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Abstract 

Laser-assisted machining (LAM) is a promising non-conventional machining technique 

for advanced ceramics. However, the fundamental machining mechanism which governs the 

LAM process is not well understood so far. Hence, the main objective of this study is to explore 

the machining mechanism and provide guidance for future LAM operations. In this study, laser-

assisted milling (LAMill) of silicon nitride ceramics is focused. 

Experimental experience reveals that workpiece temperature in LAM of silicon nitride 

ceramics determines the surface quality of the machined workpiece. Thus, in order to know the 

thermal features of the workpiece in LAM, the laser-silicon nitride interaction mechanism is 

investigated via heating experiments. The trends of temperature affected by the key parameters 

(laser power, laser beam diameter, feed rate, and preheat time) are obtained through a parametric 

study. Experimental results show that high operating temperature leads to low cutting force, 

good surface finish, small edge chipping, and low residual stress. The temperature range for 

brittle-to-ductile transition should be avoided due to the rapid increase of fracture toughness. 

In order to know the temperature distribution at the cutting zone in the workpiece, a 

transient three-dimensional thermal model is developed using finite element analysis (FEA) and 

validated through experiments. Heat generation associated with machining is considered and 

demonstrated to have little impact on LAM.  The model indicates that laser power is one critical 

parameter for successful operation of LAM. Feed and cutting speed can indirectly affect the 

operating temperatures.  

Furthermore, a machining model is established with the distinct element method (or discrete 

element method, DEM) to simulate the dynamic process of LAM. In the microstructural 

modeling of a β-type silicon nitride ceramic, clusters are used to simulate the rod-like grains of 

the silicon nitride ceramic and parallel bonds act as the intergranular glass phase between grains. 

The resulting temperature-dependent synthetic materials for LAM are calibrated through the 

numerical compression, bending and fracture toughness tests. The machining model is also 

validated through experiments in terms of cutting forces, chip size and depth of subsurface 

damage. 
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Abstract 

Laser-assisted machining (LAM) is a promising non-conventional machining technique 

for advanced ceramics. However, the fundamental machining mechanism which governs the 

LAM process is not well understood so far. Hence, the main objective of this study is to explore 

the machining mechanism and provide guidance for future LAM operations. In this study, laser-

assisted milling (LAMill) of silicon nitride ceramics is focused. 

Experimental experience reveals that workpiece temperature in LAM of silicon nitride 

ceramics determines the surface quality of the machined workpiece. Thus, in order to know the 

thermal features of the workpiece in LAM, the laser-silicon nitride interaction mechanism is 

investigated via heating experiments. The trends of temperature affected by the key parameters 

(laser power, laser beam diameter, feed rate, and preheat time) are obtained through a parametric 

study. Experimental results show that high operating temperature leads to low cutting force, 

good surface finish, small edge chipping, and low residual stress. The temperature range for 

brittle-to-ductile transition should be avoided due to the rapid increase of fracture toughness. 

In order to know the temperature distribution at the cutting zone in the workpiece, a 

transient three-dimensional thermal model is developed using finite element analysis (FEA) and 

validated through experiments. Heat generation associated with machining is considered and 

demonstrated to have little impact on LAM.  The model indicates that laser power is one critical 

parameter for successful operation of LAM. Feed and cutting speed can indirectly affect the 

operating temperatures.  

Furthermore, a machining model is established with the distinct element method (or 

discrete element method, DEM) to simulate the dynamic process of LAM. In the microstructural 

modeling of a β-type silicon nitride ceramic, clusters are used to simulate the rod-like grains of 

the silicon nitride ceramic and parallel bonds act as the intergranular glass phase between grains. 

The resulting temperature-dependent synthetic materials for LAM are calibrated through the 

numerical compression, bending and fracture toughness tests. The machining model is also 

validated through experiments in terms of cutting forces, chip size and depth of subsurface 

damage.  
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Nomenclature and Abbreviation 

2D = two-dimensional 

3D = three-dimensional 

a = precrack length, mm 

A = area of the bond cross section, m
2
 

ASTM = American Society for Testing and 

Materials 

AWJ = abrasive waterjet machining 

b = specimen thickness, width of specimen 

in orthogonal cutting, mm 

c = specific heat, J/kg • K 

Cs = side cutting edge angle of the cutter, 

deg 

CDM = continuum damage mechanics 

CNC = computer numerical control 

CW = continuous wave 

d = maximum depth of subsurface damage, 

μm 

DOC = depth of cut, mm 

Dc = cutter diameter, mm 

Dl = laser beam diameter, mm 

DEM = distinct element method (or discrete 

element method) 

Ec = particle-particle contact modulus, GPa 

cE  = parallel-bond modulus, GPa 

ECDM = electrochemical discharge 

machining 

EDM = electrical discharge machining  

EDS = Energy-Dispersive X-Ray 

Spectroscopy 

f = feed per tooth per revolution, 

mm/tooth/rev 

Fc = main cutting force in the cutting speed 

direction, N 

Ft = thrust cutting force, N 

Fy = cutting force in the y direction, N 

Fz = cutting force in the z direction, N 

iF  = force vector between particles, N 

nF = scalar value of n

iF , N 

n

iF = normal component between particles, 

N 

s

iF = shear component between particles, N 

FDM = finite difference method 

FEA = finite element analysis 

FVM = finite volume method 

g = function of the ratio a/H for four-point 

fracture toughness test 

Gc = cutting energy from each cut, J 

h = convection coefficient, W/m
2

• K 

h = average convection coefficient of the 

model, W/m
2

• K 

H = specimen height, mm 

Hw = workpiece height, mm 

HAZ = heat-affected zone 

HCP = hexagonal close-packed 
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i = inclination angle of the cutter, deg 

I = moment of inertia of the bond cross 

section, m
4
 

k = thermal conductivity, W/m • K 

KIc = fracture toughness, MPa • m
1/2

 

kn/ks = particle stiffness ratio 

sn kk  = parallel-bond stiffness ratio  

L = specimen length, mm 

Lo = support span, mm 

Lc = cutting length, mm 

Ll = laser-cutter allowance, mm 

Ls = distance from the center of Point B to 

the top surface of the workpiece, mm 

Lt = distance from the center of Point A to 

the left end of the workpiece, mm 

Lw = width of the workpiece, mm 

LAM = laser-assisted machining 

LAMill = laser-assisted milling 

LBM = Lattice Boltzmann method 

LCSM = laser confocal scan microscopy 

LM = laser machining 

M = elastic moment developing in the 

parallel bond, Nm 

MD = molecular dynamics 

MTP = minimum temperature point 

MRR = material removal rate 

n = unit normal vector 

ni = unit normal vector 

Nc = cluster size  

Nf  = minimum number of contacts to be a 

non-floater 

Nf /N = remaining floaters ratio  

P = break load, N 

Pl = laser power, W 

PSZ = partially-stabilized zirconia 

PCBN = polycrystalline cubic boron nitride 

''

conq = convective heat flux, W/m
2
 

''

genq = heat flux applied to the workpiece, 

W/m
2
 

''

lq = heat flux from laser source, W/m
2
 

''

radq = radiation heat flux, W/m
2 

r = nose radius of the cutter, mm  

Rav = minimum particle radius, μm 

Rmax /Rmin = particle size ratio  

R = bond radius, m 

RPM = revolution per minute 

RUM = rotary ultrasonic machining 

S = cutting length for simulation, mm 

S1 = areas clamped with insulating materials, 

m
2
 

S2 = area covered by the laser beam (laser 

spot), m
2
  

S3 = areas where the cutter is in contact with 

the workpiece in one cut, m
2
 

S4 = areas including all the workpiece 

surfaces open to the surroundings 

excluding S2 and S3, m
2
 

SEM = scanning electron microscope  

t = time, s 

tu = uncut chip thickness, mm 

tp = preheat time, s 
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ts = time for one step movement of laser 

spot, s 

tu,e = equivalent uncut chip thickness, mm 

T = temperature, °C 

Tc = average temperature of the cutting 

zone, C 

Ts = surface temperature, °C 

T   = ambient temperature, °C 

USM = ultrasonic machining 

vol = workpiece volume, m
3
 

Vc= cutting speed, m/s 

Vf = feed rate, mm/min 

Vl = laser moving speed, mm/min 

Vp = final velocity in numerical tests, m/s 

Wc = chamfer width of the insert, mm 

Ww = workpiece width, mm 

x, y, z = rectangular coordinates, m 

x, y’, z’ = rectangular coordinates, m 

][ A

ix = position vector of the center of 

particle A, m 

][B

ix = position vector of the center of 

particle B, m 

][C

ix = position vector of the contact point of 

two particles, m 

Z = tooth number  

Greek Letters 

α = rake angle, deg 

αe = equivalent rake angle of the cutter, deg 

βc = clearance angle of the cutter, deg 

β = volumetric thermal expansion 

coefficient, K
-1

 

βw = wall normal stiffness multiplier 

δ = square division of uniform elements, 

mm 

ε = emissivity of workpiece surface 

η = particle damping coefficient 

ηh = ratio of the cutting energy converted to 

heat  

ηw = ratio of the generated heat transferred 

to the workpiece  

θc = chamfer angle of the insert, deg 

 = parallel-bond radius multiplier  

μ = particle friction coefficient  

ρ = density, kg/m
3
 

ζ = Stefan-Boltzmann constant 

ζo = locked-in isotropic stress, MPa  

ζb = flexural strength, MPa 

c = normal strength, MPa 

meanc, = inter-cluster parallel-bond normal 

strength, mean, MPa 

'

,meanc = intra-cluster parallel-bond normal 

strength, mean, MPa  

c = shear strength, MPa 

meanc, = inter-cluster parallel-bond shear 

strength, mean, MPa 

'

,meanc = intra-cluster parallel-bond shear 

strength, mean, MPa 



1 

 

 

Chapter 1 - Introduction 

 1.1 Motivation 

As one kind of advanced structural ceramics, silicon nitride (Si3N4) has been increasingly 

used in a number of industrial applications, such as engine components, turbochargers, bearings, 

metal cutting and shaping tools, and hot metal handling, etc. It interests manufacturers and 

researchers for its high strength, hardness and fracture toughness, outstanding wear resistance, 

good chemical stability, low density and so on. The traditional and also commonly used 

technique for machining ceramics is grinding with a diamond wheel. But diamond grinding has 

low material removal rate (MRR), high machining cost, and surface/subsurface cracks which are 

extremely difficult to detect, thus strongly impeding the widespread use of ceramic components. 

Currently, there are some non-traditional ceramic machining techniques developed. They can be 

summarized as follows: ultrasonic machining (USM), electrical discharge machining (EDM), 

abrasive waterjet machining (AWJ), laser machining (LM), laser-assisted machining (LAM), 

plasma-assisted machining, single-point machining, electron-beam and ion-beam machining, 

microwave machining, and some hybrid machining. Among these non-traditional ceramic 

machining methods, LAM seems to be one promising technique due to its great potential to 

overcome the disadvantages of diamond grinding. In LAM, laser local heating can soften the 

material at the cutting zone and thus facilitates material removal by conventional machining 

operations such as turning or milling. However, up till now LAM is still in the stage of 

laboratory development and not applied in industry. The fundamental machining mechanism 

which governs the LAM process is not well understood so far, and as a result there is no 

effective guidance for parameter selection, especially how to avoid the surface/subsurface cracks 

and damage. Therefore, a deep understanding of the material removal mechanism in LAM is 

needed.  

As one hybrid machining process, LAM combines laser technology with conventional 

machining operation, which involves two distinct processes: laser heating and material removal. 

In LAM, the laser is positioned in front of the cutter with the laser spot on the unmachined 

section of the workpiece. As the surface of the workpiece is subjected to the moving laser heat 

source, the laser energy absorbed by the workpiece is converted into heat, resulting in steep 
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thermal gradients and thermal stresses, which may cause surface/subsurface cracking in the 

workpiece. Furthermore, temperatures at the cutting zone are required to be within a proper 

range because, for LAM, underheating cannot decrease the hardness and strength of the material, 

and overheating may cause damage to the machined face and alteration of the material properties. 

Hence, laser intensity and moving speed should be carefully selected so as to ensure that the 

outer layer of the machined face at a defined depth of cut is not damaged, and at the same time 

the minimum temperature at the cutting zone is higher than the material softening temperature. 

Therefore, the analysis of temperature and thermal stresses is necessary and also very important 

for LAM. At present, one of the effective approaches to deal with this kind of problem is to 

establish a three-dimensional transient heat transfer model. Simulation with this model can 

provide distributions of temperature and thermal stress, and then identify with overly high or low 

temperatures, thus predicting the potential cracks. Also, a set of suitable operating parameters 

can be found and the expected temperature at the cutting zone can be achieved by adjusting the 

proper operating parameters, such as laser power, laser beam diameter, laser moving speed, and 

preheat time.  

Moreover, once the cutter contacts the workpiece, the material removal begins. So  far 

much of work has been reported on grinding mechanism, but there is little on LAM. As is 

known, silicon nitride is a temperature-dependent brittle material, and its properties, such as 

Young’s modulus of elasticity, flexural strength, fracture toughness, etc., change with laser 

heating. Compared to metal cutting, ceramic machining exhibits a few distinct characteristics 

such as crack formation and uncontinuous chips. Simulation with a numerical model can help us 

discover the mechanism of crack formation and propagation, and explore the effects of 

machining parameters (e.g., depth of cut, feed, cutting speed) on cutting forces, cracks, etc.  

In addition, as a hybrid process, LAM involves many operating parameters. These 

parameters can be classified into two groups: (1) parameters associated with laser and (2) 

parameters associated with machining. The former mainly includes preheat time, laser power, 

laser beam diameter, and laser moving speed. The latter mainly consists of cutter diameter, depth 

of cut, feed, cutting speed, and laser-cutter lead.  In comparison with conventional machining, 

the selection of appropriate operating conditions is much more difficult, since both thermal and 

machining aspects should be considered. Hence, an effective and efficient strategy for parameter 

selection is strongly required.   
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 1.2 Literature Review 

 1.2.1 Ceramic Machining 

In the last three decades, an enormous interest in advanced ceramic materials emerged. 

