/;RIVACY AND SECURITY
OF
AN INTELLIGENT OFFICE FO

by
- KUM-YU ENID LEE

B.A., University of Texas at Austin, 1972

A MASTER‘S REPORT
submitted in partial fulfillment of the
requirem;nts for the degree
MASTER BF‘SCIENﬂz
Department of Computer Science
KANSAS STATE UNIVERSITY

Manhattan, Kansas
1986

Approved by:

o7

Major Pr

§sor

D

LB E All202 kL3708
R |
\ABi
1433 CONTENTS
Lo

1. Chapter 1: IntroductioN.c.cececvesscssnccccscnceee 2
1.1 Form-Based Office Automation Systems......... 3
1.2 Abstract Data TyDPeS...cvececncseccscsasssnnes 2
1.3 Form Definition/Manipulation Languages....... 6
1.4 Office ACLivitiom.u.assaliesissvaweisssusimns 7
1.5 Intelligent Data Object....civeveveravnnnrens 8
1.6 Security and Privacy .c.ceeececsssrosnsnresse 11
1.6.1 Security - Access Rights.......cc00e0. 13
1.6.2 Security - Abstract Data Type..... veee 14

1.6.3 Security - Authentication and
Identification. . ceeveerenvensnssvonens 13
1.6.4 Security - Authorization Rules........ 15
1.6.5 Security - Integrity Constraints...... 16
1.6.6 Security - Data Encryption............ 16
.7 Statement of Problems....ceseevesesssncnanees 17
1aB OVEPVIOW onanm ¢ i vnais v § ERTES & § SWREWN 4 4 aunmeed 18

2. Chapter 2: Definition of an IOF....ceeecracarssese 19

3. Chapter 3: Security System of an IOF -
Requirements......ceovvererienennnnns omn u v sowaogas v B0
3.1 Requirements - User Prof:le “ormmmves s waamas s S
3.2 Requirements - Time Stamplng................. 26
3.3 Requirements - Data Encryption....ceecieeeees 29

4, Chapter 4: Security System of an IOF - Design..... 31
4.1 Design - User Profile....ceveeccreveraiaennas 31
4-2 DESign—Time Stamp...........'..--....-..... 33
4.3 Design - Data Encryption...ceceeviesscsnaness 37

5. Chapter 5: Implementation of the Security System

0f @ TOF. s ruwvwnsnamcnasann ciwimis: & v AT % 8 WAt « wi DT
5.1 IntroductioNi.eceesesereosassannossesnssenses 39
5.2 Implementation of User Profile........... cees 41
5.2.1 IntroductioN.eicsssessscsnnescsnansars &l
5.2.2 USER.pParMS..sseveccacas I IR .
5.2:3 VSER.AisEaq s suvmavs i wimmses s o cess 41
5.2.4 USER.inits..... TN
5.3 Implementation of Time Stamp T
5.3.1 Introduction.....ceceererenss sivemmnssn B
5.3.2 Stamp.edit......... 5 8 & R 8 8 SR 8 . b4
5.3.3 Stamp.proC.cssoessvasavence sssawwressy OO
5.4 Implementation of Data Encryptxon............ 48
5.4.1 IntroductioB.isi.isireecnnnsnnerearens oo 48
5.4.2 Encryple.cicrescvonss teevansaaavaronsss 48
5.4,3 Decrypteiscecverissisensane Qisav e ee. 48

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

5-5 SumarYQDOOooocvu-ootootocol.o.olo-n.to-ooito

Chapter 6: Conclusion and Extensions......sesnvase

6.1 ConclusioN...ievavecsnanas PR F P
6.2 Extensions..-.‘.I..l‘.‘...‘.l.'...IIQ.ID

*e e s e

e« s ss e

Bibliography-.--u.ooot-‘oooonoc..-oa-ioc--o-na-'--

Appendix 1 - Source Code Listings......ceee..

Appendix 2 - Source Code Structure Chart...

- ii -

LI)

49
52
54
36
65
20

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11,

LIST OF FIGURES

The Employment Verification Procedure in
'IDO[mcbss].l.l‘!.l...l‘O.ll'.#ll'..b....'

The modified ICN for the Employment
Verification Procedures in IOF....c.cc..

Files Executed by User Profile of a

Node-o-o|O---0-0-0--.-:-----.-0--.--..u-

Executing transactions with time

SLBMPB: ceave evissnmns ssawanive b svwbese s

Data Encryption....icvvienvcrnrnescnnses

The Directory Layout of an IOF Security

System...... W ST B N e ST ¢ § ST & RE

Files/Command Executed by User Profile of

a Node...oewvuoo 3 wmmane: v w8 8 wisnesene § § @ woeenmses o @ e

UNIX System Command/File Called by

Stamp.edit/Stamp.pProc. ccceerccesasranecsnss

Structure Layout of a Stamp.ctl Record

Used in Stamp.edit......... wais 8 8 B B WEEE & 8 5

Structure Layout of a Stamp.ctl Record
Used by Stamp.procC.icieecesess cesrsranne

UNIX System Command Executed by Encrypt

»a

and Decrypt..ccovreee.. crresneseresaavaas

- iii -

22

24

32

35
38

40

43

45

46

47

49

"MISSING PAGE

1. Chapter 1: Introduction

Currently, a great deal of interest is directed towards
automating of the office environment [fikes81]. [Zis78]
defines office automation as "... the application of
computer technology, communication technology, system
science and behavioral science to the vast majority of
less structured office functions ... ". The functions of
an office involve text editing, filing, organization,
copying, transforming, analyzing, storing and transmission
of text [ell80, lad80]. These functions can be automated
to reduce clerical work locad and thereby reducing total

expenditure.

Office automation leads tc widespread use of electronic
equipments such as word processing systems, communication
equipments, data processing systems, etc. For the most
part, these systems are not integrated and theresby leading
to inefficiency. The challenge of an office information
system is to integrate the above components in order to
reduce the complexity of the wusers” interface to the
system, control the flow of information and enchance the
overall efficiency of the office [eli80]. Electronic
forms, to be discussed later, enable this kind of

integration. As a result of integration, different groups

of users are accessing information from the same office
information system. To protect the system against
unauthorized alteration or destruction, a security system

must be established.

The design of a central "security manager" to protect an
IOF against wunauthorized alteration or destructiom is
presented. Three different security measures are
implemented. The first is a user profile to specify the
data objects that the user is asuthorized to access and the
operations the user is authorized to perform on those
objects. The second is a time stamp ordering technique to
specify when operations are allowed to be performed on the
the data stored %n IOF. Examples of allowable operations
are read, write, delete and insert. The technique also
sets the priority of IOF procedures. The third is an
encryption procedure to transform IOF into non readable
format. Thus, it helps to protect IOF during transmission

in the communication network.

1.1 Form-Based Office Automation Systems

The traditional paper form is a printed document with
spaces for insertion of required information. An

electronic form is similar to a paper form. It is the

computer analog of a paper form. Forms have been used as
the basis for the design of office automation systems (
e.g., OFFICETALK [el1l80], ODYSSEY [fikes81], OFS
[tsic80]). Form-based office automation systems have the

following advantages over other systems [geha82]:

(1) Forms permit logically related data to be treated as

an entity.

(2) Electronic forms are similar to paper forms as they

retain many properties of paper forms.

(3) Forms can be traced to determine the processing

state in an office procedure.

(4) Access rights can be automatically enforced for a

form.

(5) Automatically routing information can be designed to

associate with forms.

{(6) Forms allow easier transition from a manual office
environment based on paper forms to the automated

environment based on electronic forms.

(7) Paper copies of electronic forms can be generated

automatically upon request.

With the introduction of electronic forms, an office
automation system can be established whereby forms can be
communicated via messages with minimal manual

intervention.

1.2 Abstract Data Types

[Smith77a] and [smith77b] defined two kinds of data
abstraction. The £first 1is the aggregation in which a
relationship among objects is regarded as a high-level
object, with lower-level details suppressed. The second is
a generalization in which a set of similar objects is
regarded as a high-level object, with lower-level details

suppressed.

The main goal of data abstraction is to allow users to
focus on the relevant information and ignore the
irrelevant details. Through the use of abstract data
types, the user can achieve modularity, increased

maintainability and higher prograﬁ quality[lis74].

An abstract data type defines a set of abstract objects
and specifies the operations available for use with those
objects [1is74]. Knowledge of where the data are stored,
which system environments are being used, where the

security constraints are located, estc., should be hidden

from the wuser. Using this concept, the user can be more
assured that security constraints will not be tampered
with. Using the concept of an abstract data type, one can

define office forms.

1.3 Form Definition/Manipulation Languages

Several form definition/manipulation languages exist in

research and in practical applications. Some of them are:
(1) oFs (Office Form System) [tsic80]

(2) QBE/OBE (Query-By-Example/Office-Procedure By

Example) [zl081]

(3) ODIN (On Line Data Integrity System) [ferr82,

dipi83]
[Tsic82, ferr82, dipi83] discussed the following form
characteristics:
(1) fields - blank spaces found in forms for inserting
requested information.

(2) operations - e.g., modify, delete, insert and route.

(3) abstractions - forms are used as a tool for data

abstractions.

(4) access rights - control of the user’s authority to

insert, update, delete, create or add forms.

