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Abstract

This thesis proposes an automated crack detection and classification algorithm to de-

tect durability cracking (“D”-cracking) in pavement by using image processing and pattern

recognition techniques. For the Departments of Transportation across the country, efficient

and effective crack detection is vital to maintaining quality roadways. Manual inspection

of roadways is tedious and cumbersome. Previous research has focus on distinct transverse

and longitudinal cracks. However, “D”-cracking presents a unique challenge since the cracks

are fine and have a distinctive shape surrounding the intersection of the transverse and lon-

gitudinal joints. This thesis presents an automated crack detection and classification system

using several known image processing techniques.

The algorithm consists of four sections: 1) lighting correction, 2) subimage processing,

3) postprocessing and 4) classification. Some images contain uneven lighting, which are

corrected based on a model of the lighting system. The region of interest is identified by

locating the lateral joints. These regions are then divided into overlapping subimages, which

are then divided into cracked and noncracked pixels using thresholds on the residual error.

Postprocessing includes a row/column sum filter and morphological open operation to reduce

noise. Finally, metrics are calculated from the final crack map to classify each section as

cracked or noncracked using the Mahalanobis distance from the noncracked distribution.
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Chapter 1

Introduction

This chapter introduces the problem of durability cracking (“D”-cracking), the motivation

for this research, and the key contributions of this thesis.

1.1 Background

The Departments of Transportation (DOT) across the country are tasked with monitoring

the roadways for wear and distress. If untreated, pavement distress can cause major prob-

lems, which in turn affect ride quality as well as the structural integrity of the roadway.

DOTs have employed various strategies to monitor pavement conditions in a timely and

efficient manner. In the past, manual inspection was used to analyze sections of highway.

This tedious process required trained experts to walk or drive sections of highway. The data

collected was then entered into a computer log. Overall this process was time consuming

and difficult, allowing only a limited amount of highway to be analyzed. Many DOTs have

moved to using vehicles with imaging equipment to record pavement condition. A human

operator then analyzes these images by visual observation to determine if there is a defect.

One-hundred miles of highway can produce more than 50,000 images, making manual anal-

ysis time consuming and in many cases impractical. Automated and semi-automated image

processing methods have been used to assist in analyzing data in an efficient manner.

Pavement distresses cover a broad range of effects that can occur and affect ride quality

and structural integrity of the pavement. These include cracking, joint deficiencies, surface
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defects and miscellaneous distresses. The focus of this thesis is a specific type of crack known

as durability cracking, or “D”-cracking. The Federal Highway Administration defines these

type of phenomena in the Distress Identification Manual [6]. A detailed definition of “D”-

cracking is provided in chapter 2. The next section discusses the previous research done in

the area of crack detection and the motivation for this thesis.

1.2 Motivation for Research

To improve the detection process, automated detection systems are necessary for efficient

and effective management of pavement distress. Thus many researchers have focused on

developing image processing algorithms that require little to no human interaction. Most

of this research has been on longitudinal and transverse cracks.

For example, [9] focused specifically on an automated system to detect transverse and

longitudinal cracking using Principal Component Analysis to connect areas of dark pixels.

A similar thresholding technique was used in [12]. Here bilevel thresholding was used to

spatially connect very dark pixels with less dark but nearby pixels. To classify images, the

thresholded image was projected onto different axes. While this works well for large distinct

cracks, “D”-cracks can be only a few pixels wide and vary in angle.

Many transformations have also been used to detect longitudinal and transverse cracks.

Reference [4] uses a radon transformation to detect the number and location of cracks in an

images. However, from the test images shown it is unclear if this would work on smaller, less

distinct cracks. Reference [11] uses a continuous wavelet transform to segment the image

and create a binary image of the cracked pixels. This technique does not provide a method

of reducing noise and could miss small cracks with the amount of noise present.

After detection, many different methods of classification have been used. Neural net-

works have been used extensively for classification in crack detection [1] [10]. Reference

[10] used a neural network with 7 inputs and 4 outputs, and was able to detect transverse,

longitudinal, and fatigue cracks. Researchers at Utah State University also used a back-

2



propagation neural network for classification in [1]. After detecting cracks using fuzzy logic,

the neural network uses 18 input nodes and has 7 outputs, which correspond to 7 types of

cracking that can be detected. The test set of 42 images does not provide a large enough

sample for a reliable classifier. In general, the performance of a neural network is depen-

dent on the quality of the training data. If the test data deviates from the training data,

performance will be poor.

While these phenomena present similar challenges, “D”-cracking is a specialized problem

that consists of very fine cracks concentrated around the intersections of concrete pavement

joints. Very little research has been done to date on the detection and classification of

this type of cracking, so it is still an open problem. The next section describes the key

contributions of this thesis and introduces the algorithm used to solve the problem.