However, due to the high cost of ceramic machining, the use of ceramic components is not as 

enormous as the interest. Currently, diamond grinding accounts for more than 80% of the total 

ceramic machining (Allor and Jahanmir, 1996), but there are still some other machining methods 

available. These methods include ultrasonic machining (USM), electrical discharge machining 

(EDM), abrasive waterjet machining (AWJ), laser machining (LM), laser-assisted machining 

(LAM), plasma-assisted machining, single-point machining, electron-beam and ion-beam 

machining, microwave machining, and combined machining. A brief introduction to each of the 

machining method will be given in this section. 

Diamond grinding is by far the most widely used traditional method in industry. One 

problem of diamond grinding is that the machining cost constitutes 30% to 60% of the total cost 

and for some high-precision components even as high as 90% (Wobker and Tonshoff, 1993). 

The other problem for grinding ceramics is the lack of experience with diamond tooling and 

insufficient machine-tool stiffness, thus generating small subsurface cracks that are extremely 

difficult to detect (Allor and Jahanmir, 1996). These small subsurface cracks can seriously 

decrease the strength of the machined parts (Sheppard, 1990; Gou and Chand, 1995). So far, 

much work has been done to improve the grinding process. For example, some researchers 

(Mayer and Fang, 1993; Saurwalt, 1993) found that the surface damaged area is associated with 

wheel grit size. The smaller the grit size, the more ductile mode appearance in machining and the 

less damage on the machined surface. Some researchers (Wang and Hsu, 1994; Zhang and 

Jahanmir, 1996; Yin et al., 2003) found that the appropriate choice of grinding fluid chemistry 

can improve material removal rate and decrease grinding damage. The grinding fluid can keep 

the cutting point and ceramic workpiece at lower temperatures during machining, and thus the 

machining-induced damage in the workpiece surface can be reduced. Some researchers 

(Sheppard, 1987; Bifano et al., 1988; König and Wageman, 1993; Rice, 1993; Ives et al., 1993) 

concluded that a ductile regime takes place on a localized scale when the grit penetration is 

limited to a small size, and in this ductile manner there is a decrease in the subsurface damage. 

But this ductile-regime grinding requires low and precise feeds, very small grit depths, and 
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extremely low material removal rate (MRR). Some researchers tried to improve the grinding 

equipment. For instance, Shen et al. (2001) applied water-jet to dress diamond wheel and 

developed a precision surface grinding technique to cut Al2O3 ceramics and achieved high 

efficiency and surface finish. 

Another prominent method successfully used in industry is ultrasonic technique. 

Ultrasonic machining (USM) is an abrasive process, and also called ultrasonic impact grinding 

(Moore, 1986) and ultrasonic abrasive machining (Schwartz, 1992). Based on mechanical 

oscillation of an abrasive slurry, USM uses the vibrating tool (sonotrode) to reproduce its shape 

into the hard and brittle material. USM does not generate a heat affected zone or cause any 

chemical/electrical alternations on workpiece surface, and can produce almost any complicated 

3D shapes with economical material removal rates (Hahn et al., 1993; Sadat, 1999). However, 

the fresh slurry has to be supplied and removed from the gap between the cutting tool and the 

workpiece, and thereby may wear the wall of the machined hole. Moreover, the movement of the 

abrasive slurry will damage the cutting tool. In addition, research (Iwanek et al., 1986; Pei, 1995) 

observed that once the fracture toughness of ceramics or penetration depth increases, the 

efficiency of USM has a large decrease. To overcome the shortcomings of USM, rotary 

ultrasonic machining (RUM) was developed which combines the material removal mechanisms 

of USM and diamond grinding. The slurry is replaced with abrasives bonded to the tool, and 

coolant is used to wash away the swarfs and prevent jamming the drill (Pei, 1995). RUM can 

increase the material removal rate (MRR) and improve the hole accuracy (Treadwell and Pei, 

2003). However, a commercial RUM machine is only limited to machining circular holes.  

Electrical discharge machining (EDM) is a non-abrasive technique, which is especially 

important for machining hard, brittle, and high-melting-point materials (Faulk, 1993). In EDM, 

the material removal rate is strongly influenced by the electrical and thermal properties of the 

workpiece rather than by the hardness, brittleness of the work material (Faulk, 1993; Tuersley, 

1994; Sadat, 1999; Sanchez et al., 2001). The main advantage of EDM in ceramic machining is 

its ability to produce complicated shapes, no mechanical residual stresses on the workpiece, and 

relatively high material removal rate. The main disadvantage is that this method is only limited 

to conductive materials with electrical conductivity over 0.01 S cm
-1

 (König et al., 1988). For 

ceramic materials with low electrical conductivity, EDM can be used if some doping is added to 

the ceramic material to improve its conductivity. For example, Martin et al. (1989) added TiB2 
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particles to SiC and TiN particles to Si3N4, and Lee and Lau (1991) added TiC particles to Al2O3. 

Although this kind of material can be machined by EDM, the temperature is limited to about 

1000 ºC due to the onset of oxidation of the metallic phases beyond that point.  For non-

conductive ceramic materials, electrochemical discharge machining (ECDM) can be used. 

Electrochemical discharge machining (ECDM) is a combination of thermal and chemical 

machining for ceramic materials, which is influenced by various process parameters such as the 

applied voltage, the interelectrode gap; the temperature, concentration and type of electrolyte; the 

shape, size and material of the electrodes, and the nature of the power supply, etc. 

(Bhattacharyya et al., 1999; Lim et al., 2001; Fukuzawa et al., 2002; Wuthrich and Fascio, 2005; 

Sarkar et al., 2006). But now the main challenge is to control the gas film built around the two-

electrode in which the discharges happen, and to find the stability and dynamics of this film 

conditions.  

Abrasive waterjet (AWJ) machining uses a high-pressure waterjet mixed with abrasive 

particles, such as garnet or silica sand, to cut or drill the hard materials. The quality of the cut 

area and the material removal rate are associated with the abrasive material, abrasive particle 

size, nozzle dimension, and waterjet pressure and velocity (Tuersley, 1994). In AWJ, there are 

no thermal stresses, low machining forces on the workpiece, and no cutting tool degradation 

(Guo and Ramulu, 2001). The disadvantages are stray cutting, low nozzle life, high noise level 

and equipment cost, hazards from rebounding abrasives (Jain et al., 2001), and low machining 

precision (Guo, 1998).  

Laser machining (LM), also called laser beam machining, is a non-contact process, and 

thereby has no tool wear, cutting forces and tool deflections. Lasers can be easily automated and 

adapted to a flexible manufacturing system. It can be used as a complementary process to the 

traditional diamond grinding especially in high speed machining of complicated shapes and 

geometries. However, laser machining can reduce material strength (Sheppard, 1987) and 

decreases micro-hardness, flexural strength, and fracture toughness (Lavrinovich et al., 1990). 

The machined surface usually does not have good properties as the abrasively machined one (Ito 

et al., 1987).  

In order to take advantages of the various methods of ceramic machining mentioned 

above, some combined machining processes were developed. For example, Uematsu et al. (1988) 

applied ultrasonic grinding and electrical discharge grinding to an electrically conductive 
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ceramic workpiece, and found that the new complex grinding method could remarkably reduce 

grinding force and increase material removal rate in ceramic material TiB2. Jia et al. (1995) used 

ultrasonic machining (USM) along with electrical discharge machining and demonstrated that 

this technique can obtain high efficiency and surface integrity for conductive hard and brittle 

materials. Zhang et al. (1996) combined diamond wheel grinding with electrical discharge 

machining (EDM) for ceramics and concluded that both the machining efficiency and the part 

quality are increased. 

The single-point turning operation for ceramic machining was also studied in laboratory. 

Kiso et al. (1987) found that turning with sintered polycrystalline diamond tool is a promising 

machining process for ZrO2, but not for Si3N4 because of short tool life. Various researches 

(Strenkowski and Hiatt, 1990; Blackley and Scattergood, 1991; Zhao et al., 1998; Beltrao et al., 

1999; Ajjarapu et al., 2004) investigated that, in single-point turning, there is a critical-depth 

parameter which defines the transition from brittle to ductile behavior in the machined workpiece 

surface, and in this ductile manner the sub-surface damage can be reduced. 

In addition, there are some other machining methods in some particular applications. For 

example, electron-beam machining (Spector, 1977; Desilets, 1978; Sarfaraz et al., 1993) was 

used to drill holes or mill pockets in ceramics; ion-beam machining (Clinton, 1971; Miyamoto et 

al., 1984) was applied to obtain fine machining of ceramic surfaces; microwave machining 

(Jerby et al., 2003) was employed to micro-pierce or drill ceramic materials. 

 1.2.2 Laser-Assisted Machining of Ceramics 

Laser-assisted machining (LAM) is one kind of hot machining (König and Zaboklibki, 

1993) or thermally assisted machining technique (Shin et al., 2000) in which the materials are 

heated by an external energy source and then machined. The purpose to heat materials is to 

enhance their machinability, especially for “difficult to machine” materials. Plasma-assisted 

machining is another kind of hot machining, which combines plasma arc technique with 

conventional machining operations. For example, Poduraev et al. (1989) applied plasma-assisted 

machining to cut high-strength steels and alloys and found that the production rate and accuracy 

of machining were considerably increased. Miyasaka et al. (1991) used plasma arc to heat a 

Si3N4 workpiece over 1000°C and successfully cut with turning operation.  

In comparison to plasma arc, laser can generate higher temperatures at the cutting zone of  
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the workpieces for its intense and highly localized energy source, thus more and more “difficult 

to machine” materials were machined with laser assistance, such as tool steels (Koshy et al., 

2006; Singh and Melkote, 2007), stainless steels (Bass et al., 1979; Copley, 1985; Jeon and 

Pfefferkorn, 2005; Anderson and Shin, 2006), hardened steels (Jen et al., 2004; Sakai, et al., 

2005) and alloys (Bass et al., 1979; Jau et al., 1981; Rajagopal, 1982; Copley, 1985; König and 

Zaboklicki, 1993; Shin et al., 2006; Germain et al., 2006). 

From the 1990’s, researchers began focusing on ceramics. König and Zaboklicki (1993) 

first studied laser-assisted turning of silicon nitride with Nd:YAG laser. They found that as the 

laser power is fixed, with cutting speed increasing, the surface temperature rises and the cutting 

forces decrease. The machined surface has good quality (Rz<3 μm and Ra<0.5 μm). The tool 

wear modes are mainly flank wear, crater wear on the tool face, and rounding of the cutting edge. 

Chip morphology shows that plastic deformation controls the chip formation in hot machining.  

Hibi et al. (1995) utilized an excimer laser to irradiate a SiC ceramic in deionized water. 

It was indicated that laser heating facilitates the formation of a soft hydrous oxide layer by 

photochemical reaction, thus enhancing machining effectiveness with a diamond tool. The 

machined surface has a mirror surface finish without brittle fractures and excess laser ablation.     

Westkäemper (1995) applied Nd:YAG laser in grinding silicon nitride ceramics. It was 

noted that the use of laser assistance is to reduce the thermal gradients during grinding.  

Comparing with grinding tests with and without laser assistance, the author concluded that the 

applied heat energy has no significant influence on the grinding forces, but the feed of diamond 

roller during truing can be reduced and in-feed depth of the grinding wheel increased and there is 

no crack occurring. The surface roughness of the machined workpiece is almost the same as that 

of without assistance (Rz=2.5 μm).    

Marinescu (1998) employed a diode laser in laser-assisted grinding of ceramics including 

Al2O3, Ferrite, ZrO2 and Si3N4. It was found that heating ceramic materials can help the material 

removal process and the surface quality is also improved. Through some chips collected, the 

author presumed that the material removal is achieved through partly brittle fracture and partly 

plastic deformation.     

Janvrin (1996) reported on the results of laser-assisted turning of silicon nitride ceramics 

with both carbide and coated carbide tools. It was found that with the assistance of Nd:YAG 

laser, coated carbide tool can provide better machining of silicon nitride since the thermal barrier 
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coating can reduce the tool wear and increase the tool life. Analyzing the machined samples by 

SEM, the author pointed out that both the grains and grain boundaries of silicon nitride are 

softened in hot machining at higher temperatures. The softening of grain boundaries can provide 

a built up edge so as to protect the insulated coated tool edge from wearing. Also the built up 

edge can fill surface imperfections and cracks, and thus resulting in a very smooth surface on 

laser-assisted turning of silicon nitride.     

Rozzi (1997) conducted a study with CO2 laser to evaluate laser-assisted turning of 

silicon nitride. It was found that if the temperatures at the cutting zone fall below the YSiALON 

glass transition temperature (920-970 ºC), there will be significant tool wear or tool failure. With 

the temperatures at the cutting zone increasing, the types of chip change from small, fragmented 

chips to large continuous chips, which suggests deformation from brittle fracture to plastic flow. 

Also, increasing temperature can facilitate the movement of softened glassy material in the 

silicon nitride and reduce cutting forces and tool wear drastically.    

Lei et al. (2001) performed some experiments with CO2 laser assistance on turning of 

silicon nitride. They indicated that tool wear mainly happens on the flank face and crater wear on 

the rake face is so small that it can be neglected, and the dominant mode of tool wear is 

adhesion. The thickness of the affected layer of the workpiece (2-4 μm) is considerably smaller 

than that in grinding. They proposed that material removal in LAM is: (1) from a workpiece 

surface layer by laser heating due to oxidation, melting and vaporization, (2) from machining by 

a cutter with plastic deformation in the shear zone, and (3) from segmented chips due to 

initiation, coalescence and propagation of intergranular microcracks.  

