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Abstract 

Antimicrobials are included in finishing cattle diets for growth promotion, feed 

efficiency, and protection against liver abscesses.  The inclusion of in-feed antimicrobials at or 

below therapeutic concentrations may provide a selective pressure for antimicrobial resistant 

microorganisms.  Additionally, heavy metals such as copper and zinc may be included in cattle 

diets because of growth-promoting effects.  Heavy metal resistance genes are on transferable 

plasmids that also contain antimicrobial resistance genes.  The objectives of this research were to 

1) determine the prevalence of food-borne pathogens, Salmonella and E. coli O157, in cattle fed 

diets with or without monensin and tylosin and 0 or 25% wet corn distiller’s grains (WDGS), 2) 

determine the prevalence of food-borne pathogens in cattle fed elevated concentrations of copper 

and zinc 3) evaluate the effect of antimicrobials on antimicrobial susceptibility of food-borne 

pathogens and commensal fecal bacteria, and 4) determine a possible association between in-

feed antimicrobials and the concentration of antimicrobial resistance genes in the feces of cattle.  

Inclusion of 25% WDGS was associated with a higher prevalence of E. coli O157 on one of two 

sample collection days; however, there was no association between the use of monensin and 

tylosin, or copper and zinc on the prevalence of food-borne pathogens.  Including monensin and 

tylosin in cattle diets was associated with an increased resistance of enterococci to macrolides, 

but was not related to concentration of the common macrolide resistance gene, ermB.  In cattle 

fed diets with copper and/or zinc, no differences were observed in antimicrobial susceptibility or 

the concentration of antimicrobial resistance genes.  In conclusion, results indicate that including 

growth-promoting antimicrobials in cattle diets at below therapeutic concentrations only 

limitedly impacted antimicrobial susceptibility and concentration of fecal antimicrobial 

resistance genes; however, this research encompassed only a select number of microorganisms.  

The positive association between WDGS and E. coli O157 prevalence in cattle has important 

implications for food safety, and warrants further investigation. 
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CHAPTER 1 - Literature Review 

Introduction 
Antimicrobials are natural or synthetic compounds that inhibit or kill the growth of 

microorganisms by targeting cellular processes (Walsh, 2003; Giguère, 2006; Guardabassi and 

Courvalin, 2006).  The Clinical and Laboratory Standards Institute (CLSI) and others have 

defined different applications of antimicrobial use in food animals that include therapy, 

prophylaxis, and growth promotion (USDA APHIS/VS/CEAH/CEI, 1999; CLSI, 2002).  

Therapeutic antimicrobial application involves administration of a compound to an animal(s) 

with apparent clinical disease.  Prophylaxis is defined as antimicrobial administration to animals 

considered at risk for disease, without the identification of an etiologic agent.  Finally, 

antimicrobials for growth promotion are given over time to improve physiologic performance 

and usually are administered as feed additives.  Importantly, growth promoting antimicrobials 

are administered to food animals at smaller doses than therapeutic antimicrobials (USDA 

APHIS/VS/CEAH/CEI, 1999; Barton, 2000) to achieve the desired effects.  Although growth 

promoting antimicrobials frequently are administered in-feed, therapeutic and prophylactic 

antimicrobials may be administered through the feed or through other routes such as injection 

(Schwarz and Chaslus-Dancla, 2001; McEwen and Fedorka-Cray, 2002).  The focus of this 

review is to evaluate the effect of non-therapeutic, in-feed antimicrobial use on the susceptibility 

of fecal commensal and food-borne bacterial species from feedlot cattle.      

Feedlot cattle are given antimicrobials in feed to prevent disease, increase feed efficiency 

and rate of weight gain, and/or to protect against liver abscesses (Nagaraja and Chengappa, 1998; 

NRC, 1999; McEwen and Fedorka-Cray, 2002; 2007 Feed Additive Compendium, 2006).  Many 
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different antimicrobials are labeled for feed additive use in feedlot cattle (Table 1.1; 2007 Feed 

Additive Compendium, 2006).  Chlortetracycline administered to feeder calves considered “high 

risk” improved average daily gain and feed conversion compared to control calves (Gallo and 

Berg, 1995).  Rogers et al. (1995) reported that adding virginiamycin to the diets of cattle fed 

high-grain finishing rations improved animal growth and performance with minimal impact on 

feed intake.  Another feed additive, the ionophore laidlomycin propionate, also was shown to 

increase gain and feed conversion compared to cattle not fed the ionophore (Spires et al., 1990).  

Russell and Houlihan (2003) stated that ionophores can improve feed efficiency by up to ten 

percent.   

The mechanism for increasing cattle growth efficiency with antimicrobial use is believed 

to be multifaceted; some antimicrobials may alter normal microbial populations or metabolic 

processes in the gastrointestinal system, others may suppress disease, while additional 

mechanisms may still be unknown (USDA APHIS/VS/CEAH/CEI, 1999; Gustafson and Bowen, 

1997; Barton, 2000; Phillips et al., 2004).  The performance-enhancing benefits of these 

antimicrobials are believed to be associated with changes in microorganisms confined to the 

gastrointestinal tract, demonstrated by the absence of growth promotion in germ-free animals 

(Shryock and Page, 2006).  Furthermore, in addition to traditional antimicrobials, cattle may also 

be administered anabolic compounds or mineral supplements to improve feed efficiency and gain 

(NRC, 1999; 2007 Feed Additive Compendium, 2006; Sapkota et al., 2007).     

When fed to feedlot cattle as a means of growth promotion, antimicrobials are usually 

administered at dosage levels below those recommended for therapeutic purposes (Barton, 2000; 

Russell and Houlihan, 2003).  Several antimicrobials have medicated feed additive claims for 

improved growth rate and feed efficiency as well as for prevention of bacterial diseases (2007 
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Feed Additive Compendium, 2006).  It is generally accepted that any use of antimicrobial 

compounds applies selective pressure for resistant organisms (Teuber et al., 1999; American 

Academy of Microbiolgy, 2002).  There currently is debate within the scientific community 

regarding the use of low-level, growth promoting antimicrobials, the subsequent development of 

antimicrobial resistant bacterial populations, and the impact of these resistant populations on 

animal and human health (Barton, 2000; American Academy of Microbiolgy, 2002).  Multiple 

studies have identified associations between in-feed, growth promotant or prophylactic treatment 

and antimicrobial susceptibility of fecal bacteria from food animals.  Enterococcus isolates from 

broilers fed treatments with or without virginiamycin had decreased susceptibility towards a 

related human antimicrobial, quinupristin/dalfopristin (McDermott et al., 2005).  Additionally, 

enterococci isolates recovered from pigs during an on-farm epidemiologic study reported more 

erythromycin resistance from farms feeding tylosin for growth promotion than from farms not 

feeding tylosin (Jackson et al., 2004).  Aarestrup et al. (2001) have shown that removing growth 

promotants (i.e., avilamycin and tylosin) from animal feed in Denmark decreased the incidence 

of antimicrobial resistance towards related compounds in Enterococcus isolates from broilers 

and pigs.  Interestingly, the prevalence of resistance from the previous study never reached zero; 

some isolates seemed to maintain resistance even after a span of five years (Aarestrup et al., 

2001).  Dairy bull calves were shown to have an increased number of fecal Escherichia coli 

isolates resistant to two or more antimicrobials when given prophylactic, in-milk neomycin 

sulfate and tetracycline HCl, compared to control calves (Berge et al., 2006).  Another study 

reported that ionophore supplementation did not impact the antimicrobial susceptibility of fecal 

coliforms from beef calves assigned to treatments with and without lasalocid, with the exception 

of an ampicillin association from one of two treatment years (Edrington et al., 2006).  This study 
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suggests that the selective pressure for antimicrobial resistance and the ability to impact human 

health is probably somewhat compound specific.  Ionophores, bambermycins, and quinoxalines 

all have a unique modes of action and no human antibiotic analogue (Boerlin and White, 2006); 

the risk of detrimental effects to humans from ionophore resistance in food animals is likely low 

(Russell and Houlihan, 2003).  Measuring the ability of any of these organisms to infect humans 

and have detrimental effects on human health has not been as widely reported and is likely 

difficult to accomplish.     

The potential repercussions from growth promoting antimicrobial use is not a recent 

concern; several expert committees, most notably the Swann Committee in 1969, have raised 

concerns regarding growth promotant use, antimicrobial resistance, and human health (Gustafson 

and Bowen, 1997).  In 2001, the American Academy of Microbiology held a colloquium 

attended by representatives of academia, industry, and government research.  Participants agreed 

that the use of any antimicrobial creates a potential for antimicrobial resistance.  The use of 

growth-promoting antimicrobials alone is not responsible for the reservoir of resistance 

(American Academy of Microbiology, 2002).  Additionally, it was their opinion that it is not 

important to identify where antimicrobial resistance initiated, but more so, how it is maintained 

and amplified (American Academy of Microbiology, 2002).   

Definition of Antimicrobial Resistance  
An interesting aspect in the study of antimicrobial resistance is that the term “resistance” 

is difficult to define.  According to Guardabassi and Courvalin in Antimicrobial Resistance in 

Bacteria of Animal Origin (2006), there are different definitions of resistance depending on 

microbiologic, clinical, biochemical, and genetic criteria.  Prescott (2000) describes multiple 

interpretations of resistance that include a specific strain’s relation to the total population or in 
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relation to the mean tissue concentration of an antimicrobial when administered at a normal dose 

and route.  Generally, laboratory in vitro tests are used to assess antimicrobial susceptibility (or 

resistance) under controlled conditions.  The susceptibility of a bacterial strain towards a 

particular antimicrobial can be measured by microbroth dilution minimum inhibitory 

concentration (MIC) or agar disk diffusion method (Watts and Lindeman, 2006).  The MIC 

method determines the lowest concentration of an antimicrobial that will completely inhibit the 

growth of an isolate.  Standardized breakpoints allow for labeling strains as resistant, susceptible, 

or intermediate (Guardabassi and Courvalin, 2006).  An advantage to this procedure is that the 

strain can be compared to others and result in a distribution of MIC values for a bacterial species 

(Watts and Lindeman, 2006).   

Molecular methods are also available to detect antimicrobial resistance.  There are 

several reported advantages to detecting antimicrobial resistance genes with molecular 

techniques: results are often obtained quickly, molecular detection allows for determining a risk 

of resistance when a strain has MIC values near the breakpoint, and the distribution and diversity 

of different resistance mechanisms can be better assessed (Aarts et al., 2006).  Molecular 

detection methods include PCR, real-time PCR, and microarray analyses (Aarts et al., 2006).  A 

limitation to molecular detection is that a resistance gene may be present, but may not actually be 

induced to provide resistance.  Another potential downfall to defining resistance through 

laboratory procedures (MIC determination or molecular methods) is the lack of validity 

regarding in vivo complexities.  Location, dosage, route of administration and other complexities 

can impact in vivo conditions and the ability of the organism to resist an antimicrobial compound 

(Guardabassi and Courvalin, 2006).    
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Mechanisms for Bacterial Antimicrobial Resistance 
There are two broad categories of bacterial antimicrobial resistance, intrinsic and 

acquired.  Intrinsic resistance reflects a bacterial genus or species lacking an appropriate target or 

the permeability needed for inhibition by an antimicrobial, whereas acquired resistance is 

observed once a particular strain has undergone chromosomal mutations or acquired genes 

encoding resistance (Schwarz and Chaslus-Dancla, 2001; Schwarz et al., 2006).  More 

specifically, there are at least three general mechanisms by which bacteria resist antimicrobial 

activity: reduced compound accumulation, enzymatic inactivation, and modification of the target 

(Schwarz and Chaslus-Dancla, 2001; Walsh, 2003; Poole, 2005; Schwarz et al., 2006; Depardieu 

et al., 2007).   