1.3 Key Contributions

In this thesis, we propose a novel image processing algorithm for automated detection of

“D”-cracking. The goal of the algorithm is to detect “D” type cracks in pavement images,

and ultimately classifying images into cracked and noncracked. The final output is a crack

map for visual inspection in analysis of pavement condition. The algorithm can be described

in four stages as shown in figure 1.1: 1) lighting correction, 2) crack detection, 3) postpro-

cessing, and 4) classification. Each image is processed through these stages individually.

Overall, the process will reduce the time spend combing through thousands of images of

pavement.

Below summarizes the key contribution of this thesis:

• The lighting correction outlined in chapter 3 is adaptable to various lighting effects

and conditions. It also corrects for lighting without destroying information.

• The use of the residual error as defined in section 4.3.1 is useful for identifying changes

in intensity and accounts for changes in background intensity.
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Figure 1.1: Flowchart of Proposed Algorithm

• In section 4.4, connectivity is used to eliminate isolated pixels.

• Noise from isolated dark pixels due to image artifacts are reduced using morphological

operations.

• Section 5.2 shows the metrics used to classify images as cracked or noncracked. The

Mahalanobis distance is used to determine the classification, and can also be used to

determine the severity of “D”-cracking.

• In large scale testing, the algorithm has a 67% probability for correct classification of

images as cracked and noncracked, and has a probability of 10.9% for missed cracks.

1.4 Organization

This thesis is organized as follows: Chapter 2 introduces the various cracking phenomena

including “D”-cracking and the measurement system; Chapter 3 describes methods used

4



to correct for lighting artifacts in an image; Chapter 4 presents the approach for crack

detection including identifying the region of interest; Chapter 5 describes the postprocess-

ing techniques used to reduce noise and classification of images; Chapter 6 is the results

from large scale testing; and finally Chapter 7 is the conclusion of the thesis including key

contributions and future research.
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Chapter 2

Pavement Distress

This chapter discusses the types of cracking that can occur in pavement, specifically “D”-

cracking and its characteristics, and the measurement system used to collect pavement

images. The types of pavement distresses that can occur vary with pavement type. In the

Federal Highway Administration’s Distress Identification Manual [6], they cover distresses

found in asphalt, jointed portland cement, and continuously reinforced concrete surfaces.

There are many different distress phenomena including: cracking, patching and potholes,

joint deficiencies, surface deformations, surface defects, and other miscellaneous defects. In

this thesis we are primarily concerned with cracking, specifically “D”-cracking.

2.1 Cracking Phenomena

While there are a range of pavement distresses that can be found, our focus is primarily

cracking. This section describes the types of cracks found in the three types of pavement:

asphalt, jointed portland cement and continuously reinforced concrete.

Longitudinal and transverse cracks are found in all three pavement types. Longitudinal

cracks are predominantly parallel to the pavement centerline, such as the one shown in

figure 2.1a [5]. These cracks are typically caused by improper construction techniques or a

poorly paved joint. Similar in characteristics to longitudinal cracks, transverse cracks run

perpendicular to the pavement centerline. A transverse crack is shown in figure 2.1b [7].

The cause of these cracks is shrinkage from temperature changes or hardening of the asphalt,
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which makes them much more common than longitudinal cracks. In both cases, however,

severity is determined by the width of the crack. Cracks are then categorized by the highest

severity present for at least 10 percent of the crack.

(a) Longitudinal Crack (b) Transverse Crack

Figure 2.1: Examples of Longitudinal and Transverse Cracks

Block cracks consist of networks of longitudinal and transverse cracks which create rect-

angular sections, which is caused by shrinking of pavement due to temperature changes.

Here severity is measured by the width of the crack as well as by the amount of secondary

cracking surrounding each transverse/longitudinal crack. Figure 2.2 shows an example of

block cracking in asphalt [5].

Figure 2.2: Example of Block Cracking

Another common type of crack is fatigue cracking. Since these cracks form a pattern

resembling alligator hide, these cracks are also referred to as alligator cracks. Fatigue cracks

are generally located along the wheel path where heavy loads are repeatedly impacting the

7



surface. The impacts can cause a weakening of the support structure beneath the pavement,

which in turn causes the surface to deteriorate. They can also form as secondary cracks

around longitudinal/transverse cracks. An example is shown in figure 2.3.

Figure 2.3: Example of Fatigue Cracking

In jointed portland cement concrete, corner breaks occur when a crack intersects both

the transverse and longitudinal joints at approximately a 45 degree angle and separates the

corner of a slab shown in figure 2.4. This is usually due to poor load transfer across the

joint. Since “D”-cracking also occurs at the intersection of joints, this could pose difficulties

when trying to differentiate the two types. The main difference is that “D”-cracks consist

of multiple small, closely spaced cracks, whereas corner breaks are large single cracks. The

next section discusses “D”-cracking in further detail as it is the main focus of this thesis.

