the distribution in Figure 5 was created using @Risk© software and concluded to sufficiently 

described the number of transferrable embryos generated per flush, following MOET. 

Table 27. Percentage of flushed MOET donors producing zero embryos following insemination 

with unsorted semen. 

% Flushed Donors Producing 

Zero Embryos 
n Breed Source 

12.5 312 Red Angus Hasler, 2010 

12.0 108 Holstein Peippo et al., 2009 

9.9 71 Holstein Peippo et al., 2009 

 

 

Table 28. Weighted mean percentage of flushes donors producing zero embryos following 

insemination with unsorted semen. From Table 27. 

Weighted Mean % Flushed 

Donors Producing Zero Embryos 

12.0 
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Table 29. Number of transferable embryos recovered per MOET flush following insemination 

with unsorted semen. 

Transferable 

Embryos per 

Flush 

SD n Donor Type Source 

9.8 na 172 Beef Stroud and Hasler, 2006 

4.5 na 63 Beef Stroud and Hasler, 2006 

7.0 na 31,333 Beef IETS 2014 

7.8 8.0 35 Holsteins Hasler et al., 1983 

7.5 6.6 35 Holsteins Hasler et al., 1983 

8.3 7.5 35 Holsteins Hasler et al., 1983 

7.3 7.1 35 Holsteins Hasler et al., 1983 

6.1 7.7 35 Holsteins Hasler et al., 1983 

6.6 6.6 1,073 Beef Bo et al., 2002 

6.3 10.5 307 Beef Bo et al., 2002 

4.0 4.3 29 Beef Hasler, 2010 

6.1 7.0 29 Beef Hasler, 2010 

5.0 4.9 29 Beef Hasler, 2010 

 

Table 30. Parameters for the number of embryos recovered per MOET flush following 

insemination with unsorted semen. From Table 29. 

Weighted Mean 

Embryos per Flush 
Weighted SD 

6.99 7.32 
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Figure 5. Estimated probability distribution of the number of transferable embryos collected per 

MOET flush following insemination with unsorted semen. 

  

Table 31. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

number of transferable embryos collected per MOET flush following insemination with unsorted 

semen. 

5th Percentile Mode 95th Percentile 

0 0 23 

 

Number of Embryos Collected per Flush Following Superovulation and 

Insemination Using Sex-Sorted Semen 

 Using Table 32 and Table 34, the same logic and methodology is applied to MOET embryo 

production using sex-sorted semen, as previously described for MOET embryo production with 

unsorted semen. Because the probability of “success” (no embryo collected) before a set number 

of “failures” (collection of an embryo) serves as the input into the geometric equation within 

@Risk© the combination of Table 33 and Table 35 could not be exactly replicated in the @Risk© 

distribution, Figure 6. The parameters of 3.72 mean embryos per flush and standard deviation of 
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4.23 are deemed reasonably close to Table 35, following the input of 0.21 as the probability of 

“success” before one “failure”. 

Table 32. Percentage of flushed MOET donors producing zero embryos following insemination 

with sex-sorted semen. 

% Flushed Donors Producing 

Zero Embryos 
n Source 

19.0 42 Peippo et al., 2009 

41.2 17 Peippo et al., 2009 

 

 

Table 33. Weighted mean percentage of flushed MOET donors producing zero embryos 

following insemination with sex-sorted semen. From Table 32. 

Weighted Mean % Flushed Donors 

Producing Zero Embryos 

25.4 
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Table 34. Number of transferable embryos recovered per MOET flush following insemination 

with sex-sorted semen. 

Transferable 

Embryos/Flush 
SD n Source 

4.1 1.8 30 Schenk et al., 2006 

3.3 1.6 30 Schenk et al., 2006 

3.2 3.1 42 Peippo et al., 2009 

2.7 2.1 17 Peippo et al., 2009 

6.0 4.9 5 Hayakawa et al., 2009 

2.5  11 Hayakawa et al., 2009 

2.4  13 Hayakawa et al., 2009 

5.6  15 Hayakawa et al., 2009 

3.4  11 Hayakawa et al., 2009 

1.0  7 Hayakawa et al., 2009 

5.2  35 Hayakawa et al., 2009 

5.0  7 Hayakawa et al., 2009 

 

 

Table 35. Parameters for the number of embryos recovered per MOET flush following 

insemination with sex-sorted semen. From Table 34. 

Weighted Mean 

Embryos per Flush 
Weighted SD 

3.74 2.37 
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Figure 6. Estimated probability distribution of the number of transferable embryos collected per 

MOET flush following insemination with sex-sorted semen. 

 

Table 36. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

number of transferable embryos collected per MOET flush following insemination with sex-

sorted semen. 

5th Percentile Mode 95th Percentile 

0 0 12 

 

Number of Viable Oocytes Collected per Non-Synchronized, Non-Stimulated (NS) 

OPU with 3-4 d or 14 d Interval 

 It was decided to combine the number of viable oocytes collected per NS at 3-4 d intervals 

and a 14 d interval into one distribution. As explained previously, Ding (2008) reported no 

difference in mean number of recovered oocytes when comparing OPU twice-weekly, every 5 

days, once-weekly, every 10 days, and once in 2 weeks. This conclusion seems sensible when 

employing the logic that the second follicular wave emerges somewhere between 7 to 11 days after 

ovulation, setting the physiological stage of the follicular wave somewhere between 3 and 7 days 

post-emergence when OPU is performed at a 14 d interval. A weighted mean, 7.26, and a weighted 
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standard deviation (SD), 2.71, for viable oocyte production per OPU was calculated using the data 

reported in Table 37.  

Attempting to apply the most realistic shape to the distribution of viable oocyte production 

per OPU, the Akaike Information Criterion (AIC) within the “Distribution Fitting” tool of @Risk© 

was applied to the sample means from Table 37. An AIC score compares the ability of different 

model distributions to closely approximate reality (Mazerolle, 2004). Meaningless on its own, a 

lower AIC score is more favorable than a higher score (Mazerolle, 2004). To portray the value of 

models of a small sample size more accurately, the second order AIC (AICc) should be employed 

(Mazerolle, 2004). Fortunately, the AICc typically generates an identical score to the original AIC 

equation when considering models of large sample size, as well (Mazerolle, 2004).  

AICc = AIC + 2k(k+1)/(n–k–1) 

AIC = −2(log-likelihood) + 2k 

n= sample size 

k= number of estimated parameters 

Taking into consideration the AIC score, discussion within the literature, and production 

knowledge, a lognormal distribution with a mean of 7.26 and SD of 2.71 was deemed the most 

accurate representation for the number of oocytes generated per NS OPU performed at 3-4 d and 

14 d intervals (Figure 7). 

 

 

 

 

 

 



79 

Table 37. Number of viable oocytes collected per OPU session with twice weekly or 14 d 

intervals. no ovarian FSH stimulation.  

Mean # Viable Oocytes 

Collected Per OPU 
SD n Interval Source 

3.8 15.5 60 Twice-Weekly Chaubal et al., 2006 

3.9  96 Twice-Weekly 
De Roover et al., 1997 

abstract 

4.1 3.1 1,396 Twice-Weekly De Roover et al., 2008 

7.8  75 Twice-Weekly 
De Ruigh et al., 2000 

abstract 

5.9  75 Twice-Weekly 
De Ruigh et al., 2000 

abstract 

6.7 2.0 169 3 d Interval 
Hanenberg et al., 1997 

abstract 

7.2 1.9 516 3 d Interval 
Hanenberg et al., 1997 

abstract 

9.3 3.7 192 3 d Interval 
Hanenberg et al., 1997 

abstract 

5.6 1.8 162 4 d Interval 
Hanenberg et al., 1997 

abstract 

6.6 1.9 502 4 d Interval 
Hanenberg et al., 1997 

abstract 

8 2.9 182 4 d Interval 
Hanenberg et al., 1997 

abstract 

7 4.4 24 3-4 d Interval 
Guyador Joly et al., 1997 

abstract 

(cont.) 
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Table 37 (cont.). Number of viable oocytes collected per OPU session with twice weekly or 14 d 

intervals. no ovarian FSH stimulation. 

Mean # Viable Oocytes 

Collected Per OPU 
SD n Interval Source 

7 2.6 236 3-4 d Interval 
Wagtendonk-de Leeuw et 

al., 2000 

8.6 2.5 1,753 3-4 d Interval 
Wagtendonk-de Leeuw et 

al., 2000 

8.4 2.5 446 3-4 d Interval 
Wagtendonk-de Leeuw et 

al., 2000 

7.6  4,308 3-4 d Interval 
Wagtendonk-de Leeuw et 

al., 2000 

7.8  2,015 3-4 d Interval 
Wagtendonk-de Leeuw et 

al., 2000 

4.96  24 3-4 d Interval Ding et al., 2008 

6.19  36 14 d Interval Ding et al., 2008 

 

Table 38. Parameters for the number of viable oocytes collected per OPU session with twice 

weekly or 14 d intervals. no ovarian FSH stimulation. From Table 37. 

Weighted Mean Viable Oocytes per OPU Weighted SD 

7.26 2.71 
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Figure 7. Estimated probability distribution of the number of viable oocytes recovered per OPU 

session with twice weekly or 14 d intervals. No ovarian FSH stimulation. 

 

Table 39. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

number of viable oocytes recovered per OPU session with twice weekly or 14 d intervals. No 

ovarian FSH stimulation. 

5th Percentile Mode 95th Percentile 

3.75 5.97 12.28 

 

Number of Viable Oocytes Collected per NS OPU with Random Interval 

 The same strategy as described for the number of viable oocytes collected per NS OPU 

with 3-4 d or 14 d intervals is applied to generate an appropriate distribution for the number of 

viable oocytes collected per NS OPU with a random interval. The expectation of increased 

variability in oocyte production because of within herd differences in stage of follicular waves 

necessitates a separate model describing a random OPU schedule. Based upon the data from Table 

40, a lognormal distribution with mean 8.94 and SD 6.73 is used to describe the distribution of NS 

OPU production following a random OPU schedule (Figure 8). 
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Table 40. Number of viable oocytes collected per OPU session with a random interval. No 

ovarian FSH stimulation. 

Mean Number of Oocytes 

Collected per OPU with 

Random Interval 

SD n Interval Source 

14.0  41 First OPU, no Interval Merton et al., 2003 

5.4 1.4 44 First OPU, no Interval 
Antonio de Carvalho 

Fernandez et al., 2014 

8.0 7.6 1,138 Minimum 15 d interval Pontes et al., 2010 

10.0 5.9 925 First OPU, no Interval 
Stevenson Sputnik, 

2014 

 

Table 41. Parameters for the number of viable oocytes collected per OPU session with a random 

interval. No ovarian FSH stimulation. From Table 40. 

Weighted Mean Viable 

Oocytes per OPU 
Weighted SD 

8.94 6.73 
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Figure 8. Estimated probability distribution of the number of viable oocytes per OPU session 

with a random interval. No ovarian FSH stimulation. 

 

Table 42. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

number of viable oocytes per OPU session with a random interval. No ovarian FSH stimulation. 

5th Percentile Mode 95th Percentile 

2.36 4.56 21.45 

 

Number of Viable Oocytes Collected per Follicular Wave Synchronized, Ovarian 

Stimulated (SS) OPU 

 The final variation of OPU protocol is modeled assuming follicular wave synchronization 

and ovarian stimulation (SS). Following the same method of model determination used for the 

previously described OPU protocols, a lognormal distribution with a mean of 11.63 and SD of 

8.20, calculated from Table 43, is used to represent the distribution of the number of viable oocytes 

collected following follicular wave synchronization and ovarian stimulation (Figure 9). 

 



84 

Table 43. Number of viable oocytes collected per OPU session following follicular wave 

synchronization and FSH stimulation.  

Mean Number of Viable 

Oocytes Collected from SS 

OPU 

SD n Source 

11.9 7.1 42 
Antonio de Carvalho Fernandez et 

al., 2014 

10.4 7.34 32 Barceló-Fimbres et al., 2015 

9.0 7.4 32 Barceló-Fimbres et al., 2015 

8.6 9.8 24 Barceló-Fimbres et al., 2015 

11 9.7 78 Barceló-Fimbres et al., 2015 

11.8 8.2 640 DeRoover et al., 2008 

13.2  30 De Ruigh et al., 2000 (abstract) 

14.8  20 Lacaze et al., 1997 (abstract) 

13.0 3.1 12 
Guyador Joly et al., 1997 

(abstract) 

 

Table 44. Parameters for the number of viable oocytes collected per OPU session following 

follicular wave synchronization and FSH stimulation. From Table 43. 

Weighted Mean Viable 

Oocytes per OPU 
Weighted SD 

11.63 8.20 
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Figure 9. Estimated probability distribution of the number of viable oocytes recovered per OPU 

session following follicular wave synchronization and FSH stimulation. 

  

Table 45. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

number of viable oocytes recovered per OPU session following follicular wave synchronization 

and FSH stimulation. 

5th Percentile Mode 95th Percentile 

3.26 6.24 27.12 

 

Percentage of Incubated Oocytes Developed into Blastocysts Following Fertilization 

Using Semen Unsorted for Sex, Following No Synchronization or Stimulation of 

OPU Donors 

 C. Fernandes et al. (2014) demonstrated a significant difference between the blastocyst rate 

of viable oocytes from donors that received pre-OPU synchronization or synchronization and 

exogenous FSH stimulation when compared to non-synchronized, non-stimulated donors. 

Furthermore, Palma et al. (2008) demonstrated that when compared to the control non-sexed 

sperm, sex-sorted sperm from 4 out of 5 sires differed significantly in blastocyst rate of IVF 

embryos. Xu et al. (2006) also found significant bull to bull variation in the fertility of sex- sorted 
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sperm based on blastocyst rate. Thus, blastocyst rate is split into four different distributions 

depending on the combination of sex-sorted or unsorted semen and the 

synchronization/stimulation protocol of donors. 

 Using Table 46 for reference, a normal distribution of blastocyst rate with a mean of 0.26 

and SD across sample means of 0.09 is used to characterize the mean blastocyst rate of viable 

oocytes aspirated from donors receiving no follicular synchronization or stimulation and 

fertilization from unsorted semen. This distribution is truncated at 0 and 1. As already described 

for other variables, the technique of implementing a binomial distribution into the equation to 

predict the number of embryos resulting from oocyte fertilization and incubation is utilized. 
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Table 46. Percentage of cultured oocytes developing into blastocysts following fertilization with 

unsorted semen. No follicular wave synchronization or ovarian stimulation of OPU donors. 

Mean Blastocyst 

Rate (%) 
n Source 

19.5 238 Antonio de Carvalho Fernandez et al., 2014 

24.1 921 Barceló-Fimbres et al., 2015 

39.1 233 Barceló-Fimbres et al., 2015 

26.5 654 Barceló-Fimbres et al., 2015 

41.1 136 Barceló-Fimbres et al., 2015 

14.1 273 Barceló-Fimbres et al., 2015 

24.8 273 Barceló-Fimbres et al., 2015 

44.8 284 Barceló-Fimbres et al., 2015 

26.5 522 Xu et al., 2006 

20.7 518 Xu et al., 2006 

22.9 305 Zhang et al., 2003 

24.4 499 Zhang et al., 2003 

19.4 501 Zhang et al. 2003 

33.6 330 Palma et al., 2008 

 

Table 47. Parameters for the percentage of cultured oocytes developing into blastocysts 

following fertilization with unsorted semen. No follicular wave synchronization or ovarian 

stimulation of OPU donors. From Table 46. 

Weighted Mean Blastocyst Rate (%) SD Across Sample Means (%) 

26.0 9.0 
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Figure 10. Estimated probability distribution of the true mean for the percentage of cultured 

oocytes developing into blastocysts following fertilization with unsorted semen. No follicular 

wave synchronization or ovarian stimulation of OPU donors. 

  

Table 48. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

true mean for the percentage of cultured oocytes developing into blastocysts following 

fertilization with unsorted semen. No follicular wave synchronization or ovarian stimulation of 

OPU donors. 

5th Percentile Mode 95th Percentile 

0.11 0.26 0.41 

 

Percentage of Incubated Oocytes Developed into Blastocysts Following Fertilization 

Using Unsorted Semen, Following Ovarian Stimulation Accompanied by 

Synchronization or Only Follicular Synchronization of OPU Donors 

 Applying the data from Table 49, a normal distribution of blastocyst rate with a mean of 

0.37 and SD across sample means of 0.08 is used to characterize the mean blastocyst rate of viable 

oocytes fertilized with unsorted semen and aspirated from donors receiving ovarian stimulation 

and follicular synchronization or only synchronization. The literature demonstrated minimal 

difference in the percentage of incubated oocytes that developed into blastocysts when comparing 
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the two protocols. This distribution is truncated at 0 and 1. Again, a binomial distribution is built 

into the equation to predict the number of embryos resulting from oocyte fertilization and 

incubation.  

Table 49. Percentage of cultured oocytes developing into blastocysts following fertilization with 

unsorted semen. Follicular wave synchronization accompanied by ovarian stimulation or only 

follicular wave synchronization of OPU donors. 

Mean Blastocyst 

Rate (%) 
n Source 

29.6 294 Antonio de Carvalho Fernandez et al., 2014 

38.7 208 Ramos et al., 2010 

44.9 264 Ramos et al., 2010 

44.2 252 Ramos et al., 2010 

24.5 500 Antonio de Carvalho Fernandez et al., 2010 

33.4 333 Barceló-Fimbres et al., 2015 

42.1 855 Barceló-Fimbres et al., 2015 

 

Table 50. Parameters for the percentage of cultured oocytes developing into blastocysts 

following fertilization with unsorted semen. Follicular wave synchronization accompanied by 

ovarian stimulation or only follicular wave synchronization of OPU donors. From Table 49. 

Weighted Mean Blastocyst Rate (%) SD Across Sample Means (%) 

37.0 8.0 
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Figure 11. Estimated probability distribution of the true mean for the percentage of cultured 

oocytes developing into blastocysts following fertilization with unsorted semen. Follicular wave 

synchronization accompanied by ovarian stimulation or only follicular wave synchronization of 

OPU donors. 

   

Table 51. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

true mean for the percentage of cultured oocytes developing into blastocysts following 

fertilization with unsorted semen. follicular wave synchronization accompanied by ovarian 

stimulation or only follicular wave synchronization of OPU donors. 

5th Percentile Mode 95th Percentile 

0.24 0.37 0.50 

 

Percentage of Incubated Oocytes Developed into Blastocysts Following Fertilization 

Using Sex-Sorted Semen, Following No Synchronization or Stimulation of OPU 

Donors 

Referencing Table 52, a normal distribution of blastocyst rate with a mean of 0.23 and SD 

across sample means of 0.14 represented the mean blastocyst rate of viable oocytes aspirated from 

donors receiving no follicular synchronization or stimulation and fertilization from sex-sorted 
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semen. This distribution is truncated at 0 and 1. To predict the number of embryos resulting from 

oocyte fertilization and incubation, a binomial distribution is embedded into the equation. 

 

Table 52. Percentage of cultured oocytes developing into blastocysts following fertilization with 

sex-sorted semen. No follicular wave synchronization or ovarian stimulation of OPU donors. 

Sexed Semen 

Embryo Rate 

(%) 

n Source 

22.1 727 Xu et al., 2006 

2.0 640 Xu et al., 2006 

0.7 720 Xu et al., 2006 

1.2 600 Xu et al., 2006 

23.5 1191 Xu et al., 2006 

25.3 1207 Xu et al., 2006 

20.7 1433 Xu et al., 2006 

23.7 1288 Xu et al., 2006 

20.3 1364 Zhang et al., 2003 

15.7 1232 Palma et al., 2008 

27.2 9278 Stevenson Sputnik, 2014 

50.0 300 Morotti et al. 2014 

35.0 194 Morotti et al. 2014 

41.0 330 Morotti et al. 2014 

 

Table 53. Parameters for the percentage of cultured oocytes developing into blastocysts 

following fertilization with sex-sorted semen. No follicular wave synchronization or ovarian 

stimulation of OPU donors. From Table 52. 

