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THE DESIGN OF A SERTAL MSK FILTER

I. INTRODUCTION

This paper describes the design of a realizable filter for use in a
simple Minimum-Shift-Keying (MSK) transmitter. There are a number of ways
to model a transmitter of this type. The model shown in Figure 1 [1] was
chosen because of its physical and analytical simplicity.

The transmitter of Figure 1 consists of a simple biphase modulator
followed by a linear, time invariant filter, with impulse response h(t).
Data in a serial format is input to the balanced modulator and the desired
MSK signal is available at the output of the filter.

For MSK generation, the filter of Figure 1 has impulse response

given by [1]
sin 2nft , o<t < T

h(t) =
8] , elsewhere (1)
where T is the duration of a message bit and f» is described below.
During any keying interval of duration T seconds, one of two frequencies,
fy or £f5, is transmitted, where f; and f, have a special relatiomship to

the link bit rate 1/T. This special relationship, for some selected

integer n, is as follows,

n
f1 =37
B = n+ 1
2 2T (2)

i.e., they differ by half the bit rate.

It should be racognized that the response of (1) is ideal, and that
a filter with this impulse response is not realizable. That is, it is
not possible to build this filter using non-ideal, real world components.
This being the case, an approximation to the ideal filter is required; ore

which is realizable, with impulse response matching that of the ideal



Serial Data h(t) MSK Signal
Input ——>  Outout

Sin (2rvflt)

Figure 1 An MSK Transmitter



filter with minimum error. It is convenient for analytic reasons to work
with the equivalent low-pass representation [2] rather thanm the actual
impulse response of the filter. In the following sections of this report
methods are developed for approximating the equivalent low-pass response
of the ideal filter with realizable configurations. The technique
employed is to adjust the parameters of the realizable filter so as

to minimize an error criterion by using the method of steepest descent

A filter design procedure which uses the method of steepest descent is
developed in Section II. Some results for filter configurations of

interest are given in Section III.



II. FILTER DESIGN USING THE METHOD OF STEEPEST DESCENT

General Description of the Steepest Descent Algorithm

-An algorithm useful for filter design, is the method of steepest
descent [3]. The method of steepest descent is an iterative method which
minimizes a gquadratic function of a suitable error vector between a
desired and an approximating function. If we denote the quadratic risk

function to be minimized as R(u), then the rule for steepest descent is

B LEE
Ynt1 T 2g ¥ A (3
where fu = =k —2RGW)
= 3 u BT

which is usnually abreviated,

Au = -k 7V R(u ).

—n 4 —u
In the above expression, u is a vector containing the parameters to be
fixed. In our case these parametars are the poles and zeros of an
approximating function ﬁ&u,g). k¥ is a constant multiplier which must be
optimized, by trial and error, to stimulate the steepest descent algorithm
tc converge to the desired parameter values as quickly as possible. H o
is the current parameter vector. Au 0 is the change in values, calculated
during the current iteration, of the parameter vector. This change is
then added to the current vector to provide the set of parameter wvalues,
TR used during the next iteration, which are checked for convergence.

The number of iteratioms, n, is the smalles* number possible, for a given

k, to achieve convergence. V¥V is the gradient operator.

Matching Power Responses

In analyzing this problem, two approaches were utilized to determine
the appropriate approximating function parameters. The first consists of

matching the power response of the desired function to the power response



of an approximating function, using the method of steepest descent.
For this case, the desired function is an equivalent low-pass

representation, of the filter in (1), given as

_ sin wT/2
By = wT/2
with power response,
2 - sin? WT/2
(B |2 = =mrnT (4)

which is a function of frequency. Evaluating the function in (4), at
each of the frequencies of a vector w, leads to a sequence of values which
we denote as the vector H(w).

Recalling that the function in (4) goes to zero at integer multiples
_ of the bit rate, 1/T, it would be logical to choose as an approximating
function one that has zeros as well as poles. It was arbicrarily decided
to approximate the desired function by a realizable function with one
real pole, a pair of complex conjugate poles and a pair of imaginary axis
zeros. It should be noted that this approach matches only the magnitudes
of the power responses without consideration of the phase characteristics.

The approximating function chosen is as follows

(52+m02) (-:12+f32)p-1

H(s,u) = (5)
(s+p, ) (sta+iB) (s+a-jR)u 2

or in the frequency domain,
(Guriwy) Gu-ju ) (a2+8%)p

Hw,u) =

(Jurto=38) (Jurte+y 8) (Jutp Jw 2
with power response
(wOZ_MZ) 2 (0'.2'4'32) 2 pl 2

[H(w,u) |2 = (6)
(02-2uB+u2+82) (w2+2wp+u2+82) (m2+p12)u:.or+




which is a function of the parameter vector u. Evaluating (6), at each
of the frequencies of a vector w, leads to a sequence of values which we
denote as the vector ﬁ (w,u).

The added factor,[(a2+62)p1]/w02, is used to normalize the approximat-
ing power response to a value of one at zero frequency. This forces the
amplitudes of the two functions close enough together at the start, that
the method of steepest descent algorithm will converge to the desired
parameter values and not erroneous values.

An appropriate measure of the error, in the approximation of the
ideal filter response, is the real vector

e= [EW|2 - [Hw,w)|? (7
which in accordance with our choice above to work with the power responses,
is the error between the power responses. In the above expressicn
9? = (wl,mz, eeey wm) is a set of selected frequencies at which it is
desired that the approximating response match the desired function
response. The vector E? = (a, B, p1 . mo) is the parameter vector contain-
ing the values of the poles and zeros of the approximating function.