2.2 Durability Cracking

Durability cracking (“D”-cracking) is a difficult type of cracking to identify, especially in

the early stages. It begins as small crescent shaped cracks near the intersection of the

transverse and longitudinal joints. An example of a high severity case is shown in figure

2.5. “D”-cracking begins when moisture seeps into the aggregate particles of the concrete,

then repeated freezing and thawing of the pavement begins to cause structural damage. As

8



Figure 2.4: Example of a Corner Break

it progresses small cracks begin to form parallel to the transverse joint [2]. The severity is

determined by the number of cracks as well as how tightly spaced they are. This can be

seen in the low severity example in figure 2.6, where there are multiple cracks but they do

not propagate far out from the joint intersection. “D”-cracking is only found in concrete

pavements, and is more likely to occur in certain types of aggregates. Certain states are

particularly susceptible to “D”-cracking due to the types of aggregates that are available in

that area, as well as wet freeze-thaw cycles. Because of this, Kansas highways are particularly

prone to “D”-cracking.

The process of “D”-crack detection is complex due to the nature of these cracks. Since

“D”-cracking is specifically located at the joint intersection, processing can be limited to

the region immediately surrounding the longitudinal joints. To classify these cracks, several

criteria should be taken into consideration such as size, shape and location. The metrics

that were used to classify images are detailed in section 5.2. The next section discusses the

details of the measurement system used to identify these cracks.

2.3 Measurement System

Since the hairline cracks seen in “D”-cracking are so fine, the measurement system plays

a key role in the analysis since factors such as lighting and camera position can affect the

9



known to be susceptible to
this form of damage. Past
experience with a particu-
lar aggregate source is the
best indicator of future per-
formance. 

2. Test aggregates if a
record of past performance
isn’t available. Because
attempts to develop a spe-
cific test to identify aggre-
gates susceptible to D-
cracking have not been
completely successful (some
aggregates known to pro-
vide good performance
may be rejected), use the
standard test for freezing

and thawing, ASTM C
666.

3. Provide drainage
under the concrete. If the
aggregate isn’t saturated, it
can’t cause problems. But
don’t forget that providing
under-slab drainage won’t
prevent water from enter-
ing the concrete through
cracks and open joints.

4. Select a smaller
maximum size if an aggre-
gate is found to be suscep-
tible. Unfortunately, there
is no one-size-fits-all solu-
tion, so it may help to
blend in nonsusceptible

aggregates. Testing will be
required to determine the
appropriate maximum size
for each aggregate and the
blend ratio.
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Troubleshooting

D-cracking
A series of cracks roughly parallel to joints, edges, or trans-
verse and longitudinal cracks. They are typically found in
pavements or other flatwork. D-cracks curve around intersec-
tions of joints or other forms of cracking.

Problem

Po
rtl

an
d 

Ce
m

en
t A

ss
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tio

n

Causes

D-cracking is caused by
freezing and thawing

of concrete. However,
unlike typical freeze-thaw
damage, D-cracking results
from moisture expansion
within the aggregate parti-
cles rather than within the
paste.

D-cracking starts when
the aggregate particles
become saturated. In most
cases, the saturation begins
at the bottom of a slab or
pavement and works
upward. 

Significant damage
may occur in the interior of
the concrete before cracks
are seen on the surface. In
other cases, moisture enter-
ing the concrete through a
crack or joint may also be
involved, making surface
cracks appear earlier. 

Aggregates susceptible
to D-cracking typically
have the following
characteristics:

■ They are usually of
sedimentary origin.

■ They have a large
volume of very fine pores.
Though aggregate absorp-
tion plays a role, the pore-
size distribution of the
aggregate seems to be the
most important factor.
Absorption alone doesn’t
distinguish good from 
bad aggregate.

■ The aggregate maxi-
mum size is large. 

Prevention

Several steps can be taken
to prevent D-cracking:

1. Don’t use aggregates

Figure 2.5: Example of High Severity “D”-cracking

Figure 2.6: Example of Low Severity “D”-cracking

images collected. The artifacts that may be produced must be accounted for in image

preprocessing. This section briefly describes the vehicle used to collect pavement images.

The measurement system consists of several components contained within a vehicle de-

signed to be driven at highway speeds. KDOT owns such a vehicle made by International

10



Cybernetics Corporation (ICC), which was designed to record real-time high-resolution pave-

ment images in various lighting conditions and at speeds up to 70 mph. The components

of the system include: a pavement camera system, rack mounted computers, laser sensors,

pavement lighting systems, and a Global Positioning System (GPS). The pavement camera

system consists of a high-resolution Basler L103 line-scan cameras focused downward on the

road surface. These images are used in our analysis. To run the system, the computers use

a 3.0 GHz Pentium IV processors with Windows 2000. Also, pavement elevation data is

recorded by laser elevation sensors mounted on the front bumper. All the data is recorded

to removable hard drives so that it is easily accessible for further analysis. The lighting

system, which will be described in greater detail in section 3.1, consists of ten 150-watt

lamps mounted to the rear of the vehicle.

Figure 2.7: ICC Imaging Vehicle

2.4 Summary

This chapter described many of the types of crack phenomena that can be found in pave-

ments, from longitudinal and transverse cracks to “D”-cracking. Since the focus of this

11



thesis is the detection of “D”-cracking, how these cracks develop and can be detected was

described in detail. Also the measurement system was introduced. In the next chapter, the

lighting correction algorithm is presented.
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Chapter 3

Lighting Correction

Although the imaging system used by KDOT includes a lighting system that is intended to

prevent the effects of shadows and low ambient light, in certain situations it is not sufficient.