Among these characteristics, control of access rights and
restriction of types of operations for specific forms are
important security measures. Only personnel with the
proper access rights should be able to perform certain
operations on forms. Access rights must be determined
based upon the needs of the office, the data being

accessed and the operation being performed.

[TsicB2] suggests that workstations, not wusers, should
control access rights. For example, an entry station can
only fill out forms and a query station can only ask
queries about forms. A query stationm can not be used as an
entry station, thus providing security. On the contrary,
[geha82] advocates that users, not workstations, should
control access rights. Restriction of access rights by

workstations seems to be somewhat inflexible.

1.4 Office Activities

[Tsic81] described three types of office activities in OFS

(office Form System):

(1) desk activity - for specifying actions which are

triggered by specific conditions at the node;

(2) coordination activity - for providing form types and

conditions to initiate specific procedures;

(3) mail activity - for routing the mail automatically.

Currently, electronic mail contains primarily texts or
data structures. Items such as procedures and graphics may
also be included. [HoggB84] defines an "intelligent
message" which can be routed to multiple users and can
send responses back to the original sender. It is viewed
as an interactive program which permits a dialogue with

the recipient.

1.5 1Intelligent Data Object

McBride and Unger [mch83] developed a model of office
systems based on an intelligent form. This form is used to
control the flow of information in . a distributed

processing environment.

Their paper [mcb83] on an "intelligent data object” (IDO)

serves as an induction to this report.

The IDO may be defined as an elaboration of an abstract
data type, which consists of "“local data" (text), and
procedures (routing commands, processing, error handling
and history log). An IDO can be used to represent an

electronic form.

The '"local data" of an IDO corresponds to the fields in a
form [mcb83]. Each field has a data type. For example, age
is usually a field of the type integer and the last name
is & field of the type character, One or more of the
fields (key) in the "local data" must serve to uniquely
identify each IDO instance among all IDO instances of the
same type. Different IDO types may be differentiated
according to their contents and operations, e.g.,
accounting, hospital admissions, college student report.
Each IDO type is defined by its stored "local data". An
IDC instance, which may be defined as an occurrence of the
typé, inciudes information specific to the £form
attributes. An IDO templates is the mapping of amn IDO
instance to a particular communication medium. Thus, an

IDO may be defined as an elaboration of an abstract data

type.

This object can be routed from node/terminal to
node/terminal in a network. Each node has its own data

base, its own procedures, its own sets of commands and its

- 10 -
own node manager [gantt85].

There are several procedures which provided for
routing/navigation, processing commands, error handling
and updating a history log.- The routing procedureS enable
an intelligent data object (IDO) to navigate itself within
the distributed data base [gantt85].

Using processing commands, IDO has the ability to perform
computations and various functions based on those
computation. Processing procedures in IDO also include
those with the capability to do data base retrievals

[gantt85].

An error handling procedure for an IDO may be a part of
IDO itself or at the node or a combination of both. The
node manager invokes the appropriate error handling
procedure based wupon the results of IDO processing

operations [gantt85].

Each node manager maintains a history log to record the
processing that an IDO instance has undergone and where it
has been. This history log is wused for tracing the
activities of an IDO when needed. It is routed as part of

the IDO from node to node [gantt85].

- 11 -

[Sewc85] proposed a form definition language (FDL) for use
with the IDO to allow a user to specify data fields and
required actions. The FDL also performs intra-form

integrity checks.

To protect the IDO against unauthorized alteration,
disclosure or destruction, a security system must be
established. [SewcB85] designed the IDO FDL which
specified access right/security constraints for the fields
on the form. [Gantt85] designed a node manager of 1IDO’s
which " must execute the IDO“s in a restricted environment

to provide security”,

1.6 Security and Privacy

Security of information in computer systems involves
legal, administrative, physical and technological controls
[camp73]. The followings are some examples [date84,

ull82, park76, park79, park81, park83, camp73]:

(1) Legal, social and ethical aspects. For example, if a
person requests information from a system, does he

have the legal right to such information?

(2) Administrative controls. Administrative controls

(3)

(4)

(5)

(6)

"N

(8

(9)

- 12 -

determine what data gets collected and to whom it is

disseminated.

Physical contrel, For example, should the

terminal/computer room be locked?

Policy question. For example, how does a company

determine the accessibility of the data?

Operational problems. For example, how does the

password information be protected?

Hardware controls. For example, does any security

feature exist in the hardware components?

Operating system security. For example, does the
underlying operating system provide any security

measures concerning file contents?

Threat monitoring. For example, does the system
provide any "audit log" to monitor attempts to
obtain sensitive information or attempts to write

into protective files.

Access rights. Access rights refer to the control of
user‘s authority to insert, update, delete or create

forms.

- 13 -

(10) Issues that are the specific concern of the data
base system itself. These issues may include the
authorization of users to access records in data

base.

To deal with the last security problem in an IDO, several
possible security issues such as access rights, abstract
data type, authentication, authorization rules, integrity
constraints (to protect IDO from users/programs at the
node) and data encryption are focused upon in this

report.

1.6.1. Security - Access Rights

Access rights refer to the identification of who is
authorized to insert, delete, update or add IDO types.
Only personnel with the proper access rights should be
able to perform certain operations on IDO types. Access
rights must be determined based upon the needs of the
office, the data being accessed and the operation being

performed. Access rights in an IDO can be:

(1) Association of access rigihts to the fields on the

form. The rights of a user to operate on the fields

- 14 -

may be restricted. For example, only accounting
personnel may access fields reserved for accounting

purposes.

(2) Association of access rights to IDO instances. The
rights of a user to operate on IDO instances may be
restricted. For example, only authorized users are

allowed to delete an IDO instance.

[Sewc85) designed an IDO FDL which specified access rights

for the fields on the form.

1.6.2 Security - Abstract Data Type

An gbstract data type defines a class of abstract objects
and specifies the operations available for use with those
objects [lis74]. Using this concept, one can define
office forms. Knowledge of where the security constraints
are located, which system environments are being used,
etc., are hidden from the user. Using this concept, the
user can be more assured that security constraints will

not be tampered with.

s 15 =

1.6.3 Security - Authentication and Identification

The process of authentication and identification involves
setting up a password file for users and directing the
identified users to the appropriate user profile. The user
profile 1is a record which specifies the data objects that
the users are authorized to access and the operations that
the wusers are authorized to perform [date84, camp73,

conway72].

1.6.4 Security - Authorization Rules

The authorization rules can be expressed in high level
languages such as SEQUEL (Structured English Query
Language) [Astr75, Astr75a, Cham74], SQL (Structure Query

Language) [Denny77]. For example:
SQL GRANT statement -
GRANT SELECT on R to Tom

This SQL statement specifies that user Tom is authorized
to perform SELECT operation R. Authorization rules are
compiled and stored in the system. Some systems have
authorization rules at the level of relation, others are

at the level of individual fields [date84].

- 16 -

1.6.5 Security - Integrity Constraints

An integrity constraint is a security measure with the

following important aspects:

(1) to prevent two or more users from changing the same

data item concurrently;

(2) to specify which operations are allowed to be

performed on a data item;

(3) to specify the order in which operations are to be

performed.

The most popular ways of preserving the integrity of data
items are locking and time stamping [date84, lynch83,
ull82].

1.6.6 Security - Data Encryption

This security measure stores and transmits all data,
messages, passwords, etc., in an encrypted form. This
format which is unintelligible to any one not knowing the
encryption Kkey, is stored in the data base or transmitted
from node/terminal to node/terminal [date84, feis73,

gudes76, diff76, rivest78]. This method is useful for

- 17 -

protecting IDO during transmission in the communication

network.

1.7 Statement of Problems

An IOF allows several different groups of users to process
its local data concurrently. It also permits concurrency

to exist among its intermal procedures.

Of all the security problems stated in section 1.6, three

security issues are implemented in this project:

(1) Authentication and identification problem. User
profile is set up to identify users, to specify the
data objects that the user is authorized to access
and the operations the user is authorized to perform
on those objects. Thus, user profile provides a way

of executing the IOF‘s in a restricted environment.

(2) Integrity constraint problem. Time stamp ordering
technique is wused to specify when operations are
allowed to be performed on the data stored in an
IOF. This technigue also sets the priority of IOF

operations.

(3) Wiretapping problem. An encryption procedure is set

up to transform IOF inteo non readable format. Thus,

- 18 -

it helps to protect IOF during transmission in the

communication network.

1.8 Overview

The following chapters will give the definition of an IOF,
describe the design and outline the implementation of
three IOF security measures as stated in section 1.7.
Chapter 2 will give the definition of an IOF. Chapter 3
will describe the overall requirements of three IQF
security measures. Chapter 4 will discuss the design.
Chapter 5 will discuss the implementation. Finally,
chapter 6 will provide a summary and extensions of

security system.

- 19 -

2. Chapter 2: Definition of an IOF

*As a result of integration in office automation, different
groups of users are accessing information from the same
office information system, The IOF allows different
groups of users to access its local data and it permits

concurrent internal procedures.