As was described earlier, a suitable risk function is the magnitude
squared of the error wvector, i.e.

R(w = e e = |ef?
“lEw?| - [R@w ! Ew?] - |Bew]?]. )

Recalling the steepest descent rule, we now need to find

Agn = =k VE R{u n)'

Noting that the error vector e is real, and considering
T T

fu R(u) =V e e=2(7 ee
= 207 [[E@?] - |EG@w 217 [EW |2 - |EGw 2] (9)
=207 [E (@02} [[EW?| - |EG.w|2]

we have at u = u p, the nth iteration of the algorithm, that



oT
A = k[V 2 :
u o= R B e )2l
Substituting this result, for Au . into the rule for steepest descent, we

have

- AT 2
S T8 PRIV [H W D[ e .

Carrying out the gradient operation implied above leads to, for our

case

== —

3wy, |2 3]R(w,,w)]2. .. 3|H(up,u) |2

Ja oa Ja

BIQ(mI,E)IZ Blﬁ(mz,g)lz... B|ﬁ(mm,g)[2

& 3 3 3
A ESORNIES ° ° ’

3|ﬁ(w1,2)|2 oA, ,u) |2 B]ﬁ(wm,g)lz

Bpl Bpl Bpl

3HGw w2 3lHu,,w) |20 B[R ) |2
Gmo 3@0 8mo
— — (10)

where m is the number of frequencies at which it is desired to match the
approximating and desired power responses. o is the real part of the
complex pole pair and 8 is the imaginary part. p; is a real pole aad @y
is an imaginary axis zero. Together a, B, p; and Wy make up the parameter
vector u of the approximating fuction.

We now consider finding the derivatives of the approximating function,
IE?Q&[E){Z shown in (10), with respect to each element of the vector u.

Recalling from (6) that

Hlw,u)|2 = (w 2-02)2 (a2+82)2p 2
e Q 1

(02=2wB+a24+82) (w2+2uwpa2+82) (m2+p1 Z)mo“

we determine the derivatives with respect to Dy, ® @, and B.

o!



These derivatives are summarized in Table 1.

We now have everything needed to implement the steepest descent
algorithm. The implementation is accomplished by a computer program.
The program first accepts values for the frequencies at which it is
desired to match the power respomnse of the approximating and desired filter
functions. It next accepts initial values for the poles and zeros. Using
this initial information, the derivatives of the approximating function
are calculated. The balance of the program is a recursive section in
which the error vector between the two functions is calculated, the risk
function is evaluated, and Au o is calculated and added to u s tc obtain
the next set of values for the polass and zeros of the approximating
function. This current set of wvalues for the poles and zeros of the
approximating function is then checked for convergence. If the algorithm
has not converged, the approximating function derivatives are recalculated,
using current prarmeter values, and another iteration of the recursive
section is made. If the algorithm has converged, the optimum parameter
values are output. The program also stores the values, for each iteration,
of the desired and approximating filters power response as well as the
values of the risk function. A plot routine may be executed to obtain
plots of these various functioms.

The program listing is shown in the Appendix.

Matching Transfer Functions

The second approach, used to arrive at the optimum wvalues for the
parameters of the approximating function, consists of matching the
transfer functions of the desired and approximating fiiter functions.
Again, the method of steepest descent is utilized. 1In this case,

however, the desired function is given by,
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sin T =juT
2 e 2

H(w) = -j —————— (15)
wT

2
which is a complex number that may also be written as

Sinﬂ \'.IJT w'r
H(w) = __-]-—2- [cos 2 -3 Sin—f]
wT
2
Expanding we obtain sinwT (sinwT) (cosuT)
2, 2 2
Hw) = - 2 = (16)
3 2

which is a function of frequency. Evaluating the function in (16), at each
of the frequencies of a vector w, leads to a sequence of values which we
refer to as the vector H(w). It should be observed that, in this case, in
addition to matching the amplitude responses of the approximating and
desired functions, we are also matching the phases.

Since the more complex a filter is, the harder it is to build, it was
decided to use a simpler approximating filter in this case. The filter

chosen was an all pole filter with two complex pole pairs, whose function
=i (a 48 2)(a 248 2)
5 I g 2 _
H(s,u) =" (17)
(s+a +j8 )(sta ~jB )(sta +j8 )(s+a -jB )
1 1 1 1 2 2 2 2

is written as

or in the frequency domain,
~j (alhalz)cazhszz)

H(w,u)

(sto +j8 ) (s+ax =j8 ) (s+a +j8 ) (s+a =jB )
171 171 2 72 2

-i (2 248 2)(a 2+8 2)
1 1 2 2

(-m2+2jma +o 248 2) (-w2+2jma +a 248 2) (18)
1 1 1 ? 2 2

which is a function of a parameter vector u. Evaluating (18), at each of

the frequencies of a vector w, leads to a sequence of values which we



refer to as the vector H(w,u). The added factor (alz+812)(a 2+622) as

2
before, is used to normalize approximating transfer function to a value of
one at zero frequency, thus facilitating convergence of the steepest

descent algorithm.

An appropriate measure of the error, in the approximation of the ideal

filter respomnse, is the complex vector

e lE WHE WI-E @wHE @] (19)

which in accordance with the above choice to match transfer functions
is the error between the transfer functions of the desired and
approximating functions, respectively. In (19) g? = (w1,m2,---,wm) is
again a set of selected frequencies at which it is desired that the
approximating response match the desired respomse. The vector E? =
(al,sl,aZ,BZ) is the parameter vector containing the values of the poles
of the approximating functions. gr(gp and Ei(g) are the real and
imaginary parts of the desired function and ﬁr(g,g) and_ﬂi(g}g) are the
real and imaginary parts of the approximating function.

