```
    AUTOMATED MENU PLANNING
by
```


ROBIN MARY BROWN

```
Diploma of Home Science University of Otago, New Zealand, 1961
```


A MASTERS THESIS

submitted in partial fulfillment of the

```
requirements for the degree
```

MASTER OF SCIENCE

Department of Institutional Management

KANSAS STATE UNIVERSITY Manhattan, Kansas

1966

Approved by
 $T 4$
1966

TABLE OF CONTENTS

Document Page
INTRODUCTION 1
REVIEW OF LITERATURE 3
Nenu Planning 3
Application of Computers to Decision-Making 9
Menu Planning by Computer 10
Other Computer Applications in Food Service 14
PROCEDURE 19
Selection of Menu Items 19
Menu Structure 21
Input Data 22
Evaluation of Menus 27
Description of program 30
RESULTS AND DISCUSSION 33
Menu Structure 33
Palatability Coding 35
Costs 38
Frequency Ratings 38
Menu Classification Rating 39
Menu Evaluation 39
Program 43
Further Considerations 44
SUMMARY 47
CONCLUSIONS AND RECOMMENDATIONS 49
ACKNOWLEDGEMENT 52

TABLE OF CONTENTS (concl.)

PageLITERATURE CITED 53
APPENDIX A 56
APPENDIX B

INTRODUCT ION

The food service industry in the United States of America is a rapidly expanding multi-billion dollar industry. Projections for estimated value of food consumed in away-from-home eating situations are $\$ 26$ billion for 1965, and over $\$ 34$ bil1ion by 1980 (Broten, 1965). Acute problems confront this industry, chief among them being reconciliation of ever-rising costs of production with maintainance of quality output and adequate profit margin. Development of the food service industry not only has been slower than that of other major enterprises, but has been hampered by lack of fundamental information providing the basis for efficient control.

Until recently identified mainly with hospitals, dietitians are now an integral part of the food service industry at large. Emphasis in academic preparation has been on scientific principles of nutrition and traditional methods of food production management. Too often dietitians have become involved in routine clerical tasks and have given little or no attention to managial aspects of the work. Repeated criticism of their performance arises from apparent failure to apply concepts of industrial efficiency and economy to the administration of food services.

Automated techniques in manufacturing and application of electronic data processing in business, marketing, and science have resulted in profound changes in traditional
methods of management. Evident in many fields, the computer has presented management with a tool that when properly programmed, is reliable, quick, and has the added advantage of a colossal memory. Further, it is flexible, requires no training, and is neither temperamental nor prone to absenteeism. Continued shortages of adequately prepared administrators plus various pressures resulting in the need for quick decision-making and problem-solving efforts have focused attention upon the use of computers and automatic data processing as a managerial tool in food service systems. Increasing numbers of applications have been noted in such areas as inventory control, fiscal control, dietary calculations, cafeteria line simulation, and some limited menu planning with emphasis on nutritional content and cost.

A vital factor in any food service is the menu. It is the hub of all food service operations and largely influences financial stability. A time-consuming duty when properly done, menu-planning requires consideration and interrelation of many factors such as: (1) age, sex, and occupation of group to be served; (2) climate and season; (3) flavor and appearance of food; (4) variety; (5) type of food service; (6) number to be served; (7) food budget; (8) equipment available; (9) number and experience of employees; (10) availability and seasonability of foods; (11) cooked foods on hand; and (12) recipes to be used (Fowler et al., 1961). Successful integration of all these
factors is essential for efficient food service. Objective evaluation is difficult.

Emphasising nutritional and cost factors and certain acceptability factors, several computer programs for planning menus have been formulated. However, proper nutrition is attained not only through a nutritionally adequate diet but also consumption of the food. Therefore nutritious food must be as attractive and appetizing as possible. The computer program should include acceptability, palatability, and management factors in food production and service.

The aim of this study was to develop a computer program to plan a non-selective menu with emphasis on color, shape, texture, and flavor suitable for service in university residence halls.

REVIEW OF LITERATURE

Menu Planning

Goals. Three distinct goals of menu planning for food services, according to Smith (1963) are: (1) fulfillment of nutritional needs; (2) consideration of cost factors; and (3) palatability of the food. The United States National Research Council (1964) has defined quantities and classes of foods necessary for optimum nutrition with regard to age, occupation, activity, and habits of the people. Smith (1963) said that economy should be achieved in the utilization of labor, equipment facilities, and time available for
preparation and service of food. Factors of contrast and balance in the aesthetic quality of food are important in determination of eventual nutritional value of that food, as only food that is eaten has actual nutritional value to an individual. Color contrasts, flavor, texture balance, variety in shape and size of food, as well as in different preparation methods help make wholesome food more attractive, and thus more likely to be eaten. General well-being, noted Dylla (1962), resulting from nutritional adequacy could be related to performance in classrooms. One commercial food service used popular menus to attain nutritional standards for high school students.

Qualifications of Menu Planners. Frahm (1965) stated that planning menus challenged intelligence, imagination, and skills of the menu planner. Many authors commented that menu planners need scientific knowledge of principles of good nutrition, creative ability, and imagination to present interesting and attractive combinations of food. Kinder (1963) explained that part of a "satisfying dining experience" was achieved by providing pleasing relationships of texture, flavor, and color in foods accompanying the main dish selection.

Menu planning Factors. Food had a psychological aspect, stated Frahm (1965), and satisfaction of psychological and aesthetic factors needed careful consideration. Sight of food, its color, shape, size, and surface should tempt
people to eat, declared Mclean (1959). Many things influence the planning of menus such as texture, flavor, color, shape, variety in preparation methods, variety in foods, and other factors.

Texture. Results obtained in a word association test used to determine consumer awareness of food attributes, according to Szczesniak and Kleyn (1963), indicated that texture was a discernible characteristic of food, and was more evident in some foods than in others. Highest numbers of texture responses were given either for bland-flavored foods or for foods with characteristics of crispness or crunchiness. Texture was the most-mentioned response, followed by flavor, then color.

Variations in texture and temperature of foods in a meal, pointed out Mclean (1959), add to the attractiveness of a meal. Although a meal of soft foods was disagreeable to some age groups, a meal of coarse and scratchy foods was also unpleasant to eat. However, much satisfaction may be derived from contrast and variation in texture (Mclean, 1959). Degree of cooking, noted Hughes (1962), greatly influences texture.

Flavor. Mclean (1959) observed that the sensation of flavor was interrelated with odor, taste, feel, and texture. Taste referred to tongue taste, but in popular use was synonomous with flavor. Four basic tastes are sweet, sour, salt, and bitter; however, most foods are blends of two or more flavors. Combination and contrast of tastes in recipes
and menus resulted in more eating pleasure. Many variables occurred in human taste. Research showed: (1) people were able to taste over half a million flavors; (2) taste sensation and sense of smell were interrelated closely; (3) taste buds detected only degrees of salt, sweet, sour, and bitter flavors; and (4) taste was affected considerably by appearance (Anon., 1964).

In a report of a study of psychological expectations of perceptions and preference for different taste mixtures, Gregson (1963) concluded that subjects demonstrated a high degree of error in perception of mixtures preferred. Degree of real insight varied considerably between individuals. Based on these results, existence of interrelationship between taste, vision, and other senses was suggested.

A balance between taste and flavor should be achieved, observed Mclean (1959), so that excessive use of intense flavors within one meal does not dominate more delicate flavors. The recommendation that not more than one strongtasting food should be present in one meal was repeated throughout the literature.

Color. Color is the only aesthetic factor of food that can be evaluated by objective measurement. Color of food could determine its acceptability (Anon., 1965). Colors naturally associated with foods were more appealing than unfamiliar colors, and clashing colors were unpleasant (Mclean, 1959). Birren (1963, p. 553) stated that "color is forever a part of food, a visual element to which human
eyes, minds, emotions, and palates are very sensitive." Hues in the red-orange range of the color spectrum seemed to arouse agreeable sensations, whereas the color with lowest appetite appeal was in the yellow-green range.

Shape. No scientific studies of form of food related to its acceptability could be found. However, many authors recommended careful attention to form of foods in a meal and variety in shape as aids in overcoming monotony and adding interest (Fowler et al., 1961, p. 334). Irregular shapes, commented McLean (1959), or natural shape of foods are of ten more attractive than smooth or definite shapes.

Variety in preparation methods. According to Mclean (1959), variety in presentation of food is the criterion of good menu planning. provision of variation in preparation and cooking of food from meal to meal requires imagination and adds to the enjoyment of food. If preparation and cooking of food differs greatly from traditional methods, food may often be rejected (Hughes, 1962).

Variety in Food. Reactions of volunteers to monotony in food over a period of 24 days were reported by Kamen and Peryam (1961, p. 173), who stated that "proneness to monotony is a dimension along which foods may be evaluated," and that individual points of reaction were highly subjective. In trials, 2 diets were preplanned and 1 was selfplanned. With restricted food items available, self-planned diets were preferred, and morale was higher in that group.

Repetition, concluded Schutz and Pilgrim (1958), resulted in reactions to monotony of lowered consumption and preference ratings. Monotony might be related to initial preference and palatability of food. Fruits, desserts, and staples did not significantly change in preference rating. Cereals were rated higher, whereas meat and vegetables decreased in rating as testing progressed.

Other Factors. Fowler et al. (1961) considered factors affecting menu planning in 2 categories; those directly affected by clients or guests, and those related to management. Factors to be considered in relation to the group being fed were age, sex, and occupation of its members, as determinants for nutritional requirements; suitability of foods for the group; consideration of economic levels, ethnic, cultural and religious influences; food preferences; and tradition.

Management factors of menu planning were type of food service, number served, and time lapse between preparation and service; budget allowances and balance between highand low-cost menus; purchasing procedures, season, and storage facillties; avallable equipment and work space that might limit use of some types or combinations of foods in meals; number, experience, skill, and responsibility of personne1; organization and distribution of work, time management, and time available for preparation; and standardization of recipes and procedures. Finally, overall
policies of an institution would have direct bearing on selection of foods in each institution (Fowler et al., 1961).

Application of Computers to Decision-Making
Application of electronic data processing in business and industry, observed Salveson (1963), has been one of the most profitable innovations of this century. Reduction in labor costs; increased total output; improved quality of production; better working conditions because of improved utilization of time, personnel, and physical plant; and survival in a competitive world were given as valid reasons for automation by Kruger (1963). Computers have had a profound effect on management processes, and their application to decision-making has resulted in a new "information technology." Salveson (1963) hypothesized that computers have extended the ability and scope of human minds to think, manipulate information, and make decisions. Traditional methods of decision-making have undergone re-evaluation and re-specification (Whisler and Shultz, 1962).

Computers are able to examine and evaluate many possible solutions within a short period of time. Before submitting data to computer processing, an operation must be studied in depth and detall, and all aspects of the problem and methods of solution precisely defined, pointed out Salveson (1963). Quality and value of computer decisions will depend directly on reliability of data and analysis presented as input.

Improvement in operation and profitability occurred in 3 ways, according to Salveson (1963), after introduction of computers for managerial decision-making. Computerized management demanded and provided greater understanding of an entire operation. Better analysis and information was permitted at all stages of planning, decision, and control. Generally, cost reduction was realized as well as increased quality of "information processing" in operations which were automated.

Menu Planning by Computer

Minimum Cost Subsistence Diets. A mathematical model of a diet emphasizing minimum cost of physiological subsistence was first solved by Stigler in 1943 (Smith, 1963). The diet was planned for a 70 kg male city-dweller. Nutritional standards were based on recommended dietary allowances of 1943 , and retail prices on reports of Bureau of Labor Statistics. Allowance was not made for variety, palatability, or cultural considerations. Foods used were enriched wheat flour, corn meal, evaporated milk, peanut butter, lard, cabbage, potatoes, spinach, dried navy beans and beef liver.

Toussaint (1959) reviewed a study by Francovic et al., in which linear programming techniques were utilized to check Yugoslav family food expenditures against physiological dietary needs. Use of computer techniques indicated that food expenditures were inadequate to support a
physiologically-required minimum diet, although caloric requirements were satisfied.

In planning adequate nutritional diets suitable for British dietaries, Vajda (1958) set requirements of 75 g protein, 90 g fat , and 300 g carbohydrate, which were met from a list of 8 foods. A computer planned a dally diet that included steamed fresh haddock, national wheat-meal bread, and margarine.

Smith (1963) described the "Beckman Mode1" which in 1959 computed a minimum cost subsistence diet for a 45 year old male. Nutritional values were based on recommended dietary allowances in 1958. The solution of the problem was checked for amino acid requirements. A 11 st of 25 foods was used, from which the following foods were selected to satisfy requirements: lard, fresh orange juice, beef liver, soy bean meal.

Adequate Nutritional Diets. In another study reported by Smith (1963), 4 diet models were designed in an effort to formulate descriptive models for British working class diets. Fifteen groups of foods were listed, at average prices for each group. Tight restrictions resulted in a diet plan with large excesses of bread and potatoes. When restrictions were relaxed, diets simulated by computers Included vegetable and cereal groups. Compared with actual diets of British working class, the modified model included all food groups except fruit.

The "Smith Midget Model" was a diet planned by computer to fulfill nutritional needs over 28 days for a family of 3. Food lists were selected from a report of actual food purchases of 76 Michigan families. The Midget Model listed fresh homogenized milk, oleomargarine, carrots, potatoes, picnic ham, and white flour, to fulfill requirements.

Subsequent efforts by Smith to produce a minimum cost diet that would achieve recommended nutritional values sought to increase palatability. Application of "conventional restraints" helped force diets into more conventional and acceptable form. These restraints were (1) defining maximum limits that prevented satiation, (2) defining minimum limits that insured that food preferences were not ignored, (3) "complementarity restriction" that allowed some foods to be more palatable in combination than when eaten alone. Further "cooking aids" such as baking powder, baking soda, flavoring extracts, vinegar, and prepared mustard were allowed to enter the original list. These raised cost and increased palatability without contributing to nutritional value. When more foods were added to the Midget Model list, costs rose and modification of amounts of foods took place (Smith, 1963).