In this chapter, the lighting correction portion of the algorithm is explained. In addition

to ambient lighting, wear also affects the reflectivity of the pavement causing portions of

pavement to appear darker, as shown in figure 3.1. All of these differences in lighting make

it difficult to detect “D”-cracks. Since our goal is not only to detect cracks but also create

a crack map for visual inspection, our light correction must improve the appearance of the

image to the human eye.

3.1 Lighting System

As briefly described in section 2.3, the imaging vehicle lighting system consists of ten 150-

watt lamps. Six lamps are centered on the rear of the vehicle, equally spaced and focused

directly toward the pavement, with two on each side angled outward to help light the edges

of the pavement. The relative positions as measured from the center of the lamps are shown

in figure 3.2. Although the light is dispersed using lenses, the intensity peaks at the center

focal point of each lamp. In low light conditions this can create uneven lighting in images.

Several approaches were tried with mixed results as explained in the following section.
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Figure 3.1: Original image

3.2 Histogram Equalization

Uneven lighting has been a common problem in crack detection. For example, [12] used

histogram equalization to correct for uneven lighting. This approach is a well-known way

to increase image contrast. Histogram equalization works by mapping the intensities of a
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Figure 3.2: Relative light positions on imaging vehicle

grayscale image to a new distribution that is approximately uniform. By stretching the

histogram, the contrast of the image is increased making the details of the image more

visible. This is useful in many cases of unequal lighting since it works to equalize the

distribution of pixels.

However in the case of “D”-cracking, the cracks are extremely fine and the difference in

intensity is minimal. Histogram equalization can cause that information to be lost. Also it

may accentuate any lighting artifacts in the image such as bright areas as shown in figure

3.3. The next section describes the next approach that was tried using column sums to

detect trends in the lighting.

3.3 Column Average Scaling

Histogram equalization proved to be too global a transformation and did not respond well

to local lighting changes. Instead we wanted an approach that would adapt to the image

lighting. Since the lighting along the image columns is consistent, the average of the columns

can be used to detect trends in lighting.

After calculating the average values for each column, the mean of these values is calcu-
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Figure 3.3: Histogram equalization

lated. This mean is the desired average for each column and gains are calculated based on

the ratio between the global mean and the column mean as shown in equation 3.1, where

p(x, y) is the pixel value at (x,y), M is the number of columns and N is the number of rows

in the image. Each column is then multiplied by the corresponding gain, resulting in an

equalized image. An example is shown in figure 3.4.

16



Gy =

1
M

1
N

N∑
x

M∑
y

p(x, y)

1
N

N∑
x

p(x, y)

(3.1)

The resulting image looks much improved over the original image, but there are still a

few problems with this approach. First, if the overall image is dark then the resulting image

may be too dark to distinguish cracks effectively. Also local changes in column intensity,

such as that due to the longitudinal joint, are essentially lost. This can be seen in figure

3.5. Instead of scaling to the average of the columns, an empirically determined value could

be used so that all resulting images would have approximately the same level of brightness,

however this would not resolve the second issue. Instead, we propose an algorithm based

on a model of the lighting system as described in the following section.

3.4 Model-based Lighting Correction

Due to the nature of the system as described previously, there are peaks and valleys in

the intensity of the light being reflected by the pavement. By measuring and modeling

these intensities, a transformation could then be applied to equalize the intensities across

the image. This section describes the approaches used based on our model of the lighting

system.

3.4.1 Light System Model

As described in section 3.1, the lighting system is made up of multiple lamps at different

positions and angles. To model this system, we used three components: a single center lamp,

a single side lamp, and the overall lighting system. We measured the intensities by drawing

a line under the center of the lamps, then using a light meter to determine the intensity

at one inch intervals. To measure the single lamps, the others were blocked or turned off

and then the intensities measured. By combining these values along with their position, a
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Figure 3.4: Resulting image after column average scaling

representation closely matching that of the overall lighting system could be calculated.
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Figure 3.5: Column vs column average

3.4.2 Global Model Correction

After determining the global model as described previously, a set of gains could be calculated

to compensate for the peaks and valleys in intensities. The gain was calculated similarly to

the column gains in section 3.3, but the mean of the model is used instead of the mean of

the column averages. Since these gains are not dependent on the image, they can uniformly

be applied to any image.

A resulting image is shown in figure 3.6. Since the position of the lights in relation to

the lane can change, it was difficult to match the portion of the gains to be applied. This

caused some areas of the image to be brighter where higher gains than necessary were used.

3.4.3 Single Light Model Correction

In order to be more adaptive than the global model, the single light model was used alone.