Reduced antimicrobial accumulation is mediated by decreased intake or increased export 

of the compound (Schwarz and Chaslus-Dancla, 2001).  Bacterial efflux mechanisms can be 

encoded by either chromosomal or plasmid genes, and often belong to one of five classes of 

efflux pumps (Poole, 2005; Depardieu, et al., 2007).  In addition, efflux mechanisms can be non-

specific, allowing for the export of multiple antimicrobial compounds, or they may be compound 

and/or class specific (Walsh, 2003; Poole, 2005; Depardieu, et al., 2007).  Plasmids, which are 

transferable between bacteria, often contain genes for specific efflux-mediated antimicrobial 

resistance, while multi-antimicrobial exporters normally are contained within the host genome.  

The effects of chromosomal efflux pumps typically occur after increased expression of the 

pumps (Walsh, 2003; Depardieu, et al., 2007).  Several in vitro studies with common food-borne 

pathogens have shown that multi-drug efflux pumps also can provide resistance to common 

biocides and traditional antimicrobials (Poole, 2005).   

Enzymatic inactivation, like efflux mechanisms, can be coded for by genes in the host 

chromosome or in plasmids, gene cassettes, or transposons (Walsh, 2003; Schwarz et al., 2006).  
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There are several broad mechanisms for enzymatic inactivation, including degradation and 

chemical modification of the antimicrobial (Schwarz, et al, 2006).  Antimicrobial inactivating 

enzymes have been found in both Gram positive and Gram negative bacterial species, including 

Staphylococcus aureus and Escherichia coli (Walsh, 2003; Schwarz et al., 2006).  Perhaps the 

best reported and well known inactivating enzymes are the β-lactamases.  These enzymes, of 

which several hundred have been discovered and classified into four classes, cleave the β-lactam 

ring of multiple antimicrobials (Walsh, 2003; Schwarz et al., 2006).   

The final mechanism for antimicrobial resistance is target modification, which can occur 

chemically or through mutation or protection of the target site (Schwarz et al., 2006).  An 

example of a target site modification is seen in macrolide, lincosamide, and streptogramin B co-

resistance encoded for by erm genes from multiple bacterial genera (Schwarz et al., 2006).  The 

erm genes encode rRNA methylases (mono- or di-), specific for a single adenine residue 

(position 2,058) conserved within 23S rRNA (Leclercq and Courvalin, 1991; Weisblum, 1995; 

Schwarz et al., 2006).  In contrast to target modification, tetracycline resistance frequently is a 

result of ribosomal protection.  Tetracycline protection involves proteins with homology to 

elongation factors, which are produced and interact with the ribosome, preventing tetracycline 

binding (Schwarz, et al., 2006).  Both the erm genes and tetracycline protection proteins are 

encoded on genes that are present on transferable elements (Leclercq and Courvalin, 1991; 

Schwarz et al., 2006).       

Transfer of Antimicrobial Resistance 
Mobile genetic elements can be passed through bacteria by vertical or horizontal 

transmission (Schwarz and Chaslus-Dancla, 2001).  Mobile resistance determinants likely 

originated in antibiotic-producing organisms before therapeutic or non-therapeutic use of 
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antimicrobials (Boerlin and White, 2006).  Populations of antimicrobial resistant bacteria are 

expanded by the acquisition of these resistance genes through horizontal transmission (Teuber et 

al., 1999).  One specific type of mobile element, resistance-encoding plasmids, can be passed 

between bacterial types as seen by the presence of Gram-positive resistance determinants 

expressed in Gram-negative organisms (Courvalin, 1994).  Doucet-Populaire and others (1992) 

have shown that plasmid DNA containing known kanamycin resistance could be transferred 

from Enterococcus faecalis to Escherichia coli isolates in the gastrointestinal tract of germ-free 

mice.  Plasmids containing the ermB and tetM genes have the ability to transfer between 

Lactobacillus plantarum and Enterococcus faecalis within the gastrointestinal tracts of germ-free 

rats (Jacobsen et al., 2007).  Movement of plasmids or other mobile elements is not limited to 

commensal bacterial species.  Resistance genes located on mobile elements also can disseminate 

between commensal and pathogenic organisms (Boerlin and White, 2006).  A precise 

determination of the rate at which horizontal transfer occurs within the complex gastrointestinal 

system of cattle has not been examined.     

Food-safety Implications 
According to National Cattlemen’s Beef Association, the United States produced more 

than 26 million pounds of beef in 2006 

(http://www.beefusa.org/uDocs/cattlenumbersandmeatproduction.pdf).  Furthermore, a 2005 

publication reported that 88% of U. S. households consumed beef at least once in two weeks 

(http://www.beefusa.org/udocs/beefbytescomplete03-28-05.pdf).   The beef industry is important 

to the American economy and consumer assurance of a safe food supply is vital to the beef 

industry.  An aspect of food safety is the emergence in and dissemination of antimicrobial 

resistance from food-borne bacteria.  As previously discussed, antimicrobial resistance is not 
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only a problem of treatment failure, but also resistance genes that disseminate rapidly between 

bacterial strains.  The interaction of human activity (consumption of food, contact with animals, 

etc.) and zoonotic bacteria creates a potential mixing pot for the spread of antimicrobial 

resistance.  

The following sections outline specific antimicrobial resistance information on food-

borne pathogenic and commensal bacteria of feedlot cattle as they relate to antibiotics included 

in cattle feed.  These bacteria may serve as indicators for the prevalence of resistance in animals 

administered non-therapeutic antibiotics, and have important ramifications for food safety.  

Resistance to tetracycline and a select number of additional antimicrobials frequently is reported 

without information regarding therapeutic or non-therapeutic antimicrobial administration.  For 

purposes of this review, unless a publication specifically references therapeutic use, 

antimicrobial susceptibility for compounds used both therapeutically and as growth promotants 

will be reported.  In studies not specifically designed to assess growth-promotant use on 

antimicrobial resistance, susceptibly results will be reported only for compounds available for in-

feed use, as correlations between other antimicrobials would be speculative.  Additionally, the 

susceptibility of many Gram negative pathogens toward in-feed antimicrobials with Gram 

positive spectrum (i.e. macrolides, streptogramins) are not reported.  Most commonly, 

antimicrobial susceptibility results are reported using in vitro laboratory methods for MIC 

determination and isolates are labeled susceptible, intermediate, or resistant according to CLSI 

criteria, which may or may not be designed for such isolates.  

Antimicrobial Susceptibility of E. coli O157  
Escherichia coli O157 is a significant food-borne pathogen for humans.  Ruminants, 

primarily cattle, serve as an important reservoir for the organism (Gyles, 2007).  The 

 9



contamination of beef carcasses is correlated to the fecal and hide prevalence of E. coli O157 

(Elder et al., 2000); therefore, the impact of in-feed antimicrobials on resistance in E. coli O157 

is a food safety concern.  Sheep experimentally inoculated with E. coli O157 were given diets 

containing monensin, laidlomycin propionate or bambermycin, and concentration and 

antimicrobial susceptibility of E. coli O157 were examined (Edrington et al., 2003).  

Susceptibility was unaffected by ionophore use and only minimally impacted by bambermycin.  

Unfortunately, similar studies have not been reported in feedlot cattle.   

Meng and others (1998) determined the susceptibility profiles of E. coli O157 isolates 

obtained from cattle, ground beef, milk and humans to sixteen different antimicrobials.  They 

reported that cattle isolates were more frequently resistant to antimicrobials compared to food 

product or human isolates, and 38.1% of cattle isolates were at least co-resistant to tetracycline 

and the most common resistance profile included streptomycin, sulfisoxazole, and tetracycline 

resistance.  Schroeder et al. (2002) received 133 E. coli O157 isolates from cattle and observed 

that 20% were resistant to tetracycline, the antimicrobial for which the expression of resistance 

was most prevalent.  A 2004 Saskatchewan study examined 131 E. coli O157 feedlot cattle 

isolates and found 12% were resistant to tetracycline and 8% of isolates were multi-drug 

resistant, including resistance to tetracycline (Vidovic and Korber, 2006).  The authors state that 

while most feedlots from which isolates were collected fed monensin, they do not believe the 

ionophore contributed to susceptibility profiles.  Galland et al. (2001) reported antimicrobial 

susceptibility results from E. coli O157 isolates from large-scale feedlots in southwest Kansas; 

although no feedlots reported the use of antibiotics for growth promotion or prophylaxis, 8% of 

PCR confirmed isolates were resistant to tetracycline.  In addition, all E. coli O157 isolates from 

this study were classified as intermediate to tylosin and resistant to erythromycin.  Finally, 
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although E. coli O157 is known to carry a plasmid, Lim et al. (2007) conducted a study with a 

human clinical plasmid deletion mutant and found identical susceptibility profiles between wild-

type and mutant isolates.   

Antimicrobial Susceptibility of Salmonella enterica  
There are more than 2,500 Salmonella serotypes, and the antimicrobial susceptibility 

profile of cattle Salmonella isolates is serotype dependent (Dargatz et al., 2003).  One study 

collected Salmonella isolates from pen floor samples in 73 feedlots from 12 states and found the 

most frequent antimicrobial to which isolates were resistant was tetracycline (35.9%; Dargatz et 

al., 2003).  This study did not report the use of in-feed antimicrobials at any feedlot from which 

isolates were obtained.  Salmonella Newport isolates obtained from the study carried more 

resistance than any other serotype.  Similarly, a 2002 publication reported that 23.2% of 

Salmonella isolates from cattle feedlots were resistant to tetracycline and 5.7% were resistant to 

sulfamethoxazole, while less than 5% of the isolates were resistant to any other antimicrobial 

evaluated (Dargatz et al., 2002).  This study collected 50 fecal samples from 100 feedlots as part 

of the National Animal Health Monitoring System’s Cattle on Feed Evaluation (NAHMS-

COFE).  The most common multi-drug resistant isolates (1.9% of isolates) in this study had 

reduced susceptibility towards ampicillin, neomycin, sulfamethoxazole, tetracycline, and 

ticarcillin.  Neither therapeutic nor growth-promoting antimicrobial use was reported.  Fluckey et 

al. (2007) described a study with sixty feedlot steers that were fed diets containing monensin and 

tylosin.  Cattle were sent to slaughter in groups of 20, and fecal, hide and carcass samples were 

collected before or at arrival.  Salmonella isolates (n = 101) were resistant to at least one 

antimicrobial (97% of isolates) and the most common resistance was to sulfamethoxazole (96%) 

followed by streptomycin (17.6%).  No control group was included in this study.  Dealy and 
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Moeller (1977b) conducted an experimental challenge study with Salmonella Typhimurium.  

Twenty Holstein calves were assigned to two treatments, non-medicated or medicated with 

bambermycin, and five isolates from each calf were tested for susceptibility.  Calves were 

obtained from an auction, and information on previous antibiotic treatments was not available.  

The S. Typhimurium prevalence was negatively associated with bambermycin inclusion and 

calves fed bambermycin had a larger number of isolates susceptible to streptomycin, 

oxytetracycline, and ampicillin compared to the non-medicated calves.  Treatment did not impact 

resistance to any other antimicrobial analyzed 

Antimicrobial Susceptibility of Campylobacter species 
Multiple studies have analyzed the antimicrobial susceptibility of Campylobacter isolates 

from beef and diary cattle; most studies examined isolates from cattle in their natural 

environment and determined MIC for antimicrobials commonly used in the therapeutic treatment 

of Campylobacter gastroenteritis in humans.  The species of Campylobacter influences the 

frequency of antimicrobial resistance; C. coli are more frequently resistant to antimicrobials than 

C. jejuni (Bae et al., 2005; Englen et al., 2005; Inglis et al., 2006).  In addition, tetracycline 

appears to be an antimicrobial to which cattle Campylobacter isolates commonly express 

phenotypic resistance (Sato et al., 2004; Englen et al., 2005; Inglis et al., 2005; 2006).   