Weighted Mean Blastocyst Rate (%) SD Across Sample Means (%) 

23.0 14.0 
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Figure 12. Estimated probability distribution of the true mean for the percentage of cultured 

oocytes developing into blastocysts following fertilization with sex-sorted semen. No follicular 

wave synchronization or ovarian stimulation of OPU donors. 

  

Table 54. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

true mean for the percentage of cultured oocytes developing into blastocysts following 

fertilization with sex-sorted semen. No follicular wave synchronization or ovarian stimulation of 

OPU donors. 

5th Percentile Mode 95th Percentile 

0.05 0.23 0.46 

 

Percentage of Incubated Oocytes Developed into Blastocysts Following Fertilization 

Using Sex-Sorted Semen following Ovarian Stimulation and Synchronization or 

Only Follicular Synchronization of OPU Donors 

 No literature was found reporting the blastocyst rate of oocytes that are retrieved from 

donors that underwent exogenous FSH stimulation and/or follicular synchronization and fertilized 

with sex-sorted semen. Thus, the mean and SD across sample means of the blastocyst rate for 

oocytes fertilized with sex-sorted semen and aspirated from donors that received no 

synchronization or stimulation is adjusted.  
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Using Table 47 and Table 50 it was discovered that for unsorted semen the application of 

ovarian stimulation and/or follicular synchronization increased the mean blastocyst rate by 42% 

and the SD across sample means was decreased by 13%. The mean and SD across sample means 

are adjusted accordingly to give the values in Table 55; these are then applied as the parameters of 

a normal distribution to define the mean blastocyst rate of oocytes fertilized with sex-sorted semen 

and derived from donors that underwent follicular synchronization and ovarian stimulation or only 

follicular synchronization. A binomial distribution with probability (p) drawn from the previously 

described distribution per LHS and number of oocytes (n) as obtained from the model, is included 

in the equation used to calculate the number of embryos generated from n oocytes. 

Table 55. Parameters for the percentage of cultured oocytes developing into blastocysts 

following fertilization with sex-sorted semen. Follicular wave synchronization accompanied by 

ovarian stimulation or follicular wave synchronization alone of OPU donors. 

Weighted Mean Blastocyst Rate (%) SD Across Sample Means (%) 

33.0 13.0 
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Figure 13. Estimated probability distribution of the true mean for the percentage of cultured 

oocytes developing into blastocysts following fertilization with sex-sorted semen. Follicular 

wave synchronization accompanied by ovarian stimulation or follicular wave synchronization 

alone of OPU donors. 

 

Table 56. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

true mean for the percentage of cultured oocytes developing into blastocysts following 

fertilization with sex-sorted semen. Follicular wave synchronization accompanied by ovarian 

stimulation or follicular wave synchronization alone of OPU donors. 

5th Percentile Mode 95th Percentile 

0.13 0.33 0.54 

 

 Percentage of Synchronized Recipients Receiving Embryo 

 Following the assumption that all synchronized recipients are palpated for the presence of 

a corpus luteum (CL) of sufficient quality to receive an inter-uterine embryo transplant, the model 

for the distribution of the percentage of synchronized recipients eligible to receive an embryo is 

based upon Table 58. From the data, a mean of 85% of synchronized recipients are deemed eligible 

of receiving an embryo. The SD across sample means was calculated as 0.09. The resulting normal 

distribution is truncated at 1 (Figure 14). 
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 Similar to the approach previously explained, a binomial distribution to account for 

variation in the herd size of potential recipients is embedded into the formula, predicting the 

number of synchronized recipients eligible to receive an embryo. The parameters of n number of 

synchronized recipients (a number drawn from the model based on a combination of the predicted 

number of recipients required and the number of recipients available) and probability, p, of success 

defined the binomial distribution. The probability, p, of success is sampled from the distribution 

of synchronized recipients eligible for an embryo per the LHS sampling method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



96 

Table 57. Percentage of estrous synchronized recipients qualified to receive an embryo. 

% of Synchronized 

Recipients Qualified for 

Embryo 

n (number 

synchronized) 
Recipient Type Source 

93.0 76 
Crossbred Beef Cows in 

Canada 

Small et al., 

2007 

86.0 76 
Crossbred Beef Cows in 

Canada 

Small et al., 

2007 

91.0 78 
Crossbred Beef Cows in 

Canada 

Small et al., 

2007 

88.0 74 
Crossbred Beef Cows in 

Canada 

Small et al., 

2007 

59.0 763 Angus 
Spell et al., 

2001 

73.0 408 Beef Heifers 
Looney et al., 

2006 

94.0 1238 Beef Cows 
Looney et al., 

2006 

93.0 1390 Ovagenix (TX) recips 
Looney et al., 

2006 

83.0 753 Ovagenix (TX) recips 
Looney et al., 

2006 

85.0 123 Ovagenix (TX) recips 
Looney et al., 

2006 

89.0 240 Ovagenix (TX) recips 
Looney et al., 

2006 

88.0 1533 Ovagenix (TX) recips 
Looney et al., 

2006 

(cont.) 
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Table 57 (cont.). Percentage of estrous synchronized recipients qualified to receive an embryo. 

% of Synchronized 

Recipients Qualified for 

Embryo 

n (number 

synchronized) 
Recipient Type Source 

88.0 380 Ovagenix (TX) recips 
Looney et al., 

2006 

80.0 477 Beef Heifers 
Stroud and 

Hasler, 2006 

83.0 376 Beef Cows 
Stroud and 

Hasler, 2006 

 

Table 58.Parameters for the percentage of estrous synchronized recipients qualified to receive an 

embryo. 

Weighted Mean % 

Recipients with 

Transferrable CL 

SD Across Sample 

Means 

85.0 9.0 
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Figure 14. Estimated probability distribution of the true mean for the percentage of estrous 

synchronized recipients qualified to receive an embryo. 

  

Table 59. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

true mean for the percentage of estrous synchronized recipients qualified to receive an embryo. 

5th Percentile Mode 95th Percentile 

0.70 0.85 0.97 

 

21 d Pregnancy Rate Following Transfer of Fresh IVD Embryos 

 It is often important to consider when a recipient returns to estrus, if she does not carry the 

pregnancy full term, so that management has the option to transfer another embryo into the same 

recipient to attempt establishment of a successful pregnancy. For this reason, recipient pregnancy 

is partitioned into the number of recipients pregnant at d 21 of gestation (14 d post-transfer), d 60 

of gestation, and term with pregnancy loss accounted for within each interval. 

When considering data from the literature to estimate the pregnancy rate of fresh 

transferred IVD embryos, only data from transfers using Bos taurus recipients, excluding lactating 

dairy cows, is considered. An exception is made for Chagas et al. (2002) because the study reported 

Transferred Embryo per Synched Recip 
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no significant difference in recipient pregnancy rate between lactating Holstein Friesian cows and 

heifers. 

To account for the lack of published literature meeting the previously described 

requirements for recipient pregnancy rate at 21 d gestation (Table 60), data measuring pregnancy 

of recipients at 60 d gestation (Table 61) is adjusted to a 21 d pregnancy rate. The mean 60 d 

pregnancy rate from Table 61 is back-calculated using the mean embryonic loss between ~21 d 

and ~60 d of gestation found in the literature (Table 80). This adjusted mean is then weighted, 

according to sample size, with the 21 d pregnancy rate data from Table 60. Furthermore, each 

reported 60 d pregnancy rate figure is back-calculated to a 21 d pregnancy rate by pairing one 60 

d pregnancy rate figure with the sample mean of each individual ~21 d to ~60 d embryonic loss 

figure found in the literature (Table 79). The standard deviation between all the adjusted 21 d 

pregnancy rates and the actual 21 d pregnancy rates from Table 60 is used to explain potential 

error from the true population mean of 21 d recipient pregnancy rate. The adjusted mean, 0.78, 

and adjusted SD between sample means, 0.09, are used as parameters for the normal distribution 

model of 21 d pregnancy rate of fresh IVD embryos, which is truncated at 0 and 1 (Figure 15). 

As explained in preceding pages, a binomial distribution with n number of recipients 

receiving an embryo with probability, p, of pregnancy at 21 d of gestation is inserted into the 

formula to calculate the number of pregnant recipients at 21 d post-ovulation. 
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Table 60. Percentage of recipients receiving a fresh IVD embryo that were pregnant at ~21-~30 

d of gestation (14-23 d post-transfer). 

~21-30 d Pregnancy Rate 

(%) 
n Recipient Type Source 

69.5 165 

Holstein Friesian (no significant 

difference between heifers and 

lactating cows) 

Chagas et al., 2002 

63.0 242 

Holstein Friesian (no significant 

difference between heifers and 

lactating cows) 

Chagas et al., 2002 

82.8 122 Angus Spell et al., 2001 

21 d pregnancy rate determined by return to estrus. 

30 d pregnancy rate determined by ultrasound. 
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Table 61. Percentage of recipients receiving a fresh IVD embryo that were pregnant at ~60 d of 

gestation. 

~60 d 

Pregnancy Rate 

(%) 

n Recipient Type Source 

50.0 165 

Holstein Friesian (no significant 

difference between heifers and lactating 

cows) 

Chagas et al., 2002 

58.7 242 

Holstein Friesian (no significant 

difference between heifers and lactating 

cows) 

Chagas et al.,2002 

71.3 7,652 Holstein Heifers Hasler et al., 1987 

53.1 192 Chinese Yellow/Holstein Xu et al., 2006 

67.0 599 Holstein Heifers Hasler, 2000 

79.9 1,485 Holstein Heifers Hasler, 2001 

69.7 491 Holstein Heifers Hasler, 2001 

78.8 590 Holstein Heifers Hasler, 2001 

60.7 84 Holstein Heifers Hasler, 2001 

68.6 2,512 Holstein Heifers Hasler, 2001 

67.3 2,716 Holstein Heifers Hasler, 2001 

70.1 1,960 Holstein Heifers Hasler, 2001 

67.2 1,960 Holstein Heifers Hasler, 2001 

68.5 7,457 Holstein Heifers Hasler, 2001 

 (cont.) 
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Table 61 (cont.). Percentage of recipients receiving a fresh IVD embryo that were pregnant at 

~60 d of gestation. 

~60 d 

Pregnancy Rate 

(%) 

n Recipient Type Source 

67.3 1,566 Holstein Heifers Hasler, 2001 

70.5 6,612 Holstein Heifers Hasler, 2001 

65.9 267 Holstein Heifers Hasler, 2001 

68.6 835 Holstein Heifers Hasler, 2001 

66.0 320 Bos taurus- ET Center Managed Hasler et al., 1995 

 

 

Table 62. Parameters for the percentage of recipients receiving a fresh IVD embryo that were 

pregnant at d 21 of gestation. 

Weighted Mean Adjusted 21 d Pregnancy 

Rate (%) 

Adjusted Standard Deviation Across 

Sample Means 

78.0 9.0 
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Figure 15. Estimated probability distribution of the true mean for the percentage of recipients 

receiving a fresh IVD embryo that were pregnant at d 21 of gestation. 

 

Table 63. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

true mean for the percentage of recipients receiving a fresh IVD embryo that were pregnant at d 

21 of gestation. 

5th Percentile Mode 95th Percentile 

0.62 0.78 0.92 

 

21 d Pregnancy Rate Following Transfer of Fresh IVP Embryos 

 The same method as described before is implemented to adjust ~60 d pregnancy rate data 

from Table 64 to a ~21 d pregnancy rate value. An adjusted, weighted mean and standard deviation 

across the mean of data samples are also calculated by the method previously described. The 

resulting normal distribution with a mean of 0.64 and standard deviation of 0.10 is built into the 

model (Figure 16). Again, a binomial distribution is set into the formula calculating the number of 

pregnant recipients at 21 d gestation following the transfer of fresh IVP embryos. 

Fresh ET 21 d Pregnancy Rate 

Pregnancies per Transfer 
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Table 64. Percentage of recipients receiving a fresh IVP embryo that were pregnant at ~21-~30 d 

of gestation (14-23 d post-transfer). 

~21-30 d Pregnancy Rate (%) n Recipient Type Source 

62.7 51 

Bos taurus (Breed not 

disclosed, Probably 

Holstein-Friesian and 

beef cattle) 

Taverne et al., 2002 

63.2 106 

Bos taurus (Breed not 

disclosed, Probably 

Holstein-Friesian and 

beef cattle) 

Taverne et al., 2002 

70.0 44 

Bos taurus (Breed not 

disclosed, Probably 

Holstein-Friesian and 

beef cattle) 

Taverne et al., 2002 

51.4 35 Hereford Martinez et al., 2002 

21 d pregnancy rate determined by return to estrus. 

30 d pregnancy rate determined by ultrasound. 
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Table 65. Percentage of recipients receiving a fresh IVP embryo that were pregnant at ~60 d of 

gestation. 

~60 d Pregnancy 

Rate (%) 
n Recipient Type Source 

53.8 1,220 
Bos taurus (probably Holstein 

heifers) 
Hasler et al., 1995 

47.8 467 Holstein Heifers Hasler, 2000 

47.1 382 Holstein Heifers Hasler, 2000 

50.4 129 Holstein Heifers Hasler, 2000 

37.0 19 Angus Cross Farin and Farin, 1995 

 

Table 66. Parameters for the percentage of recipients receiving a fresh IVP embryo that were 

pregnant at d 21 of gestation. 

Weighted Mean Adjusted 21 d Pregnancy 

Rate (%) 

Adjusted Standard Deviation Across 

Sample Means (%) 

64.0 10.0 
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Figure 16. Estimated probability distribution of the true mean for the percentage of recipients 

receiving a fresh IVP embryo that were pregnant at d 21 of gestation. 

 

Table 67. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

true mean for the percentage of recipients receiving a fresh IVP embryo that were pregnant at d 

21 of gestation.  

5th Percentile Mode 95th Percentile 

0.48 0.64 0.79 

 

21 d Pregnancy Rate Following Transfer of Frozen-Thawed IVD Embryos 

 Regarding the 21 d pregnancy rate and the subsequent number of pregnant recipients 

following the transfer of frozen-thawed IVD embryos, identical methodology as explained for 

fresh IVD embryos is applied to generate a normal distribution with a mean of 0.75 and a standard 

deviation of 0.16 (Figure 17). The frozen-thawed embryonic loss values from Table 82 and Table 

83 are used to make the appropriate adjustments. A binomial distribution is also applied to the 

model per previous description. 

 

21 d Fresh Pregnancy Rate 

Pregnancies per Transfer 
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Table 68. Percentage of recipients receiving a frozen-thawed IVD embryo that were pregnant at 

~21-~30 d of gestation (14-23 d post-transfer). 

~21-30 d Pregnancy Rate (%) n Recipient Type Source 

62.7 83 
Holstein Friesan Cows and 

Heifers 
Chagas et al., 2002 

62.8 196 
Holstein Friesan Cows and 

Heifers 
Chagas et al., 2002 

69.0 326 Angus Spell et al., 2001 

21 d pregnancy rate determined by return to estrus. 

30 d pregnancy rate determined by ultrasound. 

 

 

Table 69. Percentage of recipients receiving a frozen-thawed IVD embryo that were pregnant at 

~60 d of gestation. 

~60 d Pregnancy 

Rate (%) 
n Recipient Type Source 

64.0 517 Holstein Heifers Hasler, 2000 

34.9 83 Holstein Friesan Cows and Heifers Chagas et al., 2002 

50.5 196 Holstein Friesan Cows and Heifers Chagas et al., 2002 

56.1 3,616 Holstein Heifers Hasler, 2001 

58.4 5,297 Holstein Heifers Hasler, 2001 

68.7 774 Holstein Heifers Hasler, 2001 

 

Table 70. Parameters for the percentage of recipients receiving a frozen-thawed IVD embryo 

that were pregnant at d 21 of gestation. 

Weighted Mean Adjusted 21 d Pregnancy 

Rate (%) 

Adjusted Standard Deviation Across 

Sample Means 

75.0 16.0 
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Figure 17. Estimated probability distribution of the true mean for the percentage of recipients 

receiving a frozen-thawed IVD embryo that were pregnant at d 21 of gestation. 

  

Table 71. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

true mean for the percentage of recipients receiving a frozen-thawed IVD embryo that were 

pregnant at d 21 of gestation. 

5th Percentile Mode 95th Percentile 

0.48 0.75 0.95 

 

21 d Pregnancy Rate Following Transfer of Frozen-Thawed IVP Embryos 

 Adjustments to ~60 d pregnancy rate data are made, following the standards already set, to 

generate a normal distribution with a mean of 0.50 and SD of 0.17 (Figure 18). The same IVF 

embryonic loss data is used for both fresh and frozen IVP transfers. A binomial distribution is used 

to account for different numbers of recipients receiving embryos. 

 

 

Frozen-Thawed IVD ET 21 d Pregnancy Rate 

Pregnancies per Transfer 
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Table 72. Percentage of recipients receiving a frozen-thawed IVP embryo that were pregnant at 

~21-~30 d of gestation (14-23 d post-transfer). 

~21-30 d Pregnancy Rate 

(%) 
n Recipient Type Source 

50.0 40 Hereford Martinez, et al. 2002 

45.0 40 Hereford Martinez, et al. 2002 

21 d pregnancy rate determined by return to estrus. 

30 d pregnancy rate determined by ultrasound. 
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Table 73. Percentage of recipients receiving a frozen-thawed IVP embryo that were pregnant at 

~60 d of gestation. 

~60 d Pregnancy Rate (%) n Recipient Type Source 

42.0 67 
Bos taurus (probably 

Holstein heifers) 
Hasler et al., 1995 

37.8 421 Bos taurus Riha et al., 2002 

40.9 3627 
Chinese 

Yellow/Holstein 
Xu et al., 2006 

41.9 481 
Chinese 

Yellow/Holstein 
Xu et al., 2006 

35.0 20 
Holstein Friesian 

Heifers 
Vajta et al., 1997 

9.0 11 Holstein Cross Heifers Donnay et al., 1998 

0.0 11 Holstein Cross Heifers Donnay et al., 1998 

35.0 17 Hereford Martinez et al., 1998 

(cont.) 
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Table 73 (cont.). Percentage of recipients receiving a frozen-thawed IVP embryo that were 

pregnant at ~60 d of gestation. 

~60 d Pregnancy Rate (%) n Recipient Type Source 

44.0 16 Hereford Martinez et al., 1998 

22.0 76 Crossbred Bos taurus Pugh et al., 2000 

50.0 40 Hereford Martinez et al., 2002 

40.0 40 Hereford Martinez et al., 2002 

30.0 10 Bos taurus Nedambale et al., 2004 

24.0 85 Dutch-Friesian Heifers Wurth et al., 1994 

14.0 35 Dutch-Friesian Heifers Wurth et al., 1994 
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Table 74.Parameters for the percentage of recipients receiving a frozen-thawed IVD embryo that 

were pregnant at d 21 of gestation. 

Weighted Mean Adjusted 21 d Pregnancy 

Rate (%) 

Adjusted Standard Deviation Across 

Sample Means 

50.0 17.0 

 

Figure 18. Estimated probability distribution of the true mean for the percentage of recipients 

receiving a frozen-thawed IVD embryo that were pregnant at d 21 of gestation. 

  

Table 75. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

true mean for the percentage of recipients receiving a frozen-thawed IVD embryo that were 

pregnant at d 21 of gestation. 

5th Percentile Mode 95th Percentile 

0.22 0.50 0.77 

 

21 d Pregnancy Rate Following Service by Natural Sire 

Without any actual 21 d pregnancy rate data, the weighted mean 60 d pregnancy rate based 

on Table 76 is adjusted using the sample means of 21 d-60 d pregnancy loss (Table 88) to create a 

mean 21 d pregnancy rate of 0.77. The potential variation between 21 d sample means is accounted 

21 d Frozen-Thawed IVP ET Pregnancy Rate 

Pregnancies per Transfer 
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for using the adjustment technique previously described to produce a SD across means of .074. A 

normal probability distribution (Figure 19) based on the parameters just described provided the 

means for stochastic sampling per LHS. A binomial distribution is also included to account for the 

possible variation in the number of females serviced by a natural sire. 