Intended to be reasonably palatable, a larger model used a list of 572 foods, provided for coffee and condiments, demanded that certain nutritional needs be met at least cost, and applied the restraints of the previous models. With this model, the computer met prescribed nutritional
requirements at a cost of 43.96 for 3 people for 4 weeks. prices were based on those in Michigan in May, 1955. Cost per person per meal for the computer-planned diet was less than $17 \frac{1}{2} \notin$, whereas in a consumer survey at that time, no family who spent less than $20 \notin$ per person per meal achieved recommended nutritional levels (Smith, 1963).

Nonselective Hospital Diets. Mathematical designs for computer system menu planning have been studied. Balintfy and Blackburn (1964) reported a successful attempt in formulating nonselective low cost, nutritious diets for hospital patients. Data processed by the computer included nutrients, costs based on yield adjustments, standardized recipes, serving portions, and patient preferences (Balintfy and Balintfy, 1965). A paper by Balintfy and Nebel (1965) described experimental procedures followed for evaluation of problems and results arising out of trial menus planned by computer. A panel of dietitians evaluated menus prepared by different methods and indicated general acceptance of computer-planned diets. Balintfy and Blackburn (1964) quoted cost savings of up to 30 per cent, using computer menu planning techniques.

Balintfy and his co-workers are proceeding in their development of mathematical models to ald computer menu planning. The random nature of nutrient composition of menu items, lack of predictability in menu selection, and differences in nutrient intake requirements were problem areas encountered by Balintfy and Prekopa (1965) in attempts
to formulate accurate and comprehensive mathematical models for menu planning.

Selective Hospital Diets. An attempt to adapt methods of mathematical programming and digital computers to planning selective menus for hospital patients was reported by Gue (1965). Results from an exploratory study indicated success in adaptation of Balintfy's nonselective menu planning methods. Emphasis was placed on adequate nutrition; 9 nutrients were considered. provision of choice from each menu class was sought. Variation in menus was a third criterion. Cost savings were not as dramatic as those proposed by Balintfy and Blackburn (1964), but because of random selection of menu items by patients, Gue (1965) found them difficult to predict. According to this report for each meal the computer calculated the combination of menu items with lowest possible nutritional content, and the probability of such a selection.

Other Computer Applications in Food Service

In 1964 Hartman observed that 600 hospitals were using data processing techniques, and suggested that dietitians study potential of computer applications for management of food services. Advantages of computers as a tool of management, stated Hartman (1964), were accuracy of machine calculation, saving of professional time, and an increased depth of information from detalled anelyses that could
become available with no additional manpower expenditure once inftial data were assembled.

Three stages of applications of electronic data processing in management practice were cited by Hertz (1965). The first stage was replacing manual clerical tabulation processes with computer techniques. Second was utilization of electronic data processing in management analysis. The third stage of application was use of operations research and systems analysis in decision-making and problem-solving by computers at managerial level.

Stage 1. Application of Tabulation processes. At least 1 hospital used a computer to count menu item selection (Balsley, 1964). Savings in man hours, increased accuracy of tabulations, less food wastage, and more efficiency in tray assembly were noted as advantages.

Stage 2. Application of Management Analysis. The next stage in applying computer techniques to management involved development of new types of information. Detailed analyses and reports previously unavailable because of time involved in preparation, could be provided frequently by computers (Fellers and Gue, 1965). Food service applications include nutrient anelysis, labor cost analysis, inventory control, and food cost analysis.

Nutrient Analysis. Veterans Administration hospitals have been using computer techniques to check nutritional adequacy of manually-planned diets since 1962, disclosed Brisbane (1964). Basic data on food codings and 14 nutrients
were provided for each food on punch cards. Knowledge of nutritional content of dally and weekly diets was improved great ly as a result, and manually-planned menus showed improvement in nutritional content. One data processing center analyzed information for 28 hospitals during a test period, and Brisbane (1964) sald that the system could be implemented in 170 hospitals throughout the nation.

Labor Cost Analysis. A system for analysing labor costs in a food service was described by Balsley (1964). Time spent in specific task areas of food service were calculated by a computer. Information useful to management was provided concerning labor costs and calling attention to areas of excessive cost.

Work Sampling. Work sampling was another application discussed by Balsley (1964). Tasks in different areas of a cafeteria were coded. Observations were punched on 29,000 cards and processed by computer. Results were classified by the computer showing activity time, time spent by each employee in each type of activity, and total time in each area at each hour of the day.

Inventory and Food Cost Control. Seventy-nine institutions under control of the Commonwealth of Pennsylvania utilized computer control to improve food service (Taylor, 1965). Aims of the system were adequate nutrition, economy of diet, determination of accurate budgetary requirements, and maintenance of cost controls. Nutritional values and cost of food were calculated for each institution. Machine
analysis made it possible to compare food costs within and between institutions. Depth of information made available enabled closer control of food usage, budget management, and a general insight into efficiency of food service operations.

Another hospital analyzed food purchase orders and costs which were compared with kitchen consumption. A close check on food inventory resulted (Balsley, 1964). Food cost analysis included total cost, costs by food category, and cost per meal.

At the University of Missouri, a computer monitored the perpetual inventory system. Total daily food costs were made available (Ohio State University conference notes, 1965).

Stage 3. Application of Decision-Making and Problem-

 Solving. The third stage of computer application to management practice, and probably the most useful, was that of decision-making and problem-solving (Hertz, 1965). However, in the food service industry little has been accomplished in this area (Fellers and Gue, 1965).Cafeteria Simulation. Knickreim et al. (1963) studied the possibilities of the simulation of cafeteria service lines by a computer. A mathematical model was established to determine effects of changes in layout, or operating procedures, on time customers spent waiting for service. Effects of these changes were determined also for dining room seating patterns. The technique could be used to
ensure optimum utilization of cafeteria facilities and personne1.

Total Dietary Systems. Reports by Fellers (1965), and Fellers and Gue (1965) indicated that total computer control of a dietary system was feasible. Installation of such a system would depend on computer-planned menus, as menus and recipes are the basis of all other activity in food service operations. Under such conditions, computers would control inventory, food specification and purchesing, work assignments, and equipment scheduling. preparation instructions would be issued by computer also.

A food service system was envisioned by Casbergue (Ohio State University conference notes, 1965) in which computers would be used for menu writing; recipe calculation; tallying patient's selections; purchasing and forecasting costs and supply needs; ordering of supplies from storeroom for kitchen consumption; scheduling food production, equipment, and work load; and provision of cost and nutritional data. He stated that development of menu planning by computer had reached a more advanced state than had use of computer control in production and management aspects of food service systems.

PROCEDURE

Selection of Menu Items

Foods used in the spring semester of 1965 by the residence hall food services of Kansas State University were the basis for menus to be planned by the computer. These foods were obtained from the actual menus used during that period.

Menu Analysis. The menus were analyzed for the following classes of foods: dinner entree, potato, vegetable, dinner salad, dinner dessert, lunch entree, lunch salad, lunch dessert. Different menu items used in this period for these classes were noted and the number of times that each was served was tallied. The weeks in which each item was served were observed, so that some indication of frequency intervals between appearances of a particular food on the menu could be obtained.

Breakfast. Breakfast in the residence hall food services was a relatively stable meal pattern featuring juice, hot and cold cereal, usually an egg in some form, toast, jelly, and beverage. Therefore, for the purposes of this study, the decision was made to omit this meal and the foods it utilized.

Lunch. Lunch featured a selective menu. Although Juice, soup, vegetable, or potato of ten was served, no pattern seemed to be associated with the use of these items on the menu. In order to standardize the problem,
these foods were eliminated from consideration. For lunch during the period checked, a total of 74 entrees, 74 salads, and 73 desserts was used. Thirty-seven salads appeared on lunch and dinner menus (Appendix A, Table 5).

Dinner. For dinner, selection was limited to salad and dessert. During the semester surveyed, 52 entrees, 16 variations of potatoes, 41 vegetables, 82 salads, and 72 desserts were counted on the menus. As previously noted, 37 of the 82 salads also were found in the lunch list (Appendix A, Table 5).

Standardized Recipes. In order to have standard recipes from which to work for costing purposes, "Food for Fifty" by Fowler, et al. (1961) was used as a point of reference. Only those menu items for which recipes appeared in this book were considered for computer input. From this shortened list of menu items, a selection was made for computer input (Appendix B, Form 1). To simplify the problem, 21 menu items were chosen arbitrarily for each of the following classes: lunch entree, dinner entree, vegetable, lunch dessert, and dinner dessert. Thirteen of the 16 potato variations appearing on the residence hall menus were 1 isted for computer input. One 1 ist of 34 salads was obtained by randomly selecting 21 salads from each of the 1 unch and dinner lists (Appendix A, Table 5), and then eliminating duplications.

Menu Structure

Balintfy and Blackburn (1964) developed a method of calculating nutrients and cost for nonselective hospital menus planned by computer. Because the dietary intake of college students eating in residence hall food services cannot be controlled, the decision was made to define a menu structure that would ensure adequate nutrition if all foods in the pattern were selected and eaten in a 24 hour period.

Nutritional Requirements. The U. S. Department of Agriculture (1964) recommended that the Basic Four food groups be used to form a foundation for an adequate North American diet (Appendix B, Form 2). Using this guide, at least two servings from the meat group, four servings from the fruit and vegetable group, four servings from the bread and cereals group, and a milk allowance varying according to sex and age, should be included in the dally diet.

Although breakfast was not included in this study, it may be assumed to consist of at least one serving from the fruit and vegetable group, one serving from the bread and cereals group, and possibly one serving from the meat group. Milk allowances were disregarded in this study, since milk is avallable for drinking to students eating in the residence hall food services at all three meals. Also, a certain amount of milk would be incorporated into the cooking or preparation of some menu items. Thus, food
allowances remaining to be satisfied would be two servings of meat or substitute, a minimum of three servings from the fruit and vegetable group, and at least three servings from bread and cereals group.

Menu Pattern. The basic menu pattern used in the Kansas State University residence halls at the time of this study was followed with some modification. In order to simplify and standardize the menu pattern for computer programing purposes, five items were set for dinner, and three menu items were set for lunch (Table 1). Beverages and bread were not included. The outlined menu structure would give a total of two servings of meat or substitute, at least four servings from the fruit and vegetables group, and at least three servings from bread and cereals group. When breakfast menu pattern is added, the menu structure should fulfill all requirements of the Basic Four, except that of milk.

Input Data

For this study, the input data included only palatability factors, costs, frequency ratings, and menu classification. No at tempt was made to add descriptive terms to the basic menu items. Palatability factors used were texture, flavor, color, shape, and variety as denoted by preparation method.

Palatability Coding. Numerical codes were assigned to food items in an attempt to describe those elements of foods recognized by human senses. Foods were coded

Table 1. Menu structure for meals planned by computer.

Mea 1	Food group	Menu item classification	
		Name	Code
Breakfast	(Not included in comp	er planning)	
	Fruit and vegetable	Fruit juice	not included
	Meat or substitute (fish, poultry, egg)	Egg	not included
	Bread and cereals	Cereal	not included
	Bread and cereals	Toast	not included
Lunch	Meat or substitute (as above)	Lunch entree	5
	Fruit and vegetable	Lunch salad	3
	fruit and vegetable Bread and cereals	Lunch dessert Bread item	not included
Dinner	Neat or substitute (as above)	Dinner entree	1
	Fruit and vegetables	Potato	7
	Fruit and vegetables	Vegetable	2
	Fruit and vegetables	Dinner salad	3
	Bread and cereals or fruit and vegetables	Dinner dessert	4
	Bread and cereals	Bread item	not included

according to palatability factors of texture, flavor, color, shape, and variety described by preparation methods.

Texture. Initially, 5 characteristics were devised for texture rating as follows: (1) soft; (2) chewy, crunchy, or crisp; (3) medi um texture; (4) food served with sauce, gravy, or dressing; (5) liquid. Further definition of characteristics for texture ratings proved necessary. Soft foods were distinguished from very soft foods, and medium texture was differentiated into moderately chewy. The liquid characteristic was eliminated as this was not used in the present food listings. A total of six categories for texture characteristics resulted (Table 2).

Table 2. Index to palatability codings of menu items.

$\begin{gathered} \text { Palatability } \\ \text { factor } \end{gathered}$	Characteristic						
	1	2	3 :	4	: 5	$: \quad 6$	- 7
Texture	soft	chewy crisp crunchy	medium texture	sauce over food	very soft	moderately chewy	
Flavor	$\begin{aligned} & \text { sour } \\ & \text { bitter } \end{aligned}$	strong spicy	meat fish poultry cheese	bland	sweet	savory vegetable	
Color	white	brown	orange yellow golden	green	red pink	mixed	purple black dark blue
Shape	round ova 1	square	sticks shreds long forms	diced	wedges	no definite shape	slices
Preparation method	bolled steamed	fried	baked	roast	grilled broiled	raw	cold

Flavor. Six characteristics of flavor were defined: (1) sour or bitter; (2) strong, spicy; (3) flavors related to protein foods (meat, poultry, fish, cheese); (4) bland; (5) sweet; (6) flavors of vegetable nature (Table 2). Color. Seven characteristics were assigned for color: (1) white; (2) brown and grey-brown; (3) orange, yellow, and golden; (4) green; (5) red, pink; (6) mixtures of colors; (7) purple, dark blue, and black (Table 2).

Shape. Originally 6 characteristics were assigned for shape. These were (1) round or oval; (2) square; (3) shreds, sticks, or long, narrow forms; (4) diced; (5) wedges; (6) 1iquid. A seventh characteristic was added for slices (Table 2).

Preparation method. Methods of preparation were coded as follows: (1) boiled, steamed, and other moist heat methods of cookery; (2) fried; (3) baked; (4) roasted; (5) grilled and broiled; (6) raw; (7) cold, chilled, and frozen (Table 2).