Rebro et al. (2002) investigated laser-assisted turning of mullite ceramics using CO2 laser 

and reported that the specific cutting energy is reduced by 30% and 40% at the laser power of 

170 W and 190 W, respectively, and has little dependence on depth of cut, laser beam diameter 

and laser-tool lead. From the chip morphology, they explained that the chip formation is 

associated with material removal temperature (Trm) and cutting force ratio (ratio of the feed force 

to the main cutting force, Ff /Fc), which can be summarized as: for combined brittle fracture and 

semi-continuous chip formation, Ff /Fc >1 and 800 ºC<Trm < 1000 ºC; for semi-continuous chip 

formation, Ff /Fc <1 and 1000 ºC <Trm < 1300 ºC, and for continuous chip formation, Ff /Fc <1 

and Trm >1300 ºC. The surface roughness of machined workpiece (Ra=2.8 μm) has great 

improvement for a laser power of 210 W compared with that of 0 W  (Ra=5.9 μm). The tool life 
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is in the range of 40 minutes and has a significant increase compared with that without laser 

assistance and comparable to those found in metal cutting operations. The surface roughness is 

very close to that of the ground surface. Also, they conducted comparative assessment of mullite, 

partially-stabilized zirconia (PSZ), and silicon nitride in laser-assisted turning. Due to different 

thermophysical and mechanical properties of these three kinds of ceramics, mullite and silicon 

nitride were heated gradually and PSZ was heated with a constant laser power. They found that 

mullite is machinable with a carbide cutter, whereas silicon nitride and PSZ require cubic boron 

nitride insert. Experimental results show that above a sufficient material removal temperature, 

continuous chips occur in silicon nitride and mullite while PSZ only has fragmented chips. The 

surface roughness of all these three ceramics is close to that of grinding without visible 

subsurface cracks.  

Tian and Shin (2006) employed CO2 laser to perform laser-assisted turning of silicon 

nitride workpiece with complex features. Due to the variations of the geometric features of the 

workpiece, the laser power was correspondingly regulated according to the surface temperatures 

measured. They found that the cutting forces in LAM are strongly influenced by the material 

removal temperature and the specific cutting energy is significantly determined by size effect. As 

depth of cut and undeformed chip thickness decrease, specific cutting energy increases. They 

also noted that compared with the tool life found by Lei et al. (2001) the tool life becomes 

longer, and the machined workpiece has good finish surface, moderate compressive residual 

stress, and no thermal damage and phase transformation from β-Si3N4 to с-Si3N4.  Tian et al. 

(2006) further studied laser-assisted milling of silicon nitride. The cutter was TiAlN coated solid 

carbide end mill with two flutes.  They found that the machined surface by milling also has a 

good finish and no cracks. The tool wear rate is strongly associated with laser power. With the 

lowest laser power (1000 W), the tool wear is very fast. As the laser power increases, the tool 

wear considerably reduces. But once the laser power reaches 1300 W, more wear with chipping 

on the tool is observed. They reported that the TiAlN coated carbide cutters at material removal 

temperature from about 1200 ºC to 1300 ºC do not have a good life.  

In order to investigate the machining mechanism of laser-assisted milling of silicon 

nitride ceramics, Yang et al. (2007) did a series of experiments with a diode laser and a self-

made cutter which has only one tooth and one polycrystalline cubic boron nitride (PCBN) tipped 

insert. They found that with increasing cutting temperature, both the cutting forces and specific 
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cutting energy decrease. When temperature at the cutting zone increases from 838 ºC to 1319 ºC, 

the tangential force and radial force decrease by about 50% and 45%, respectively. With 

temperature high enough to soften the glassy grain-boundary phase, laser-assisted milling shows 

more plastic deformation. Once the temperature is higher than 800 ºC, no entry edge chipping 

and interior edge chipping occurs and the size of exit edge chipping decreases greatly.  

Chang and Kuo (2007) analyzed laser-assisted planing as well as turning of Al2O3 

ceramics with the help of a CO2 laser. In planning, their experimental results showed that the 

cutting force is reduced by about 10-16% compared with conventional machining. The machined 

workpiece has a better finish (2.98 μm) and tool wear is relatively reduced. In turning, they 

indicated that the smaller the tool wear at the cutting edge, the better the surface quality. Similar 

to planning, the cutting force is considerably reduced and good surface roughness is achieved. 

 1.2.3 Models for Laser-Assisted Machining of Ceramics 

 Thermal Model 

Laser heating can cause material softening, local yielding, melting, burning, or 

evaporation. The different material removal methods determine the difference of laser heating in 

laser machining and laser-assisted machining. Generally speaking, laser machining needs high 

temperature to achieve material removal and it is accompanied with phase change from solid to 

fluid or vapor, and/or plasma generation. While in laser-assisted machining, the laser is used as 

an intense heat source to change the material’s behavior from brittle to ductile, and phase change 

mainly occurs for a small part of the material on a workpiece surface (Lei et al., 2001). Since the 

laser heating is a complicated process in laser machining, more assumptions are applied than 

those in laser-assisted machining. For example, Atanasov et al. (2001) developed a one-

dimensional analytical heat transfer model to describe laser drilling of silicon nitride and alumina 

ceramics. They indicated that the plasma absorption formed during drilling should be taken into 

account, and when the plasma absorption was considered, the theoretical results agreed well with 

the experimental ones. Roy and Modest (1993) built a three-dimensional model with finite 

difference method. This model was used to predict the groove shapes and temperature 

distribution during evaporative scribing of a silicon nitride workpiece subject to a moving CW 

laser. They assumed that phase change from solid to vapor occurs in a single step at the 

evaporation temperature. They further noted that real materials may display significantly 
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different behavior such as liquefaction followed by evaporation, decomposition into liquid and 

gas, gradual evaporation over a wide range of temperatures, outgassing followed by 

micoexplosive removal of solid particles, etc.    

At present, a few methods are used to develop the thermal models of laser-assisted 

machining, such as analytical method, lattice Boltzmann method (LBM), finite volume method 

(FVM), finite difference method (FDM) and finite element analysis (FEA). The following will 

give a literature review on the models of laser-assisted machining associated with these methods.  

Janvrin (1996) developed a three-dimensional heat conduction model of laser-assisted 

turning of silicon nitride without material removal. The distribution of laser intensity used was 

uniform and the absorptivity of silicon nitride was 0.7. In order to simplify the model and obtain 

a solution of the governing differential equations, it was assumed that there was no change of 

temperature on the workpiece surface where the laser beam covers, thereby making the variable 

in r-direction being eliminated. Additionally, radiation and convection to the surroundings are 

neglected, and the thermal conductivity and specific heat of the workpiece are kept constant 

during laser heating. An explicit finite difference method (FDM) was applied to solve the 

governing equations. The objective of developing the model was to find optimal turning speeds 

for different values of depth of cut. Unfortunately, there is no model validation in his study and 

no publications could be found. 

Gutierrez and Araya (2004) also developed a transient three-dimensional conduction 

model for laser-assisted machining of silicon nitride ceramics. The boundary conditions had the 

same assumptions as Janvrin (1996): constant thermal properties, and no radiation and 

convection. No material removal was considered and no validation was included in the model. 

The difference is that Gutierrez and Araya assumed that all the energy from the laser source was 

absorbed by the workpiece, namely, the absorptivity of the material is 1.0 and Janvrin estimated 

it to be 0.7. Gutierrez and Araya obtained an analytical solution through the method of separation 

of variables while Janvrin used finite difference method.  

Similar to Janvrin (1996) and Gutierrez and Araya (2004), Chang and Kuo (2006) 

established a transient heat conduction model for laser-assisted machining without considering 

radiation and convection, and validated the model through experiments. In this two-dimensional 

model for planing of Al2O3 ceramics, lattice Boltzmann method (LBM) was used to calculate the 

temperature distribution inside the ceramic workpiece. Through this model they found that the 
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surface temperature reaches to 850 ºC in 4 s, which explains why, given appropriate irradiation 

of laser power, the workpiece surface can be softened quickly and efficiently. They also 

calculated the perpendicular temperature distribution in order to ensure that intense heating will 

not damage the subsurface from the workpiece surface. For example, at a depth of 0.1 mm, the 

temperature rapidly decreases to less than 100 ºC, which means that the high temperature caused 

by the laser power has little effects on the sublayer. 

Rozzi (1997) developed a transient, three-dimensional thermal model for laser-assisted 

turning of silicon nitride with and without material removal, respectively. Compared with the 

model by Janvrin (1996), Rozzi considered radiation and convection of the workpiece and also 

treated thermal conductivity and specific heat temperature dependent. In fact, silicon nitride 

ceramics are temperature-dependent materials and their properties of conductivity and specific 

heat vary with temperature (Hampshire, 1991; Smotritskii et al., 1996).  The fully implicit finite 

volume method (FVM) was applied to discretize the energy equation and the computational 

domain was divided into a set of nonoverlapping control volumes. The model was validated 

through comparing the simulation results with experimental ones. In validation, the surface 

temperatures of 5 special points were measured. The author reported that the effect of rotational 

speed on the surface temperature distribution decreases with increasing circumferential location 

from the laser spot and near-laser temperatures decrease with increasing beam diameter, 

decreasing laser moving speed or laser power. Also, parametric effects were conducted including 

workpiece rotational speed and laser moving speed on temperature distribution, and 

thermophysical properties and surface thermal conditions on the maximum temperature within 

the laser spot. It was concluded that the thermal layer thickness decreases with increasing the 

workpiece rotational speed. The forced convection associated with a gas assist jet and changes in 

thermophysical properties can considerably influence the maximum surface temperature beneath 

the laser spot. In addition, an approximate model was developed in order to calculate the radial 

temperature distribution at various circumferential locations, and then obtain the simplified 

relations for on-line control of the laser-assisted machining process. In 1998, Rozzi et al. 

published two important papers, and they were the first group that successfully analyzed the 

temperature distributions of the laser-assisted turning through a numerical model.   

Based on the model developed by Rozzi (1997), Rebro et al. (2004) modified this model 

to study mullite ceramic. Since silicon nitride and mullite are two different kinds of ceramics, 
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they analyzed the thermophysical properties of mullite in detail including density, thermal 

conductivity, specific heat, spectral emissivity and absorptivity. Axial and radial thermal 

gradients were evaluated through this model and also validated by comparing the predicted 

temperature and measured ones. They noted that the thermal diffusivity of mullite is roughly 

one-third that of silicon nitride. Due to its relative inability to conduct thermal energy, mullite 

would develop much higher thermal gradients during laser heating and thus operating conditions 

were different with those of Rozzi’s (1997). By comparing laser-assisted turning with constant, 

one-ramp and two-ramp laser powers, they found that the method with two-ramp laser power 

consistently avoided thermal fracture and crack formation.   

Pfefferkorn et al. (2005) extended Rozzi’s model to partially-stabilized zirconia (PSZ) 

ceramics. Both discrete ordinate method and diffusion approximation, respectively, were used to 

account for the internal radiation inside the semi-transparent workpiece. They indicated that laser 

power, feed and depth of cut have considerable impact on the temperature distribution, and thus 

these three parameters were the most concerned in model validation. In addition, a parametric 

study was performed on laser power, feedrate, depth of cut, spindle speed, laser diameter, and 

preheat time. They concluded that surface temperature is almost linearly varied with laser power. 

Higher feedrate results in less energy absorption. Depth of cut has a significant effect on the 

material removal temperature. Surface temperature decreases with increasing spindle speed and 

the effect of variation in spindle speed are larger near the workpiece surface than at the depth of 

cut. Surface temperature increases as laser diameter decreases. Increasing preheat time increases 

the amount of energy deposited in the workpiece and temperature at the initial position.  

 Since Rozzi’s thermal model is only suitable to a straight cylindrical workpiece with a 

constant machined diameter along the axial direction, Tian and Shin (2006) modified the model 

to adapt to complex features. The workpiece was in straight cylindrical shape with a round-cap 

end before machining. The machined workpiece was produced with a 4 mm straight cutting at a 

constant depth of cut of 0.7 mm and a 20 mm sinusoidal cutting with wavelength of 16 mm and 

varying depth of cut between 0.2 mm to 1.2 mm. They validated the modified model through the 

variations of laser power, spindle speed and feed, respectively, and pointed out that laser power 

has the most significant influence on the workpiece temperature. Spindle speed has little 

influence on the steady state maximum temperature at the measurement centerline. Feed has 

much larger influence on the workpiece surface temperature than spindle speed and much less 
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than laser power. Also, they pointed out that among all the uncertainty factors such as laser 

absorption, feed, spindle speed, CO2 laser power, workpiece surface properties and cutting 

energy, the major one is from the workpiece absorptivity. Tian et al. (2006) again extended 

Rozzi’s model to laser-assisted milling and the material was sintered reaction-bonded silicon 

nitride. They noted that since the properties of sintered silicon nitride and sintered reaction-

bonded silicon nitride have almost identical chemical composition and microstructure, the 

properties of the former were used as those of latter. The model was validated through 

comparing surface temperature measurement as the laser power varied.  

Westkäemper (1995) developed a special finite element analysis (FEA) model for laser-

assisted grinding of silicon nitride, but detailed description of the model was not given. Two 

kinds of materials were considered in the study: silicon nitride and steel (90MnV8). The ceramic 

workpiece has almost the same thermal conductivity of the steel, twice the specific heat and 30 

times of the thermal expansion coefficient. As a result, the ceramic workpiece had a slightly 

higher peak temperature and was more likely to generate grinding cracks due to the low ductility. 

 Machining Model 

Ehmann et al. (1997) gave a good summary on machining process modeling, especially 

for metal cutting. They classified dynamic cutting process modeling into analytical, 

experimental, mechanistic, and finite element methods. Material removal mechanism in brittle 

materials, however, usually shows brittle fracture or a hybrid of plastic deformation and brittle 

fracture. So far, only a few studies found in the literature deal with modeling for brittle materials. 

The modeling methods for brittle materials are mainly focused on finite element analysis (FEA), 

 molecular dynamics (MD) and distinct element method (DEM). 

Zhang and Cao (2000) developed a finite element model to simulate the material removal 

process of glass ceramics and applied the theories of contact mechanics and fracture mechanics 

to formulate it. They found that strength degradation of a machined product occurs after 

machining. The model can be used to assess the microcracks embedded beneath the machined 

surface and evaluate the surface integrity. Promotion of shear-driven quasi-plastic deformation 

during machining improves surface quality and reduces the depth of damage layer formed during  

machining. 