Inglis et al. (2005) assessed the effect of in-feed antimicrobials on the prevalence and 

antimicrobial susceptibilities of two cattle Campylobacter species, and found tetracycline 

resistance in 5.3 and 10.7%, and erythromycin resistance in 0.8 and 10.1%, of C. jejuni and C. 

hyointestinalis isolates, respectively.  In addition, the study indicated that feeding 

chlortetracycline significantly increased the carriage rate of tetracycline resistant C. jejuni while 

also increasing the carriage rate of erythromycin resistant C. hyointestinalis (Inglis et al., 2005).  
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The therapeutic use of tetracycline, macrolides, or other antimicrobials was not reported in that 

study.  Bae et al. (2005) isolated Campylobacter species from fifteen farms where 2.9% of C. 

jejuni were resistant to erythromycin and isolates obtained from feedlot cattle accounted for 62% 

of the erythromycin-resistant strains.  A study comparing Campylobacter prevalence and 

antimicrobial susceptibility between organic and conventional dairy herds found no isolates 

resistant to erythromycin while approximately 45% of isolates were tetracycline-resistant; farm 

type was not associated with tetracycline resistance (Sato et al., 2004).  Finally, Englen and 

others (2005) reported antimicrobial susceptibility results from C. coli and C. jejuni isolates 

collected from U. S. feedlot cattle for the National Animal Health Monitoring System study.  

Erythromycin, azithromycin, and tetracycline had resistance frequencies of 0.9, 0.9, and 51.6% 

from randomly selected Campylobacter isolates (Englen et al., 2005).      

Antimicrobial Susceptibility of Listeria species  
Callaway et al. (2006) observed a Listeria species prevalence of less than 4% in feedlot 

cattle.  The antimicrobial susceptibility of these isolates was not determined, and other studies 

examining Listeria prevalence in feedlot cattle are rare.  Listeria species are known to carry and 

transfer plasmids that contain resistance genes to antibiotics used as non-therapeutic feed 

additives (Roberts et al., 1996; Charpentier and Courvalin, 1999).  Srinivasan et al. (2005), 

obtained thirty-eight L. monocytogenes isolates from dairy cattle and their environment and 

found resistance (determined by MIC) to tetracycline in 45% of isolates and the presence of 

tet(A) in 32% of isolates.  In the same study, all isolates were susceptible to the macrolide 

antimicrobial, erythromycin.  A study in bison (Li et al., 2007) revealed antimicrobial resistance 

to several non-therapeutic, in-feed antibiotics including bacitracin (88.3%), tetracycline (18.6%), 

tylosin (2.3%) and the related erythromycin (1.2%).  Previous works from poultry and cheese 
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isolates reported a high prevalence of tetracycline resistance and a low prevalence of 

erythromycin resistance (Facinelli et al., 1991; Roberts et al., 1996).  A more recent European 

study showed Listeria isolates from a variety of food products had no resistance to tetracycline 

or erythromycin (Aarestrup et al., 2007).   

Antimicrobial Susceptibility of commensal E. coli   
The effect of growth-promoting antimicrobials on the susceptibility of commensal 

bacteria in feedlot cattle has been more extensively studied than the relationship with food-borne 

pathogens.  Edrington and colleagues (2006) fed diets with or without lasalocid to two groups of 

calves over two years and found little differences in antimicrobial susceptibility of putative fecal 

coliforms between the two groups of calves.  In year one of the study, coliforms from calves fed 

lasalocid were resistant to more antimicrobials than calves in the control group, and more 

isolates were resistant to ampicillin in the lasalocid group.  Inclusion of lasalocid did not have a 

significant effect in year two.  Neomycin susceptibility also was assessed in this study, and only 

two isolates (one per year) were resistant, both from ionophore-fed calves.  Additionally, 

resistance to oxytetracycline and chlortetracycline was the most common, yet was unaffected by 

treatment.  A preliminary study involving oral administration of neomycin to feedlot cattle 

observed that the percent of neomycin resistant isolates increased more in calves given the 

treatment and was associated with an increase in MIC of all aminoglycosides (Chichester et al., 

2006).  The long-term effect of neomycin treatment (only fed for three days) or the length of 

time that isolates remained resistant was not examined in this study.  A study previously 

described (Dealy and Moeller, 1977a) challenged Holstein calves with S. typhimurium and fed 

diets with or without bambermycin.  During collection for S. typhimurium, E. coli isolates were 

also obtained and screened for antimicrobial susceptibility.  The non-medicated (no 
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bambermycin treatment) had a higher percentage of isolates resistant to streptomycin and 

oxytetracycline compared to the treatment group.  No susceptibility differences were reported for 

ampicillin, neomycin or sulfa-antibiotics.  More E. coli isolates were resistant to bambermycin in 

the treatment group compared to the control group.   

Fluckey and others (2007) conducted a study that included sixty feedlot steers fed diets 

containing monensin and tylosin.  A total of 267 commensal E. coli isolates collected from feces, 

hides, and carcasses before shipping and at the abattoir were evaluated for antimicrobial 

susceptibility.  Isolates were highly resistant to sulfamethoxazole (79%) and less resistant to 

tetracyclines (13%).  A factor analysis study was designed to assess relationships between the 

MIC values of seventeen antimicrobials in commensal E. coli isolates from feedlot cattle 

(Wagner et al., 2003).  Of 1,737 E. coli isolates obtained from 360 fecal samples, 66% were 

susceptible to all antimicrobials evaluated.  The study concluded that MIC values were linked 

between antimicrobials within the same class, and between groupings observed in other studies.  

Finally, an interesting study was conducted in neonatal Holstein calves (n = 27) which were 

randomly allocated to three treatments: no dietary supplement, dietary supplement with 

oxytetracycline, and dietary supplement without oxtetracycline (Khachatryan et al., 2006).  Fecal 

samples were collected once per week for three months and E. coli isolates were evaluated for 

susceptibility to six antimicrobials.  The three treatments did not affect the levels of 

antimicrobial resistance to any one compound except chloramphenicol; the calves fed no dietary 

supplement had a higher level of chloramphenicol-resistant E. coli isolates.  The multi-drug 

resistant phenotype streptomycin, sulfadiazine and tetracycline were more prevalent in E. coli 

isolates from calves fed either supplement, but were not dependent on oxytetracycline use.   
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Antimicrobial Susceptibility of Enterococcus species  
The antimicrobial susceptibility of fecal Enterococcus species has been extensively 

studied in food-systems of poultry and swine (Aarestrup et al., 2001; Butaye et al., 2001; De 

Leener et al., 2004), but such work has not been commonly reported for feedlot cattle.  In pigs, 

tylosin use has frequently been associated with macrolide resistance in Enterococcus isolates 

(Davies and Roberts, 1999; Aarestrup et al., 2001; Jackson et al., 2004).  Butaye et al. (2001) 

sampled Enterococcus faecium and E. faecalis isolates from pet and farm animals with unknown 

previous antimicrobial usage, and described their susceptibilities to growth-promoting 

antimicrobials.  Ten ruminant E. faecium and 25 ruminant E. faecalis isolates were obtained and 

none were resistant to monenesin, however, tylosin resistance was frequent.  Ampicillin 

resistance was not commonly reported among ruminant samples; however, the percent of 

ruminant isolates susceptible to oxytetracyline was 20 and 29% for each Enterococcus species, 

respectively (Butaye et al., 2001).  A descriptive study by Thal and others (1995) collected 34 

cattle Enterococcus isolates and found none were resistant to the antimicrobials evaluated 

(ampicillin, gentamicin, streptomycin, and vancomycin); no information on the nature of these 

isolates was reported.   

Molecular techniques have been used to catalogue the presence of common macrolide 

resistance genes (primarily the erm genes) in animals and humans (Jensen et al., 1999).  One of 

these genes, ermX, and later ermB, were first identified in Arcanobacterium pyogenes, primarily 

isolated from cattle, and have been associated with decreased macrolide susceptibility (Jost et al, 

2003; 2004).  These genes also have been identified in enterococci from human and pig origin 

(De Leener et al., 2004), and it is likely they are present in cattle enterococci isolates as well.   
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Susceptibility to Metals 

Heavy metals such as copper and zinc are added to cattle diets because of their 

antimicrobial and growth-promoting benefits (Hasman et al., 2006).  More specifically, copper 

has been associated with finishing cattle performance at concentrations less than 20 mg Cu/kg 

DM, after which performance is reduced (Engle and Spears, 2000).  The National Research 

Council recommends inclusion of copper (10 mg/kg), and zinc (30mg/kg), along with other 

microminerals, in the diets of finishing cattle (NRC, 1996).  Resistance to heavy metals 

including arsenic and copper is widespread and the genes are often present on plasmids (Shryock 

and Page, 2006).  Previous work in swine receiving copper in-feed revealed a copper resistance 

gene (tcrB) linked to antimicrobial resistance genes (ermB and others) on a transferable plasmid 

(Hasman and Aarestrup, 2002).  This study acknowledged that although cattle are fed a lower 

concentration of copper than swine or broilers, 16% of Enterococcus faecium isolates from 

calves were resistant to copper.  Antimicrobial susceptibility results from these isolates were not 

available.  No other studies on the impact of in-feed heavy metals on antimicrobial and metal 

resistance in cattle are available.    

Conclusions 
The United States feedlot cattle industry frequently takes advantage of growth-promoting 

antimicrobials included in finishing cattle feed at concentrations below those used 

therapeutically.  The effect of these antimicrobials on the susceptibility of both commensal and 

food-borne bacterial species is heavily debated and has potentially important ramifications for 

food safety.  Most of the current literature reporting on antimicrobial susceptibility fails to 

include background information regarding both therapeutic and non-therapeutic in-feed 

antimicrobial use, and does not necessarily apply breakpoints meaningfully.  Importantly, in 
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most studies from cattle feedlots, the majority of food-borne pathogens or commensal organisms 

are susceptible to the many of antimicrobials included within in vitro testing panels.  The most 

common antimicrobials for which resistance is reported often includes antimicrobials used in-

feed (i.e., tetracyclines and macrolides), however, because these antimicrobials also are used for 

therapeutic purposes, it is difficult to assess the impact of low-dose concentration alone.  Again, 

it is generally accepted that any antimicrobial use will be a selective pressure for antimicrobial 

resistance.  Because in-feed antimicrobials provide a continuous selective pressure, it is not 

unreasonable to believe they have an effect on the susceptibility of bacteria with which they 

associate; studies examining the effect of removing in-feed antimicrobials on bacterial 

susceptibility from feedlot cattle are not abundant.    
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Table 1.1 Approved antimicrobial feed additives and their indications for use in finishing 

cattlea 

Antimicrobialb Indications for use 

Bacitracin Methylene  

Disalicylate 

Reduction in number of liver condemnations due to abscesses 

Bacitracin Zinc Increased rate of weight gain and improved feed efficiency 

Bambermycins Increased rate of weight gain and improved feed efficiency 

Chlortetracycline Increased rate of weight gain and improved feed efficiency 

Reduction in number of liver condemnations due to abscesses 

Control of bacterial pneumonia associated with shipping fever  

       caused by Pasteurella spp. susceptible to chlortetracycline 

Laidlomycin Increased rate of weight gain and improved feed efficiency 

Lasalocid Increased rate of weight gain and improved feed efficiency 

Monensin Improved feed efficiency 

Neomycin Treatment and control of colibacillosis (bacterial enteritis) caused 

      by Escherichia coli susceptible to neomycin 

Oxytetracycline Increased rate of weight gain and improved feed efficiency 

Reduction of liver condemnation do to abscesses 

Tylosin Reduction in incidence of liver abscesses in beef cattle caused by  

     Fusobacterium necrophorum and Arcanobacterium pyogenes 

Virginiamycin Improved rate of weight gain and improved feed efficiency 

Reduction of incidence of liver abscesses 

a Adapted from the 2007 Feed Additive Compendium.   

b Does not include feed additive combinations or anti-parasitic compounds. 
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CHAPTER 2 - Effects of feeding wet corn distiller’s grains with 

solubles with or without monensin and tylosin on the prevalence and 

antimicrobial susceptibilities of fecal food-borne pathogenic and 

commensal bacteria in feedlot cattle 

INTRODUCTION 
The use of feed antimicrobials in livestock is controversial because of the potential 

selection pressure for resistant organisms and the subsequent risk to human health (Gustafson 

and Bowen, 1997; Barton, 2000).  Monensin and tylosin are widely used in cattle diets to 

improve feed efficiency and reduce liver abscesses (Stock et al., 1995; Nagaraja and Chengappa, 

1998).  Because of concerns with antimicrobial resistance, there is interest in producing food 

animals without the use of antimicrobial feed additives.  Wet distiller’s grains with solubles 

(WDGS) are a co-product of ethanol production from cereal grains and are comprised principally 

of the bran, protein, and germ fractions (Spiehs et al., 2002).  The high fiber content in distiller’s 

grain makes their primary use in ruminant diets (Ham et al., 1994; Lodge et al., 1997; 

Kleinschimt et al., 2006).  During ethanol production, antimicrobials, such as penicillin and 

virginiamycin, are used to suppress bacterial contamination (Narendranath et al., 2000).  It is 

generally believed that the distillation process destroys these antibiotics (Shurson, 2005).  The 

high energy density in distiller’s grains provides an opportunity to reduce dependency on feed 

antimicrobials while achieving similar growth promotion.  