A suitable risk function may again be written as the magnitude

squared of the error vector, i.e.,

T

R = eler = (e,+ie) (et (20)

where e = {gr(g)-gr(g,g)} and e = [gi(_ui)-gi(g_,g)] are the real
and imaginary parts of e.
To use the steepest descent rule, we now need to find

Au = -k v Ru ).
- n u — 1

Noting that the error vector e is a complex vector, and considering
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from which observing (20) we have

VuR(g) o ~2V2§r(g;g)§_r -ZVEgi(y_,g)gi- (21)

At u = 4 the nth iteration of the algorithm, we now have
W, Sk A We, ¥+ Y H; (We)e]

Substituting the result for Ag_n, into the rule for steepest descent, we

cbtain

= u n"'ki‘r’_fl_r(g,u)

we, + V4 wme, ]

ool
From the formula for the gradient of a function with respect to a

real vector we have

g Tl

38 (w su) 3H (w ) ... 38w ,u)
1 2 L

da 3a Ja
i 1 1
S:Km 4 Bﬁ(m 5210 aﬁ(m »u)
1 g o
& da B1v] au
'72.;(3 2 2 2
Mw ,u)  3H(w ,u) ... 3H(w_,u)
1 2 o
38 38 98
1 1 1
3w ,u)  3H(w sw) ... 3H(s_,u)
1 2 n
3B 3B a8 (22)
2 2 5
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where m is the number of frequencies at which it is desired to match
the approximating and desired transfer functions. al is the real part
of the first complex pair and Bl is the imaginary part of the first
complex pair. Similarily, uz is the real part of the second complex
pair and 52 is the imaginary part of the second complex pair. Together

al,B »0& 48 make up the parameter vector u of the approximating function.
1 2 2 -

We now consider finding the derivatives of the approximating function
ot 4 ;
H (w,u), shown in (22), with respect to each element of the vector u.

Recalling from (18) that
-j(a 48 2)(a 248 2)
1 i 2 2

ﬁ(_c_u_,'_-l_) =

(~u242jwa +e 248 2) (~w2+2juc o 248 2)
1 1 1 2 2 2

we obtain for the derivative with respect to o

3H(w,u) = -j2[ (~w?+23ue +o 248 2)(a 248 2)a -(o 248 2)(a 248 2) (Gutz )]
sl 1 1 1 2 2 1 1 1 2 2 1

(~w2+2jua +o 248 2)2(=w®+2jwa +u 248 2)
11 1 2 2 2

2[(we 2a 2 +wo 28 Z-wa 28 2-uwB 28 2)+i(w2a o 24+wlg B 2)]
1 2 1 2 2 1 1 2 1 2 1 2

DENOM (23)

DENOM

DENCMR + jDENOMI which is made up of the real and imaginary
parts of the denominator of (23) where,

DENOMR = (-pf+6w®a 2+20%8 2+2w2q 2B 2-w2a “-u2B “+8ut*a a -8w2a 3o -
1 1 1 1 1 1 1 2 1 2

8wla o R 2400 2-6u2a 20 2-2w2a 23 2494 24 28 24 My 24 23 h+mks 2
1 21 2 1 2 2 1 1 2 1 1 2 2 1 2

6w2a 28 2-2w23 28 2+2q 28 23 Z4q Hp 248 43 2)
1. 2 1 2 1 1 2 1 2 1 2



14

is the real part and the imaginary part is given as
DENOMI = (4wia -4wda 3-4wda B 2+2wSx -1203c 20 -4wda B 2+4uwa 2a B 24
1 1 11 2 1 2 21 1 21

200 %o +2uwa 8 "-4wdy o +swe 3u Zbwa o 28 2-4wda B 2+4we 38 Z+4wa B 2B 2y
1 2 21 1 2 1 2 12 1 12 1 2 11 2

Letting NUMIR = (mal2a22+ma12322~ma22312—m812322) and NUM1I =

(mzalazz *mzulﬁzz), we obtain for the derivative that

5H(w,u) = 2[NUMIR + jNUMLI]

Bul DENOM

Multiplying numerator and denominator by the conjugate of the denominator

to rationalize the derivative results in

3H(w,u) = 2[NUMIR + jNUM1I][DENOMR - jDENOMI]

Bal [DENOMR + jDENOMI][DENOMR - jDENOMI]

from which (24) in TABLE 2 is found as the final form of the derivative.
In (24), DENOML = (DENOMR)Z + (DENOMI)Z?.

Similarly, for the derivative with respect to 31 we find

—32[=w®2jua +a 2+ 2 248 2)B —(a 248 2 248 2 _
32 [-w juwa to SI )(az 82 )Bl (31 81 )(Gz 32 )BI]

(-w2+2jmal+ulz+812)2(—m2+2jwa2+322+8 =
2

= 2[(2uwe a 28 +2ua 8 28 2)+j(wa 28 +w2g 8 2)]
1 2 1 11 2 2 1 1 2

DENOM (25)

Letting NUM2R = (2ue & 3B +2wa B 28 2) and
12 1 11 2

NUM21

I

(w2a 2B +w28 8 2), we obtain for the derivative that
2 1 1 2
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38(w,u) = 2[NUM2R + jNUM2I]

asl DENOM

Rationalizing and simplifying, the derivative is written as (26) in
TABLE 2.
The derivatives with respect to az and 82 are found, using the

procedure above, and showm as (27) and (28) respectively, in TABLE 2.