A Petri Net is viewed as a directed graph consisted of two
node types. A node type drawn as a circle is called a
place and a node type drawn as a bar is a transition.
Places with edges directed into transitions are input
places and those with edges directed out of transitions
are output places. The state of a Petri Net is determined
by the presence or absence of markers called tokens over
its places. The transition is said to be active if all
input places for that transition have tokens [pete77,
mcb83]. Petri Net is a good modeling tool for office
procedures as it has the ability to show decisions and

concurrency.

Zisman [zis77] described an Augmented Petri Net (APN) to
combine process and knowledge representations into one
model. In this model, transition firing is not

instantaneous. It depends on the presence of tokens at

- 20 =

input places and the production rules associated with the
transition. It is wused for modeling offices as

asynchronous concurrent processes.

McBride and Unger[mcb83] proposed the use of a control
Petri Net for modeling an office environment. The token,
in this model is viewed as an intelligent form. In order
for an intelligent form to be efficiently processed in an
office, McBride and Unger in [mcb83] proposed to use the
FORK transition to partition the form into subforms and
the JOIN transition to merge the completed subforms back

into a completed copy of the original form.

The McBride 'and Unger [mcb83] model is the basis of the
IDO concept as described in section 1.5. The IOF has the

following properties:
(1) An IOF allows different groups of users to process
its local data concurrently.
(2) An IOF allows concurrency to exist among its

internal operations.

An expanded version of a control graph based on a Petri

net was developed by Cook [cook80], called an ICN

- 21 -

(Information Control Net). Figure 1 illustrates how a
modified wversion of the ICN c¢can be used to describe the
processing of a job for the employment werification

procedure in an IDO.

ICN uses squares to denote input and output files [ell80].
In figure 1, the personnel £file is the input to the
transition bar. It is included in the diagram to show the
dependence of transitions on the availability of data in
the personnel file. T! is the path between the FORK and

the JOIN transitions

= P w

A: (::::) lPersonnel

file

e when employment verification form

———

is received

do complete form

T1:

—_— when true

do return form

Figure 1. The Employment Verification Procedure in IDO
[mcb83]

- 23 -

Figure 2 shows how a modified ICN directs a job for the
employment verification procedures in an IOF. The
personnel file is the input to the transition bar. It is
used to show the dependence of transitions on the
availability of data in the personnel. file. T1 is the
replicated paths Dbetween the FORK and the JOIN
transitions. It illustrates several verification
procedures of the same type to proceed simultaneousiy on

the same token or copies of the same token.

i 2

Personnel
file

when employment verification form

is received

do complete form

—————— when true

do return form

Figure 2. The modified ICN for the Employment
Verification Procedures in IOF

In order to protect an IOF against unauthorized
alteration, a security system must be established. In the
next chapter, several security issues related to the IOF
will be analyzed and the overall requirements will be

defined.

- 25 -

3. Chapter 3: Security System of an IOF - Requirements

3.1 Reguirements - User Profile

The user profile is a record which specifies the data
objects that the users are authorized to access and the
operations that the wusers are authorized to perform
[date84, camp73, conway72]. The process of authentication
and identification involves setting up a password file for
users and directing the identified users to the

appropriate user profile.

[Daley65] viewed the data base as a file hierarchy with
data files as terminal nodes. Access control to these data
files is handled by a control £file which specifies the
permitted users of each data file and each user’s

permitted "modes" (such as write or read only).

Before accessing the data base, the users have to identify
themselves. The process of identification may involve the
use of specific login information such as the name of the
system or an operation number. Voice prints or finger
prints have been used as an identification method in some

specific terminals [date84].

The process of authentication may involve the use of

- 26 -

passwords or answering specific questions from the system
[dateB4, hoff69). Such questions may ask for personal
information unknown to anybody but the authorized user.
Alternatively the user may be asked to supply a secret
function to a pseudo-random number generated by the
system. The dial-up and call-back method can be wused in
authentication. In this method, the operator calls the
user back to make sure the latter is authorized [peteré7,

hof£69].

Therefore, the requirements of user profile are:
(1) To identify users;

(2) To direct the identified users to the appropriate

system environment.

3.2 Requirements - Time Stamping

Time stamping is an integrity constraint technique using a
unique . identifier equivalent to the start-time of a2 data
item. This technique must specify which operations (e.g.,
read, write, insert) are allowed to be performed. It must
also specify the priority of operations. Time stamping
has the following aspects [date84]:

(1) every transaction is assigned a globally
unique time stamp.

A transaction in this report is referred as an operation

a

(2)

(3)

(4)

o OV

updates are not physically applied to the data
base until (successful) end-of-transaction.

every object in the data base carries the time
stamp of transaction that last read it and the
trapsaction that last updated it (at least
conceptually, although several optimizations
are possible).

if a transaction T1 requests a data base
operation that conflicts with some other data
base operation already executed on behalf of a
younger transaction T2, that transaction T1 is
restarted. An operation from T! is in conflict
with T2 if and only if

(a) it is a read, and the object in question
has already been updated by T2 or

(b) it is updated and the object in question
has already been read or updated by T2.
This case can occur only during T1“s commit
processing, by virtue of (2) above. By
"object" here we mean a physically stored

- object (that is , one of possibly many
replicas of a logical object).

(5) If a transaction is restarted it is assigned a

new time stamp."

sequence of operations performed on data objects.

or

The

above aspects of time stamping can be implemented in an IOF,

[Bern80] specified the following approaches to optimize

synchronization in the time stamp technique:

Let tw = write time on record x

tr = read time on record x

the

- 28 -

(1) Thomas Write Rule [bern80]: If write(x) has smaller
time stamp than tw, the Thomas Write Rule suggests

that write(x) be ignored.
(2) Multi-version time stamp ordering [bern80]:

(a) for a data item x, a set of tr which records the
time stamps of all read operations on =x is

maintained.

(b) a set of (tw, value) pairs called versions which

record time stamps of all write operations on Xx.

If an operation reads data item x with a “time stamp
ts, then this operation can be processed by reading
the version(x) with the largest time stamp less than
ts. This technigue can achieve synchronization without

ever rejecting any read operation on Xx.

(3) Conservative time stamp ordering [bern80]: This
technique <eliminates restarts by wusing the FIFO
(first-in-first-out) queuing technique. When a
scheduler receives an operation (OP) that might cause
a future restart, it delays the OP until it is certain

that it will not cause any restarts.

Therefore the requirements of time stamping are:

- 20 -

(1) to prevent two or more users from changing the same

data item concurrently;

(2) to specify which operations are allowed to be

performed on a data item;

(3) to specify which operations are authorized to be

performed first.

3.3 Requirements - Data Encryption

Data encryption stores and transmits all data, messages,
passwords, etc., in an encrypted form. The plaintext which
is the original data is encrypted by subjecting it to an
encryption algorithm whose input are the plaintext and an
encryption key. The output from this encryption algerithm,
the encrypted form of the plaintext, is called ciphertext.
The ciphertext which 1is wunintelligible to any one not
knowing the encryption key, is stored in the data base or
transmitted from node/terminal to node/terminal [date84,
feis73, gudes76, diff76, rivest78)]. Diffie [diff76] designs
the ideas of public-key encryption. Specific schemes have
been proposed by Rivest, Shamir and Adleman [rivest78] to

design public-key encryption and decryption.

Therefore, the requirements of data encryption are:

- 30 -

(1) To transform readable IOF into a non readable format

before transmission;

(2) To transform non readable IOF into a readable format.

The requirements defined in this chapter will ensure the
protection of an IOF against unauthorized alteration. The
following chapter will ocutline the design of the security

system based on the above requirements.

-3 -

4, Chapter 4: Security System of an IOF - Design

4,1 Design - User Profile

A user profile is a record which provides a restricted
environment whereupon <the user can access and perform
operations on data objects. Figure 3 shows the {files
executed by the user profile of a node. The user profile

consists of:
(1) unique identifier for each node;
(2) location of each node;
(3) a set of commands that the user can use;

(4) the restricted environment for users.

- 32 -

user profile
(e.g., .profile)

|USER.parms| |banner| |USER.disk| |USER.inits]|

Figure 3. Files Executed by User Profile of a Node

When a user logs into a node, the node’s user profile is
executed. The 'user profile" finds the node’s dependent
variables in the file USER.parms which exists in the node’s
login directory. Next, the user profile executes the system
file “USER.disk”. This file sets the variazble P to the
device that the system resides on (e.g., p=/a3). Then, the
user profile executes USER.inits to set up the restricted

environment for the user.

A process of identification is necessary for a user to log

-

inte an appropriate environment. This involves supplying
information known only to the authorized user. This is done
by answering questions from the UNIX shell scripts. The
answers to the gquestions are verified against the

information in the user profile.

4.2 Design - Time Stamp

The user has the ability to destroy or modify an 1IOF. The
IOF is loaded into the local node either from the result of
having been transmitted to that node or from the result of
being created/modified by the user at that node [gantt85]. A
time stamp ordering technigue is used ' to prevent
unauthorized alteration of an IOF by the user at that node.
The technique also sets the priority of IOF procedures.
Thus, the purpose of time stamp is to prevent unauthorized
alteration of an IOF at an inappropriate time. It is chosen
over the locking mechanism because it has no locks,
therefore deadlock is impossible and there is no overheads

as required for locking and deadlock detections [date84].
The time stamp must be:
(1) globally unigque;

(2) consists of site ID, IOF (form) name and clock value.