Kumbera et al. (2001) concluded research on a two-dimensional finite element model  
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with a commercial package ADVANEDGE for orthogonal cutting of silicon nitride. This model 

incorporates power-law strain-hardening, thermal softening and rate sensitivity, and uses 

adaptive remeshing technique to overcome excessive element distortions. They noted that silicon 

nitride ceramics behave in a ductile fashion under high pressures and when depths of cut are very 

small. The primary objective of developing the model was to study the effect of various process 

parameters on the pressure distribution within the workpiece and find operating conditions under 

which ductile regime machining is possible. Therefore, a parametric study was conducted to 

investigate the effects of cutting speed, tool-tip radius, rake angle and feed. It is reported that 

when the feed, too-tip radius and cutting speed are small, conditions of brittle-to-ductile 

transformation of silicon nitride exist. Negative rake angles are also more likely to promote 

transformation than positive rake angles. Based on Kumbera’s model, Ajjarapu et al. (2004) 

replaced the Mises yield criterion with the Drucker-Prager yield criterion, and found that when 

the depths of cut are small and the pressure in the workpiece approaches the hardness value of 

silicon nitride in the region near the workpiece-tool interface, material transition to ductile mode 

occurs in this region. As the cutting speed increase, thermal effects become more and more 

dominant and inelastic deformation of silicon nitride will increase due to thermal softening. 

Liu and Zhang (2002) incorporated continuum damage mechanics with finite element 

analysis to predict workpiece subsurface damage induced in ceramic grinding. The model 

consists of a set of parallel Maxwell-type elements arranged in series with a spring. It not only 

considers the respective contributions of the volumetric and deviatoric stresses, but also the 

coupling effect between the stresses on damage development. They reported that the model can 

satisfactorily predict damage depth and give a reasonable prediction of lateral damage, and the 

machining direction has an important influence on the distributions of damage and residual 

stresses.  

Tian and Shin (2007) established a multiscale finite element model to simulate the chip 

formation in laser-assisted machining of silicon nitride ceramics. The silicon nitride workpiece 

was modeled with hexagonal cells of continuum elements imbedded in thin interfacial cohesive 

elements. A hexagonal cell represents a cluster of silicon nitride, which consists of silicon nitride 

grains and the intergranular glass phase inside the cell. These cells of silicon nitride are 

connected by four-node cohesive interfacial elements, which are governed by a cohesive model 

to simulate the potential crack formation between the continuum cells. Their simulation results 
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show that the chip formation and machined surface generation are dominated by different 

mechanism. The formation of discontinuous chips is caused by the propagation of cracks in the 

shear zone while only a small amount of deformation occurs in the chips. In addition, they 

pointed out that the machined surface is generated by plastic deformation of the workpiece 

material under confined high pressure, which results in a crack-free subsurface. 

Komanduri et al. (2001) performed molecular dynamics (MD) simulations of nanometric 

cutting of single-crystal, defect-free, pure silicon and investigated the nature of material removal 

and surface generation process in ultraprecision machining and grinding. They noted that the 

essence of the MD simulation method is the numerical solution of Newton’s equations of motion 

for an ensemble of atoms. In MD simulation, the workpiece is divided into three different zones: 

the moving zone, the peripheral zone and the boundary zone (Chandrasekaran, 1997). The 

motion of the atoms in the moving zone is only determined by forces produced by the interaction 

potential and the direct solution of classical Hamiltonian motion equations. The motions of the 

peripheral zone are modified by the presence of the velocity reset functions associated with each 

atom in the peripheral zone. The boundary atoms are fixed in position and serve to reduce the 

edge effects and maintain proper symmetry of the lattice. Molecular dynamics (MD) simulations 

are usually used in ultraprecision machining. 

Another method applied in machining simulation is distinct element method (DEM). The 

DEM was first introduced by Cundall for the analysis of rock-mechanics and then applied to 

soils (Cundall, 1971; Cundall, 1981). One commercial package, PFC
2D

 (Itasca Consulting Group, 

Inc., 2002), can model the movement and interaction of circular particles by the distinct element 

method. In PFC
2D

, a rectangular specimen containing densely-packed, circular particles is 

generated and the particles are rigid and bonded together to form a solid. The interaction of the 

particles is treated as a dynamic process with states of equilibrium developing whenever the 

internal forces balance. Huang (1999) used PFC
2D

 to model the rock material. Lei and Kaitkay 

(2002)
 
and Kaitkay (2002) used it to simulate rock cutting and found that the cutting forces from 

the simulation agree well with the experimental results. Lei and Yang (2005) applied it to 

simulate ceramic machining and indicated that the material removal in ceramic machining is 

mainly realized by brittle fracture and most cracks are initiated close to the cutting tool. Both the 

median and lateral cracks are very similar to the cracks observed in the experiments. A summary 

of the main methods and studies in machining modeling of brittle materials is given in Table 1.1. 
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Although they have achieved various degrees of success in machining simulation of brittle 

materials, there are some disadvantages associated with each method.  

  Table 1.1 Limitations in machining models for brittle materials 

Authors Model 
Material 

Type 
Limitations 

Zhang and Cao 

(2000) 
FEA Continuum 

The method does not show how the cracks propagate 

and how the cutting forces influence the cracks. 

Kumbera et al. 

(2001)  

Ajjarapu et al. 

(2004) 

FEA Continuum 

The method is based on the ductile machining of 

ceramics and needs to find the operating conditions of 

ductile machining. High pressures and very small 

depths of cut are required, thus having low material 

removal rate (MRR). 

Liu and Zhang 

(2002) 
FEA Continuum 

The method can only predict damage depth and lateral 

damage, and cannot show the crack formation and 

propagation and cannot analyze the surface integrity. 

Tian and Shin 

(2007) 
FEA Continuum 

The authors only showed the first and second cracks 

with a too short cutting length. They used average 

forces over 5 mm cutting length to compare with the 

measured ones, and did not show variations of the 

crack formation and propagation with the cutting forces 

in a continuous mode. In addition, the surface integrity 

is not evaluated. 

Komanduri et al. 

(2001) 
MD Noncontinuum 

The method is applied mainly to nanometric cutting. 

Due to the long processing time, the cutting speed used 

is extremely high (500 m/s), which is somewhat 

unrealistic. 

Lei and Yang 

(2005) 
DEM Noncontinuum 

The authors did not apply the fracture toughness test to 

evaluate the properties of the synthetic material, and 

did not consider the effects of cutting forces on crack 

formation and propagation, and surface integrity. 
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 1.3 Objectives of This Research 

The major limitation listed in Table 1.1 for the existing models is the lack of treatment of 

the material microstructures. As is known, the thermal-mechanical dynamic behavior of the 

brittle materials, such as in LAM, is controlled by their microstructures (Rühle, Manfred, 1985; 

Lee and Rainforth, 1994). That is, simulations without microstructural modeling cannot fully 

reveal machining characteristics like material removal, and crack formation and propagation. 

Although Tian and Shin (2007) made an improvement for FEA by imbedding thin interfacial 

cohesive elements in continuum elements as the intergranular glass phase in silicon nitride and 

thus successfully simulated the chip formation, the model still does not reflect the actual 

microstructure of the material, especially grain shapes. 

However, the distinct element method (DEM) is an effective approach to model the 

microstructures of brittle materials at grain level. The DEM treats a brittle material as an 

assembly with densely packed and arbitrarily sized circular particles bonded together. When the 

bonds break, cracks form or propagate. For silicon nitride ceramics, particle clusters can be used 

to model the real grain shapes. The bonds among clusters can be used to simulate the 

intergranular glass phase. Moreover, the material removal and crack formation and propagation 

can be achieved through bond breaking.  

Hence, the objectives of this research are as follows: 

(1) To develop and validate a three-dimensional (3D) transient thermal model with FEA, 

thus accomplishing the temperature control at the cutting zone in the workpiece. 

(2) To develop a two-dimensional (2D) machining model with the DEM to simulate the 

material removal process of laser-assisted machining, and then validate it through comparing 

simulation results with experimental ones. 

(3) To provide guidelines on parameter selection for future laser-assisted machining from 

experimental, thermal and machining aspects.  

 1.4 Organization of Dissertation 

In chapter 2, the operating temperature of laser-assisted machining (LAM) of silicon 

nitride ceramics is investigated through heating and machining experiments, respectively. 

Guidelines on parameter selection for LAM are provided according to laser-silicon nitride 

interaction mechanism, effect of parameters on temperature, and evaluation of surface quality of 
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 the machined workpieces. 

 Chapter 3 focuses on the temperature prediction using a three-dimensional (3D) transient 

finite element thermal model. The model development and validation are introduced in detail. 

Guidelines on parameter selection from thermal aspect are provided. 

Chapter 4 elaborates the creation process of the synthetic material used for machining 

simulation, and finally gives the dimensional requirements for a reasonable specimen. 

Chapter 5 concentrates on the establishment of the DEM machining model. Guidelines on 

parameter selection from machining aspect are provided. 
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Chapter 2 - Experimental Study on Operating Temperature in 

Laser-Assisted Machining of Silicon Nitride Ceramics  

Operating temperature plays a significant role in laser-assisted machining (LAM) of 

silicon nitride ceramics. Understanding the features of temperature variation in LAM can 

improve the machining process. Note that laser-assisted milling (LAMill) will be focused in this 

study. In this chapter, the investigation of operating temperature will be conducted through 

heating and machining experiments, respectively. Guidelines on parameter selection for LAM 

will be provided from the following aspects: laser-silicon nitride interaction mechanism, effect of 

parameters on temperature, and evaluation of surface quality of the machined workpieces. First, 

the laser-silicon nitride interaction mechanism is explored via heating experiments. Then, the 

trends of temperature variations in LAM are obtained through a parametric study. At last, the 

surface quality of the machined workpieces under different operating temperatures is evaluated 

in terms of edge chipping, surface finish and surface residual stress.  

 2.1 Introduction 

From the 1990’s, researchers in laser-assisted machining (LAM) began to focus on 

advanced ceramics. König and Zaboklicki (1993) first studied laser-assisted turning of silicon 

nitride and found that the cutting forces decrease as the surface temperature rises. Westkäemper 

(1995) applied a Nd:YAG laser in grinding silicon nitride ceramics to reduce the temperature 

gradients during grinding. Marinescu (1998) also conducted laser-assisted grinding of ceramics 

and pointed out that laser heating can facilitate the material removal process and improve the 

surface quality. Rozzi et al. (1998) evaluated laser-assisted turning of silicon nitride and 

concluded that increasing temperature can drastically reduce cutting force and tool wear. 

Through experiments of laser-assisted turning of silicon nitride, Lei et al. (2001) found that the 

dominant mode of tool wear is adhesion, which depends on workpiece temperature. Rebro et al. 

                                                 
The contents of this Chapter are from my following journal paper: 

 Shen, Xinwei and Lei, Shuting (2010). Experimental study on operating temperature in laser-assisted milling of 

silicon nitride ceramics. International Journal of Advanced Manufacturing Technology (in press, DOI: 

10.1007/s00170-010-2702-7) 
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(2004) reported that the chip formation in laser-assisted turning of mullite ceramics is associated 

with material removal temperature and cutting force ratio. Pfefferkorn et al. (2004) indicated that 

high material removal temperature can reduce the specific cutting energy, improve tool life in 

laser-assisted turning of partially-stabilized zirconia. Tian and Shin (2006) performed laser-

assisted turning of silicon nitride with complex features and indicated that the cutting forces in 

LAM are strongly influenced by the material removal temperature. Chang and Kuo (2007) 

revealed that laser-assisted planing of Al2O3 ceramics can greatly reduce cutting force and 

improve surface quality compared with conventional planing.  

For laser-assisted milling (LAMill) of ceramics, Shen et al. (2005) first used a finite 

element analysis (FEA) thermal model to analyze the temperature distribution of the workpiece 

and predict the potential surface/subsurface cracks through thermal stress analysis. However, the 

model only focused on laser heating without considering the material removal and was not 

validated. Later on, Yang and Lei (2008) did a series of experiments of laser-assisted milling. 

The authors found that both the cutting forces and specific cutting energy decrease with high 

cutting temperature. Also, Tian et al. (2008) conducted some experiments of laser-assisted end 

milling of silicon nitride. They pointed out that there was a narrow range of material removal 

temperature (about 1200-1300°C) with the TiAlN coated carbide tools. Recently, Shen and Lei 

(2009) developed a three-dimensional FEA heat transfer model including material removal. The 

validated model successfully predicts the temperature variations of the workpiece.  

All the above research shows that temperature plays a significant role in LAM of 

ceramics. However, there is no literature available to find detailed guidelines on parameter 

selection based on the analysis of operating temperature which incorporates the thermal aspects 

from laser-ceramic interaction mechanism, effect of parameters on temperature, and evaluation 

of surface quality of the machined workpieces. Therefore, an efficient approach for the selection 

of operating conditions in LAMill is definitely needed for successful LAMill operation. To this 

end, this Chapter first explores the laser-silicon nitride interaction mechanism by a series of 

heating experiments. Since different applications of laser materials processing have different 

temperature requirements, understanding the laser-ceramic interaction mechanism can help us 

select more reasonable temperatures for LAM. So far some studies have been reported on laser-

ceramic interaction mechanisms in some applications such as surface treatment, welding, 

shaping and machining (Heuvelman et al., 1992; Mikhailova et al., 2004; Tsai et al., 2004; 
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Samant et al., 2008a, 2008b, 2009a, 2009b, 2009c, 2009d); however, little literature highlights 

on LAM of ceramics. Tian and Shin (2006) investigated the effect of oxidation of silicon nitride 

on the microstructure of the workpiece surface under different temperatures in LAM, but they 

did not elaborate on how oxidation influences the workpiece temperature. In this study, another 

aspect from the effect of parameters on temperature is achieved through a parametric study of 

key parameters including laser power, laser beam diameter, feed rate and preheat time, and the 

purpose is to obtain the trends of temperature variations. The last aspect of surface quality 

evaluation of the machined workpieces arises from the fact that the quality of the machined 

workpiece strongly depends on the temperature. 

In the following sections, laser-ceramic interaction mechanism is first investigated. Then, 

a parametric study is conducted through a series of heating experiments, and surface quality is 

evaluated in terms of edge chipping, surface roughness and surface residual stress, respectively. 

Finally, guidelines on parameter selection for LAMill are provided from these three aspects.  