Table 76. Percentage of naturally serviced females that were pregnant at ~60 d of gestation. 

~60 d 

Pregnancy 

Rate (%) 

n Recipient Type Source 

70.7 1,705 

Beef Cattle (Small number of Bos indicus cross. 

Significantly different Bos indicus influenced herd was 

removed from data) 

Lamb et 

al., 2008 

76.3 76 Bos taurus Beef 
Whittier et 

al., 1991 

86.1 79 Bos taurus Beef 
Whittier et 

al., 1991 

 

Table 77. Parameters for the percentage of naturally serviced females that were pregnant at ~21 

d of gestation. 

Weighted Mean Adjusted 21 d Pregnancy 

Rate (%) 

Adjusted Standard Deviation Across 

Sample Means (%) 

77.0 7.4 

 



114 

Figure 19. Estimated probability distribution of the true mean for the percentage of naturally 

serviced females that were pregnant at ~21 d of gestation. 

 

 

Table 78. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

true mean for the percentage of naturally serviced females that were pregnant at ~60 d of 

gestation. 

5th Percentile Mode 95th Percentile 

0.65 0.77 0.89 

 

Pregnancy Loss Between d 21 and d 60 of Gestation Following Transfer of Fresh 

IVD Embryos 

 Pregnancy loss in the interval of d 21 and d 60 of gestation (number of recipients losing 

pregnancy between d 21 and d 60 divided by the number of recipients pregnant at d 21) is 

accounted for by calculating a weighted mean, 0.11, and a SD, 0.06, between sample means from 

Table 79. A normal distribution, truncated at 0 and 1, is based off the aforementioned parameters. 

A binomial distribution based on the n number of recipients pregnant at d 21 and probability p, 1 

minus probability of pregnancy loss, is embedded into the formula used to calculate the number 

of pregnant recipients at d 60 of gestation following transfer of fresh IVD embryos. 

Natural Service 21 d Pregnancy Rate 

Pregnancies per Transfer 
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Table 79. Percentage of recipients pregnant at d 21 and not pregnant at d 60 of gestation 

following transfer of fresh IVD embryos. 

Pregnancy Loss Between d ~21 

and d ~60 of Gestation (%) 
n Recipient Type Source 

10.5 16 Angus Cross Farin and Farin 1995 

5.0 192 Chinese Yellow/Holstein Xu et al., 2006 

8.5 142 Hereford x Angus Markette et al., 1985 

14.6 526 Hereford x Angus Markette et al., 1985 

8.6 736 Hereford x Angus Markette et al., 1985 

20.9 86 

Holstein Friesian (no 

significant difference 

between heifers and 

lactating cows) 

Chagas et al., 2002 
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Table 80. Parameters for the percentage of recipients pregnant at d 21 and not pregnant at d 60 

of gestation following transfer of fresh IVD embryos. From Table 79. 

Weighted Mean Pregnancy Loss d ~21 to d 

~60 (%) 
SD Across Sample Means (%) 

11.0 6.0 

 

Figure 20. Estimated probability distribution of the true mean for the percentage of recipients 

pregnant at d 21 and not pregnant at d 60 of gestation following transfer of fresh IVD embryos. 

  

Table 81. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

true mean for the percentage of recipients pregnant at d 21 and not pregnant at d 60 of gestation 

following transfer of fresh IVD embryos. 

5th Percentile Mode 95th Percentile 

0.03 0.11 0.20 

 

Pregnancy Loss Between d 21 and d 60 of Gestation Following Transfer of Frozen-

Thawed IVD Embryos 

Using Table 82, the same approach as previously described to calculate pregnancy loss 

between d 21 and d 60 is applied to arrive at a normal probability distribution with mean 0.23 and 
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SD 0.08 and truncation at 0 and 1. A binomial distribution is also built into the formula for the 

number of recipients pregnant at d 60.  

Table 82. Percentage of recipients pregnant at d 21 and not pregnant at d 60 of gestation 

following transfer of frozen-thawed IVD embryos. 

Pregnancy Loss Between d 

~21 and d ~60 of Gestation 

(%) 

n Recipient Type Source 

32.0 28 Heifers Heyman, 1985 

17.1 152 

Holstein Friesian (no 

significant difference between 

heifers and lactating cows) 

Chagas et al., 2002 

26.8 175 

Holstein Friesian (no 

significant difference between 

heifers and lactating cows) 

Chagas et al., 2002 

 

Table 83. Parameters for the percentage of recipients pregnant at d 21 and not pregnant at d 60 

of gestation following transfer of frozen-thawed IVD embryos. From Table 82. 

Weighted Mean Pregnancy Loss d ~21 to d 

~60 (%) 
SD Across Sample Means (%) 

23.0 8.0 
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Figure 21. Estimated probability distribution of the true mean for the percentage of recipients 

pregnant at d 21 and not pregnant at d 60 of gestation following transfer of frozen-thawed IVD 

embryos. 

  

Table 84. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

true mean for the percentage of recipients pregnant at d 21 and not pregnant at d 60 of gestation 

following transfer of frozen-thawed IVD embryos.  

5th Percentile Mode 95th Percentile 

0.11 0.23 0.35 

 

Pregnancy Loss Between d 21 and d 60 of Gestation Following Transfer of IVP 

Embryos 

Using Table 85, the same approach as previously described to calculate pregnancy loss 

between d 21 and d 60 is applied to arrive at a normal probability distribution with mean 0.20 and 

SD 0.08 and truncation at 0 and 1. A binomial distribution is also built into the formula for the 

number of recipients pregnant at d 60. Unlike d 21 to d 60 pregnancy loss for IVD embryos, fresh 

or frozen-thawed is not distinguished regarding d 21 to d 60 pregnancy loss for IVP embryos.  
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Table 85. Percentage of recipients pregnant at d 21 that experience pregnancy loss between d 21 

and d 60 of gestation following transfer of IVP embryos. 

Pregnancy Loss 

Between d ~21 and d 

~60 of Gestation (%) 

n 
Embryo 

Type 
Recipient Type Source 

30.0 117 Fresh 

Bos taurus (Breed not 

disclosed, Probably 

Holstein-Friesian and 

beef cattle) 

Wagtendonk-de 

Leeuw et al., 2000 

18.5 54 Fresh 

Bos taurus (Breed not 

disclosed, Probably 

Holstein-Friesian and 

beef cattle) 

Wagtendonk-de 

Leeuw et al., 2000 

10.5 19 Fresh Angus Cross Farin and Farin, 1995 

21.3 32 Fresh Charolais and Crossbred Heyman et al., 2002 

0.0 18 Fresh Polled Hereford Martínez et al., 2002 

0.0 20 Frozen Polled Hereford Martínez et al., 2002 

11.0 18 Frozen Polled Hereford Martínez et al., 2002 
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Table 86. Parameters for the percentage of recipients pregnant at d 21 that experience pregnancy 

loss between d 21 and d 60 of gestation following transfer of IVP embryos. From Table 85. 

Weighted Mean Pregnancy Loss d ~21 to d 

~60 (%) 
SD Across Sample Means (%) 

20.0 8.0 

 

Figure 22. Estimated probability distribution of the true mean for the percentage of recipients 

pregnant at d 21 that experience pregnancy loss between d 21 and d 60 of gestation following 

transfer of IVP embryos. 

  

Table 87. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

true mean for the percentage of recipients pregnant at d 21 that experience pregnancy loss 

between d 21 and d 60 of gestation following transfer of IVP embryos.  

5th Percentile Mode 95th Percentile 

0.07 0.20 0.33 

 

Pregnancy Loss Between d 21 and d 60 of Gestation Following Service by Natural 

Sire 

Using Table 88, the same approach as previously described to calculate pregnancy loss 

between d 21 and d 60 is applied to arrive at a normal probability distribution with mean 0.07 and 
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SD 0.03 and truncation at 0 and 1. A binomial distribution is also built into the formula for the 

number of recipients pregnant at d 60. 

Table 88. Percentage of females pregnant at d 21 that experience pregnancy loss between d 21 

and d 60 of gestation following service by natural sire. 

Pregnancy Loss Between d ~21 

and d ~60 of Gestation 

(AI/Natural Service) (%) 

n Recipient Type Source 

10.20 147 Dairy Heifers Rivera et al., 2004 

6.05 131 Dairy Heifers Silke et al., 2002 

6.50 138 
Lactating Beef 

Cows 
Beal et al., 1992 

10.80 223 
Lactating Beef 

Cows 
Stevenson et al., 2003 

4.00 149 Beef Heifers Lamb et al., 1997 

4.10 271 Beef Heifers Lamb et al., 1997 

4.80 105 Beef Heifers Lamb et al., 1997 

 

Table 89. Parameters for the percentage of females pregnant at d 21 that experience pregnancy 

loss between d 21 and d 60 of gestation following service by natural sire. From Table 88. 

Weighted Mean Pregnancy Loss d ~21 to d 

~60 (%) 
SD Across Sample Means (%) 

7.0 3.0 
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Figure 23. Estimated probability distribution of the true mean for the percentage of females 

pregnant at d 21 that experience pregnancy loss between d 21 and d 60 of gestation following 

service by natural sire. 

  

Table 90. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

true mean for the percentage of females pregnant at d 21 that experience pregnancy loss between 

d 21 and d 60 of gestation following service by natural sire. 

5th Percentile Mode 95th Percentile 

0.02 0.07 0.12 

 

Fetal Loss After d 60 of Gestation Following Transfer of IVD Embryos 

 Nearly identical to the approach in estimating fetal loss between d 21 and d 60, fetal loss 

of IVD embryos between d 60 and term (number of recipients experiencing fetal loss after d 60 of 

gestation divided by number of recipients pregnant at d 60) is based on Table 91. A normal 

distribution with a mean of 0.05 and SD of 0.03 is used to represent the potential range of a true 

population mean. Truncation is placed at 0 and 1. A binomial distribution is then embedded in the 

formula to determine the number of recipients maintaining pregnancy to term. The same 
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distribution is used for both fresh and frozen-thawed IVD embryos, as literature suggests no 

significant difference (Chagas e Silva et al., 2002). 

Table 91. Percentage of recipients pregnant at d 60 of gestation that do not maintain pregnancy 

to term following transfer of IVD embryos. 

Pregnancy Loss Between d 

~60 of Gestation and Term 

(%) 

n Recipient Type Source 

11.0 19 Angus Cross Farin and Farin, 1995 

7.0 228 

Bos taurus (Breed not 

disclosed, Probably 

Holstein-Friesian and beef 

cattle) 

Wagtendonk-de 

Leeuw et al., 2000 

11.8 449 Hereford x Angus Markette et al., 1985 

5.7 674 Hereford x Angus Markette et al., 1985 

4.7 5,457 Holstein Heifers Hasler et al., 1987 

2.9 70 

Holstein Friesian (no 

significant difference 

between heifers and 

lactating cows) 

Chagas et al., 2002 

(cont.) 
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Table 91 (cont.). Percentage of recipients pregnant at d 60 of gestation that do not maintain 

pregnancy to term following transfer of IVD embryos. 

Pregnancy Loss Between d 

~60 of Gestation and Term 

(%) 

n Recipient Type Source 

5.6 126 

Holstein Friesian (no 

significant difference 

between heifers and 

lactating cows) 

Chagas et al., 2002 

5.9 68 

Holstein Friesian (no 

significant difference 

between heifers and 

lactating cows) 

Chagas et al., 2002 

7.0 128 

Holstein Friesian (no 

significant difference 

between heifers and 

lactating cows) 

Chagas et al., 2002 

1.1 2,242 

Bos taurus (Breed not 

disclosed, Probably 

Holstein-Friesian and beef 

cattle) 

Wagtendonk-de 

Leeuw, 2000 

5.3 1,776 
Beef Breeds and Holstein 

Heifers 
King et al., 1985 
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Table 92. Parameters for the percentage of recipients pregnant at d 60 of gestation that do not 

maintain pregnancy to term following transfer of IVD embryos. From Table 91. 

Weighted Mean Pregnancy Loss Between d 

~60 and term (%) 
SD Across Sample Means (%) 

5.0 3.0 

 

 

Figure 24. Estimated probability distribution of the true mean for the percentage of recipients 

pregnant at d 60 of gestation that do not maintain pregnancy to term following transfer of IVD 

embryos. 

 

 

Table 93. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

true mean for the percentage of recipients pregnant at d 60 of gestation that do not maintain 

pregnancy to term following transfer of IVD embryos. 

5th Percentile Mode 95th Percentile 

0.006 0.05 0.13 

 

Fetal Loss After d 60 of Gestation Following Transfer of IVP Embryos 

The same methodology is used to determine fetal loss following the transfer of IVP 

embryos as that of IVD embryos. Applying the data from Table 94, the resulting normal 
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distribution had a mean of 0.05 and SD across sample means of 0.05, with truncation at 0 and 1. 

Again, a binomial distribution is incorporated into the calculation of the number of IVP ET 

recipients maintaining pregnancy to term. Fresh and frozen-thawed IVP embryos are not 

distinguished from one another. 

 

Table 94. Percentage of recipients pregnant at d 60 of gestation that do not maintain pregnancy 

to term following transfer of IVP embryos. 

Pregnancy Loss 

Between d ~60 of 

Gestation and Term 

(%) 

n Recipient Type Source 

5.5 711 Chinese Yellow/Holstein Xu et al., 2006 

5.4 481 Chinese Yellow/Holstein Xu et al., 2006 

13.0 75 

Bos taurus (Breed not disclosed, 

Probably Holstein-Friesian and 

beef cattle) 

Wagtendonk-de 

Leeuw et al., 2000 

6.8 58 

Bos taurus (Breed not disclosed, 

Probably Holstein-Friesian and 

beef cattle) 

Wagtendonk-de 

Leeuw et al., 2000 

2.6 1,452 

Bos taurus (Breed not disclosed, 

Probably Holstein-Friesian and 

beef cattle) 

Wagtendonk-de 

Leeuw et al., 2000 

13.1 273 Holstein Heifers Hasler, 2000 

(cont.) 
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Table 94 (cont.). Percentage of recipients pregnant at d 60 of gestation that do not maintain 

pregnancy to term following transfer of IVP embryos. 

Pregnancy Loss 

Between d ~60 of 

Gestation and Term 

(%) 

n Recipient Type Source 

11.9 201 Holstein Heifers Hasler, 2000 

10.7 65 Holstein Heifers Hasler, 2000 

0.0 110 
Bos taurus (Breed not disclosed, 

Probably Holstein-Friesian) 

Wagtendonk-de 

Leeuw et al., 2000 

1.3 152 
Bos taurus (Breed not disclosed, 

Probably Holstein-Friesian) 

Wagtendonk-de 

Leeuw et al., 2000 

 

Table 95.Percentage of recipients pregnant at d 60 of gestation that do not maintain pregnancy to 

term following transfer of IVP embryos. From Table 94. 

Weighted Mean Pregnancy Loss Between d 

~60 and term (%) 
SD Across Sample Means (%) 

5.0 5.0 
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Figure 25. Estimated probability distribution of the true mean for the percentage of recipients 

pregnant at d 60 of gestation that do not maintain pregnancy to term following transfer of IVP 

embryos. 

 

Table 96. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

true mean for the percentage of recipients pregnant at d 60 of gestation that do not maintain 

pregnancy to term following transfer of IVP embryos. 

5th Percentile Mode 95th Percentile 

0.008 0.05 0.14 

 

Fetal Loss After d 60 of Gestation Following Service by Natural Sire 

 Applying the same procedure in estimating the other fetal loss measurements, using Table 

97, a normal probability distribution with a mean of 0.02 and SD across sample means of 0.01 

describes fetal loss after d 60 of gestation following service by a natural sire. The distribution is 

truncated at 0 and 1. A binomial distribution is included in the formula for calculating the number 

of naturally serviced females retaining pregnancy to term. 
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Table 97. Percentage of females pregnant at d 60 of gestation that do not maintain pregnancy to 

term following service by natural sire. 

Pregnancy Loss 

Between d ~60 of 

Gestation and Term 

(AI/Natural Service) 

(%) 

n Recipient Type Source 

1.3 5,353 

Bos taurus (Breed not disclosed, 

Probably Holstein-Friesian and beef 

cattle) 

Wagtendonk-de 

Leeuw et al., 

2000 

0.5 1,764 

Bos taurus (Breed not disclosed, 

Probably Holstein-Friesian and beef 

cattle) 

Wagtendonk-de 

Leeuw et al., 

2000 

2.8 10,595 Beef Cattle 
Dziuk and 

Bellows, 1983 

 

Table 98. Parameters for the percentage of females pregnant at d 60 of gestation that do not 

maintain pregnancy to term following service by natural sire. 

Weighted Mean Pregnancy Loss Between d 

~60 and term (%) 
SD Across Sample Means (%) 

2.0 1.0 
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Figure 26. Estimated probability distribution of the true mean for the percentage of females 

pregnant at d 60 of gestation that do not maintain pregnancy to term following service by natural 

sire. 

 

 

Table 99. 5th percentile, mode, and 95th percentile of the estimated probability distribution of the 

true mean for the percentage of females pregnant at d 60 of gestation that do not maintain 

pregnancy to term following service by natural sire.  

5th Percentile Mode 95th Percentile 

0.01 0.02 0.04 

 

Percentage of Desired Sex Resulting From Use of Sex- Sorted Semen 

 Using Table 100 for reference, a normal probability distribution (Figure 27) represents the 

mean accuracy and standard deviation of sexed semen accuracy across sample populations (Table 

101). The distribution is truncated at 0.8 and 1. The 0.8 can be justified by the likelihood of some 

type of quality control measures used by the sex-sorted semen manufacturer, or the potential that 

any accuracy issues of that magnitude would not be tolerated by industry. The stochastically 

sampled mean value, drawn from the normal distribution described per LHS, is included in the 
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binomial distribution that is inserted into the equation computing the number of progeny of the 

desired sex. 

Table 100. Percentage of calves of the selected sex resulting from the use of sex-sorted semen. 

Sexed Semen Accuracy 

(%) 
n Source 

94.0 966 Morotti et al., 2014 

91.0 7,763 Pontes et al., 2010 

87.0 2,286 Pontes et al., 2010 

96.5 458 Xu et al., 2006 

 

 

Table 101. Parameters for the percentage of calves of the selected sex resulting from the use of 

sex-sorted semen. 

Weighted Mean of Sexed Semen Accuracy SD Across Sample Means 

91.0 4.0 

 

Figure 27. Estimated probability distribution of the true mean for the percentage of calves of the 

selected sex resulting from the use of sex-sorted semen. 

 



132 

Table 102. 5th percentile, mode, and 95th percentile of the estimated probability distribution of 

the true mean for the percentage of calves of the selected sex resulting from the use of sex-sorted 

semen. 

5th Percentile Mode 95th Percentile 

0.84 0.91 0.97 

 

Number of Progeny of Either Sex Resulting From Use of Non-Sorted Semen or 

Natural Service Sire 

 Although some literature reports variation from the expected, naturally occurring 1:1 sex 

ratio when using ET technology (Hasler et al., 1995; King et al., 1985); it was determined that a 

1:1 sex ratio is sufficient for use in the model because it is difficult to confidently attribute causality 

of sex ratio variation to ET and not the natural laws of probability. Thus, a probability (p) of 0.5 

is used in the binomial distribution calculating the expected number of progeny of each sex when 

using non-sorted semen or natural service. 