Coding problems. Where two distinct characteristics fell within the same factor, the more dominant attribute was chosen; e.g. ice cream and chocolate sauce were color coded brown. Garnishes were ignored. Coding for shape was sometimes difficult, as in fried chicken. Any food that was served with a sace or gravy was placed in texture characteristic code 4 (foods served with sauce or gravy). The texture of solid food in such combinations was
disregarded, so that a predominance of gravies and sauces might be avoided in one meal, or in a day's meals.

Costs. Costs were estimated from recipes in "Food for Fifty" by Fowler et al. (1961). Using current institutional prices, total cost for each recipe included on the final food list was calculated and divided by 50 to give the cost per serving which then was entered on data cards.

Frequency Ratings. All menu items from lunch and dinner menus of the spring semester, 1965, menus were listed and circulated to dietitians in the residence halls (Appendix B, Form 3). They were asked to indicate whether they considered a menu item sufficiently popular among students to be served once every $2,4,8,16$ weeks (once a semester), or never. Fifteen dietitians cooperated in the survey. Frequency opinions were tabulated, and a rating for each menu item was established according to how of ten the majority of opinions indicated each menu item should be served (Appendix A, Table 5).

Frequency ratings were assigned as follows: 2 indicated that the menu item could be served once every 2 weeks; 4,4 weeks; 8,8 weeks; and 16,16 weeks. Thus the frequency rating stated the time lapse between appearances of the same item on the menu. This information was entered on data cards.

Menu Classification. Each menu item was assigned a number corresponding to its place in menu structure, e.g. roast beef was a dinner entree; tossed salad, a salad; and
chocolate cake, a dinner dessert (Table 1). The computer was programmed so that 1 item from each menu classification would be selected for 1 day.

Evaluation of Menus

The computer planned a day's menu consisting of lunch and dinner as one menu. Subject to certain restrictions, 8 menu items were selected and sorted into 3 for lunch and 5 for dinner. To evaluate the computer planned menus, therefore, both lunch and dinner had to be considered together.

Menus for 7 days (Table 3) were selected from 21 menus planned by computer (Appendix A, Table 6). Because dinner entrees were the menu item around which an entire day's menu was planned, selection of computer menus for evaluation was based on variety in dinner entrees. Representation of different meats, meat cuts, and meat substitutes was sought.

Residence hall menus for the 1965 spring semester were used to evaluate the computer-planned menus. From these menus, 2 meals having entrees identical to the selected 14 computer-planned meals were chosen. Three menus having identical entree items, 2 from residence halls and 1 computer-planned, were put together in random order. In al1, 14 dinner and 14 lunch menus were taken from the residence hall menus. All menus were uniform in appearance making identification of origin impossible.

Table 3. Menus selected from computer output for evaluation.

Menu 1
Ham Salad Sandwich
Rhubarb Mold
Gingerbread with Topping
Barbequed Chicken
Parsley Buttered Potato
Baked Squash
Cabbage Salad
Lemon Chiffon Pie

1	3	5	2	7	.10
1	5	5	2	7	.03
1	2	2	2	3	.03
3	2	2	1	3	.29
3	4	1	1	1	.02
5	4	3	1	3	.04
2	6	4	3	6	.01
5	2	3	5	7	.03

29
.02
.04
.01
.03

Menu 2
Creole Spaghetti
Cucumber in Sour Cream
Spice Cake
Pork Cutlet
Scalloped potato
Whole Kernel Corn
Pineapple, Marshmallow, Grape Salad
Strawberries and Cookie

4	2	2	6	3	.09
4	6	1	7	6	.05
1	2	2	5	7	.03
3	3	2	1	3	.28
4	4	1	7	3	.04
6	6	3	4	1	.05
6	5	3	4	6	.08
2	5	5	1	7	.10

Menu 3
Grilled Cheese Sandwich
Egg Slice and Asparagus Salad
Chocolate Chip Cookie
Roast Turkey
Franconia potato
Lima Beans
Macaroni Salad
Lemon Chiffon pie

3	6	6	3	7
2	5	2	7	3

$\begin{array}{lllll}3 & 4 & 1 & 7 & 4 \\ 3 & 4 & 2 & 1 & 4 \\ 6 & 6 & 4 & 4 & 1 \\ 4 & 4 & 1 & 1 & 7 \\ 5 & 2 & 3 & 5 & 7\end{array}$
.05
.16
.03

Menu 4
Corned Beef Sandwich
Tomato and Cucumber Salad
Oatmeal Fruit Bar

3	2	5	2	7
2	6	3	7	6
6	5	3	5	7
1	3	5	2	3
5	4	1	1	1
3	5	4	4	1
2	6	6	4	6
1	5	2	5	7

Ham Loaf
Mashed potato
Buttered Peas
Tossed Salad
Chocolate Cake-Fluffy Icing

Table 3 (concl.)

[^0]Lunch and dinner menus were listed separately for purposes of evaluation (Appendix B, Form 4). Residence hall menus did not show combinations of dinner and lunch entree items in same sequence as that of computer-planned selection.

Dietitians evaluating the menus were asked to score palatability aspects of each menu. A 5 point rating scale was used: 1 equalled unacceptable combination or variety of foods and 5, excellent combination or variety of foods (Appendix B, Form 4). Evaluators were asked to indicate for each set of 3 menus which had the most pleasing combination of menu 1 tems.

Scores on returned forms were tabulated. Average ratings for each characteristic were calculated for the individual menus. Preference ratings were tallied to establish the menu in each set that was considered by dietitians to be the most pleasing combination of menu items.

Description of Program

The program for menu planning was written in Fortran language for an IBM 1410 computer in the Computing Center at Kansas State University. To write 1 day's menu including lunch and dinner, 8 selections were made (Appendix B, Form 5).

The program relied on random selection techniques, through generation of random numbers. Input consisted of menu item names that were read in as 7 menu item groups.

A blank card separated each group. The 7 menu categories were entered into computer storage as rows of a matrix. Dinner menu items occupied rows 1 through 21. Subsequent menu item groups followed; l row of the matrix was used for each menu item.

Selection of Nenu Items. To select an item from the dinner entree llst, a random number was generated. Since dinner entree items occupled rows 1 through 21 , the number computed had to be within this range. If the random number was outside these limits, random number generation processes were continued until an acceptable number was found. In order to be usable, the random number had to be within maximum and minimum row number limits for each menu item 1ist. The process was repeated for the eight selections necessary to make up a day's menu.

Menu items were selected in the following order: dinner entree, lunch entree, dinner potato, lunch dessert, dinner dessert, dinner vegetable, dinner salad, and lunch salad. Salads were placed last in the selection order, as they were a menu item group with a high range of variability in texture, flavor, color, and shape characteristics. As each selection was made, the possibilities of selecting any menu item that fell within restrictions placed in the program sharply decreased. Desserts, as a menu item group showed little range of variation in characteristic codings (Appendix B, Form 1). When lunch and dinner desserts were last in the selection order, variation was difficult to
obtain in dessert items. Dessert selection showed improvement when order of selection was changed.

Checking for Conflict. Eight selections were made to form a day's menu. Within 8 selections, any 1 characteristic code could appear maximum of 3 times for each palatability factor. In 1 day up to 3 red, 3 soft textured, 3 square shaped menu items, and so on could appear.

As each selection was made, characteristics codes for the particular selection were entered in a "conflict matrix" in which columns could be scanned for appearance of a characteristic code more than 3 times. The first 3 menu selections did not need to be checked as no conflict could arise. The remaining 5 menu items each had to be examined for conflicts against previously chosen menu items. If a conflict existed, the menu item immediately following a conflicting selection was compared for conflicts. This process was repeated through the entire list if necessary, until a non-conflict item was located. If no non-conflict item was found the computer entered zeros, and proceeded to the next menu item list where selection and checking processes were repeated.

A further restriction was placed on dinner entree and lunch entree items, stipulating that each menu item in these lists could be used only once. When selection was made, the program instructed that that menu item be eliminated from the list. A similar instruction was placed on
salads, whereby a salad selection could not reappear within 3 days.

Output. Nenus were printed out with menu items arranged in conventional order, viz., lunch entree, lunch salad, lunch dessert, dinner entree, potato, vegetable, dinner salad, and dinner dessert. A blank space appeared between lunch and dinner menus. All characteristics codes were included in output, and costs were printed with totals presented for each meal. No daily total costs were given (Appendix A, Table 6).

This program selected 21 menus, the limit of dinner entree items and lunch entree items. Time for selection of these menus was 6 minutes.

RESULTS AND DISCUSSION

Twenty-one menus were planned by computer (Appendix A, Table 6), from which 7 were selected for study and analysis (Table 3). Computer printout consisted of lunch menus followed by dinner menus; each menu was costed. No daily total cost was given, although such a total could be provided within the scope of the present program.

Menu Structure

The program chose and combined menu items by means of a random selection technique. Thus, on rare instances when traditional combinations and patterns of foods showed in computer output, it was due to chance.

The limited number of menu items used as data in this study restricted the choice available for computer selection. As each day's menus were planned, selection lists became subject to elimination of some items and restriction on use of other items, therefore decreasing possibilities of optimum considerations. Final output should be improved by augmented food lists. Even though not included in actual menu planning, fixed menu items served at each meal, such as breads and beverages, should appear in the printed output. Allowance should be arranged for the nutritional contribution and cost of these foods to daily meals.

Nutritional Requirements. Dietitians must ensure that adequate, nutritious meals are served in all food services. Although exact computations of dally nutritional intakes may be desirable in hospital meal planning, this was not considered necessary for residence hall food services. In residence halls, assurance of adequately nutritious meals may be achieved satisfactorily through establishment of a meal pattern that fulfills daily requirements of the $U . S$. National Research Council for adequate nutrition (1964). Stated in more popular terms by the U. S. Department of Agriculture (1964), the dally recommended allowances may be fulfilled by the Basic Four Food Groups (Appendix B, Form 2). This system could be used in all situations other than those where a record of definite nutritional intake is needed. However, an addition to the computer program
enabling occasional spot checks of specific nutrient intakes provided by residence hall diets would be desirable.

Palatability Coding

No at tempt was made in this study to numerically describe menu items on the basis of unique attributes. For example, the computer could not differentiate between a pork chop, pork cutlet, or roast pork. Therefore, repetition of the same type of food could occur in consecutive menus. At the present stage of computer development, perceptive power of the machines is limited by a specific method of programmed instruction. Either the present program must be refined or some other means must be found to describe foods and menu items. When this has been done, problems of repetition of similar foods would be overcome and more variety attained.

Texture. Decisions concerning numerical description of textures of different food items was difficult and requires further development. More categories must be created for texture characteristics in order to provide sufficient scope for computer selection within restrictions placed in the program. However, when the original 5 texture characteristics were further broken down to give 7 texture codes, menus showed a trend toward monotony in texture, because of fine distinctions involved in breaking down broader classification groups. The computer was not programmed to recognize minor differences between soft and
very soft characteristics, and could select up to a maximum of 6 menu items in these 2 characteristics, 3 from the soft group, and 3 from the very soft group, without violating restrictions (Table 3, Menu (1).

Flavor. For purposes of this study, flavor characteristics were adequate to enable the computer to make selections within restrictions of the program and yet maintain variety in output. Although 3 strong flavors could appear in 1 meal, this did not occur in output obtained. The only strong flavor combination occurred in the lunch meal planned with Creole Spaghetti and Spice Cake for dessert (Table3, Menu \#2). The computer could choose a total of 6 bland and sweet foods in one day's meals; but in the 7 menus evaluated, only on 1 menu did a combination of 5 foods having these characteristics appear (Table 3, Menu \#6). Excessive monotony of flavor of foods does not occur readily in North American diets because of the variety of foods avallable and the customary food pattern. Taste of food is a vital factor in food acceptance, and judgement of flavor is highly subjective.

Color. With the program used for this study, 2 difficulties might be encountered: color clashes between characteristics of red and yellow-orange, and/or lack of variety in color. For the same meal, the computer could select Harvard Beets and Sliced Tomato Salad or Carrot Rings with Rhubarb Salad. When Chicken Salad was used for
lunch, 2 other white foods could appear on the menu. This could not occur in the dinner meal where 5 selections ensured at least two different colors.

Shape. Shapes of menu items selected by computer generally showed satisfactory variation. One problem related to round shapes. For portion control, foods are served frequently with a scoop. Also many foods that have a round form are sliced for the same reason. As a result of the manner of coding, Pork Cutlet, Mashed Potato, Peas, and Cherry pie could be served in one meal. Cherry pie has been coded as a wedge shaped food; but its components, cherries, are round in shape and retain their individual characteristics in this menu.

Recipes also may affect the shape of a menu item as In the case of Creole Spaghetti. If the ingredients hold together, this may be served with a scoop and assume a round shape; but if more liquid is used, the portions may be served with a ladie and not remain in a definite shape. Actual observation of menu items in food services may clarify many of these problems.

Preparation Nethod. Achievement of variety in preparation method did not prove difficult when planning menus by computer with emphasis on palatability. This factor would become more important if equipment capacity was to be incorporated into this program.

Coding Problems. Conflicting characteristics within the same factor in menu items pose a dificult decision.

At the present state of development in the program used in this study, only 1 digit has been made avallable for each characteristic. The use of 2 or more digits in describing characteristics subsequently might prove necessary. problems in establishing upper bounds in the number of digits used in descriptions may occur. The number of digits has to be consistent for computer input and definition of this must be reached prior to further work.

Costs

The program did not place maximum or minimum limits upon cost factors. Because tallies of costs of each meal were provided by the computer, human appraisal of costs could rapidly eliminate menus considered to be above maximum desirable costs. Elimination of 1 menu in this manner should not affect remaining menus, as the computer planned each daily unit separately without regard to previous day's menus, or those of the following day.

Accuracy of cost data was not achieved in this study, and no allowance for cost of certain fixed menu items, breads, beverages, etc., was made. The program did not seek to balance high-cost menu items with low-cost menu items.