 2.2 Experimental Setup of LAMill 

The experimental setup for laser-assisted milling of silicon nitride is illustrated in Figure 

2.1. The milling operation is carried out on a CNC machine (Haas Automation Inc.). A diode 

laser (Visotek Inc., DFL500) in continuous wave mode is used to generate a high power laser 

beam with a top hat power distribution. An infrared pyrometer (Williamson Inc., Model 91-20-

C-23D) with a range of 475-1750 °C is applied to concurrently measure the surface temperature 

of the workpiece. Since the pyrometer measures at the wavelength of 1.5 m and the laser’s 

wavelength used in this study is 0.94 m, the pyrometer measurement should not be affected by 

the laser radiation. The dynamometer (Kistler Inc., Type 9257B) is fixed on the worktable and 

utilized with a charge amplifier (Kistler Inc., Type 5010) to measure the cutting forces in the 

global x, y, and z directions. Both the pyrometer and the laser optics are installed through holders 

on the spindle. The workpiece is fed into the milling cutter at a feed rate (Vf) and clamped with a 

vice mounted on the dynamometer. Between the workpiece and vice, insulating materials are 

used to prevent heat loss. The workpieces used in this study are a sintered bonded silicon nitride 

ceramic (Si3N4) with 8wt% additives such as Y2O3 and Al2O3 (Ceradyne Inc.). The dimensions 

are 4.3×5.3×48 mm.  
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 Figure 2.2  Schematic of LAMill setup (a) Top face (b) Side face (c) Cutter and cutting zone 

 

 

Figure 2.1  Experimental setup of laser-assisted milling (LAMill) 
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Figure 2.2 schematically shows the relationship between the workpiece and the spots of 

the laser beam and the pyrometer. Between the laser spot and the cutter, a small distance, laser-

cutter allowance (Ll), is maintained in case the laser spot overlaps and damages the cutter. In this 

study, two measurement points are selected for the pyrometer: Points A and B. The measurement 

point in LAM is commonly selected to be at the laser beam spot (Rozzi et al., 1998; Lei et al., 

2001; Rebro et al., 2004; Pfefferkorn et al., 2004; Tian and Shin, 2006). However, the formation 

of silica bubbles induced by laser heating in LAMill of silicon nitride discussed later in Section 

2.3.1 will affect the measurement at the laser beam spot. Hence, the position of Point A is away 

from the areas possibly covered with the bubbles. The other reason to select Point B as a 

measurement point is that the point-wise temperatures over the cutting zone in LAMill are 

expected to exceed the softening temperature, say 1000ºC (Lange, 1972; Hampshire, 1991), 

because the hardness and the strength of silicon nitride ceramics have considerable reduction 

above that temperature. Thus, the minimum temperature of the cutting zone which occurs at the 

side faces of the workpiece is specially focused (Shen and Lei, 2009). In this study, Point A is 

used in heating experiments for investigating laser-Si3N4 interaction mechanism. Point B is used 

in heating experiments for the parametric study and machining experiments. In Figure 2.2, the 

positions of Points A and B on the workpiece are the initial positions. The length, Lt, from the 

center of Point A to the left end of the workpiece is 6 mm, and the length, Ls, from the center of 

Point B to the top surface is 1.5 mm. 

 2.3 Investigation on Laser-Si3N4 Interaction Mechanism 

 2.3.1 Heating Experiments 

The heating experiments are conducted so as to explore the interaction mechanism 

between the laser and the silicon nitride. The beam diameter is measured with the knife edge 

technique (Khosrofian and Garetz, 1983). Based on our experience in laser-assisted machining 

experiments the operating conditions are selected as follows: feed rate (Vf) of 12 mm/min, laser 

beam diameter (Dl) of 2.1 mm, preheat time (tp) of 0 s and laser power (Pl) with four levels of 

175 W, 200 W, 225 W and 250 W.  

Figure 2.3a displays an as-received workpiece surface and Figures 2.3b-f show five 

heated surfaces under different heating conditions. At the laser power of 175 W, the heated 

surface turns white (Figure 2.3b) but shows no trace of material removal.  As the laser power 
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Figure 2.3  Workpiece surfaces  (a) As-received  (b) White color (175 W)  (c) Bubbles (200 W)  

(d) Bubble-covered surface (225 W)  (e) White silica powders (250 W)  (f) Groove (250 W) 

Figure 2.4  Silica bubble  (a) Side face (b) Top face 
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reaches 200 W, a series of bubbles form and then burst along the feed rate direction (Figure 

2.3c). A clear one is shown in Figure 2.4. The EDS (Energy-Dispersive X-Ray Spectroscopy) 

elemental analysis, shown in Figures 2.5 and 2.6, suggests that the white material in Figure 2.3b 

and the bubbles in Figure 2.4 are all silica. As the temperature increases, the top layer of the 

workpiece starts oxidizing, thus forming a thin silica film. This process can be simplified as the 

following Equation (2.1) (Lavrenko et al., 1985; Howlett et al., 1986; Bushby, 1994) due to the 

complexity of oxidation. Note that SiO2 is thermodynamically more stable than the other species 

such as SiO (Taguchi and Ribeiro, 2004). As the temperature further rises, the softened silica 

film is gradually blown bigger and bigger by the released nitrogen gas. Consequently a silica 

bubble forms. With the temperature continuously going up, the pressure of nitrogen gas increases 

as well, thus destroying the bubble. The region once covered by a bubble is indicated by the 

arrows in Figure 2.3d. 

)(2)(2)(2)(43 233 gsgs NSiOONSi         (2.1) 

Up to 250 W, a wisp of smoke-like material is observed and then turns into white 

powders after cooling. These powders and those located on the heated surface (Figure 2.3e) are 

both proved to be silica from the EDS analysis (Figure 2.7). After several repeated heating on the 

same surface, the silica powders located on the heated surface disappear and instead a very clear 

shallow groove forms (Figure 2.3f) due to the material removal with high laser intensity.           

Actually, as the temperature exceeds approximately 1878ºC (decomposition temperature 

of silicon nitride) (Singhal, 1976), silicon nitride starts decomposing into liquid silicon and 

nitrogen gas following Equation (2.2) (Maruo et al., 1992; Morita, 1993). The liquid silicon is 

then blown off by the high pressure nitrogen gas. Since silicon has a high affinity towards 

oxygen, the expelled liquid silicon is quickly oxidized by the oxygen in air following Equation 

(2.3), thus forming the smoke-like material mentioned above. With temperature further 

increasing, plasma may occur (Batha and Whitney, 1973;  Howlett et al., 1986), but this situation 

may not happen in LAM, because the purpose of laser heating is to make the material softened 

rather than melted or vaporized. 

)(2)()(43 23 gls NSiNSi                              (2.2) 

22 SiOOSi               (2.3) 
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Figure 2.5   EDS spectrum of elements detected in the heated zone 

 

Figure 2.6  EDS spectrum of elements detected in the bubble 

Figure 2.7  EDS spectrum of elements detected in the powders 
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Figure 2.8  Effect of silica bubble on temperature   

(Pl = 250 W, Vf = 12 mm/min, Dl = 2.5 mm, tp = 0 s) 

 

 

 2.3.2 Effect of Silica Bubble on Heating 

Zhang and Modest (1983) found that below the decomposition temperature, the 

absorptivity of silicon nitride remains almost at a constant value of 0.85 at laser wavelength of 

1.06 μm, which is close to 0.94 μm used in this study. Therefore, this study ignores the effect of 

the absorptivity on temperature and focuses on silica bubble.  

In order to examine the effect of silica bubble on workpiece temperature, repeated laser 

heating experiments are conducted. Since considerable amount of silica bubbles are discovered 

in the heating experiments in Section 2.3.1 under the conditions of Pl = 250 W, Vf = 12 mm/min, 

Dl = 2.5 mm, tp = 0 s, this set of operating conditions is used in the repeated heating experiments.  

Figure 2.8 provides the temperature variations in the repeated laser heating experiments. 

When the as-received workpiece is first heated, some temperature fluctuations show in Curve 1. 

Experimental observation reveals that these fluctuations are associated with bubble formation 

rather than absorptivity. Once bubbles form, the temperature goes up. The reason is that the 
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bubble formation (Equation (2.1)) induced by the oxidation of silicon nitride is an exothermic 

process (McColm, 1983). The heat energy released (roughly 800 J/mol (Themelin et al., 1993)) 

can help raise the workpiece temperature. So far no literature has been found to report a 

quantitative relationship between the energy released and the temperature rise. Because the 

material around the laser-covered region in each heating pass is only partially oxidized due to the 

protection from bubbles (Figure 2.3d), some fluctuations are also found in the following repeated 

heating tests such as Curves 2, 3 and 4. However, the temperature tends to decrease as shown in 

Curves 2, 3 and 4. After four repeated heating tests no bubble forms. In this situation the 

temperature variation gradually goes smooth (Curves 5 and 6). It is found that the temperature 

differences between the first (Curve 1) and the last (Curve 6) heating are around 100ºC, which 

suggests that, to some extent, bubble formation is beneficial to LAMill.  

Bubble formation in laser heating indicates that material removal happens, which 

depends on a threshold value of laser intensity (Töenshoff and Gedrat, 1991). Below this 

threshold, the absorbed heat energy through the workpiece top surface is mainly transferred into 

the material through conduction, with some loss due to convection and radiation. In this study, 

the threshold intensity was roughly calculated to be around 4×10
3
 W/cm

2 
by the laser power and 

the beam diameter through a series of heating experiments. 

 2.4 Parametric Study on Heating Experiments 

In this section, a parametric study is conducted to analyze how the parameters in LAMill 

affect the temperature. The purpose is to obtain the trends of temperature variations in LAMill 

and serve the parameter selection in the next step. It should be mentioned that in this section the 

measurement point is selected to be Point B. That is, all the temperatures in this parametric study 

are the temperatures at Point B. 

 2.4.1 Parameters in LAMill 

For the laser with continuous wave mode, the parameters in LAMill can be classified into 

two groups: (1) parameters associated with laser and (2) parameters associated with machining. 

The former mainly includes laser power (Pl), laser beam diameter (Dl), preheat time (tp), and 

laser moving speed. The latter mainly consists of depth of cut (DOC), feed rate (feed, Vf), cutting 

speed (Vc) and laser-cutter allowance (Ll). According to the relative motion of the workpiece and 

the laser, the value of the feed rate is the same as the laser moving speed; therefore, for 
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 Table 2.1 Operating conditions in the parametric study 

Laser power  

(W) 

Laser Beam 

Diameter (mm) 

Feed rate 

(mm/min) 

Preheat time 

(s) 

300 

340 

410 

3.3 6 13 

340 

1.8 

2.6 

3.3 

6 13 

340 3.3 

3 

6 

12 

13 

340 3.3 6 

4 

8 

13 

 

convenience, the following sections will use the term “feed rate” instead of “laser moving 

speed”. Since the quality of the machined workpiece is dominantly determined by operating 

temperature, the key parameters associated with laser (Table 2.1) are considered in this 

parametric study. 

 2.4.2 Preheat Time 

The purpose of preheating is to elevate the temperature at the cutting zone, thus softening 

the material before milling. In considering the distance (Ll) between the laser spot and the cutter, 

the selection of the preheat time should ensure that the minimum temperature in the cutting zone 

is still higher than the softening temperature once the cutter starts to contact the workpiece.  

Figure 2.9 shows the temperature variations with tp of 4 s, 8 s and 13 s and with the other 

parameters fixed (Vf = 6 mm/min, Dl = 3.3 mm, and Pl = 340 W). In the preheating stage, the 

workpiece is stationary and thus the temperature rises quickly. The peak temperature occurs right 
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after preheat time and then gradually drops as the workpiece begins to move. With the workpiece 

moving forward, the laser beam gradually moves away from the left end of the workpiece 

(Figure 2.2) and towards the middle of the workpiece. In this situation, the temperature continues 

to slightly drop in that more heat energy is conducted from the beam spot to the two ends of the 

workpiece. From Figure 2.9, it can be seen that a longer preheat time can cause higher 

temperatures in the preheating stage. With the workpiece moving, the influence of preheat time 

on the temperature becomes weaker and weaker, and then the three curves gradually converge. 

 2.4.3 Laser Power 

Figure 2.10 shows the temperature variations with Pl of 300 W, 340 W and 410 W while 

the other parameters are fixed (tp = 13 s, Vf = 6 mm/min, and Dl = 3.3 mm). For the three cases, it 

can be seen that the higher the laser power, the more heat energy the workpiece absorbs, and 

then the higher temperature the workpiece has.  

 2.4.4 Laser Beam Diameter 

Figure 2.11 illustrates the temperature variations with Dl of 3.3 mm, 2.6 mm and 1.8 mm 

and with the other parameters fixed (tp = 13 s, Vf = 6 mm/min, and Pl = 340 W). The average 

laser intensity for the three diameter is approximately 4×10
3
, 7×10

3
, and 1.7×10

4
 W/cm

2
, 

respectively. Although the laser power is the same, the smaller beam diameter gives higher 

temperature. One reason is that there is a smaller region covered with laser beam. The other 

reason is that the laser with a smaller beam diameter has higher laser intensity, thus causing more 

energy released from oxidation reaction. 

 2.4.5 Feed Rate 

Figure 2.12 shows the temperature variations with Vf of 3 mm/min, 6 mm/min and 12 

mm/min while the other parameters are fixed (tp = 13 s, Dl = 3.3 mm, and Pl = 340 W). The 

moving length is 13.7 mm. As the feed rate decreases, more heat energy is deposited in the 

workpiece thus obtaining higher temperatures. In other words, within the same moving length, 

the time that the laser beam stays on the workpiece is getting longer. That is, with a low feed 

rate, a high temperature can be obtained in machining process, thus enhancing the machinability 

of silicon nitride and decreasing the cutting force. Hence, as the laser power is fixed, to adjust the 

feed rate can obtain a high operating temperature.  
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Figure 2.10  Effect of laser power on temperature  

(Vf = 6 mm/min, Dl = 3.3 mm, tp = 13 s) 

Figure 2.9  Effect of preheat time on temperature  
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Figure 2.11  Effect of laser beam diameter on temperature  

(Pl = 340 W, Vf = 6 mm/min, tp = 13 s) 

 

 

Figure 2.12  Effect of feed rate on temperature  

(Pl = 340 W, Dl = 3.3 mm, tp = 13 s) 
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 2.4.6 Laser Intensity 

The above parametric study shows that both the increase of laser power and the decrease 

of laser beam diameter essentially enhance the laser intensity. Under a certain fixed laser 

intensity, both the decrease of feed rate and the increase of preheat time relatively prolong 

heating time on the workpiece.  