Percentage of Calves Weaned per Calving Cow for Pregnancies Derived from IVD 

Embryo or Natural Service 

 To determine an estimate for the mean calf mortality from the time of calving through 

weaning, the weighted mean of perinatal calf mortality from Table 103 is combined with the 

weighted mean of calf mortality after the perinatal period through weaning, from Table 104. The 

potential variation across sample means is then computed as the standard deviation of the range of 

values resulting from the combination of every sample mean of perinatal calf mortality with every 

sample mean post-perinatal calf mortality. The inverse of mean calf mortality, calf survival, and 

the SD across samples (Table 105) are used as parameters for a normal probability distribution 

describing calf survival to weaning. The distribution is truncated at 0 and 1. A LHS derived value 
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for the calf survival distribution is then used as the probability, p, of survival within a binomial 

distribution predicting the number calves that survive through weaning. 

 

Table 103. Percentage of calf births resulting in mortality during the perinatal period following a 

natural service, AI, or MOET derived pregnancy. 

Perinatal 

Calf 

Mortality 

(%) 

n 
Origin of 

Pregnancy 
Recipient Type Source 

5.2 1,682 MOET 

Primarily Beef, 

some Holstein 

Heifers 

King et al., 1985 

5.3 4,949 AI 
Likely Holstein-

Friesian 

Wagtendonk-de 

Leeuw et al., 

2000 

4.6 2,180 MOET 
Likely Holstein-

Friesian 

Wagtendonk-de 

Leeuw et al., 

2000 

4.7 1,651 AI 
Likely Holstein-

Friesian 

Wagtendonk-de 

Leeuw et al., 

2000 

2.9 34 MOET 
Likely Holstein-

Friesian 

Wagtendonk-de 

Leeuw et al., 

2000 

7.9 10,300 Natural Service 
Beef (Cows and 

Heifers) 

Dziuk and 

Bellows, 1983 

3.6 56 Natural Service 
Beef (Cows and 

Heifers) 

Dearborn et al., 

1973 

(cont.) 
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Table 103 (cont.). Percentage of calf births resulting in mortality during the perinatal period 

following a natural service, AI, or MOET derived pregnancy. 

Perinatal 

Calf 

Mortality 

(%) 

n 
Origin of 

Pregnancy 
Recipient Type Source 

0.5 184 Natural Service 
Beef (Cows and 

Heifers) 

Dearborn et al., 

1973 

2.3 216 Natural Service 
Beef (Cows and 

Heifers) 

Dearborn et al., 

1973 

0.5 205 Natural Service 
Beef (Cows and 

Heifers) 

Dearborn et al., 

1973 

1.5 206 Natural Service 
Beef (Cows and 

Heifers) 

Dearborn et al., 

1974 

0.5 189 Natural Service 
Beef (Cows and 

Heifers) 

Dearborn et al., 

1975 

9.0 636 MOET 

Beef (Cows and 

Heifers) 

(Estimation) 

Markette et al., 

1985 
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Table 104. Percentage of calves alive at the end of the perinatal period that do not survive to 

weaning following a natural service, AI, or MOET derived pregnancy. 

Calf Mortality After 

Perinatal Stage 

until Weaning (%) 

n 
Origin of 

Pregnancy 
Recipient Type Source 

3.8 1,682 MOET 
Primarily Beef, some Holstein 

Heifers 

King et al., 

1985 

3.6 10,300 
Natural 

Service 
Beef Dziuk, 1983 

3.6 56 
Natural 

Service 
Beef (Cows and Heifers) 

Dearborn et 

al., 1973 

6.0 184 
Natural 

Service 
Beef (Cows and Heifers) 

Dearborn et 

al., 1973 

13.9 216 
Natural 

Service 
Beef (Cows and Heifers) 

Dearborn et 

al., 1973 

4.4 205 
Natural 

Service 
Beef (Cows and Heifers) 

Dearborn et 

al., 1973 

4.9 206 
Natural 

Service 
Beef (Cows and Heifers) 

Dearborn et 

al., 1973 

3.2 189 
Natural 

Service 
Beef (Cows and Heifers) 

Dearborn et 

al., 1973 

 

Table 105. Parameters for the percentage of calf births that result in a live calf at weaning 

following a natural service, AI, or MOET derived pregnancy. 

Weighted Mean of Calf Survival to 

Weaning (%) 
SD Across Sample Means (%) 

90.0 4.0 
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Figure 28. Estimated probability distribution of the true mean for the percentage of calf births 

that result in a live calf at weaning following a natural service, AI, or MOET derived pregnancy. 

 

Table 106. 5th percentile, mode, and 95th percentile of the estimated probability distribution of 

the true mean for the percentage of calf births that result in a live calf at weaning following a 

natural service, AI, or MOET derived pregnancy. 

5th Percentile Mode 95th Percentile 

0.83 0.90 0.97 

 

Percentage of Calves Weaned per Calving Cow for Pregnancies Derived from IVP 

Embryos 

 As literature (Wagtendonk-de Leeuw et al., 2000) reported an increase in perinatal calf 

mortality with IVP derived pregnancies when compared to natural service, AI, or MOET derived 

pregnancies, a separate calf survival distribution is modeled for calves resulting from IVP derived 

pregnancies. Following the same methodology as described in the previous section, calf mortality 

of IVP calves is estimated using mean sample values from Table 107 and Table 104. An LHS 

derived value, sampled from the resulting distribution of calf survival, is used in the binomial 

distribution estimated calf survival through weaning. 
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Table 107. Percentage of calf births that result in a live calf at weaning following an IVP derived 

pregnancy. 

Perinatal Calf 

Mortality (%) 
n Culture Type Recipient Type Source 

7.5 1,374 co-culture 
Likely Holstein-

Friesian 

Wagtendonk-de 

Leeuw et al., 2000 

7.3 107 co-culture 
Likely Holstein-

Friesian 

Wagtendonk-de 

Leeuw et al., 2000 

5.2 149 SOF 
Likely Holstein-

Friesian 

Wagtendonk-de 

Leeuw et al., 2000 

3.1 32 co-culture 
Likely Holstein-

Friesian 

Wagtendonk-de 

Leeuw et al., 2000 

3.0 33 SOF 
Likely Holstein-

Friesian 

Wagtendonk-de 

Leeuw et al., 2000 

21.2 113 B2-BRL Serum Holstein Heifers Hasler, 2000 

18.6 70 
B2-BRL No 

Serum 
Holstein Heifers Hasler, 2000 

8.9 45 
TCM-199-BRL 

Serum 
Holstein Heifers Hasler, 2000 

7.4 27 TCM-199-BRL 
Dutch- Friesian 

Heifers 
Wurth et al., 1994 

 

Table 108. Parameters for the percentage of calf births that result in a live calf at weaning 

following an IVP derived pregnancy. 

Weighted Mean of Calf Survival to 

Weaning (%) 
SD Across Sample Means (%) 

88.0 7.0 
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Figure 29. Estimated probability distribution of the true mean for the percentage of calf births 

that result in a live calf at weaning following an IVP derived pregnancy. 

  

Table 109. 5th percentile, mode, and 95th percentile of the estimated probability distribution of 

the true mean for the percentage of calf births that result in a live calf at weaning following an 

IVP derived pregnancy. 

5th Percentile Mode 95th Percentile 

0.76 0.88 0.97 

 

Revenue Distribution of Developed Bulls and Heifers 

 To attempt a realistic representation of the inherent variation in revenue received through 

the marketing of developed progeny, likely for use as seedstock, a distribution of the mean value 

of such progeny is inputted into the model (Figure 30, Figure 31). While the distributions for the 

market value of developed bulls and heifers used within the scenarios in question are derived from 

industry knowledge and current market trends, there is also opportunity to develop a price 

distribution based on past marketing of ET derived progeny. The distributions within the current 

model representing the mean sale value of developed bulls and heifers are truncated at the 5th 

percentile of the original distributions, effectively creating a new bull revenue distribution with a 
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floor price of $2,730 and a heifer revenue distribution with a floor price of $2,013. These 

distributions can be modified to match the operation, value of genetics, and current market. For 

each iteration of the model, a mean value, sampled per LHS from the bull and heifer revenue 

distributions, is multiplied by the number of bulls and heifers, respectively, to yield total revenue 

from the sale of developed bulls and heifers.  

Table 110. Parameters for the distribution of the true mean for the revenue received per head 

from the sale of developed, ET derived bulls. 

Mean of ET Derived Bull Sale Averages ($) SD ($) 

6,710.42 4,000.00 

 

 

Figure 30. Estimated probability distribution of the true mean for the revenue received per head 

from the sale of developed, ET derived bulls. 

 

Table 111. 5th percentile, mode, and 95th percentile of the estimated probability distribution of 

the true mean for the revenue received per head from the sale of developed, ET derived bulls.  

5th Percentile ($) Mode ($) 95th Percentile ($) 

3,063.36 3,880.70 14,095.35 
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Table 112. Parameters for the distribution of the true mean for the revenue received per head 

from the sale of developed, ET derived heifers. 

Mean of ET Derived Bull Sale Averages ($) SD ($) 

5,155.63 4,000.00 

 

Figure 31. Estimated probability distribution of the true mean for the revenue received per head 

from the sale of developed, ET derived heifers. 

 

 

Table 113. 5th percentile, mode, and 95th percentile of the estimated probability distribution of 

the true mean for the revenue received per head from the sale of developed, ET derived heifers.  

5th Percentile ($) Mode ($) 95th Percentile ($) 

2,203.42 2,499.41 12,077.54 

 

 Deterministic Variables 

Accompanying the stochastic variables characterized by the distributions previously 

described are the user-defined deterministic variables listed in the following tables. The values 

used in the current simulation study are included in the tables. 
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ET Production 

Table 114. User-defined, deterministic variables describing the ET program scenario under 

consideration. 

 MOET IVP 

Number of Flushes per 

Donor 
2 5 

Number of Fresh Transfer 

Events 
2 5 

Number of Frozen Transfer 

Events 
1 1 

Days Between Flushes/OPU 45 14 

Total Number of Donors 5 5 

Total Recipients in Herd 100 100 

Days between final Fresh 

Transfer Event and 

Thawed Transfer Event 

17 14 

Number of Days Exposed to 

Bull 
45 45 

Number of Open Cows 

Exposed per Bull 
30 30 

 

  



142 

Table 115. User- defined, deterministic expenses associated with the ET program scenario under 

consideration. 

 MOET IVP 

Average Donor Purchase 

Cost/Head ($) 
15,000.00 15,000.00 

Annual Donor Feed 

Cost/Head ($) 
550.00 550.00 

Annual Donor Health 

Program Cost/Head ($) 
15.00 15.00 

Average Bull Purchase 

Cost/Head ($) 
6,000.00 6,000.00 

Annual Bull Feed 

Cost/Head ($) 
400.00 400.00 

Annual Bull Health 

Program Cost/Head ($) 
50.00 50.00 

Average Open Recipient 

Purchase Cost/Head ($) 
1200.00 1200.00 

Annual Bred Recipient 

Feed Cost/Head ($) 
500.00 500.00 

Annual Calving Recipient 

Feed Cost/Head minus 

Calving Season Feed Cost 

($) 

450.00 450.00 

Recipient Health Program 

Cost/Head ($) 
15.00 15.00 
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Protocol 

Table 116. User-defined, deterministic variables describing synchronization and stimulation 

protocols for the ET program scenario under consideration. 

 MOET IVP NS IVP SS 

GnRH 

Doses/Donor/Protocol 
1 0 1 

CIDR 

Doses/Donor/Protocol 
1 0 0 

Doses/Donor/Protocol 4 0 0 

FSH 

Doses/Donor/Protocol 
8 0 4 

Unsorted Semen 

Doses/Donor/Protocol 
3 300 oocytes/straw 300 oocytes/straw 

Sexed Semen 

Doses/Donor/Protocol 
6 100 oocytes/straw 100 oocytes/straw 

GnRH 

Doses/Recipient/Protocol 
1 1 

1 

 

CIDR 

Doses/Recipient/Protocol 
1 1 1 

PGF 

Doses/Recipient/Protocol 
1 1 1 

FSH 

Doses/Recipient/Protocol 
0 0 0 
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Estimated Market Value 

In some situations, the variables in Table 117, currently represented as deterministic, 

user-defined variables, could also be represented stochastically through distributions. Depending 

on the marketing and ownership scenario it is common for products such as ET pregnancies and 

weaned calf premiums to be fixed values determined through a contract. In other situations, the 

values of all variables in Table 117 could be exposed to market, genetic, and animal weight 

variation that could induce fluctuation in value. While the current model does not account for the 

potential variation in the values of the variables in Table 117, proper industry review could allow 

for their stochastic representation in an improved model. 

Table 117. User-defined, deterministic variables estimating the fair market value of potential 

marketing avenues associated with the ET program under consideration. 

 Average Value ($) 

Unsexed Embryo 300.00 

Sexed Bull Embryo 400.00 

Sexed Heifer Embryo 400.00 

ET Bred Recipient 3,200.00 

ET Bred Recipient- Bull Calf Pregnancy 3,500.00 

ET Bred Recipient- Heifer Calf Pregnancy 3,000.00 

Bull Bred Recipient 2,000.00 

ET Weaned Bull Calf Premium 700.00 

ET Weaned Heifer Calf Premium 500.00 

Bull Salvage Value 1,500.00 

Donor Salvage Value 1,000.00 

Recipient Salvage Value 1,000.00 
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Table 118. Estimated feeder calf price scale based on the sale of feeder steers resulting from the 

ET program under consideration. 

Weaned Calf Base Pricing   

Price Index/lb: Weight (lbs) Price/lb ($) 

Between (lbs) 375.00 – 425.01  1.57                                                   

 425.01 – 475.00  1.54                                                        

 475.01 – 525.00  1.50                                                        

 525.01 – 575.00  1.47                                                       

 575.01 – 625.00  1.43                                                       

 625.01 – 675.00  1.39                                                        

 675.01 – 725.00  1.35                                                        

 725.01 – 775.00  1.31                                                        

 775.01 – 825.00  1.27                                                         

 825.01 – 875.00  1.24                                                        

 875.01 – 925.00  1.20                                                         

 925.01 – 975.00  1.16                                                        

 975.01 – 1025.00  1.12                                                         

From Farmers and Ranchers Weekly Market Report (November 2016). 
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Protocol Expenses 

Table 119. User-defined, deterministic variables representing the estimated expense of protocol 

factors associated with the ET program under consideration. 

 MOET IVP 

GnRH Cost/Dose ($) 2.50 2.50 

CIDR Cost/Dose ($) 11.00 11.00 

PGF Cost/Dose ($) 3.40 3.40 

FSH Cost/Dost ($) 18.00 18.00 

MOET Flush Procedure 

Cost ($) 
350.00 NA 

IVF OPU Cost ($) NA 750.00 

Unsorted Semen Cost/Straw 

($) 
20.00 20.00 

Sex-Sorted Cost/Straw ($) 50.00 50.00 

Embryo Freezing 

Cost/Embryo ($) 
45.00 45.00 

Cost/Transfer ($) 50.00 50.00 

Pregnancy Determination 

Cost/Head ($) 
6.00 6.00 

Pregnancy Sex 

Determination Cost/Head 

($) 

10.00 10.00 
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Bred Recipient Program 

Table 120. User-defined, deterministic variables describing the length of ownership specific to 

each classification of recipient at the conclusion of an ET program marketing bred recipients. 

Recipient Type 
Average Length of Ownership From 

Purchase of Open Recipients (months) 

Open Recipients 4 

ET Bred Recipients 4 

Natural Service Bred Recipients 4 

 

Weaned Calf Program 

Table 121. User-defined, deterministic variables specific to factors associated with an ET 

program marketing weaned calves. 

Average Length of Ownership (in months) 

From Purchase of Open Recipients (Open 

Recipients) 

4 

Ration Cost/lb DM during Calving Season 

($) 
0.10 

3rd Trimester Daily DMI (lbs) 25 

Post-Partum Daily DMI (lbs) 32 

Length of Calving Season Before Grazing 

Season (Days) 
40 
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Anticipated Calf Performance 

The variables in Table 122, currently represented as user-defined variables, could also be 

represented stochastically through distributions. While the current model does not account for 

the potential variation in the values of the variables in Table 122, proper review of the 

distribution of performance trait values could allow for their stochastic representation in an 

improved model. 

Table 122. User-defined, deterministic variables estimating calf performance for the ET program 

under consideration.  

Bull Birthweight (lbs) 80.0 

Heifer Birthweight (lbs) 76.0 

Bull Average Daily Gain (ADG) 

Preweaning (lbs) 
2.4 

Bull ADG Postweaning (lbs) 2.5 

Heifer ADG Preweaning (lbs) 2.3 

Heifer ADG Postweaning (lbs) 2.4 

Oldest Calves’ Age @ Weaning (days) 205.0 
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Preconditioning/Development Factors 

Several variables, such as treatment cost per head, in Table 123 could also be represented 

by stochastic, rather than deterministic, variables, if such a feature is deemed pertinent to the 

usefulness of the model. In the current model, the variables in Table 123 are user defined and 

deterministic. 

Table 123. User-defined, deterministic variables describing factors associated with the 

preconditioning and development of calves resulting from the ET program under consideration. 

Preconditioning Days 45 

Daily Backgrounding Cost/Head ($) 2.20 

Vaccine Cost/Head ($) 2.00 

Treatment Cost/Head ($) 1.80 

Misc. Bull Development Cost ($) 100.00 

Misc. Heifer Development Cost ($) 80.00 

Daily Bull Development Cost ($) 2.45 

Daily Heifer Development Cost ($) 1.40 

Postweaning Development Days- Bulls 180 

Postweanig Development Days- Heifers 180 

Expected Cull Rate (%) 20.0 

 

Labor 

Table 124. User-defined, deterministic variables estimating labor costs and requirements 

associated with the ET program under consideration. 

Cost/Non-Vet Man-Hour ($) 10.00 

Non-Vet Man-Hours/Flush 6 

Non-Vet Man-Hours/IVP NS OPU 0.25 

Non-Vet Man-Hours/IVP SS OPU 1 

Non-Vet Man-Hours/IVD Recipient 1 

Non-Vet Man-Hours/IVP NS Recipient 1 

Non-Vet Man-Hours/IVP SS Recipient 1 
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Investment Variables 

Table 125. User-defined, deterministic variables describing the investment parameters 

associated with the ET program under consideration. 

Discount Rate (%) 5 

Number of Weaned Calf Crops 6 

Number of Developed Bull/Heifer Calf 

Crops 
6 

 

 Statistical Analysis 

Statistical analysis was performed using StatTools 7.5 ©. Using the individual results 

generated from each iteration of the simulation, a standardized, stepwise regression analysis was 

executed for each scenario with each stochastic variable serving as an independent variable and 

ROI as the dependent variable. Adjusted R-squared values were determined for each regression 

model. 

Sensitivity analysis allows for the determination of which independent variable(s) 

has(have) the greatest influence on the outcome of the dependent variable. Regression can serve 

as a means of sensitivity analysis. Basic stepwise regression creates a regression model by 

adding one independent variable at a time. The first independent variable used in the model is the 

variable with the greatest correlation coefficient value (Iman et al., 1985). Additional variables 

are added to the model in order of the greatest to least partial correlation coefficient value (Iman 

et al., 1985). Only variables with a significant impact on the R-squared value of the final model 

will be included in the final regression model (Iman et al., 1985).  

With a value ranging from 0 to 1, the R-squared value, also called the coefficient of 

determination, discloses the percent of variation in the dependent variable that is explained by 

the variable(s) included in the regression model (Iman et al., 1985). In stepwise regression, the 
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individual contribution of each variable to the final R-squared value provides a comparison of 

the influence of each independent variable.  

The R-squared value of a model can also be adjusted based on the number of variables in 

the model. When an additional variable is included in the model the R-squared value will always 

increase; however, the adjusted R-squared value will only increase if the mean square error of 

the model decreases simultaneously (Mendenhall and Sincich, 2012). 