Frequency Ratings

Frequency rating data were not considered in programming restrictions, as the minimum lapse for frequency
ratings was 1 week and only 7 day's menus were planned in this study. Frequency rating data did not appear in the printed output because of lack of storage space in the processing unit of the computer. Fortran language, used in programming, utilizes computer storage for instructions concerning conversion of relatively simple program-writing formulae to detailed procedures for machine calculation. More storage space in the processor could be available if a different language were used, or if care were exercised in programming with Fortran to ensure economy of space.

Menu Classification Rating

Menu classification ratings were found to be superfluous for the method of programming used. As with frequency ratings not enough space was allowed in the computer to have the information printed out. However, programming methods ensured that menu items were selected from appropriate lists, which proved to be an efficient system. Menu classification ratings might ultimately have a use in the development of numerical descriptions of foods and menu items and would be necessary where computer applications were used as filing systems for recipes and accompanying deta.

Menu Evaluation

Of 14 sets of 3 similar menus, 5 computer-planned menus and 9 dietitian-planned menus were preferred. Results
are summarized in Table 4. Each set of menus contained 1 computer-planned and 2 dietitian-planned menus for which to Indicate a preference. Average scores for the 5 palatability factors (texture, flavor, color, shape, preparation method) were not always highest for the preferred menu. In dinner menu set E (Table 4), the second menu was preferred although characteristic ratings for that menu were highest only in the texture factor. In lunch menu set B (Table 4), the third menu was preferred. Average characteristic ratings for that menu were highest only in 3 characteristics, whereas the first menu was scored highest in 4 characteristics. In texture and shape characteristics the 2 average scores were the same (Table 4).

Ice cream appeared as a dessert on 4 menus. Three of these 4 menus were rated as preferable although in some "preferred" menus average scores for characteristics ratings did not always support the preference choice (lunch set B, Iunch set C, Table 4 , both featuring ice cream for dessert). One or 2 popular menu items featured in a meal might influence the judgment of a dietitian. Results of the evalua$t i o n$ used in the present study were considered at face value. Factors influencing individual menu judgments are complex and might be worthy of independent research.

Results of the evaluation favored menus planned by dietitians. Computer-planned menus in one third of the sets were judged more acceptable than those planned by dietitians.

Table 4. Tabulation of average ratings and preferences from menu evaluations.

Dinner A 1 1.9 2.8 2.5 2.8 3.6							
3*	3.9	3.7	1.7 3.7	2.6 3.4	3.4 4.0	13	X
B 1\%	3.2	3.1	3.0	3.4	4.0	5	
2	3.6	3.7	3.2	3.7	3.8	9	x
3	2.8	3.3	2.5	2.9	3.2	2	
C $\quad 1$	2.1	2.9	2.4	2.5	3.6	0	
2*	2.2	2.3	1.9	2.6	3.3	1	
3	4.1	3.8	3.9	3.9	4.0	15	x
D	3.1	3.3	3.4	3.1	3.5	5	
2	2.4	3.2	3.3	3.1	3.1	2	
3*	3.6	3.4	3.3	3.6	3.8	9	x
E 1	2.3	3.1	3.4	3.6			
2	3.4	3.0	2.9	3.5	3.6	6	x
3*	3.3	3.3	2.8	3.4	3.8	5	
F 1	2.9	3.1	3.4		3.5		
$2 *$	3.7	3.8	3.6	3.5	3.9	9	x
3	3.8	3.6	3.4	3.4	3.6	6	
G 1*	2.5	3.1	3.2	3.0	2.9	5	
2	3.4	3.3	3.4	2.8	3.6	9	X
3	2.9	3.0	2.1	2.8	3.3	2	

Lunch

	A	1	2.8	2.8	2.6	3.1	3.4	1
	2	3.8	3.9	3.5	3.6	3.9	14	
	$3 *$	3.1	2.3	2.9	3.3	3.4	1	
B	$1 *$	3.7	3.6	3.3	3.6	3.8	7	
	2	2.7	3.1	2.8	3.3	3.3	1	
	3	3.7	3.4	3.4	3.6	3.6	8	
C	1	3.3	3.2	3.0	2.9	3.4	9	
	$2 *$	2.9	3.1	2.5	3.1	3.4	5	
	3	2.1	2.9	2.6	3.0	3.1	2	
D	1	3.8	3.5	3.2	3.4	3.6	11	
	2	2.4	2.2	2.3	2.5	2.8	1	\times
	$3 *$	3.4	2.8	2.8	3.4	3.3	4	