Food-borne pathogens, such as Escherichia coli O157 and Salmonella, are important to 

the beef industry.  The effect of antimicrobial additives and other feed ingredients on the 
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prevalence of food-borne pathogens has implications for food safety.  Our objectives were to 

determine the effects of feeding WDGS with or without monensin and tylosin on the prevalence 

and antimicrobial susceptibilities of E. coli O157 and Salmonella and commensal E. coli and 

Enterococcus spp., in feces of finishing cattle.  We hypothesized that feeding distiller’s grains 

and feed antibiotics to cattle will exert pressure for antimicrobial resistance in the gut bacteria 

and increase the concentration of antimicrobial resistance genes. 

MATERIALS AND METHODS 

Animals, Diets and Sampling Schedule 

The study was conducted in the summer of 2005.  Three hundred-seventy crossbred 

yearling heifers were allotted to 54 concrete-surfaced feedlot pens (5.2 m2 per animal) with 6 to 

7 animals per pen.  Diets were fed for 150 d and consisted of 6% (DM basis) alfalfa hay and 

steam-flaked corn (SFC; Table 2.1).  The study was a randomized complete block design with a 

2×3 factorial treatment arrangement (9 pens per treatment).  Wet corn distiller’s grain with 

solubles was included at 0 or 25% (DM basis) and antimicrobial feed additives were the second 

factor, included as none, monensin (Rumensin®, 300 mg·animal-1·d-1) alone, or monensin and 

tylosin (300 mg·animal-1·d-1 and Tylan®, 90 mg·animal-1·d-1, respectively).  Pens were blocked in 

a series of six sequential pens and treatments were randomly allocated within each block.  There 

were common fence lines between adjacent pens.  Fecal samples were collected rectally from 

each animal on d 122 and d 136 of the finishing period, placed in sterile bags and transported to 

the laboratory immediately.   

Bacteriological Procedures 

Unless otherwise indicated, all culture media were Difco brand (BD, Sparks, MD).  Each 

fecal sample was cultured for E. coli O157 (Greenquist et al., 2005).  Briefly, 1 g of feces was 
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enriched at 37°C for 6 h in 9 mL Gram Negative (GN) broth with cefixime (0.5 mg/L), 

cefsoludin (10 mg/L), and vancomycin (8 mg/L).  Immunomagnetic bead separation (IMS) was 

performed, followed by plating onto sorbitol-MacConkey agar with cefixime (0.5 mg/L) and 

potassium tellurite (2.5 mg/L; ctSMAC).  Plates were incubated overnight at 37°C, and sorbitol 

negative colonies (up to 6) were picked and re-plated onto blood agar plates (BAP; Remel, 

Lenexa, KS).  Following an overnight incubation at 37°C, colonies were tested for indole 

production and latex agglutination for the O157 antigen (Oxoid, Remel; Lenexa, KS).  Species 

were confirmed using the API 20E kit (bioMériux, Hazelwood, MO) and PCR was used to 

determine the presence of two Shiga toxin genes, stx1 and stx2 (Fagan et al., 1999).  The 

multiplex PCR program to amplify targets was: initial denaturation at 95ºC for 3 min, 30 cycles 

of  95ºC for 20 sec, 58ºC for 40 sec, and 72ºC for 90 sec, and a final elongation at 72ºC for 5 

min. 

In addition, 5 g of fecal sample from each animal was pooled by pen.  Pooled samples 

were then cultured for E. coli O157, Salmonella, and commensal E. coli by procedures adapted 

from Barkocy-Gallagher et al. (2002).  Briefly, 10 g of feces were enriched in 90 mL of tryptic 

soy broth (TSB) for 2 h at 25°C, 6 h at 42°C, and overnight at 4°C, followed by anti-O157 IMS 

and identification as described above.  For the isolation of generic E. coli, 50 µL of enriched 

TSB were plated onto MacConkey agar and incubated at 37°C for 24 h.  Up to two 

morphologically distinct, lactose-fermenting colonies were picked and re-plated onto BAP.  

After overnight growth at 37°C, colonies were tested for indole production and citrate tubes were 

inoculated to examine citrate utilization.  For the isolation of Salmonella, 10 mL of enriched 

TSB was inoculated to 90 mL of tetrathionate broth (TTB) and incubated 24 h at 37°C.  One 

milliliter of TTB was subjected to anti-Salmonella IMS, followed by enrichment of 100 µL in 10 
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mL Rappaport-Vassiliadis (RV) broth.  The RV broth was incubated at 42°C for 16-18 h and 50 

µL was plated on both Hektoen enteric agar supplemented with novobiocin (15 mg/L) and 

brilliant green agar with sulfadiazine (Sigma-Aldrich).  The plates were incubated overnight at 

37°C; up to three isolates from each plate were picked and re-plated onto BAP for overnight 

growth and latex agglutination.  Species of Salmonella were serogrouped and sent to NVSL 

laboratories (Ames, IA) for serotyping.   

Enterococcus isolates were obtained by diluting 1 g of pooled fecal sample in 10 mL of 

PBS and plating 50 µL onto M-Enterococcus agar.  After 24 h growth at 37°C, characteristic 

colonies (metallic pink and pin-point) were picked and plated on BAP.  Following overnight 

growth at 37°C, isolates were inoculated in 100 µL Enterococcosel broth and incubated at 37°C 

for 4 h to test for esculin hydrolysis.  A commercial kit (20Strep API; bioMériux, Hazelwood, 

MO) was used for genus confirmation.  All bacterial isolates were stored at -80°C for further use. 

Antimicrobial Susceptibility Testing 

Antimicrobial susceptibility patterns of all isolates were determined by microbroth 

dilution using the Sensititre automated antimicrobial system (Trek Diagnostic Systems, 

Cleveland, OH).  Minimal inhibitory concentrations (MIC; µg/mL) were determined for 

antimicrobials in the standard bovine clinical panel (BOPO-1F) for gram negative organisms.  

The antimicrobials and highest concentrations evaluated in the gram negative panel were: 

ceftiofur (8 µg/mL), erythromycin (4 µg/mL), chlortetracycline (8 µg/mL), florfenicol (8 

µg/mL), penicillin (8 µg/mL), ampicillin (16 µg/mL), danofloxacin (1 µg/mL), 

sulphadimethoxine (256 µg/mL), neomycin (32 µg/mL), sulphachloropyridazine (256 µg/mL), 

tylosin tartrate (20 µg/mL), sulphathiazole (256 µg/mL), spectinomycin (64 µg/mL), tilmicosin 

(32 µg/mL), clindamycin (2 µg/mL), tiamulin (32 µg/mL), enrofloxacin (2 µg/mL), 
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trimethoprim/sulfamethoxazole (2/38 µg/mL), gentamicin (8 µg/mL), and oxytetracycline (8 

µg/mL).  Enterococcus spp. were tested for antimicrobial susceptibility with the gram positive 

National Antimicrobial Resistance Monitoring System (NARMS) panel (CMV1AGPF), which 

included: bacitracin (128 µg/mL), chloramphenicol (32 µg/mL), erythromycin (8 µg/mL), 

flavomycin (32 µg/mL), penicillin (16 µg/mL), daptomycin (16 µg/mL), quinupristin/dalfopristin 

(32 µg/mL), tetracycline (32 µg/mL), vancomycin (32 µg/mL), lincomycin (32 µg/mL), tylosin 

tartrate (32 µg/mL), ciprofloxacin (4 µg/mL), linezolid (8 µg/mL), nitrofurantoin (64 µg/mL), 

kanamycin (1,024 µg/mL), gentamicin (1,024 µg/mL), and streptomycin (2,048 µg/mL). 

Quantification of Antimicrobial Resistance Genes 

Real-time PCR was used to quantify specific antimicrobial resistance genes, ermB and 

tetM.  To accurately determine the concentration of these genes, standard curves were first 

generated using known concentrations of plasmid vectors with the antimicrobial resistance gene 

inserted.  The quantification of genes in the pen floor fecal samples was conducted using the 

standardized real-time PCR after DNA had been extracted with a commerical kit.   

Bacterial Strains and Plasmids.  

 Enterococcus faecalis MMH594 (Dr. L. Zurek, Kansas State University) was used as a 

template to amplify an erythromycin resistant gene (ermBCT) and a 16S rDNA gene (EUB).  

These fragments were cloned into pCRII-TOPO vector (Invitrogen, Carlsbad, CA) and 

transformed into One Shot Top10 E. coli cells (Invitrogen).  An E. coli isolate (Dr. L. Zurek, 

Kansas State University) containing pFD310 which carries tetracycline, erythromycin, and 

ampicillin resistant markers (Smith et al., 1992) was used to amplify the tetM gene.   

Primer Design.  
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 Primers were designed or modified using Integrated DNA Technology PrimerQuest 

software (Coralville, IA; Table 2.2).  The degenerate primer used to amplify ermBCT (product 

size 404 bp; Jost et al., 2004) for cloning procedures was redesigned for real-time PCR analysis 

to more precisely target the ermB gene (product size 175 bp; this study).  

PCR Running Conditions.   

The running conditions for PCR reactions were as follows: initial denaturation of 3 min at 

94°C, 36 cycles of 30 s at 94°C, 30 s of annealing (Table 2.2), and 30 s at 72°C, final elongation 

of 2 min at 72°C with Taq DNA polymerase (Promega, Madison, WI).  Real-time PCR running 

conditions were identical for each gene with the addition of a 15 min, 95°C initial activation and 

an increase to 40 cycles.   

Cloning Techniques.   

Products from ermBCT, tetM and EUB PCR were purified with Wizard SV Gel and PCR 

Clean-up System (Promega, Madison, WI) and cloned in pCRII-TOPO.  Transformation was 

performed by heat shock into E. coli with plating onto Luria-Bertani agar with ampicillin (100 

µg/mL) and 5-Bromo-4-Chloro-3-Indolyl-β-D-galactopyranoside (X-gal) (40 mg/mL).  Plasmids 

were purified from the white colonies, using Wizard Plus SV Minipreps DNA Purification 

System (Promega, Madison, WI).  The concentration of DNA was determined using a nanodrop 

spectrophotometer (Nanodrop ND 1000, Nanodrop Technologies, Wilmington, DE) and 

confirmed with EcorI (Promega, Madison, WI) digestions and sequencing (Beckman-Coulter 

CEQ™8000 Genetic Analysis System).  

Real-time PCR Standardization.  