Section 2.3.2 indicates that small material removal is desired in LAMill which is 

preceded by bubble formation; and too much material removal usually needs high laser intensity, 

which may damage the machined surface of the workpiece. As shown in Figure 2.3f, a groove is 

generated due to high laser intensity. If the groove could not be removed by milling, the 

machined surface would be the situation indicated by the arrows in Figure 2.13. Of course, the 

appearance of damages in milling depends on the value of depth of cut. Depth of cut is a 

machining parameter which is set before each cut. A large depth of cut can eliminate the damage 

layer, but cause high cutting force as well. Hence, the selection of depth of cut, to some extent, 

strongly affects the machining process. However, for a given depth of cut in LAMill, the 

selection of laser intensity should not only ensure the bubble formation but also prevent the 

damages induced by heating.  

 

 

 

 

 

 

 

 

 

 2.5 Evaluation of Surface Quality under Different Operating Temperatures 

In order to study how the temperature affects the quality of the machined workpiece, a 

series of LAMill are conducted. The measurement point is selected to be Point B. As is known, 

silicon nitride is a temperature-dependent material whose properties (e.g. hardness and strength) 

Figure 2.13  Damage in a machined surface 

Vf 

×5 
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considerably degrade over the softening temperature, say 1000ºC (Lange, 1972; Hampshire, 

1991). It means that a better performance of LAMill can be achieved if the point-wise 

temperatures over the cutting zone are above that value. Hence, the minimum temperature over 

the cutting zone is of great concern in this study. The point that has the minimum temperature is 

defined as the minimum temperature point (MTP).  

 2.5.1 Operating Temperature and Cutting Force 

Although the actual temperatures over the cutting zone are not the temperatures measured 

at Point B, they were successfully predicted through a three-dimensional transient FEA thermal 

model (Shen and Lei, 2009) developed with the finite element code ANSYS 11.0. In this model, 

the considered boundary conditions include convection, radiation, laser heat flux, and heat 

generation induced by machining. The model was validated with a series of experiments in terms 

of the parameters of laser power, feed and cutting speed. It was found that the maximum 

temperature over the workpiece occurs at the laser spot. The temperature gradually decreases 

from laser spot to its surrounding portion, thus causing temperature gradients (Note that too large 

temperature gradients may cause surface/subsurface cracks in the workpiece). Moreover, the 

temperature at Point B shares the same trend with the cutting zone, which suggests that Figures 

2.9-2.12 can reflect the trends of operating temperatures over the cutting zone. 

Figure 2.14 illustrates the temperature histories at the MTP predicted in our previous 

work (Shen and Lei, 2009) under three sets of operating conditions: (a) Pl = 300 W, tp = 15 s; (b) 

Pl = 410 W, tp = 12 s; and (c) Pl = 470 W, tp = 8 s, and the fixed parameters include Dl of 3.6 

mm, Vf of 6.0 mm/min, Vc of 1.0 m/s and DOC of 0.2 mm. The maximum temperature difference 

over the cutting zone is about 100°C. Case (c) has the highest temperatures and Case (b) the 

next. Although the temperature slightly decreases in each case because of more material 

participating in heat conduction as the workpiece moves forward, the temperature differences 

among the three cases do not have too much change, since once the thermal system is in quasi-

steady state, the differences tend to maintain a constant value (Shen and Lei, 2009).  

In order to clearly show the relationship between operating temperature and cutting force, 

the averaged temperature and main cutting force are calculated within the initial cutting length of 

2 mm, respectively. The reason to use the short cutting length is to reduce the effects from tool 

wear and edge chipping on cutting force. Figure 2.15 shows that the temperature difference 
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Figure 2.14  Predicted temperature histories 

(Dl = 3.6 mm, Vf = 6.0 mm/min, Vc = 1.0 m/s, DOC = 0.2 mm, and Case (a): Pl = 300 W, tp = 15 s, 

Case (b): Pl = 410 W, tp = 12 s, Case (c): Pl = 470 W, tp = 8 s) 

 

 

Figure 2.15  Relationship between temperature and main cutting force 

(Dl = 3.6 mm, Vf = 6.0 mm/min, Vc = 1.0 m/s, DOC = 0.2 mm, and Case (a): Pl = 300 W, tp = 15 s, 

Case (b): Pl = 410 W, tp = 12 s, Case (c): Pl = 470 W, tp = 8 s) 
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Figure 2.16  Relationship between fracture toughness and temperature (Mutoh et al., 1993) 

between Cases (b) and (c) is not as large as expected with respect to the power differences 

between the three cases. The reason is that both Cases (b) and (c) have bubble formation and 

Case (a) does not. Moreover, although the temperature difference between Cases (b) and (c) is 

much smaller than that between Cases (b) and (a), the cutting force difference is larger than that 

between Cases (b) and (a). As discussed in next paragraph, this can be explained by the fact that, 

for silicon nitride, the brittle-to-ductile transition occurs at Case (b), which causes the large 

increase of fracture toughness and thus the cutting force does not decrease as rapidly as expected.  

Mutoh et al. (1993) revealed that the brittle-to-ductile transition takes place between the 

temperature range of 1200-1275°C. Figure 2.16 shows that when the temperature is above 800°C 

but below the transition point, the fracture toughness decreases with increasing temperature due 

to the degradation of the strength of the intergranular glass phase. In this stage, intergranular 

fracture is dominant in silicon nitride. Once the temperature is up to the softening point of the 

glass phase (about 1200°C),   the intergranular glass phase becomes adequately soft and the 

brittle-to-ductile transition of fracture occurs. At this temperature range, the fracture toughness 

rapidly increases from 4 MPam
1/2 

to exceed the value at room temperature due to the increase of 

resistance to brittle fracture, which causes the slow decrease of cutting force in machining. Once 
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the temperature is above the transition temperature, the decrease of viscosity is promoted and 

consequently the resistance to shear deformation of the intergranular glass phase decreases with 

increasing temperature. The variation of fracture toughness with temperature suggests that the 

brittle-to-ductile transition should be avoided as much as possible in LAMill.  

 2.5.2 Evaluation of Surface Quality 

In the following, the surface quality is evaluated in terms of edge chipping, surface 

roughness and surface residual stress, respectively. The machined surfaces in Cases (a), (b) and 

(c) are shown in Figure 2.13. 

Edge Chipping  

Exit edge chipping is found in all these three cases, which is indicated by the arrows in 

Figure 2.17. Edge chipping is a sudden macroscale or microscale edge damage and arises from 

the sudden release of the energy built in the machining process. Three kinds of edge chipping for 

brittle materials are described: entry edge chipping, interior edge chipping and exit edge chipping. 

Exit edge chipping occurs when the cutter is leaving the workpiece. More detailed description on 

edge chipping can be found in (Yang et al., 2009). Figure 2.18 shows the variations of chipping 

width with the cutting length. It is clearly observed that with high operating temperature, the 

chipping width decreases and the curve goes smoothly. This is because the hardness and the 

strength of silicon nitride have a large decrease with high temperature. 

Surface Roughness 

 Figure 2.19 provides the machined surfaces under these three cases. The surface 

roughness Ra was evaluated with a Suftest-402 surface profilometer (Mitutoyo Corporation). The 

profilometer was calibrated using a standard reference specimen, then set to travel at a speed of 

0.1 mm/s with a range of 4 mm during testing. To measure the Ra value, the diamond stylus (5-

μm tip radius) was moved across each machined surface 20 times in longitudinal and transverse 

directions, respectively. The surface analyzer was used to determine the roughness profile of 

each measure. Finally, the average value was calculated and considered to be the Ra value. For 

Cases (a)-(c), the average values are 0.72 μm, 0.62 μm and 0.42 μm, respectively. It can be seen 

that with high operating temperature, good surface finish can be obtained.  
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Figure 2.18  Variations of edge chipping width with the cutting length 

(Dl = 3.6 mm, Vf = 6.0 mm/min, Vc = 1.0 m/s, DOC = 0.2 mm, and Case (a): Pl = 300 W, tp = 15 s, 

Case (b): Pl = 410 W, tp = 12 s, Case (c): Pl = 470 W, tp = 8 s) 

Figure 2.17  Machined surfaces under different operating temperatures (top view) (Dl = 

3.6 mm, Vf = 6.0 mm/min, Vc = 1.0 m/s, DOC = 0.2 mm, and Case (a): Pl = 300 W, tp = 15 s, Case 

(b): Pl = 410 W, tp = 12 s, Case (c): Pl = 470 W, tp = 8 s) 
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Figure 2.19  Surface roughness and operating temperature 

Case (a): Pl = 300 W, tp = 15 s; Case (b): Pl = 410 W, tp = 12 s; Case (c): Pl = 470 W, tp = 8 s 

Figure 2.20  Surface residual stress under different operating temperatures 

(Dl = 3.6 mm, Vf = 6.0 mm/min, Vc = 1.0 m/s, DOC = 0.2 mm, and Case (a): Pl = 300 W, tp = 15 s, Case 

(b): Pl = 410 W, tp = 12 s, Case (c): Pl = 470 W, tp = 8 s) 
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The machined surface produced by LAM mainly consists of amorphous glassy phase 

materials, cavities resulting from grain pullout, and dislodged β-Si3N4 grains (Lei et al., 2001). 

With a higher temperature, the intergranular glass phase is easier to redistribute via viscous flow 

process, and β-Si3N4 grains are liable to slide and thus dislocate in the silicon nitride crystallites. 

The cavities resulting from grain pullout will decrease. Moreover, the cavities are more likely to 

be filled with the intergranular glass phase. Thus, the machined surface looks smoother. 

Residual Stress 

Residual stresses were measured in collaboration with Lambda Technologies Inc. (Yang 

et al., 2009). X-ray diffraction residual stress measurements were performed using a multi-angle 

sine-squared-psi technique employing the diffraction of chromium K-alpha radiation from the 

(41.1) planes of the HCP crystal structure of Si3N4. The value of the x-ray elastic constant, 

E/(1+ν), required to calculate the macroscopic residual stress from the strain measured normal to 

the (41.1) planes of β-Si3N4 was determined empirically by employing a simple rectangular beam 

manufactured from β-Si3N4 loaded in four-point bending on the diffractometer to known stress 

levels and measuring the resulting change in the spacing of the (41.1) planes in accordance with 

ASTM E1426 (ASTM, 2003).  

For the workpieces machined under Cases (a)-(c), the surface residual stresses were 

measured in the longitudinal and the transverse directions, respectively. As is known, the surface 

residual stresses of the machined workpiece by LAM are determined by the compressive residual 

stresses induced by the mechanical loading and the tensile residual stresses induced by thermal 

loading. Under high temperatures (above the softening point of the glassy phase), the mechanical 

loading produces larger microplastic deformation in the transverse direction than in the 

longitudinal (feed) direction. Therefore, as shown in Figure 2.20, there are higher compressive 

residual stresses in the transverse direction than in the longitudinal (feed) direction. In contrast, 

the thermal loading in the cutting zone leads to tensile residual stresses without a preferential 

orientation. The higher the temperatures at the cutting zone, the larger the tensile residual 

stresses. This is why high temperature has lower compressive residual stresses in Figure 2.20. 

In summary, high operating temperature can reduce the cutting force and thereby 

decrease edge chipping, improve surface roughness and lower surface residual stress. However, 

high operating temperature can also reduce the material strength, hardness and so on. Hence, 
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when meeting the requirements of a specific application, the higher operating temperature the 

better; otherwise a compromise must be made between operating temperature and material 

strength; however, so far no technical data have been found on the relationship between the 

strength and temperature. 

 2.6 Guidelines on Parameter Selection 

The evaluation of the machined workpieces shows that, in some extent, the higher the 

operating temperature below the decomposition temperature of the silicon nitride, the better the 

surface quality. Moreover, the temperatures over the cutting zone are recommended to be higher 

than the temperature range of brittle-to-ductile transition, thus avoiding the slow decrease of 

cutting force. According to the parametric study on heating experiments, a high operating 

temperature can be obtained by increasing the laser intensity. However, the laser-silicon nitride 

interaction mechanism indicates that laser intensity has a range for the successful operation of 

LAMill. That is, for a given depth of cut, the lower limit of the laser intensity is the threshold for 

silica bubble formation and upper limit is the value that causes the damage of the machined 

workpiece induced by heating.  

The ways to increase the laser intensity include: (1) to increase laser power for a given 

beam diameter, (2) to decrease laser beam diameter for a given laser power, and (3) both of 

them. However, our previous work (Shen and Lei, 2009) shows that if the laser beam diameter is 

too small, it can result in large temperature gradients over the cutting zone. Correspondingly, the 

laser beam diameter is recommended to be as large as possible and then laser power is selected 

to be large enough so as to meet the requirement of laser intensity mentioned above. Once the 

laser power and beam diameter are decided, the expected operating temperature in LAMill can 

be obtained by adjusting feed rate. The operating temperature in the preheating stage can be 

achieved by regulating preheat time. Since the maximum operating temperature occurs right after 

preheat time (Figures 2.9-2.12), the surface damage induced by heating can only be focused on 

this stage. A numerical thermal model can be used to predict the temperature at the depth of cut. 

Once the temperature reaches the decomposition temperature of silicon nitride, the damage 

appears. 
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 2.7 Conclusions 

Some conclusions are summarized as follows: 

(1) Laser-Si3N4 interaction mechanism indicates that laser heating gives rise to the silica 

 formation at high temperatures in air. Silica bubble formation is desired in LAMill because the 

heat energy released from the oxidation reaction can increase the workpiece temperature.  

(2) The parametric study on heating experiments reveals that high laser power, small 

laser beam diameter, small feed rate and large preheat time can cause high operating 

temperatures.  

(3) The quality of the machined surface is strongly related to the operating temperature. 

High operating temperatures can cause small edge chipping, good surface finish, and low 

residual stress.  

(4) The operating temperature in LAMill is recommended to be above the temperature 

range of brittle-to-ductile transition at which the fracture toughness has a rapid increase. The 

laser intensity should be in the range higher than the threshold for silica bubble formation and 

lower than the value that causes the surface damage induced by heating. 