Table 4. (conc1.)

```Menu number```		Palatability codes ${ }^{\text {a }}$					Number of votes:	Preferred menu
		T	F	C	5	PM ${ }^{\circ}$		
E	1	2.6	3.2	3.1	3.3	3.5	2	
	2*	2.8	2.8	2.8	2.8	3.6	5	
	3	3.6	3.5	3.4	3.4	3.6	9	X
F	1*	3.4	3.7	3.6	3.4	3.8	10	X
	2	3.2	2.6	3.8	3.3	3.1	1	
	3	3.2	3.1	3.2	3.1	3.1	5	
G	1	1.9	1.9	1.5	2.1	2.9	1	
	2	1.8	2.2	2.1	2.8	2.9	2	
	3\%	3.5	3.6	3.3	3.6	3.6	13	X

a Score key: 5 excellent combination of menu items 4 good combination of menu items
3 acceptable combination of menu items 2 poor combination of menu items 1 unacceptable combination of menu items
b T texture
F flavor
C color
$S$ shape
PM preparation method

* computer-planned menu

Despite the use of random selection techniques in programming, some measures of control over computer choices were available. The random number generator was given a 3 digit numeric aragument that could be changed, resulting in a new set of menus. Another simple method of altering output was by changing the order of input cards. A change in programmed order of selection of menu items also would result in a different set of menus.

Restrictions placed on the computer selections had a definite influence over the output. Restrictions in the program related to characteristics of the menu items and the number of times that certain menu items could appear. If characteristics codings were changed, or if restrictions pertaining to the appearance of certain food items were extended or removed, different menus would result. Also, a maximum cost restriction would serve to alter the computer's choice, as would a restriction to minimize cost. Frequency ratings were not utilized. Extension of the program to cover a period of over 7 days would involve frequency restrictions. Additional restrictions thus introduced would again change the output. provision of longer lists of input data would result in a different, and possibly improved computer selection.

## Further Considerations

All food service systems contemplating conversion to computer control would require thorough and exhaustive analysis of their functions. Without comprehensive, accurate, and detailed knowledge of operations involved, automated techniques may create confusion. Quality output from a computer is directly dependent on quality of input. Food service operations are no exception to this rule. Another important factor in conversion to new managerial methods would be education of professional and non-professional personnel who would be involved in the operational functions.

Objectives of Menu Planning by Computer. The objectives of computer menu planning dictate the type of data required. The current study used the menu item name only, whereas a total electronic data processing system would be more likely to use recipe ingredients. Standardized recipe systems in conjunction with computer techniques could control such aspects of food service management as nutritional analysis, costs, serving size, food requisitioning from supplier or storeroom, work schedules, instructions for cooks, equipment use, and work load distributions. A comprehensive system would demand flexibility of program design to take care of fluctuation in costs, workers available, numbers to be served, as well as other variables.

Input Data. Much work remains to be done for the developmental stages of programming. Data gathered for the current study were neither accurate, comprehensive, nor representative for actual application. They served primarily to structure a programming model.

Costs. The ultimate cost of a menu item is more than the cost of its component ingredients. In an inclusive cost system, cost factors such as delivery charges, inventory, storage and preparation losses, labor, serving equipment, fuel, and maintenance would need to be calculated. The simplified program using only menu item names, in the beginning at least might be concerned with ingredient cost per serving only.

Palatability Coding. Coding categories developed for the study should be reviewed critically. A detalled study of menu composition would provide a more lucid basis for definition of menu item characteristics and subsequent coding. Where possible, decisions concerning assignment of codes should be objective rather than subjective.

Additional Studies. The psychological impact of food on the individual was not considered in the present study. Despite admonitions of menu planners to observe variation, harmony, and balance in texture, flavor, color, and shape of component items in planning a meal, reasons for this care are not widely reported in literature. psychological reactions to color combinations, effects of monotony of aspects of texture, flavor, and shape, offer wide opportunity
for investigation in depth. Because of the need for precise appropriate data for input, computers are forcing food service management into realization of the present haphazard, piecemeal state of basic scientific information in the food service industry.

Additional Data. In order to attain total computer system menu planning, the breakfast meal should be included in programming. Nutritional adequacy cannot be assured unless all 4 food groups are included in menu planning. Therefore data on milk consumption should be assembled.

Breakfast Studies. Nutritional and cost values of the breakfast meal should be estimated in a university residence hall food service; numbers of each sex attending breakfast and type of food selected should be established, so that cost and nutritional allowances may be included in computer-planning of 1 unch and dinner. The alternative would be to add breakfast to the programmed menu selection.

Milk consumption. So that nutritional adequacy of computer-planned menus may be calculated, accurate milk consumption figures should be obtained. This would include not only milk used as a beverage, but that used in food preparation.

Student Attitude Studies. Information regarding student attitudes about food likes and dislikes and frequency of serving various menu items would be desirable. A simple method for ratings could be developed, whereby data processing methods could be applied to tally results.

Freshmen, a large group in the residence hall population, may undergo change in food habits and attitudes after exposure to residence hall food service. A lapse of time after commencement of the fall semester would allow familiarization with food served and consolidation of attitudes, thus yielding more useful results for frequency ratings. Popularity of foods may be estimated by observation of food consumption from serving lines and plate waste in the dishroom.

## SUMMARY

Automation and data processing techniques have been accepted by many major industries and recognized as a force changing methods of management. Administrative capabilities have been extended because these management tools perform highly repetitive tasks in a minimum of time. In the past, the food service industry has been slow to accept new management applications. However, it is facing an acute shortage of management personnel and should be receptive to the implications of computer potentialities.

Menu planning is an example of repetitive, timeconsuming task of food service management. Recently, linear programming techniques have been developed to plan economical, nutritionally-adequate diets on a computer. Other factors such as texture, flavor, color, and shape of foods are important considerations in the planning of good menus.

The storage capabilities, or memory, of the computer should make it a valuable instrument in menu planning.

Emphasizing palatability, an approach to planning menus suitable for residence halls was attempted on a computer using random selection techniques. Data used for computer input consisted of selected menu items served in residence halls at Kansas State University, raw food costs, serving frequency ratings, and menu item classification. Each menu was coded with a 5 digit number related to texture, flavor, color, shape, and method of preparation. Restrictions were placed on the number of times that each characteristic could appear in one day, and on the appearance of certain classes of menu items. Recommended nutritional allowances were fulfilled by establishing a menu pattern compatible with recommendations of the $U$. $S$. Department of Agriculture (1964). Each day's menu included lunch and dinner meals only.

Menus for 21 days, using 152 menu items in each of 7 menu classes were planned. From these 21 menus, 7 were selected for closer evaluation. Each of the 7 computer menus was compared with 2 residence hall menus featuring the same entree by a panel of dietitians. Preference for computer-planned menus was indicated in 5 out of 14 instances.

The menus presented as computer output demonstrated that approaches to menu planning by computer through aspects of palatability and use of random selection techniques were
feasible. However, palatablity codes will require further development and refinement, and selection lists for menu items will need expansion in order to improve output.

## CONCLUSIONS AND RECOMMENDATIONS

Under the conditions of this study, techniques of random selection appeared feasible for planning nonselective menus by computer for university residence hall food services with emphasis on the palatability factors of texture, flavor, color, shape, and preparation methods of foods. Procedures used need refinement of input and output format. If the menu planning program designed for this investigation either is to be developed further, or modified, the following general recommendations should be considered.

1. Comprehensive objectives for the use of electronic processing as a tool of management in a residence hall food service system should be established.
2. A total system of electronic data processing should be designed to include menu planning, recipe information, purchasing procedures, inventory control, food production management, and fiscal controls.
3. A system of record-keeping and information retrieval should be designed to supply accurate
and appropriate data to be used for programming and input data.
4. An educational program should be developed to orient residence hall food service management in the advantages and use of such systems.

Specific recommendations for realistic application of the program developed in this study for residence hall food services are as follows:

1. Selection lists for menu items should be expanded, based on standardized recipes with descriptive names.
2. Refinement, expansion, and definition of characteristic codings is essential.
3. All aspects of costing should be thoroughly investigated.
4. Cost and nutritional allowances for fixed menu items (breads, spreads, condiments, beverages) should be included in the programmed output.
5. Breakfast meals should be included in a complete menu planning system.
6. Milk usage should be investigated and included in a complete menu planning system.
7. Student attitudes toward food should be determined.

Finally, total implications of the introduction of computer techniques into dietary management should be considered. Some authorities warn of the dangers of incoordinated research in food service management and urge that
standardization of coding on a national scale should be undertaken. If this is not done, masses of unrelated data will be developed, wasting valuable research effort and confusing ultimate goals.

## ACKNOWLEDGEMENT

Sincere appreciation is expressed to Mrs. Marjorie Hemphill, Assistant Professor of Institutional Management, for guidance and encouragement in undertaking this study, and direction in preparation of this thesis; to Mrs. Grace Shugart, Head, Department of Institutional Management, for her interest in this study; and to Mr. Jacob Smaltz, Professor, Industrial Engineering, for invaluable assistance and advice concerning computer aspects of the program. Also appreciation is due to Jon Peterson who wrote the program; to Miss Jean Riggs, Director of Residence Hall Food Service; and to all Residence Hall Dietitians who cooperated in certain phases of the study.

## LITERATURE CITED

Anon. 1964. Some approaches to consumer acceptance. Food Technol. 18, 1713.

Anon.. 1965. Notes from conference on computer applicetions in nutrition and food service. Ohio State University, July. Personal communication.

Anon.. 1965. Quelity control. I.F.T. Symposia Report. Food Technol. 19, 1068.

Balintfy, J. L., and C. R. Blackburn. 1964. A significant advance in hospital menu planning by computer. Institutions Magazine. 55 (1), 54 .
Balintfy, J. L., and M. S. K. Balintfy. 1965. Dietary information processing by computer. Unpublished research paper \#6. Tulane University, School of Business Administration. Personal communication.

Balintfy, J. L., and E. C. Nebel. 1965. Experiments with computer assisted menu planning. Unpublished research paper \#10. Tulane University, School of Business Administration. Personal communication.

Balintfy, J. L., and A. Prekopa. 1965. The nature of random variation in the nutrient composition of meals; Part 1. Unpublished research paper. Tulane University, School of Business Administration. Personal communication.

Balsley, M. B. 1964. Computer in the kitchen. Hospitals. 38 (1), 103.

Birren, F. 1963. Color and human appetite. Food Technol. 17, 553.

Brisbane, H. M. 1964. Computing menu nutrients by data processing. J. Amer. Dietet. Assoc. $44,453$.

Broten, P. R. 1965. The food service industry, 1960 1980. Cornell Notel and Restaurant Admin. Quarterly. 6 (1), 5.

Clithero, W. 1964. The computer as a dietetic tool. J. Amer. Dietet. Assoc. $44,451$.

Dylla, H. F. 1962. School food service. Cornell Hotel and Restaurant Admin. Quarterly. 3 (1), 44.

Fellers, J. D. 1965. This system was designed for computers. Modern Hospital. 105 (4), 154.

Fellers, J. D. and R. L. Gue. 1965. Computer planning and control of dietary functions. Paper delivered at the 67 th annual meeting of the Amer. Hospital Assoc., San Francisco. Personal communication.

Food and Nutrition Board, National Research Council. 1964. Recommended dietary allowances. Sixth revised edition. National Academy of Sciences, Washington, D. C. Publ. 1146.

Food for Fitness. A dally food guide. Revised 1964. Consumer and Food Economics Research Division. U. S. Dept. Agr., Washington, D. C. Leaflet 424 .

Fowler, S. F., B. B. West, and G. S. Shugart. 1961. Food for fifty. John Wiley and Sons, Inc., New York, pp. 333-337.

Frahm, M. B. 1965. The challenge of tomorrow. Food Management. 1 (9), 47.

Gregson, R. A. 1963. The effect of psychological expectations on preferences for taste mixtures. Food Technol. 17, 280.

Gue, R. L. 1965. Selective menu planning by computer. Kitchen Planning. $2(4), 50$.

Hartman, J. 1964. Computers can cut menu planning costs. Modern Hospital. 102 (2), 134.

Hertz, D. B. 1965. Electronics in management. Management Science. 11 (4), 35.

Hughes, O. 1962. Introductory foods. 4th ed. Macmillan Co., New York, p. 440.

Kamen, J. M., and D. R. Peryam. 1961. Acceptability of repetitive diets. Food Technol. 15, 173.

Kinder, F. 1963. Meal management. Revised ed. MacMillan Co., New York, ch. 7.

Knickreim, N. E., T. R. Hoffman, and B. Donaldson. 1963. Digital computer simulation of a cafeteria service line. J. Amer. Dietet. Assoc. 44, 203.

Kruger, D. H. 1963. Automation and manpower. J. Amer. Dietet. Assoc. 43, 197.

Mclean, B. B. 1959. Planning meals for the family. In Food, the Yearbook of Agriculture, 1959. U. S. Dept. Agric., Washington, D. C., pp. 514-517.

Salveson, M. E. 1963. Computers for decision-making in computer-based management for information and control. Amer. Management Assoc. Bull. \#30.

Schutz, H. G., and F. J. pilgrim. 1958. A field study of food monotony. psych. Reports. 4, 59.

Smith, V. E. 1963. Electronic computation of human diets. Bureau of Business and Economic Research, Michigan State University, East Lansing, ch. 2 \& 3.

Szczesniak, A. S., and D. Kleyn. 1963. Consumer awareness of texture and other food attributes. Food Technol. 17. 74.

Taylor, C. G. 1965. Utilization of data processing in food service. Hospitals. 39 (5), 81.

Toussaint, H. 1959. Review of V. Francovic, A. Rismal, and V. Kozak. The influences of incomes and prices upon the level of consumption in Slovenia. 1958. Economic Institute of Slovenia, LJubljana. In Amer. Econ. Rev. 49, 417.

Vajda, S. 1958. Readings in linear programming. John Wiley and Sons, Inc., New York, ch. 15.

Whisler, T. L., and G. P. Shultz. 1962. Automation and the management process. Annals of Amer. Acad. of Pol. and Soc. Sci. 340, 81.

Table 5. Nenu items from residence hall menus, spring semester, 1965, and frequency ratings.

Dinner entree items	$F R^{\text {b }}$	Dinner entree items (cont.)			Vegetable items (cont.)	FR
1 Roast Turkeyma	4	48 Catfish with Lemon*	4	23	Seets in Orange Sauce ${ }^{\text {*2 }}$	8
2 Baked Chicken	4	49 Fried Perch**		24	Brussel Sprouts\%	
3 Barbequed Chicken*		50 Fisherman's Feast	8	25	Celery***	
4 Chicken Cutlet	8	51 Swordfish**	16	26	Parsnips ${ }^{\text {\% }}$	16
5 Cornflake Chicken	4	52 Baked Maddock	16	27	Carrots\%	2
6 Oven-fried Chicken*	4			28	Candied Julienne Carrots*	4
7 Antoines Chicken Creole	16	Potato or substitute		29	Asperagus*	4
8 Chicken Giblets	16			30	Scelloped Asparagus	16
9 Oklahoma Chicken Loaf	16	1 Whipped (Mashed)*	2	31	Rutabega**	16
10 Baked Chicken Leg and Thigh	4	2 Rissole Potato\%	2	32 33		16
11 Roast Beef*	2	4 French-Fried Potatoes*	2	34	Squesh*	8
12 Pot Roast of Beef*	4	5 Potato Oibrien	,	35	Sweet and Sour Red Cabbage	16
13 T-Bone Steak**	8	6 Oven-browned Potato*	2	36	French-Fried Cauliflower**	16
14 Chopped Round Steak	4	7 Parsley Buttered Potato\%	2	37	Vegetable Timbales**	8
15 Steakt\%	4	8 Scalloped potatoes ${ }^{\text {F }}$	4	38	Grilled Peach	$4$
16 Minute Steak	8	9 Jacket potato*	2		Buttered Apple*	
17 Neat Loaf*	4	10 Tater Tots	2		Broiled Tomato*	8
18 Baked Flank Steak	8	11 Potato au Gratin*	4		Stewed Tomato	4
19 Erunswlck Stew	8	12 Franconia Potato*	2			
20 Smothered Steak*	4	13 Hash-Brown Potatoes*	4		Dinner dessert items	
21 Salisbury Steak	4	14 Rice**	4			
22 Swiss Steak*	4	15 Green Rice ${ }^{\text {䊅 }}$	8		Karet German Splice Cake	4
23 Beef pot Pie\%	8	16 Sweet potato*	4	2	Spice Cake with Coconut	
24. Turnovers with Gravy	8				Pecan Frosting	4
25 P1zza\%   26 Porcupine Neat Balls	4	Vegetable items			Spice Cake with Burnt Sugar Frosting*	4
27 Swedish Meat Balls*	8	1 Buttered Green Beans*	2	4	Angel Food Cake (AFC) with	
28 Italian Spaghetti	4	2 Canned Beans*\%	2		Chocolate Frosting**	4
29 Liver with Onions*	8	3 Wax Beans\%	4		AFC with Strawberries*	4
30 Smoked Knackwurst	16	4 Creamed Beans	16		AFC and Lemon Sauce**	8
31 Roast Pork ${ }^{\text {\% }}$	4	5 Lima Beans*	8	7	Chocolate Cake with Fluffy	
32 Pork Cutlet\%	4	6 Lima Beans and Brocolli	0		Icing*	
33 Pork Chop*	4	7 Succotash***	8		German Chocolate Cake ${ }^{* *}$	
34 Butterfly Pork Chop	4	8 Whole Kernel Corn*	2	9	Pineapple Cashew Cake ${ }^{* *}$	
35 Baked Ham*	4	9 Scalloped Corn*	8	10	Cherry Glaze Cake	
36 Ham Loaf ${ }^{\text {\% }}$	4	10 Brocolif\%	4	11	Marble Cake*	
37 Glazed Ham Patty**	16	11 Spinach with Vinegar*	8		Lady Baltimore Cake*	
38 Barbequed Spareribs*	8	12 wilted Spinach*	8	13	Lemon Coconut Cake	8
39 Lamb Chops*\%	16	13 Peas*	2	14	Yellow Cake with Chocolate	
40 Veal Cut let**	8	14 Continental Peas	2		Icing**	4
41 Barbequed Veal Chops*	8	15 Turnip and Peas in Cream*	16			
42 Veal Fricassee*	16	16 Peas and Onions*	16			
43 Veal New Orleans	8	17 Boiled Baby Onions*	16		Key - \# Items chosen for c	
44 Baked Sole in Tomato		18 Creamed Oni ons ${ }^{\text {it\% }}$	8		puter input	
Sauce*	16	19 French-Fried Onions*	4		** Items with recipes	in
45 Shrimp Jambalaye	16	20 Sauerkraut**	16		Food for Fifty"	
$46 \mathrm{Hallbut} \mathrm{Steak*}$	16	21 Buttered Mixed Vegetables*	2			
47 French-fried Groper	16	22 Harvard Beets*	4		Frequency Ratings	

Table 5. (cont.)

er	FR		er	FR		Lunch entree items					
White Cake with Green	$\begin{array}{r} 16 \\ 2 \\ 8 \end{array}$	$\begin{aligned} & 52 \text { Peach Shortcake** } \\ & 53 \text { Peach Cobber** } \\ & 54 \text { Strawberry Shortcake** } \\ & 55 \text { Apple Cobbler* } \\ & 56 \text { Cherry Cobbler** } \end{aligned}$			26 Pizza\%   27 Chicken Cutlet on Bun*		8				
					Chicken Cutlet						
Lemon Cake Pudding**				29	Chicken Glblets on Rice						
Pear Ginger Upside-do				30	Chicken Salad on Roll*						
			Alueberry Cobbler			Creamed Chi					
Apricot Upsi	16					Chicken a					
			Canne								
			Frozen Cher			Turkey Tet					
Banana			2 Applesauce**			Creamed Turkey on					
Streusel Apple						36	Turkey a la king				
Key lime Pie	${ }_{8}^{2}$	64 Peach Slices\%				Turkey salad					
Cherry Pie*					38	A					
Raisin piet	6		Pear Halves			3					
peach Pie*			Blue Plums*								
Dutch Apple P			Banana slices			1 Chipped Beef with macaroni					
Lemon Cake			Grapefruit Halves		42 Chilit \% Mashed Potato**						
Chiffon Pie*	16		Apricot Halves								
Cream Puff			Strawberries and Cookie*   Fresh Fruit Cup and Cookie*		43 Spaghetti and Meat Sauce*						
Filling											
Sauce**			lunch entree items		46						
Filling					48	Beef Andalouse on Rice 16					
rbe			Lunch entree items								
Sherbert with To			Hot Roast Beef Sandwich* Bacon, Lettuce, Tomato Sandwich*		49						
or fruit Sauce					51						
Sherbert and Cook					St						
Ice Cream Cake Roll											
eopolitan Ice silce	$\begin{array}{r} 4 \\ 8 \\ 16 \end{array}$	4 Corned Beef Sandwich*   5 Spiced Lunch Meat Sandwich									
Ice Box Dessertw					54 Grilled Ham and Pineapple 55 Fish and Potato Chip Cas-						
Frozen Lime Dream		$\begin{aligned} & 6 \mathrm{H} \\ & 7 \end{aligned}$	Salmon Salad Sandwich** Grilled Cheese Sandwich*								
Cheese Cake with					$\begin{aligned} & 56 \text { serole** } \\ & 5 \text { witing } \end{aligned}$						
berry Sauce			poor Boy Sandwich								
and Chocolate	8 8		Salami Sandwich Egg Salad Sandw								
Cherry Sundae	84168		$\begin{array}{lr}\text { Meat Salad Sandwich } & 16 \\ \text { Turkey Salad Sandwich } & 8\end{array}$		59	Macaroni and					
Poire Belle Helene					Buttered						
Frozen Lime Crunch			Hot Tuna Bun Sandwich** Weiners in Bun** Hamburgers*								
ringues with Cho	8				Bacon   Corn Fritters and Canadian Bacon						
late Ice											
Chocolate Sauce			Hamburgers* 2   Bolognaburger 16								
Cream and	$\begin{aligned} & 4 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 4 \\ & 4 \end{aligned}$		College Joe			Bacon   Canadian Bacon, Cheese Sauce, and Tomatoes					
Parfait											
Date Torte   English Toffee		20 Beef, Tomato, Cheese on Bun   21 Friday Burger   22 Deep Sea Dandy in Bun   23 Deutsch Cheeseburger   24 Jumbo Pizza Sandwich   25 Pizza Burger				1d Plate (Bologna					
Banana Pudding						ble					
gel Delight Pudding						Frozen Fruit Salad and a					
erry Tarts:						Bread					
ubarb Cris						alad, Soup and Rol					

Table 5. (cont.)

Lunch Salad items (cont.) ..... FR
5 Rew Spinach ..... 8
6 Chinese Salad ..... 8
8 Cabbage with Dressing ..... 8
9 Cabbage-Raisin ..... 8
11 German Cucumber ..... 16
12 Cucumber in Sour Cream* ..... 16
13 Cucumber Mold ..... 16
15 Sliced Tomato* ..... 2
16 Tomato, Celery, Oni on
17 Carrot and Ce ..... 8
8
8
19 Stuffed Celery ..... 4
21 Garden Salad ..... 2
23 Pickied Beet* ..... 16
24 Cooked Vegetable Salad ..... 16
26 Cottage Cheese on Lettuce ..... 16
27 Mecaroni Saladi ..... 8
29 pickled Egg Slices ..... 16
30 Blue Plum and Apricot
31 Blue Plum with Grape
33 Orange slices 34 Grapefruit and Cranberry
35 Citrus Pinwhe
37 Pear with Stuffing**
39 Pear and Cranberry
40 Pear and Cheese\%*
41 Pineapple and Cranberry
42 Pineapple and Datem
43 Pineapple with Jelly
45 Pineapple with Strawberry Topping ..... 4
8
46 Pineapple and Green Pepper ..... 2
48 Apple and Cheese ..... 16
49 peach with Prune
51 Peach Half with Marshmallow
52 Benana and Orange*
53 Cantaloupe and Blue Plum

Table 5. (cont.)

Lunch salad items (cont.) FR
4 Melon Cubes**
55 Canteloupe and Watermelon
56 Apricot and Apple
57 Apricots with Blushed Mayonnaise
58 Apricot with Grapefruit Section
59 Apricot and Banana*
60 Ambrosia
61 Mixed (canned) fruit
62 Stuffed prune
63 Raw Cranberry
64 Overnight Fruit
65 Orange slice with Gelatin Cube
66 Jellied Apricots and Cherries*
67 Perfection Salad**
68 Fruit Juice Gelatin*
69 Rhubarb Mold*
70 Lime Gelat in and Pear*
71 Jellied Cherry Salad**
72 Blue Plum Mold*
73 Lemon Cheese
74 Peach and Watermelon
Dinner salad items

	Tossed\%	2
2	Lettuce Wedge*	2
3	Cabbage Slaw**	
4	Cabbage Salad*	
5.	Cabbage-Raisin	8
6	Cabbage-Carrot*	16
7	Chinese Salad	8
8	Relishes\%	
9	Celery and Beet*	16
10	Stuffed Celery	
11	Tomato, Celery, Onion	
12	Cucumber and Radish	16
13	Cucumber with Watercress**	6
14	German Cucumber	16
15	Cucumber in Sour Cream*	16
16	Cucumber Mold	6
17	Raw Cauliflower	8
18	Pickled Beet\%	16
19	Beets, Onion and Spinach*	16
20	Pea, Celery and Cheese**	16
	Sweet Onion Rings in Sour Cream	16


#### Abstract




 . .

Dinner salad items (cont.) FR
22 Belgian Endive and Dressing

16
23 Cooked Vegetable Salad 2
24 Egg, Celery, and Olive 16
25 Egg and radish 16
26 Egg Slice and Asparagus* 16
27 Cottage Cheese on Lettuce* 4
28 Macaroni Salad*
29 Red Kidney Bean Salad 16
30 Peach Half with Cole Slaw 8
31 Peach Slice with Cherry
32 Peach Half with Marshmallow
33 Persimmons with Grapefruit Segments

4

34 Apricots with Grapefruit Sections
35 Citrus Sections
36 Citrus Pinwheel
37 Ambrosia
38 Pineapple with Lime Gelatin
39 Pineapple, Marshmallow, Grape*:
40 Pineapple Twist
41 pineapple and pepper
42 Banana, Apricot and Prune
43 Banana, Orange and Apple
44 Banana and Orange*:
45 Apricot and Banana*
46 Apricot and Coconut
47 Apricots with Blushed Mayonnaise
48 Pear with Cranberry
49 pear with Mandarin
50 pear Half with Gelatin Cubes
51 Pear and Cheese
52 Apple and Cheese
53 Blushed Apple Sauce
54 Blue Plum with Apple
55 Blue Plum with Peach
56 Raw Cranberry
57 Cider and Cranberry
58 Fruited Cider
59 Waldorf Salad\%
60 Grape Waldorf*
61 Winter Fruit Salad
62 Mixed (canned) fruit
63 overnight fruit salad

Dinner salad items (cont.) FR
64 Goodie Salad
65 Shimmering Salad
66 Peach Gingerale Mold
67 Strawberry and Banana Mold
68 Fruit Gelatin
69 Applesauce Mold*
70 Lime Gelatin with Citrus**
71 Blueberry Mold
72 Strawberry Pineapple Gela-

## tin*

73 Ribbon Mold\%
74 Raspberry Mold**
75 Golden Glow
76 Perfection Salad**
77 Fruit Juice Gelatin*
78 Rhubarb Mold*
79 Lime Gelatin and pear*
80 Jellied Cherry Salad**
81 Italian Salad
82 Nelon Cubes $\%$ \%
Salad items that appeared on both lunch and dinner menus

1 Tossed salad*
2 Raw Cauliflower
3 Cabbage Salad\%
4 Cabbage-Raisin
5 Lettuce Wedge\%
6 Chinese salad
7 Fgi slice and Aspara
8 gog sic 16
8 Cottage Cheese on Lettuce: 4
9 Red Kidney Bean Salad 16
10 German Cucumber 16
11 Cucumber in Sour Cream* 16
12 Cucumber Mold 16
13 Stuffed Celery 4
14 Pickled Beet\% 16
15 Cooked Vegetable Salad 16
16 Nacaroni\% 8
17 Pea, Celery and Cheesew 16
18 Mel on Cubes\%* 4
19 Apricots and Blushed Mayonnaise
20 Citrus Pinwheel
21 Apricot with Grapefruit Segment
22 Pineapple and Pepper
23 Ambrosia
ス $=$ $1=$

Table 5. (conc1.)

Salad items that appeared FR on both lunch and dinner menus (cont.)

24 Banana and Orange*
25 Apricot and Bananar
26 Apple and Cheese
27 Mixed (canned) Fruit
28 Overnight Fruit Salad
29 Pear and Cheese
30 Raw Cranberry

Salad items that appeared FR on both lunch and dinner menus (cont.)

431 Peach Half with Marshmallow
32 Blue Plum with Peach
33 Perfection Salad\%
34 Fruit Juice Gelatin*

Table 6．Menus planned by computer．

| Menu | Characteristic <br> T F C S PM | Cost |
| :---: | :---: | :---: | :---: |

Creole Spaghetti
Cucumber in Sour Cream Spice Cake

Pork Cutlet
Scalloped Potato
Whole Kernel Corn
Pineapple，Marshmallow， Grape Salad
Strawberries and Cookie

Stuffed Green Pepper
Tomato and Cucumber
Tapioca Cream
Pork Chops
Rissole Potato
Lima Beans
Apple Sauce
White Cake－Green Icing

Tuna Fish Salad
Tossed Salad
Banana Cream Pudding
Beef Pot Ple
Parsley Buttered Potato
Asparagus
Relishes
Peach Cobbler

Buttered Apple and Sausage
Cabbage－Carrot Salad
Strawberry Bavarian
Barbequed Spareribs
Parsley Buttered Potato
Wax Beans
Rhubarb Mold
Spice Cake

－mawo	vinw	WNWWF	viom	－vawa	－NW	No	afw	ートF
NuTOEN	vow	जののFw	vaw	virafu	van	vur	OFw	NaN
NVIW－N	VFN	WOFmN	wam	M－FNN	－WF	vow	$\omega \sim N$	NロN
vownew	NW0	NWWrF	い上～	への下ーッ	のコー	ME	ェコゅ	vara
ココローW	vaw	いのットゥ	フのい	さいロNW	Now	いの	－ww	Jow

Table 6. (cont.)

Menu	Characteristic					
	T	F	C	5	PM ${ }^{\text {a }}$	Cost
Chili and Crackers Sliced Tomato on Lettuce Ice Cream	$\begin{aligned} & 4 \\ & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 6 \\ & 5 \end{aligned}$	531	471	$\begin{aligned} & 1 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & .10 \\ & .04 \\ & .06 \\ & \hline \end{aligned}$
	$\begin{aligned} & 6 \\ & 4 \\ & 3 \\ & 4 \\ & 6 \end{aligned}$	24665	21415	11475	31167	$\begin{array}{r} .36 \\ .03 \\ .06 \\ .05 \\ .08 \\ \hline .58 \\ \hline \end{array}$
Creamed Potato						
Wilted Spinach						
Cucumber in Sour Cream						
Cherry Pie						
Baked Beef Hash Beets, Onion on Spinach Custard	121	325	253	111	373	.10.07.04
Chicken Cutlet	$\begin{aligned} & 3 \\ & 3 \\ & 6 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 6 \\ & 6 \\ & 5 \end{aligned}$	21462	14332	21163	$\begin{aligned} & .19 \\ & .02 \\ & .06 \\ & .03 \\ & .05 \\ & . .35 \\ & \hline \end{aligned}$
Rice						
Buttered Green Beans						
Relishes						
Apple Cobbler						
Ham Salad Sandwich   Rhubarb Mold   Gingerbread with Topping	113	$\begin{aligned} & 3 \\ & 5 \\ & 2 \end{aligned}$	552	222	773	$\begin{array}{r} .10 \\ .03 \\ .03 \\ \hline \end{array}$
Barbequed Chicken	$\begin{array}{r} 3 \\ 3 \\ 5 \\ 2 \\ 2 \\ 5 \end{array}$	24462	21343	11135	31367	$\begin{aligned} & .29 \\ & .02 \\ & .04 \\ & .02 \\ & .03 \\ & .40 \\ & \hline \end{aligned}$
Parsley Buttered Potato						
Squash						
Cabbage Salad						
Chiffon pie						
Hot Roast Beef Sandwich   Macaroni Salad   Banana in Orange Juice	344	345	213	217	476	$\begin{array}{r} .14 \\ .08 \\ .05 \end{array}$
Baked Ham	35346	34665	51415	71371	$\begin{aligned} & 3 \\ & 1 \\ & 1 \\ & 6 \\ & 6 \end{aligned}$	$\cdot .27$
Mashed Potato						. 02
Asparagus						.14
Cucumber in Sour Cream						. 05
Frozen Cherries						.04
						5

Table 6. (cont.)

Menu	Characteristic					
	T	F	C	S	PMa	Cost
Cheese Souffle	5	3	3	2	3	. 06
Celery and Beet	2	6	5	1	6	. 06
Baked Apple	5	4	2	1	3	.07
Roast Beef	3	3	2	7	4	$\cdots$
Creamed Potato	4	4	1	1	1	. 03
Harvard Beet	4	2	5	3	1	. 08
Applesauce Mold	1	5	4	2	7	.04
Frosted Brownie	3	5	2	2	7	. 06
						.53
Creamed Chicken on Biscuit	4	4	1	6	1	. 17
Rhubarb Mold	1	5	5	2	7	. 03
Sugar Cookle	2	5	1	7	7	. 02
Veal Fricassee	4	3	2	4	1	$\stackrel{.21}{.21}$
Rice	3	4	1	4	1	. 02
Broiled Tomato	1	6	5	1	5	. 06
Cabbage-Carrot Salad	2	6	4	3	6	. 02
Cherry Tarts	6	5	5	5	7	. 12
						.43
Chicken Salad and Roll	3					. 15
Tomato and Cucumber	2	6	3	7	6	.04
Banana and Orange Juice	4	5	3	7	6	. 05
Pot Roast of Beef			2		4	. 32
Jacket Potato	1	4	2	1	1	. 02
Buttered Apple	1	5	1	3	3	. 05
Waldorf Salad	2	6	1	4	7	. 06
Strawberries and Cookie	2	5	5	1	7	. 10
						. 55
Hamburger on Bun	6	3	2	1	5	. 15
Beets, Oni on on Spinach	2	2	5	4	7	. 07
Grapenut Pudding	1	5	2	6	7	.05
Catfish and Lemon	1	3	1	1	3	$\stackrel{.18}{.18}$
Mashed Potato	5	4	1	1	1	. 02
Carrot Rings	6	5	3	7	1	. 02
Sliced Tomato on Lettuce	3	6	3	7	6	. 04
Frosted Brownie	3	5	2	2	7	. 06

Table 6. (cont.)

Menu	Characteristic					
	T	F	C	5	PMa	Cost
Macaroni and Cheese	4	3	3	6	3	. 06
Shredded Lettuce	2	4	4	3	6	. 02
Banana in Orange Juice	4	5	3	7	6	. 05
Oven-Fried Chicken	6	3	2	1	2	.36
Creamed Potato	4	4	1	1	1	. 03
Candied Julienne Carrots	3	5	3	3	1	. 03
Beets, Onion, and Spinach	2	2	5	4	7	. 07
Cherry Tarts	6	5	5	5	7	. 12
						. .61
Spaghetti and Meat Sauce	4	2	5	4	1	.13
Egg Slice and Asparagus	3	6	6	3	7	. 16
Custard	1	5	3	1	3	. 04
Swedish Meat Balls	4	3	2	1	3	$\div \frac{.33}{.12}$
Oven Brown Potato	3	4	2	1	3	. 02
Carrot Sticks	6	5	3	3	1	. 02
Sliced Tomato on Lettuce	3	6	3	7	6	. 04
Marble Cake	1	5	6	5	7	. 02
						. 22
Corned Beef Sandwich	3		5	2	7	.13
Tomato and Cucumber	2	6	3	7	6	. 04
Oatmeal Fruit Bar	6	5	2	2	7	. 02
Ham Loaf	1	3	5	2	3	.19
Mashed Potato	5	4	1	1	1	. 02
Peas	3	5	4	4	1	. 05
Tossed Salad	2	6	6	4	6	.04
Chocolate Cake - Fluffy Icing	1	5	2	5	7	. .33
Bacon, Lettuce, Tomato Sandwich	2	6	6	2	7	.14
Lime Gelatin and Pear	1	5	4	2	7	. 05
Fudge Pudding	4	5	2	2	3	. 05
Baked Sole in Tomato Sauce	4	3	5	3	3	. 16
Franconia potato	3	4	2	1	4	. 02
Squash	5	4	3	1	3	. 04
Relishes	2	6	6	3	6	. 03
Lady Baltimore Cake	1	5	1	5	7	. 05

Table 6. (cont.)

	Characteristic					Cost
Menu	T	F	C	S	PM ${ }^{\text {a }}$	
Pizza	2	2	5	5	3	. 10
Tomato and Cucumber	2	6	3	7	6	.04
Apricot Whip	5	5	3	1	7	. 02
Swiss Steak	4	3	2	2	3	-16
Parsley Buttered Potato	3	4	1	1	1	.02
Asparagus	3	6	4	3	1	.14
Pickled Beet	3	2	5	1	7	.07
Angelfood and Strawberries	5	5	5	5	7	. 02

Corn Fritters and Canadian Bacon
Cucumber in Sour Cream Strawberry Bavarian

Meat Loaf
Sweet Potato
Wilted Spinach
Cabbage-Carrot Salad Grapefruit Half

Beef Pot Ple
Tomato and Cucumber
Stewed Rhubarb
Liver and Onions
Creamed Potato
Carrot Sticks
Beets, Onion and Spinach
Cherry Tarts

Grilled Cheese Sandwich
Egg Slice and Asparagus
Chocolate Chip Cookie
Roast Turkey
Franconia Potato
Lima Beans
Macaroni Salad
Chiffon Pie

Table 6. (conc1.)

	Characteristic					
Menu	T	F	C	5	PM ${ }^{\text {a }}$	Cost
Beef and Pork Casserole	4	3	2	4	3	. 13
Applesauce Mold	1	5	4	2	7	. 04
Lemon Cake Pudding	4	2	3	2	3	. 04
Smothered Steak	4	3	2	1	3	$\frac{.21}{.28}$
Parsley Buttered Potato	3	4	1	1	1	. 02
Candied Julienne Carrots	3	5	3	3	1	. 03
Rhubarb Mold	1	5	5	2	7	. 03
Grapefruit Half	6	1	3	1	6	. 10
						.46

${ }^{\text {a }} \mathrm{T}$ texture
F flavor
C color
$S$ shape
PM preparation method

APPENDIX B

Form 1. Printout of input data.