- Y -

Conservative time stamps can eliminate the possibility of
conflicting operations, and hence eliminate the need to
restart transactions. This can lead to less work wasted and
less communication overhead [date84]. However, it can lead
to less concurrency. Therefore, the following Ullman’s
algorithm [ull82] is implemented in this project:
"Suppose we have a transaction with time stamp t
that attempts to perform an operation X on an item
with read time tr and write time tw.
(a) Perform the operation if X=READ and t >= tw
or if X=WRITE, t >= tr, and t >= tw. In the
former case, set the read time to t if t »>
tr, and in the latter case, set the write
time to t if t > tw.
(b) Do nothing if X=WRITE and tr <= t <= tw.

(¢) Abort the transaction if X=READ and T< tw or
X=WRITE and t < tr."

s A

Tt | data item D | result
200 tr = 0
tw =20
write D tr=0 D will be allowed to
tw = 200 be updated
(A)
T2 | data item D | result
200 | tr =220 |
write D | | abort
(B)
T3 | data item D | result
200 tr = 170
tw = 250
write D | | T3 can not update D
(c)

Figure &. Executing itransactions with time stamps

Figure & illustrates three transactions (T1, T2, T3)
operating on a data item D under different and unrelated
situations. However, all three transactions start et the
exact same time. That is, they have an identical time stamp
(t) equals 200. In (A), the write operation is allowed

since t >= tw and t > tr. In (B), when T2 is updating a

- 36 -

copy of D, another user has already read the original copy
of D and changed its time stamp (tr) to 220. Thus, T2 can
not put its updated version of D back to the storage area.
In (C), when T3 is changing a copy of D, the original copy
of D has been updated by another user.-Thus, T3 will not be
allowed to copy its wupdated version back to the storage

area.

This approach is quite efficient when it is wused in the

following situations [ull82]:

(1) In an environment where the probability of two

transactions conflicting is small.

(2) When each user will access only a tiny fraction of a

large data base.

The above algorithm is chosen because it allows more
concurrency than the conservative time stamp method. The
latter will not perform a2 data base operation until it can
be guaranteed that it cannot possibly cause a future
conflict. Thus, Ullman’s algorithm [ull82] is implemented
together with his approach for restarting an aborted
transaction. He suggested that a random amount of time that
an aborted transaction must wait before restarting. His

explanation is that " few transactions conflict makes the

- 37 -

probability of having to restart a given transaction k times
shrink like c“ , Where ¢ is some constant much less than

one" [ull82].

UNIX shells are used to implement the time stamp procedure.
. Any user who wants to perform any operation on any data
object has to call this time stamp procedure £first. The
procedure checks the access time, modification time or
completion time of the requested file against its
corresponding time in the central time stamp table. The user
is then notified whether he/she is allowed to process that

particular file.

4.3 Design - Data Encryption

The purpose of data encryption is to prevent unauthorized
tapping into tha IOF system. The UNIX command "crypt" is
used in the data encryption procedure. UNIX shell scripts
are set up to use "crypt" along with an encryption key. A
shell script is used to transform an IOF intoc a ciphertext
for storage and transmission. Another shell script using the
same UNIX command and the identical encryption key are wused
to convert the ciphertext back to plaintext. Figure 5 shows

the input and output of data encryption.

- 38 -

- CRYPT —————3
plaintext ciphertext

[S —— <

Figure 5. Data Encryption

The design presented in this chapter provides the foundation
for the security system ¢f an IOF. In the next chapter, the
implementation of this IOF security system will be

described.

I

5. Chapter 5: Implementation of the Security System of an
IOF

5.1 1Introduction

Using the requirements presented in chapter 3 and designs
presented in chapter 4, a security system of an IOF is
implemented. A structured, top down design is used. The
entire implementation is written in UNIX shell scripts,
developed on a VAX 11/780 machine, written for operating

systems of Berkley UNIX 4.2 and AT&T UNIX 5.2.

To demonstrate the implementation of this project, different
directories residing in a common machine are used. Figure 6
shows the directory layout of an IOF security system. The
commands/files which pertain to user profile are prefixed
with "USER". All commands/file which pertain to time stamp
ordering technique are prefixed with "stamp'. The commands
which pertain to data encryption are suffixed with “crypt"

(reference appendix 2).

= KO -

| IOF.security |
data.encrypt		time.stamp	user.profile	
encrypt	‘	stamp.ctl		USER. inits
decrypt		stamp.edit]	USER.office	
stamp.proc]		USER.verify		

Figure 6. The Directory Layout of an IOF Security System

w G

5.2 Implementation of User Profile
5.2.1 Introduction

When a user logs into a node, the node’s user profile (e.g.,
.profile) is executed. Figure 7 shows the files and banner
command executed by a user profile. The user profile of a
ncde executes three different files: USER.parms, USER.disk

and USER.inits.

5.2.2 USER.parms

The nodes’ dependent variables are in the USER.parms file
which resides in the node’s login directory. The dependent
variables can be node’s name, node”’s location and node’s
account number (reference appendix 1.1a and 1.1b). User
profile then executes the UNIX system command ''banner" to
display the name of the node onto the screen of the

terminal.

5.2.3 USER.disk

The file USER.disk sets the variable P to the device in
which the system resides (e.g., P=/al/). Thus, the user
profile can find the system codes and commands (reference

appendix 1.2).

- 42 -

5.2.4 USER.inits

The amount of codes kept in a node’s login directory should
be kept to & minimum, Any code that can be put into a common
routine should be kept in the directory of the node manager,
s¢ that multiple copies o0f codes are not maintained.
USER.inits is that part of common codes. USER.inits is a
node’s initialization procedure called by the node’s user
profile. It sets the search path for the user. It also
provides a process of identification for a user to log into
an appropriate environment by calling USER.verify. The
questions coded in USER.verify are used to verify the user
against the information coded in the user profile. Then,
USER.inits will call USER.office which will d%splay the
user’s office information onto the screen of the terminal.

(reference appendix 1.3, 1.31, 1.32).

- 43 -

user profile
(e.g. .profile)

|
l

|USER.parms| |banner| |USER.disk| |USER.inits]|

| USER.verify]| | USER.office|

Figure 7. Files/Command Executed by User Profile of a
Node

i il

5.3 Implementation of Time Stamp
5.3.1 Introduction

Two different UNIX shell scripts were written to protect the
integrity of an IOF so as to prevent its unlawful
alteration. Both shell scripts utilize the unigue features

of UNIX files.
5.3.2 Stamp.edit

A UNIX shell script "stamp.edit" is written to use the UNIX
system command "date" to extract the current time (T) of an
operation X on a data‘item. "Stamp.edit" calls stamp.ctl
which is a control file with site ID for each IOF, read time
and write time in year, month, day, hour, minute and second.
Ullman’s algorithm [ull82] is then used to decide whether an
operation X should be performed or not. Therefore,
"stamp.edit" is used to synchronize read or write operations
on an IOF (reference appendix 1.4, 1.4a, 1.4b). In doing
so, "stamp.edit" helps to prevent alteration of an IOF in an
inappropriate time. Figure 8 shows the UNIX system command
and the stamp.ctl file executed by stamp.edit. Figure 9
shows the structure layout cf a stamp.ctl record used in

stamp.edit.

- 45 -

| stamp.edit/stamp.proc

| date | | stamp.ctl |

Figure §. UNIX System Command/File Called by
Stamp.edit/Stamp.proc

.

node name IOF (form) name write time in year,
(from (from column 6-9) month, day, minute
column and second

1-5) (from column 22-33)
! | | l l

1 6 10 22 33

read time in year,
month, day, minute
and second

(from column 10-21)

Figure 9. Structure Layout of a Stamp.ctl Record Used in
Stamp.edit

5.3.3 Stamp.proc

Another UNIX shell script "stamp.proc" is written to set the
priority of IOF operations other than read and write. It
uses the UNIX system command '"date'" to extract the current
time of an operation in terms of year, month, day and
minute. In this procedure, the stamp.ctl file is updated for
@ach operation at completion time. Assume that operation Z

must precede operation Y. Operation Y is allowed to perform

.

if and only if the previous operation Y completion time (y-
time) in the stamp.ctl file is less than the operation 2
completion time (z-time). When the operation Y is
completed, y-time in the stamp.ctl file is updated with the
current time at completion. Thus, this y-time in the
stamp.ctl can be used to turn on and off the other
operations that follow operation Y (reference appendix 1.5,
1.6a, 1.6b). Figure 8 shows the UNIX system command and
file executed by stamp.proc. Figure 10 shows the structure

layout of stamp.ctl record used by stamp.proc.

node name operation name operation completion time
(from (from column (from column 11-22)
column 6-10)
1-5)
| I l I
1 6 11 22

Figure 10. Structure Layout of a Stamp.ctl Record Used by
Stamp.proc

- 48 -

5.4 Implementation of Data Encryption

5.4.1 Introduction

Two UNIX shell scripts "encrypt" and "decrypt" are written

using the UNIX commands "crypt" (figure 11).

5.4.2 Encrypt

"Encrypt" (reference appendix 1.7, 1.7a) reads the standard
readable input (plaintext) and transforms it into a non
readable cutput (ciphertext) using the key provided by the

user.