 By standardizing the regressions coefficients of the regression model equation based on 

one standard deviation of the variable, the regression coefficients of the independent variables 

also allow for a relative comparison of the impact of each variable (Iman et al., 1985). If 

regression coefficients are not standardized, the unit of measure can distort the relative 

magnitude of the coefficient value (Iman et al., 1985).  
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Chapter 4 - Results and Discussion 

A simulation of 100,000 iterations was run using the stochastic model with scenario 

parameters as described in the previous sections. The use of 100,000 iterations balances a 

negligible amount of variation between simulation experiments of identical input, while still 

allowing for a reasonably short simulation run-time. While numerous scenarios utilizing sex-sorted 

or unsorted semen with variations in ownership of donors and recipients and alternative marketing 

avenues can be compared simultaneously, a select few scenarios were chosen for analysis. 

When analyzing the results of the model, it must be remembered that the overhead costs of 

facilities, equipment, enterprise financing, taxes, labor not directly associated with ET procedures, 

and any other potential non-direct expenses are not included in the model. Fuel, as well as facility 

and equipment depreciation and maintenance expense are also unaccounted for. Thus, the 

economic model represents variable costs directly attributed to the ET program. If the user chose 

to embed overhead costs within other cost parameters within the model, it is possible to consider 

such expenses, but it is assumed in the current model that any differences between the scenarios 

are negligible. 

The intent of this model is not to provide a means for industry wide assessment of the 

application of a specific reproductive technology or the profitability of a given marketing strategy, 

in general. The following results are merely circumstantial predictors of the economic value and 

risk associated with a given scenario based on the user-defined, deterministic variables and default 

stochastic elements as described in the preceding sections. The subsequent figures (Figure 32 – 

Figure 58) and tables (Table 126 – Table 135) describe the characteristics of the distribution of 

NPV, ANPV, and ROI for the scenarios in question. Although a multitude of ownership and 

marketing strategies are combined with all 8 embryo production methods described in the 
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preceding chapter, to create a variety of scenarios that are simulated concurrently, only the 

following scenario results are reported in this thesis. 

Scenario A1:  

 Embryo Production Method: MOET using unsorted semen. 

 Ownership: Own donors and own recipients. 

 Marketing: Sell developed bulls and females per the pricing distribution described in the 

previous chapter. Sell all cull progeny and naturally sired calves by weight, as feeder cattle, 

per the feeder calf pricing index. Market excess embryos using the user-defined price 

disclosed in the preceding chapter. 

Scenario A2: 

 Embryo Production Method: IVP NS, 14 d OPU interval using unsorted semen. 

 Ownership: Own donors and own recipients. 

 Marketing: Sell developed bulls and females per the pricing distribution described in the 

previous chapter. Sell all cull progeny and naturally sired calves by weight, as feeder cattle, 

per the feeder calf pricing index. Market excess embryos using the user-defined price 

disclosed in the preceding chapter. 

Scenario A3: 

 Embryo Production Method: IVP SS using unsorted semen. 

 Ownership: Own donors and own recipients. 

 Marketing: Sell developed bulls and females per the pricing distribution described in the 

previous chapter. Sell all cull progeny and naturally sired calves by weight, as feeder cattle, 

per the feeder calf pricing index. Market excess embryos using the user-defined price 

disclosed in the preceding chapter. 
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Scenario B1: 

 Embryo Production Method: MOET using semen sex-sorted for males. 

 Ownership: Own donors and own recipients. 

 Marketing: Sell developed bulls and females per the pricing distribution described in the 

previous chapter. Sell all cull progeny and naturally sired calves by weight, as feeder cattle, 

per the feeder calf pricing index. Market excess embryos using the user-defined price 

disclosed in the preceding chapter. 

Scenario B2: 

 Embryo Production Method: IVP NS, 14 d OPU interval using semen sex-sorted for males. 

 Ownership: Own donors and own recipients. 

 Marketing: Sell developed bulls and females per the pricing distribution described in the 

previous chapter. Sell all cull progeny and naturally sired calves by weight, as feeder cattle, 

per the feeder calf pricing index. Market excess embryos using the user-defined price 

disclosed in the preceding chapter. 

Scenario B3: 

 Embryo Production Method: IVP SS using semen sex-sorted for males. 

 Ownership: Own donors and own recipients. 

 Marketing: Sell developed bulls and females per the pricing distribution described in the 

previous chapter. Sell all cull progeny and naturally sired calves by weight, as feeder cattle, 

per the feeder calf pricing index. Market excess embryos using the user-defined price 

disclosed in the preceding chapter. 

Scenario C1: 

 Embryo Production Method: MOET using unsorted semen. 
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 Ownership: Own recipients. Contracted to sell ET pregnant recipients back to owner of the 

donor/embryos. 

 Marketing: Sell recipients at least 60 d pregnant to embryo transfer. Sex of pregnancy is 

determined via pregnancy ultrasound. Sell natural service and open recipients. All market 

prices subject to user-defined price disclosed in the preceding chapter.  

Scenario C2: 

 Embryo Production Method: IVP NS, 14 d OPU interval using unsorted semen. 

 Ownership: Own recipients. Contracted to sell ET pregnant recipients back to owner of the 

donor/embryos. 

 Marketing: Sell recipients at least 60 d pregnant to embryo transfer. Sex of pregnancy is 

determined via pregnancy ultrasound. Sell natural service and open recipients. All market 

prices subject to user-defined price disclosed in the preceding chapter.  

Scenario C3: 

 Embryo Production Method: IVP SS using unsorted semen. 

 Ownership: Own recipients. Contracted to sell ET pregnant recipients back to owner of the 

donor/embryos. 

 Marketing: Sell recipients at least 60 d pregnant to embryo transfer. Sex of pregnancy is 

determined via pregnancy ultrasound. Sell natural service and open recipients. All market 

prices subject to user-defined price disclosed in the preceding chapter.  



156 

 Scenario A: Unsorted Semen- Owned Donors- Owned Recipients- Market 

Developed Bulls and Heifers 

Results 

Consider this scenario, with results shown below, as one in which an operation owns 100 

potential recipients and 5 donors. Its primary business model is to market developed ET 

generated bulls and ET generated females of breeding quality. Cull ET progeny and natural 

service sired calves will be marketed as feeder cattle. Following the conclusion of all ET rounds, 

recipients are exposed to a natural service sire. Open females are sold at the conclusion of the 

breeding season, with the corresponding value of an open female. 

 

 Scenario A1: MOET 

 Figure 32. Probability distribution of the NPV resulting from the scenario of MOET- 

unsorted semen- owned donors- owned recipients- market developed bulls and heifers. 
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Figure 33. Probability distribution of the ANPV resulting from the scenario of MOET- unsorted 

semen- owned donors- owned recipients- market developed bulls and heifers. 

 
 

Figure 34. Probability distribution of the ROI resulting from the scenario of MOET- unsorted 

semen- owned donors- owned recipients- market developed bulls and heifers. 
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Figure 35. Standardized stepwise regression coefficients for the stochastic variables influencing 

the scenario of MOET- unsorted semen- owned donors- owned recipients- market developed 

bulls and heifers. 

 
Num of Embry per Col (number of transferable embryos per collection). Preg Rate (pregnancy rate at 21 

days post-ovulation). 
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Figure 36. Cumulative distribution of the R-squared value associated with the stochastic 

variables influencing the scenario of MOET- unsorted semen- owned donors- owned recipients- 

market developed bulls and heifers. 

 
Num of Embry per Col (number of transferable embryos per collection). Preg Rate (pregnancy rate at 21 

days post-ovulation). 
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 Scenario A2: IVP NS 

Figure 37. Probability distribution of the NPV resulting from the scenario of IVP NS- unsorted 

semen- owned donors- owned recipients- market developed bulls and heifers. 

 
 

Figure 38. Probability distribution of the ANPV resulting from the scenario of IVP NS- unsorted 

semen- owned donors- owned recipients- market developed bulls and heifers. 
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Figure 39. Probability distribution of the ROI resulting from the scenario of IVP NS- unsorted 

semen- owned donors- owned recipients- market developed bulls and heifers. 

 

Figure 40. Standardized stepwise regression coefficients for the stochastic variables influencing 

the scenario of IVP NS- unsorted semen- owned donors- owned recipients- market developed 

bulls and heifers. 

 
Preg Rate (pregnancy rate 21 d post-ovulation). Blast Rate (blastocyst rate). COCs Per OPU (number of 

cultured oocytes per OPU). 
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Figure 41. Cumulative distribution of the R-squared value associated with the stochastic 

variables influencing the scenario of IVP NS- unsorted semen- owned donors- owned recipients- 

market developed bulls and heifers. 

 
Preg Rate (pregnancy rate 21 d post-ovulation). Blast Rate (blastocyst rate). COCs Per OPU (number of 

cultured oocytes per OPU). 
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 Scenario A3: IVP SS 

Figure 42. Probability distribution of the NPV resulting from the scenario of IVP SS- unsorted 

semen- owned donors- owned recipients- market developed bulls and heifers. 

 

 

Figure 43. Probability distribution of the ANPV resulting from the scenario of IVP SS- unsorted 

semen- owned donors- owned recipients- market developed bulls and heifers.  
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Figure 44. Probability distribution of the ROI resulting from the scenario of IVP SS- unsorted 

semen- owned donors- owned recipients- market developed bulls and heifers. 

 
  

ROI- IVP SS Owned Throughout 

R
el

at
iv

e 
f(

x
) 

V
al

u
e 



165 

Figure 45. Standardized stepwise regression coefficients for the stochastic variables influencing 

the scenario of IVP SS- unsorted semen- owned donors- owned recipients- market developed 

bulls and heifers. 

 
Preg Rate (pregnancy rate 21 d post-ovulation). Blast Rate (blastocyst rate). SS COCs Cultured OPU 

(number of cultured oocytes per OPU). 
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Figure 46. Cumulative distribution of the R-squared value associated with the stochastic 

variables influencing the scenario of IVP SS- unsorted semen- owned donors- owned recipients- 

market developed bulls and heifers. 

 
Preg Rate (pregnancy rate 21 d post-ovulation). Blast Rate (blastocyst rate). SS COCs Cultured OPU 

(number of cultured oocytes per OPU). 
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Table 126. Mode, 5th percentile, 25th percentile, median, 75th percentile, 95th percentile, mean, 

and standard deviation of the NPV, ANPV, and ROI resulting from the scenario of unsorted 

semen- owned donors- owned recipients- market developed bulls and heifers. 

NPV ($) MOET IVP NS IVP SS 

Mode (209,099.09) 65,560.10 (77,242.45) 

5% (218,138.32) (2,808.74) (228,653.25) 

25% (114,843.39) 101,012.82 (56,566.14) 

Median 138,715.60 235,102.40 178,597.22 

75% 537,393.16 463,179.77 548,364.70 

95% 1,469,577.26 1,073,926.10 1,419,572.53 

Mean ± 90% C.I. 316,625.23± 3,195.40 349,168.90 ±2,085.64 336,604.50± 3,052.84 

SD 614,319.01 400,967.19 586,912.18 

ANPV ($) MOET IVP NS IVP SS 

Mode (36,136.47) 11,330.08 (13,349.03) 

5% (37,698.63) (485.41) (39,515.81) 

25% (19,847.21) 17,457.02 (9,775.75) 

Median 23,972.81 40,630.35 30,865.14 

75% 92,872.19 80,046.64 94,768.29 

95% 253,972.08 185,595.71 245,330.27 

Mean ± 90% C.I. 54,719.12± 552.23 60,343.31 ± 360.44 58,171.93± 527.59 

SD 106,166.50 69,295.08 101,430.06 

(cont.) 
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Table 126 (cont.). Mode, 5th percentile, 25th percentile, median, 75th percentile, 95th percentile, 

mean, and standard deviation of the NPV, ANPV, and ROI resulting from the scenario of 

unsorted semen- owned donors- owned recipients- market developed bulls and heifers. 

ROI (%) MOET IVP NS IVP SS 

Mode -37.4 13.5 -16.3 

5% -39.0 -5.5 -34.3 

25% -22.0 13.9 -10.2 

Median 16.9 37.1 20.5 

75% 71.3 74.1 66.0 

95% 194.5 166.9 169.8 

Mean ± 90% C.I. 38.6± 0.437 53.7 ± 0.326 38.4± 0.374 

SD 84.0 62.6 71.8 

Probability of 

Negative Return 
40.0 9.6 34.0 

 

Discussion 

It should be noted that while assessing the means of economic and production measures is 

a reasonable method of comparing production strategies, the distributions of biological 

uncertainties embedded within the model cause many of the output distributions to vary greatly in 

shape, often straying far from a normal distribution. Thus, it is possible for distribution means and 

most likely outcomes to diverge from one another substantially. Therefore, equal, if not greater, 

attention should be paid to the percentiles and probabilities associated with each output 

distribution. 

The mean ROI for MOET, 38.6%, and IVP SS, 38.4%, were not significantly different at 

90% confidence (Table 126). Mean ROI for IVP NS, 53.7%, was significantly greater than the 

mean ROI for both MOET and IVP SS at 90% confidence (Table 126).  

The mean ANPV for MOET: $54,719.12, was significantly lower (90% confidence) than 

the mean ANPV of both IVP NS: $60,343.31, and IVP SS: $58,171.93 (Table 126). The mean 
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ANPV of IVP NS and IVP SS were also significantly different at 90% confidence. These 

differences can be rationalized by investigating the mean annual expenses of $99,269.95, 

$82,134.23, and $119,675.40 (Table 133) for MOET, IVP NS, and IVP SS, respectively, under 

the given scenario. Mean annual revenues for each embryo production strategy were $201,230.60, 

$185,656.30, and $226,616.40, respectively (Table 132).  

 Donor and recipient protocol costs played a primary role behind the increased annual 

expenses of both MOET and IVP SS, when compared to IVP NS. Whereas, the donors in the IVP 

NS program did not require an exogenous hormone protocol, both MOET and IVP SS donors 

underwent an exogenous hormone protocol before the 2 embryo collections and 5 OPU sessions 

as associated with the respective scenario. The subsequent embryo collections and IVP procedures 

resulted in the mean production of 70 MOET produced embryos accompanied by 70 transfers; a 

mean of 70 IVP NS produced embryos complemented by 70 transfers; and a mean of 105 IVP SS 

produced embryos accompanied by 105 transfers. The mean number of recipients synchronized 

for the IVP SS scenario was 125 recipients, as compared to a mean of 84 recipients and 85 

recipients for MOET and IVP NS, respectively. Keep in mind that there are 

synchronization/stimulation protocol costs and flush/OPU procedure costs associated with every 

flush/OPU and every transfer. The increased number of transfers within the IVP SS program 

inherently gives recipients more opportunities to become pregnant. Thus, the mean number of open 

recipients for MOET, IVP NS, and IVP SS were 13.1, 12.3, and 11.7 (Table 130), respectively. A 

reduction in opens also increases annual expense.  

 Driving the difference in mean annual revenues of $201,230.60, $185,656.30, and 

$226,616.40 (Table 132) for MOET, IVP NS, and IVP SS, respectively, were the variations in 

number of ET pregnancies and subsequent differences in the number of marketable ET calves. The 
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mean number of annual ET pregnancies at the conclusion of the ET season for MOET, IVP NS, 

and IVP SS were 34.4, 31.7, and 41.7 (Table 130), respectively, all significantly different. The 

increase in mean revenue for the MOET program versus the IVP NS program is derived from the 

distribution around the mean. Both distributions have a minimum possible value of zero and 

neither distribution is normal. While the standard deviation for the number of MOET ET bred 

recipients is 26.6, the standard deviation for the number of IVP NS ET pregnancies is only 15.0, 

simultaneously being skewed to the left (Table 130). Thus, there are 59 ET pregnancies and 40 ET 

pregnancies at the 75th percentile for MOET and IVP NS distributions, respectively (Table 130). 

Alternatively, there are 10 ET pregnancies and 21 ET pregnancies at the 25th percentile for the 

MOET distribution and IVP NS distribution, respectively (Table 130). As previously described, 

simply looking at means, without considering the shape of the distribution is detrimental to proper 

interpretation of this model. Despite the reduced pregnancy rates associated with IVP embryos, 

the sheer number of IVP SS embryos transferred allowed for an increase in ET pregnancies.  

 Along with noting the standard deviation of output means, an effective method of risk 

appraisal is an analysis of the probability distribution associated with each economic and 

production output. When considering ROI, the most likely outcomes for MOET, IVP NS, and IVP 

SS are -37.4%, 13.5%, and -16.3%, respectively (Table 126). The medians for each respective ROI 

distribution are 16.9%, 37.1%, and 20.5% (Table 126). Perhaps the greatest measurement of 

financial risk is the probability of negative return. Regarding this measurement, MOET, IVP NS, 

and IVP SS had probabilities of 40.0%, 9.6%, and 34.0% (Table 126), respectively. Although each 

individual firm may consider risk differently, using the most likely outcome and probability of 

negative return, one can argue that for the given scenario both the MOET and IVP SS programs 

are in contention for the economically riskiest methods of ET. Alternatively, if one defines risk as 
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an uncertainty of outcome, MOET also has the greatest standard deviation of ROI, at 84.0% (Table 

126). Not surprisingly, considering many risk-reward trade-offs, MOET also has the greatest ROI 

at the 95th percentile (Table 126). 

It seems rational that IVP NS has the lowest probability of negative return, because IVP 

NS is less influenced by the success or failure of expensive human intervention (no exogenous 

hormone protocols for synchronization or stimulation of donors) than either MOET or IVP SS. 

Depending on a firm’s risk aversion, IVP NS could be an attractive method under the given 

scenario, as it also boasts the greatest most likely return and the smallest standard deviation around 

the mean. Simultaneously, the 95th percentile ROI of IVP NS, 166.9%, rivals that of IVP SS, 

169.8% (Table 126). 

The statistical results are shown in Figure 35 and 36, Figure 40 and 41, and Figure 45 and 

46. For Scenario A1, the three largest regression values are the number of transferable embryos 

per collection, the revenue distribution for heifers, and the revenue distribution for bulls. For 

Scenario A2 and Scenario A3, the three largest regression coefficient values are the revenue 

distribution for heifers, the revenue distribution for bulls, and the number of oocytes incubated per 

OPU. According to the R-squared values, the regression model for each of the scenarios does not 

completely explain the outcome of the scenario. This is because of the incorporation of binomial 

distributions, which are not included in the regression analysis, as a method of implementing the 

stochastic variables that represent a mean probability, such as pregnancy rate. The results of the 

binomial distributions account for the proportion of the variation that the model utilizing only 

stochastic variables cannot explain. 

Regardless of one’s method for measuring economic success and the risk associated with 

that success, the numerical and logical analysis afforded through the stochastic simulation of 
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alternative scenarios through this model should allow for in-depth assessment. The caveat is that 

any model, no matter how robust, will never be completely accurate, as all are a simplified version 

of a complicated reality. 

 

 Scenario B: Semen Sex-Sorted for Males- Owned Donors- Owned Recipients- 

Market Developed Bulls and Heifers 

Results 

Consider this scenario, with results shown below, as one in which an operation owns 100 

potential recipients and 5 donors. Its primary business model is to market developed ET 

generated bulls of breeding quality. Thus, the semen used to generate embryos is sex-sorted for 

males. Any ET heifers that are produced through inaccurate semen sorting will be marketed as 

replacement females. Cull ET progeny and natural service sired calves will be marketed as 

feeder cattle. Following the conclusion of all ET rounds, recipients are exposed to a natural 

service sire. Open females are sold at the conclusion of the breeding season, with the 

corresponding value of an open female. 
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 Scenario B1: MOET 

Figure 47. Probability distribution of the NPV resulting from the scenario of MOET- semen sex-

sorted for males- owned donors- owned recipients- market developed bulls and heifers. 

 

 

Figure 48. Probability distribution of the ANPV resulting from the scenario of MOET- semen 

sex-sorted for males- owned donors- owned recipients- market developed bulls and heifers. 
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Figure 49. Probability distribution of the ROI resulting from the scenario of MOET- semen sex-

sorted for males- owned donors- owned recipients- market developed bulls and heifers.  