(5) There is still some work to be done in the next step, for example, the studies on the 

effect of laser intensity on the damage depth, the relationship between temperature and the 

strength of the machined workpieces, etc. 
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Chapter 2 - Thermal Modeling and Experimental Investigation for 

Laser-Assisted Milling of Silicon Nitride Ceramics 

 

As indicated in Chapter 2, temperature control is very important for the success of laser-

assisted milling. Thus, in this Chapter, a transient three-dimensional (3D) thermal model is 

developed using finite element analysis (FEA) so as to explore the thermal characteristics in 

laser-assisted milling (LAMill) of silicon nitride ceramics. Furthermore, the effects of laser 

power, feed and cutting speed on temperature are investigated and the model is validated through 

a series of experiments of LAMill. Note that heat generation associated with machining is 

considered in this model.  

 3.1 Introduction 

Laser-assisted machining (LAM) can potentially decrease machining cost, improve 

efficiency and reduce surface/subsurface flaws of ceramics. König and Zaboklicki (1993, 1994) 

demonstrated the feasibility of LAM for advanced ceramics and pointed out that LAM is one 

kind of hot machining. Shin et al., (2000) also indicated that LAM is one kind of thermally 

assisted machining techniques and temperature is critical to the successful operation of LAM. 

Apparently, temperature analysis is necessary and very important in LAM. Currently, the 

effective approach to achieve it is through numerical modeling.  

The modeling methods involve analytical treatment, finite difference method (FDM), 

finite volume method (FVM), and finite element analysis (FEA). Westkämper (1995) developed 

a two-dimensional finite element analysis (FEA) model for laser-assisted grinding of silicon 

nitride, but detailed description of the model was not given. Janvrin (1996) built a three-

dimensional heat conduction model for laser-assisted turning of silicon nitride using finite 

difference method (FDM). In this model, a constant temperature at the laser-beam covered 

region was assumed. Thermal radiation and convection were neglected and the material removal 

                                                 
The contents of this Chapter are from my following journal paper: 

 Shen, Xinwei and Lei, Shuting (2009). Thermal modeling and experimental investigation for laser-assisted milling 

of silicon nitride ceramics. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 

131(5), 051007-1-10 
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was not considered. Gutierrez and Araya (2004) established an analytical conduction model for 

laser-assisted machining of silicon nitride. They also neglected thermal radiation, convection and 

the material removal. In order to find the temperature distribution for laser-assisted planing of 

Al2O3 ceramics, Chang and Kuo (2006) developed a two-dimensional transient heat conduction 

model and applied Lattice Boltzmann method (LBM) to calculate the temperatures inside the 

ceramic workpiece. They did not consider thermal radiation and convection. A quasi-steady-state 

analytical thermal model was established by Ching et al. (2007) for laser-assisted turning of 

zirconia ceramics. Similarly, they did not consider the material removal and boundary conditions 

of thermal radiation and convection. It should be noted that, in addition to thermal radiation and 

convection, all the above-mentioned models neglected the temperature-dependent 

thermophysical properties of the materials, especially thermal conductivity and specific heat.  

However, the following thermal models made much improvement in dealing with these 

issues. Both the temperature-dependent thermophysical properties and the boundary conditions 

of thermal convection and radiation were considered. Rozzi et al. (1998) used finite volume 

method (FVM) to develop a transient three-dimensional thermal model for laser-assisted turning 

of silicon nitride. They pointed out that laser translational speed, laser power, cutting speed and 

laser beam will affect the workpiece surface temperatures. Rebro et al. (2004) extended the 

model (Rozzi et al., 1998) to mullite ceramics. Through evaluating the axial and radial thermal 

gradients, they presented a two-step power method for applying laser power thus avoiding 

thermal fracture and crack formation. Also, Pfefferkorn et al. (2005) extended the model (Rozzi 

et al., 1998a) to partially-stabilized zirconia (PSZ) ceramics. Internal radiation, diffusion and 

convection are specially considered because of semi-transparent zirconia (PSZ) ceramics. They 

found that laser power, feed and depth of cut have considerable impact on the temperature 

distribution. Tian and Shin (2006) improved the model (Rozzi et al., 1998) to the complex 

feature. They concluded that laser power has the most significant influence on the workpiece 

temperature, then feed and lastly spindle speed. Also, Singh et al. (2008) developed a three-

dimensional transient FEA model for laser-assisted micro-grooving of a mold steel and 

successfully predicted the temperature distributions of the heat-affected zone (HAZ) in the 

workpiece. 

All the literature mentioned above is focused on laser-assisted turning, grinding, planning 

and micro-grooving. As for laser-assisted milling (LAMill), König and Zaboklicki (1992) first 
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showed its feasibility of cutting “difficult to machine” materials such as stellite 6. Jeon and 

Pfefferkorn (2008) successfully conducted laser-assisted micro end milling to improve the chip 

load and productivity in metal cutting. For ceramic materials, Shen and Lei (2004) initially did 

some numerical simulations for laser-assisted milling of silicon nitride, which were conducted 

through a transient three-dimensional heat transfer model using finite element analysis (FEA). 

With this model, a parametric study was conducted involving parameters of laser power, laser 

beam diameter, laser moving speed and preheat time. After this, Shen et al. (2005) improved that 

model (Shen and Lei, 2004) so that it could be used to predict the potential surface/subsurface 

cracks through thermal stress analysis. However, neither the material removal nor model 

validation was performed for both models. Later on, Yang et al. (2007) conducted a number of 

experiments of laser-assisted milling, but no thermal model was built for this operation. They 

indicated that as operating temperature increases, both the cutting force and specific cutting 

energy decrease. Yang and Lei (2008) further pointed out that once the operating temperature is 

higher than 1000ºC, entry edge chipping was not observed. Exit edge chipping decreases 

considerably as the temperature increases. Tian et al. (2006, 2008) also did some experiments of 

laser-assisted milling of silicon nitride. The TiAlN coated carbide end mills were used. They 

indicated that there was a narrow range of material removal temperature (about 1200-1300°C) 

with the TiAlN coated carbide tools. Also, a transient three-dimensional thermal model was 

developed using finite volume method (FVM). However, the model only focused on laser 

heating without the material removal, and only the effect of laser power was discussed.  

This study improves our previous FEA thermal model (Shen et al., 2005) by considering 

material removal, and the new model is validated through a series of experiments of laser-

assisted milling of silicon nitride ceramics. Temperature simulation reveals that thermal gradients 

exist inside the workpiece in LAMill due to localized laser heating. Basically, for a successful 

LAMill, small thermal gradients in the workpiece are expected, especially over the cutting zone. 

They are strongly affected by the parameters of LAMill such as laser power, laser beam 

diameter, feed rate, feed, and cutting speed. Hence, through thermal analysis, guidelines for the 

parameter selection can be made and thus the thermal gradients over the cutting zone can be 

reduced. So far no literature has reported on the thermal analysis of the cutting zone in detail for 

LAMill. In addition, previous researchers usually neglected heat generation associated with 

machining in their thermal models, because they argued that the value was very small compared 
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with the energy from the laser source, while this study conducts simulations to explore its effect 

on the temperature at the cutting zone. 

In the following sections, the FEA model is first introduced in detail and an example of 

temperature distribution is illustrated. Then, model validation is conducted via varying the 

parameters of laser power, feed and cutting speed. Finally, a guideline on parameter selection is 

provided for future laser-assisted milling operations. 

 3.2 Transient Three-Dimensional FEA Model 

 3.2.1 Mathematical Description of the Model  

Figure 3.1 illustrates the schematic of laser-assisted milling of silicon nitride ceramics in 

this study. The laser is positioned in front of the milling cutter. Between the laser spot and the 

cutter, a small distance, laser-cutter allowance, is maintained in case the laser spot overlaps and 

damages the cutter. The workpiece is fed into the milling cutter along the z direction, which is 

clamped by an insulated vise so as to prevent the heat dissipation from the workpiece. The 

clamped areas (S1) are shown in gray in Figure 3.1. The remaining areas on the workpiece 

surfaces are exposed to the surroundings.  

The heat transfer model can be described by the following governing equation integrating 

over the volume of the workpiece: 
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     (3.1) 

where  S2 is the area covered by the laser beam (laser spot);  

S3 is the area where the cutter is in contact with the workpiece in one cut; 

S4 is the areas including all the workpiece surfaces open to the surroundings except S2, S3. 
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Figure 3.1  Schematic of laser assisted milling (LAMill) 
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In Equation (3.1), the first, second and third terms on the left-hand side represent the 

change of the internal energy, energy convection and radiation, respectively. The first term on 

the right-hand side represents input heat flux from the laser source. The second term shows the 

energy from the heat generation due to plastic deformation and tool-workpiece friction, which is 

associated with machining. The last term represents the energy conduction across the workpiece 

surfaces. Actually, for the whole volume of the workpiece, the final integration result of the last 

term is equal to zero because nothing contacts the workpiece except the insulating materials, 

which is considered to be adiabatic. However, for an element (or very small volume) inside the 

workpiece, the final integration result of the term is not zero. 

The initial condition of the thermal model is  

 TtzyxT t 0),,,(           (3.2) 

For the areas of S1, the boundary condition is considered adiabatic and defined by 

0
1





S

n

T
                                                                                                                  (3.3) 

In the area of S2, in addition to free convection and thermal radiation, there is also a heat 

flux from the laser source. Thus the boundary condition can be defined as 

''''''

0,2 radconltS qqq
n

T
k 



                   (3.4) 

where 
''

lq  is heat flux from the laser; 

''

conq  is convective heat flux, )(''

 TThq scon ; 

''

radq is radiation heat flux, )( 44''

 TTq srad  . 

For the area of S3, besides free convection and thermal radiation, there exists generated 

heat due to plastic deformation and tool-workpiece friction in machining. Thus the boundary 

condition can be represented by 

''''''

,3 radcongenttS qqq
n

T
k

p





                 (3.5) 

It should be noted that the surface of S3 moves with the laser beam. 

For the areas of S4, only free convection and thermal radiation exist and thereby the 

boundary condition can be expressed as  
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''''
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                            (3.6) 

 3.2.2 Model Development Using FEA 

In this study, the thermal model is developed using the finite element package ANSYS 

11.0 (ANSYS Inc.). The Finite element discretization solution: Newton-Raphson procedure is 

applied (see Appendix B). The dimensions of the model are the same as those of the actual 

workpiece with 4.3 mm in width (x direction), 5.3 mm in height (y direction) and 48 mm in 

length (z direction). Because of symmetry considerations only one-half of the workpiece is used 

in the model. As shown in Figure 3.2, the z direction is the laser moving direction. The region to 

be covered with laser beam is a long quasi-rectangular area located on the top face of the 

workpiece. Around the target machining portion, fine uniform meshes with brick shape are 

generated with the dimensions of 0.12x0.12z0.1y mm, and beyond this portion, non-uniform 

meshes are used. The model has a total of 17x236z34y elements and 149,310 nodes.  

Still, some other features of the model are specified in the following.  

(1) In this study, allowing for the existence of thermal gradients in the workpiece, the 

minimum temperature over the cutting zone is used as the operating temperature for material 

removal rather than the average one that some other work used (Rozzi et al., 1998a; Rebro et al., 

2004; Pfefferkorn et al., 2005; Tian and Shin, 2006; Tian et al., 2008). The purpose is to ensure 

that point-wise temperatures over the cutting zone exceed the softening temperature, say 1000°C 

(Lange, 1972; Hampshire, 1991), because there is considerable degradation of hardness and 

strength over that temperature for silicon nitride ceramics.  

(2) In this study, the top-hat distribution of laser intensity replaces the Gaussian 

distribution in our previous work based on the laser profile measurement from the manufacturer 

(Visotek Inc.). As a result, an approximately uniform heat flux input, ''

lq , yields, assuming that 

the top-hat distribution is not altered for the inclination angle of 70 deg between the laser beam 

and the top face of the workpiece.  

In order to apply the heat flux to the elements within the elliptic laser spot, it is roughly 

divided into 30x32z square divisions due to the laser inclination. The division size (in the x and z 

directions), δ, is the same as the element size (in the x and z directions). The relative error 
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Figure 3.2  FEA model with one half of the workpiece 
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between the power input for the simulation and the experimental value is 0.5%. Each division is 

specific to a corresponding element. As the laser spot moves, the location of each division is 

changed and the division corresponds to another element. In each moving step, the heat flux is 

applied to every laser-beam covered element and removed from every newly uncovered one. 

Note that the distance that the laser spot moves in each step is equal to the element size.  

(3) Material removal in ANSYS is achieved through “killing” elements, which are 

deactivated by multiplying their stiffness (or conductivity, or other analogous quantity) by a 

severe reduction factor (say 1.010
-8

). All the effects associated with deactivated elements are 

set to zero, such as element loads, mass, damping, specific heat, and others. But in the actual 

material removal process, the milling cutter contacts the workpiece with only one part of its nose 

edge (Figure 3.3), because the nose radius, r, of the cutter (0.787 mm) is much larger than the 

depth of cut of 0.2 mm. It is also noted that the cutter diameter of 76.2 mm is considerably larger 

than the workpiece width of 4.3 mm. Therefore, the cutting path on the workpiece can be 

approximated as a straight line, and the cross section of the cutting zone in any y-z plane can be 

seen in Figure 3.3.  

The FEA mesh adopted in this study for the cutting zone is shown in Figure 3.4. The 

element size (in the x and z directions) and height (in the y direction) are selected to be five times 

the feed and half of the depth of cut, respectively. That is, two layers of elements beneath the top 

face of the workpiece will be “killed” once the cutter moves forward by five times of the feed. It 

is should be mentioned that, in a mesh dependence study with an approximately 10-fold finer 

mesh for the cutting zone, the difference in simulation results was found to be about 1.2%, thus 

justifying the use of the course mesh in this study for the sake of computing efficiency. 

(4) Heat generation associated with machining is considered in this model. The cutting 

energy, Gc, from the cutter in each cut can be approximated by the product of the main cutting 

force, Fc, and the moving length, Lw, as follows: 

310  wcc LFG                    (3.7) 

Since the mechanism of heat transfer at the cutting zone in LAMill is not fully 

understood at present, for simplification, the generated heat is assumed to transfer to the 

workpiece in a uniform heat flux, ''

genq . The area and the time of heat transfer in one step, δ, can 

be defined by the following equations, respectively: 
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Figure 3.3  Schematic of cutting zone in face milling 
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Actually, as the laser spot moves one step in simulation, correspondingly there are δ/f 

cuts in the actual machining. Hence, combining Equations (3.7-3.9), ''

genq  can be expressed as: 
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                                                                      (3.10) 

where  ηh is the ratio of the cutting energy eventually converted to heat; 

ηw, is the ratio of the generated heat transferred to the workpiece.  