```
PRINTOUT OF INPUT DATA FOR COMPUTER PLANNED MENUS
```

MENU ITEM NAME	CODES*
DINNER ENTREE LIST M	MENU CLASS 1
CATFISH AND LEMON	181131134
CHICKEN CUTLET	191332128
MEAT LOAF	121132234
POT ROAST OF BEEF	$\begin{array}{llll}321 & 132744\end{array}$
HAM LEAF	161135234
$\because$ LIVER AND CNIONS	131322138
BARBEQUED CHICKEN	291322134
PORK CUTLET	281332134
ROAST BEEF	32133274
BAKED HAM	321335734
ROAST TURKEY	291341744
SMOTHERED STEAK	281432134
SWEDISH MEAT BALLS	121432138
SWISS STEAK	281432234
VEAL FRICASSEE	211432414
BEEF POT PIE	291432418
BAKED SCLE IN TOMATO SAUCE	E 1614353316
BARBEQUED VEAL CHCPS	361622138
BARBEQUED SPARERIBS	291622338
OVEN-FRIED CHICKEN	361632124
PORK CHCPS	221632134


POTATO LIST	MENU CLASS	7		
JACKET POTATO	027	14211	2	
FRANCSNIA POTATO	027	34214	2	
SWEET POTATO	047	15311	4	
FRENCH FRIED POTATO	087	24232	2	
PARSLEY BUTTERED PCTATO	027	34111	2	
RICE	027	34141	4	
RISSCLE PCTATO	027	34212	2	
OVEN BROWN POTATC	027	34213	2	
HASH BROWN POTATO	027	34272	4	
POTATE AU GRATIN	077	43343	4	
CREAMED POTATO	037	44111	2	
SCALLSPED POTATO	047	44173	4	
MASHED POTATO	027	54111	2	

VFGETABLE LIST MENU CLASS 2
BABY BOILED ONICNS 0821211116
BUTTERED APPLE 052151338

BROILED TOMATO
FRENCH FRIED ONIONS
CANDIED JULIENNE CARROTS
PFAS
BROCOLLI
ASPARAGUS
PEAS AND ONIONS
WILTED SPINACH
HARVARD BEET

062165158
032222124
032353314
052354412
072364314
142364314
0623644116
062364418
082425314



CHERRIES
$046 \quad 65516 \quad 4$