In (27), NUM3R (wa 2o 24ua 28 2-wa 2B 2-wB %3 2)
1 2 2 1 1 2 1 2

NUM3I

(wla 2a +w2q 8 2)
1 2 21

DENOMRI = (-u5+6u*a 24+2u%g 2-202q 28 2-42¢ %-428 “48ula o ~8w2a a 3-
2 2 2 2 2 2 12 12

-~

8wla o B8 Huta 2.6wla 20 2-2p2¢ 28 2420 20 28 24y 2g Mg 2g Uttty 2o
1 2 2 1 1 2 1 2 1 2 2 1 2 1 2 1
60.)20. 28 2-20328 2B 2+2{l 23 28 2+d '+B 2+B 28 '4)
2 1 1 2 2 1 2 2 1 1 2

DENOMI1: = (émsu ~4wla 3-4p3a 8 42w -12wda o 2-4w3a B 244w a 25 2+
2 2 2 2 1 L. 2 1 2 1 2 2

2ua o *2we 8 “-4wda 2g +hwa 20 3+bwe 2o B 2-4wda B8 2+hwa 3B 24+4we 8 2B 2)
1 2 1 2 1 2 1 2 1 2 2 21 2 1 21 2

DENOM2 = (DENOMR1)2 + (DENOMI1)?2

In (28), NUM4R = (2wa 22 B +2wn 8 2g 2)
1 22 21 2

NUM4I = (w20 23 +w?8 28 )
1 2 1 2

One step remains to be done before we have everything needed to
implement the algorithm. The approximating function needs to be
rationalized into its real and imaginary parts, as was done with the
derivatives, to facilitate the analytical analysis. Recalling the

equation for the approximating function from (18),
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> = —i(q 248 2 248 2
H(w,u) J(Gl 8 )(a2 52)

~w24+2iwa +o 2+8 2) (~w2+2jue +a 248 2
(w3111)( J222)

we obtain after ratiomalizing

H(w,u) = -[(ANUM)(ADENI) + j (ANUM) (ADENR)]
(29)
DENOM3
where ANUM = (312+812)(622+822)
ADENR = (w"-w?a 2-w28 2-4p20 a -w2a “a 24q 23 2-
2 2 1 2 1 2 1 2
m2812+322812+5123 2) is the real part of the denominator and
2
ADENI = (-2w3a -2uwda +2uwo a 242w B 24+2wa 20 +2wa B 2) is
2 L 1 2 1 2 1 2 21

the imaginary part of the denominator and

DENOM3 = (ADENR)2 + (ADENI)?

The final step of implementing the steepest descent algorithm is
again the writing of a computer program. As before, the program accepts
values for the frequencies at which it is desired to match the transfer
functions of the approximating and desired filter functions. It next
accepts initial values for the poles. Using this initial informationm,
the derivatives of the approximating function are calculated. The
balance of the program is a recursive section in which the error vector
between the two functions is calculated, the risk function is evaluated
and Ag_n is calculated and added to u , to obtain the next set of values
for the poles of the approximating function. This current set of wvalues
for the poles is then checked for convergence. If the algorithm has

not converged, the approximating function derivatives are recalculated,
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using current pole values, and another iteration of the recursive section
is performed. If the algorithm has converged, to a set of pole values,
these optimum values are output. In addition, the program stores the
values on disk, for each iteration, of the desired and approximating
filters transfer function amplitude and phase response, as well as the
risk function. A plot routine may be executed to obtain plots of these
various functioms.

The program listing is shown in the Appendix.
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IIT. RESULTS

Matching Power Responses

Following the procedure set forth above, the following results
were obtained on a Data General Nova computer. In the first case, of
matching the power responses, it was arbitrarily decided to match the
two functions at 17 frequencies evenly spaced between 0 and 47 radians.
By trial and error, a good value for the multiplying constant k was
found to be 20.0. Using this value of k and 500 iterations of the
iterative loop of the first program in the Appendix, the pole and zero
values in TABLE 3 were obtained. Various initial values for the poles
and zeros were used to verify that the values shown in TABLE 3 are optimum.
A plot of the desired and approximating function power responses is
found in Figure 2. Figure 3 shows that the risk function, or the error
squared between the desired and approximating power respounses, is equal
to {,43x10 2, after the last iteration.

To observe how closely the approximating functioms impulse response
matches that of the desired function, we use the parameter values in (30)
and perform an inverse Laplace transformation [4 ] on the approximating

function to obtain

(31)
h(t) = 15.86e™6+14t 4 125203466 (65(3.431L~3,0)

Figure 4 shows this response along with the ideal response,

Matching Transfer Functions

For the case of matching the transfer function of the approximating

function to that of the desired, it was decided to match the two
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functions at nine frequencies evenly spaced between O and 27 radians. This
decision was made because the largest portion of the energy in the sigral
is contained in the area between zero and the first null of the amplitude
spectrum, which is at 2m radians. Again trail aand error was used to arrive
at 2.0 for a good value of k., Using this value for k, and 200 iterations
of the iterative loop of the second program in the Appendix, the following
pole values, shown in TABLE 4, were found. Various initial values for the
poles were used to varify that the values shown in TABLE 4 are optimum,
Plots of the desired and approximating functions amplitude responses are
shown in Figure 5. Figure 6 shows the phase responses of the two functioms.
From Figure 7, the risk function, which is the error squared between the
desired and approximating functions amplitude and phase responses, has a
value of 0.098, after the last iteration.

To observe how closely the impulse response of the approximating
function matches that of the desired function, we use the parameter values
in (32) and perform an inverse Laplace transformation on the approximating
function to obtain

(33)
h(t) = 4.98e72.33tcos(1.91t ~1,608)+.186e~50+0%c0s(50,8t+.063)
Figure 8 shows this response along with the ideal response, h(t).

