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Abstract 

Crop assessment and monitoring is important to crop management both at crop 

production level and research plot level, such as high-throughput phenotyping in breeding 

programs. Optical sensors based agricultural applications have been around for decades and have 

soared over the past ten years because of the potential of some new technologies to be low-cost, 

accessible, and high resolution for crop remote sensing which can help to improve crop 

management to maintain producers’ income and diminish environmental degradation. The 

overall objective of this study was to develop methods and compare the different optical sensors 

in crop assessment and monitoring at different scales and perspectives.  

At crop production level, we reviewed the current status of different optical sensors used 

in precision crop production including satellite-based, manned aerial vehicle (MAV)-based, 

unmanned aircraft system (UAS)-based, and vehicle-based active or passive optical sensors.  

These types of sensors were compared thoroughly on their specification, data collection 

efficiency, data availability, applications and limitation, economics, and adoption. 

At research plot level, four winter wheat experiments were conducted to compare three 

optical sensors (a Canon T4i® modified color infrared (CIR) camera, a MicaSense RedEdge® 

multispectral imager and a Holland Scientific® RapidScan CS-45® hand-held active optical 

sensor (AOS)) based high-throughput phenotyping for in-season biomass estimation, canopy 

estimation, and grain yield prediction in winter wheat across eleven Feekes stages from 3 

through 11.3. The results showed that the vegetation indices (VIs) derived from the Canon T4i 

CIR camera and the RedEdge multispectral camera were highly correlated and can equally 

estimate winter wheat in-season biomass between Feekes 3 and 11.1 with the optimum point at 

booting stage and can predict grain yield as early as Feekes 7. Compared to passive sensors, the 



  

RapidScan AOS was less powerful and less temporally stable for biomass estimation and yield 

prediction. Precise canopy height maps were generated from a CMOS sensor camera and a 

multispectral imager although the accuracy could still be improved. Besides, an image 

processing workflow and a radiometric calibration method were developed for UAS based 

imagery data as bi-products in this project. 

At temporal dimension, a wheat phenology model based on weather data and field 

contextual information was developed to predict the starting date of three key growth stages 

(Feekes 4, 7, and 9), which are critical for N management. The model could be applied to new 

data within the state of Kansas to optimize the date for optical sensor (such as UAS) data 

collection and save random or unnecessary field trips. Sensor data collected at these stages could 

then be plugged into pre-built biomass estimation models (mentioned in the last paragraph) to 

estimate the productivity variability within 20% relative error. 
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Chapter 1 - Introduction 

 

 Precision farm management 

Crop production strategies have changed dramatically over the past decades to meet the 

challenge of increasing agricultural productivity while reducing inputs, maximizing profits, and 

mitigating environmental degradation (Zhang et al., 2002). This requires the agriculture systems 

to be resource-efficient by integrating tools, technologies, and information management systems 

that come under the precision agriculture (PA) concept (Whelan et al., 1997), which is a farming 

management concept based on observing, measuring, and responding to inter and intra-field 

variability in soil and crops to optimize profitability and protect the environment. 

The general components of PA practice are data collection, field variability mapping, 

decision making, and finally management practice (Zhang et al., 2002). To get accurate and 

consistent data during the growing season over matching spatial scale and to understand intra-

field variability in assessing potential productivity are the foundations of decision making and 

final field practice in real world PA. Along with the advances in global position system (GPS), 

geographic information system (GIS), and variable rate technology (VRT), remote sensing data 

has provided powerful analysis tools for PA, which has changed the traditional way of farming 

(Mulla, 2013). 

 

 High-throughput phenotyping in breeding program 

Perhaps the greatest challenge of plant science and crop improvement in the 21st century 

is predicting how a plant’s appearance (phenotype) is dictated by its genetic make-up (genotype) 

(Davey et al., 2011). Spectacular advances in “next generation” DNA sequencing are rapidly 
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reducing the costs of genotyping (Furbank et al.,2011). In contrast, methods for rapid 

characterization of plant traits (phenotypes) have evolved little over the past 30 years (White et 

al., 2012), In the area of phenotyping, two major challenges are 1) breeding programs spend 

tremendous effort manually collecting routine phenotypic data (Araus et al., 2014).  2) the 

repeated measurements of dynamic traits can be invalid. As a result, accurate measurement of 

biophysical variables at large scale remains problematic, even though such measurements are 

critical for assessing optimal plant characteristics for screening germplasm for tolerances.  

Recognition of the phenotyping constraint has stimulated development of high-

throughput phenotyping (HTP) that seeks to accurately characterize large numbers of individuals 

or populations using a fraction of time and labor of manual phenotyping methods. An increasing 

number of scientists are turning to the use of remotely sensed measurements for characterizing 

plant phenotypes (Montes et al., 2007; Seiffert et al., 2010; Munns et al., 2010).  

 

 Agronomic information 

To link remote sensing data with agronomic information, first we need to understand 

what are the agronomic information. As reviewed by Moran et al. (1997), the three basic 

categories of agronomic information required by PA are: 

 

 Seasonally stable conditions 

Seasonally stable conditions are those that are relatively constant through the growing 

season and only need to be determined preseason and simply updated, when and if necessary. 

These conditions include but are not limited to, field boundaries, historical yield, crop residue, 

crop type, soil properties (e.g., type, texture, water holding capacity, organic matter), water 
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availability (rain-fed or irrigated field), terrain, etc. These seasonal stable conditions provide 

detailed information about the current state of the field and are great indicator of yield potentials 

(the yield of an adapted crop variety or hybrid when grown under favorable conditions without 

growth limitations from abiotic and biotic stresses).  

 

 Seasonally variable conditions 

Seasonally variable conditions are those that change continually within the season and 

need to be determine these conditions numerous times during the season for proper management. 

These conditions include crop status (e.g. development, growth, nutrient, canopy temperature, 

water content, disease, weed, pests), and soil conditions (e.g. soil moisture, soil temperature). 

 

 Cause of yield variability 

This type of information requires to diagnose the cause of the crop yield variability and 

normally encompass both seasonally stable and seasonally variable conditions. With this 

information, people can develop models and algorithms to assist the final management decision 

by answering the “4R” principle questions (or part of them) --What is the right product to apply? 

When is the right time to apply? Where is the right place to apply? And what is the right rate to 

apply? 

 

 Linking Remote Sensing with Agronomic Information 

 Reflectance of crop and soil 

The basic underlying premise of remote sensing applications in PA is that the variations 

within the spectral reflectance and absorption collected by remote sensing tools can be used to 
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detect the agronomic information mentioned above (Warren and Metternicht, 2005). There is 

fairly good amount of evidence showing that they can. For example, Figure 1.1, 1.2, 1.3, and 1.4 

show the example of reflectance of crop and soil at different conditions. 

 
 

Figure 1.1 Comparison of the spectral reflectance curve of plant samples at different 

growth stages. 
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Figure 1.2 Comparison of the spectral reflectance curve of plant samples with different 

water content. 

 

Figure 1.3 Comparison of the spectral reflectance curve of soil samples with different soil 

texture. 

 

Figure 1.4 Comparison of the spectral reflectance curve of soil samples with different 

moisture content. 
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For crop, the blue and red wavelengths are absorbed for photosynthesis while the green is 

reflected by chlorophyll content. NIR wavelength, on the other hand, passes through the surface 

of the leaf (the palisade tissue) and scatters in both upward (reflected) and downward 

(transmitted) direction as a function of LAI, cell turgor, leaf thickness, internal air, and water 

content. The transmitted NIR can then be reflected back by the layers of leaves along the passage 

and the soil background. Therefore, the reflectance is lower in visible spectrum and higher in the 

NIR spectrum. As a result, healthy crops will show higher reflectance in NIR and lower 

reflectance in visible spectrum while stressed crops will have a lower reflectance in NIR and a 

broadening reflectance peak in the whole visible spectrum (by carotenoid and xanthophyll) due 

to the lower chlorophyll content (Pinter et al., 2003). 

For soil, the reflectance increases monotonically from visible to NIR with varying slopes 

depending on the soil properties such as soil texture (Figure 1.3) and soil moisture (Figure 1.4). 

It is higher than crop in visible spectrum and lower than crop in NIR, which can be used to 

differentiate soil from crops. 

 

 Vegetation indices (VIs) 

To make these signal even stronger, people developed different vegetation indices (VIs) 

through the past few decades. For example, the most widely used vegetation index, Normalized 

Difference Vegetation Index (NDVI), was designed based on this feature (Rouse Jr et al., 1974). 

The advantage and limitation of different vegetation indices have been reviewed by many 

researchers (Viña et al., 2011; Elvidge et al., 1995; Hansen & Schjoerring, 2003) and will not be 

covered in this study. With the help of vegetation indices and ground truth measurements in the 

field, we already can build empirical models to estimate crop biophysical parameters such as leaf 
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area index (LAI) (Haboudane et al., 2004), fraction of canopy cover (fCOVER) (Baret et al., 

2007; Bacour et al., 2006), chlorophyll content (Haboudane et al., 2002; Wu et al., 2002), and 

above ground biomass (AGB) (Hansen & Schjoerring, 2003; Mutanga & Skidmore, 2004), 

which have big impact on the final grain yield. These biophysical parameters can be furtherly 

utilized as canopy state variables and integrated into the more sophisticated crop simulation 

models (CSMs) to make more robust estimations and predictions on the crop growth processes at 

a large scale (Patel et al., 2001; Reynolds et al., 2000). 

 

 Remote Sensing Data Quality 

In order to get to this point, we need to quality control each process along the way. The 

first and the most critical thing is the quality of the data. Remote sensing data quality are 

evaluated by four resolutions. Each of them is highly correlated with one component of the “4R” 

principle mentioned earlier. 

 

Spatial Resolution: (coupled with Right place) 

Spatial resolution is a measure of the area or size of the smallest dimension on the Earth’s 

surface (check with RS bible). Figure 1.5 shows the examples of a coarse resolution image and a 

fine resolution image. If one wants to make nitrogen recommendation for the different plots 

shown on Figure 1.5.b, the resolution of Figure 1.5.a will not be fine enough and use of it will 

result in placing the nitrogen fertilizer at the wrong location and degrade the crop performance. 
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a                                                                   b 

Figure 1.5 Examples of a coarse resolution and a fine resolution image taken at the same 

field. a. 2 cm resolution RGB image taken at 60 m above ground level (AGL); b. 10 m 

resolution RGB image taken by Sentinel-2. 

 

Temporal Resolution: (Coupled with Right time) 

Temporal resolution is a measure of revisit period or how often does a sensor collect data 

for the same area. For example, the temporal resolution for Landsat 8 satellite is 16 days (USGS, 

2017), which means, you can get one Landsat 8 image for the same area every 16 days. In PA, 

this is not frequent enough because most of the field practice is growth stage sensitive such as 

herbicides application---some herbicides can only be applied before or after a certain growth 

stage without causing any trouble to the crop. If you miss the time, you miss the yield potential. 

In addition, it is always better to respond to a field issue as soon as possible before the situation 

get worse.  

 

Radiometric Resolution: (Coupled with Right rate) 

Radiometric resolution is a measure of the sensitivity of a sensor to the magnitude of the 

electromagnetic energy or the number of intensity levels that a sensor can use to record a given 

signal. Basically, this is answering the question, how many levels of green of corn leaves a 

sensor can detect. For the passive optical sensors, the radiometric resolution often refers to the 

number of divisions of bit depth (for example, 255 for 8-bit, 65536 for 16-bit, and so on that n-
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bit = nth-1) in data collected by a sensor. The Figure 1.6 shows the example of a satellite image 

with two different radiometric resolutions. The 8-bit image on the left delivers more shades in 

each band with 256 in total while the 2-bit image on the right lost a lot of details or sub 

differences.  

 

   

                                   a                                                                    b 

Figure 1.6 Different radiometric resolution. a. 8-bit Sentinel-2 image; b. 2-bit Sentinel-2 

image. 

 

Another terminology, dynamic range, has been used frequently in sensor comparison, which is 

the ratio between the maximum output signal level and the noise floor at minimum signal 

amplification (noise floor is the root mean square noise level in a black image.) Dynamic range 

is not equal to the radiometric resolution such that a 12-bit sensor does not necessarily have 12 

bits of dynamic range because this does not consider the noise. The causality is reversed; if a 

camera has 12-bit of dynamic range that the A/D converters need to be at least 12 bits as well 

and preferably higher. DR represents the camera’s ability to display/reproduce the brightest and 

darkest portions of the image and how many variations in between which is critical in variability 

mapping for both soil and crop. 
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Spectral Resolution: (Coupled with Right product) 

Spectral resolution is the number of the spectral bands and the range of each band. 

Different waveband has different applications. Red and NIR bands are useful for detecting the 

nitrogen deficiency while thermal band is useful for detecting water stress. Until we figure out 

what is the core problem of the crop can we determine what product to use. 

 

In PA, spatial resolution and temporal resolution have the higher priority because farm 

management is time sensitive and space sensitive. Also, the other two resolutions, spectral 

resolution and radiometric resolution, are determined by the sensor design thus cannot be 

adjusted while spatial and temporal resolution may be adjusted by flying the sensor at different 

altitudes with different frequencies. For example, aerial images taken at 500 m and 1000 m AGL 

have different spatial resolution and the temporal resolution can be either one day or one week, 

which only depend on how often you want to collect data with a certain budget. 

 

 Outlines 

Chapter 2 reviewed the current status of different optical sensors used in precision crop 

production including satellite-based, manned aerial vehicle (MAV)-based, unmanned aircraft 

system (UAS)-based, and vehicle-based active or passive optical sensors.  These types of sensors 

were compared thoroughly on their specification, data collection efficiency, data availability, 

applications and limitation, economics, and adoption. 

Chapter 3 focused on one of the components from Chapter 2, “application”, and dived 

deeper. This chapter concentrated on the research plot level, developed methods to do winter 
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wheat high-throughput phenotyping including in-season biomass estimation, canopy estimation, 

and grain yield prediction for three different optical sensors, and compared their performance.  

Chapter 4 focused on one of the components from Chapter 3, “biomass estimation”, and 

dived deeper. A wheat phenology was developed to predict the starting dates of certain growth 

stages to optimize the date for sensor data collection, which could be integrated to biomass 

models developed in Chapter 3 to estimate the productivity variability at Feekes 4, 7, and 9. 

Chapter 5 is a summary chapter. 
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Chapter 2 - Comparison of Different Remote Sensing Tools for Site-

specific Crop Management: A Review 

 

 Introduction 

Crop production strategies have changed dramatically over the past decades to meet the 

challenge of increasing agricultural productivity while reducing inputs, maximizing profits, and 

mitigating environmental degradation (Zhang et al., 2002). This requires the agriculture systems 

to be resource-efficient by integrating tools, technologies, and information management systems 

that come under the precision agriculture (PA) concept (Whelan et al., 1997), which is a farming 

management concept based on observing, measuring, and responding to inter and intra-field 

variability in soil and crops to optimize profitability and protect the environment. 