A cosine function was used to create a model of the single light, which allowed more control-

lability to change the width of the light as needed. To determine which areas were too dark,

the column averages were again used. These averages were then separated into sections and

the mean of each section is calculated. The sections and their mean are shown in figure 3.7,
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Figure 3.6: Resulting image from global model correction
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where the column averages are in blue, the section boundaries are in red, and the section

means are in green.
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Figure 3.7: Column mean with section means

Each section‘s mean is compared to the maximum mean of the neighboring sections.

If the mean is lower than either of the neighbors, a light is added. This threshold was

empirically determined to be 7 percent. A light is essentially a set of gains that are applied

to a portion of the columns. As a light is added, it is scaled by the ratio of the section mean

and the neighbor in order to make it more adaptive to the change in lighting needed. The

resulting image can be seen in figure 3.8. This process is done iteratively until all of the

sections are within the threshold, or the maximum number of iterations is reached.

This approach allows us to get a more even appearance in the images while maintaining

local information. While the resulting image is not perfectly even, the appearance is enough

that it is visually easy to identify cracks.
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Figure 3.8: Final image after light correction

3.5 Summary

While the lighting system on the imaging vehicle helps prevent effects of low lighting, a

method for improving the lighting in some situations is necessary. Traditional approaches
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to light correction such as histogram equalization were unsuccessful in correcting for lighting

artifacts in pavement images. Other methods of column scaling and the global model-based

correction, while moderately effective, were not successful in every facet. However, the single

light model-based system presented here corrects for lighting artifacts while preserving local

cracking phenomena. This allows us to have effective crack detection, as described in the

next section.
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Chapter 4

Crack Detection

Cracks are defined by a set of pixels which are darker than the pixels in the surrounding

neighborhood. “D”-cracks are especially fine, usually only 2-3 pixels in width. As defined

in chapter 2, the cracks first appear most prominently surrounding the intersection of the

longitudinal and transverse joints.

4.1 Region of Interest

To avoid additional noise and reduce processing time, crack detection is done only on the

area surrounding the transverse joint. We identify the transverse joints as the minimums of

the row sums. The row sums of an image are the sum of the pixel values across the rows,

as shown below in figure 4.1. After identifying the center of the transverse joint, a one foot

area on each side of the joint is taken as the region of interest. The region is then processed

at the pixel level.

4.2 Artifact Identification

After identifying the region of interest around the transverse joint, the paint stripe and

longitudinal joints must be identified before further processing. If not, during the sub image

processing stage they can be identified as cracks, which can be not only visually distracting

but also cause improper classification.
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Figure 4.1: Row sums

We begin by limiting the search to the outer quarters of the image. First the paint stripe

is identified by looking across the image for consecutive pixels above the mean. After a stripe

is identified, the area to the left and right of the stripe is searched for a longitudinal joint.

This is done by calculating the column sums for each section then the mean is subtracted

and absolute value taken so that the dark joints appear as spikes. Then it searches from the

left and right to find the edges of the spike. The zero-mean column averages for an example

image section is shown in figure 4.2 with the threshold.

4.3 Subimage Processing

After identifying and removing the artifacts, processing the subimages for cracks can begin.

In order to identify cracked and noncracked pixels, we implemented multiple approaches.

Each region is divided into overlapping 64 x 64 pixel subimages for further processing.
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Figure 4.2: Column averages for image section with joint

4.3.1 Residual Error

Using the principle that cracks are darker than surrounding pixels, the first technique was

a simple thresholding technique using the residual error. On each subimage, the residual

error is given by:

r = (AA+ − I) ∗ b A =



0 0 1
0 1 1
0 2 1

...
0 N − 1 1
1 0 1
1 1 1

...
1 N − 1 1
2 0 1

...
N − 1 N − 1 1



(4.1)

where A is a matrix of the subimage pixels indices, A+ is its pseudoinverse, and b is the

subimage pixel intensity values that has been reshaped into a vector. The original subimage

and the resulting residual error is shown in figure 4.3b. In the residual, cracks are shown as

brighter pixels.

We determine the threshold by creating the histogram and calculating the value for
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Figure 4.3: Subimage of a crack

which a percentage of the subimage is above the threshold. This threshold is then used to

separate the subimage into cracked and noncracked pixels as shown in figure 4.4. Denoting

the pixel value at location (x, y) in the image as p(x, y):

p(x, y) =

{
1 cracked if r(x, y) ≥ T
0 noncracked if r(x, y) < T

(4.2)

where T is the threshold as determined by the histogram. The threshold is changed de-

pending on the location within the section. Since “D”-cracking appears more heavily at

the intersection of the joints, the threshold is lower in these areas so that more pixels are

detected as cracked. The center area has a higher threshold so that less noise is detected.

Figure 4.4: Subimage After Thresholding

This method is simple yet effective at identifying possible cracked pixels. Using the

residual highlights the differences between background pixels and those which are cracks.

For comparison, probabilistic relaxation was implemented as described in the next section.
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4.3.2 Probabilistic Relaxation

Another approach to detect cracked pixels is probabilistic relaxation. Probabilistic relax-

ation is a proven iterative technique used to identify features such as ridges or edges in

images [8]. We set up the probabilities in 4 directions as labeled in figure 4.5, as well as a

probability of no crack.