It is observed from Figure 2 through 4 above, that even though the
power respouse of the approximating function matches that of the desired
function exceptionally well, the impulse responses vary some what. It
remains to be seen how this variance will affect the performance of the
filter in generating an MSK signal.

From Figures 5 thrqugh 8, we observe that even though the approxima-
tion of the transfer function is not as close as the approximation of the

power response, the impulse response is closer to the ideal respounse,
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This could be accounted for by the fact that two filter types, each
having a different characteristic, were used. It could also be due to the
fact that in the first case we didn't consider the phase and in the second
case, the phase as well as the amplitudes of the equivalent low-pass
representation were matched. How this filter performs in the generation
of MSK signals and how it compares to the filter of the first case remains

to be analyzed.
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IV, CONCLUSIONS

In this report, methods have been developed for arriving at an
approximation to the equivalent low-pass response, of an ideal MSK
transmitter filter. The methods consist of adjusting the pole and zero
locations of simple realizable filter configurations. The technique of
minimizing an error criterion, by the method of steepest descent, is then
employed to arrive at a good set of realizable filter parameters.

It is shown that using these methods, it is possible to closely
approximate the power response or the transfer function of the equivalent
low=-pass representation, of an ideal MSK filter. The real-world perform-
ance of these approximations, in generating the desired MSK signal, is a
problem that has not yet been analyzed. If, as it is hoped, these simple
realizable configurations do succeed in acceptable generation of the MSK
signal, a significant reduction in transmitter complexity and implementation

cost will have been achieved.
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Cx % % %X x X %X X X X X X %X x % %X x X X %X %
c
C MATCHING FOWER RESFONSE FROGRAM
C
C MARKB?.FR
c
c FROGRAMMED RY MARK FLIN 12/20/79
c
Cx % % % %X Xx %X X % X X X X X %X % % *x %X % X
DIMENSION FREQ(17)>ERROR(17)sAFXM(68) s DELUNC4) s DITNFR(17)
1 ATNFR(17)sRERK(IS00)»ESQL{17) yCATNFR(1500) »COTNFR(1500)
REAL K
DUMMY1=0.,
DELUNMCL)=0.
DELUNC(23=0.
DELUN(3)=0.
OELUN(43=0.
Lo 25 I=1,17
FREQ{I)=0.
ERRORC(I)=0.
25 CONTINUE
L0 S0 I=1,68
AFXM(I)=0,
50 CONTINUE
F1=0.
A=0.,
B=0.
WO=0,
&
c ENTER FREQUENCIES AT WHICH IT IS DESIRED TO MATCH
c LESIRED AND AFFROXIMATING FOWER RESFONSES
C
FREQ(1:=1.,E-06
00 100 I=2+17
FREQ{I)=FREQG(I-1)+(3.1415)/4.
100 CONTINUE
&
C INITIALIZE MULTIFLICATION CONSTANT OF STEEFEST LESCENT RULE
C
ACCEFT " CONSTANT K=7",K
c
C OBTAIN IMITIAL VALUES FOR FARAMETERS
£

ACCEFT " REAL FOLE=?",pF1

ACCEFT " REAL FART OF COMFLEX FOLE FAIR=7"sA
ACCEFT * IMAGINARY FART OF COMFLEX FOLE FAIR=F",R
ACCEFT * IMAGINARY AXIS ZERO=7",WO

ACCEFT * VALUE FOR FERIOD=7"»T
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ASSIGN REDUNDANT FORTIONS CF DERIVATIVE EQUATIONS TO DUMMY
VARIABLES

CONTINUE
WOZ=WOXk2
WO3=WO2XWO
F12=F1%%k2
AZ=AXXD
A3=AZKA
B2=EXx¥2
E3=EBE2XE
ANUMI=C(AZ+R2)
ANUMI2=ANUM1%¥Xx2

EVALUATE INITIAL DERIVATIVE MATRIX

00 300Q I=1-17
W=FREQ(I)
W=k
WE=2XkWHER
ANUM= (WO2-W2) %%k2
DENOM=(W2-WEB+AZ+BR I K (W2+WRHAZHB2 IR (WIHF13) xWO2
ODENCOM2=DENOMX %2

CALCULATE FARTIAL OF FOWER RESFONSE WITH RESFECT TO FP1
AFPXMOT Y =2, %P 1RkANUMKANUMZ X ( (W24+P12) -1 . %F12) / (DENOMX
(W24+F125%W02)

CALCULATE FARTIAL WITH RESFECT TOQ WO
AFXMIIFTLI7) =4 kP L12%(WO2-W2 ) KANUM2 X W2/ (DENOHXWO3)

CALCULATE FARTIAL WITH RESFECT TO A
AFXMOI+34) =2 KANUMLIXANUMRPLIZX (W2+F 12 X {{W2~WE+AZ+H2 1 X
(W2HWEBHAZHE2I X2 XA-(AZHR2I X (2 XWEXA+Z . XAXB2+2 4 %A3))
SUENOM2

CALCULATE FARTIAL WITH RESFECT TO R
AFXM(I+51 =2, XKANUMLKANUMKFI2X CW2HR 12 % (W2~ WEBH+AZHR2 ) &
(W2 HWE+AZHE2 X2 . KR-{AZ+R2 IR (-2 s KWI2XER42 . KAZXR42 . KE3) )
JOENOMZ

CALCULATE THE ERROR VECTOR BETWEEN AFPFROXIMATING AND LDESIRED
FOWER RESFONSES

OTNFROTII=C(SINCWRT /200 2RR2) /7 {WERT /2, y %2
ATNFR (I ) =ANUMRXANUMZXF 12/ (DENOMXWO2)
ERROR(I)=0OTNFR(ID)-ATNFR(I)
IF(I.EQ.1+AND.M.GT.1) GO TO 250
GO TO 275

CONTIMNUE
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RSK(M)=DUMMY1
DUMMY1=0.
CONTINUE
. DUMMY1=DUMMY1+{(ERRORC(I ) XX2)
CONTINUE

CALCULATE DELTAUNs THE CHANGE IN FARAMETERS TO BE TRIED NEXT

L=1

J=1

DUMMY=0.