The general components of PA practice are data collection, field variability mapping, 

decision making, and finally management practice (Zhang et al., 2002). To get accurate and 

consistent data during the growing season over matching spatial scale and to understand intra-

field variability in assessing potential productivity are the foundations of decision making and 

final field practice in real world PA. Along with the advances in global position system (GPS), 

geographic information system (GIS), and variable rate technology (VRT), remote sensing data 

has provided powerful analysis tools for PA, which has changed the traditional way of farming 

(Mulla, 2013). 

PA requires accurate mapping of seasonally stable crop management units, such as field 

boundary, soil type, historical yield; monitoring of seasonally variable information, such as soil 

moisture and nutrients, crop growth and development, crop stress caused by nutrient deficiency, 

disease, weeds, pests, and extreme weather conditions; as well as incorporating and interpreting 
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of these information to optimize the management practice and promote the final grain yield. For 

this wide range of applications, the first and foremost task is to select and combine remote 

sensing data, which comes from an abundant variety of platforms and sensors, that best suits the 

specific application in the farm. As showed in this section, remote sensing has been providing 

valuable insights to PA. These remote sensing data can be collected from an abundant series of 

sensors. Here we categorized the sensors through the platforms they are mounted on as shown in 

Figure 2.1.  

 
 

Figure 2.1 Satellite-based, MAV (manned aerial vehicle)-based, UAV (unmanned aerial 

vehicle)-based, and vehicle-based remote sensing platforms for precision agriculture. 
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The objective of this chapter is to provide a thorough survey on the different remote 

sensing tools for site-specific crop management in real world crop production, and show their 

advantages, limitations, and tradeoffs.  

 

 Sensors/Vendors to be used in comparisons 

To compare remote sensors mounted on different platforms, we selected the most widely 

used sensors or sensor representatives for each category.  

For vehicle-based remote sensing, there are two types of sensors. One is for sensing crops 

and the other is for sensing soil. We selected RapidScan CS-45 (Holland Scientific, Inc., 

Lincoln, NE), GreenSeeker Model 505 (NTech Industries, Inc., Ukiah, CA), Hand-held 

Greenseeker (Trimble Inc., Sunnyvale, CA) and Crop Circle ACS-430 (Holland Scientific, Inc., 

Lincoln, NE) as the representative for crop sensors while selected Veris MSP3 (Veris 

technologies, Inc, Salina, KS) as representative for soil sensors. These sensors were intensively 

used and were accepted by the researchers (Aranguren et al., 2016; Cordero et al., 2016; Raper et 

al., 2013; Osborne, 2007; Deery et al., 2014; Arora et al., 2013; Tremblay et al., 2011; Amaral et 

al., 2015; Fulton et al., 2011; Grisso et al., 2005).  

For UAV-based remote sensing, we are only interest in the UAVs that normally fly under 

400 ft (122 m) above ground level (AGL). In terms of the sensors, we selected three 

multispectral imagers: a RedEdge (MicaSense Inc., Seattle, WA), a Parrot Sequoia (Parrot SA 

Inc., Paris, France), a Tetracam Micro-MCA (Tetracam Inc., Chatsworth, CA), and a thermal 

camera--a FLIR VUE Pro (640 x 512, 30 hz, 13 mm, FLIR System Inc., Wilsonville, OR). All of 

these sensors are specifically designed for UAV power support. We also included an example of 

modified digital cameras--a Canon T4i digital single-lens reflex (DSLR) camera (Canon Inc, 
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Tokyo, Japan) modified by LDP LLC., Carlstadt, NJ to allowing the record of NIR light. Most 

modified cameras are done on Canon and Sony Point-Shot cameras and some lightweight DSLR 

cameras (Torres-Rua, 2017).  

For MAV-based sensing, we did not select the sensors since it is normally cheaper to 

outsource the imagery data from imaging service companies instead of customizing the sensor 

and flying the mission him or herself. These companies normally have their own planes, sensors, 

and customized image processing workflow. We picked three of the leading MAV imaging 

companies in the industries for the comparisons. They are Cornerstone Mapping Inc., Roca, NE, 

Ceres Imaging Inc., Oakland, CA, and TerrAvion Inc., San Leandro, CA.  

For satellite-based remote sensing, we only include the satellite with high spatial 

resolution (less than 10 m) which is suitable for PA and currently available (Table 2.1). There are 

some other high resolution satellites out there that were excluded from the comparisons due to 

different reasons. i.e. IKONOS (4 m) ceased new collections in January 2015; SPOT-5 (6 m) has 

been decommissioned as of March 2015.  

There are some other sensors that are really useful for agriculture such as LiDAR (Light 

Detection and Ranging), hyperspectral cameras, synthetic aperture radar (SAR), and laser 

scanner. But they are not readily available to PA due to high expenses, complex of operation and 

data process, or huge payload that won’t fit an UAV or a MAV. Also, their application in PA are 

still in the development phase or proof-of-concept phase (Whitehead et al., 2014), therefore, they 

will not be reviewed in this paper. 

In the sections followed, we further compared different platforms on multiple dimensions 

including specification, data collection efficiency and data availability, applications, limitations, 

economics, and adoption. 
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 Comparisons 

 Section 1: Specification 

The specifications of sensors mounted on different remote sensing platforms were 

summarized in Table 2.1. Vehicle-based sensors normally have three bands or less, including a 

visible band (mainly Red), a NIR band, and sometimes a Red edge band on some newly 

developed sensors. Literature suggested that suggested VIs using red edge wavelengths, such as 

NDRE, are more efficient than NDVI in identifying N variability in crops (Shiratsuchi et al., 

2011; Feng et al. 2016; Rosa et al. 2016) and can be used for vegetation stress studies (Hruska et 

al. 2012). This band combination is sufficient for applications such as assessing the crop nitrogen 

status but will have limitations on other applications that requires other bands. e.g. water stress 

detection requires a thermal band which cover the water absorption band in the spectrum; crop 

residue detection requires wavelengths (around 2100 nm) that are sensitive to cellulose and 

lignin in the residue (Daughtry, 2001). UAV, MAV, and Satellite-based sensors normally are 

capable to collect data at multiples bands (4+), which provide possibilities to unlock more 

applications. A detailed evaluation of optimal wavebands for different PA application is 

provided by Thenkabail et al. (2002), which is recommended to read. 
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Table 2.1 Comparisons of sensor specifications mounted on different remote sensing 

platforms for precision agriculture. 

 

The spatial resolution is negatively correlated with the distance between the sensor 

position and the target or the flying altitude (except vehicle-based active sensors since they 

collect point samples with a certain frequency instead of taking image). Finer resolution from 

UAV based sensors has the privilege to better detect the sub details in the field such as weed 

detection (weed or not weed) and even weed classification (which type/species of weed). The 

spatial resolution of MAV-based sensor is not as fine as UAV-based sensor but still very fine (20 

cm for multispectral, 100-200 cm for thermal band). This is the sweet point for MAV-based 

sensors, they can collect data much more efficiently and keep the data quality as high as UAV-

based ones or very close to it. A detailed comparison process of data collection efficiency is 

provided below. 
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 Section 2: Data collection efficiency and data availability 

The technology users or decision makers needs to know the area that PA tool can cover 

per unit time or effective rate (Griffin et al., 2005). Working rate was defined as below and used 

to measure the data collection efficiency: 

 

𝑊𝑅 =  𝑆𝑝𝑒𝑒𝑑 (𝑚𝑝ℎ) 𝑥 𝑊𝑖𝑑𝑡ℎ (𝑓𝑡) 𝑥 𝐹𝐸 (%) / 8.25          𝐸𝑞. 2.1 

Where, 

WR = Working rate 

Speed = Ground speed of the equipment  

Width = Swath width that a sensor can capture 

FE = the field efficiency 

 

The field efficiency is the ratio of the amount of time that the equipment is actively 

conducting the role to the time that the equipment was devoted to the task including but not 

limited by warming up, changing batteries, set-up. When speed is expressed as mpg and width in 

feet, the product of all their parameters are divided by the constant 8.25 (assuming the units are 

in mpg and feet). The following table shows the working rate for Vehicle-based, UAV-based, 

and MAV-based optical sensors. 

Table 2.2 Comparisons of data collection efficiency for vehicle-based, UAV-based, and 

MAV-based optical sensor. FE: field efficiency, WR: working rate. 
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Data availability of different sensors are depending on their temporal resolutions. For 

vehicle, UAV, and MAV-based sensor, the temporal resolution is flexible. Data can be collected 

daily (extreme situation), weekly (key crop growth stages), or biweekly (less important growth 

stages). For satellite based sensors, the temporal resolution ranges from 3 days (RapidEye) to 6 

months (WorldView-2). Also the cloud coverage condition has a big impact on the data quality 

thus the data availability. An example of data availability comparison between a UAV-based 

sensor and the Sentinel-2 is provided below by Wang et al., 2017 (Table 2.3). The Sentinel-2 

data was selected because it is the best quality satellite data (spatially and temporally) for free by 

far. 

Table 2.3 Comparisons of a UAV-based sensor and the Sentinel-2 data availability on a 

wheat experiment at Manhattan, Kansas for 2015-2016 season. 

 

 

 Section 3: Application and limitation 

Table 2.4 Comparison of capability of UAV, MAV, Satellite, and Vehicle-based remote 

sensing on different site-specific precision agriculture applications. 
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UAV-based remote sensing application for various agriculture applications has soared 

over the last decade because of their potential to be a low-cost, accessible, and practical 

substitute for satellite and MAV for high resolution remote sense data. A variety of platforms 

have been developed: Fixed-wing, helicopter, multirotor, powered glider, powered parachute, 

assembled units from off-the-shelf parts, and commercial ready-to-fly UAVs (Myers et al., 

2015). A variety of sensors can be mounted on the UAVs for PA: regular off-the-shelf RGB 

digital cameras, custom-converted digital cameras that can sense NIR by simply removing an 

infrared filter, consumer grade multispectral imager, hyperspectral imaging systems, thermal 

cameras (Myers et al., 2015). The cost of each type of sensors has been declining as 

manufacturing processes are improved and new technologies are developed. Due to the high 

maneuverability, UAV-based remote sensing has been applied to lots of application including 

but are not limited to: crop disease detection (Garcia-Ruiz et al., 2013; Franke & Menz, 2007), 

assessment of crop nitrogen status (Stafford 2000; Berni et al. 2009a, b; Hunt 2005)  and water 

stress (Zarco-Tejada et al. 2012; Berni et al. 2009a; Gago et al., 2015),  weed detection (Gomez-

Casero et al. 2010), in-season biomass estimation and final grain yield prediction (Hunt 2005; 

Swain et al. 2010; Wang et al., 2017), estimation of soil properties such as soil organic matter, 
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soil surface moisture, and soil temperature (Chaves et al., 2015; Sona et al., 2016), determination 

of the relative density, canopy height estimation with the digital surface model (DSM) generated 

with ultra-high resolution imagery (Bendig et al., 2013, Bendig et al., 2014). In general, UAV-

based remote sensing have been used extensively in PA, for much higher spatial resolution 

(down to cm), flexible data acquisition time, and flexible choice of sensors specific application. 

While the UAV-based PA applications have seen tremendous growth in recent years, 

there are still some shortcomings that need to be aware of. Chief among these are the fact that 

most sensors they carry for PA applications are passive optical sensors such as multispectral 

cameras, converted digital cameras. They lack of direct measurement of reflectance which is the 

remotes sensing base for PA, and their measurements, brightness values, are influenced by the 

camera setting and ambient light condition. To be able to get consistent measurements and 

compared them across time, space, and different sensors. Effective radiometric calibration should 

be performed. Some calibration methods were developed for multispectral cameras and modified 

digital cameras (Wang et al., 2017; Wang et al., 2015).  These calibration processes work under 

the assumption that the light condition does not change during a single flight, which is quite 

possible for a UAV mission since it does not take too long to cover a field (data collection 

efficiency was provided in Table 2) and the battery will run out of juice at a certain point (for 

multirotor, it is about 39 minutes max). However, there are still some circumstances this 

assumption does not hold true. For example, the flight mission is using a fixed-wing to cover a 

gigantic area at once which will last over one hour and during which the light condition is 

changing rapidly, or the mission is just happening at a place where the light condition is 

changing so rapidly. For multispectral cameras, there is trend to integrating a downwelling light 

sensor (DLS) to the multispectral imagers such as Micasense Rededge and Parrot Sequoia 
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(www.micasense.com; www.parrot.com ) to improve reflectance calibration in situations where 

ambient light conditions are changing in the middle of a flight . The evaluation of the reliability 

or efficiency of this type of DLS has not been seen on any science publication. Compared to 

MAV, UAV usually has much less payload capacity which limits the selection of bulky sensors 

such as LiDAR and SAR, but newly developed high end sensor systems are getting lighter, more 

compact, and more user-friendly, which provides more opportunities in UAV-based applications. 

The trade-off between spatial resolution and processing time should be noted as the image 

processing time increases dramatically with spatial resolution, but too low of a resolution limits 

the ability to differentiate sub-detail in the field. It is important to optimize the path planning and 

sensing strategies to minimize data redundancy and processing time when using UAV-based 

sensing.  

Another thing people are interested is the Federal Aviation Administration (FAA) 

regulations on UAV use. On August 29, 2016, the awaited FAA regulation for civil unmanned 

aircraft, 14 CFR Part 107, took effect. While newsgathering drones are severely restricted, as 

well as food or package delivery via drones are effectively prohibited, agriculture and 

environmental uses have the least restriction under Part 107. They include crop dusting, livestock 

or wildlife tracking, and the inspection of crops, forests, or foliage. Environmental or agricultural 

drones are unlikely to encounter non-participating people. The line of sight restriction is not so 

burdensome. Nor should the 55-pound weight limit restrict operation. In sum, agricultural and 

environmental drone uses are generally permitted by Part 107 (Olsen 2017). 

 

 

 

http://www.micasense.com/
http://www.parrot.com/
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Satellite-based remote sensing has been applied to agriculture for decades at larger scale 

(regional, national). At sub-field level, because of the coarser spatial resolution compared to 

UAV and MAV based aerial imagery, only a few applications are feasible such as field mapping 

(Immitzer et al., 2016), phenology modeling (Duncan et al., 2015), biomass estimation (Kross et 

al., 2015), chlorophyll content and N status assessment (Clevers & Gitelson, 2013), and yield 

forecasting (Kolotii et al., 2015).  