5.4.3 Decrypt

"Decrypt" (reference appendix 1.8, 1.8a) reads the encrypted
non readable input (ciphertext) and transforms it back into
a readable format (plaintext). The key used in '"decrypt"

must be the same key used in "encrypt".

Security of the IOF is enhanced by storing and transmitting
of IOF in ciphertext format. Figure 11 shows the UNIX

command executed by encrypt and decrypt.

- 49 -~

encrypt decrypt

crypt crypt

Figure 11. UNIX System Command Executed by Encrypt and
Decrypt

5.5 Summary

The implementation of an IOF security system was done in one
machine using different directories to represent different
nodes. This implementation did show the performance and
functionality of user profile, time stamp and data

encryption.

The following UNIX scripts/files were created to demonstrate

the functionality of this implementation project:

(1) .profile

(2) USER.parms
(3) USER.disk
(4) USER.inits

- 50 -

(5) USER.office

(6) USER.verify

(7) stamp.ctl

(8) stamp.edit

(9) iof.editor

(10) stamp.proc

(11) iof.lprint

(12) iof.print

(13) encrypt

(14) iof.encrypt

(15) decrypt

(16) iof.decrypt
During the implementation of the user profile, the node did
establish the different environments for different passwords
and thereby restricting a user to a particular environment

with its authorized commends and data objects.

Time stamp, using the shell script stamp.edit, did establish
the integrity constraint which controlled the read and write
operations on an IOF, thereby preserving its integrity. The
shell script, stamp.proc, did set the priority of operations
other than read and write. Therefore, these two UNIX shell
scripts contributed in the prevention of unlawful alteration

of an IOF.

Finally, implementation of data encryption did establish the
transformation of file into a non-readable format and back
to a readable format. It provided users a method of storing

and transmitting data safely.

- 51 -

The following chapter will include the conclusion of this
report. It will also outline suggestions to enhance this

implemented security system.

6.

6.1

- 52 -

Chapter 6: Conclusion and Extensions

Conclusion

The following represents a summary of this project:

(A) Changed an "intelligent data object” (IDO) to an

"intelligent office form" (IOF). An IOF permits
access by multiple users to its local data and it
allows concurrency to exist among its internal

procedures.

(B) Analyzed the following security issues related to the

IOF:

(1) Authentication and identification. The process of
authentication and identification involves setting
up a password file for wusers and directing the

identified users to the appropriate environment.

(2) Inteérity constraint. An integrity constraint is a
security measure for preventing two or more users
to change the same data item concurrently. It also
specifies the order in which operations are to be

performed.

- 53 -

(3) Data encryption. This security measure stores and

transmits all data in an encrypted form.

(C) Designed a security system for the IOF involving the

following:

(1) User profile: was designed to identify users, to
specify the data objects that the user was
authorized to access and the operations the user

was authorized to perform on those objects.

(2) Time stamping technique: was employed to specify
when operations were allowed to be performed on the
data stored in an IOF. This technique was also

designed to set the priority of IOF operations.

{3) Encryption procedure: was utilized to transform an
IOF into a non readable format to protect IOF

during transmission in the communication network.

(D) A security system for the IOF as described in (C) was

implemented.

- 54 -
6.2 Extensions

There are several possible extensions to this project to

improve the system.

In data encryption, algorithms other than that used in UNIX

system command "crypt" may be implemented.

Performance has not been addressed at all in this
implementation projebt. The performance of user profile,
data encryption and time stamp should be considered. The
effect of the length of keys used in data encryption on the
speed of transformation may be explored. Another area for
consideration is the optimal frequency of password

replacement for maximal security.

In the user profile, the password has been used to restrict
users to a particular environment. This password may be kept
in encrypted format and a UNIX shell script may be set up to

update that password periodically.

The security system of this report is directed mainly
towards prevention. Application programs may also be set up
to detect whether the current security system is sufficient

or not. Recovery and correction procedures may also be set

- 85 -

up as part of the security system of an IOF.

7.

Bibliography

[astr?5]

[astr75a]

[bern80]

[bern81]

[bern83]

(camp73]

- 56 -

Astraham, M. M. and Chamberlin, D. D.,
"Implications of a Structured English
Query Language", Communications of the
ACM, Vol. 18, No. 10, Oct. 1975.

Astraham, M. M, and Lorie, R. A.,
"SEQUEL - XRM: a Relational System",
Proc. ACM Pacific Conference, San
Franeis, April 17-18, 1975.

Bernstein, P. A. and Goodman N.,
"Timestamp-Based Algorithms for
Concurrency Control in Distributed
Database Systems'", IEEE 1980, pp.
285-300.

Bernstein, P. A. and Goodman, N.,
"Concurrency Control in Distributed
Database Systems'", Computing Surveys,
Vol. 13, No. 2 (June 1981) pp. 185-
221

Bernstein, P. A. and Goodman, N.,
"Multiversion Concurrency Control
Theory and Algorithm", ACM
Transactions on Database Systems, Vol.
8, No. 4 (Dec. 1983) pp. 465-483.

[cham74]

[conway72]

[cookB80]

[daley65]

[date84]

[denny77]

w 51 =

Campaigne, R. W. and Hoffman, L. 1J.,
"Computer Privacy and Security",
Computers and Automation, July 1973,
pp. 12-17.

Chamberlin, D. D. and Boyce, R. F.,
"SEQUEL: A Structured English Query
Language", Proceedings ACM SIGMOD, pp.
249-264.

Conway, R. W., Maxwell, W. L. and
Morgan, H. L., "On the Implementation
of Security Measures in Information
Systems", Communications of the ACM,
Vol. 15, No. 4 (april 1972), pp. 211-
220.

Cook, C. L., "Streamlining Office
Procedures -~ an Analysis Using the
Information Control Net Model", AFIPS
NCC 1980, pp. 555-565.

Daley, R. C. and Neumann, P. G., "A
General Purpose File System for
Secondary Storage", Proc. FJCC 27
(1965).

Date, €. J., "An Introduction to
Database Systems", Vol. 2, The System
Programming Series, 1984,

[diff76]

[dipi83]

[e1180]

[feis73]

{ferr82]

- 58 -

Denny, G. H., "An Intreoduction to SQL,
a2 Structured Query Language', Tech.
Rep. RA93(28099), IBM Res. Lab., San
Jose, CA. .

Diffie, W. and Hellman, M. E.,
"Multiuser and Cryptographic
Techniques", National Computer
Conference, 1976, pp. 109-112.

Dipirro, J. E., Ferrans, J. E. and
Juszczak, C. "A Form Management System

for Switching Database
Administration", Proceedings IEEE
International Conference on

Communications, Boston, MA., Vol. 1
(June 19-22, 1983), pp. 125-130.

Ellis, €. A. and Nutt, G. J., '"Office
Information Systems and Computer
Science”, Computing Surveys, Vol. 12,
No. 1 (March 1980).

Feistel, H., "Cryptography and
Computer Privacy", Scientific
American, Vol. 228, No. 5 (May 1973).

Ferrans, J. C., "SEDL - A Language for
Specifying Integrity Constraints on
Office Forms", Proceedings ACM - SIGOA
Conference on Office Information
Systems, Philadelphia, PA., June 21-
23, 1982, pp. 123-130.

[fikes81]

[gantt85]

[geha82]

[gray75]

[griff76}

[gudes76]

- 59 -

Fikes, R. E., "ODYSSEY: A Knowledge-
Based Assistant", Artificial
Intelligence 16 (1981), pp. 331-361.

Gantt, D. M., '"Management of an
Intelligent Data Object"”, Masters
Report, Kansas State University,
Manhattan, Kansas 1985.

Gehani, Narain H., "The Potential of
Forms in Office Automation", IEEE
Transactions on Communications, Vol.
COM-30, No. 1 (Jan. 1982), pp. 120-
125.

Gray, J. N., Lorie, R. A. and Putzolu,
G. R., '"Granularity of Locks in a
Large Shared Data Base", Proc.
International Conference on Very Large
Data Bases, 1975, pp. 428-451.

Griffiths, P. P. and Wade, B. W., "An
Authorization Mechanism for a
Relational Data Base System', ACM
Transactions on Database Systems, Vol.
1, No. 3 (Sept. 1976), pp. 242-255.

Gudes, E., Koch, H. §. and Stahl, F.
A., "The Application of Cryptography
for Data Base Security", National
Computer Conference, 1976, pp. 97-107.

[hoff69]

[hogg84]

[1ad80]

[lamp78]

[lis74]

[lynch83]

[mcbhb83]

- 60 -

Hoffman, L. o "Computers and
Privacy: A Survey", Computer Surveys,
Vol. 1, No. 2 (June 1969), pp. 85-103.

Hogg. J. and Gamvroulas, S., "An
Active Mail System", SIGMOD record,
Vol. 14, No. 2, 1984.

Ladd, I. and Tsichritzis, D. C., "An
Office Form Flow Model", Proceedings
AFIPS Office Automation Conference,
National Comp. Conf., Mar. 1980,
University of Toronto, Ontario Canada.

Lamport, L., "Time, Clocks and the
Ordering of Events in a Distributed
System", CACM21, No. 7, July 1978.