 
 

Figure 50. Standardized stepwise regression coefficients for the stochastic variables influencing 

the scenario of MOET- sex-sorted semen- owned donors- owned recipients- market developed 

bulls and heifers. 

 
Preg Rate (pregnancy rate 21 d post-ovulation). Embryo/Flush (transferable embryos per collection). 
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Figure 51. Cumulative distribution of the R-squared value associated with the stochastic 

variables influencing the scenario of MOET- sex-sorted semen- owned donors- owned 

recipients- market developed bulls and heifers. 

 
Preg Rate (pregnancy rate 21 d post-ovulation). Embryo/Flush (transferable embryos per collection). 
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 Scenario B2: IVP NS 

Figure 52. Probability distribution of the NPV resulting from the scenario of IVP NS- semen 

sex-sorted for males- owned donors- owned recipients- market developed bulls and heifers. 

 

 

Figure 53. Probability distribution of the ANPV resulting from the scenario of IVP NS- semen 

sex-sorted for males- owned donors- owned recipients- market developed bulls and heifers. 

 

 

R
el

at
iv

e 
f(

x
) 

V
al

u
e 

R
el

at
iv

e 
f(

x
) 

V
al

u
e 



177 

Figure 54. Probability distribution of the ROI resulting from the scenario of IVP NS- semen sex- 

sorted for males- owned donors- owned recipients- market developed bulls and heifers. 

 

 

Figure 55. Standardized stepwise regression coefficients for the stochastic variables influencing 

the scenario of IVP NS- sex-sorted semen- owned donors- owned recipients- market developed 

bulls and heifers. 

 
Trnsfr CL (CL qualified for recipient to receive an embryo). Preg Rate (pregnancy rate 21 d post-

ovulation). COCs per OPU (number oocytes cultured per OPU). Blast% (blastocyst rate). 

ROI- IVP NS Owned Throughout 
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Figure 56. Cumulative distribution of the adjusted R-squared value associated with the 

stochastic variables influencing the scenario of IVP NS- sex-sorted semen- owned donors- 

owned recipients- market developed bulls and heifers. 

 
Trnsfr CL (CL qualified for recipient to receive an embryo). Preg Rate (pregnancy rate 21 d post-

ovulation). COCs per OPU (number oocytes cultured per OPU). Blast% (blastocyst rate). 
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 Scenario B3: IVP SS 

 

Figure 57. Probability distribution of the NPV resulting from the scenario of IVP SS- semen 

sex-sorted for males- owned donors- owned recipients- market developed bulls and heifers. 

 
 

Figure 58. Probability distribution of the ANPV resulting from the scenario of IVP SS- semen 

sex-sorted for males- owned donors- owned recipients- market developed bulls and heifers. 
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Figure 59. Probability distribution of the ROI resulting from the scenario of IVP SS- semen sex-

sorted for males- owned donors- owned recipients- market developed bulls and heifers. 

 

 

Figure 60. Standardized stepwise regression coefficients for the stochastic variables influencing 

the scenario of IVP SS- sex-sorted semen- owned donors- owned recipients- market developed 

bulls and heifers. 

 
Trnsfr CL (CL qualified for recipient to receive an embryo). Preg Rate (pregnancy rate 21 d post-

ovulation). Blast% (blastocyst rate). 

ROI- IVP SS Owned Throughout 
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Figure 61. Cumulative distribution of the adjusted R-squared value associated with the 

stochastic variables influencing the scenario of IVP SS- sex-sorted semen- owned donors- owned 

recipients- market developed bulls and heifers. 

 
Trnsfr CL (CL qualified for recipient to receive an embryo). Preg Rate (pregnancy rate 21 d post-

ovulation). Blast% (blastocyst rate). 
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Table 127. Mode, 5th percentile, 25th percentile, median, 75th percentile, 95th percentile, mean, 

and standard deviation of the NPV, ANPV, and ROI resulting from the scenario of sex-sorted 

semen- owned donors- owned recipients- market developed bulls and heifers. 

NPV ($) MOET IVP NS IVP SS 

Mode (218,942.28) (178,012.65) (178,036.21) 

5% (235,131.25) (283,366.77) (267,604.13) 

25% (199,907.09) (164,578.01) (112,699.27) 

Median (45,370.47) (5,653.10) 124,132.79 

75% 262,440.91 268,401.13 534,619.76 

95% 1,153,726.33 1,061,174.03 1,599,991.13 

Mean ± 90% C.I. 144,819.10 ±2,889.04 142,195.34 ±2,633.37 330,273.26 ±3,621.28 

SD 555,421.70 506,268.86 696,161.03 

ANPV ($) MOET IVP NS IVP SS 

Mode (37,837.56) (30,764.11) (30,768.19) 

5% (40,635.34) (48,971.39) (46,247.30) 

25% (34,547.91) (28,442.34) (19,476.67) 

Median (7,840.92) (976.97) 21,452.61 

75% 45,354.99 46,385.03 92,392.89 

95% 199,386.78 183,391.90 276,510.18 

Mean ± 90% C.I. 25,027.61 ± 499.28 24,574.17 ± 455.10 57,077.76 ± 625.83 

SD 95,987.88 87,493.29 120,310.42 

(cont.) 
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Table 127 (cont.). Mode, 5th percentile, 25th percentile, median, 75th percentile, 95th percentile, 

mean, and standard deviation of the NPV, ANPV, and ROI resulting from the scenario of sex-

sorted semen- owned donors- owned recipients- market developed bulls and heifers. 

ROI (%) MOET IVP NS IVP SS 

Mode -39.0 -26.9 -24.2 

5% -41.3 -40.7 -39.1 

25% -35.3 -24.3 -17.3 

Median -10.6 -3.24 13.2 

75% 34.3 31.5 61.8 

95% 153.4 127.9 182.8 

Mean ± 90% C.I. 14.5 ± 0.394 14.3 ± 0.324 35.4 ± 0.422 

SD 75.8 62.2 81.1 

Probability of 

Negative Return 
57.8 53.2 40.2 

 

Discussion 

Applying the IVP SS method of ET to the given scenario of sex selection generated a mean 

ROI of 35.4% (Table 127), significantly increasing the mean ROI with greater than 90% 

confidence when compared to MOET, 14.5%, and IVP NS, 14.3% (Table 127). At 90% 

confidence, the mean ROI for MOET and IVP NS was not significantly different. The standard 

deviation of the mean ROI for MOET, IVP NS, and IVP SS was 75.8%, 62.2%, and 81.1% (Table 

127), respectively.  

The initial investment expense for MOET, IVP NS, and IVP SS for the given scenarios 

were $213,000.00, $213,000.00, and $207,000.00, respectively. The difference in initial 

investment expense can be explained by the number of bulls required for each program. While 5 

donors and 100 recipients were purchased for all three ET program scenarios, on average the IVP 

SS scenario requires one less natural service sire, valued at $6,000.00, because the average number 
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of recipients that do not settle to ET is below the threshold that requires two rather than one natural 

service sire. 

Within the model there is an economic incentive to produce as many bulls as possible. 

Thus, in a situation where there is a high likelihood of each ET pregnancy being male (Table 100) 

(Morotti et al., 2014, Pontes et al., 2010, Xu et al., 2006), the differences in ROI can primarily be 

attributed to the number of ET pregnancies generated by each production method and the shape of 

the distribution associated with the number of ET pregnancies. The mean number of ET 

pregnancies for MOET, IVP NS, and IVP SS was 21.2 pregnancies, 28.3 pregnancies, and 37.6 

pregnancies, respectively (Table 135). The shape of the distribution for the number of ET 

pregnancies contributes to the convergence of MOET and IVP to a similar mean ROI. Although 

only 5 ET pregnancies are expected at the 25th percentile for MOET, the mean number of 

pregnancies at the 95th percentile is 68 (Table 135). Conversely, 16 ET pregnancies are expected 

at the 25th percentile for IVP NS, while only 60 ET pregnancies are expected at the 95th percentile; 

illustrating how the distribution of pregnancies for IVP NS is skewed to the left (Table 135).  

The number of embryos produced and transferred by each respective ET production 

method directly influences the number of pregnancies produced. For the given scenario, MOET 

generated a mean of 30 embryos coupled with 30 transfers; IVP NS produced 60 embryos and 60 

transfers; while IVP SS generated 95 embryos accompanied by 95 transfers. The limited efficiency 

of MOET using sexed semen is explained further in Table 34 and its accompanying references 

(Schenk et al., 2006; Peippo et al., 2009; Hayakawa et al., 2009). The increase in embryo 

production with IVP SS as compared to IVP NS is driven by the application of exogenous hormone 

protocols to donors. Not only are the number of viable oocytes increased with the use of exogenous 
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hormone protocols (Table 10; Table 44) (C. Fernandes et al., 2014), but blastocyst rate is improved 

as well (Table 50) (De Roover et al., 2008). 

The probability of negative return for MOET, IVP NS, and IVP SS is 57.8%, 53.2%, and 

40.2%, respectively (Table 127). Along with having the lowest probability of negative return, the 

IVP SS method also generates the greatest return at the median, and 95th percentile (Table 127). 

Thus, depending on a firm’s economic and production preferences, one could argue that for the 

given scenario, IVP SS is the lowest risk production option. When comparing MOET and IVP NS, 

the distribution of ROI follows closely with that of the number ET pregnancies. IVP NS has the 

lowest expected ROI at the 95th percentile, 127.9%. MOET has the lowest mode and median ROI, 

-39.0% and 10.6%, respectively. Furthermore, MOET has a greater standard deviation of mean 

ROI at 75.8%, compared to the lowest standard deviation of mean ROI at 62.2%, which describes 

the IVP NS method (Table 127). Actually, IVP SS has the greatest standard deviation of ROI at 

81.1%. Again, depending on one’s risk measurement preferences, one could reasonably conclude 

that any of the three scenarios create the greatest economic risk for the described ET program of 

sex-selection for male progeny. 

Referencing the statistical results found in Figures 50 and 51, the two largest regression 

coefficients for Scenario B1 are the number of transferable embryos per flush and ET bull revenue 

distribution. For Scenario B2 and B3, Figures 55 and 56 and Figures 60 and 61 show that the three 

largest regression coefficient values are ET bull revenue distribution, number of incubated oocytes 

per OPU, and the blastocyst rate. Again, because of the incorporation of binomial distributions to 

implement stochastic variable representing a mean probability, the adjusted R-square for each 

scenario does not fully explain the variation of simulation results. 
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 Scenario A and Scenario B 

Table 128. Mode, 5th percentile, 25th percentile, median, 75th percentile, 95th percentile, mean, 

and standard deviation of the ROI resulting from the scenarios of unsorted semen or sex-sorted 

semen- owned donors- owned recipients- market developed bulls and heifers. 

ROI (%) MOET IVP NS IVP SS 

Mode -37.4 13.5 -16.3 

5% -39.0 -5.5 -34.3 

25% -22.0 13.9 -10.2 

Median 16.9 37.1 20.5 

75% 71.3 74.1 66.0 

95% 194.5 166.9 169.8 

Mean ± 90% C.I. 38.6± 0.437 53.7 ± 0.326 38.4± 0.374 

SD 84.0 62.6 71.8 

Probability of 

Negative Return 
40.0 9.6 34.0 

ROI (%) MOET IVP NS IVP SS 

Mode -39.0 -26.9 -24.2 

5% -41.3 -40.7 -39.1 

25% -35.3 -24.3 -17.3 

Median -10.6 -3.24 13.2 

75% 34.3 31.5 61.8 

95% 153.4 127.9 182.8 

Mean ± 90% C.I. 14.5 ± 0.394 14.3 ± 0.324 35.4 ± 0.422 

SD 75.8 62.2 81.1 

Probability of 

Negative Return 
57.8 53.2 40.2 

 

The results of all scenarios can be directly compared to each other using ANPV or ROI. 

The only difference between Scenarios A and B is the use of unsorted semen in Scenario A and 

sex-sorted semen in Scenario B (Table 128). The probability of negative return is greater for all 
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three sub-scenarios in Scenario B than in Scenario A. This can be attributed to the reduced 

number of transferable embryos collected for MOET and the reduced blastocyst rate for IVP 

typically found when using sex-sorted semen. Alternatively, because the use of sex-sorted semen 

is an attempt to capitalize on an economic incentive by maximizing the number of animals of a 

specific sex, each success is more lucrative.  

The most drastic change in the distribution of ROI between Scenario A and Scenario B is 

found when using MOET or IVP NS (Table 126; Table 127). Although the mean ROI is still 

greater for Scenario A than Scenario B when considering IVP SS, the reduction is much less than 

when considering the other two methods of ET production. The 95th percentile for Scenario B3 is 

greater than Scenario A3. The increased success of IVP SS over MOET and IVP NS when using 

sex-sorted semen can be attributed to the number of transferable embryos produced. Within the 

model, the mean number of transferable embryos produced using MOET and sex-sorted semen is 

roughly half of what is produced when using MOET and unsorted semen. The difference in the 

mean blastocyst rate between IVP NS and IVP SS only changes by one percentage point when 

comparing Scenario A and Scenario B. The mean value of each ET calf is greater when using 

sex-sorted semen, thus the risk-reward ratio becomes more favorable for a scenario that typically 

generates more ET progeny, such as IVP SS. 

 Scenario C: Unsorted Semen- Custom Recipients- Market Ultrasound Sexed 

Pregnancies 

Results 

 Consider this scenario, with results shown below, as one in which an operation owns 100 

potential recipients and its business model is to set-up recipients and transfer embryos to those 

recipients for another operation that, in this scenario, owns 5 donors. After a 60 d, ET pregnancy 
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has been established the owner of the recipients then sells the recipient to the owner of the donor 

and the embryos. The sex of the pregnancy is determined, via ultrasound, before the sale of 

pregnant recipients. All recipients not pregnant to ET are exposed to a bull and sold at the 

conclusion of the breeding season, with the corresponding value of a commercial pregnancy or 

open female. 
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 Scenario C1: MOET 

Figure 62. Probability distribution of the NPV resulting from the scenario of MOET- unsorted 

semen- custom recipients- market ultrasound sexed pregnancies.  

 

 

Figure 63. Probability distribution of the ANPV resulting from the scenario of MOET- unsorted 

semen- custom recipients- market ultrasound sexed pregnancies. 
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Figure 64. Probability distribution of the ROI resulting from the scenario of MOET- unsorted 

semen- custom recipients- market ultrasound sexed pregnancies. 

 

 

Figure 65. Standardized stepwise regression coefficients for the stochastic variables influencing 

the scenario of MOET- unsorted semen- custom recipients- market ultrasound sexed 

pregnancies. 

 

Preg Rate (pregnancy rate 21 post-ovulation). Trnsfr CL (CL qualified for recipient to receive an 

embryo). Num of Embr per Col (number of transferable embryos per collection). 
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Figure 66. Cumulative distribution of the adjusted R-squared value associated with the 

stochastic variables influencing the scenario of MOET- unsorted semen- custom recipients- 

market ultrasound sexed pregnancies. 

 
Preg Rate (pregnancy rate 21 post-ovulation). Trnsfr CL (CL qualified for recipient to receive an 

embryo). Num of Embr per Col (number of transferable embryos per collection). 
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 Scenario C2: IVP NS 

Figure 67. Probability distribution of the NPV resulting from the scenario of IVP NS- unsorted 

semen- custom recipients- market ultrasound sexed pregnancies. 

 

 

Figure 68. Probability distribution of the ANPV resulting from the scenario of IVP NS- unsorted 

semen- custom recipients- market ultrasound sexed pregnancies. 
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Figure 69. Probability distribution of the ROI resulting from the scenario of IVP NS- unsorted 

semen- custom recipients- market ultrasound sexed pregnancies. 

 

 

Figure 70. Standardized stepwise regression coefficients for the stochastic variables influencing 

the scenario of IVP NS- unsorted semen- custom recipients- market ultrasound sexed 

pregnancies. 

 
Preg Rate (pregnancy rate 21 post-ovulation). Trnsfr CL (CL qualified for recipient to receive an 

embryo). Blast Rate (blastocyst rate). COCs Per OPU (number of oocytes incubated per OPU). 

ROI- IVP NS Owned Throughout 
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Figure 71. Cumulative distribution of the adjusted R-squared value associated with the 

stochastic variables influencing the scenario of IVP NS- unsorted semen- custom recipients- 

market ultrasound sexed pregnancies. 

 
Preg Rate (pregnancy rate 21 post-ovulation). Trnsfr CL (CL qualified for recipient to receive an 

embryo). Blast Rate (blastocyst rate). COCs Per OPU (number of oocytes incubated per OPU). 
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 Scenario C3: IVP SS 

Figure 72. Probability distribution of the NPV resulting from the scenario of IVP SS- unsorted 

semen- custom recipients- market sexed pregnancies. 

 

 

Figure 73. Probability distribution of the ANPV resulting from the scenario of IVP SS- unsorted 

semen- custom recipients- market ultrasound sexed pregnancies. 
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Figure 74. Probability distribution of the ROI resulting from the scenario of IVP SS- unsorted 

semen- custom recipients- market ultrasound sexed pregnancies. 
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Figure 75. Standardized stepwise regression coefficients for the stochastic variables influencing 

the scenario of IVP SS- unsorted semen- custom recipients- market ultrasound sexed 

pregnancies. 

 
Preg Rate (pregnancy rate 21 post-ovulation). Trnsfr CL (CL qualified for recipient to receive an 

embryo). Blast Rate (blastocyst rate). 
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Figure 76. Cumulative distribution of the adjusted R-squared value associated with the 

stochastic variables influencing the scenario of IVP SS- unsorted semen- custom recipients- 

market ultrasound sexed pregnancies. 

 
Preg Rate (pregnancy rate 21 post-ovulation). Trnsfr CL (CL qualified for recipient to receive an 

embryo). Blast Rate (blastocyst rate). 
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Table 129. Mode, 5th percentile, 25th percentile, median, 75th percentile, 95th percentile, mean, 

and standard deviation of the NPV, ANPV, and ROI resulting from the scenario of unsorted 

semen- custom recipients- market ultrasound sexed pregnancies. 

NPV ($) MOET IVP NS IVP SS 

Mode 23,936.51 50,315.81 83,806.19 

5% 24,015.75 45,287.62 45,456.95 

25% 37,657.56 56,630.00 60,878.29 

Median 63,176.32 67,262.38 82,856.48 

75% 110,523.27 84,102.29 113,467.33 

95% 142,936.98 112,143.24 157,579.05 

Mean ± 90% C.I. 73,634.22 ± 216.49 71,646.43 ± 105.97 90,144.24 ± 194.21 

SD 41,621.06 20,373.38 37,336.75 

ANPV ($) MOET IVP NS IVP SS 

Mode 25,133.33 52,831.60 87,996.50 

5% 21,133.33 47,552.00 47,729.80 

25% 39,540.43 59,461.50 63,922.20 

Median 66,335.13 70,625.50 86,999.30 

75% 116,049.43 88,307.40 119,140.70 

95% 150,083.83 117,750.40 165,458.00 

Mean ± 90% C.I. 77,315.93 ± 227.32 75,228.75 ± 111.27 94,651.46 ± 203.92 

SD 43,702.12 21,392.05 39,203.59 

(cont.) 
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Table 129 (cont.). Mode, 5th percentile, 25th percentile, median, 75th percentile, 95th percentile, 

mean, and standard deviation of the NPV, ANPV, and ROI resulting from the scenario of 

unsorted semen- custom recipients- market ultrasound sexed pregnancies. 