Most of the high-resolution satellites are not equipped with the thermal band and the 

spatial resolution of the thermal band on available satellites are usually too coarse (e.g. 60 m for 

Landsat &, 100 m for Landsat 8, and 90 for ASTER) to assess crop water stress at field scale. 

Therefore, MAV-based and UAV-based are the more practical choice in thermal irrigation 

management applications (Moran et al., 1994). Nutrient deficiencies are hard to be detected with 

satellite imagery because they rarely occur uniformly across a field and often need to be 

distinguished against background variation in canopy density using advanced analysis tools such 

as partial least-squares regression and spectral mixing techniques (Pinter Jr et al., 2003). Related 

studies are usually carried out with MAV-based and UAV-based platforms (Maresma et al., 

2016). 

The crop diseases and insect infestation detection normally require high spatial resolution 

and high spectral resolution such as hyperspectral imaging is preferred (Singh et al., 2009), 

which can provide assistance on differentiating crop diseases from other causes of plant stress 

such as nutrient deficiency and water stress. Weed detection requires high spatial resolution and 

it is time sensitive--they can only be detected at some stages and during when weeds have unique 
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growth patterns different from surrounding vegetation. Low spatial resolution from satellites and 

MAVs cannot detect small infestation and weeds mixed with crops (Lass et al., 2009).  

Generally speaking, Satellite-based remotes sensing in PA are still limited by the coarse 

spatial resolution, cloud interference during image acquisition, and slow turnaround. The sub-

field variability oriented applications challenged the effective use of satellite-based remote 

sensing in PA. The sensitivity of high resolution imagery to canopy variations needs to be further 

tested (Wu et al., 2007) before they can be more widely used in making timely management 

decisions. 

MAV-based remote sensing application in PA are rarely seen in publications because it 

is more expensive and difficult to do so. For researchers who want to do MAV related project, 

they have to face multiple challenges: 1) To get good sensors that can collect quality data at a 

medium altitude (500 m to 1500 m AGL), 2) To find a MAV that is suitable to carry the sensors 

and willing to do the modification to fit the sensors (such as cutting a hole on the bottom of the 

plane or removing the back seats to spare rooms for the sensors), 3) to find someone who can 

operate the sensor and do troubleshooting in the air, and 4) to be able to afford all the above 

things and labor. 

The number of publications of MAV-based PA applications are minimal does not mean 

that MAV cannot be used and widely used in PA. In fact, MAV-based remote sensing meet most 

of the requirement for PA applications and share some advantages with both UAV and satellite-

based remote sensing. The spatial resolution is very high (< 20 cm for multispectral and < 2 m 

for thermal), which is much higher than satellite-based sensors and very close to UAV (<10 cm). 

The data collection time is flexible (weekly or biweekly in growing seasons, www.terravion.com 

) just like UAV, but can collect data much more efficiently than UAV (Table 2). The sensor 

http://www.terravion.com/
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selection is also flexible due to the great payload capacity. You can have multispectral, thermal, 

LiDAR, and hyperspectral sensors all together mounted on the MAV and collecting data 

simultaneously, which UAV are not able to. We admit that it is neither feasible nor necessary to 

buy or pay everything in the 4-challenge-list mentioned earlier. However, with the blossom of 

PA, more and more companies started to provide MAV-based sensor data specifically for PA 

applications and the cost are reasonably low. Detailed cost analysis of different platforms will be 

provided in next section. Since the imagery products from third party companies are normally 

orthomosaics which is the final product after a series of image processing such as color 

correction, distortion correction, stitching, and geometric correction. It saves the labor and cost 

for image processing that usually involved in UAV imagery data. 

Since MAV-based multispectral cameras are passive sensors just like UAV-based ones. 

Radiometric calibration need to be performed before quantitative analysis. Residue detection, 

crop disease detection, weed detection, and insect infestation detection are still challenging to 

MAV-based remote sensing since the spatial resolution is not high enough to differentiate the 

sub difference in small area in the field. The ability of estimating canopy height will decrease as 

the flying altitude increase. DSM generated from MAV based multispectral imagery has very 

minimum sensitivity to canopy height since the imagery is collected at 500 m AGL or above. 

MAV-remote sensing does not have cloud block issue like satellite does, but the cloud shadow 

projected on part of the target field may pose a challenge when comparing the area in the shadow 

with the area not in the shadow. Compared to UAV and vehicle-based data collection, MAV 

flights mission are more difficult to coordinate. 
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Generally speaking, MAV-based remote sensing has huge potential in PA application due 

to its high spatial, temporal, and spectral resolutions and has some limitations in applications that 

targeting the sub difference in small areas within a field. 

Vehicle-based remote sensing are acceptable for lots of researchers and have been used 

to determine management zones and nitrogen status, estimate leaf area, detect green biomass in 

cereal crops, and estimate the soil organic matter (Tremblay et al., 2009; Shaver et al., 2010; 

Trotter et al., 2008; Fitzgerald, 2010; Wang et al., 2017; Erdle et al., 2011; Bricklemyer & 

Brown, 2010). Vehicle-based remote sensing normally are equipped with active sensors that use 

the internal light source and take reflectance measurements directly. No additional calibration is 

needed and can be used under any weather condition and anytime of a day while passive sensor 

data derived from UAV and MAV need to be collected within two hours of the solar noon for 

optimum performance. Also, the image processing is not required since vehicle-based active 

sensors output spectral reflectance (and VIs) directly and usually can be exported to a 

spreadsheet for immediate analysis. 

While the vehicle-based sensors are so easy to use, there are still some shortcomings that 

need to be aware of. The first and foremost is the low efficiency on data collection compared to 

aerial platforms (Table 2.2). Secondly, vehicle-based sensors take point samples at a certain 

frequency instead of taking images so the area did not get sampled need to be interpolated by 

some techniques such as inverse distance weighting (IDW) and Kriging. This interpolation can 

be unreliable when the distance between paths are too large because the variability between two 

data point is not linear but generic. At early growth stage, the values from active sensors are less 

reliable since the crop has not reached adequate coverage, soil is the main reflector and the noise 

source for crop assessment. Also, spectral resolution for vehicle-based sensors are normally low 
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(2 or 3 bands). As a results, the usage is limited to the applications only require these bands. 

Another drawback the vehicle-based remote sensing cannot avoid is that they will are destructive 

to the field and can cause soil compaction if data were collected on a regular basis. 

Generally speaking, vehicle-based remote sensing can be used in a few applications such 

as N assessment and biomass estimation that require minimum spectral resolution. They are not 

efficient to be used at larger scale. 

 

 Section 4: Economics 

This section compared the economics of different PA remote sensing tools at whole-farm 

level. In this comparison we used, 500 ac, the averaged Kansas farm size, as the farm size, 10 as 

the total number of optical sensor data collections in one growing season, and 4 years as the 

economic life of the PA remote sensing tool since this is the average use life for most cameras 

and sensors. 

From an economic perspective, all cost and benefits from PA technology use should be 

captured and analyzed to determine profitability. Understanding the cost and benefits of different 

PA tool is essential to determine the return on investment (ROI) as calculated in Eq.2.2:  

𝑅𝑂𝐼 = 𝐼𝐼 + 𝑃𝑉𝐶 + 𝑃𝑉𝐵                                                                  𝐸𝑞. 2.2 

where, 

 ROI = Return on Investment 

 II = Initial investment in the precision technology 

 PVC = Present Value of Costs 

PVB = Present Value of Benefits 
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The cost including the initial investment and the additional cost. The additional cost 

includes, but are not limited to, the data acquisition, travel, annual subscription(s) for image 

processing, information analysis, and the repairing and maintenance. The data acquisition cost of 

MAV and satellite-based data are included in the data purchase while UAV and vehicle-based 

data require separate data acquisition which involves labor cost. The labor cost not only occur 

during the data collections but also occur on the way to the targeted fields. Let us assume it will 

take about 1.5 hours to travel for a 500 ac farm for one data collection in the season. The 

following table shows the labor cost during data collection for UAV-based and Vehicle-based 

optical sensors where the rates were estimated by www.glassdoor.com using “UAV Operator” 

and “Field Data Collector” as the searching terms. 

Table 2.5 Labor cost during data collection for UAV-based and vehicle-based remote 

sensing for a 500 ac farm. 

 

Once the additional costs are determined, this information were then organized to do cost 

cash flow analysis. In terms of the ROI analysis for a PA tool, we used Present Value of Costs 

(PVC) to sum the yearly cost cash flow because this measurement does take into account the 

time value. Time value of money is the concept that $1 today is not worth the same to an 

individual as $1 at some time in the future. To calculate the PVC, the following formula was 

used: 

𝑃𝑉𝐶 =
𝐶𝐶𝐹1

(1 + 𝑖)1
+

𝐶𝐶𝐹2

(1 + 𝑖)2
+ ⋯ +

𝐶𝐶𝐹𝑛

(1 + 𝑖)𝑛
                              𝐸𝑞. 2.3 

where, 

 CCFt = Cost Cash Flow at time t 

http://www.glassdoor.com/
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 i = interest rate  

 

Benefits that can occur with precision technologies include a reduction in inputs such as 

N fertilizer, yield and quality increases, improvements in production and machine efficiency, and 

enhanced marketing decisions (Schimmelpfennig, 2016). For the four PA tools we are interested, 

their benefits mainly fall into the category of input reduction such as N saving. It is not 

appropriate to assume that the benefits for all the PA tools are the same since they depend on the 

performance of each sensor and the way the sensor been used. Thus, we calculated and compared 

the total cost (II + PVC) of each PA tool as below, unit: USD:   

 

 Vehicle-based optical sensor:  

Representative: RapidScan CS-45 

Table 2.6 Total Costs on using vehicle-based remote sensing in PA. 

      

Note: The sources for the cost estimations are: RapidScan CS-45: a quote provided by 

Holland Scientific, Inc.; Data Acquisition: Table 2.5; Travel: estimated using $30 per data 

collection x 10 times = $300; Image to Application Translation: estimated by 

www.glassdoor.com using “Quantitative Researcher” as the searching term. 

 

http://www.glassdoor.com/
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 UAV-based optical sensor: 

Representative: MicaSense RedEdge + DJI Matrice 100 

Table 2.7 Total Costs on using UAV-based remote sensing in PA. 

 

Note: The sources for the cost estimations are: DJI Matrice 100: www.dji.com; 

MicaSense RedEdge: www.micasense.com; DJI Matrice TB48D: www.dji.com; Data 

Acquisition: Table 2.5; Travel: same as the Vehicle-based sensors; Battery: same as the DJI 

Matrice TB48D; Repair & Maintenance: estimated based on personal experience; Image 

Processing: www.agribotix.com; Image to Application Translation: same as the Vehicle-based 

sensors. 

 

 MAV-based optical sensor: 

Representative: TerrAvion Inc.  

Table 2.8 Total Costs on using MAV-based remote sensing in PA. 

http://www.dji.com/
http://www.micasense.com/
http://www.dji.com/
http://www.agribotix.com/
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Note: The sources for the cost estimations are: Data: based on the private conversation 

with the sales personnel from TerrAvion Inc. This cost includes 12 data collections per season; 

Image to Application Translation: same as the UAV-based sensors. 

 

 Satellite-based optical sensor: 

There is no initial investment for satellite-based remote sensing. For each satellite, there 

are different product options. Normally satellite will have panchromatic band and multispectral 

bands. Panchromatic band imagery has higher resolution, higher price, but single band. For 

precision agriculture use, multispectral part is more useful which include Red, Green, Blue and 

Near-Infrared. All the prices below are based on a 4-band multispectral bundle, which gives us 

enough bands to work with and keeps the price to a minimum. 

Table 2.2.9 Price of high resolution satellite data. Data source: www.landinfo.com 
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Representative: RapidEye 

Table 2.10 Cash flow analysis on using Satellite-based remote sensing in PA 

(Representative: RapidEye). 

 

Note: The sources for the cost estimations are: Satellite Imagery Data: Table 2.9; Image 

processing: same as the UAV-based sensors; Image to Application Translation: same as the 

UAV-base sensors. 

 

The total costs comparison of different remote sensing types is summarized in Table 11 

below. MAV-based remote sensing is the cheapest tool to use in precision agriculture while 

UAV-based is the most expensive. This result is under the baseline of 500 ac farm size and 10 

data collections for a growing season. 

Table 2.11 Total costs of four types of remote sensors used in PA. 

 

 

To better interpret the total costs comparison, we also calculated the minimum benefit 

required to make the ROI positive using Eq. 2.4,2.5. 

𝑃𝑉𝐵 = −(𝐼𝐼 + 𝑃𝑉𝐶)                                                                        𝐸𝑞. 2.4 
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𝐵𝑒𝑛𝑒𝑓𝑖𝑡 =
−(𝐼𝐼 + 𝑃𝑉𝐶)

(1 + 𝑖)1 + (1 + 𝑖)2 + ⋯ +  (1 + 𝑖)𝑛
                       𝐸𝑞. 2.5 

where, 

 Benefit = Constant benefit per year.  

 

As shown in Figure 2.2, to get a positive ROI, MAV-based sensors only need to provide 

a benefit of $11/ac while UAV-based sensors have to provide the most benefit per acre, $19/ac. 

 

Figure 2.2 Minimum Benefits per Acre Required to Get a Positive ROI Using Different 

Optical Sensors. 

For example, if the benefit is coming from the N saving, MAV and UAV-based sensors 

have to save at least 32 and 57 lb/ac N, respectively, to make the ROI positive. This is under the 

assumption that the price of Urea is $305/ton and the N concentrate in Urea is 46%. 

One thing should be noted is that the number one cost of the additional cost for all 

platforms is “Image to Application Translation”, which is the process to convert sensor values or 

colorful maps to practical management plans. This part need to be done by experienced 

quantitative researchers who are familiar with crop physiology, remote sensing, and 
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mathematical modeling, which can be time consuming and expensive to provide reliable 

recommendations for decision making. With more and more applications developed for PA, this 

part, hopefully, can be accelerated, and eventually automated. Therefore, the total additional cost 

will reduce dramatically and make the remote sensing tools more profitable. 

Another thing should be recognized is the learning cost associated with the new 

technology, especially for the farmers who want to fly UAVs and do the imagery interpretation 

or VIs-based recommendations by themselves. This requires specialized skills and an additional 

time investment by the farmers (Miller et al., 2017). Since it is very difficult to quantify and 

varies from one farmer to another, the learning costs were not included in the cost analysis. 