Liskov, B, and Zilles, S.,
"Programming with Abstract Data
Types", SIGPLAN, April 1974,

Lynch, N. A, "Multilevel Atomicity - a
New Correctness Criterior for Database
Concurrency Control"”, ACM Transactions
on Database Systems, Vol. 8, No. 4
(Dec. 1983), pp. 484-502.

McBride, R. A. and Unger, E. A.,

[menaB0]}

[park76]

[park79]

[park81]

[park83]

[pete?7]

- 861 -

"Modeling Jobs in a Distributed
System", ACM SIGSMALL Conference
Proceedings, Dec. 1983, pp. 32-41.

Menasce, D. A., Popek, G. J, and
Muntz, R. R., "A Locking Protocol for
Resource Coordination in Distributed
Database", ACM Transactions on
Database Systems, Vol. 5, No. 2 (June
1980), pp. 103-138.

Parker, D. B., "Crime by Computer”,
Scribner, 1976,

Parker, D. B., "Ethical Confliets in
Computer ~ Science and Technology",
AFIPS, 1979,

Parker, D. B., "Computer Security
Management™, Reston Publishing
Company, Inc., 1981.

Parker, D. B., "Fighting Computer
Crime", Scribner, 1983,

Peterson, J. L., "Petri Nets", ACM
Computing Surveys, Vol. 9, No. 3
(Sept. 1977), pp. 223-252,

[peteré7]

[reis77]

[rivest78]

[sewc85]

[shave80]

[smith77a]

= Y a

Petersen, H. E. and Turn, R.,, "System
Implications of Information Privacy",
Proc. SJCC 30 1967, pp. 291-300.

Reis, D. R. and Stonebraker, M. R.,
"Effects of Locking Granularity in a
Data Base Management System", ACM
Transactions on Database Systems Vol.
2, No. 3 (1977), pp. 233-246.

Rivest, R. L., Shamir, &. and Adleman,
L., "A Method for Obtaining Digiteal
Signatures and Fublic-Key
Cryptosystems", Communications of the
ACM, Vol. 21, No. 2 (Feb. 1978), pp.
120-126. .

Sewczwicz, R. P., "Form Definition
Language for Intelligent Data Object”,
Masters Report, Kansas State
University, Manhattan, Kansas 1985.

Shave, M. J. R., "Problems of
Integrity and Distributed Database",
Software-Practice and Experience
1980, Vol. 10, pp. 135-147,

Smith, J. M. and Smith, D. C. P.,
"Database Abstractions: Aggregation",
CACM 20, No. 6, June 1977.

[smith77b]

[stone74]

[tsic80]

[tsic81]

[tsic82]

[ull82]

-8 =

Smith, J. M. and Smith, D. C. P.,
"Database Abstractions: Aggregation
and Generalization", ACM TODS 2, No.
2, June 1977.

Stonebraker, M. R. and Wong, Es 5
"Access Control in a Relational Data
Base Management System by Query
Modification", Proc. - ACM National
Conference, 1974,

Tsichritzis, D., "OFS: An Integrated
Form Management System", Proceedings
of the ACM International Conference on
Very Large Data Bases, 1980.

Tsichritzis, D. C., "Integrating
Database and Message Systems”,
Proceeding 7th International
Conference on Very Large Data Bases,
1981, pp. 356-362.

Tsichritzis, D., '"Form Management",
Communications of the ACM, Vol. 25,
No. 7 (July 1982), pp. 453-478.

Ullman, J. D., "Principles of Database
Systems", Computer Science Press,
1982.

[2zis77]

[zis78]

[zlo81]

- 64 -

Zisman, M. D., "Representation,
Specification, and Automation of
Office Procedures", Ph.D.

Dissertation, Wharton School, Univ.
Pennsylvania, Philadelphia, Pa., 1977.

Zisman, M. D., "0ffice Automation:
Revolution or Evolution", Sloan
Management Review, spring 1978, pp.
1"'160

Zloof, M. M., "QBE/OBE: & Language for
Office and Business Automation", IEEE
Computer (May 1981), pp. 13-22,

- 65 -

8. Appendix 1 - Source Code Listings

Appendix 1.1a
fi.profile - a user profile

#Introduction:
When a2 user logs into & node, the node’s .profile
is executed. “.profile” finds the node’s dependent
variables in the file called “USER.parms’ which exists
in the node’s login directory. Next, the “.profile”
executes UNIX system command “banner” to display
2 node name onto the terminal. Then, the “.profile”
executes “USER.disk” which sets the variable P to the
device that a node resides on. Lastly, “.profile”
executes “USER.inits” to initialize the common codes
i used by a node.
it
i
. USER.parms

if test -z "“SBATCH"
then banner SOFFICE

fi

if test -z "SENV"
then ENV=dev

fi

. USER.disk

IOFDIR=5P/iofSENV
ADMIN=S8P/iofadm

if test | -d SIOFDIR

then echo "base node directory “$IOFDIR‘ does not exist"

exit 1
fi

. SADMIN/IOF.security/user.profile/USER.inits

- 66 -

Appendix 1.1b
#USER.parms - A node dependent variables

it

#Description:

#ACCT - account number of a node

#NAME - name of the developer

#ENV - environment to which a user can be log into
#

#

ACCT=nwigs4

NAME=lee

OFFICE_ORDER_NO=12345678

OFFICE=nodel

OFFICE_STATE=I1

OFFICE_DESCRIPTION="This is a development office”’
ENV=dev

- 67 -

Appendix 1.2
#USER.disk - sets the variable P to the device
in which a node resides

#
P=/usrb/att/enid/master
export P

- 68 ~

Appendix 1.3
USER.inits -~ A user‘s initialization procedure
called by an office’s .profile.

Introduction:

When a user logs into an office,
the office’s .profile is executed.
.profile” finds the office dependent
i variables in the file “USER.parms”’
which exists in the the office’s login
directory.
Next, the .profile executes the system
file “USER.disk". This program sets
the variable P to the device that
the system resides on (e.g. P=/al). In this
way the .profile can find the system code.
Description:
The amount of code kept in an office’s
i login directory should be kept
i to & minimum. Any code that can
be put into a common routine should
be kept in the directory of the node
manager, so that multiple copies
of the code are not maintained.
i# "USER.inits" and "USER.verify"
are examples of those common
routines. The users with special
login IDs (e.g. en) are
privilege users while others are not.
A privileged user gets a different
SPATH.
#
Parms:
none
ﬁ Globals:
set in .profile via USER.parms
OFFICE_STATUS:
OFFICE:
OFFICE_STATE:
OFFICE_DESCRIPTION:
ACCT:
#
set in .profile directly
ENV: set to “tst’ unless USER.parms
already set it.

P set to disk via system program USER.disk

= B =

IOFDIR: full path to ioftst or iofdev
ﬁ ADMIN: full path to iofadm
set in USER.inits
USER_ID: {first 2 characters of user’s LOGNAME
UNIQUEID: used in the creation of temporary files
MAIL: user’s mail file
SPATH: the search path for commands,
i c restricted to only user commands,
unless user id is privileged in which case
he may access the restricted commands also.
Innerpath:path called by user’s commands to access
/bin, etc.
BStz prompt is set ot ‘Enter command:”

#
Input:
i interactive responses from the user

it
Output:
log on messages on the user‘s terminal

it
Calls:
E messages - to display the system messages

#

Returns:
none

i

it

{# all variables set in .profile and USER.parms
are exported from here.

readonly OFFICE_STATUS OFFICE OFFICE_STATE ACCT
export OFFICE_STATUS OFFICE OFFICE_STATE ACCT
readonly ENV P IOFDIR ADMIN

export ENV P IOFDIR ADMIN

if test -z "SBATCH" # are we in interactive mode?
then
stty erase "

PS1="

Enter command: “
echo "Welcome to the IOF system "
echo " on

verify the environment that the user is going
to use

- 70 -

. SADMIN/IOF.security/user.profile/USER.verify
if test "SVERIFY" = "SENV"

then echo " "
echo "You are now in SENV environment"
echc "Hn
eChO " on

else

echo "The Environment in your USER.parms is not the same"
echo "as the environment that you want to get into"

exit 1 '

fi

fi

USER_ID=‘expr SUSER : “)°"

if test -z "SBATCE"
then

see if there is a message of today and if so print it
if test -s SADMIN/admmsgs/msgof2day
then cat SADMIN/admmsgs/msgof2day
£i
Concatenate and display system messages, if any
if test -s SADMIN/admmsgs/messages
then cat SADMIN/admmsgs/messages
fi

fi

Set up the path to the user’s shell

commands IOFDIR/cmds/cmds

unless he is a privileged user, in which

case he gets the privilege commands

as well IOFDIR/cmds/privemds.

cmds=$IOFDIR/cmds/cmds

pcmds=$IOFDIR/cmds /privemds

if test "SUSER_ID" = en

then echo "You are a privileged user. Your id is SUSER"

SPATH=Spcmds
else SPATH=Scmds
fi
export SPATH

o Pl

Set inner path which will be used inside user’s commands
innerpath must be in terms of the original path in order
to incorporate whether the user is privileged
Innerpath=:/bin:/usr/local:/usr/bin:/local/bin:$SPATH
export Innerpath

Display office information
by calling the “USER.office” command
if test -z "SBATCH"

then . SADMIN/IOF.security/user.profile/USER.office
fi

w TD

Appendix 1.31
#USER.verify - used to verify the environment to which
i the user can be logged into

#

ffask for identification, and verify that it is
#a valid environment.