DO 500 I=1-48
DUMMY=DUMMY+ (KXAFPXM (I )XERROR (L))
IF(I.EQ.17.0R.I.EQ.34.0R.I.EQ.51.0R.I.EQ.88) GO TO 4G0
L=l+1
GO TO 3500
DELUN(J)=0UMMY
J=J+1
L=1

CONTINUE

CALCULATE NEW FARAMETERS TO EBE CONSIDERED

F1=F1+DELUM(1)
WO=WO+DELUNC(Z)
A=A+0ELUN(3)
B=B+DELUNC(4)
IF(M.,EQ.S00) GO TO 400
M=M+1

GO TO 200

USING NEW FOUND FARAMETERS COMFARE CONTINUDUSLYs» LDESIRED AND
AFFROXIMATING POWER RESFONSES FROM O TO 46.28 RAD.

CONTIMUE

TYFE *P1="sF1,"W0="sW0s"A="sAy "B="+R

WOR2=WOKk2

P12=P1XX%x2

AZ=AKK2

AS=AZXA

BR2=R¥x2

L3=R2%E

ANUM1=A24B2

ANUMZ=ANUM1X¥%2

W=0,

0o 700 I=1-,1500
W=W+(3.14159)/200
W2=Wx*x2
Wh=2%WXE
ANUM=(WO2-W2 ) k%2
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DENOM=(W2-WEB+AZ2+E2 )R (WZ2HUE+AZHRZ ) K (W2+P12) %WO2

CATNFR(I1)=ANUMXANUMRXP 12/ (DENOMXWO2)

COTNFROID)=((SIN(WXT/2,)2XK2) / (WXT/2. 1 %%2
CONTINUE

STORE DATA ON DISK

CALL TIOFEN(Q»352+0556000» "AFPFROXIMATIONT")
CALL WRITR(OsO»CATNFR»1»IERRO)

CaLlL CLOSE(Oy»IERRO)

CALL TOFEN(1:3»25054000 "DESIREDT")
CALL WRITR(1-,0-CDTNFRe1»IERRL)

CALL CLOSE(1yIERR1)

CALL IOFEN(2s372+0sM¥4y "RISKT")
CALL WRITR(Z2s0sRSKy1,IERR2)

CALL CLOSE(2sIERRZ)

STOF

END
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¥ ¥ X% % ¥ %k ¥ Xx X X X *x Xx Xx X X ¥ X ¥ X

b 4

LS

MATCHING TRANSFER FUNCTION FROGRAM
MARK103.FR
PROGRAMMED RBY MARK FLIN 12/20/79

¥ X X X X ¥ ¥ % ¥ ¥ % %X X X ¥k x X k¥ X
ODIMENSION FREG(®)sERROR(18) sAFXM(72) yOTNFR(18) sDIELR{4) »
ATNFR(18) yREK{(20Q) yESAD(18) y CATNFR{(F00) yCOTNFR{F00) »
CATNFRF(R00) yDELT (4) s COTNFRF(200)

REAL K

DUMMY1=0,

Lo 25 I=1,9
FREQ(I)=0,

CONTINUE

ng 35 1=1.18
ERROR(I)=0.

CONTIMUE

[0 50 I[=1,72
AFXM(II=0,

CONTINUE

Al=0,

AZ=0,

El1=0.

B2=0,

ENTER FREGUENCIES AT WHICH IT I5 DESIRED TO MATCH THE
DESIRED AND AFPFROXIMATING TRANSFER FUNCTIODNS

FREQ{1)=1.E-04

ng 100 1=2,9
FREQ(I)=FREGQ(I-13+(3.1415)/4,

CONTINUE

INITIALIZE MULTIFLICATIONM CONSTANT K

ACCEFRT " CONSTANT K=7%»K

OBTAIN INITIAL FARAMETER VALUES

ACCEFT * REAL PART OF 18T COMFLEX FAIR=T"»Al
ACCEFT * IMAGINARY FART OF 18T COMFLEX FAIR=7T":R1
ACCEFT ® REAL FART OF 2ND COMFLEX FAIR=T"eA2
ACCEFT * IMAGINARY FART OF 2NID COMFLEX FAIR=T",R2
ACCEFT ® VALUE FOR FERIOO=7",T

M=1

ASSIGN REDOUNDANT PORTIONS OF EQUATIONS TO DUMMY
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VARIARLES

CONTINUE

nn 210 I=1-4
DELIC(I)=O.
DELR(I =0,

CONTINUE

HNUM1=(A1X%2)+(B1XX2)

HNUM2=(A2KK2 )+ (B2XKR2)