 

 Section 5: Adoption of remote sensing in PA 

Applications of remote sensing in PA have shown to be beneficial and profitable, but 

current adoption in real world crop production are still low (Miller et al., 2017). According to the 

survey conducted by Purdue University in the USA 2015 (Figure 2.3). The most popular 

technology used was Satellite-based and MAV-based remote sensing (51%, values were the 

same because they were merged into one category in the survey as “Satellite/aerial”). UAV-

based sensors were less popular (16%) and Vehicle-based crop or soil sensing was the least 

popular technology. 
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Figure 2.3 Use of precision agriculture technologies in 2015 (Adapted from Erickson & 

Widmar, 2015) 

 

Overall, the adoption rate is increasing over time as shown in Figure 2.4. In recent years, 

satellite-based and MAV-based imagery have shown strong gains in adoption from 30 to 51% 

between 2011 and 2015. UAV adoption was firstly recorded in 2015 as 16% which was high 

considering that this technology was fairly new to the producers. The adoption rates of vehicle-

base crop and soil sensing were increasing but still less than 10%. 
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Figure 2.4 Adoption of precision agriculture technologies in 2015 (Adapted from Erickson 

& Widmar, 2015) 

 

The farms who use precision technologies do not necessarily use them on all their acre. 

Figure 2.5 shows the estimated percentage of acres using various PA technologies over time and 

the prediction for 2018. Overall, all remote sensing platforms have been and will be used on 

more farmland acres. 



39 

 

Figure 2.5 Percentage area using precision agriculture technologies (Adapted from 

Erickson & Widmar, 2015) 

There are several barriers that prevent the growth and expanded use of PA technologies. 

The first one and for most producers is that farms income pressure limit the use of PA. The 

following barrier is that producers lack confidence in site-specific recommendation, some of 

them found the cost were greater than benefits. Also, Interpreting the sensor data and translate it 

to practical management plans can be time consuming and require highly trained expertise. Some 

other physical reasons can also limit the use of PA such as topography and soil types in the fields 

(Erickson & Widmar, 2015). 

 

 Conclusions 

This review has briefly compared four remote sensing technologies mounted on four 

different platforms (vehicle-based, UAV-based, MAV-based, and Satellite-based) on 

specification, data collection efficiency and data availability; summarized the applications and 

limitations for each type of remote sensing tool, analyzed the total costs of each sensor type 
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representative to show the minimum benefit requirement for each type of sensors to get a 

positive ROI; and discussed the current status of adoption for each remote sensing tool.  

Remote sensing based applications in PA have gone through dramatic advances in the 

recent years and will continue the trend. The future applications may be ascribed to the 

improvement of simplifying image processing, lowering hardware prices, automation of data-to-

plan translation to reduce the labor cost. Although remote sensing tools can detect the field 

variability fairly easily, it is usually very hard to identify exact reasons that is causing the 

nonuniformities in the field. Multi-sensor strategy can help to improve the diagnosis accuracy. It 

can be a combination of different sensors on the same platforms or from different platforms. 

Emerging information technologies like on-the-going process & analysis, cloud computing, 

multi-platform communication, and data sharing also can be integrated into PA for advanced, 

intelligent data collection and analysis. In addition, the sensor and technologies will continue to 

develop, more researches will be done, more methods will be validated, and more people will 

adopt these PA tools to optimize the profitability and protect the environment. 
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Chapter 3 - Comparison of Optical Sensors Based High-throughput 

Phenotyping for Biomass, Canopy Height Estimation and Grain 

Yield Prediction in Winter Wheat 

 

 Introduction 

With the rapidly and steadily increasing world population crossing 7.3 billion and expected 

to reach 9.7 billion in 2050 (DESA, 2015),  the world’s food scenario is rapidly changing and 

global food production will need to increase by 70-110% to meet the growing demand 

(Alexandratos, 2009).  At the same time, intensifying agricultural production can have a substantial 

environmental footprint and often comes at the expense of natural resources that support an 

agroecosystem. To meet the challenge of increasing agricultural productivity while simultaneously 

mitigating environmental degradation research and new technologies are needed to (1) assess crop 

condition quickly in  a timely manner, (2) improve crop yield and quality, (3) reduce chemical and 

fertilizer inputs via more efficient use, (4) provide information for better in-field management 

decisions to increase profits, or, in other words, precision agriculture (Seelan et al. 2003). 

The general components of precision agricultural practice are data collection, field variability 

mapping, decision mapping, and finally management practice. Remote sensing could be involved 

in first three of these components (Zhang & Kovacs, 2012). Although the potential of remote 

sensing for precision agriculture is clearly established, its adoption by farmers remains low (Seelan 

et al. 2003).   

Remote sensing has been routinely used for decades at a larger-scale for general crop 

assessment such as yield prediction using satellites imagery (Idso, Jackson, & Reginato 1977; Idso, 

Pinter, Jackson, & Reginato, 1980; McDonald & Hall, 1980; Vossen & Meyer-Roux, 1995), but 

modern precision agriculture requires: short revisit times, high spatial resolution, and rapid data 

collection, all of which satellites rarely have. Literature indicates that remotely sensed imagery 

from satellites is not practical due to costs, availability, and data processing (Lamb, 2008). To 

monitor crops in a more timely and cost-efficient way, scientists are increasingly turning to optical 

sensors on the ground and aerial platforms to assess factors such as crop vigor, leaf nitrogen status 
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and potentials yields (Whitehead, 2014). Vehicle-based sensors mainly include active optical 

sensors (AOSs) such as the GeenSeeker, Crop Circle, and RapidScan, etc. Aerial-based sensors 

usually include passive optical sensors (POSs) such as visible cameras, CMOS (complementary 

metal oxide semiconductor)/CCD (charge coupled device) sensor based converted cameras, 

multispectral imagers, hyperspectral cameras, thermal cameras, etc. that are mounted on small 

unmanned aircraft systems (sUASs). The most basic assumption, as supported by empirical 

evidence (Ray, 1994), made about these sensors is that some algebraic combination of spectral 

reflectance or vegetation indices (VIs) can tell something useful about crop conditions.  

Even with so many advanced sensors and platforms commercially available, farmers still prefer to 

adopt “embodied knowledge” technologies rather than “information intensive” technologies 

(Griffin et al. 2004). “Embodied knowledge” technologies do not require additional skills utilize. 

In contrast, “information intensive” technologies often require specialized skills and additional 

time to provide full benefits (Griffin et al. 2004). For example, farmers, crop consultants and 

extension agents often lack familiarity with different sensors, their uses, and the interpretation, the 

last of which, in practice, is the key to management decision making.  

Thus to help farmers, crop consultants and extension agents better understand the 

performance of different sensors and provide guidance for sensor selection, the objectives of this 

study are to compare three of the most commonly used optical sensors including two POSs (Canon 

T4i® modified color infrared (CIR) camera and a Micasense RedEdge® multispectral imager) and 

one AOS (Holland Scientific® RapidScan CS-45® hand-held AOS) on: (1) In-season biomass 

estimation, (2) Grain yield prediction, (3) Canopy height estimation, and (4) Other factors to be 

considered in sensor selections. 

 

 Materials and methods 

 Study site descriptions 

Winter wheat was planted for the 2015-2016 crop year at four locations selected on the 

basis of soil, precipitation, and their average productivity across the state of Kansas. One of the 

locations was at a Kansas State University Agronomy Ashland Bottoms research farm located to 

the south of Manhattan, KS and the remaining three were supplied by cooperating Kansas 

producers at Clifton, Victoria, and Valley Center, KS. 
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The following table (Table 3.1) shows the contextual information of each study site. Soil 

type information was obtained from the Web Soil Survey (NRCS, 2016). Cultural practice and 

historical average yield information were obtained from private conversations with farmers. Soil 

tests were done by either the authors or the farmers at the study sites. 

Table 3.1 Locations, soils, cultural practices and average yields for wheat production in 

four environments in Kansas. 

 

 

 Experimental Design 

For the Manhattan, KS study site, small 3 x 5 m plots were arranged in a randomized 

complete block design (RCBD) with stripped block with three replications. Within each block, 

four wheat hybrids (Table 3.1) were planted as main treatments and four N rates were applied at 

the Feekes 4 growth stage as sub-treatments (0, 56, 112 and 168 kg/ha). There were 96 total plots 

(4 hybrids x 4 rates x 2 replications within block x 3 blocks).  

Each of the on-farm study sites was a RCBD with four replications using 3 m x 12 m small 

plots as experimental units. At each study site, wheat varieties were selected and planted by 

farmers and received starter fertilizer as per their usual methods to enhance the development of 

emerging seedlings (Table 3.1). Also, eleven N rates were applied to the winter wheat at Feekes 

growth stages (4, 7, and 9). The rates varied at different sites due to different N recommendations. 

Each site had 44 plots ( 11 rates x 4 replications). 

Customary field management practices (e.g.: preplant and postemergence applications of, 

respectively, Dicamba® and Huskie herbicides were performed as normal to remove the limiting 

factors of crop production. The purpose of applying different rates of N fertilizer and planting 

different hybrids was to generate gradients of N stress and plant growth within the field which was 

used later for building in-season biomass estimation and grain yield prediction models. 

 Sensor data collection 

The commercially available RapidScan CS-45® (Holland Scientific®, Inc, Lincoln, NE, 

USA) was used as the AOS in this study. The RapidScan uses three modulated polychromatic 
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lamps as the light source and detects the reflectance of each in the Red, Red Edge and NIR spectral 

regions (Table 3.2). The field of view (FOV) of this device is a narrow strip of ~45° by ~10° range 

(Holland-Scientific, 2012), yielding a 33.5 cm x 5.2 cm strip on the canopy when the data are 

collected at 0.3 m above the canopy. The sensor was run crosswise to the sowing direction. 

The Canon T4i DSLR (digital single-lens reflex) camera (Canon® Inc, Tokyo, Japan) was 

used as the CMOS sensor in this study. Like most of the CMOS and CCD sensor based commercial 

cameras, this camera is also sensitive to the NIR spectrum. In normal use, NIR blocking filters are 

installed so that cameras produce true color RGB images. Removal of this filter, however, allows 

the capture of NIR. Installing a blue notch filter enables measurement at NIR wavelengths to be 

recorded on the camera’s blue channel. These modifications were done by LDP LLC, Carlstadt, 

NJ, USA (Table 3.2). The multispectral imager used in this study was a MicaSense RedEdge 

multispectral camera (MicaSense® Inc. ). It is capable of measuring five discrete channels (Blue, 

Green, Red, Red Edge and NIR) having the specific ranges shown in Table 3.2. The Canon and 

MicaSense cameras were mounted side by side on a DJI s800 Evo hexacopter (DJI® Science and 

Technology, Co., Ltd. Shenzhen, China) with a gimbal to maintain a nadir orientation during the 

image collection. All pictures were recorded in RAW format, which provides the capability to do 

image correction before analysis. An intervalometer device (DigiSnap 2000 by Harbortronics®) 

was used to trigger the Canon camera with 1 frame/ 2 seconds. The MicaSense camera was 

triggered automatically at the defined image overlaps set by the “Auto-Capture” function built-in 

their WiFi web application.  

In this study, both side and along-track overlap were set to 80% to get sufficient overlap. 

When the angle of illumination and sensor viewing angle are nearly identical and in the same 

plane, the bidirectional reflectance distribution function (BRDF) effects will show up and produce 

a hot spot in the picture. Obtaining images from multiple viewing angles and within two hours of 

the solar noon helped to reduce the BRDF effects. All sUAS operations were performed at 60 m 

above ground level (AGL) with Certificate of Authorization (COA numbers: 2015-CSA-6-COA-

R for the Manhattan site, and 2014-CSA-6-COA for the Clifton, Victoria and Valley Center sites).  

All sensor data were collected eleven times during the growing season, at Feekes growth stages 3, 

4, 6, 7, 10, 10.2, 10.5, 10.5.2, 10.5.4, 11.1, 11.3. On each date, the POSs data were collected right 

before AOS data to avoid the crop destruction caused by the AOS data collector who needed to 
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walk through the fields. Then biomass sampling was performed as described in the following 

section. 

Table 3.2 Specification of three optical sensors used in this study. 

 

 

 Field data collection 

Biomass data were collected intensively at the nearest study site, Manhattan, during the 

growing season at Feekes growth stages 3, 4, 6, 7, 10, 10.2, 10.5, 10.5.2, 10.5.4, 11.1, 11.3. 

Twenty-four plots were selected for sampling that covered a high-to-low biomass gradient. A 

Japanese sickle was used to cut a 0.5 m x 0.5 m area from the east side (to avoid the middle portion 

that will be used for yield data collection) of each plot. The fresh biomass was put into paper bags, 

immediately weighed after taring, and then oven dried at 70°C to constant weight for dry biomass 

data.  

Grain yield data were collected from all four study sites. At the Manhattan location, a 1 m 

x 1 m area in the middle of each plot was hand harvested at physiological maturity, oven dried at 

70°C to constant weight, hand threshed, then weighed for grain yield data. The corresponding data 

from the Clifton, Victoria, Valley Center locations, exported from a yield monitor on the combine 

harvester. Grain yield data were adjusted to 12% moisture content for all study sites. 
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The CH measurements (from the ground surface to the top of the ) were taken at the 

Manhattan site from 12 selected plots at four growth stages. 10 randomly chosen plants were 

measured with a meter stick in each plot and then averaged. A total of 48 CH measurements were 

taken in the growing season.  

 

 Image processing 

Images from the MicaSense camera were uploaded and processed using ATLAS by 

MicaSense. Similar data from the Canon camera were processed at the KSU Precision Agriculture 

Laboratory as described in the following sections and Figure 3.1. 

 

Figure 3.1 Image processing workflow for a CMOS sensor based modified Canon T4i CIR 

camera 

 

 Image pre-processing 

POSs respond differently under variable sky conditions including clouds, changing solar 

zenith angle, pollution, and dust (Fitzgerald, 2010). Most of the CMOS sensor based commercial 

cameras are also prone to the vignetting effect, which reduces image brightness at the periphery 

(Lebourgeois et al. 2008; Hakala et al. 2010; Kelcey and Lucieer 2012). Lens distortion is another 

common problem within imaging systems (Hruska et al. 2012). To improve the results, each 

original image was corrected for white balance, vignetting, and optical distortion using the Adobe 

Photoshop Camera Raw 9.1.1.461 (Adobe Systems Inc, Mountain View, CA, USA) and 
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manufacture-provided lens profile data (Bowers 2002). As mentioned above, the lossless RAW 

file format was chosen to make this possible. 

 

 Orthomosaic and DSM (digital surface model) generation 

Flight instability can introduce significant artifacts into the image illumination and 

geometry (Rango et al. 2009). Thus images are usually orthorectified to remove perspective and 

relief distortion and then stitched together to form a large orthomosaic that covers the whole area 

of interest. Agisoft PhotoScan Pro 1.2.6 (Agisoft LLC, St. Petersburg, Russia) was used to do the 

stitching with redundant images first being removed to ensure an even distribution of pictures 

across the field. Such evenness often yields a better orthomosaic (De Lussy 2005; Blaha 2013). 