1 

2 

3 

4 

Figure 4.5: Probabilistic setup

After creating subimages as described previously, a negative image is produced so that

higher pixel values correspond to cracks. To determine the initial probabilities, zero-mean

spatial filters are applied to the images for each crack direction, then two normalizing func-

tions, shown in equations 4.3 and 4.4, are applied to the output of the filters. The output

from each function is then multiplied together. Pc is the probability and σc is the standard

deviation corresponding to each direction of cracks. The probability of no cracking is nor-

malized by the g function alone. The output of these function are normalized to probabilities

by dividing each pixel by the sum of the probabilities, so that for each pixel the sum of the

probabilities is 1. The normalized initial probabilities for a subimage are displayed in figure

4.6 below.

f =
1

1 + ePc/σc
(4.3)
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g = e
P2
c
a , where a =

σ2
c

ln(0.5)
(4.4)

Original Image P(No Crack) P(1)

P(2) P(3) P(4)

Figure 4.6: Initial probabilities

In every iteration, evidence is calculated for each pixel by the probabilities of the neigh-

boring pixels then normalized to be between 0 and 2. A value of 2 would indicate strong

evidence, whereas a value of 0 would indicate opposing evidence. Any evidence over 1 would

increase the probability for that pixel, and evidence of less than 1 decreases that probability.

The probabilities are then multiplied by the evidence and normalized. Figure 4.7 shows the

resulting probabilities in each iteration. Using these probabilities, the algorithm iterates

until the change in value is below a given threshold or the maximum number of iterations

is reached.

After the iterations are complete, the final probabilities are used to determine which

pixels are cracked. If a pixel has a probability in any direction (1, 2, 3, or 4) above 50%, it

is considered cracked. An example of a final crack map for a subimage is shown below in

figure 4.8, with the cracked pixels shown in blue.

While this method was effective on some images, it was not repeatable in all cases. This

is due to the different nature of the cracks, which can vary in size and shape. The filter
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Figure 4.7: Probabilities after five iterations

Figure 4.8: Final crack map for subimage

setup is greatly dependent on being able to identify characteristics which would be common

to all the images. Figure 4.9 shows one such image where the cracks were not identified by

this approach. Instead the residual thresholding was used along with connectivity.
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Figure 4.9: Probabilistic relaxation of subimage
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4.4 Connectivity

At the subimage level, further processing is needed to help eliminate noise from other isolated

dark pixels. Connectivity of pixels is an often used image processing technique which groups

pixels into sets based on their proximity. For example, in 8-connected sets any neighboring

cracked pixel in a 3 x 3 neighborhood is considered to be in the set. Figure 4.10 shows

the neighborhood used to determine 20-connectivity, which was used to determine our sets

of cracked pixels at the joint intersections. Just as the threshold was adjusted based on

location in section 4.3.1, the type of connectivity used was also changed. In the center of

the pavement lane, 8-connectivity was used to reduce the amount of noise detected.

0	   1	   1	   1	   0	  

1	   1	   1	   1	   1	  

1	   1	   1	   1	   1	  

1	   1	   1	   1	   1	  

0	   1	   1	   1	   0	  

Figure 4.10: 20-Connectivity

Sets can range in size from 1 pixel to the size of the subimage. These sets are thresh-

olded to be larger than a percentage of the subimage size. The threshold was empirically

determined to be 0.5% of the subimage size, which for a 64 x 64 pixel subimage is 20 pixels.

Figure 4.11: Subimage after connectivity applied
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4.5 Summary

Using the image processing techniques above, the crack detection algorithm is able to iden-

tify candidate cracks with accuracy. The residual error proved to be more effective than

probabilistic relaxation at identifying all possible types of cracks. Connectivity was useful

for identifying and removing isolated dark pixels. Finally, the overlapping subimages are

combined using a logical “or” operation to create a crack map for the region of interest. If

a pixel in a subimage is determined to be cracked, it is considered cracked for the region

as well. In the next chapter, we discuss morphological methods used in postprocessing to

reduce noise and classification to identify those regions which demonstrate “D”-cracking.
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Chapter 5

Postprocessing and Classification

After crack detection has been performed, many artifacts may remain in the image as isolated

cracked pixels. In an effort to reduce this noise, morphological operations were used to clean

up the crack maps. Next the classification algorithm attempts to differentiate those images

which exhibit “D”-cracking using several metrics that indicate the type and severity of

cracking. The following section describes the postprocessing done before classification is

performed.

5.1 Postprocessing

The pavement images contain many artifacts, such as tinning, that may be picked up during

crack detection. To remove these and any other noise that may have been detected, we used

2 approaches: row/column sums and morphological methods. The row/column sums are a

simple sum of the crack map across the row or column. If any row or column is cracked

for over two-thirds of the subimage length, it is determined to be an image artifact and the

entire row or column is set to noncracked.