#

while
echo " "
echo “Enter the password for the right environment:~
stty -echo
read VERIFY
do
case SVERIFY in
finished)
echo "non
echo “ A testing environment has been set -
VERIFY=tst
break

HE
updated)
echo " o1
echo “ A developing environment has been set”
VERIFY=dev
break

N\ e
Nwe
o

echo 0w

echo “You do not have the right password to the”
echo ” appropriate environment”

exit 1

esac
done
stty echo
export VERIFY

T3 =

Appendix 1,32
#USER.0ffice - office identification

{#Description:

‘

This file is used to tell the user what office he is
logged into, who he is and his account number

{{Parms:

none

i

#Globals:

IOFDIR -
OFFICE -
OFFICE_DESCRIPTION -
OFFICE_STATE -
USER_ID -
#

#Input:

none

f

#Output:

none

#

f#Calls

nene

#

{#Return:

none

{set the path
PATH=SInnerpath
export PATH

#display the user’s office information on
j#the user’s terminal

echo "The office you have logged into is:
Office Abbreviation: SOFFICE

Office number: SOFFICE_ORDER_NO
Account number: SAaccT"

- 74 -

Appendix 1.4
jstamp.edit - to synchronize read and write operation

fidescription:

(1) use UNIX system command ‘date’ to extract the current

time
#
(4) use stamp.ctl to store the site ID together with

f IOF name, read time and write time.

#

(5) use Ullman’s algorithm [ull82] to decide whether an
operation should be allowed to perform or not

#

i

f#finput: prompt on the terminal (insert, change, delete or read)

foutput: none

i

{#fparms: none

#

#

ID=*who am i | cut -c18-22"

echo " " ,
echo "Enter form name to be changed/read:"
echo " "

read FILE

#To extract the current time

Date=“date*
Cyr=‘echo $Date | cut -c26-27"
Cmon=‘echo $Date | cut -c5-7°
Cdayl=‘echo $Date | cut -c8-8*
if test "SCday‘l" = N n

then Cdayl1=0
fi
Cday2=‘echo $Date | cut -c9-9°
Cday=5Cday15Cday2
Chr=“echo $Date | cut -c11-12
Cmin=‘echo $Date | cut -c14-15*
Csec=“echo $Date | cut -c17-18"

fito translate the current month into numeric value

- 75 -

case SCmon in
[jJ]an*) Cmon=01;;
[£F]eb*) Cmon=02;;
[mMlar*) Cmon=03;;
[aA]lpr*) Cmon=04;;
[mM]ay) Cmon=05;;
[jJ]un*) Cmon=06;;
[§J]ul®) Cmon=07;;
[aAlug*) Cmon=08;;
[sS]ep*) Cmon=09;;
[00)ct*) Cmon=10;;
[nN]Jov*) Cmon=11;;
idD}ec*) Cmon=12;

’s
esac

echﬂ " n

echo “Operations are: Insert=I, Change=C or Read=R “
echo 7 -

echo “Enter operation:

read ANS

case SANS in

Cle]| 1]1i)

if test -f SHOME/text/SFILE
then

cp SHOME/text/SFILE SHOME/temp/$SIDSFILE.tmp
ed SHOME/temp/$IDSFILE. tmp

if (test -f SHOME/temp/*.ctl) ||
(test —f SHOME/temp/*.rd)
then
echo ‘Timestamp is in conflict!l”
echo "SFILE has already been updated/read by other users."
echo “Update transaction has been aborted!!”
rm SHOME/temp/SIDSFILE. tmp
sleep 1
else
cat SADMIN/IOF.security/time.stamp/stamp.ctl |
while
read Ctl
do
sid=“echo $Ctl | cut -c6-9*
if test "$sid" = "SFILE"

- 76 -

then

upd_rt="echo $Ctl | cut -c10-21"
upd_wt=‘echo $Ctl | cut -c22-33*

if test SCyrSCmonS$Cday$ChrS$Cmin$Csec -ge Supd_rt &&
test $CyrSCmon$CdayChrCminSCsec —ge Supd_wt
then
Date="date®
Chr="echo $Date | cut -—c11-12"
Cmin=“echo S$Date | cut —ct14-15*
Csec=“echo Shate | cut -c17-18"
Ct1=SOFFICESFILESupd_rtS$CyrSCmonS$CdayChrCminSCsec
echo SCtl >»> SHOME/temp/SIDSFILE ctl
mv SHOME/temp/SIDSFILE.tmp SHOME/text/SFILE
echo “updated operation has been completed”
else
echo “Timestamp is in confliet!!l~”
echo "S$FILE has already been updated/read by other users."
echo “Update transaction has been aborted!!~”
Ct1=SOFFICESFILESupd_rtSupd_wt
rm SHOME/temp/$SIDSFILE. tmp
echo $Ctl s> SHOME/temp/$IDSFILE.ctl
sleep 1
£i
else
echo $Ctl >> SHOME/temp/SIDSFILE.ctl
fi
done
mv SHOME/temp/$IDSFILE.ctl SADMIN/IOF.security/time.stamp/stamp.ctl

fi
else

echo “Invalid input form®

echo “Read operation has been aborted®
fi

*h

R | r)

if]test -f SHOME/text/SFILE

then

cp SHOME/text/$FILE SHOME/temp/SIDSFILE.read
chmod 444 SHOME/temp/$IDSFILE.read

ed SHOME/temp/$IDSFILE.read

if test —-f SHOME/temp/*.ctl
then
echo ‘Timestamp is in conflict!!”

P =

echo "SFILE has already been updated by other users.”
rm -f SHOME/temp/$IDSFILE.read
else
cat SADMIN/IOQF,security/time.stamp/stamp.ctl |
while
read Ctl
do
sid=echo $Ctl | cut -c6-9°
if test "$sid" = "SFILE"
then
ctl_rt=“echo $Ctl | cut -ci0-21*
ctl_wt="echo $Ctl | cut =-c22-33"

if test $CyrSCmon$CdayChrCmin$Csec ~ge Sctl_wt
then
mv $HOME/temp/SIDSFILE.read $SHOME/text/SFILE
chmod 644 SHOME/text/SFILE
Ctl=SOFFICESFILESCyr$Cmon$CdaySChr$CminSCsecSctl_wt
echo $Ctl >> $HOME/temp/SIDSFILE.rd
echo "Read operation has been completed"
else
echo $Ctl >> SHOME/temp/$IDSFILE.rd
echo “time stamp is in confliet!!”
echo “The file that you have just read is”
echo “differed from the one in the current file.’
echo “Read transaction has been aborted!!~’
rm -f SHOME/temp/SIDSFILE.read
sleep 1
fi
else
echo $Ctl >> SHOME/temp/$IDSFILE.rd
fi
done

mv $HOME/temp/$IDSFILE.rd SADMIN/IOF,security/time.stamp/stamp.ctl

fi
else

echo “Invalid form”

echo “Read operation has been aborted”
fi

854

esac

= T

Appendix 1.4a
f#istamp.ctl - A time stamp control file

it

f#description:

This control file consists of two type of records:
(1) used for stamp.edit with site ID together with
i# IOF name, read time and write time in year,

month, day, hour, minute and second.

i

(2) used for stamp.proc with node name, operation

switch name and operation completion time.

i

#

#

nodeledint860619184245
nodel1iof2860603122040860603132345
nodeledout860619184245
nodeliof1860619190924860619190904

- 79 -

Appendix 1.4b
f# iof.editor - IOF command used to demonstrate the
functionalities of time.edit
:
. SADMIN/IOF.security/time.stamp/stamp.edit

- 80 -

Appendix 1.5
j#stamp.proc - to synchronize operations other than
read or write

f#fdescription:

#

i

It extracts the time of an operation Z (indicated by

"edout" in stamp.ctl) by which the current operation

Y must follow. If the time that associated with
"edout" (in this report) is great than the time

that associated with "edint", then Y will be

ﬁ allowed to execute.

f#input:

¥

{t switch of the process such as “edout”

foutput:

#

A switch with the value of "y’ to indicate whether the
next operation will be performed or not.