In addition, PhotoScan also generates DSMs. The first step in this process is aerial 

triangulation during which the true positions and orientations of the images are established. This 

entails automatically identifying a large number of tie points that are conjugate across multiple 

images. To optimize the photo positions and orientations, 36 ground control points (GCPs) were 

used for geometric correction (Hugenholtz et al. 2013). These GCPs were evenly distributed in the 

field and surveyed with a Topcon Hiper Lite + RTK (real time kinematic) GPS (global positioning 

system) unit (Topcon Co., Tokyo, Japan) with a map accuracy of 2 cm. After processing PhotoScan 

Pro exported the DSM in TIFF format. 

 

 Radiometric calibration method 

POSs normally need radiometric calibration before quantitative analysis due to their lack 

of direct spectral reflectance measurements, which is the basis for most remote sensing 

applications in agriculture (Seelan 2003). If a sensor was uncalibrated and suffered from an 

unknown bias, it may be good for detecting the relative difference in crop condition but not good 

for quantifying the differences (Whitehead 2014). In fact, POSs data can be utilized as for 

quantitative analysis as long as an effective calibration procedure is performed on the imagery 

(Blockley et al. 2016). This section shows the newly developed “3-step radiometrically calibrate 

method” for POSs. 

 

 Step one: Self-calibration using a calibration panel 



53 

The purpose of step one is to provide cross-time and space comparison ability. A gray 

gradient calibration panel with nine shades of gray (5%, 20%, 30%, 40%, 50%, 60%, 70%, 80% 

and 90%) was generated by mixing flat black and white as described by Wang et al. (2015). True 

spectral reflectance for each gray level was measured by averaging 10 readings taken from 

different viewing angles using an ASD FieldSpec 3 spectroradiometer (Analytical Spectral 

Devices, Inc., Boulder, CO, USA). To build the calibration model, the mean Brightness Values 

(BVs) of the nine shades of gray were extracted and plotted against the spectral reflectance 

measurements mentioned above. Figure 3.2 shows an example of such calibration models for the 

Green, Red and NIR bands, respectively. After step one, POSs data from different locations and 

time can be compared. 

 

Figure 3.2 The relationship between CMOS sensor camera brightness values and spectral 

reflectance measurements for Green, Red and NIR bands. 

 

 Step Two: Noise canceling 

Compared with the multispectral imager, the wavebands for CMOS sensor tend to be 

broader, with considerable overlap between all bands (Lebourgeois et al. 2008; Rump et al. 2011). 

The following plots (Figure 3.3) demonstrate three mixed bands for Canon T4i CIR camera (a.) 

and five discrete bands for MiceSense RedEdge multispectral camera (c.). For imaging sensors, 

the measured light radiation for each channel can be described as the integration of the camera’s 

sensitivity over the spectral range (Blockley et al. 2016). This concept was used to do noise 

canceling by subtracting the noise from improper channels and then adding to the proper channel. 

For example, to correct the green channel for noise generated by the NIR light, a calibrated fraction 

of the latter’s reading is subtracted from the former and then added to the NIR channel. Similar 

procedure was performed on the red channel. Figure 3.b. shows the Canon T4i CIR camera 

transmissivity after noise canceling. 
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Figure 3.3 Spectral response of: a. Canon T4i CIR camera and b. MicaSense RedEdge 

multispectral imager (adopted from LDP LLC. and MicaSense Inc.). This is also an 

illustration for contaminated vs. clean bands. 

 

 Step Three: Cross-calibration  

Imaging system differences in spectral sensitivities can have a significant impact on the 

vegetation index values, even with satellite systems (Trishchenko et al. 2002). The purpose of 

step three is to provide cross-sensor comparison ability. 

To build the calibration model, a large set of AOS data were collected from 14 site-dates 

during the growing season covering high-to-low NDVI values. Only three data points from each 

site-date were used (the minimum, the mean, and the maximum). A total of 42 points were selected 

and regressed against corresponding data collected from the Canon camera that had been calibrated 

as described in step one and step two. Figure 3.4 demonstrates the highly correlated relationship 
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between AOS NDVI and POS NDVI, the linear regression model shown in the figure was then 

used to do the cross-calibration.  

 

 

Figure 3.4 Scatter plots and regression of active and passive sensor produced NDVI. 

 

 Statistical analysis 

The correlation and regression analyses were carried out in Microsoft® Excel® 2010 

(Microsoft Co. Redmond, Washington, USA) and SAS® 9.3 PROC GLIMMIX procedure (SAS 

Institute Inc., Cary, North Carolina, USA). The plot mean NDVI obtained from the POSs and the 

AOS was evaluated against each other. The canopy height estimated by the DSM was evaluated 

against the ground truth measurement. These results are presented in scatter plots with linear 

regression equations. In-season biomass and grain yield were estimated or predicted using sensor 

VIs by building linear regression models. The model accuracy was measured with root mean 

square error (RMSE) and relative error (RE).  

 

 Results and discussion 

 Comparison of vegetation index from three different sensors 

All three sensors have red and NIR bands, therefore, the NDVI was selected to be the VI 

during the comparison. As shown below, the NDVI map (Figure 3.5.a) generated from the Canon 
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T4i CIR images illustrates the huge variation in the field and within each plot. The NDVI map 

(Figure 3.5.b) generated from the MicaSense RedEdge images also shows a lot of variation in the 

field and within each plot. Although this imager has a lower spatial resolution compared to the 

Canon T4i (3.3 cm/pixel compared to 0.5 cm/pixel), there is, even more, variation showing on its 

NDVI map if one watches closely. The MicaSense RedEdge imager has five individual lenses so 

that it generates cleaner data at each waveband and thus provide wider dynamic range compared 

to the Canon camera. An NDVI table was exported from the RapidScan and converted into a 

colorized NDVI map (Figure 3.5.c) for better visual comparisons. The NDVI map from the 

RapidScan shows the same pattern of variation at the field level as the two POSs did, but does 

not show the difference within each plot. Because there was only one averaged NDVI value 

being assigned to the whole area of each plot. When taking either human-based or vehicle-based 

AOS data, the sensor passes the top of the canopy in a fraction of a second. Only a small portion 

of the canopy was sampled, the remaining area that did not get sampled may pose a challenge for 

calculating representative VI for the whole plot. However,  this may not be an issue for real 

world crop production because the sensor sampling resolution is good enough to match the size 

of a management unit. The main issue is that there is still a good number of data points need to 

be taken to get a good and representative assessment of the whole field, which can be time-

consuming. 

 

a. 
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b. 

 

c. 

Figure 3.5 NDVI maps produced from three optical sensors: a. Canon T4i CIR camera b. 

MicaSense RedEdge multispectral imager and c. RapidScan CS-45 active optical sensor. 

 

To get a better idea of the three sensors’ relationships statistically, NDVI values from the 

Canon T4i and the MicaSense RedEdge were regressed against each other and then compared with 

RapidScan’s NDVI. As shown below on the left in Figure 3.6, NDVI values from Canon T4i and 

RedEdge are highly correlated with a coefficient of determination (r2) of 0.80 (p<0.001). These 

data points were collected from four key growth stages (F4, F7, F10, and F10.5) to cover high-to-

low values. When the comparison was done at the individual stage, the r2  value was even higher 

and could get high up to 0.98 at Feekes 10.5 (p<0.001). As shown on the right in Figure 3.6, the 

RapidScan NDVI values were highly correlated with Canon’s and MicaSense RedEdge’s NDVI 

values. In general, over 82% of the total variance in AOS data can be explained by the POS data. 

This suggested Canon T4i CIR and MicaSense RedEdge have the potentials to be used for crop 

assessment, just like AOS did, such as in-season biomass estimation and grain yield prediction 

(Hunt et al. 2010; Hunt et al, 2011; Laliberte et al. 2011). 
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Figure 3.6 Winter wheat NDVI maps at Feekes 10 generated using three optical sensors. a. 

Canon T4i converted CIR camera. b. MicaSense RedEdge multispectral camera and c. 

RapidScan CS-45. 

 

 In-season biomass estimation and validation 

One of the goals of this study is to estimate in-season biomass using sensor VIs and 

determine when the most accurate estimation is. Figure 3.7.a demonstrates the changes of 

correlations between sensor VIs and dry biomass across the growing season. From Feekes 3 (tiller 

formed) to Feekes 11.1 (milky ripe), VIs from both the Canon and the RedEdge consistently have 

a high correlation (0.72<r2<0.96, all p<0.001) with the dry biomass in the same pattern. The 

correlations between the AOS VIs and the biomass were weak before Feekes 6 (first node) 

(0.26<r2<0.37). At the earlier growing season, the soil was the dominate reflector (Tits 2013),  and 

the sensor readings could be easily affected by the placement or the direction of the AOS (Barker 

2013) (e.g.: AOS between the rows or on the row have different output, AOS parallel or crosswise 

with the rows have different output). The correlations had a huge jump after Feekes 6. As the plant 

grown taller and wider, the crop became the dominate reflector so the results suffered less impact 

from the soil and had higher correlations with the biomass(from Feekes 7 to 11.1, 0.47<r2<0.75, 

all p<0.001). After Feekes 11.1, all three sensors began picking up noises from structural 

components, such as spikes and some newly emerged weeds, which strongly influence spectral 

reflectance and impact the sensitivity of the VIs. This decreased the estimation accuracy at later 

growing season (Aparicio et al. 2002). Correlation between AOS VIs and biomass had a sudden 

decrease at Feekes 10.2 (heading), then came back up at flowering stage. This low point was 
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caused by the data collector instead of the sensor itself. During this data collection, the AOS was 

held incorrectly going parallel instead of crosswise with the sowing direction.  

 

Figure 3.7 The change of relationships (in terms of coefficient of determination or r2) 

between spectral indices and dry biomass and grain yield for winter wheat across the 

growing season 2015-2016. 

 

Validations for in-season biomass estimation were conducted using half of the data points 

collected from Manhattan site (Table 3.3). In general, the two POSs outperformed the AOS at 

every growth stage (or had higher r2 and smaller RMSE and RE values). Feekes 3 and Feekes 7 

are the earliest stages for reliable biomass estimation using POSs VIs and AOS VIs, respectively. 

The most accurate estimation for all sensors is either at Feekes 10 or the stages immediately 

before/after it. At this growth stage, the head of winter wheat is visible but still in the leaf sheath 

below the flag leaf and winter wheat has the greenest and expanded leaves, thus has the most 

photosynthesis activities.  
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Table 3.3 Coefficients of determination (r2)  for the relationships between winter wheat dry 

biomass and spectral indices obtained from one active optical sensor (RapidScan) and two 

passive sensors (Canon T4i CIR camera, MicaSense RedEdge) at key growing stages. 

 

Sensor / VI 

 

Regression Model 

 

n 

 

r2 

RMSE 

(kg/m2) 

RE 

(%) 

      

Feekes 4 

Canon T4i CIR / NDVI Biom=192.27*VI-18.221 12 0.84** 0.62 14.97 

MicaSense RedEdge  / NDVI Biom=219.15*VI-39.679 12 0.80** 0.77 17.49 

MicaSense RedEdge / NDRE Biom=445.71*VI-43.965 12 0.87** 0.62 16.14 

RapidScan CS-45  / NDVI Biom=283.34*VI-34.017 12 0.32* 1.43 32.15 

RapidScan CS-45 / NDRE Biom=672.84*VI-36.605 12 0.28* 1.48 36.68 

      

Feekes 7 

Canon T4i CIR / NDVI Biom=442.06*VI-81.21 12 0.95** 1.00 15.72 

MicaSense RedEdge  / NDVI Biom=540.68*VI-145.31 12 0.92** 1.33 13.77 

MicaSense RedEdge / NDRE Biom=1064.2*VI-140.47 12 0.86** 1.75 12.41 

RapidScan CS-45  / NDVI Biom=698.36*VI-123.95 12 0.68** 2.64 33.71 

RapidScan CS-45 / NDRE Biom=1472.8*VI-91.79 12 0.58** 3.02 37.98 

      

Feekes 10 

Canon T4i CIR / NDVI Biom=806.01*VI-205.37 12 0.87** 3.45 9.63 

MicaSense RedEdge  / NDVI Biom=730.59*VI-250.01 12 0.91** 2.66 15.33 

MicaSense RedEdge / NDRE Biom=1085.7*VI-164.24 12 0.96** 1.73 17.52 

RapidScan CS-45  / NDVI Biom=1068.7*VI-220.92 12 0.67** 5.06 32.87 

RapidScan CS-45 / NDRE Biom=2881.4*VI-287.77 12 0.74** 4.51 33.78 

      

Feekes 10.5 

Canon T4i CIR / NDVI Biom=1878.5*VI-732.38 12 0.91** 5.14 16.57 

MicaSense RedEdge  / NDVI Biom=1299.3*VI-351.17 12 0.94** 3.40 12.83 

MicaSense RedEdge / NDRE Biom=1948.7*VI-239.22 12 0.91** 4.41 8.25 

RapidScan CS-45  / NDVI Biom=1294*VI-124.15 12 0.66** 9.52 20.55 

RapidScan CS-45 / NDRE Biom=3048*VI-122.33 12 0.71** 9.14 19.31 

      

Feekes 10.5.4 

Canon T4i CIR / NDVI Biom=1831.8*VI-361.4 12 0.72** 11.32 11.28 

MicaSense RedEdge  / NDVI Biom=1831*VI-436.41 12 0.78** 9.95 7.06 

MicaSense RedEdge / NDRE Biom=3104.8*VI-258.99 12 0.77** 10.02 9.88 

RapidScan CS-45  / NDVI Biom=3197.3*VI-745.6 12 0.75** 10.62 21.20 

RapidScan CS-45 / NDRE Biom=7416.6*VI-585.37 12 0.63** 12.74 19.59 

      

*p<0.01,**p<0.001. 
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Another goal of this study is to predict grain yield using sensor VIs and determine how 

early grain yield can be accurately predicted. Figure 3.7.b demonstrates the changes of correlations 

between sensor VIs and grain yield across the growing season. Before Feekes 7, the three sensors 

performed similarly and were weakly correlated with grain yield. Because at the earlier growing 

season, yield factors had not been determined: tillers had not completely formed, tiller abortions 

might still occur due to N deficiency, head size and seed number had not been determined. At 

Feekes 7, all sensor VIs started to pick up a significant amount (0.33<r2<0.43, all p<0.01) of 

variation in grain yield, which benefited from rapid vegetative growth and stem elongation at this 

phase. After Feekes 7, most of the yield factors had been determined. More and more variation in 

grain yield could be explained by sensor VIs. This makes sense because the closer to the end of 

the growing season the less uncertainty the grain yield will be if proper field practices were 

performed and the weather stayed normal. The highest r2 values for all sensor VIs were obtained 

at Feekes 10.5.4 (kernels watery ripe, 0.61<r2<0.73, all p<0.0001). After Feekes 10.5.4, wheat 

started to ripe and water content decreased. Less green plant materials made the photosynthesis 

rate lower, which resulted in lower correlations between all sensor VIs and grain yield. The low 

correlation point at Feekes 10.2 was caused by the data collector who held the AOS incorrectly as 

described previously.  