ROI (%) MOET IVP NS IVP SS 

Mode 16.1 40.0 37.5 

5% 13.7 31.3 31.5 

25% 26.0 38.5 41.2 

Median 42.5 45.4 57.3 

75% 75.3 58.3 79.1 

95% 98.6 78.4 108.6 

Mean ± 90% C.I. 50.5 ± 0.15 49.2 ± 0.075 62.0 ± 0.134 

SD 28.9 14.4 25.9 

Probability of 

Negative Return 
0.0 0.0 0.0 

 

Discussion 

 The distributions presented in Figures 62-64, Figures 67-69, and Figures 72-74 may seem 

rather irrational; however, they are result of the distribution of initial investment (Table 143). The 

distribution of initial investment is a direct result of the number of natural service sires required to 

cover the recipient females not pregnant to ET. The user-defined value for the cow to bull ratio is 

30 to 1. If the number of open recipients at the end of the ET program reaches 1, 31, 61, or 91 an 

additional bull, with a user-defined cost of $6,000.00, is purchased. Scenario C only has a one-

year investment life and the operation only owns the recipients; thus, the addition of a bull 

increases total expense by a greater percentage for Scenario C than Scenario A or Scenario B. 

Furthermore, the cost of a bull is only spread over one year for Scenario C, rather than several 

years for Scenario A and Scenario B, which have six-year investment lives for this simulation. All 

told, the distribution of initial investment expense has a more visible impact on the distribution of 

profit for Scenario C than Scenario A or Scenario B. 
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 The mean ROI for MOET, IVP NS, and IVP SS for the custom recipient program described 

was 50.5%, 49.2%, and 62.0%, respectively, all significantly different (Table 129). The mode ROI 

and median ROI for each program were 16.1% and 42.5%; 40.0% and 45.4%; and 37.5% and 

57.3%, respectively (Table 129). The primary driver of revenue is the number of pregnant 

recipients created and subsequently marketed. Although the mean number of ET bred recipients 

for MOET and IVP NS were relatively close in value at 38.6 and 33.9, respectively, (Table 140) 

the different input costs and the shape of the distribution of the number pregnant recipients, as 

described in preceding sections, produces a different ROI distribution for each of the respective 

scenarios. The mean number of pregnant recipients for IVP SS was 44.6 head (Table 140). 

Scenario C has shifted the risk of involvement in an ET program to the owner of the donor 

females. If zero embryos are produced, the recipient herd essentially becomes a commercial female 

herd for which the user-defined variables are set at profitability. Different from the other scenarios 

that have already been described, in this scenario, the operation has also mitigated risk by 

establishing a contracted selling price for pregnant recipients. Market conditions undoubtedly have 

an influence on the realistic value of pregnant recipients; however, the operation still has more 

control over the price received than cattle sold at auction or sold by the pound. For these reasons, 

it seems rational that if the selling price is set high enough and demand is sufficient, the probability 

of negative return could be 0%, as seen in all the scenarios illustrated here. 

The two largest regression coefficient values for MOET are the number of transferable 

embryos per collection and fresh ET pregnancy rate at 21 d post-ovulation. The three largest 

regression coefficient values for IVP NS and IVP SS are the number of incubated oocytes per 

OPU, blastocyst rate, and fresh ET pregnancy rate at 21 d post-ovulation. In this scenario, the 

operation contracts the use of its recipients. If there are no embryos, the recipients simply become 
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commercial females which leaves unused profit potential. The adjusted R-square value for each 

ET method is greater in Scenario C when compared to the corresponding method in Scenario A or 

Scenario B. This is because the number of binomial distributions that rely on a stochastic variable 

estimating a mean probability is reduced. 
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Chapter 5 - Conclusion 

Since its inception as a commercial application, ET has had a profound impact on the cattle 

industry by creating a means to propagate the genetics of elite females. More recently, through 

sexed-semen technology, ET has allowed for progressive producers to respond to market signals 

by predetermining the sex of resulting progeny. While the adaptation of technology serves as a 

crucial mode of industry advancement and improvement, financial feasibility and risk must be 

assessed when developing a strategy for implementation. The potential inefficiencies and 

biological uncertainties associated with ET make such financial risk assessment a challenging 

prospect. To further complicate matters, cattle producers are now presented with a choice between 

two primary methods of ET. In-vivo derived (IVD) ET describes the traditional method of ET that 

involves follicular stimulation and insemination of a donor female followed by the collection of 

fertilized embryos from the uterus. In-vitro fertilization (IVF) commonly refers to the method of 

generating transferable embryos by collecting oocytes by ovarian aspiration; in-vitro fertilization 

of the collected oocytes; and incubated maturation of the fertilized oocytes. Encompassed within 

the two methods of ET exist several different sub-techniques, principally regarding the exception 

or inclusion of follicular synchronization and/or stimulation before ovum pick-up (OPU) in IVF 

procedures. Ultimately, operators must decide whether or not ET programs, of any type, serve as 

an economically viable means to increase rate of genetic improvement or take advantage of 

marketing opportunities.  

 Inherent to the identity of the beef industry is the variation of environment, cattle type, and 

management practices between operations. Thus, a critical aspect of the stochastic model described 

and applied in the preceding pages is the ability to incorporate user-defined variable values, 

specific to an individual operation, as parameters for the program in question. The stochastic 
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elements of the model create a more realistic outlook than the use of means in deterministic 

models, as distributions defining the biological uncertainty for a multitude of reproductive 

outcomes are incorporated into the model. Applying the LHS variation of Monte Carlo simulation, 

a sample value from the descriptive distribution associated with each stochastic variable is 

included in an iteration of the simulation. Through large numbers of iterations with dynamic 

combinations of variables, the process culminates in a distribution of possible values for the net 

present value (NPV), annuity equivalent net present value (ANPV), and return on investment 

(ROI) associated with the model described scenario of IVD or IVF. Finally, using the distributions 

of NPV, ANPV, and ROI a decision maker can assess the economic risk linked to a user-defined 

ET program. 

 This model does not account for the increased magnitude and rate of genetic gain that is 

possible through ET and the potential long-term impact those genetic improvements may have on 

a breeding program. Ideally, those genetic improvements would not only make resulting progeny 

more marketable, but allow for increased production efficiency in both the breeding herd and 

market bound progeny who trace their genetics to the nucleus herd. True increases in production 

efficiency should have a positive impact on an operation’s profit margin. Accounting for the long 

term economic impact of accumulated improvements or changes in production efficiency is the 

next step in analyzing the economics of ET. This model could serve as a foundational template for 

that opportunity. 

 The IVP industry has seen rapid expansion in the U.S. with technological advancement 

frequently changing production protocols and improving expected outcomes. It is likely that 

several of the major IVP companies have implemented such advancements to improve production 

levels past what is reported in this thesis. The pace of change is rapid enough that many changes 



205 

are not reported in the scientific literature before being implemented in industry. Furthermore, it 

is likely that IVP companies may regard technological advancements as trade secrets that yield a 

competitive advantage in the marketplace. Thus, a challenge in the application of this model is 

creating and maintaining an accurate representation of expected production outcomes from the 

most current ET practices.  

 Primarily, this model is not intended to be distributed to the public for personal use because 

of the complexity of managing the variables and ensuring model integrity. Instead, the core 

function of this model should be as a consultative tool with the firm that is interested in the model 

output working through someone skilled in the navigation, operation, and interpretation of the 

model. 

 Regardless of one’s method for measuring economic success and the risk associated with 

that success, the numerical and logical analysis afforded through the stochastic simulation of 

alternative scenarios through this model allows for in-depth assessment of ET programs not 

previously available. The caveat is that any model, no matter how robust, will never be completely 

accurate, as all are a simplified version of a complicated reality. That said, there is ample 

opportunity for the commercial application of this stochastic model to complement the 

deterministic, instinctive, and experience based elements of the decision-making process 

pertaining to the prediction of the economic outcome of an ET program, through methodology that 

the ET industry, as known to the author, has not fully exploited. 
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Appendix A - Supplemental Information for the Scenarios of ET 

Using Unsorted Semen- Owned Donors- Owned Recipients- Market 

Developed Bulls and Heifers 

Table 130. Distribution of the number of full term ET bred females, natural sire bred females, 

and open females associated with each scenario. 

Name Worksheet Graph Min Mean Max 5% 95% 

Number of ET 

Bred Recipients 

IVD Unsexed Embryo 

Production 

 

 
0 34.38374 98 0 78 

Number of Bull 

Bred Recipients 

IVD Unsexed Embryo 

Production 

 

0 52.53136 100 8 88 

Number of Open 

Recipients 

IVD Unsexed Embryo 

Production 

 

0 13.0849 47 5 23 

Number of ET 

Bred Recipients 

IVF NS Unsexed 

Production 

 

0 31.6839 94 12 61 

Number of Bull 

Bred Recipients 

IVF NS Unsexed 

Production 

 

1 55.99705 95 28 76 

Number of Open 

Recipients 

IVF NS Unsexed 

Production 

 

0 12.31905 42 5 21 

Number of ET 

Bred Recipients 

IVF SS Unsexed 

Production 

 

0 41.70015 98 11 75 

Number of Bull 

Bred Recipients 

IVF SS Unsexed 

Production 

 

1 46.58499 95 16 76 

Number of Open 

Recipients 

IVF SS Unsexed 

Production 

 

0 11.71486 38 4 20 
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Table 131. Distribution of the number of ET calves, marketable ET bull calves, marketable ET 

heifer calves, cull ET bull calves, and cull ET heifer calves generated by each scenario- using 

unsorted semen and marketing developed bulls and heifers. 

Name Worksheet Graph Min Mean Max 5% 95% 

Number of ET 

Calves 
IVD US Development 

 

0 30.8592 94 0 71 

Number of 

Marketable ET 

Bull Calves 

IVD US Development 

 

0 12.3437 49 0 30 

Number of 

Marketable ET 

Heifer Calves 

IVD US Development 

 

0 12.3410 48 0 30 

Number of 

Culls-ET Bull 

Calves 

IVD US Development 

 

0 3.08601 19 0 9 

Number of 

Culls-ET Heifer 

Calves 

IVD US Development 

 

0 3.08841 18 0 9 

Number of ET 

Calves 

IVF NS US 

Development 

 

0 27.6050 91 10 54 

Number of 

Marketable ET 

Bull Calves 

IVF NS US 

Development 

 

0 11.0442 48 3 22 

Number of 

Marketable ET 

Heifer Calves 

IVF NS US 

Development 

 

0 11.0400 42 3 22 

Number of 

Culls-ET Bull 

Calves 

IVF NS US 

Development 

 

0 2.76103 16 0 7 

Number of 

Culls-ET Heifer 

Calves 

IVF NS US 

Development 

 

0 2.75974 16 0 7 

Number of ET 

Calves 

IVF SS US 

Development 

 

0 36.3286 96 10 67 

(cont.) 
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Table 131 (cont.). Distribution of the number of ET calves, marketable ET bull calves, 

marketable ET heifer calves, cull ET bull calves, and cull ET heifer calves generated by each 

scenario- using unsorted semen and marketing developed bulls and heifers. 
Name Worksheet Graph Min Mean Max 5% 95% 

Number of 

Marketable ET 

Bull Calves 

IVF SS US 

Development 

 

0 14.5265 50 3 28 

Number of 

Marketable ET 

Heifer Calves 

IVF SS US 

Development 

 

0 14.5363 47 3 28 

Number of 

Culls-ET Bull 

Calves 

IVF SS US 

Development 

 

0 3.63245 20 0 8 

Number of 

Culls-ET Heifer 

Calves 

IVF SS US 

Development 

 

0 3.63329 18 0 8 

 

Table 132. Distribution of the total annual revenue generated by the marketing of developed ET 

bulls and heifers produced via unsorted semen through MOET, IVP NS, and IVP SS. 

Name Worksheet Graph Min ($) Mean ($) Max ($) 5% ($) 95% ($) 

IVD 

Revenue- US 

Development 

Revenue 

 

60,784.25  201,230.60  2,277,653.00  78,393.38  453,564.90  

IVF NS 

Revenue- US 

Development 

Revenue 

 

64,594.05  185,656.30  2,183,872.00  99,131.44  351,792.70  

IVF SS 

Revenue- US 

Development 

Revenue 

 

61,423.66  226,616.40  4,396,642.00  98,526.05  461,367.80  
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Table 133. Distribution of the total annual expense incurred by the production of developed ET 

calves via unsorted semen through MOET, IVP NS, and IVP SS. 

Name Worksheet Graph Min ($) Mean ($) Max ($) 5% ($) 95% ($) 

IVD US 

Total 

Expenses- 

Owned 

Donors 
 

75,525.20  99,269.95  158,253.10  83,392.04  123,548.40  

IVF NS 

US 

Total 

Expenses- 

Owned 

Donors 
 

43,731.47  82,134.23  143,447.30  61,876.77  109,533.50  

IVF SS 

US 

Total 

Expenses- 

Owned 

Donors 
 

94,525.18  119,675.40  198,789.90  105,307.10  136,252.30  

 

Table 134. Initial investment present value for MOET, IVP NS, and IVP SS embryo production 

methods- develop bulls/heifers. 

Name Worksheet Graph Min ($) Mean ($) Max ($) 5% ($) 95% ($) 

MOET 

Year 0 

PV 

NPV Owned 

Throughout 
 

(219,000.00) (210,239.80) (195,000.00) (219,000.00) (201,000.00) 

IVF NS 

Year 0 

PV 

NPV Owned 

Throughout 
 

(219,000.00) (210,188.80) (201,000.00) (213,000.00) (201,000.00) 

IVF SS 

Year 0 

PV 

NPV Owned 

Throughout 
 

(219,000.00) (207,625.40) (195,000.00) (213,000.00) (201,000.00) 
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Appendix B - Supplemental Information for the Scenarios of ET 

Using Sex-Sorted Semen- Owned Donors- Owned Recipients- 

Market Developed Bulls and Heifers 

Table 135. Distribution of the number of full term ET bred females, natural sire bred females, 

and open females associated with each sex-sorted semen scenario. 

Name Worksheet Graph Min Mean Max 5% 95% 

Number of ET 

Bred Recipients 

IVD Sexed Embryo 

Production 

 

0 21.20253 96 0 68 

Number of Bull 

Bred Recipients 

IVD Sexed Embryo 

Production 

 

0 67.14041 100 19 92 

Number of Open 

Recipients 

IVD Sexed Embryo 

Production 

 

0 11.65706 45 4 21 

Number of ET 

Bred Recipients 

IVF NS Sexed 

Production 

 

0 28.31706 94 7 60 

Number of Bull 

Bred Recipients 

IVF NS Sexed 

Production 

 

2 62.43416 99 31 85 

Number of Open 

Recipients 

IVF NS Sexed 

Production 

 

0 9.24878 37 3 17 

Number of ET 

Bred Recipients 

IVF SS Sexed 

Production 

 

0 37.64002 97 7 74 

Number of Bull 

Bred Recipients 

IVF SS Sexed 

Production 

 

0 53.16721 99 18 84 

Number of Open 

Recipients 

IVF SS Sexed 

Production 

 

0 9.196549 33 3 17 
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Table 136. Distribution of the number of ET calves, marketable ET bull calves, marketable ET 

heifer calves, cull ET bull calves, and cull ET heifer calves generated by each sex-sorted 

scenario- marketing developed bulls and heifers. 

Name Worksheet Graph Min Mean Max 5% 95% 

Number of ET 

Calves 
IVD SB Development 

 

0 19.0342 92 0 61 

Number of 

Marketable ET 

Bull Calves 

IVD SB Development 

 

0 13.8450 72 0 44 

Number of 

Marketable ET 

Heifer Calves 

IVD SB Development 

 

0 1.37969 18 0 5 

Number of 

Culls-ET Bull 

Calves 

IVD SB Development 

 

0 3.46239 27 0 12 

Number of 

Culls-ET Heifer 

Calves 

IVD SB Development 

 

0 0.34719 8 0 2 

Number of ET 

Calves 

IVF NS SB 

Development 

 

0 24.6738 90 6 53 

Number of 

Marketable ET 

Bull Calves 

IVF NS SB 

Development 

 

0 17.9472 70 4 39 

Number of 

Marketable ET 

Heifer Calves 

IVF NS SB 

Development 

 

0 1.7951 19 0 5 

Number of 

Culls-ET Bull 

Calves 

IVF NS SB 

Development 

 

0 4.48465 26 0 11 

Number of 

Culls-ET Heifer 

Calves 

IVF NS SB 

Development 

 

0 0.44678 7 0 2 

Number of ET 

Calves 

IVF SS SB 

Development 

 

0 32.797 94 6 66 

(cont.) 
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Table 136 (cont.). Distribution of the number of ET calves, marketable ET bull calves, 

marketable ET heifer calves, cull ET bull calves, and cull ET heifer calves generated by each 

sex-sorted scenario- marketing developed bulls and heifers. 
Name Worksheet Graph Min Mean Max 5% 95% 

Number of 

Marketable ET 

Bull Calves 

IVF SS SB 

Development 

 

0 23.8519 78 4 49 

Number of 

Marketable ET 

Heifer Calves 

IVF SS SB 

Development 

 

0 2.38389 21 0 7 

Number of 

Culls-ET Bull 

Calves 

IVF SS SB 

Development 

 

0 5.96483 26 1 14 

Number of 

Culls-ET Heifer 

Calves 

IVF SS SB 

Development 

 

0 0.59636 8 0 2 

 

Table 137. Distribution of the total annual revenue generated by the marketing of developed ET 

bulls and heifers produced via sex-sorted semen through MOET, IVP NS, and IVP SS. 

Name Worksheet Graph Min ($) Mean ($) Max ($) 5% ($) 95% ($) 

IVD 

Revenue- SB 

Development 

Revenue 

 

57,707.49  163,280.70  2,404,984.00  76,167.69  387,270.00  

IVF NS 

Revenue- SB 

Development 

Revenue 

 

63,284.20  186,238.90  2,587,811.00  90,667.02  384,670.60  

IVF SS 

Revenue- SB 

Development 

Revenue 

 

62,850.87  230,144.50  3,886,047.00  92,372.08  509,080.30  
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Table 138. Distribution of the total annual expense incurred by the production of developed ET 

calves via sex-sorted semen through MOET, IVP NS, and IVP SS. 

Name Worksheet Graph Min ($) Mean ($) Max ($) 5% ($) 95% ($) 

IVD 

Sexed 

Total 

Expenses- 

Owned 

Donors 
 

76,162.13  95,959.56  149,513.70  83,810.02  120,144.90  

IVF NS 

Sexed 

Total 

Expenses- 

Owned 

Donors 
 

86,328.50  118,899.90  170,057.30  104,087.40  137,192.10  

IVF SS 

US 

Total 

Expenses- 

Owned 

Donors 
 

97,935.94  123,470.50  246,684.90  106,040.00  148,577.30  

 

Table 139. Initial investment present value for MOET, IVP NS, and IVP SS embryo production 

methods- sex-sorted semen- develop bulls/heifers 

Name Worksheet Graph Min ($) Mean ($) Max ($) 5% ($) 95% ($) 

MOET 

Sexed 

Year 0 

PV 

NPV SB 

Owned 

Throughout  

(219,000.00) (213,448.70) (195,000.00) (219,000.00) (201,000.00) 

IVF NS 

Sexed 

Year 0 

PV 

NPV SB 

Owned 

Throughout  

(219,000.00) (210,853.50) (201,000.00) (219,000.00) (201,000.00) 

IVF SS 

Sexed 

Year 0 

PV 

NPV SB 

Owned 

Throughout  

(219,000.00) (208,603.20) (189,000.00) (213,000.00) (201,000.00) 
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Appendix C - Supplemental Information for the Scenarios of 

Custom Recipients- Market Ultrasound Sex Determined 

Pregnancies 

Table 140. Distribution of the number of 60 d ET pregnancies and open females at the 

conclusion of all ET rounds before naturally sired pregnancy determination generated by each 

scenario- marketing ultrasound sexed pregnancies. 