```
* COLS 31, 32
 COL 33
 COLS 35 TO 39
 COLS 40, 41
```


## COST

MENU ITEM CLASS
PALATABILITY CODES FREQUENCY RATING

## A Guide to Good Eating



A Guide to Good Eating helps you plan or choose pleasing and satisfying meals that provide good nutrition. It suggests minimum amounts of food from each of 4 food groups which should be included in each day's meals. This menu plan shows one way to include the 4 important food groups in a day's meals:

## Breakfast <br> Fruit

Cereal or Egg or Both Toast or Roll and Butter Milk Coffee

## Dinner

Main Protein Dish Vegetable Potato Bread or Roll and Butter Milk Dessert

## Lunch or Supper

Main Protein Dish Vegetable Bread and Butter Milk Fruit

Vary your menus to suit your taste. In using the dairy foods for their important calcium . . .

1 glass milk $=8$ ounces or $1 / 4$ quart
1 slice American cheese ( 1 oz. ) $=3 / 4$ glass milk
$1 / 2$ cup creamed cottage cheese $=1 / 3$ glass milk
$1 / 2$ cup ( $1 / 4$ pint) ice cream $=1 / 4$ glass milk
In the meat group, 2 servings should give at least as much protein as 4 ounces cooked lean meat ( $1 / 3$ pound raw). About equal amounts of protein come from...

1 ounce cooked lean meat, poultry, or fish
1 egg
1 slice cheese, American or Swiss (1 ounce)
2 tablespoons creamed cottage cheese (1 ounce)
2 tablespoons peanut butter (1 ounce)
$1 / 2$ cup cooked dried beans or peas
An average serving of vegetables or fruits is $1 / 2$ cup; of bread, 1 slice; of cereal, $1 / 2$ to $3 / 4$ cup.

The nutritional statements made on this leaflet have been reviewed by the Council on Foods and Nutrition
of the American Medical Association and found consistent with current authoritative medical opinion.
(9) 1965, 3rd Ed-Copyright 1958, 1964, National Dairy Council, Chicago 60606

## o

                            with
    In order to preceed/computer menu-planning, it is necessary to
obtain information regarding frequency ratings of menu items.
The following items appeared on Residence Hall menus throughout
spring semester 1965.
Evaluate the following menu items on a semester basis. A semester equals 16 weeks. Please check under one heading for each food, i.e. do you consider baked chicken sufficiently popular with students to be served 8 times a semester (once every 2 weeks) or 4 times a semester (once every 4 weeks) or 2 times a semester (once every 8 weeks) or once a semester, or is baked chicken so unpopular that it should never be served?
Certain menu items appeared in combination, e.g. pineapple chunks with sugar cookies. These were separated for purposes of this evaluation.




Baked Beef Hash
Chipped Beef with Macaroni or mashed potato

Chili
Chicken Cutlet
Cheese Soufflee
Buttered Apple and Sausage
Cabbage Rolls
Fish and Potato Chip Casserole Turkey Titrazinni

Beef Pot Pie
Beef Biscuit Roll
Creamed Chicken on Biscuit Whiting

Beef Andalouse on rice
Cherry Pancakes with Canadian Bacon
Turkey a la King on Biscuit
Ham, eggs, noodles au Gratin
Creole spaghetti
Canadian Bacon, cheese sauce with tomatoes

Creamed Turkey on Potato
Grilled Ham and Pineapple
Beef, Tomato and Macaroni
Creamed Tuna on Biscuit
Meat Pinwheels
Stuffed Green Peppers
Corned Beef and Cabbage
Chicken Salad and Roll
Cold Plate (bologna and cheese)
Vegetable Plate

## Turkey Salad

Frozen Fruit Salad and a bread Meat salad, soup and roll

Tuna Fish Salad
Egg and Bean Salad
Salad Bowl
Tomato Stuffed with egg salad
Tomato with Potato Salad
Fruit Plate

Whipped (mashed)
Rissole
Cream
French Fried
Parsley Buttered
0'Brein
Oven Brown
Scalloped
Jacket
Tater Tots
Potato au Gratin

## Franciona

Hash Browns
Rice
Green Rice
Sweet Potatoes

Buttered Green Beans
Canned Beans
Wax Beens


Sweet and Sour Red Cabbage Fr anch-fried Cauliflower Vegetable Timbale Grilled Peach

Buttered Apple
Broiled Tomato
Stewed Tomato

Served at lunch only:
Chinese

## Lettuce Cubes

Shredded Lettuce
Bacon Slaw
Raw Spinach
Garden Salad
Tomato, Celery, Onion
Carrot and Celery Sticks
Peas, Celery and Cheese
Siiced Tomato
Tomato, Cucumber and Green Pepper
Carrot-Raison
Blue Plum and Apricot
Orange Slices
Blushing Pear (Spiced Pear)
Pineapple and Cranberry

## Applesauce

Pineapple and dates
Pear and Apple
Peach with Prune

	2 weeks	4 weeks	8 weeks	16 weeks	Never
Blue Plum with Grapefruit					
Banana and Orange					
Pear and Cheese					
Pineapple with Jelly					
Blue Plum Mold					
Cantaloupe and Blue Plum					
Grapefruit and Cranberry					
Pineapple and Melon					
Cantaloupe and Watermeton					
Pineapple with Strawberry Topping					
Stuffed Prune					
Apricot and Apple					
Peach with Date					
Jellied Apricot and Cherries					
Pear and Cranberry					
Peach and Watermeton					
Orange Slice with Gelatin Cubes					
Lemon Cheese			,		
Devilled Ego					
Pickled Egg Slices					
Served only at dinner:	-				
Combination Vegetable					
Relishes					
Celery and Beet					
Cucumber and Radish					
Peach Half with Cole Slaw					
Tomato, Celery and Onion					
Beets, Onion and Spinach					
Cucumber with Nater Cress					

Blue Plum with Apple
Pear Haif with Gelatin Cubes
Grape Waldorf
Cider and Cranberry
Pineapple Twist
Fruited Cider
Shimmering Salad
Peach Gingerale Mold
Strawberry and Banana Mold
Fruit Juice Gelatin
Jeilied App?esauce
Lime Gelatin with Citrus

## Blueberry Mold

Strawberry Pineapple Gelatin Ribbon Mold

Raspberry Mold
Golden Glow
Italian Salad
Egg and Radish

Salads served at both lunch and dinner
Tossed
Raw Cauliflower
Cabbage with Dressing
Cabbage-Raisin with Marshmallow
Lettuce Nedge
Cabbage Staw
Chinese
Egg Slice and Asparagus
Cottage Cheese
Red Kidney Bean Salad
German Cucumber
Cucumber in Sour Cream
Cucumber Mold
Stuffed Celery
Pickled Beet
Cooked Vegetable Salad
Macaroni
Pea, Celery and Cheese
Melon Cubes
Apricots with Blushed mayonnaise
Citrus Pinwheel

Apricot with Grapefruit Sections
Pineapple and Pepper
Ambrosia
Apricot and Banana
Mixed (canned) Fruit
Pear and Cheese
Raw Cranberry
Peach Half with Marshmallow
Blue Plum with Peach
Perfection Salad -
Fruit Juice Gelatin
Rhubarb Mold
Lime Gelatin and Pear
Jellied Cherry Salad

Karet German Spice Cake
|nes

Spice Cake with Coconut Pecan Frosting
Spice Cake with Burnt Sugar Frosting
Angel Food Cake with Chocolate Frosting
Angel Food Cake with Strawberries and Topping
Angel Food Cake and Lemon Sauce
Chocolate Cake with Fluffy Icing
German Chocolate Cake
Pineapple Cashew Cake
Cherry Glaze Cake
Plantation Marble Cake
Lady Baltimore Cake
Lemon Coconut Cake
Yellow Cake with Chocolate Icing White Cake with Green Icing


## Reach Pie

Dutch Apple Pie
Lemon Cake Pie

## Cherry Chiffon Pie

Strawberry Chiffon Pie
Frozen Lime Dream
Crea.n Puffs, Ice Cream Filling and Chocolate Sauce

Cream Puffs with Cream Filling $S$ herbert

Sherbert with Topping or Fruit sauce Sherbert and Cookies Ice Cream Cake Roll Neopolitan Ice Cream Slice with Topping Ice Box Dessert

Cheese Cake and Raspberry Sauce
Peppermint Ice Cream and Chocolate Sauce
Cherry Sundae
Frozen Lemon Crunch
Meringues with Chocolate Ice cream with Chocolate sauce

Ice Cream and Sherbert Parfait Date Torte

English Toffee Pudding
Banana Pudding
Angel Delight Pudding
Cherry Tarts
Rhubarb Crisp
Peach Shortcake
Peach Cobbler
Strawberry Shortcake
Apple Cobbler
Cherry Cobbler
Apricot Cobbler
Blueberry Cobbler
Blueberry Crisp
Canned Pineapple
Frozen Cherries
Applesauce
Cherries and Topping with Cookie
Peach Slices
Pear Halves
Poire Belle Helene
Blue Plums
Banana Slices
Grapefruit Halves
Apricot Halves
Strawberries
Fr esh Fruit Cup
Fruit Cup with Sherbert

Custard
Bread Pudding
Tapioca Cream
Rice Pudding
Fruited Rice
Tapioca Pudding
Junket Cream
Sherbert
Popcicle
Ice Cream Bar
Ice Cream Slice
Rudgecicle
Ice Cream Sandwich
Coffee Ice Cream Slice
Chocolate Sundae
Pistachio Ice Cream with Chocolate Sauce
Ice Cream and Assorted Sauces
Chocolate Chip Cookies
Rice Krispy Cookies
Oatmeal Cookies
Sugar Cookie
Cherry Crisp Square
Crisp Ginger Cookies
Chocolate Chow Mein Cookies
Chocolate Nut Cookies
Karet Cookies
Peanut Butter Cookies
Sour Cream Cookies
Almond Cookies

Oatmeal Fruit Bar
Dutch Cookies
Butterscotch Chip Cookies
Chocolate Banana Square
Brownie
Soft Gingerbread with Topping
Polish Kolachi
Date Torte
Russian Cream with Raspberry Sauce
Butterscotch Pudding with Nuts
Banana Cream Pudding
Lemon Snow
Polka Dot Pudding
Grapenut Pudding
Vanilla Pudding
Strawberry Bavarian Cream
Apricot Whip
Marshmallow Pudding
Nut Brown Pudding
Chocolate Pudding
Lemon Cake Pudding
Fudge Pudding
Coconut Cream Pudding
Peanut Butter Chiffon Pudding
Spice Cake with Pumpkin Icing
Gelatin and Marshmallow Parfait
Gelatin Cubes with Topping
Tropical Lemon Mold with Topping
Whipped Gelatin
Orange-Prune Kuchen


2 weeks	4 weeks	8 weeks	16 weeks	
			/3	

Thank you for your cooperation

Please consider from palatability aspects only the follozing sets of three menus.

I For each menu within the set, place a rating (see score key below), fin appropriate coluan under cach of the following five chanacteristics:
(I) texture of foods within the meal.
(2) blending of flavors within the meal.
(3) harmony and vardation oz colors within the wenl,
(4) vaxtety of shape of foods within the menl,
(5) vartety in preparation methods of foods within the meal.

II For each set of menus as a wole, indicate wich a cheak mark in the colum on right hand side of page, which one menu of the get of three you consider to be mast pleasiug combination of menu itans. For example, In set $A_{,}$is menu 2, or wemu 2 , or manu 3 most pleacing?

Score key	5.	Excellent combination or vartety of foods
	4.	cood combination or variety of foods
	3.	Accaptable corabination or varlety
	2.	Foor combination or vartery
	2.	Unacceptable condnation or variecy


P7\%N世					Prep	
	โe\% tuse	Paea vor	$6010 x$	Shape	ตax   tety	Check menu preserred

A. Marm I Pork Cuelee

Mashed Patato
Mixed Vegetables
Cottage Cheese with Mandarin Slice Angel Delight Pudung i

Mene 2 Poxt Cutlat
Scalloped Potato
Farshied Gariots
Orange sllees on Parsley Peach Cobble:
B. Menu 1 Swaiss staak Parsley butcered Potaso Aspasagus packled zeet Angelfood cake Strambertias

Menu 2 Swiss Secaik
French prises
Peas
Shxwerting Salad
Apricot Upside domn Pudaing

Kenu 3 Swiss Steak
Mashed Potato
Scelloped Comy
Waldorf salad
Peach Shortcalte
Score hexe...

Score here....


DEMPEP	$\begin{aligned} & \text { Pesw } \\ & \text { tuxe } \end{aligned}$	$\begin{aligned} & \text { WIa } \\ & \text { vor } \end{aligned}$	color	Shope	Ercp Var" Rety	Check menu preferred (x)

C. Renz 2 Roast Turkey

Mashed Potato
Scewed Tomato
Raspberry Mold
Apricot Upeidemdotn Cake

Manu 2 Roast Turkey
Franconta Potatoes
Lina Beans
Macaroni Salad
Chiffon Pic

Menu 3 Rowst Turkey
Mashed Potato
harvard Beets
Tossed Salad
Neopoliten Tee Cream
D. Mens I Bolced Sole in Tomato S.uce Rissole Potato
Whole Kernel Com
Egg SLice with Asparagus
Chocolate Calce

Menu 2 Baked Sole in Tomato sauce
scalloped Potato
Peas
Fruit Juice celatin
Lemon Cake Pie
Score here....
Manu 3 Baked Sole in Fowato Sauce Franconda Fotato
Squash
Relishes (Carrot and celexy seick, onion and green papper)
Lady Balctmore Cake
Score here
(



Score here
Memu 2 Barbecued Chicken Parsley buttered Potato Green Beans
Deets and onions on Spinach Marble Cake
F. Menu 1 Ilara Loaf

Creamed Potato
Bearsut tocktas
Cherry Glaze Cate
Score here
Menat 2
Ham Loaf
Mashed Potato
Peas
Fossed salacl
Chocolate Cake

Mems 3 Ham Louf
Scalicped Potatoes
Carrots
Tossed Salad
Cherry claze Calso
Scone here.


G. Nenu 2 nousc mees

Creaned Potato
Haryase Beet
Applesatse Mold
式osted Mromies


Menu 2 Roust Beef Parsley buttered Potacoes Carroes
Beets and ontons on Spinach giuebery crisp

Score here
Mens 3 Roost Beef
Rash brewn potato Parsley buttored Carrots Banana and Orange Salad Apracot Cobblar

Score here.

## ymuct

A. Mopu 1 Greole spaghetet German Cucumber on Waterctess Taploca Cream

Scona here.
Merna 2 Cxeole Spaghett. Tossed Salad Butterscotch Pudding

Score here.
Mens 3 Croole Spaghetti Cucumber in Sour Creata Splee Cabe

Score here.


E. Meny
than satad sanduich Peach half trith Exume center筒apioca Cream

Menu2 Ham salat sandzich Rhubarib woid
Gangerbread with Topping
Score here
Henu 3 Ham salad Sandwich Garden Salad Taptoca Puduing
F. Menu 2 Bacon, Lateuce, Tomato Sandatich Lume Gelatin and peax虏dge Puddiag

Henu 2 Bacon, Hactuce, Fomato Sandraich
Melon Cubes Tropical Lemon Mold Ambrosia

Bicon, Lettuce, Tomato Sandaich Mixed Vegetable Saled Rice Rrispy Cookic
G. Menu 1 Cheese Soufele Macaront salud pineapple Chunks

Menu 2 Cheese Sourfile Pickled Egg Slices on Splnach Tropical Lemon Mold

Henus 3 Cheese Sourfle Celery and Beat Baked Apple

Score here.

Score here.