Morphological methods, on the other hand, are useful for detecting phenomena which

occur in a specific pattern. This pattern is a simple, pre-defined shape called a structure

element, such as defined in figure 5.1. Two types of operations can be performed: erosion

and dilation. Erosion accentuates gaps whereas dilation fills them. Also, these operations

can be combined for an open or close operation. In the open operation, for example, erosion
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is executed first followed by dilation, which causes anything smaller than the structuring

element to disappear and anything larger to be smoothed. A close is the inverse operation:

dilation followed by erosion. Here an open operation was applied in order to allow larger

cracks to remain, while smaller isolated cracks were excluded.
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Figure 5.1: Structure Elements

Since “D”-cracking tends to appear on the diagonal around the intersection of the trans-

verse and longitudinal joints, line structure elements at various angles were used. We de-

termined the appropriate angles for this application were 20, 45, and 70 degrees (see figure

5.1), as well as their negatives, and a length of 9 pixels.

The resulting image from each structure element is combined with the other resultant

images by a logical “or” operation. Therefore any cracked pixel from any of the structure

elements will be considered cracked in the final crack map. Figure 5.2 is the resulting crack

map.

5.2 Classification

In general, classifiers are used to make distinctions between one or more categories based

on statistics gathered from the data. After a region is processed, the crack map is used to

classify it as cracked or noncracked. Since “D”-cracking is primarily at the intersection of

the joints, we analyzed the inner corner sections to calculate our metrics as shown in red in
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Figure 5.2: Crack Map After Postprocessing

figure 5.3. The metrics for classification are calculated from these quadrants.

Figure 5.3: Quadrants of region to be analyzed

Multiple criteria were devised in order to measure the type and severity of cracking for

a given image: number of cracks along a 45o line, percentage of quadrant cracked, angles of

the crack segments, and average size of a crack in pixels.

The number of cracks along a 45o line from the joint intersection is calculated by de-

termine the sets of cracked pixels using 8-connectivity. Then the number of unique cracks

intersecting with the line is determined. For example, in figure 5.4 the line shown would

intersect 2 cracks. This idea comes from the fact that more severe “D”-cracking exhibits

multiple closely spaced cracks in this area. Next, percentage of region cracked is calculated

simply as the sum of the cracked pixels divided by the total number of pixels in the region.

The angles of the crack segments are analyzed by determining the angle of any crack larger

than 40 pixels as well as the angle between the center of the crack and the joint intersection.

The difference between these angles for each crack is found and differences less than 15

degrees are counted. This is due to the fact that the angles should have similar values, as
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shown in figure 5.5, due to the shape of “D”-cracks. Finally, average size of a crack in pixels

was calculated from the 8-connected sets by finding the mean of the size of each set. The

histograms for cracked and noncracked images for each metric is in figure 5.6. As can be

seen in figures 5.6a and 5.6c, there is separation between the means but the variances are

such that there is too much overlap to build an effective classifier. The metrics of percent

cracked and average crack size, however, have much more separation between the means.

Figure 5.4: Cracks along 45o line

Figure 5.5: Angles of crack segments

36



0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

Number of cracks intersected by 45o line

 

 
Non−cracked
Cracked

(a) Number of cracks on 45o line

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

1

2

3

4

5

6

7

8

Percent of Cracked Pixels

 

 
Non−cracked
Cracked

(b) Percent cracked

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

Angles of crack segments

 

 
Non−cracked
Cracked

(c) Angles of crack segments

20 40 60 80 100 120
0

1

2

3

4

Average Size of Crack

 

 
Non−cracked
Cracked

(d) Average crack size

Figure 5.6: Metric histograms

To design the classifier, a set of 10 images were visually analyzed and the four quadrants

of each region were determined to be cracked or noncracked. This resulted in 48 data

points which comprised the training set. After calculating the four metrics for this set, the

distribution for each metric was found to see if there was a correlation between the metric

and the cracked/noncracked classification. The percentage of cracked pixels and the average

crack set size had the best correlation. Figure 5.7 shows a scatter plot of these metrics with

cracked points in red and noncracked in green.
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Figure 5.7: Percent cracked vs. average set size

The relationship between the 2 metrics can easily be seen in figure 5.7. The noncracked

quadrants clustered around the lower left, but the cracked quadrants had a wider distribution

as both metrics increase. To classify, the squared Mahalanobis distance in equation 5.1 was

used, which estimates the distance a point is from the mean based on its distribution [3]. This

distance was calculated from the noncracked distribution, then compared to a threshold. If

the distance was greater than the threshold, which was empirically determined to be 4, the

quadrant was classified as cracked.

D2 = (~x− ~µ)TΣ−1(~x− ~µ) (5.1)

If any quadrant was determined to be cracked, the entire region was classified as cracked.