 Purified plasmid samples were serially diluted ten-fold.  Five microliters of plasmid 

sample were added to Absolute QPCR SYBR Green Mix (ABgene, Epsom, UK) for a 25 µL 
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reaction.  Real-time PCR was performed according to the manufacturer’s instructions.  Reliable 

gene products were available between 1 × 108 molecules/µL and 1 × 103 molecules/µL for EUB, 

and between 1 × 109 molecules/µL and 1 × 103 molecules/µL for ermB.  Dilutions of tetM were 

reliable between 7.35 × 108 molecules/µL and 7.35 × 102 molecules/µL. 

Extraction of DNA from Fecal Samples.   

Pooled fecal samples (180-220 mg) that were frozen at -80°C immediately after 

collection were thawed on ice and DNA was extracted using the QIAamp DNA stool mini kit 

according to manufacturer’s directions (QIAgen, Valencia, CA).   

 

Real-Time PCR on Fecal Samples.  

Real-time PCR was performed on 108 fecal samples to target ermB, tetM and EUB 

genes.  Melting curves were generated (0.5 increments) to test uniformity and singularity of 

products.  Electrophoresis on 1.2% agarose gels, cloning in pCRII-TOPO, and sequencing were 

used to confirm the composition and correctness of randomly selected PCR end products. The 

specific log copy number of genes was computed using the standardization curves.   

Statistical Analysis 

The prevalence of E. coli O157, estimated as the proportion of positive samples per pen, 

was analyzed with a pen-level logit model to test for effect of diet (with or without distiller’s 

grains), antimicrobial feed additive (no antimicrobial, monensin only, or monensin and tylosin), 

sampling day, and interactions using PROC GENMOD in SAS (v. 9.1; Agresti, 1996).  The 

probability of detecting food-borne pathogens (E. coli O157 and Salmonella spp.) from pooled 

pen samples were analyzed using pen-level logistic regression models in PROC GENMOD with 

diet, antimicrobial, and day as effects.   
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The prevalence of resistance to antimicrobials in the susceptibility panels was evaluated 

for Enterococcus and generic E. coli isolates using pen-level logistic regression models as 

described above.  Isolates reported as “intermediate” were considered susceptible for the 

analysis.  Initially, univariate models were used to screen for the effect of day on resistance to 

each antimicrobial compound.  Day was included in final multivariate regression models 

containing treatment effects if P ≤ 0.15 (Dohoo et al., 2003).  Type 3 likelihood ratio statistics 

were used to test for treatment effects (P < 0.05), and least-square means tests were used to 

separate probability estimates when significant effects were observed.  The MIXED procedure 

was used to evaluate mean differences in the log copy number of ermB and tetM, with the copy 

number of EUB control target as a covariate in the model.  Identical effects as above were 

examined. 

RESULTS 

Prevalence of E. coli O157 and Salmonella 

The overall prevalence of E. coli O157 in fecal samples collected from individual animals 

was 9.1% (67 of 738).  Prevalence on d 122 was 8.4% (31 of 371) and d 136 was 9.8% (36 of 

367).  The stx2 gene was present in 94.0% of isolates (63 of 67), while the stx1 gene was present 

in 22.4% of isolates (15 of 67).  Comparison of treatment groups revealed a significant WDGS 

effect (P = 0.02), however, a significant WDGS × sampling day interaction was also observed (P 

= 0.02).  The WDGS effect was significant (P < 0.001) on d 122, but not on d 136 (P > 0.2; 

Figure 2.1).  There was no feed antimicrobial effect (P > 0.8) or feed antimicrobial × WDGS 

interaction (P = 0.19) on the fecal prevalence of E. coli O157.  Prevalence of E. coli O157 in 

pooled fecal samples collected from pens was 19.4% (21 of 108) with 85.7% (18 of 21) 

containing the stx2 gene and 23.8% (5 of 21) containing the stx1 gene.  There were no effects of 
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WDGS (P > 0.4), feed antimicrobial (P > 0.4), or day (P > 0.4) on prevalence E. coli O157 in 

pooled pen samples.  Salmonella prevalence in pooled pen samples was 19.4% (21 of 108) with 

no significant treatment effects.  Serotypes recovered were Montevideo (16 isolates) and 

Muenster (5 isolates).   

Antimicrobial susceptibility 

Antimicrobial susceptibility patterns of all bacterial isolates are shown in Table 2.3.  All 

Salmonella isolates (n = 21) were susceptible to gentamicin, neomycin, tetracyclines and 

ampicillin while resistant to clindamycin and macrolides.  Escherichia coli O157 isolates (n = 

21) were susceptible to aminoglycosides with only one isolate resistant to neomycin.  The most 

frequent resistance in E. coli O157 isolates was to tetracyclines and sulfonamides.  

Chlortetracycline resistance was displayed in 33.3% of isolates, while 47.6% of isolates were 

resistant to oxytetracycline.  Sulfonamide resistance ranged from 38.1% for sulfachlorpyridazine 

and sulfadimethoxine to 42.9% for sulfathiazole.   

Similar to E. coli O157 and Salmonella serotypes, all generic E. coli isolates were largely 

susceptible to aminoglycosides.  A total of 188 generic E. coli isolates were tested and only one 

isolate exhibited resistance to gentamicin, while seven isolates were resistant to neomycin.  Feed 

antimicrobial treatment affected the susceptibility of E. coli.  Cattle fed monensin and tylosin had 

a lower proportion of isolates resistant to chlortetracycline (P = 0.008) and oxytetracycline (P = 

0.002) than cattle fed no antimicrobials.  Cattle fed monensin and tylosin also had a lower 

proportion (P = 0.04) of isolates resistant to oxytetracycline than cattle fed monensin only.  The 

resistance patterns to sulfonamides in generic E. coli were impacted by the inclusion of 25% 

WDGS.  Cattle without WDGS had a lower proportion of resistance in sulfachloropyridazine (P 
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= 0.02), sulfathiazole (P = 0.02) and sulfadimethoxine (P = 0.02) than cattle fed diets with 

WDGS.   

Among Enterococcus isolates (n = 96), 57.3% were resistant to macrolides (erythromycin 

and tylosin).  Enterococcus isolates from monensin-fed (P = 0.01) or monensin and tylosin-fed 

(P = 0.01) cattle were more resistant to macrolides compared to isolates from cattle fed no 

antimicrobials (Figure 2.2).  In cattle fed monensin and tylosin, 75% of Enterococcus isolates 

displayed resistance to tylosin and erythromycin and 66% of Enterococcus isolates from cattle 

fed only monensin were resistant to these antimicrobials.  Only 36.8% of Enterococcus isolates 

were resistant in cattle fed no antimicrobials.  There was no WDGS effect on the resistance or 

susceptibility of fecal enterococci to macrolides (data not shown).  However, the resistance to 

several antimicrobials appeared to be influenced by WDGS treatment.  Fewer Enterococcus 

isolates showed resistance to flavomycin in animals fed WDGS than those fed SFC only (P = 

0.01).  However, with quinupristin/dalfopristin there was a tendency for a higher proportion of 

resistant Enterococcus in cattle fed WDGS (P = 0.08). 

Quantification of fecal ermB and tetM genes 

The tetM gene was detected in every fecal sample, while the ermB gene was detected in 

94 of 108 fecal samples (87%).  Including 0 or 25% of WDGS did not effect the concentration of 

either ermB or tetM genes in the feces.  There was no antimicrobial effect on the concentration 

of either ermB or tetM in the feces.   

DISCUSSION 
Distiller’s grains with solubles with highly digestible bran, high ruminal escape protein, 

and energy dense germ fractions of the corn are well suited as a ruminant feed (Lodge et al., 

1997; Kleinschimt et al., 2006).  In the production of distiller’s grains, antimicrobials, such as 
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penicillin G, streptomycin, tetracycline, monensin, and virginiamycin, are used to suppress the 

bacterial growth (Day et al., 1954; Aquarone, 1960; Narendranath et al., 2000).  It is generally 

believed that temperatures achieved during the distillation are sufficient to destroy these 

antimicrobials (Shurson, 2005).  There are no data to suggest that the byproduct has antibiotic 

residue.  However, even if there is no residue, there is a possibility of genetic elements for 

antibiotic resistance being present in the byproduct.  There is evidence that stored wet distiller’s 

grains have a dense population of lactobacilli (Pederson et al., 2004), which could be a source of 

antibiotic resistance genes.   

In our study, both susceptibility and real-time PCR results implied that WDGS was not 

associated with antimicrobial resistance.  The proportion of Enterococcus isolates resistant to 

quinupristin/dalfopristin, a streptogramin antimicrobial compound like virginiamycin, was larger 

in cattle fed WDGS; however, this was only a trend and was not significant.  No evidence of 

increased penicillin resistance was observed in Enterococcus isolates, which may have occurred 

if residual antibiotics remained.  In addition, quantification of two resistance elements, ermB and 

tetM, by PCR revealed no differences in concentration between WDGS fed cattle and cattle fed 

no WDGS.   

Additional antimicrobial susceptibility data from our study showed that monensin and 

tylosin use were associated with increased macrolide resistance in Enterococcus species, which 

was consistent with other studies reporting tylosin use in pigs (Aarestrup et al., 2001; Jackson et 

al., 2004).  The most common mode of resistance to macrolides in enterococci of animal origin is 

the ermB gene (Jensen et al., 1999) which causes a 23S rRNA methylation (Roberts et al., 1999), 

thereby rendering the ribosomes tolerant to erythromycin.  Furthermore, a previous study has 

shown that ermB and tetM can co-exist in a single transposon (De Leener et al., 2004).  Although 
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our results showed the presence of both ermB and tetM resistance genes in every pooled pen 

sample tested, the concentration of each gene varied in samples. 

Antimicrobial feed additives did not have a significant effect on ermB genes in feces; 

however, the results did not correlate with the macrolide susceptibility in Enterococcus isolates.  

Although macrolide resistance in enterococci isolates was more prevalent, the concentrations of 

ermB genes from pooled fecal samples were unchanged compared to cattle fed no antimicrobials.  

Because other genes can provide resistance to macrolides (Schwarz et al., 2006), all enterococci 

isolated in this study were screened by PCR and confirmed to contain the ermB gene.  These 

results suggest that there might be additional mechanisms affecting macrolide resistance in these 

isolates. 

An interesting observation of this study was the association between feeding WDGS and 

fecal prevalence of E. coli O157.  The prevalence of E. coli O157 in cattle fed WDGS was 

higher compared to those not fed WDGS when individual cattle were sampled; however, this 

was only statistically significant on one sample day.  Pooled pen samples did not reveal any 

difference in the prevalence of E. coli O157 or Salmonella species.  The difference between 

individual animal samples and pooled pen samples is not surprising because the sensitivity in 

detection methods decreases when E. coli O157 positive fecal samples are pooled with E. coli 

O157 negative samples (Sanderson et al., 2005).  In addition, the enrichment and isolation 

procedures were slightly different between the two samples.  The role of diet on fecal shedding 

of E. coli O157 in cattle has been well studied (Buchko et al., 2000; Callaway et al., 2003; Berg 

et al., 2004; Van Baale et al., 2004).  Dewell et al. (2005) have reported that fecal samples from 

feedlot pens fed brewer’s grains, a similar fermentative product to distiller’s grains, were six 

times more likely to be positive for E. coli O157 than feedlot pens not fed brewer’s grains.  Our 
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study is the first report of an association between feeding distiller’s grains and prevalence of E. 

coli O157 in cattle.  The reason for this possible association is not known.  We hypothesize that 

higher prevalence associated with distiller’s grains or brewer’s grains is possibly due to the 

different hindgut environment created by the diets.  Research has shown that the primary 

colonization site of E. coli O157 is the hindgut of cattle (Grauke et al., 2002; Naylor et al., 2003; 

Van Baale et al., 2004).  The feeding of a byproduct with less starch results in higher ruminal pH 

than corn diet without distiller’s grain (Firkins et al., 1985; Lodge et al., 1997).  Additionally, 

replacing corn with a highly digestible fiber source in distiller’s grain may cause a shift in 

digestion from the rumen to the hindgut (Ham et al., 1994).  The higher fat content in distiller’s 

grain, in addition to providing more energy, could have an effect of ruminal fermentation and 

rumen microbial population.  Montgomery et al. (2005) have shown that feeding corn germ to 

cattle reduced the incidence of liver abscess; one of the reasons may be that fatty acids in the 

germ have an antibacterial effect, thereby suppressing the growth of Fusobacterium 

necrophorum, the causative agent of liver abscesses.  Increased supply of fiber and possibly 

protein and germ in cattle fed distiller’s grain could have a significant impact on hindgut 

fermentation.  Possibly, the altered hindgut environment is more conducive to E. coli O157 

colonization. 