Validation for in-season grain yield prediction was conducted using half of the data points 

collected from all four study sites (Table 3.4). In general, all sensor VIs can be used as good 

predictors for grain yield as early as Feekes 7. The accuracy of prediction became more and more 

reliable towards the end of the growing season until Feekes 10.5.4. During this period, POS 

consistently outperformed AOS except at growth stage Feekes 7 where AOS performed slightly 

better than POSs. The most accurate yield prediction was made at the kernels ripe stage, however, 

there is not much value at this late stage for making effective management decisions. 
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Table 3.4 Coefficients of determination (r2)  for the relationships between winter wheat 

grain yield and spectral indices obtained from one active optical sensor (RapidScan) and 

two passive sensors (Canon T4i CIR camera, MicaSense RedEdge) at key growth stages. 

 

Sensor / VI 

 

Regression Model 

 

n 

 

r2 

RMSE 

(kg/m2) 

RE 

(%) 

      

Feekes 4 

Canon T4i CIR / NDVI Yield=7.1464*VI+1.1068 114 0.03 0.82 27.13 

MicaSense RedEdge  / NDVI Yield=1.8641*VI+2.4214 114 0.01 0.83 27.46 

MicaSense RedEdge / NDRE Yield=2.7867*VI+2.5356 114 0.01 0.83 27.51 

RapidScan CS-45  / NDVI Yield=4.8845*VI+1.7915 114 0.03 0.82 27.36 

RapidScan CS-45 / NDRE Yield=9.0801*VI+1.9937 114 0.02 0.82 27.54 

      

Feekes 7 

Canon T4i CIR / NDVI Yield=16.019*VI-1.8291 114 0.37* 0.66 18.99 

MicaSense RedEdge  / NDVI Yield=3.9257*VI+1.5175 114 0.33* 0.68 20.92 

MicaSense RedEdge / NDRE Yield=6.8109*VI+1.5724 114 0.33* 0.68 20.92 

RapidScan CS-45  / NDVI Yield=6.5479*VI+1.0512 114 0.43** 0.62 18.48 

RapidScan CS-45 / NDRE Yield=14.217*VI+1.2644 114 0.42** 0.63 18.58 

      

Feekes 10 

Canon T4i CIR / NDVI Yield=19.701*VI-3.7549 114 0.41** 0.64 18.41 

MicaSense RedEdge  / NDVI Yield=4.6298*VI+0.3139 114 0.35* 0.67 19.28 

MicaSense RedEdge / NDRE Yield=8.1034*VI+0.3133 114 0.42** 0.63 18.53 

RapidScan CS-45  / NDVI Yield=5.5391*VI+0.7194 114 0.33* 0.68 20.95 

RapidScan CS-45 / NDRE Yield=13.009*VI+0.5957 114 0.37* 0.66 20.09 

      

Feekes 10.5 

Canon T4i CIR / NDVI Yield=19.787*VI-4.4103 114 0.57** 0.55 15.22 

MicaSense RedEdge  / NDVI Yield=6.0034*VI-0.2665 114 0.61** 0.52 13.48 

MicaSense RedEdge / NDRE Yield=9.6869*VI-0.1037 114 0.64** 0.50 13.71 

RapidScan CS-45  / NDVI Yield=6.5394*VI+0.4755 114 0.48** 0.60 18.65 

RapidScan CS-45 / NDRE Yield=15.562*VI+0.053 114 0.54** 0.56 16.90 

      

Feekes 10.5.4 

Canon T4i CIR / NDVI Yield=27.112*VI-6.4058 114 0.73** 0.43 13.07 

MicaSense RedEdge  / NDVI Yield=8.944*VI-1.9999 114 0.73** 0.43 11.70 

MicaSense RedEdge / NDRE Yield=13.466*VI-0.7903 114 0.72** 0.44 12.20 

RapidScan CS-45  / NDVI Yield=9.0282*VI-0.9472 114 0.61** 0.52 14.48 

RapidScan CS-45 / NDRE Yield=20.077*VI-0.475 114 0.61** 0.52 14.78 

      

*p<0.01,**p<0.001. 
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Compared to the AOS VIs, the POS VIs almost always had higher correlations with the 

biomass and grain yield during the growing season. The reasons are: (1) It is easy to take samples 

from an image simply by drawing a polygon at the region of interest (ROI) and easy to modify the 

ROI as one wants. On the contrary, the sampling area of an AOS can never be modified after the 

data collection; (2) It is hard to consistently place the AOS on the top of a crop row while passing 

through a wheat field; (3) In addition, it is important to keep the same distance between the AOS 

and the canopy, the irradiance at the photo-detector of the AOS is governed by the inverse square 

law which will cause a significant change in signal magnitude when the relative distance between 

sensor and target varies (Holland et al. 2012).   

Literature suggested that suggested VIs using red edge wavelengths, such as NDRE, are 

more efficient than NDVI in identifying N variability in crops (Shiratsuchi et al., 2011; Feng et al. 

2016; Rosa et al. 2016) and can be used for vegetation stress studies (Hruska et al. 2012). But in 

this wheat study, NDVI and NDRE, either from the MicaSense or the RapidScan, showed similar 

performance on biomass estimation and grain yield prediction. Another hypothesis raised was that 

NDRE may be more sensitive to varieties compared to NDVI. To test it, the NDVI and NDRE 

data from the Manhattan site were divided into four groups based on varieties, averaged, and their 

coefficient of variation (CV), also known as relative standard deviation (RSD), were calculated to 

measure the data dispersion. The results showed the CV or RSD from the NDVI data and the 

NDRE data are statistically same. This is true for both the RapidScan CS-45 and the MicaSense 

RedEdge multispectral imager.  

Therefore, at least in this wheat study, under relative low LAI (leaf area index) conditions, 

there was no evidence to show that NDRE  is more useful for crop assessment and more sensitive 

to varieties. This may not be true on other crops with higher LAI such as corn and grain sorghum. 

It is well known that NDVI often loses sensitivity after plants accumulate a critical level of leaf 

cover or chlorophyll content while NDRE does not. This is because the red-edge light is more 

translucent to leaves than red light and so it is less likely to be completely absorbed by a canopy. 

To get a better idea of the pros and cons for NDRE, more studies have to be conducted on other 

crops and applications to prove these inferences. 
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 Canopy height (CH) estimation and validation 

DSMs were generated using high-resolution images taken from the Canon T4i and the 

MicaSense RedEdge. Then the CH was estimated by subtracting the base DSM from the DSM at 

the specific growth stage. Figure 3.8 shows an example of CH map at Feekes 10 estimated with 

Canon T4i imagery. Since ground truth height measurements were only taken at the Manhattan 

site on four dates, only these four dates’ CHs were estimated. 

 

Figure 3.8 A canopy height map of winter wheat at Feekes 10 generated by subtracting 

base DSM from Feekes 10 DSM. 

 

CH maps were then imported to ImageJ software for sampling and analysis. To avoid the 

edge effect, each plot was reduced by ~0.3 m on each end. Also, the areas where the destructive 

biomass sampling was performed were excluded. A total of 48 estimated CH values were extracted 

from the Canon CH maps and the MicaSense CH maps, respectively. They were then plotted 

against the observed CH as shown below in Figure 3.9.  

 

 

Figure 3.9 Comparisons between observed and estimated wheat canopy height generated 

from DEM derived from a. Canon T4i CIR camera and b. MicaSense RedEdge 

multispectral imager. Data were collected from Feekes growth stages: 4, 7, 10 and 10.5. 
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The results show that both Canon and MicaSense estimated CH were highly correlated 

with the observed CH (r2=0.99 and 0.81, respectively), but the Canon has the higher correlation 

and more accurate estimation (RMSE=9.45 and 14.02 cm, respectively). This is mainly due to the 

smaller sensor on the MicaSense RedEdge and its coarse spatial resolution, which has less power 

to detect the height sub-difference compared to the Canon. Also, the RedEdge DSMs were 

downloaded from the imagery service ATLAS by MicaSense. The methodologies they employed 

to generate the DSM is unknown.  

Although Canon provided more accurate CH estimation than RedEdge estimation, the 

accuracy (RMSE=9.45 cm) was still not good enough for winter wheat crop production and 

breeding programs where rapid and accurate phenotyping is required. In this study, the Canon 

DSMs were built without inertial measurement unit (IMU) data which can be used to optimize the 

position of point cloud during DSM construction and to improve the accuracy to ~3 cm (Nagai et 

al., 2004). Another way to improve the DSM accuracy is by integrating onboard RTK GPS to raw 

imagery data through the controlling computer on the sUAS. This method can offer centimeter 

level accuracy (Carbonneau & Dietrich, 2017).  

In this study, the estimated CH represents the average CH of all pixels in the sampling area. 

Literature indicated that as a result, not only the top of the plant, for example, the head, was 

measured, but also the lower parts (Dendig et al.,2014), such as the leaves and even the soil, 

especially at the earlier growing season when the canopy is still not closed up and at the later 

growing season when most leaves shrank or dropped and the soil became more visible. Therefore, 

the CH would be over-estimated by using DSMs. Our estimated CHfrom Canon DSM (Figure 3.9. 

on the left) agreed with this statement. 

 

 Factors to be considered during sensor selection 

Because the applications of sUAS have seen tremendous growth in recent years 

(Whitehead and Hugenholtz, 2014), more and more farmers and crop consultants have started to 

consider adopting this new technology as a decision-making tool for crop assessment and 

management. Among many questions they may ask, the first one is what platform and sensor I 

should use since there are so many options commercially available. To answer this question, this 

section will have complete comparisons of three types of sensors used in this study which can 
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provide some guidance for the sensor selection. The platform selection is not a goal for this study 

so it will not be discussed.  

CMOS sensor cameras usually have excellent spatial resolution and affordable prices. 

Accurate 2D orthomosaics and DSMs can be generated with additional contextual information, 

such as ground control points. While CMOS sensors have a number of advantages, they lack direct 

spectral reflectance measurements from where the remotes sensing analysis starts. This is also a 

shortage for multispectral imager since both of them are passive sensors. Also, the dynamic range 

of such cameras is also limited for spectral analysis (Hardin and Jensen 2011). However, as 

effective radiometric calibration methods are being developed like the one described in this study, 

the brightness values from the passive sensors can be converted to reflectance and can be compared 

crossing time, space and sensors. Also, the trade-off between spatial resolution and processing 

time should be noted. The image processing time increases dramatically with image resolution, 

but too low of a resolution limits the ability to differentiate details such as texture. It is important 

for the data collectors to optimizing path planning and sensing strategies to minimize data 

redundancy and processing time. 

The advantage of the multispectral imagers is the quality of the spectral measurements. 

While CMOS sensors have broadband and mixed spectral response, multispectral imagers are 

capable of measuring discrete spectrum at the specific range like the one used in this study, 

MicaSense RedEdge. Although the effective pixel number for multispectral imager is far less than 

CMOS cameras, it is still good enough for crop production and also good for research if the altitude 

is set properly. DSMs generated from multispectral imager are also useful to some extent. In the 

past, payload capacity has been a restriction for sUAS to carry heavier cameras like multispectral 

or hyperspectral sensors, but the newly released high-end sensor systems are getting lighter, more 

compact and more user-friendly, which provides more opportunities in sUAS-based remote 

sensing applications compared to CMOS based cameras. The price for multispectral cameras, 

however, are normally higher than CMOS sensor based cameras that normally including camera 

body, lens and modification costs) (e.g.: MicaSense RedEdge, $5900; Canon T4i NIR/Red/Green, 

$1325). 

There are plenty of advantages of the use of POSs, however, two of the major requirements 

for POSs are 1) radiometric calibration and 2) image processing. Since AOSs are using the internal 

light source, no additional calibration is needed and can be used under any weather condition and 
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anytime during the day while POSs data need to be collected within two hours of the solar noon 

for optimum performance. Image processing is also not required for AOSs since they output 

spectral reflectance and VI directly and usually can be exported to a spreadsheet. POSs require 

highly skilled experts or imagery service companies to do image processing and analysis, which 

can be time-consuming (e.g.: MicaSense RedEdge, 24 h (using ATLAS imagery service); Canon 

T4i CIR, 4 h (less than 300 RAW images)). However, POSs saves time during data collection 

while AOSs takes a good time to get a representative assessment of the whole field, whether the 

sensor is human-based or vehicle-based. At the same time, use of sUAS mounted POSs are 

nondestructive to the field while the use of AOSs can be destructive at the middle-late growing 

season for wheat and may cause soil compaction if the AOSs are mounted on vehicles. 

 

 Conclusions 

Comparing one active optical sensor and two passive optical sensors, the winter wheat in-

season biomass could be estimated by CMOS sensor based camera and Multispectral imager from 

Feekes 3 (tiller formed) to Feekes 11.1 (milky ripe), and by the active optical sensor from Feekes 

7 to Feekes 11.1. The VIs based estimations provided by CMOS sensor camera and multispectral 

imager were more powerful and more temporally stable than the active optical sensor. The most 

accurate estimations were obtained at booting stage for all three sensors. 

The winter wheat grain yield could be predicted from Feekes 7 to Feekes 11.1 by all three 

optical sensors. Consequently, Feekes 7 was the earliest time for reliable grain yield prediction. 

This is because that most of the yield components had been determined such as head size and seed 

number and the only thing left in the growing season is the grain filling. The VIs based grain yield 

predictions using the CMOS sensor based camera and the multispectral imager were more 

powerful and more temporally stable than the active optical sensor except Feekes 7 where AOS 

outperformed POSs slightly. 

There was no significant difference between CMOS sensor based camera and multispectral 

imager on in-season biomass estimation and grain yield prediction. No evidence of any advantage 

or difference of NDRE was found compared to NDVI when they were used for biomass estimation 

and yield prediction in winter wheat. 

The canopy height could be estimated by the CMOS sensor camera and the multispectral 

imager when high precision GCPs were used. The CMOS sensor based camera generated better 
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DSMs mainly due to the higher sensor resolution. DSMs accuracy could be improved by feeding 

the raw imagery data with IMU data and onboard RTK GPS data. 