```
C
 R ANDD OM ME NU P R O GR A M.
 DIMENSIONMATRIX(8,5),IFD(8),IMIN(7),IMMAX(7),INAME(200,6),ICHAR(200
 1,6)
 D IMENSIONCOST(200)
 FORMAT (6A5,F2.2,2X,511)
 21 FORMAT (89X,4H---/77X,5HTOTAL,6X,1H$,F4. 2)
 20 FORMAT(/1X,14X,6A5,8X,11,7X,I1,5X,I1,5X,I1,6X,I1,7X,1H$,F4, 2)
 23 FORMAT(1H1,52X,29HC H A R A C T E R I S T I C S/I5X, 19HMENUL ITEM S
 1ELECTION,16X,34HTEXTURE FLAVOR COLOR SHAPE VARIETY,5X,4HCOST/15X,
 219(1H-),16X,34(1H-),5X,4(1H-))
 WRITE (3,23)
 I SEC=0
 I CNF=0
 I ARG=485
 N=1
 DO2M=1,7
 IMIN(M)=N
 3 READ(1,1)(INAME (N,J),J=1,6), COST(N),(ICHAR(N,J),J=1,5)
 IF(INAME (N,1),EQ.O)GCTO2
 IMAX(M)=N
 N=N+1
 gOTO3
 2 CONTINU
 IDOMIN=IMIN(3)
 I DOMAX = IMAX(7)
 DO100NTR=1:7
 DO5NZ = IDOMIN, IDOMAX
 ICHAR(NZ,6)=0
 DO100NT 3 = 1,3
 DO6I=1,8
 DO6N=1,5
 6 \text { MATRIX(I,N)=0}
 D09I=1,3
 IFD(I)=IFD(I)/100
 IF(IFD(I)}:1T.IMIN(I))GQTO8
 IF(IFD(I):GT.IMAX(I))GOTO8
 I SEL=IFD(I)
 IF(ICHAR(ISEL,6).EQ. 1)GOTO8
 ICHAR (ISEL,6)=1
 DO9N=1, 5
 I=4
11 IFD(I)=IRANDM(IARG)
 IFD(I)=IFD(I)/100
 IF(IFD(I)\cdotLT.IMIN(I))GOTO11
 IF(IFD(I):GT:IMAX(I))GOTOII
 ISEL=IFD(I)
 IF(ICHAR (ISEL,6).EQ.1)GOTO11
16 DO12N=1,5
12 MATRIX(I,N)=ICHAR(ISEL,N)
 DC13K=1,5
 IC SUM=0
 DO14J=1,?
 IF(MATRIX(I,K).NE.MATRIX(ITEST,K))GOTO27
 ICSUM=ICSUM+1
 IF(ICSUM.GT.2) GOTO15
 27 IFIITEST.EQ.I)GOTOI3
 14 CONTINUE
 13 CONTINUE
 19 ICHAR(ISEL,6)=1
 28 ICNF=0
 I=I+1
 IF(I.GT.7)GOTO30
 GOTOL1
 15 IFD(I)=IFD(I)+1
 IF(I.EQ.8)GOTO10
 IF(IFD(I).GT.IMAX(I))GOTO25
 GOTO33
 10 IF(IFD(8).GT.IMAX(7))GOTO25
 33 ISEL=IFD(I)
 IF(ICHAR(ISEL,6).EQ.1)GOTO15
 GOTO16
 25 IF(ICNF.EQ.1)GOTO26
```

```
 IF(I.EQ.8)GOTO34
 IFD(I)=IMIN(I)
 GOIO35
34
IFD(8)=IMIN(7)
 ISEL=IFD(I)
 IF(ICHAR(ISEL,6).EQ.1)GOTO15
 GOTO16
26 ICNF=0
 IFO(I)=200
 GOTO28
30 IF(ISEC.EQ.1)GOTO32
31 IFD(8)=IRANDM(IARG)
 IFD(8)=IFD(8)/100
 IF(IFD(8).LT.IMIN(7))GOTO31
 IF(IFD(8).GT.IMAX(7))GOTO31
 ISEL=IFD(8)
 IF(ICHAR(ISEL,6).EQ.1)GOT031
 I SEC=1
 I=8
 GOTO16
32
I SEC=0
 ISUB1=IFD(1)
 I SUB2=IFD(2)
 ISUB3=IFD(3)
 ISUB4=IFD(4)
 I SUB5=IFD(5)
 I SUB6=IFD(6)
 I SUB7=IFD(7)
 ISUB8=IFD(8)
 TOTCST=COST(ISUB2)+COST(ISUB4)+COST(ISUB8)
 WRITE(3,20)(INAME (ISUB2,I),I=1,6), (ICHAR(ISUB2,I),I=1,5), COSTI(ISUB
 12)
 WRITE (3,20)(INAME(ISUB 8,I),I=1,6),(ICHAR(ISUBB,I),I=1,5),COST(ISUUB
 18)
 WRITE (3,20)(INAME(ISUB4,I),I=1,6),(ICHAR(ISUB4,I),I=1,5),COST(ISUB
 14)
 WRITE (3,21)TOTCST
 TOTCST=COST(ISUB1)+COST(ISUB3) +COST(ISUB5)+COST(ISUB6)+COST(ISUB7)
 WRITE(3,20)(INAME(ISUB1,I),I=1,6),(ICHAR(ISUBI,I),I=1,5),COST(ISUB
 11)
 WRITE(3,20)(INAME(ISUB 3,I),I=1,6),(ICHAR(ISUB3,I),I=1,5), COST(ISUU
 13)
 WRITE(3,20)(INAME(ISUB6,I),I=1,6),(ICHAR(ISUB6,I),I=1,5),COST(ISUB
 16)
 WRITE(3,20)(INAME(ISUB7,I),I=1,6),(ICHAR(ISUB7,I),I=1,5),COST(ISUB
 17)}\mathrm{ WRITE(3,20)(INANE(ISUB5,I),I=1,6),(ICHAR(ISUB5,I),I=1,5),COST(ISUB
 WR
WRITE(3,21)TOTCST
100
 CONTINUE
 STOP
```


# AUTOMATED MENU PLANNING 

## by

# ROBIN MARY BROWN <br> Diploma of Home Science University of Otago, New Zealand, 1961 

AN ABSTRACT OF A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Institutional Management

KANSAS STATE UNIVERS ITY Manhattan, Kansas

1966


#### Abstract

Automation and data processing techniques have been accepted by many major industries and recognized as a force changing methods of management. Administrative capabilities have been extended because these management tools perform highly repetitive tasks in a minimum of time. In the past, the food service industry has been slow to apply new management applications. However, it is facing an acute shortage of management personnel and should be receptive to the implications of computer potentialities.

Menu planning is an example of a repetitive, timeconsuming task of food service management. Recently, linear programming techniques have been developed to plan economical, nutritionally-adequate menus on a computer. Other factors such as texture, flavor, color, shape, and preparation methods of foods are important considerations in the planning of good menus suitable for food services. The storage capabilities, or memory, of the computer should make it a valuable instrument in menu planning.

Emphasizing palatability, an approach to planning menus suitable for residence halls was attempted on a computer, using random selection techniques. Data used for computer input consisted of selected menu items served in residence halls at Kansas State University, raw food costs, serving frequency ratings, and menu classification ratings. Each menu item was coded with a five digit number related to


texture, flavor, color, shape, and method of preparation. Restrictions were placed on the number of times that each characteristic could appear in one day, and on the appearance of certain classes of menu items. Recommended nutritional allowances were fulfilled by establishing a menu pattern compatible with recommendations of United States Department of Agriculture (1964). Each day's menu included lunch and dinner meals only.

Menus for 21 days, using 152 foods divided into seven categories, were planned. From these $2 l$ menus, seven were selected for evaluation study. Each of the seven computer menus was compared with two residence hall menus featuring the same entree by a panel of dietitians. preference for computer-planned menus was indicated in five out of 14 in stances.

The menus presented as computer output demonstrated that approaches to menu planning by computer through aspects of palatability and use of random selection techniques were feasible. However, palatability codes will require further development and refinement, and selection lists for menu items will need expansion in order to improve computer output.


[^0]:    a T texture
    F flavor
    C color
    S shape
    PM preparation method