AL2=A1XXK2

Al3=A12%A1

B12=R1%x¥2

B13=R12%B1

AZ2=A2%%2

A23=A22%A2

R2Z2=R2KX2

R23=R22%B2
EVALUATE INITIAL DERIVATIVE MATRIX

oo 300 I=1-18
IF(I.GT.9) GO TO 215
W=FREQ(I)
GO TO 220
CONTINUE
W=FREQ{I-2)
CONTINUE
W2=Wkk2
W3=W2¥W
WaA=W3IKW
DENOMR={~1  KW3KW3+& . kWA¥A12+2  kWAXRI12 -2, KW2RAL2XE12
—1 KWIZKALIZKATI2~1 s XKUW2KBI2KR1248, KWARALKAZ-B . XW2XA1IXKA2
B XWRAKALKBLIZ2XAZHWAXAZZ -4 K W2RAL2KAZE -2 XW2XEB12%A22
+2.KA12¥RIZKA22TAI2KAIZKAZZTRIZKBI2KAZIZHWAKERZ -6 . Rk W2KAL2KR22
=2 . RW2KBI2KB22+2 JKAL2KB12KEB22+A12KA12%E22+B12%R1 2KR22)
OENOMI=(4 . %WA4KWKAL -4, xWIKAL3~-4 . KWIXkALTKBLZ2+2 . XWA4KWKA2
—12,¥W3KAL2RA2-4  RWIREI2KA2+A, KWKALZKBLIZXKAZ+2 c KWXAL IXKALRAZ
12, KWRBRIZKBLHAZ-4  RWIKALRKAZ22+A . RWKALZKAZ2+4  HWRALIRBI2KAZ2
— 4, KWIRKAIRBIZ2+4 o kWKALIKEZ244 . KWURKALXBLI2%XE22 )
DENOM1=(DENOMRAXK2)+ (DENDMIXX2)
ANUMAR=(WXALIZ2XA2Z+WRALIZ2XBE22~1  KWRKAZ2XRB12-1 . X
WRLIZXR22)
ANUMATI=(W2KA1XAZ2HW2KA1XRBIZ)
ANUMBR= (2, XWHXAL1KAZ2XEB1+2 . kWAl KE12KRB22)
ANUMBI=(W2XAZ2XBLHHIXBLRR22)
AMUM=(HNUM1XHNUMZ)

CALCULATE FARTIAL OF AFFROX FUNCTION WITH RESFECT TD Al/AZ2
REAL FART
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AFXM(I) =2 X ( (ANUMARXIDENOMR ) + (ANUMAIXDENOMI ) )
JOENOML
IMAGINARY FART

APXM{I+18)=2,.%( (ANUMAIXDENOMR) ~ (ANUMARXDENOMI ) )
JOENOML

CALCULATE FARTIAL OF APFROX FUNCTION WITH RESFECT TO EB1/BR2
REaAL FART

AFPXM(I+36) =2, % (ANUMBRXDENCMR ) + ( ANUMBIXDENOMI) )
/DENOML

IMAGINARY FART

APXMII+54)=2. R ( (ANUMBIXDENOMR ) - (ANUMBR#AOENOMI 5 )
ZUENOM1

CALCULATE ERROR VECTOR EETWEEN AFFROX & DESIREL FUNCTIONS
ASSIGN REDUNDANT FARTS OF FUNCTIONS TO DUMMY VARIAELES

ADENR=(WA4-1. ¥W2¥A22-1 . ¥W2KB22~4 . XW2 KA1 XAZ

~1 . KW2XA124+A12%A22HA12KR22 -1 + ¥W2XR12+A22%RI2+R12%XB22)
ADENT=(-2, %kW3XA2-2 . kW3XAL1+2 . KWkAL1KAZD

T2 KWKALKB2242 % WXALZIXA242 . XWKAZKEL12)
LDENOM2=(ADENRXX2)+(ALENT*%2)

CALCULATE REAL FART OF AFPFROX aND DESIREL FUNCTIONS AND
ERROR VECTOR BETWEEN THEM

IFCIWGT.?) GO TO 235
OTNFROID)=(—1.%TORK((SINCWXTA2, )2 ¥&k2) /(WXT/2.)
ATHNFR{I)={(-1.%ANUMXADENTI ) /DIENOM2
ERRORC(IY=DTNFR{I)-ATNFR(I)

GO TO 245

CALCULATE IMAGINARY FARTS OF ARBOVE FUNCTIONS AND VECTORS

CONTINUE
ODTNFROID)=(—-1 XTIXSINCWXT /2, )%COS(WXTA/2. 3/ (WXKT/2.)
ATNFR(I)=(-1 . %ANUMXADENR) /DHENOM2
ERRORCI)==1 . %(DTNFR(I)-ATNFR(I))

ERROR CONTAINS THE CONJUGATE OF THE ERRDR VECTOR
CONTINUE

IF{I.EQ.1.AND.M.GT.1) GO TO 250

GO TO 273
CONTINUE

RSK(MI)=DUMMY1

LIUMMY1=0.
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THE RISK FUNCTION IS EQUAL TO THE SUM OF THE SQUARES OF
THE ELEMENTS OF THE ERROR VECTORs I.E. THE ERROR VECTOR
TIMES ITS CONJUGATE

CONTIMNUE
DUMMY1=DUMMY 1+ (ERROR(I)X%X2)
IF(I.NE.9) GO TO 300

DUE TO SYMMETRY» THE FARTIALS WITH RESFECT TO A2&E2 CAN
BRE FOUND USING THE SAME EQUATIONS USED FOR ALl&Ri» RY
SWAFFING THE VALUES OF Al AND EB1 WITH A2 AND B2