#
#

#
PATH=SInnerpath
export PATH

switch="cat SHOME/temp/proc.sw®

cat SADMIN/IOF.security/time.stamp/stamp.ctl |
while
read Ctl
do
sid="echo $Ctl $ cut -c6-10°
ctl_time=“echo $Ctl | cut -c11-22°
ctl_rtime=‘echo $Ctl | cut -¢23- 33‘
if test "$sid" = "$switch"

then

echo "$ctl_time" >> SHOME/temp/edout_time
fi
if test "$sid" = edint
then

echo "$ctl_time" >> SHOME/temp/edint_time
fi

done

- 81 -

edint_t=‘cat SHOME/temp/edint_time"
edout_t="cat SHOME/temp/edout_time*

if test
then
echo
else
echo
echo
echo
echo
echo
fi

Sedout_t -gt Sedint_t

"y" >5> SHOME/temp/Sswitch.ctl

I n
n n

"Time stamp is in conflict!!”
"t n

"iof.print has to be performed after iof.lprint!!"

rm SHOME/temp/edint_time
rm SHOME/temp/proc.sw
rm SHOME/temp/edout_time

- 82 -

Appendix 1.6a

f#iof.lprint -

UNIX shell script used to demonstrate the usage of
stamp.proc. It is used together with another UNIX
shell script "print". It should be used before

"primt". If the order is reversed, an error message

of "Time stamp is in conflict!"™ will be printed.

jidescription:

(1) it lists a file and executes 'date" command

to extract the current time which is then

concatenated with "edout" in stamp.ctl (an IOF

control file).

i

(2) "iof.print" UNIX shell will execute stamp.proc

to find out whether the time associated with
"edout" is greater than the time associated

with "edint". If it is, then, "iof.print"

will be allowed to execute. Using stamp.proc,

"iof.print" command has to be executed after

ﬁ “iof.lprint" command and not before.

#
PATH=$Innerpath
export PATH

f#to extract the current time
Cyr=“date | cut -c27-28"
Cmon="date | cut -¢5-7°
Cdayl=‘date | cut -c9-9*
if test "SCdayi" =" "

then Cdayl=0

fi
Cday2=“date | cut -c10-10"
Cday=$Cday1$Cday2

Chr=“date | cut -c12-13*
Cmin="date cut -c15-16*
Csec="date cut -c18-19*~

f#to translate the current month into numeric value
case $Cmon in
[j3]an*) Cmon=01;
[fFleb*) Cmon=02;
[mM]ar®*) Cmon=03;;
[aAlpr*) Cmon=04;;

-
]
.
]

- 83 -

[mM]ay) Cmon=05;;
[jJlun*) Cmon=06;;
[jJ]ul*) Cmon=07;;
[aA)ug*) Cmon=08;;
[sS)ep*) Cmon=09;;
[o0]et*) Cmon=10;;
[nN]ov*) Cmon=11;;
LdD]ec*) Cmon=123;

esac
cur_time=CyrCmon$CdaySChr$Cmin$Csec

echo " "
echo “Enter the name of file to be listed”
echo "nm n
read Ans

place an IOF command that has to be performed first here

Is -1 SAns

cat SADMIN/IOF.security/time.stamp/stamp.ctl |
while
read CTL
do
Proc=“echo $CTL | cut -c6-10°
ID=echo SCTL | cut -c1-5°
Proc_time=“echo $CTL | cut -cl11-22°
Re_time=“echo $CTL | cut -¢23-33°

if test "SProc" = "edout"
then
Proc_time=Scur_time
fi
CTL=IDProc$Proc_time$SRe_time
echo $CTL >> SHOME/temp/SOFFICE.ctl
done
mv SHOME/temp/$SOFFICE.ctl SADMIN/IOF.security/time.stamp/stamp.ctl

o Bl

Appendix 1.6b
#iof.print -
UNIX shell used to demonstrate the usage of stamp.proc.
It should be executed after another UNIX shell script
"iof.lprint"., If the order is not in sequence, then an
error message of "Time stamp is in conflict!" will
be printed.

ffdescription:
(1) it executes stamp.proc to find out whether the
the time associated with "edout" is greater than

that associated with "edint". If it does, then
a2 switch such as “edout.ctl” will be set up
i# in the directory

i
(2) if “edout.ctl” exists, then “iof.print” will be

allowed to perform and its execution time

will be concatenated with "edint" and "edout"
in the stamp.ctl file

i

#

it

it

PATH=$Innerpath

export PATH

switch="edout"

echo §switch >> SHOME/temp/proc.sw
if test -s SHOME/temp/edout.ctl
then
echo
echo “Enter the name of file to be printed”
echo "nw n

Place an IOF command that has to be performed next here

- read Ans
pr SAns

Cyr=‘date | cut -c27-28"

Cmon=‘date | cut -¢5-7°

Cdayl=‘date | cut -c9-9°

if test "SCdayi" =" "
then Cdayl=0

fi

Cday2="date | cut -c10-10"

Cday=5Cday1$Cday2

- 85 -

Chr=“date | cut -c12-13*
Cmin=“date cut -c15-16*
Csec=“date | cut -c18-19*

f#to translate the current month into numeric value

case SCmon in
[jJ]an*) Cmon=01
[fF]eb*) Cmon=02
[mM]ar®*) Cmon=03
[aA]pr*) Cmon=04
[mM]ay) Cmon=05
[jJJun*) Cmon=06
[jJJul*) Cmon=07
faAlug*) Cmon=08
[sSlep*) Cmon=09
[00]Jct*) Cmon=10
[nN]ov¥) Cmon=11
£dD]ec*) Cmon=12

[
LI]

wa we we

We W WE WS WME S e Wb ME WE we W

Wwe We WE We We wE we wE W

esac

cur_time=CyrCmon$CdayS$ChriCminSCsec

cat SADMIN/IOF.security/time.stamp/stamp.ctl |
while
read CTL
do
Proc=‘echo $CTL | cut -c6-10°
ID="echo $CTL | cut -cl1-5°
Proc_time=‘echo $CTL | cut -c11-22°
Re_time=“echo $CTL | cut -c23-33°
if" (test SProc = edout) ||
(test $Proc = edint)
then
Proc_time=Scur_time
fi
CTL=IDProc$Proc_timeSRe_time
echo $CTL >> SHOME/temp/$SOFFICE.ctl
done

mv SHOME/temp/SOFFICE.ctl SADMIN/IOF.security/time.stamp/stamp.ctl
rm SHOME/temp/edout.ctl
fi

- 86 -

Appendix 1.7
ffencrypt - used in data encryption procedure

#Description -
This module reads form the readable standard input and
{# transforms into a non readable format using the key
ﬁ provided as a means of transformation.
#
#Input -
#
ﬁ standard readable format
i
f#output -
Non readable format
.
i
PATH=SInnerpath
export PATH
echo “Enter key for encryption: ’
read KEY
echo “Enter name of file to be encrypted: *
read FILE
echo “Enter name of output file of encryption: “
read OUTPUT

crypt $KEY < S$FILE > $OUTPUT
echo “Encryption is done”

e B =

Appendix 1.7a

iof.encrypt - IOF command used to demonstrate the
functionalities of data encryption

#

it

. SADMIN/IOF,security/data.encrypi/encrypt

- 88 -

Appendix 1.8
f#decrypt - used in data encryption procedure

{Description -
This module reads in the non readable input and
transforms it back to a readable format using
the key provided.
#
#
#Input -
Non readable format
i
f#output -
i
Readable format
it
it
#
PATH=SInnerpath
export PATH
echo “Enter key for decryption:
read KEY
echo “Enter name of file to be decrypted: -
read FILE :
echo “Enter name of output file of decryption: ~
) read OUTPUT

crypt SKEY < SFILE > SOUTPUT
echo “Decryption is done’

= Y =

Appendix 1.82

iof.decrypt - IOF command used to demonstrate the
functionalities of data decryption
i

i

. SADMIN/IOF.security/data.encrypt/decrypt

s T e

9. Appendix 2 - Source Code Structure Chart

|node1}
| .profile | | USER. parms | |temp| |text|
|USER.disk| node |iof1]| |iof2]
—————————— manager
e-gc ’
master

D)

o G =

Appendix 2 - Source Code Structure Chart

(1’)
iofadm		iofdev		ioftst]		
admmsgs		IOF.security		cmds		emds
msgof2day	(2)	emds		privemds		cmds
privemds						
iof .decrypt	fiof .encrypt]					

| iof.editor | | iof. lprint| |iof.editor|

- g7 =

Appendix 2 - Source Code Structure Chart

(2)

|

|data.encrypt| | time.stamp|

|

| |

———— e e e e e

|decrypt| |stamp.ctl|

|encrypt| |stamp.edit]

|user.profile|

|

|USER. inits |

| stamp.proc|

|USER.office]|

|USER.verify|

PRIVACY AND SECURITY
OF
AN INTELLIGENT QOFFICE FORM

by

KUM-YU ENID LEE

B.A., University of Texas at Austin, 1972

AN ABSTRACT OF A MASTER’S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1986

ABSTRACT

PRIVACY AND SECURITY OF AN INTELLIGENT OFFICE FORM

An Intelligent Data Object (IDO) is defined as an
elaboration of an abstract data type. It consists of
routing information, specific processing information, a
history log, text (data structures) and a set of
operations defined on the data object.

In this report, a version of an IDo, termed an
"intelligent office form" (IQOF), is discussed. An IOF
permits access by multiple users to its local data and it
allows concurrency to exist among its internal procedures.

The design of a central "security manager" to protect an
IOF against unauthorized alteration or destruction is
presented. Three different security measures are
implemented. The first is 2 user profile to specify the
data objects that the user is authorized to access and the
operations the user is authorized to perform on those
objects. The second is a time stamp ordering technique to
specify when operations are allowed to be performed on the
data stored in IOF. Examples of allowable operations are
read, write, delete and insert. The technique also sets
the priority of IOF procedures. The third is an encryption
procedure to protect the data during transmission in the
communication network.

The proposed security measures are programmed in UNIX
shells.

A30-89
CD-68