Name Worksheet Graph Min Mean Max 5% 95% 

Total Number of 60 

d ET Bred 

Recipients 

IVD Unsexed 

Embryo Production  

 

0 38.59176 100 0 90 

Number of 60 d ET 

Bred Recipients- 

Bull Calf 

IVD Unsexed 

Embryo Production 
 

0 19.29788 65 0 47 

Number of 60 d ET 

Bred Recipients- 

Heifer Calf 

IVD Unsexed 

Embryo Production 
 

0 19.29388 62 0 47 

Number of Open 

Recipients in Herd 

IVD Unsexed 

Embryo Production 
 

0 61.40824 100 10 100 

Total Number of 60 

d ET Bred 

Recipients 

IVF NS Unsexed 

Production 
 

0 33.90469 98 13 65 

Number of 60 d ET 

Bred Recipients- 

Bull Calf 

IVF NS Unsexed 

Production 
 

0 16.95195 59 6 33 

Number of 60 d ET 

Bred Recipients- 

Heifer Calf 

IVF NS Unsexed 

Production 
 

0 16.95274 61 6 33 

Number of Open 

Recipients in Herd 

IVF NS Unsexed 

Production 
 

2 66.09531 100 35 87 

Total Number of 60 

d ET Bred 

Recipients 

IVF SS Unsexed 

Production 
 

0 44.6277 99 12 80 
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Table 140 (cont.). Distribution of the number of 60 d ET pregnancies and open females at the 

conclusion of all ET rounds before naturally sired pregnancy determination generated by each 

scenario- marketing ultrasound sexed pregnancies. 
Name Worksheet Graph Min Mean Max 5% 95% 

Number of 60 d ET 

Bred Recipients- 

Bull Calf 

IVF SS Unsexed 

Production 
 

0 22.30886 61 6 41 

Number of 60 ET 

Bred Recipients- 

Heifer Calf 

IVF SS Unsexed 

Production 
 

0 22.31884 63 6 42 

Number of Open 

Recipients in Herd 

IVF SS Unsexed 

Production 
 

1 55.3723 100 20 88 

 

 

Table 141. Distribution of the annual revenue generated by each scenario- marketing ultrasound 

sexed pregnancies. 

Name Worksheet Graph Min ($) Mean ($) Max ($) 5% ($) 95% ($) 

IVD 

Revenue 
Revenue 

 

154,000.00  240,465.00  331,000.00  186,000.00  312,000.00  

IVF NS 

Revenue 
Revenue 

 

178,000.00  237,628.60  327,500.00  209,500.00  279,000.00  

IVF SS 

Revenue 
Revenue 

 

180,000.00  256,967.80  679,000.00  209,500.00  327,300.00  

 

 

Table 142. Distribution of the annual expense generated by each scenario- marketing ultrasound 

sexed pregnancies. 

Name Worksheet Graph Min ($) Mean ($) Max ($) 5% ($) 95% ($) 

IVD / 

Total 

Annual 

Expense 

Total 

Expenses- 

Custom 

Recip  

19,666.67  24,957.21  38,701.17  19,666.67  32,196.17  

IVF NS 

/ Total 

Annual 

Expense 

Total 

Expenses- 

Custom 

Recip  

18,333.40  24,248.81  36,337.50  20,770.20  29,270.80  

IVF SS 

/ Total 

Annual 

Expense 

Total 

Expenses- 

Custom 

Recip  

18,109.80  26,216.01  38,361.20  20,545.70  32,107.80  
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Table 143. Initial investment present value for MOET, IVP NS, and IVP SS embryo production 

methods- market ultrasound sexed pregnancies. 

Name Worksheet Graph Min ($) Mean ($) Max ($) 5% ($) 95% ($) 

MOET 

Year 0 

PV 

NPV 

Custom 

Bred Recip 

Sexed Pg  

(144,000.00) (135,239.80) (120,000.00) (144,000.00) (126,000.00) 

IVF NS 

Year 0 

PV 

NPV 

Custom 

Bred Recip 

Sexed Pg  

(144,000.00) (135,188.80) (126,000.00) (138,000.00) (126,000.00) 

IVF SS 

Year 0 

PV 

NPV 

Custom 

Bred Recip 

Sexed Pg  

(144,000.00) (132,625.40) (120,000.00) (138,000.00) (126,000.00) 
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Appendix D - Biopsied Embryos 

 In response to an industry based question regarding the feasibility of subjecting embryos 

to biopsy to determine important genetic information prior to transfer and as a means of model 

validation, the following scenarios were simulated using the stochastic model described in this 

thesis. The biopsy simulation exercise also created an opportunity to demonstrate the flexibility 

and adaptability of the stochastic model in question. 

  Model Adaptations 

Several adaptations are incorporated as additions to the model previously described. The 

adaptations are described in the following tables. 

Table 144. Biopsy procedure cost structure 

Number of 

Embryos 

Biopsy Procedure 

Cost/Embryo ($) 

1 100.00  

9 100.00  

10 95.00  

19 95.00  

20 90.00  

29 90.00  

30 85.00  

39 85.00  

40 80.00  

49 80.00  

50 75.00  

 

Minimum Biopsy 

Procedure Cost ($) 
400.00 

Genetics Lab 

Fee/Sample ($) 
52.00 

 

In addition to adding the cost of biopsied embryos, a 10 percent reduction in pregnancy 

rate at full term is built into the model for recipients receiving a biopsied embryo. It is assumed 
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that the mating used to create potential carriers is a non-carrier mated to a carrier. Details specific 

to each of the four scenarios tested that may differ from the original model are described in the 

following pages. 

Scenario D1:  

 60 available recipients 

 All embryos are frozen before transfer 

 25 non-carrier embryos 

 50 potential carrier embryos 

 Non-carrier embryos always put in before potential carrier embryos 

 No biopsy of embryos 

 True probability of carrier status: 50% 

 20% cull rate on non-carrier ET calves 

 Non-carrier ET calves are marketed as seedstock 

 Carrier calves, culls, and natural service sired calves are marketed as feeders 
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Figure 77. NPV of an ET program with potential carrier embryos and a fixed number of 

available recipients- no biopsy. 

 

 

Figure 78. ANPV of an ET program with potential carrier embryos and a fixed number of 

available recipients- no biopsy. 
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Figure 79. ROI of an ET program with potential carrier embryos and fixed number of available 

recipients- no biopsy. 
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Scenario D2:  

 60 available recipients 

 All embryos are frozen before transfer 

 25 non-carrier embryos 

 50 Potential Carrier Embryos 

 Biopsy of embryos 

 True probability of carrier status: 50% 

 Only non-carrier embryos transferred 

 20% cull rate for ET calves 

 Non-carrier ET calves are marketed as seedstock 

 Cull ET calves and natural service sired calves are marketed as feeders 

 Carrier embryos are sold for $50 

Figure 80. NPV of an ET program with potential carrier embryos and a fixed number of 

available recipients- biopsy. 
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Figure 81. ANPV of an ET program with potential carrier embryos and a fixed number of 

available recipients- biopsy. 

 

 

Figure 82. ROI of an ET program with potential carrier embryos and fixed number of available 

recipients- biopsy. 
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Table 145. Mode, 5th percentile, 25th percentile, median, 75th percentile, 95th percentile, mean, 

and standard deviation of the NPV, ANPV, and ROI of an ET program with potential carrier 

embryos and a fixed number of available recipients. 

NPV ($) NO BIOPSY BIOPSY 

Mode (10,943.31) (17,014.21) 

5% (31,311.04) (36,959.55) 

25% (13,444.42) (18,131.98) 

Median 4,918.95 1,633.80 

75% 32,592.10 31,880.62 

95% 101,516.67 107,421.82 

Mean ± 90% C.I. 16,403.58 ± 243.78 14,410.47 ± 264.76 

SD 46,862.28 50,875.52 

ANPV ($) NO BIOPSY BIOPSY 

Mode (5,885.37) (9,150.33) 

5% (16,707.33) (19,877.03) 

25% (6,954.00) (9,751.47) 

Median 2,645.43 878.67 

75% 17,528.19 17,145.56 

95% 54,596.16 57,771.98 

Mean ± 90% C.I. 8,821.93 ± 131.10 7,750.02 ± 142.39 

SD 25,202.76 27,361.10 

(cont.) 
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Table 145 (cont.). Mode, 5th percentile, 25th percentile, median, 75th percentile, 95th percentile, 

mean, and standard deviation of the NPV, ANPV, and ROI of an ET program with potential 

carrier embryos and a fixed number of available recipients. 

ROI (%) NO BIOPSY BIOPSY 

Mode 0.03 -2.77 

5% -15.3 -14.9 

25% -2.7 -2.0 

Median 10.3 11.8 

75% 30.0 32.9 

95% 78.7 85.7 

Mean ± 90% C.I. 18.5 ± 0.173 20.7 ± 0.184 

SD 33.2 35.4 

Probability of Negative 

Return 
30.4 28.9 

 

 

Scenario D3: 

 Number of recipients dependent on the number of embryos available to be transferred (1.5 

times the number of embryos to be transferred) 

 50 potential carrier embryos 

 No biopsy of embryos 

 All embryos available for transfer 

 True probability of carrier status: 50% 

 20% cull rate on non-carrier ET calves 

 Non-carrier ET calves are marketed as seedstock 

 Carrier calves, culls, and natural service sired calves are marketed as feeders 
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Figure 83. NPV of an ET Program with potential carrier embryos and a variable number of 

available recipients- no biopsy. 

 

Figure 84. ANPV of an ET program with potential carrier embryos and a variable number of 

available recipients- no biopsy. 
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Figure 85. ROI of an ET program with potential carrier embryos and variable number of 

available recipients- no biopsy. 

 

Scenario D4: 

 Number of recipients dependent on the number of embryos available to be transferred (1.5 

times the number of embryos to transfer) 

 50 Potential Carrier embryos 

 Biopsy of embryos 

 All non-carrier embryos after biopsy are available for transfer 

 True probability of carrier status: 50% 

 20% cull rate on non-carrier ET calves 

 Non-carrier ET calves are marketed as seedstock 

 Culls and natural service sired calves are marketed as feeders 

 Carrier embryos sold for $50 
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Figure 86. NPV of an ET program with potential carrier embryos and a variable number of 

available recipients- biopsy. 

 

Figure 87. ANPV of an ET program with potential carrier embryos and a variable number of 

available recipients- biopsy. 
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Figure 88. ROI of an ET program with potential carrier embryos and variable number of 

available recipients- biopsy. 
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Table 146. Mode, 5th percentile, 25th percentile, median, 75th percentile, 95th percentile, mean, 

and standard deviation of the NPV, ANPV, and ROI of an ET program with potential carrier 

embryos and a variable number of available recipients. 

NPV ($) NO BIOPSY BIOPSY 

Mode (37,274.23) (16,851.17) 

5% (52,949.87) (29,309.52) 

25% (40,447.90) (18,623.08) 

Median (27,616.05) (8,552.54) 

75% (8,502.19) 6,950.01 

95% 40,765.76 46,596.80 

Mean ± 90% C.I. (19,541.70) ± 172.46 (1,909.28) ± 142.72 

SD 33,152.55 27,227.31 

ANPV ($) NO BIOPSY BIOPSY 

Mode (20,046.26) (9,062.64 

5% (28,476.70) (15,762.80) 

25% (21,753.08) (10,015.58) 

Median (14,852.05) (4,599.60) 

75% (4,572.52) 3,737.75 

95% 21,924.02 25,059.98 

Mean ± 90% C.I. (10,509.62) ± 92.75 (1,026.82) ± 76.75 

SD 17,829.60 14,642.98 

(cont.) 
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Table 146 (cont.). Mode, 5th percentile, 25th percentile, median, 75th percentile, 95th 

percentile, mean, and standard deviation of the NPV, ANPV, and ROI of an ET program with 

potential carrier embryos and a variable number of available recipients. 

ROI (%) NO BIOPSY BIOPSY 

Mode -14.4 -5.3 

5% -23.0 -18.8 

25% -15.9 -7.7 

Median -8.6 3.6 

75% 2.4 20.8 

95% 30.4 64.3 

Mean ± 90% C.I. -4.0 ± 0.1 10.9 ± 0.155 

SD 18.9 29.6 

Probability of Negative 

Return 
70.9 42.5 
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Scenario D1 and Scenario D2- Supporting Tables  

Table 147. Distribution of the number of full term ET bred females, natural sire bred females, 

and open females associated with Scenario D1 and Scenario D2. 

Name Worksheet Graph Min Mean Max 5% 95% 

Number of ET 

Bred Recipients-

Clean 

No Biopsy IVD 

Embryo 

Production 

 

 
0 13.37944 25 7 20 

Number of ET 

Bred Recipients-

PC 

No Biopsy IVD 

Embryo 

Production 

 

0 13.62407 34 6 22 

Number of Bull 

Bred Recipients 

No Biopsy IVD 

Embryo 

Production 

 

2 25.77448 58 14 38 

Number of Open 

Recipients 

No Biopsy IVD 

Embryo 

Production 

 

0 7.247525 25 1 14 

Number of ET 

Bred Recipients 

IVD Biopsied 

Embryo 

Production 

 

0 22.00482 54 11 34 

Number of Bull 

Bred Recipients 

IVD Biopsied 

Embryo 

Production 

 

4 30.21978 60 18 43 

Number of Open 

Recipients 

IVD Biopsied 

Embryo 

Production 

 

0 7.80584 29 1 15 

Number of 

Saleable IVDC 

Embryos 

IVD Biopsied 

Embryo 

Production 

 

8 24.99996 40 19 31 
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Table 148. Distribution of the number of ET calves, marketable et bull calves, and marketable 

ET heifer calves, generated by Scenario D1 and Scenario D2. 

Name Worksheet Graph Min Mean Max 5% 95% 

ET Calves-Clean 
No Biopsy Embr 

US Develop 

 

 
0 12.01166 25 6 18 

ET Calves-PC 
No Biopsy Embr 

US Develop 

 

0 12.23158 32 5 20 

Marketable ET 

Bull Calves-Clean 

No Biopsy Embr 

US Develop 

 

0 4.8063 16 1 9 

Marketable ET 

Heifer Calves-

Clean 

No Biopsy Embr 

US Develop 

 

0 4.8065 15 1 9 

Marketable ET 

Bull Calves-PC 

(Clean) 

No Biopsy Embr 

US Develop 

 

0 2.472689 12 0 6 

Marketable ET 

Bull Calves- PC 

(Clean) 

No Biopsy Embr 

US Develop 

 

0 2.565951 14 0 7 

ET Calves 

Biopsied IVD 

Embryo US 

Develop 

 

0 19.75538 47 9 31 

Marketable ET 

Bull Calves 

Biopsied IVD 

Embryo US 

Develop 

 

0 7.90096 25 3 14 

Marketable ET 

Heifer Calves 

Biopsied IVD 

Embryo US 

Develop 

 

0 7.89988 25 3 14 
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Table 149. Distribution of the total annual expense, total annual revenue, and annual cash flow 

associated with the production of developed ET calves via Scenario D1 and Scenario D2. 

Name Worksheet Graph Min Mean Max 5% 95% 

IVD Unsexed 

Embryos- 

Frozen / 

Total Annual 

Expense 

Total 

Expenses- 

Biopsied 

Embryo 

 

 
31,977.82 44,297.99 54,544.65 39,825.81 48,512.29 

IVD Unsexed 

Embryos- 

Biopsied- 

Frozen / 

Total Annual 

Expense 

Total 

Expenses- 

Biopsied 

Embryo 

 

38,558.50 52,042.03 64,706.40 46,780.76 57,196.59 

IVD Unsexed 

Embryos- 

Frozen / 

Total Annual 

Revenue 

Cash Flow- 

Biopsied 

Embryos 

 

39,968.38 122,607.50 1,025,847.00 69,799.05 218,987.30 

IVD Unsexed 

Embryos- 

Biopsied- 

Frozen / 

Total Annual 

Revenue 

Cash Flow- 

Biopsied 

Embryos 

 

43,678.26 128,278.20 1,000,104.00 71,422.89 232,036.50 

IVD Unsexed 

Embryos- 

Frozen / 

Annual Cash 

Flow 

Cash Flow- 

Biopsied 

Embryos 

 

640.59 78,308.80 978,955.40 26,704.48 173,428.10 

IVD Unsexed 

Embryos- 

Biopsied- 

Frozen / 

Annual Cash 

Flow 

Cash Flow- 

Biopsied 

Embryos 

 

(3,062.64) 76,231.64 944,212.40 21,503.89 178,069.70 
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Scenario D3 and Scenario D4- Supplemental Tables 

Table 150. Distribution of the number of full term ET bred females, natural sire bred females, 

and open females associated with Scenario D3 and Scenario D4. 

Name Worksheet Graph Min ($) Mean ($) Max ($) 5% ($) 95% ($) 

Number of ET 

Bred Recipients 

No Biopsy 

Embryo 

Production 

 

0 26.76442 48 15 38 

Number of Bull 

Bred Recipients 

No Biopsy 

Embryo 

Production 

 

13 38.91462 70 27 52 

Number of Open 

Recipients 

No Biopsy 

Embryo 

Production 

 

0 9.34408 30 2 17 

Number of ET 

Bred Recipients 

IVD 

Biopsied 

Embryo 

Production 

 

0 11.00178 32 5 18 

Number of Bull 

Bred Recipients 

IVD 

Biopsied 

Embryo 

Production 

 

3 21.732 50 13 31 

Number of Open 

Recipients 

IVD 

Biopsied 

Embryo 

Production 

 

0 5.08658 21 0 11 
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Table 151. Distribution of the number of ET calves, marketable ET bull calves, and marketable 

ET heifer calves generated by Scenario D3 and Scenario D4. 

Name Worksheet Graph Min ($) Mean ($) Max ($) 5% ($) 95% ($) 

ET Calves 

No Biopsy 

Embr US 

Develop 

 

 
0 24.02204 47 13 35 

Marketable ET 

Bull Calves 

No Biopsy 

Embr US 

Develop 

 

0 4.81574 18 1 9 

Marketable ET 

Heifer Calves 

No Biopsy 

Embr US 

Develop 

 

0 4.81884 18 1 9 

ET Calves 

Biopsied 

IVD 

Embryo US 

Develop 

 

0 9.8756 29 4 17 

Marketable ET 

Bull Calves 

Biopsied 

IVD 

Embryo US 

Develop 

 

0 3.94888 18 1 8 

Marketable ET 

Heifer Calves 

Biopsied 

IVD 

Embryo US 

Develop 

 

0 3.9523 19 1 8 
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Table 152. Distribution of the total annual expense, total annual revenue, and annual cash flow 

associated with the production of developed ET calves via Scenario D3 and Scenario D4. 

Name Worksheet Graph Min ($) Mean ($) Max ($) 5% ($) 95% ($) 

IVD 

Unsexed 

Embryos- 

Frozen / 

Total 

Annual 

Expense 

Total 

Expenses- 

Biopsied 

Embryo 

 

 39,909.92  53,079.17  66,642.56  47,838.77  58,084.00  

IVD 

Unsexed 

Embryos- 

Biopsied- 

Frozen / 

Total 

Annual 

Expense 

Total 

Expenses- 

Biopsied 

Embryo 

 

17,104.94  34,272.01  53,144.80  27,119.58  41,686.20  

IVD 

Unsexed 

Embryos- 

Frozen / 

Total 

Annual 

Revenue 

Cash Flow- 

Biopsied 

Embryos 

 

51,242.01  108,023.50  720,438.90  70,522.75  175,400.70  

IVD 

Unsexed 

Embryos- 

Biopsied- 

Frozen / 

Total 

Annual 

Revenue 

Cash Flow- 

Biopsied 

Embryos 

 

17,645.59  71,613.38  1,032,128.00  38,186.09  129,788.70  

IVD 

Unsexed 

Embryos- 

Frozen / 

Annual 

Cash 

Flow 

Cash Flow- 

Biopsied 

Embryos 

 

(1,686.49) 54,943.56  665,326.60  18,680.47  121,215.90  

IVD 

Unsexed 

Embryos- 

Biopsied- 

Frozen / 

Annual 

Cash 

Flow 

Cash Flow- 

Biopsied 

Embryos 

 

(8,563.00) 37,287.13  987,443.40  7,175.79  93,052.59  

 