Monensin and tylosin in cattle diets had no effect of E. coli O157 prevalence.  The effect 

of monensin on the prevalence of E. coli O157 has been studied and the results are conflicting.  

A positive association between feeding ionophores and the prevalence of E. coli O157 was noted 

in dairy cattle (Herriot et al., 1998).  This was later contradicted by two studies that showed no 

effect of short-term monensin feeding on fecal shedding of E. coli O157 or Salmonella 

Typhimurium in lambs (Edrington et al., 2003) and a decreased duration of E. coli O157 
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shedding in forage-fed steers supplemented monensin (Van Baale et al., 2004).  Recently, 

McAllister et al. (2006) found no association between monensin, tylosin, or monensin and 

tylosin on the prevalence of E. coli O157 in fecal samples of orally challenged animals.   

Several limitations to our study include the small number of sample collection days, low 

statistical power to detect differences, and lack of baseline prevalence and antimicrobial 

susceptibility estimates.  Effects that may be attributable to study duration may not have been 

seen with only two collection days.  Additionally, the low prevalence of E. coli O157 and 

Salmonella in pooled-pen samples reduced our ability to statistically analyze antimicrobial 

susceptibility in these isolates, although our resistance patterns to tetracyclines and sulfonamides 

were in agreement with previous studies (Meng et al., 1998; Galland et al., 2001; Schroeder et 

al., 2002; Fitzgerald et al., 2003).  

In conclusion, additional work should be conducted to confirm the increased prevalence 

of E. coli O157 when animals are fed WDGS.  Feeding antimicrobials to cattle was associated 

with a higher prevalence of resistance towards related antimicrobials in commensal enterococci 

when individual isolates were characterized.  However, quantification of resistance genes in 

cattle feces, regardless of bacterial species, may provide a better means to assess the impact of 

production practices on the dynamics of antimicrobial resistant bacterial populations.  

Antimicrobial feed additives did not appear to increase the presence or concentration of either 

ermB or tetM elements in cattle.  
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Figure 2.1 Prevalence and standard error of Escherichia coli O157 in fecal samples 

collected from individual animals on two collection days.  The prevalence on d 122 was 

significantly greater (P < 0.001) in cattle fed steam-flaked corn (SFC) diet with wet 

distiller’s grains with solubles (WDGS) compared to cattle fed SFC without WDGS.  The 

difference was not significant on d 136 (P > 0.2). 
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Figure 2.2 Percent (and 95% CI) of Enterococcus isolates resistant to erythromycin and 

tylosin.  Enterococcus isolates from cattle fed monensin (P = 0.01) or monensin and tylosin 

(P = 0.01) were more resistant to macrolides compared to isolates from cattle fed no 

antimicrobials. 
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Table 2.1 Composition of diets 

Ingredient Steam-flaked corn diet Steam-flaked corn diet with wet 

distiller’s grains and solubles 

 % of DM  

Steam flaked corn 83.8 64.8 

Corn wet distiller’s grains 

with solubles 

- 25.0 

Alfalfa hay 6.0 6.0 

Supplement1 4.2 4.3 

Corn steep liquor 5.0 - 

Urea, 46% N 1.0 - 

1 Formulated with  0.7% Ca, 0.7% K, 0.3% NaCl, 0.3 mg/kg cobalt, 10 mg/kg copper, 0.5 mg/kg 

iodine, 60 mg/kg manganese, 0.25 mg/kg selenium, 60 mg/kg zinc, 0.055 mg/kg melengestrol 

acetate, 33 mg/kg monensin (if applicable), and 9.9 mg/kg tylosin (if applicable) in the final diet 

(DM basis). 
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Table 2.2 Primer Sequences 

Primer Sequence Annealing 

temp.  

Product 

size 

Reference 

ermBCT F 5’ GAAATTGGAACAGGTAAAGG 3’ 

R 5’ TTTACTTTTGGTTTAGGATG 3’ 

43°C 404 bp Modified from 

Jost et al., 2004 

ermB F 5’ GAATCCTTCTTCAACAATCA 3’ 

R 5’ ACTGAACATTCGTGTCACTT 3’ 

45°C 175 bp This study 

tetM F 5’ CTGTTGAACCGAGTAAACCT 3’ 

R 5’ GCACTAATCACTTCCATTTG 3’ 

48°C 156 bp This study 

EUB F 5’ TGGAGCATGTGGTTTAATTCGA 3’ 

R 5’ TGCGGGACTTAACCCAACA 3’ 

50°C 159 bp Yang et al., 2002 
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Table 2.3 Antimicrobial resistance patterns of Escherichia coli O157, Salmonella spp., 

generic E. coli, and Enterococcus spp. isolates.  

Percent of isolates resistant  

Class and antimicrobial compounds E. coli O157 

(n=21) 

Salmonella 

(n=21) 

E. coli 

(n=188) 

Enterococcus 

(n=96) 

Aminocyclitols     

     Spectinomycin 4.8 76.2 13.8 NA1 

Aminoglycosides     

     Gentamicin 0 0 0.5 0 

     Kanamycin NA NA NA 12.5 

     Neomycin 4.8 0 3.7 NA 

     Streptomycin NA NA NA 9.4 

Β-Lactams     

     Ampicillin 38.1 0 4.8 NA 

     Penicillin 100 100 100 0 

Cephalosporins     

     Ceftiofur NA2 NA2 NA2 NA 

Glycopeptide     

     Vancomycin NA NA NA 0 

Lincosamides     

     Clindamycin 100 100 100 NA 

     Lincomycin NA NA NA 96.9 

Macrolides     

     Erythromycin 100 100 100 57.3 

     Tilmicosin 100 100 100 NA 

     Tylosin 100 100 100 57.3 

Phenicols     
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     Chloramphenicol NA NA NA 0 

     Florfenicol 38.1 0 10.6 NA 

Quinolones     

     Ciprofloxacin NA NA NA 1.0 

     Danofloxacin 0 0 0 NA 

     Enrofloxacin 0 0 0 NA 

Sulfonamides     

     Sulfachloropyridazine 38.1 0 9.6 NA 

     Sulfadimethoxine 38.1 23.8 10.1 NA 

     Sulfathiazole 42.9 7.1 9.6 NA 

     Trimethoprim/Sulfamethoxazole 0 0 0 NA 

Tetracyclines     

     Chlortetracycline 33.3 0 31.4 NA 

     Oxytetracycline 47.6 0 45.7 NA 

     Tetracycline NA NA NA 80.2 

1 NA= Not applicable 

2 MIC values were available, however, Clinical and Laboratory Standards Institute interpretations (susceptible, 

intermediate, and resistant) were not reported 
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CHAPTER 3 - Effects of Feeding Elevated Concentrations of 

Supplemental Copper and Zinc on Antimicrobial Susceptibilities of 

Fecal Bacteria in Feedlot Cattle 

INTRODUCTION 
In the United States, in-feed antimicrobials are included in cattle diets to aid in growth 

promotion, feed efficiency, and to decrease the incidence of liver abscesses (6, 17, 18).  

Compounds other than conventional antibiotics also are included in livestock diets to achieve 

growth promotion and feed efficiency.  Such compounds include heavy metals like copper and 

zinc which are added to the diets at concentrations in excess of the nutritional requirements of 

the animals (12).  The use of low level antimicrobials in livestock production is controversial 

because it may induce gut microorganisms to carry antimicrobial resistance genes (4, 8, 21).  The 

emergence of bacterial populations resistant to copper and other metals also can occur (12, 22).  

A recent study by Hasman et al. (2006), described the association of an acquired transferable 

plasmid containing the copper resistance gene, tcr(B), in Enterococcus faecium isolates from 

pigs fed elevated levels of supplemental copper sulfate.  The acquired tcr(B) gene was shown to 

provide resistance to copper at concentrations above those tolerated by normal cellular processes 

(11).  Additionally, this plasmid carried genes for antimicrobial resistance (11, 13).  Copper use 

in the environment has also been associated with bacterial antimicrobial resistance in soil (5). 

Copper and zinc are currently recommended as nutritional supplements for cattle in the 

United States (20).  Heavy metals fed at elevated concentrations may not only select for bacteria 

that are resistant to the respective heavy metals, but also to antimicrobials.  The effects of such 

supplements on antimicrobial resistance in the U.S. cattle population have not been evaluated.  

 60



Antimicrobial resistance is a significant food safety risk, and factors contributing to 

antimicrobial susceptibility in the environment should be examined.  The objectives of this study 

were to determine if feeding elevated concentrations of supplemental copper and zinc to feedlot 

cattle influenced the prevalence of food-borne bacterial pathogens and the susceptibility of fecal 

bacteria, food-borne and certain commensal, to antimicrobials and heavy metals.   

MATERIALS AND METHODS 

Study design and sampling   

Twenty crossbred heifers (BW = 486 ± 79 kg) were randomly allocated to four treatments 

(five animals per treatment) and housed in individual concrete pens with a water fountain shared 

between adjacent pens.  All animals within a treatment were penned next to each other with an 

empty pen between treatments to limit potential cross-contamination.  Cattle were fed a standard 

steam-flaked corn-based high-grain diet (83%) with 6% alfalfa hay and without in-feed 

antimicrobials for the previous three months, except monensin, which was withheld for the 

previous two weeks.  The four treatments of the study were: 1X National Research Council 

(NRC; 20) recommended copper (10 mg/kg diet) + 1X zinc (30 mg/kg diet), 10X copper (100 

mg/kg diet) + 1X zinc (30 mg/kg diet), 1X copper (10 mg/kg diet) + 10X zinc (300 mg/kg diet), 

or 10X copper (100 mg/kg diet) + 10X zinc (300 mg/kg diet).  Twenty grams of fresh fecal 

sample were collected by fecal grab from each animal on days 0, 14, and 32 of the feeding 

period.  Cattle receiving the 10X copper + 1X zinc treatment were inadvertently fed diets 

containing only 3X copper (30 mg/kg diet) + 1X zinc (30 mg/kg diet) beginning on day 23 of the 

feeding period. 
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Bacteriological procedures 

Each fecal sample was cultured to isolate Escherichia coli, E. coli O157, Salmonella 

enterica, and Campylobacter, Listeria, and Enterococcus species.  Unless otherwise indicated, 

all media were Difco brand (Fisher Scientific, St. Louis, MO).  Procedures modified from 

Barkocy-Gallagher et al. (2002) were used to isolate E. coli, E. coli O157, and Salmonella from 

fecal samples.  Briefly, 10 g of feces were enriched in 90 ml of tryptic soy broth (TSB) with an 

incubation schedule of 2 h at 25°C, 6 h at 42°C, and overnight at 4°C.  For the isolation of E. 

coli, 50 µl of enriched TSB were spread plated onto MacConkey agar and incubated at 37°C for 

24 h.  A lactose fermenting colony was picked and streaked onto a blood agar plate (BAP; 

Remel, Lenexa, KS), grown overnight at 37°C, and tested for indole production and citrate 

utilization.  For the isolation of E. coli O157, anti-O157 immunomagnetic separation (IMS; 

Dynal, Inc., New Hyde Park, NY) was performed on 1 ml of enriched TSB, followed by plating 

onto sorbitol-MacConkey agar with cefixime (0.5 mg/L) and potassium tellurite (2.5 mg/L).  