Active optical sensors can be used more freely with the change of light conditions and time 

of day, and use of AOS does not require radiometric calibration and data processing that passive 

sensors need. However, passive optical sensors are more efficient for large scale data collection 

like in crop production and breeding program and the data require no interpolation, which is 

usually performed in AOS data during analysis. Also, passive sensors currently have more bands 

which provides possibilities for different applications in precision agriculture. It is always good to 

be clear about the purpose of the application and the budget situation before selecting sensors. 

Future work is needed to conducted on other crops to validate the estimation and prediction 

methods. The three-step radiometric calibration for CMOS sensors cameras is sensor specific so it 

needs to be tested on other sensors to test the cross-sensor comparison ability. Also, lack of 

standardized processing procedures including data collection protocol, image calibration, and 

processing methods can limit information exchange in the community and slow down the 

development of optical sensor based crop assessment in precision agriculture. We believe, with 

more effort put by farmers, researchers and industry together, precision agriculture today will be 

normal agriculture tomorrow.  
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Chapter 4 - Integrating Phenology Model into Hi-res Imagery Based 

Wheat Biomass Estimation 

 

 Introduction 

Nitrogen is well documented as a limiting nutrient in crop production and is considered 

one of the best producer inputs to increase profitability under an appropriate management system 

(Teal et al., 2006). However, according to Raun & Johnson (1999), Nitrogen use efficiency 

(NUE) has been relatively low throughout the world. On average, only 33% of the total N 

fertilizer applied for cereal production in the world is taken up and used by the crop. Low NUE 

can result in increased fertilizer cost, lower profits, and increased environmental impact 

(Asebedo, 2015). Improved N management is essential to maintain producers’ income and 

diminish environmental degradation (Teal et al., 2006). 

“Right Time” and “Right Rate” are two of the fundamental pieces of the 4-R N 

management principles and emphasizes the synchrony between amount of N demand and the 

time of N application is essential for improving NUE (Robert, 2007). 

In order to figure out when is the “Right Time”, we should first understand the four 

components to determine winter wheat grain yield (Miller, 1992). The first component is number 

of heads per plant, which is determined by seeding rate and tiller formation. Tillering occurs 

from Feekes 2 through 4 and N applications during these stages can have a positive impact on 

the number of tillers formed, thus generating more heads per plant and a larger grain yield 

potential. N stress during Feekes 2 through 4 can result in a reduction in head numbers, which 

cannot be corrected with an N application after Feekes 4 (Asebedo, 2015). The second 

component, the size of each head, is determined at Feekes 5. Preventing N stress at this growth 
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stage will maximize head size and seed number and will increase potential grain yield capacity. 

Once Feekes 5 has passed head size will be fixed, N applications after this stage will not have an 

impact on head size, therefore permanent reductions in grain yield capacity may occur. The third 

and fourth components are number of seeds per head and the size of each seed which is 

determined from Feekes 10 through 11. By maintaining N sufficiency during these growth 

stages, a greater number of seed will be set and filled if given good growing conditions. With an 

understanding of the four components determining winter wheat grain yield, it is clear that 

preventing N stress during the Feekes growth stages previously described is important. 

According to Waldren & Flowerday (1979), winter wheat’ N uptake is most rapid from tillering 

through booting stages, with 80% of the total accumulation occurring before grain fill. Therefore, 

winter wheat will acquire most of its N from Feekes 3 through Feekes 9 (Asebedo, 2015). 

Applying different rates of N according to the N and productivity levels has been a 

popular way of nitrogen management (Raun et al., 2002). The above ground biomass can be 

considered as an indicator of productivity and can be estimated using Normalized Difference 

Vegetation Index (NDVI) in a nondestructive way by taking spectral measurements remotely 

(Raun et al., 2002). Currently, there are several methods available to identify in-field 

productivity variability. Using a vehicle-based active sensor is often labor intensive, inefficient, 

and destructive to the crop (Wang et al., 2017). Remotely sensed imagery can also provide 

important information about N and productivity in crop (Goel et al., 2003; Cho et al., 2007; 

Huang et al., 2007). Although very promising, imagery acquired by aircraft or satellite has some 

limitations such as the low spatial resolution, low temporal resolution, and the cloud influence 

(Myers et al., 2015). To fill this gap, the use of unmanned aircraft system (UAS) for various 

agricultural applications has soared over the last decade because of their potential to be a low-
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cost, accessible, and practical substitute for satellite and civil aircraft for high resolution and 

remotely sensed data (Myers et al., 2016). Although UAS provide the flexibility to select the date 

for data collection, it is not feasible to fly it too frequently such as on a weekly basis on a 

median/large size farm. It would be ideal to scout the field only at the key growth stages to save 

the unnecessary field trips. Thus the ultimate question will be how to optimize the date for 

imagery collection, get on-time biomass variability scouting, and get ready for a N application at 

the key growth stage. 

Therefore, the objectives of this study are: (1) to develop high frequent in-season biomass 

estimation models using UAS imagery; (2) to develop a wheat phenology model to predict the 

starting date of three key growth stages (F4, F7, and F9); (3) to combine the results from (1) and 

(2) to predict biomass variability on new data. 

 

 Materials and Methods 

 Biomass Estimation 

 Site Description 

Winter wheat was planted for the 2014-2015, 2015-2016 crop year at the Kansas State 

University Agronomy Ashland Bottoms research farm located to the south of Manhattan, KS. An 

experiment was established on a lowland flat soil position (39.137615 ° Lat, -96.640046 ° Lon). 

The soil is classified as a Belvue silt loam with a sudden increase in sand content within the first 

25 cm of the soil surface (Web Soil Survey, 2017). This high sand subsoil results in the field 

having good drainage ability and low available water holding capacity, which can make some 

winter wheat vulnerable to drought stress under dry conditions. 

 Experiment Design 
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Small plots with size of 3 m x 15 m were arranged in a randomized complete block 

design (RCBD) with stripped block with three replications. Within each block four hybrids 

(Everest, Jagger, Karl 192, and 1863) of wheat were planted as main treatments and four rates of 

N were applied at growth stage of Feekes 4 as sub-treatments (0, 56, 112 and 168 kg/). The total 

number of plots is 96 (4 hybrids x 4 rates x 2 replications within block x 3 blocks). 

 Image Data 

The imagery was collected by a converted Canon T4i DSLR camera (Canon® Inc, 

Tokyo, Japan). The modification was done by removing the infrared filter to record NIR 

(modification was done by LDP LLC, Carlstadt, NJ, USA). A blue notch filter was then installed 

to block only visible blue on the blue channel while still allowing the NIR wavelength to be 

measured. After modification, this camera can record Red, Green, and Blue lights. The detailed 

specification was summarized in the Table 4.1. The camera was flown at solar noon at 60 m 

above ground level by a DJI s800 evo hexacopter (DJI® Science and Technology, Co., Ltd. 

Shengzhen, China) with a gimbal to maintain nadir camera position during the flights. All 

imagery data was recorded in RAW format which provides capability to do image corrections 

before analysis. The camera was triggered every two seconds with an intervalometer device 

(DigiSnap 2000 by Harbortronics®). The flight path was programmed with 80% overlap (side 

and forward) and was repeatedly used for all imagery collections at different growth stages: 3, 4, 

6, 7, 9, 10.2, 10.5, 10.5.2, 10.5.4, 11.1, 11.3. All UAV operations was performed under the 

Certificate of Authorization (COA number: 2015-CSA-6-COA-R). 
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Table 4.1 Specifications of the converted Canon T4i CIR camera used in this study. 

 

Images exported from the camera were uploaded to the computer and processed using the 

workflow described by Wang et al. (2017) as shown in Figure 4.1. Normalized Difference 

Vegetation Index (NDVI) maps were generated which was then used to extract NDVI values and 

build empirical model for wheat biomass estimation. 

 

Figure 4.1 Image processing workflow for a CMOS sensor based converted Canon T4i CIR 

camera 

 

 Biomass Data 

For biomass data collection, twenty-four plots covering the biomass gradient from high to 

low were selected as sampling plots. A Japanese sickle was used to cut a 0.5 m x 0.5 m area from 
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each sampling plot. The fresh biomass was put into paper bags, immediately weighed after 

taring, and oven dried at 70°C to constant weight for dry biomass data. 

 Biomass Estimation 

For biomass estimation, the multi-temporal NDVI and biomass data from 2014-2015 season were 

divided into training and validation datasets. Linear regression models were derived for NDVI vs. dry 

biomass using the training data and evaluated by their coefficient of determination (r2). The resulting 

regression models were applied to the validation datasets and analyzed by linear correlation between 

prediction and observed biomass measurement. The results are compared based on the root mean square 

error (RMSE) and relative error (RE). 

 

 Wheat Phenology Model: 

There are many crop simulation models that can predict the phenological stages of winter 

wheat such as the wheat model in model systems: APES, CROPSYST, DAISY, DSSAT, 

FASSET, HERMES, STICS and WOFOST with different accuracies. The details of these 

models can be obtained from the references gathered by Palosuo et al. (2011). These mechanistic 

models typically consider the processes of plant development and describe instantaneous rates of 

plant processes that change rapidly over short time scale. However, a relative large amount of 

input information is required to run such a model. For example, the wheat model in DSAAT 

requires a series of soil data such as water holding capacity, depth to bottoms layer, bulk density, 

pH value, etc. and a series of management data such as emergence date, plant population at 

emergence, etc., which are not easy to gather in crop production. Thus, building a phenology 

model with minimum amount of input is our goal. 

This wheat phenology model is based on weather data and some field contextual 

information that can be easily obtained. The goal is to predict the starting date of a certain 
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growth stage without going to the field and taking any additional field measurements. To be 

specific, the target growth stages are F4, F7, and F9 whose importance on determining crop yield 

and quality have been discussed in the introduction. Once the F4/F7/F9 dates were determined, 

the UAV imagery collection can be performed accordingly and the right model coefficients can 

be plugged to estimate the wheat biomass. The data source and the process for this phenology 

model was described below: 

 Site Description 

The data used for the wheat phenology model were from 21 site-year of wheat 

experiments including research plot experiments and on-farm experiments. All the study sites 

and their contextual information were summarized in Table 4.2. 

Table 4.2 Study sites and their contextual information. 

 

 

 Weather Data 

The daily maximum air temperature (Tmax), minimum air temperature (Tmin), 

precipitation (PPT) for the 21 site-years were obtained from the nearest agrometeorological 

stations that can be retrieved from the Kansas Mesonet site at http://mesonet.k-
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state.edu/weather/historical/ and www.mesonet.org. The weather data for the sites that are far 

away from weather stations were interpolated using inverse distance weighting (IDW) method, 

by weighting longitude and latitude. There are some other weather variables that are important to 

crop growth such as solar radiation, relative humidity, but they were not included due to the 

unavailability at some of the study sites.  

 Ground Truth Data 

The ground truth data included the planting date and the starting dates of the key 

phenological growth stages (F4, F7, and F9). The data were summarized in the Table 3. The 

ground truth data will be used to calibrate and validate the phenology model. 

 Model presentation 

The phenology model workflow from input through output is shown in Figure 4.2. The 

key components are described in detail in the following sections. 

 

Figure 4.2 Workflow for a wheat phenology model for F4 starting date estimation 
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TGDD (Cumulative Grow Degree Day): 

Temperature or heat units are called growing degree days (GDD) and are calculated by 

subtracting the lower threshold temperature from the average daily air temperature as shown in 

Eq. 4.1. Although the lower growth limit for wheat is about 42 °F, Bauer et al., 1984 found better 

correlation in the GDD predictions by defining the lower threshold temperature as 32 °F (0 °C). 

One additional constraints on Ta is: if the daily mean temperature is less than the base 

temperature, it is set equal to the base temperature. 

𝐺𝐷𝐷 = 𝑇𝑎 − 𝑇𝑏                                                   𝐸𝑞. 4.1 

𝑇𝐺𝐷𝐷 = 𝑠𝑢𝑚(𝐺𝐷𝐷)                                           𝐸𝑞. 4.2 

 

where, 

 GDD = Growing degree day (°C) 

 TGDD = Cumulative GDD (°C)  

Ta = Daily mean air temperature (°C) 

 Tb = base temperature, 0 °C for winter wheat 

 

The GDD assumes a linear relationship between plant development and all temperatures 

above the based temperature. This simplicity leads to inaccuracies in the GDD predictions 

(Barger 1969). 

 

TF (Temperature function): 

Both extreme high and extreme low temperature decrease the rate of crop growth and 

development. This effect is accounted for by introducing the air temperature (Ta) in 2nd-degree 

polynomials determined by an optimal temperature for cop functioning (Topt, 20 °C for wheat) 
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and two extreme values (Tmax and Tmin, 0 and 37 °C, respectively) beyond which the plant 

growth stops (Brisson et al., 2003; Duchemin et al., 2008). This leads to: 

 

𝑇𝐹 =  1 −  [(𝑇𝑜𝑝𝑡 −  𝑇𝑎) / (𝑇𝑜𝑝𝑡 −  𝑇𝑚𝑖𝑛)]2    𝑖𝑓 𝑇𝑚𝑖𝑛 < 𝑇𝑎 < 𝑇𝑜𝑝𝑡       𝐸𝑞. 4.3 

=  1 −  [(𝑇𝑎 −  𝑇𝑜𝑝𝑡) / (𝑇𝑚𝑎𝑥 −  𝑇𝑜𝑝𝑡)]2      𝑖𝑓 𝑇𝑚𝑎𝑥 > 𝑇𝑎 > 𝑇𝑜𝑝𝑡        

=  0                                                                        𝑖𝑓 𝑇𝑎 < 𝑇𝑚𝑖𝑛 𝑜𝑟 𝑇𝑎 > 𝑇𝑚𝑎𝑥  

where, 

 TF = Temperature function 

 Topt = Optimal temperature for crop functioning, 20 °C for winter wheat   

Tmax = Extreme high temperature, 47 °C for winter wheat 

 Tmin = Extreme low temperature, 0 °C for winter wheat 

 

 

TPPT (cumulative precipitation): 

𝑇𝑃𝑃𝑇 = 𝑠𝑢𝑚(𝑃𝑃𝑇)                                           𝐸𝑞. 4.4 

where, 

 TPPT = Cumulative precipitation (mm) 

 PPT = Daily precipitation (mm) 

 

PE (precipitation evenness): 

The Shannon’s equitability (EH) was used to represent the precipitation evenness during a 

given period, which can impact crop growth (Tremblay et al., 2012). 