Overall a conservative classifier was desired so that any possible cracks could be reviewed

visually by the user. Also, this approach could easily be extended to detect the severity

of cracking. Figure 5.8 demonstrates the thresholds of 4 for mild cracking (green), 10 for

moderate cracking (yellow), and 30 for severe cracking (red).
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Figure 5.8: Thresholds for classification

5.3 Summary

This chapter described the postprocessing techniques used in order to reduce noise, as well

as the design of the classifier. By combining a simple row/column sum technique, the error

from any portions of joints, tining, or other artifacts were reduced. Morphological operations

also aid in reducing noise from artifacts, especially isolated pixels. By analyzing a set of

images with both cracked and noncracked quadrants, we were able to design a classifier

using the Mahalanobis distance from the noncracked set. In the next chapter, results from

large scale testing are discussed.
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Chapter 6

Visualization and Results

After performing postprocessing, the final crack map needs to be displayed to the user in

a way that will convey the information about the detected cracks. One of the goals of this

thesis was to provide the user with a map detailing any possible cracks so that it could be

reviewed to improve the classification of “D”-cracking. The visualization section describes

the method of displaying the crack information to the user. The final section discusses the

large-scale testing and the statistics about the performance of the classifier.

6.1 Visualization

Each image contains up to three joints, which are displayed independently. The light cor-

rected image is displayed to provide the user with a frame of reference. Then the cracked

pixels are overlaid on the image in blue, which was best for highlighting the cracks without

distracting the user from the image.

An example of a final crack map displayed with the image after lighting correction is

shown below in figure 6.1. These maps assist the user in quickly identifying areas of possible

cracking. If the region is determined to be cracked by the classifier described in section 5.2,

the region image is displayed on the screen. Also, the crack maps can be saved to an output

file for future reference.
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Figure 6.1: Final Crack Map

6.2 Large-scale Testing

The algorithm was implemented using MATLAB 2011a. In order to determine the perfor-

mance, a set of 155 images were analyzed. Images were split into regions surrounding the

transverse joint as described in section 4.1, resulting in 230 regions to be classified. These

regions were visually determined to be either cracked or noncracked, then compared with the

output of the algorithm classifier. Table 6.1 below shows the number of regions that were

classified visually and by the algorithm. The performance is summarized by the statistics

listed in table 6.2.

Table 6.1: Classification of test set

Visual	  

Cracked	   Noncracked	  

A
lg
or
ith

m
	   Cr
ac
ke
d	  

73	   59	  

N
on

cr
ac
ke
d	  

25	   73	  

To see how the threshold affected classifier performance, results were compiled using
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Table 6.2: Performance Statistics

Category Percent
Correctly classified 63.5%

False alarm 25.7%
Missed cracks 10.9%

thresholds between one and 40. Figure 6.2 shows the resulting curves for the probability of

false alarm and missed cracks. Depending on the desired performance of the system, the

threshold can be adjusted to give the appropriate results. For example, if a low probability

of missed cracks is desired, a low threshold should be used.
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Figure 6.2: Probability of missed crack and false alarm for varying thresholds
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Overall the performance is adequate for the current system. The percentage of cracks

that are missed is relatively low, and a majority of images are correctly classified. The false

alarm percentage is fairly high, but this is desirable since it is preferable for the user to

review an image rather than miss possible cracks.

6.3 Summary

In this chapter, we described the method of visualization of the cracked images so that the

information could be quickly gleaned from the image without distracting from the original

image. Finally, large-scale testing of the classifier showed satisfactory performance of our

classification algorithm. Next, the conclusion of this thesis summarizes the key contributions

and possibilities for future work.
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Chapter 7

Conclusion

Previously, we discussed the visualization of the algorithm output as well as the system

performance. In this chapter, the key contributions of this thesis are summarized and

possibilities for future work are identified.

7.1 Summary of Key Contributions

This thesis described an automated process capable of detecting and classifying “D”-cracking

in pavement images, which requires minimal human interaction. Lighting correction enables

improved detection of the fine cracks that we are interested in, as well as assist the user when

looking at the final crack map. When detecting the cracks, the residual error worked well

to threshold the subimages, and connectivity provided a way to detect continuous areas of

cracking. In postprocessing, the row/column filter and morphological operation eliminated

noise from image artifacts and isolated dark pixels.

Images are then classified based on the percentage of cracked pixels and the average

size of a crack. Classification is based on the Mahalanobis distance from the mean of the

non-cracked images from the training set. The cracked images are then displayed to the

user for visual inspection. The results from the large-scale testing are encouraging, in that

there is a low probability that a cracked image will be missed.
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7.2 Future Work

The following topics are possible areas that could be investigated or expanded upon in future

research.

• Preprocessing image. A filter could be devised to reduce the effects of some pavement

artifacts such as tining. Also some effects from JPEG image compression could be

reduced by using a filter. These filters could be applied before the crack detection,

and would help reduce noise from those effects.

• Refine classification metrics. The metrics presented in this thesis provided an adequate

means of classification, but other metrics could be found to better define the types of

cracks. These could focus on the shape and orientation of the cracks.

• Conversion to C/C++ platform. In comparison to MATLAB, C/C++ could provide

reductions in computational time. It would also enable greater portability across

different platforms.
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