Plates were incubated overnight at 37°C, and six sorbitol negative colonies were picked and re-

plated onto BAP.  Following an overnight incubation at 37°C, colonies were tested for indole 

production and latex agglutination for the O157 antigen (Oxoid, Remel; Lenexa, KS).  Species 

were confirmed with the API 20E kit (bioMérieux, Hazelwood, MO) and multiplex PCR to 

detect eae, stx1 and stx2 genes (7).  Salmonella isolation was performed by inoculating 10 ml of 

enriched TSB in 90 ml of tetrathionate broth (TTB), followed by incubation for 24 h at 37°C.  

Anti-Salmonella IMS (Dynal, Inc.) was performed with 1 ml of TTB, followed by enrichment of 

100 µl in10 ml Rappaport-Vassiliadis (RV) broth.  The RV broth was incubated at 42°C for 16-

18 h and 50 µl was plated on Hektoen enteric (HE) agar supplemented with novobiocin (15 

mg/L).  The HE plates were incubated overnight at 37°C; up to three characteristic isolates 
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(colorless colonies with black centers) were picked and plated onto BAP for overnight growth 

and latex agglutination.  

For the isolation of Campylobacter species, 1 g of fecal sample was diluted in 10 ml of 

0.1% peptone water and swabbed onto Campylobacter blood-free selective medium (Oxoid).  

Plates were incubated for 48 h at 42°C utilizing a gas pack (Oxoid) to achieve microaerophilic 

conditions.  Characteristic Campylobacter colonies (gray) were re-plated onto BAP and a gram 

stain and API-Campy kit (bioMérieux) were used to confirm the genus.  

Listeria species were isolated by methods modified from Nightingale et al. (2004).  One 

gram of fecal sample was added to 9 ml Listeria enrichment broth for 24 and 48 h at 37°C.  From 

the enrichment broth at both time intervals, 100 µl were plated on Modified Oxford Medium.  

Colonies (black) were plated onto BAP and a Listeria API kit (bioMérieux) was used to confirm 

positive isolates.  

Enterococcus species were isolated by diluting 1 g of fecal sample in 10 ml of phosphate 

buffered saline and plating 50 µl of the suspension onto M-Enterococcus agar.  After 24 h 

growth at 37°C, up to two (pin-point, metallic pink) colonies that were morphologically different 

were picked and re-plated on BAP for overnight incubation at 37°C.  For confirmation of genus, 

isolates were inoculated in 100 µl Enterococcosel broth and incubated at 37°C for 4 h to test for 

esculin hydrolysis, followed by analysis using the 20 Strep API kit (bioMérieux).  If the two 

colonies picked from M-enterococcus agar had identical API biochemical profiles then only one 

isolate was used for further analyses.  All bacterial isolates were frozen in protect beads (Cryo-

Vac®; Key Scientific, Round Rock, TX) at -80°C for further use. 
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Antibiotic susceptibility determination 

Microbroth dilution method was used to determine minimum inhibitory concentrations 

(MIC; µg/ml) of selected antibiotics for E. coli and Enterococcus species isolates.  Reported 

susceptibility results were based on interpretations provided by the automated reader program 

(Sensititre®, Trek Diagnostic Systems, Cleveland, OH).  Escherichia coli were tested for 

susceptibility to the BOPO-IF panel (Sensititre®).  The antibiotics in this panel and the maximum 

concentration evaluated included: ceftiofur (8 µg/ml), erythromycin (4 µg/ml), chlortetracycline 

(8 µg/ml), florfenicol (8 µg/ml), penicillin (8 µg/ml), ampicillin (16 µg/ml), danofloxacin (1 

µg/ml), sulphadimethoxine (256 µg/ml), neomycin (32 µg/ml), sulphachloropyridazine (256 

µg/ml), tylosin tartrate (20 µg/ml), sulphathiazole (256 µg/ml), spectinomycin (64 µg/ml), 

tilmicosin (32 µg/ml), clindamycin (2 µg/ml), tiamulin (32 µg/ml), enrofloxacin (2 µg/ml), 

trimethoprim/sulfamethoxazole (2/38 µg/ml), gentamicin (8 µg/ml), and oxytetracycline (8 

µg/ml).  Enterococcus isolates were evaluated for susceptibility using the gram positive NARMS 

(National Antimicrobial Resistance Monitoring System) panel (CMV1AGPF; Sensititre®).  The 

antibiotics in this panel and the maximum concentration evaluated included: bacitracin (128 

µg/ml), chloramphenicol (32 µg/ml), erythromycin (8 µg/ml), flavomycin (32 µg/ml), penicillin 

(16 µg/ml), daptomycin (16 µg/ml), quinupristin/dalfopristin (32 µg/ml), tetracycline (32 µg/ml), 

vancomycin (32 µg/ml), lincomycin (32 µg/ml), tylosin tartrate (32 µg/ml), ciprofloxacin (4 

µg/ml), linezolid (8 µg/ml), nitrofurantoin (64 µg/ml), kanamycin (1,024 µg/ml), gentamicin 

(1,024 µg/ml), and streptomycin (2,048 µg/ml).  

Susceptibility determinations for copper and zinc 

Minimum inhibitory concentrations of copper or zinc were determined with copper 

sulfate or zinc sulfate for E. coli and Enterococcus isolates using the agar dilution method (11).  
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Briefly, brain heart infusion plates containing 0, 2, 4, 8, 12, 16, 20, 24, 28, 32, 36, and 40 mM of 

copper sulfate (CuSO4·5H20, pH = 7) or zinc sulfate (ZnSO4·7H20, pH = 7) were prepared and 

inoculated with 20 µl of bacterial growth adjusted to standard concentration (McFarland = 0.5).  

Plates were incubated for 24 h at 37°C and growth of each isolate was recorded.  The MIC value 

was defined as the lowest concentration of copper sulfate or zinc sulfate inhibiting visual growth.  

 

Quantification of erm(B) and tet(M) genes in the feces  

Bacterial strains and plasmids 

  Two genes, erm(BCT) and 16s rDNA (EUB), were amplified from a strain of E. faecalis 

MMH594 (Dr. L. Zurek, Kansas State University).  Fragments recovered from PCR reactions 

were cloned into a commercial vector (pCRII-TOPO, Invitrogen, Carlsbad, CA) followed by  

transformation in One Shot Top10 E. coli cells (Invitrogen).  The tet(M) gene was amplified 

from an E. coli isolate (Dr. L. Zurek) containing pFD310 carrying tetracycline, erythromycin, 

and ampicillin resistance (24).  

Primers and PCR running conditions 

Cloning and real-time PCR procedures utilized the same primers (Table 3.1), with one 

exception.  Originally, primers for erm(BCT) (404 bp) were modified from Jost et al. (2004) for 

cloning procedures.  To accurately determine the concentration of a gene using real-time PCR, a 

smaller PCR product (< 200 bp) was desired.  A new primer was designed to target only erm(B) 

(175 bp; 14).  The PCR running conditions for all four targets [erm(BCT), erm(B), tet(M) and 

EUB] were: 3 min of initial denaturation at 94°C; 36 cycles of 30 s at 94°C, 30 s at annealing 

temperatures (Table 3.1), 30 s at 72°C; and 2 min final extension at 72°C with Taq DNA 

polymerase (Promega, Madison, WI).  Amplification protocols for real-time reactions were 
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identical for each target, but utilized the Absolute QPCR SYBR Green Mix (ABgene, Epsom, 

UK), which required the addition of a 15 min, 95°C initial activation. 

Cloning techniques 

Initial PCR products (erm(B), tet(M) and EUB) were purified with Wizard SV Gel and 

PCR Clean-up System (Promega) and cloned into the commercial vector pCRII-TOPO according 

to manufacturer’s directions.  Clones were selected by blue/white screening on Luria-Bertani 

agar, and the plasmids were purified using Wizard Plus SV Minipreps DNA Purification System 

(Promega).  Nanodrop spectrophotometer (ND 1000, Nanodrop Technologies, Wilmington, DE) 

readings were used to determine DNA concentrations.  The clones were further confirmed by 

digestion with EcoRI (Promega) and by sequencing (Beckman-Coulter CEQ™8000 Genetic 

Analysis System; Fullerton, CA). 

Real-time PCR standardization 

Serial ten-fold dilutions of purified plasmid were prepared.  A 25 µl reaction utilizing 

Absolute QPCR SYBR Green Mix containing 5 µl of serially diluted plasmids were used to 

standardize each real-time PCR assay.  Reliable products for EUB and erm(B) targets were 

detected between 1 × 108 and 1 × 103 molecules/µl, and 1 × 109 and 1 × 103 molecules/µl, 

respectively.  The tet(M) target was reliably detected between 7.4 × 108 and 7.4 × 102 

molecules/µl. 

Extraction of DNA and real-time PCR of fecal samples 

Fecal samples (180 to 220 mg) from days 0, 14, and 32 (previously frozen at -80°C) were 

thawed on ice and DNA was extracted using the QIAamp DNA stool mini kit according to 

manufacturer’s directions (QIAgen, Valencia, CA).  Antimicrobial resistance genes, erm(B) and 

tet(M), and conserved 16s rDNA (EUB) sequence were targets in real-time PCR reactions.  A 
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melting curve was created at 0.5oC increments to determine if the right product was amplified 

during each run.  In addition, PCR products from randomly selected samples were 

electrophoresed and sequenced to confirm the correctness of the targets amplified.  The copy 

numbers of the targeted genes in the samples were calculated using the standardization curves. 

Statistical analysis 

 The non-parametric, LIFETEST procedure in SAS (Version 9.1, SAS Institute, Cary, 

NC) was used to find differences in antibiotic, copper, and zinc MIC values with treatment and 

day effects for E. coli and Enterococcus isolates.  Treatment × day interactions could not be 

evaluated with this test, which was chosen a priori to account for possible right-censored data 

(i.e. maximum concentration available in commercial microbroth dilution panels).  The logrank 

test was used to determine significance.  If treatment or day effects (P < 0.10) were observed, 

two way comparisons were used to evaluate specific mean MIC differences.  Finally, the 

MIXED SAS procedure was used to evaluate differences in the mean proportion of real-time 

PCR products.  The proportion was the log concentration of antimicrobial resistance genes 

[erm(B) or tet(M)] to the log concentration of 16s rDNA (EUB) control gene in each fecal 

sample.  Copper or zinc treatment, sampling day and the treatment × day interaction were 

included as effects on the concentration of real-time PCR products.   

RESULTS 
This study examined the effects of feeding finishing cattle elevated concentrations of 

supplemental copper and zinc on food-borne pathogen prevalence and antimicrobial 

susceptibilities of food-borne and commensal bacteria.  Possibly because of incorrect data entry 

of feed intake, cattle fed 10X NRC recommended copper with normal (1X) NRC recommended 

zinc were inadvertently fed a diet with a lower concentration of copper (3X NRC) beginning on 

 67



day 23 of the feeding period.  The impact of altering this diet may include preventing some 

copper resistance events; however, copper was still included in the diet at elevated 

concentrations.  In addition, two of the three sample collections (sampling days 0 and 14) had 

occurred prior to the inadvertent switch. 

 Prevalence of food-borne pathogens in the feces 

The fecal prevalence of E. coli O157 was 5.0% (3 of 60).  One E. coli O157 isolate was 

obtained from day 14 samples and two isolates were recovered from day 32 samples.  Five 

Salmonella isolates were cultured, all from day 32 samples. No Listeria isolate was obtained 

from any fecal samples during the study.  Additionally, only two Campylobacter isolates were 

cultured, both from samples collected on day 14 of the study.  Because of the low prevalence and 

poor distribution, E. coli O157, Salmonella, Listeria, and Campylobacter were not included in 

further analyses.  The numbers of E. coli and Enterococcus isolates obtained from fecal samples 

collected from all treatment groups were 60 and 69, respectively. 