EH =
𝐻

𝑙𝑛𝑆
                                                      𝐸𝑞. 4.5 

𝐻 = − ∑ 𝑃𝑖 ∗ 𝑙𝑛𝑃𝑖

𝑛

𝑘=0

                                  𝐸𝑞. 4.6 

where, 

 EH = Shannon’s equitability. Value from 0 and 1 with 1 being completely evenness 
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 H = Shannon diversity index  

Pi = The proportion of precipitation in day i relative to the cumulative precipitation 

in n days 

 

Field contextual information:  

Field contextual information are valuable and can vary at different site-years. We 

included DOS (date of sowing) and Soil (soil type) as input in the model. Some other field 

contextual data were available to this study but not included in the model. For example, winter 

wheat hybrids used by the farmers may impact the phenology model, but since some of the 

hybrids did not have enough replication, they were excluded from the model. 

 

Weather Data Date Range: 

To specify the time frame of weather data, we use sowing date as the starting point and 

the “stop date” as the ending point. Instead of using a random date for the “stop date”, we 

proposed some dates options that can be used as “stop date” for phenology model targeting 

different wheat growth stages (Table 4.3). This will make the model calibration/validation work 

easier and make it usable to other people. 

Table 4.3 The “stop date” setup options for different stage phenology model 

 

 

Model: 
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Random Forest Model: 

We trained and applied Random Forest (RF), a binary tree based machine-learning 

method, to predict the starting date of F4/F7/F9 stage based on all inputs from weather data and 

field contextual information. RF can be used for both classification and regression purpose, and 

the scope of our study is to use it as a regression tool. Compared to traditional linear regression, 

RF model is relatively insensitive to outliers in training data and allows for non-linear regression 

(Svetnik et al., 2003). Furthermore, RF models can also be used to rank the importance of 

variables in a regression problem. Therefore, RF model is adopted here to predict the stage date 

and help us to understand the importance of those weather variables. 

 

Linear Regression Model: 

Multiple linear regression models (MLR) were constructed to test all combinations of 

weather and field information variables for benchmarking the performance of RF predictions. 

Eq. 4.7 illustrates the MLR used in this study: 

Date Est. = a1 ∗ 𝑇𝐺𝐷𝐷 + a2 ∗ 𝑇𝐹 + a3 ∗ 𝑇𝑃𝑃𝑇 +  a4 ∗ 𝑃𝐸 +  a5 ∗ 𝑆𝑜𝑖𝑙 + 𝑏                     𝐸𝑞. 4.7 

 

where, 

 a1, a2, a3, a4, a5, = Regression coefficients 

 b = Intercept  

 

 

 

 Results and Discussion 

 In-season Wheat Biomass Estimation using high-definition UAV based imagery 
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In order to use the phenology model to optimize the imagery data collection date and 

estimate biomass, we firstly built a series of in-season biomass estimation models at different 

growth stages using the 2014-2015 season data including imagery and ground biomass 

measurements. Figure 4.3 shows the example of color infrared orthomosaics for some growth 

stages (not all stages were included in Figure 4.3) generated using imagery data taken with the 

modified camera mounted on a UAS. The color is blueish because the blue band was used to 

record the NIR light which were mostly reflected by the plants. 

 

Figure 4.3 Orthomosaics of a wheat field at different growth stages. The plant materials are 

in blueish color because the camera is using the blue band to record NIR light which is 

mostly reflected by the plants. 

 

Table 4.4 Demonstrates the biomass estimation model at different growth stages from F3 

through F11.1 and their estimation accuracy that were evaluated by root mean square error 

(RMSE) and relative error (RE). 

Table 4.4 UAV imagery based biomass estimation model and validation at different growth 

stage. 
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All p < 0.001 

From Feekes 3 (tiller formed) to Feekes 11.1 (milky ripe), NDVI from the Canon camera 

have a consistent and high correlation (0.72<r2<0.95, all p<0.001) with the dry biomass. The 

most accurate estimation was observed at F10 and F10.2 which is the booting stage. At this 

stage, the head of winter wheat is visible but still in the leaf sheath below the flag leaf and winter 

wheat has the greenest and expanded leaves, thus has the most photosynthesis activities. After 

this stage, wheat turned into reproductive stages and the correlation decreased. As shown in 

Figure 4.4. the slope and intercept of the model were constantly changing in the season. This is 

suggesting that growth stage has a big impact on the crop remote sensing results. At earlier 

growth stage, the slope is low because there are not much green materials out there and the 

absolute biomass difference over unit NDVI is small. As the wheat putting more leaves on itself 

and growing taller, the ratio between the biomass difference and unit NDVI gets bigger. 
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Figure 4.4 Biomass estimation model slopes and intercepts seasonal change. 

 

 Wheat F4/F7/F9 phenology model using weather data and field contextual 

information 

In order to predict the F4/F7/F9 date without going to the field and taking any in-situ 

measurements. 21 site-years of weather data and contextual data were used to train and test the 

phenology models. For each targeted stage, there were three or four “stop date” options to 

choose from. The validations of the models are summarized in Table 4.5 by stages by “stop 

date”. The RMSE is the average RMSE of 200 iterations. For each iteration, the data was divided 

into 75% training set and 25% testing set after randomization.  

Table 4.5 Validation of wheat phenology model targeting F4/F7/F9 starting dates. 
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As shown above in Table 4.5, the phenology model error (RMSE) is about a week for F4, 

F7, and F9 using linear regression model, which significantly outperform RF model whose error 

are 2-3 weeks. This is probably due to the fact that by throwing all the available variables into 

RF model, instead of improving the model performance, it increases the noise level in the data. 

Considering the fact that RF model is more computational expensive than linear regression 

model, the latter is recommended in future phenology model development. A week sounds like a 

huge error, but in real world crop production, it is totally acceptable due to the complexity and 

difficulties of collecting data at a large scale and coordinating it under favorable weather 

conditions. 
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Table 4.6 Properties of positive and negative of coefficients in linear regression models 

 

To get a better idea of the phenology model developed using linear regression, the model 

coefficients was summarized in Table 4.6 as well as their properties of positive/negative. For 

each stop date option and each stage, only the best model was selected (after 200 iterations). As 

shown in the table, the coefficient for the temperature function is negative, which mean this 

stress function indeed provides a penalty to the crop growth. Likewise, the precipitation evenness 

has a positive impact on the crop growth. 

As the side product of RF models, the features fed into the models were evaluated for 

their importance when they were used for predictions.  
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Figure 4.5 Feature importance generated from Random Forest Model 

 

As shown in Figure 4.5, among all the variation (less than 100%) explained by TGDD, 

TFT, TPPT, SDI, and Soil type, TGDD explained the most variation (45%) while Soil type 

explained the least (6%) compared to other features. This is suggesting that, for phenology 

prediction, the TGDD is the most important feature and temperature based stress are also 

important (25%). In terms of precipitation, the cumulative amount and the precipitation temporal 

distribution are equally important. 

 

 Integrating phenology model into imagery based wheat biomass 

To do the integration, we firstly estimated the F4, F7, and F9 starting dates for winter 

wheat grown in 2015-2016 season using the phenology models evaluated in Table 6 (The actual 

model were not listed in the table due to the insufficient space). The predicted dates for different 

growth stages were summarized in Table 4.6. The prediction error for F4/F7/F9 were 8 days, 3 
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days, and 10 days, respectively. This accuracy agreed with the model accuracy in the past 

section. 

Table 4.7 Predicted starting dates for F4/F7/F9 for a wheat field grown in 2015-2016. 

 

Once the dates determined, imagery data collection were planned and performed on those 

dates accordingly. Next, from all the biomass models developed using 2014-2015 wheat data, the 

models specifically built for F4/F7/F9 were selected to plug into the imagery based NDVI data 

collected from 2015-2016 season. Figure 6. shows the examples of wheat NDVI maps at 

different growth stages. 
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Figure 4.6 NDVI maps for a wheat field at F4, F7, and F9. 

 

Biomass at specific stages were then predicted and compared to the observed 

measurements as shown in Figure 4.7. 
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Figure 4.7 Comparison of predicted and observed wheat biomass at F4/F7/F9 growth stage 

in 2015-2016 season. 

 

Wheat biomass was accurately estimated using previously year’s models. At F4 and F7, 

the RMSE were about 0.14 and 0.10 ton/ha, respectively. As the plant growing bigger and taller, 

more dry matter was accumulated therefore the RMSE at F9 was relative greater (0.39 ton/ha). 

The relative error of biomass estimation at all three interested stages (F4/F7/F9) were less than 

20%. 
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 Conclusions 

In the study, we firstly estimated in-season winter wheat biomass using CIR imagery 

collected with a UAS. From F4 though F11.1, the biomass was highly correlated with NDVI 

with 0.57 < r2 < 0.94 and could be estimated with different degree of accuracy. The estimation 

accuracy increased as the wheat growing and developing and then decreased after the wheat 

turning into the reproductive phase. The most accurate estimations were observed at booting and 

heading stages (F10, 11.2, 10.5) with REs less than 20%. These frequent in-season models were 

then used as models banks for new years’ data to select from. 

Secondly, a wheat phenology model targeting the key growth stages for N management 

including F4, 7, and 9 was built to optimize the imagery collection time without the pre-

requirements for any field measurements because the model was based on the weather data 

which can be easily retrieved from the nearest agrometeorological stations and the field 

contextual information that was acquired prior to the growing season. The starting dates of F4 

and F7 can be predicted within about a week while the error for F9 date prediction was more 

than a week but less than 11 days.  

Finally, a new site-year’s data (2015-2016, Ashland Bottoms) was used to test the 

integration of the phenology model and biomass model. The F4, 7, and 9 starting dates were 

predicted within 8,3,10 days, respectively. They were then used to schedule the imagery 

collection. NDVI values derived from these images were plugged into the biomass models that 

were built in previous year and accurately predict the biomass at F4, 7, and 9 with the RE less 

than 20%. 
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Chapter 5 - Summary 

 

Accurate and timely assessment of crop condition across a field is a key objective of 

many agronomists and farmers during precision farm management, and of many researchers 

during phenotyping in the breeding programs. Traditional remote sensed measurements acquired 

by earth orbiting satellites have been used for decades with varying degrees of success for 

classifying crop types and predicting yields but their limitations are associated with low spatial 

resolution and unfavorable revisit time in precision agriculture; Traditional phenotyping methods 

involve destructive sampling and manual measurements were time consuming and labor 

intensive.  

High spatial resolution images taken by passive optical sensors (POSs) mounted on low 

altitude remote sensing platforms such as UAV and MAV could fill this gap. Also, vehicle-based 

active optical sensors (AOSs) have been used to compute Normalized Difference Vegetation 

Index (NDVI)-type vegetation indices (VIs) to assess factors such as crop vigor, leaf nitrogen 

status, and potential yields.  

 AOSs can be used more freely under changing light conditions and times of the day. 

AOSs do not require the radiometric calibration and data processing that passive sensors need. 

However, passive optical sensors are more efficient for large-scale data collection in crop 

production and breeding programs and the data require no interpolation, which is usually 

performed in AOS data during analysis. Also, passive sensors currently have more bands, thus 

providing broader possibilities for application in precision agriculture.  
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After reviewing the current status of different optical sensors used in precision crop 

production including satellite-based, MAV-based, UAS-based, and vehicle-based active or 

passive optical sensors. We found that MAV- and UAS-based optical sensors have more 

potential in precision crop production due to their high spatial and temporal resolutions. 

Compared to UAS, MAV-based remote sensing deserves more attentions than it already has due 

to its flexibility on sensor selection and high efficiency on data collection. It provides reasonable 

high resolution (20 cm) data at a relative low prices and has the most return on investment (Table 

2.11) compared to vehicle-, UAS-, satellite-based optical sensors. 

For crop assessment at plot level such as the high-throughput phenotyping in wheat 

breeding programs, UAS- and vehicle-based optical sensors are more useful. Based on the results 

presented in this study, CMOS sensor modified camera and multispectral imager mounted on a 

UAS were more powerful and temporally stable on in-season biomass estimation and grain yield 

prediction than the vehicle-based active sensor. The canopy height could be estimated by the 

CMOS sensor camera and the multispectral imager when high precision GCPs were used. This 

estimation accuracy could be potentially improved by feeding the raw imagery data with IMU 

data and onboard RTK GPS data. When dealing with imagery data, radiometric calibration and 

image processing must be considered and standardized for better results.  

Based on the results presented in this study, in-season biomass can be consistently 

estimated using UAS imagery based VIs, which can be furtherly used to determine the intra-field 

variability of productivity for downstream applications such as fertilization recommendations. 

The method provided in this study can also be used in forage production to assess how much to 

cut for hay and to adjust the forage management practices based on the biomass estimation to get 

better marking prices. To be able to use these pre-built models over time, growth stage 



99 

information is needed so that the correspondent model can be selected to be plugged in. The 

proposed phenology model based on weather data and field contextual information is helpful to 

predict the starting dates of the key stages of wheat growth. The prediction error is about a week, 

which is good enough in real world crop production. As described in the introduction section in 

Chapter 4, N management is growth stage sensitive. When we can accurately predict what is the 

yield potential and what is the growth stage at the same time, we can start better improving the N 

recommendation algorithms utilizing the remote sensing spectral data, which make sense for 

both soil fertility and crop physiology. For example, we put more N under low biomass situation 

at Feekes 4 because it still can recover yield potential by impacting the primary yield determine 

factors, the tillering and head size. In middle season, we put less N under low biomass situation 

at Feeks 7 because it cannot impact tillering and head size at this stage, which leads to a 

permanent yield loss. It is not profitable by applying more N. This is the reverse logic of the way 

people doing their N recommendation algorithms for VRA applications. They usually think they 

need to apply more under low biomass situation, which turns out to be a waste of money. 

When using machine learning method, we throw all the data to the model and hope it can 

sort it out correctly. The reality is the performance may not be as good as expected or 

comparable to other methods such as linear regression model. We still need to have a good 

knowledge of the crop, environment, and their interactions to incorporate the biological factors 

into the models for better decision making. 

Optical sensor based crop assessment in precision agriculture and high-throughput 

phenotyping have gone through dramatic advances in the recent years and will continue the 

trend. The future applications may be ascribed to the improvement of simplifying image 

processing, lowering hardware prices, automation of data-to-plan translation to reduce the labor 
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cost. Although remote sensing tools can detect the field variability fairly easily, it is usually very 

hard to identify exact reasons that is causing the nonuniformities in the field. Multi-sensor 

strategy and expert based models can help to improve the diagnosis accuracy. Emerging 

information technologies like on-the-going process & analysis, cloud computing, multi-platform 

communication, and data sharing also can be integrated into PA for advanced, intelligent data 

collection and analysis. In addition, the sensor and technologies will continue to develop, more 

researches will be done, more methods will be validated, and hopefully, more people will adopt 

these PA tools to optimize the profitability on their farms and reduce the environmental impact 

for a sustainable future. 

 

 

(The End) 

 