SWAF Al WITH A2

C=A1
U=A2
Al=D
AZ=C

SWAF EB1 WITH R2
E=E1
F=E2
R1=F
E2=E

RECALCULATE REDUNDANT FORTIONS OF EQUATIONS
USING A28&BZ INSTEAD OF AliEl

© AL2=AlXxZ
Al3=A12%A1
B12=R1X%%2
E13=E12%Ek1
AZ2=A2%%2
A23=A22X%AZ2
BR22=R2%%2
BR23=R22X%ER2
CONTINUE

SWAF BACK FARAMETERS

MM DD
[ T T T o6 T I
W imm i D>
mMTR SR

CALCULATE THE FARAMETER CHANGEs DELR(I)
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REAL PART OF CHANGE

o 500 I=1,9
DELR(1)=DELR(ID+RX ( (APXM{I)XERROR(I) )~
(APXM(I+1B8)XERRORC(I+9) )
DELR(Z2)=DELR{2)+RX({AFXM{I+9)XERROR(I)) -
(APXM(I+27 3XERROR{(I+9) )
DELR(3)=LELR(I)+K¥ ( (AFXM{(I+356 ) ¥kERRORC(I ) ) -
(APXM(I+54)XERROR(I+9) )
DELRC4)=DELR(4)+K¥ ( (APXM(I+45)XERRDOR(I) ) -
(AFXM{I+63)XERROR(I+9)))

IMAGINARY FART OF CHANGE

DELI(D)=DELI(1)+R¥X{CAFXM(I)XERROR{I+F) I+ {APXM{I+18)%
ERROR(I)))
DELIC2)=0OELI(2}+RX((AFPXM{I+9)IXERROR{I+9))+
(APXMII+27)XERRORCI) ) )
DELICI)=DELI(3)+RX((AFPXM(I+34IXERROR(I+%) )+
(AFXMII+54)XERROR(TI ) )
DELICA)=DELI(4)+KX((AFPXM(I+45)XERRORC(I+9) 0+
(AFXM{I+63)XERRORCI Y )
CONTINUE

CALCULATE NEW FARAMETERS

Al=Al+L0ELR (1)
A2=A2+DELR(2)
Bl=R1+DELR(3)
B2=R2+0ELR(4)
IF(H.EQ.200) GO TO 400
M=Mt+1

Do 550 I=1-4

CONTINUE

G TO 200

USING NEW PARAMETERS» COMPARE CONTINUCOUSLY DESIRED AND
AFFROXIMATING TRANSFER FUNCTIONS

CONTINUE

u=0 +*

AL2=A1%%2

ARZ=A2%K2

B12=RB1xx2

R22=R2I%XK2
HNUM1=(A12+R12)
HNUMZ=(A22+R22)
ANUM=HNUM1XHNUMZ
TYFE * RISK="yRSK{M)
TYFE "Al="sAly"R1="sRB1,"A2="2A2y"R3=",R2
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ng 700 I=1,900

W=W+(3.1415)/130.

W2=Wx%x2

W3=W2%W

WaA=W3%W

ADENR=(W4-1 . XW2KA22-1 , XKW2XB22-4 . XW2KALKAZ-1 . XW2XA12

1 +AL2XA22+A12%RB22-1 . XW2%XkEB12+A22%EB12+B1 2%R22)

ADENI=(-2. XW3kA2-2, KW3IXA1+2 . KWKALXAZ2+2 . kKWXALXKR22

1 +2.kWXALZ2XAZH2. XWXAZXEB12)

DENOM2=(ADENR*%2)+ (ADENIXX2)
ATNFRR=(~1 . XANUMXALENI ) /DENOM2

ODTNFRR=(-1 . XT)RC(SINCWXT/2 ) IXKX2) /(WKTA/2.)
ATNFRI=(~1.XANUMXADENR) /LDENOM2
DTNFRI=(-1.X%T)KSINC(WAT/2.3XCOS(WXT/2,) /A (WXT/2.4)
CATNFR{ID)=SQRT({ATNFRR¥¥2)+(ATNFRI*X2) )
COTNFR(ID=SQRT{(OTNFRRXX2)+(OTNFRIX%2) 3
CATNFRF(I)=ATAN(ATNFRI/ATNFRR)
COTNFRP(IJ=ATANCOTNFRI/OTNFRR )

ATNFRR=0.

DTNFRR=0.

ATNFRI=0.

ODTNFRI=0.

CONTINUE

STORE DATA ON DISK

CALL
CALL
CaLL
CALL
CALL
CalL
CALL
CALL
CALL
cal.L
calLL
CALL
CAal.L
Call
CALL
STOF
END

JOFEN(Os3s2505,3600 "AFPFROXIMATIONT")
WRITR(QOsO»CATNFRs1+IERRO)
CLOSE( (O IERRO)

IOFEN(1¢3,250:3600y "DESIREL?")
WRITR(1s0sCOTNHFRs1sIERR1)
CLOSE(1yIERR1D

IOFPEN(2s39y2y0sMk4y "RISK?T®)
WRITR{(2s0sRSK»1sIERR2)
CLOSE(2yIERRZ)

IOFEN(3» 3225038600 "AFFROX FHASET")
WRITR(3s0sCATNFRFs1»IERR3)
CLOSE(3sIERR3)
IOFEN(3»3v2+0573600+*UBESIRELD FHASET®)
WRITR(3s0yCUTNFRF+1+IERR3)
CLOSE(3:IERR3)>
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ABSTRACT

This report considers the development of methods for designing a
realizable Minimum Shift Keying (MSK) transmitter filter, by application
of the method of steepest descent, Two realizable configurations are
analyzed, It is determined how closely each configuration approximates
the equivalent low-pass response of an ideal MSK filter. Results are
tabulated and responses of interest are graphed. Listings of computer

programs developed for the analysis are included.