 Antibiotic susceptibility 

Escherichia coli isolates were resistant to clindamycin, erythromycin, penicillin, 

tiamulin, tilmicosin, and tylosin.  Copper or zinc supplementation did not impact MIC 

differences for E. coli isolates, but, there was an effect of sampling day.  Tilmicosin MIC values 

increased between day 0 and day 14 (P = 0.03) and day 0 to day 32 (P = 0.04), but were not 

different between day 14 and day 32 (P = 0.94; Table 3.2).  As previously mentioned, however, 

all isolates still were classified as resistant by Clinical and Laboratory Standards Institute (CLSI) 

interpretations.  The CLSI classifications for E. coli isolates towards other antibiotics were 

mostly susceptible or intermediate.    
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Enterococcus isolates were classified as susceptible or intermediate to chloramphenicol, 

ciprofloxacin, gentamicin, linezolid, penicillin, streptomycin and vancomycin.  There were no 

effects of copper or zinc supplementation on MIC values, but effects of sampling day were 

observed (Table 3.2).  The mean chloramphenicol MIC for Enterococcus isolates was greater 

from samples collected on day 32 than on day 14 (P = 0.03).  The differences in MIC between 

day 0 and day 32, as well as day 0 to day 14 were not different (P > 0.1).  Penicillin MIC values 

also differed between sampling days.  The mean MIC of penicillin was lower on day 0 compared 

to day 14 (P = 0.05) and day 32 (P < 0.01).  The MIC differences between isolates from days 14 

and 32 were not different (P > 0.4).  These isolates were not classified as resistant to these 

antibiotics by CLSI interpretations.   

Copper and zinc susceptibilities 

The copper and zinc MIC of E. coli isolates were affected by treatment or sampling day.  

Treatment was associated with zinc MIC (P < 0.01).  Specifically, cattle diets containing 10X 

copper + 1X zinc were associated with a lower E. coli zinc MIC than either 1X copper + 1X zinc 

(P = 0.02) or 10X copper + 10X zinc (P = 0.02) treatments.  The mean MIC values of E. coli 

isolates from both 1X copper + 1X zinc and 10X copper + 10X zinc treatments were identical.  

In addition, sampling day had an effect on the copper MIC values of E. coli isolates (Fig. 3.1).  

The mean copper MIC was higher in isolates from day 32 than from days 0 (P < 0.01) or 14 (P = 

0.02).  No other effects were seen on copper or zinc MIC of E. coli isolates.  Copper and/or zinc 

concentration did not impact the MIC of these metals for Enterococcus isolates.  There was a 

sampling day effect on the zinc MIC in these isolates.  The mean zinc MIC was higher in isolates 

from day 0 than on day 32 (P = 0.01) samples.  The copper MIC of Enterococcus isolates were 

not affected by sampling day (P > 0.5).   
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Real-time PCR 

A total of 31 of 60 fecal samples were positive for erm(B).  The proportions of erm(B) 

resistant elements to 16s rDNA were not different between treatments or between sampling days 

(P > 0.05).  Fifty-three of 60 fecal samples were positive for the tet(M) gene but had no 

treatment effect (P > 0.05).  A sampling day-effect (P < 0.05) was observed for tet(M) (Fig. 3.2).  

The concentration of tet(M) gene was higher (P < 0.01) in feces collected on day 14 compared to 

day 0.  Day 32 samples were not different in concentrations of tet(M) when compared to 

sampling days 0 or 14.   

DISCUSSION 
Copper and zinc are essential to cattle, which require the metals for normal cellular 

processes (20).  These metals also are added to cattle diets at concentrations above those 

physiologically required by the animal because of growth promoting effects, similar to those of 

some conventional antimicrobials (12).  The mechanism for increased efficiency of cattle growth 

with antimicrobial use is multifaceted; some antimicrobials alter normal microbial populations or 

metabolic processes, others suppress diseases, while some mechanisms are unknown (4, 8).   

Bacteria also require copper, and the copper homeostatic mechanisms have been well 

studied in Enterococcus hirae, which utilize CPx-type ATPases (16).  The cop operon, which 

includes a repressor, chaperone, and two CPx-type ATPases, is encoded by four chromosomal 

genes and provides E. hirae growth in up to 8 mM of copper (25).  A previous study reported the 

presence of additional acquired copper resistance determinants in Enterococcus sp. from 

different food animals (1) and more specifically, from pigs fed copper sulfate (13).  The tcr(B) 

gene, which renders Enterococcus isolates more resistant to copper (above 8 mM), is part of an 

operon with similar function to the cop operon of E. hirae (10).  The acquisition of tcr(B) may 
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also coincide with antimicrobial resistance, specifically the erm(B) gene, genetically linked to 

the copper resistance determinant on a plasmid (11).  Zinc is an important regulator of the cop 

operon in E. hirae (25); however, the potential role of zinc in acquired copper resistance is not 

known.   

Previous works have focused on feeding copper as a selective pressure for microbial 

copper resistance and resistance to antibiotics, specifically in commensal organisms (1, 13).  In 

addition to determining the role of elevated copper and zinc on resistance traits, our study also 

examined their effect on prevalence of several food-borne bacteria.  The impact of supplemental 

copper and zinc on the prevalence of food-borne pathogens has not been reported.  Cattle are a 

primary source of food-borne bacterial pathogens, including E. coli O157 (2, 9).  Poor 

distribution and low prevalence or absence of E. coli O157, Salmonella, Campylobacter, or 

Listeria isolates did not allow for statistical analyses of the treatment effects on prevalence.  The 

timing of this study may have affected the prevalence of some of the organisms, particularly E. 

coli O157, since the study was conducted in October and November.  Previous work has shown 

that prevalence of E. coli O157 in cattle peaks during the summer months of May through 

September (23).   

Feeding cattle elevated concentrations of copper, zinc, or both did not have an effect on 

the antibiotic MIC of fecal E. coli or Enterococcus isolates.  Resistance to antibiotics, 

specifically macrolides, was expected in Enterococcus isolates fed higher levels of copper 

because resistance genes for both copper (tcrB) and macrolides (ermB) have previously been 

linked (11).  The mean MIC of macrolide antibiotics remained unchanged in Enterococcus 

species.  Although there were no associations between copper and zinc supplementations and 

antibiotic susceptibility, sampling day effects were seen for tilmicosin in E. coli isolates and for 
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chloramphenicol and penicillin in Enterococcus isolates.  In all cases, the mean MIC value 

increased across at least one sampling time interval.  This may suggest that some selective 

pressure was present for these antibiotics, however, because treatment was not significant it was 

likely not because of copper or zinc supplementation.   

In addition to antibiotic susceptibility, the MIC for copper and zinc sulfate were used to 

assess resistance towards these metals.  Interestingly, the mean copper MIC of E. coli isolates 

increased over the course of the study.  There was no effect of copper or zinc treatment on E. coli 

susceptibility to copper but there was an effect on zinc MIC.  The mean MIC did not change 

between cattle fed 1X copper + 1X zinc and 10X copper + 10X zinc.  Consistent copper MIC 

values for Enterococcus isolates were obtained for all treatment groups and across collection 

days.  The MIC values of Enterococcus isolates were reasonable to account for a normal copper 

homeostatic mechanism (i.e. ≤ 8 mM) and not additional resistance genes (25).  Although E. 

faecium in cattle have been shown to contain less copper resistance than isolates from other 

livestock, resistance has still been reported as high as 16% (11).  The MIC of zinc for 

Enterococcus isolates was significantly different between sampling days, with the MIC 

decreasing as the study progressed.   

Two gene targets, erm(B) and tet(M), were chosen for real-time PCR on fecal samples 

because of their potential proximity to tcr(B) gene on a horizontally-transferable plasmid.  No 

treatment effects were seen for either erm(B) or tet(M) gene, which was consistent with 

antibiotic susceptibility results.  Sampling day had a significant effect on tet(M) concentration.  

Initially, tet(M) gene increased in concentration, which may indicate some selective pressure.  

The same effect was not evident in the tetracycline antibiotic susceptibilities of bacterial isolates.  

This may be a result of tet(M) gene being present in bacterial species other than those isolated in 
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our study.  No significant difference seen in the concentration of these elements between 

treatments is further justification that elevated copper and/or elevated zinc concentrations in 

cattle diets have little effect on acquired copper or antimicrobial resistance.   

A previous study has reported that 175 ppm copper sulfate in the feed, equal to 2.8 mM 

Cu, would be enough to induce copper resistance in pigs (10).  The author acknowledged that 

factors including pH, formation of copper complexes, and feed breakdown in the intestine may 

influence in situ copper concentration.  The maximum concentration of copper suggested to 

avoid toxic effects in beef cattle is 100 mg/kg diet (20).  Given the lower concentration of copper 

fed to cattle in this study compared to the concentration of copper fed to pigs in previous studies, 

and the more complex gastrointestinal environment in cattle compared to pigs, it is possible that 

the levels of copper may not have been sufficient to induce acquired copper resistance in gut 

bacteria.  Finding no difference in the mean copper MIC between treatments in this study, along 

with finding little evidence of additional acquired antibiotic resistance, seems to support this 

hypothesis, although low statistical power may have decreased the ability to detect differences.  

In summary, feeding elevated copper and zinc concentrations to feedlot cattle did not appear to 

influence the prevalence of several food-borne pathogens, although the timing of the study may 

have impacted our ability to find prevalence differences.  Furthermore, copper or zinc treatment 

did not significantly change the antibiotic susceptibility profiles of bacteria, change the 

susceptibility of fecal bacteria to copper (although E. coli zinc MIC was changed), or increase 

the concentration of a macrolide resistance gene previously linked to copper resistance. 
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Figure 3.1 Copper minimum inhibitory concentration (MIC) of Escherichia coli isolates (n 

= 60) collected on different sampling days from cattle fed elevated concentrations of 

supplemental copper and zinc.  Means with different superscripts indicate statistical 

significance (P < 0.05). 

 74



Day 0

Day 14

Day 32 0.64

0.67

0.60

0.5 0.6 0.7 0.8

Proportion of tet (M) Genes

a

b

a,b

 
Figure 3.2 Mean proportion of real-time PCR amplified tet(M) to 16s rDNA (EUB) genes in 

feces collected on different sampling days in cattle fed elevated concentrations of 

supplemental copper and zinc.  Means with different superscripts indicate statistical 

significance (P < 0.05). 
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Table 3.1 Primer Sequences 

Primer 

name 

Primer sequence Annealing  

temperature 

Product 

size 

Reference 

erm(B) F 5’ GAATCCTTCTTCAACAATCA 3’ 

R 5’ ACTGAACATTCGTGTCACTT 3’ 

45°C 175 bp 14 

tet(M) F 5’ CTGTTGAACCGAGTAAACCT 3’ 

R 5’ GCACTAATCACTTCCATTTG 3’ 

48°C 156 bp 14 

EUB F 5’ TGGAGCATGTGGTTTAATTCGA 3’ 

R 5’ TGCGGGACTTAACCCAACA 3’ 

50°C 159 bp 26 

erm(BCT) F 5’ GAAATTGGAACAGGTAAAGG 3’ 

R 5’ TTTACTTTTGGTTTAGGATG 3’ 

43°C 404 bp 15 
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Table 3.2 The mean MIC of several antibiotics for fecal Enterococcus and Escherichia coli 

isolates from cattle fed different levels of supplemental copper and zinc 

Mean MIC (µg/ml)   

Bacterial species 

 

Antibiotic Day 0 Day 14 Day 32 

Chloramphenicol 5.4a,b 5.2a 6.7b Enterococcus 

(n = 69) Penicillin 0.5a 1.0b 1.1b 

E. coli  

(n = 60) 

Tilmicosinc 32a 32b 32b 

a, b Row means within antibiotic with different superscripts indicate statistical significance (P < 0.05). 

c Statistics were computed adjusting for right-censored data.  Means do not reflect censored isolates.  
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