Note that Equation (3.10) is only suitable for simulations.  

(5) Free convection is reasonably assumed for the slow feed rate of the workpiece (< 1.0 

mm/s). Localized laser heating in LAMill induces non-uniform temperatures on the workpiece 

surfaces; hence, for simplification, an average convection coefficient, h , is used for the heated 

workpiece (Table 3.1). It is calculated by using the empirical correlations of Churchill and Chu 

(1975) for the vertical plate with external free convection flows and correlations of Goldstein et 

al. (1973) and Lloyd and Moran (1974) for the horizontal plate (Incropera and Dewitt, 1996).  

The temperature-dependent emissivity values used in this study, ε, are obtained according 

to Touloukian (1967) and Sala (1986), which are listed in Table 3.1 together with a couple of 

extrapolated points for the high and low temperature end. The data of the temperature-dependent 

thermophysical properties of thermal conductivity and specific heat were provided by Ceradyne 

Inc. (Table 3.1).  

The absorptivity of sintered silicon nitrides at 25°C (wavelength of 937 nm) found in the 

literature is 0.72 (Touloukian, 1967) and 0.56~0.75 (Touloukian and DeWitt, 1972). Zhang and 

Modest (1998) recommended 0.85 by measurements made for a hot-pressed silicon nitride. The 

laser wavelength they used is 1.06 μm, which is close to 937 nm in this study. They found that 

the absorptivity remains almost constant at 0.85 from 26°C to 1897°C. The above different  

values of absorptivity suggest that the surface absorptivity is affected by the compositions and 

production process of silicon nitride ceramic. The above values are somewhat not exactly the one 

our material has.  Hence, based on plenty of experimental data, Shen and Lei (2008) indirectly 

obtained the absorptivity of 0.8 for sintered reaction bonded silicon nitride from a validated heat 
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          Table 3.1 Thermal properties of silicon nitride 

Temperature 

(K) 
Emissivity, ε 

* 

Thermal 

Expansion 

Coefficient, β 

Thermal 

Conductivity, k 

(W/m • K) 

Specific Heat, c 

(J/kg • K) 

400 0.94 # 0.22 25.1 810 

600 0.9 0.51 21.4 960 

800 0.86 1.20 20.0 1050 

1000 0.83 1.93 19.2 1080 

1200 0.8 2.62 18.1 1100 

1400 0.77 3.40 17.3 1110 

1600 0.75 # 3.80 17.0 1115 

   Note: 
 *: Values from Touloukian (1967) and Sala (1986) and # from extrapolation; 

 Values of thermal expansion coefficient, thermal conductivity and specific heat provided by Ceradyne Inc.  

transfer model, which was carried out via adjusting the absorptivity to match the predicted 

results with the measured ones. Note that the absorptivity is also affected by temperature (Siegal 

and Howell, 1981; Geng, 2004). However, the experiments of Zhang and Modest (1998) 

depicted that, below the decomposition temperature, the absorptivity of silicon nitride has very 

small variation. In addition, it should be mentioned that the surface oxidation and possibly 

generated silica (Shen and Lei, 2008) are ignored due to the very thin layer on the top face 

around the laser spot. 

 3.3 Experimental Setup 

The experimental setup for laser-assisted milling of silicon nitride is illustrated in Figure 

2.1. The milling operation is carried out on a CNC machine (Haas Automation Inc.). A diode 
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laser (Visotek Inc., DFL500, wavelength 937 nm) with a top hat power distribution is used to 

generate a high power laser beam, which is delivered through the optical fiber and strikes on the 

workpiece surface at the angle of 70 deg. A dynamometer (Kistler Inc., Type 9257B) is fixed on 

the worktable and utilized to measure the cutting forces in the x, y, and z directions. The air jet 

and shield are employed to prevent the optics from being overheated. The workpiece is clamped 

with an insulated vise which is mounted on the dynamometer. An infrared pyrometer 

(Williamson Inc., model 91-20-C-23D) with a range of 475-1750°C is used to concurrently 

measure the workpiece temperatures. Both the pyrometer and the laser are installed through 

holders on the spindle. All the data of temperature and force are digitally recorded by a 

computer. 

Dozens of our experiments demonstrated that there was severe tool wear in laser-assisted 

milling of silicon nitride with commercial carbide mills; therefore, a house-made cutter with only 

one tooth and a polycrystalline cubic boron nitride (PCBN) insert was utilized. The purpose of 

this special design is to simplify the machining process and thus facilitate the analysis, because it 

always ensures that only one tooth contacts the workpiece during the milling process.  

Figure 3.5 shows the initial positions of the laser and the pyrometer spots. Both of them 

are tangential to the edge of the right end face of the workpiece. For two reasons the 

measurement point of the pyrometer is not selected at the cutting zone on the top face of the 

workpiece. One reason is that, as the laser beam shines on the workpiece, silica bubbles may  
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continuously form on the top face of the workpiece (Shen and Lei, 2008), which may decrease 

the measurement accuracy of the infrared pyrometer. The other reason is that the minimum 

temperature over the cutting zone is of great concern in this study. Thus, the pyrometer spot is 

positioned on the side (front) face with a distance of 1.5 mm to the top face. 

The Si3N4 workpiece (Ceradyne Inc, Ceralloy 147-31N) is a sintered reaction bonded 

ceramic (~8wt% additives) with dimensions of 4.3×5.3×48 mm, and its properties are provided 

by Ceradyne Inc. (Table 3.2).  

                          Table 3.2 Properties of silicon nitride (25ºC) (Ceradyne Inc.) 

Property Value 

Density (kg/m3) 3200 

Flexural Strength (MPa) 800 

Elastic Modulus (GPa) 310 

Poisson Ratio 0.27 

Fracture Toughness (MPam1/2) 6.0 

 

 3.4 Simulation Results 

 3.4.1 Temperature Distributions of the Workpiece 

Simulations are performed with different operating conditions. One typical simulation 

result is illustrated with temperature distributions in Figure 3.6. The cutting length, Lc, is 7.0 mm, 

and the operating conditions are:    Pl = 410 W,  Vc = 1.0 m/s,  f = 0.024 mm/tooth/rev,  Vf = 6 

mm/min, tp = 12 s, Dl = 3.6 mm, DOC = 0.2, and Ll = 0.5 mm.  

In Figure 3.6, the MN and MX symbols identify the locations of the minimum and 

maximum temperatures (the left face of the workpiece and the laser spot center), respectively. 

Note that the uniform interval is used in the contour display. The contour interval, defined as the 

difference between two adjacent contour lines, is around 140C. Obviously, the region near the 

laser spot has higher temperatures (over 1000C), which is verified by experimental 
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observations. In the experiments, the color of the material in that region turns into red and fades 

away to the surroundings. The approaching portion of the laser spot continuously absorbs energy 

from heat conduction and as a result, temperatures increase quickly, while the newly uncovered 

region is gradually cooling down due to free convection and thermal radiation. The geometrical 

widths of the contours in the x, y and z directions are not uniform and instead tend to increase 

from the laser spot to the surrounding portion. That is, along the x, y and z directions, the thermal 

gradients are becoming smaller. Contour display reveals that the laser heat source has a strong 

influence on the region around the laser spot and a weaker influence on the region beyond. 

Section A-A in Figure 3.6 passes through the cutting zone at the top face of the workpiece.  

The minimum temperature point (MTP), as the term suggests, is defined as the point with 

the minimum temperature at the cutting zone. Usually, it is farthest from the laser spot center 

among the points in the cutting zone. It depends on the relative positions of the workpiece and 

the cutter, and it moves with the cutting zone. The temperatures at the MTPs should be kept 

higher than the material softening temperature in the milling process.  

Figures 3.7 (a), (b) illustrate the cutting zone and its temperature contours obtained from 

simulations, respectively. Due to the very small feed, the surface area OCDE is considered here 

to represent the temperature distribution for the cutting zone. Point O is the location of the MTP 

and Point D is the maximum temperature point over the cutting zone. The temperature difference 

between them, also the maximum temperature difference over the cutting zone, is 120C. 

Figure 3.8 illustrates the temperature contours of the back face obtained from simulation. 

Point F is the MTP with a temperature of 1165C. Assuming that another cutting is conducted, all 

the operating conditions are the same except that the depth of cut is set to be the nose radius of 

0.787 mm. Then Point G is the MTP of the new cutting with a temperature of 1147C. It means 

that, from the thermal aspects, a larger DOC is feasible under the current operating conditions. 

However, from the machining aspects, a very large DOC may cause severe surface/subsurface 

damage, which means that too much energy is deposited in the region not to be machined. The 

approach to prevent it is either to increase laser power or feed rate or both. 

 3.4.2 Effect of Heat Generation in Machining 

As mentioned in Section 3.2.1, another factor that affects the thermal model is heat 

generation due to plastic deformation and tool-workpiece friction, which is associated with  
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Figure 3.6  Temperature contours of the workpiece obtained from simulation 

(Pl = 410 W, Vc = 1.0 m/s, f = 0.024 mm/tooth/rev, Vf = 6 mm/min, and tp = 12 s, Lc= 7.0 mm) 
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machining. In this model, heat generation is being treated. Although many studies indicate that 

the value is very small, few of them calculate it in detail. Since the ratio of the cutting energy 

converting to heat, ηh, and the ratios of the generated heat transferring to the cutter, the chips and 

the workpiece, respectively, are not well known, in order to assess the maximum possible effect 

of generated heat on the workpiece temperatures, the model assumes that all the cutting energy is 

converted to heat which dissipates into the workpiece (ηhηw = 1).  

Equation (3.7) indicates that the cutting energy is proportional to the main cutting force, 

Fc. our experimental results show that the average main cutting forces with depth of cut of 0.2 

mm and cutting length of 1 mm are 8.6 N, 6.4 N and 2.2 N at operating temperatures of 1140C, 

1320C and 1400C, respectively. As expected, the average cutting force decreases as the 

operating temperature increases. In order to evaluate the effect of heat generation, the average 

cutting force of 9.8 N at the operating temperature of 1400C is used as an example in this 

Section. The heat flux ''

genq  thereby yields 2.0×10
5
 W/m

2
 according to Equation (3.10). However, 

comparing the results from considering heat generation with those not, the temperature 

discrepancies at MTP and maximum temperature point over the cutting zone are about 0.3C and 

2C, respectively. That is, ''

genq  indeed can be neglected. In fact, the heat flux input from the laser 

source,
''

lq , is about 150 times of ''

genq under these operating conditions, even with all the cutting 

energy being assumed to dissipate into the workpiece. 

 3.4.3 Uncertainty Analysis 

There are some uncertainties involved in this study. These uncertainties originate from 

both measurements and simulations. For measurements, the uncertainty is mainly from 

pyrometer system error, ±0.5%. For simulations, the uncertainties are mainly from: (1) laser 

beam diameter determination, ±11.1%, which comes from the actual measurements of laser beam 

diameter; (2) the absorptivity of the workpiece (Zhang and Modest, 1998), ±3.2%, which is 

considered due to temperature variations; (3) meshing and discretization of the model, 1.2%, 

which is from model meshing and calculations; (4) average convection coefficient (Incropera and 

Dewitt, 1996), ±11.8%, which arises from non-uniform temperatures and different convection 

surfaces of the workpiece; and (5) laser power input, 0.5%, which is considered due to power 

difference between the simulation and the experiment (Section 3.2.2 (2)). The contributions of 
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these uncertainties to the simulation error also rank as above. For example, under the operating 

conditions: Pl = 410 W, Vc = 1.0 m/s, f = 0.024 mm/tooth/rev, Vf = 6 mm/min, tp = 12 s, Dl = 3.6 

mm, DOC = 0.2 and Lc = 7.0 mm, the temperature at MTP is 1165C and the corresponding 

simulation error has upper and lower limits of 4.2% and 4.6%, respectively, which are 

determined via several simulations using all the possible combinations of the limit values of the 

above factors that can result in the uncertainties in LAMill and then finding the upper and lower 

limits. In addition, there are some uncertainties neglected in this model such as inhomogeneous 

properties of the material, surface oxidation, the air jet, and the insulating material. 

 3.5 Model Validation 

To develop confidence in our FEA model, a series of experiments were conducted for 

validation purpose. Three groups of them are listed in Table 3.3. The operating conditions 

include the following parameters: laser power, Pl, laser beam diameter, Dl, laser moving speed, 

Vl, preheat time, tp, depth of cut, DOC, feed, f, cutting speed, Vc, and tooth number, Z, laser-

cutter allowance, Ll.   Vl and Vf are linked through the following equation: 

RPMZfVV fl                  (3.11) 

Because of the relative motion between the laser and the workpiece, Vl is equal to feed 

rate, Vf. For convenience, in the following sections feed rate, Vf, will be used rather than the laser 

moving speed, Vl.  

In this study, the parameters of laser power, feed, and cutting speed are the most 

important. The parameters of laser beam diameter, depth of cut, tooth number and laser-cutter 

allowance are fixed. The measurement points are shown in Figure 3.5. The temperatures at the 

MTP and maximum temperature point over the cutting zone are also predicted. 

Figures 3.9-13 show the temperature histories under the operating conditions in Groups I 

and II (Table 3.3). Each of them includes four curves: Measurement, Simulation, Simu_MTP and 

Simu_Max, which represent experimental data, simulation data, predicted minimum and 

maximum data at the cutting zone, respectively. For uncertainty considerations, the curves of 

Measurement and Simulation are shown with the error bars.   The curves of Simu_MTP and 

Simu_Max are not shown with the error bars because the difference between Simu_MTP and 

Simu_Max, also the maximum temperature difference over the cutting zone, is the most 

important. The curves of Measurement and Simulation show that the temperatures quickly rise to 
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         Table 3.3 Operating conditions of laser-assisted milling of Si3N4 

 
Laser 

power 

(W) 

Feed 

(mm/tooth/rev) 

Cutting 

Speed 

(m/s) 

Feed rate 

(mm/min) 

Preheat 

time  

(s) 

Laser 

Beam 

Diameter 

(mm) 

Depth 

of Cut 

(mm) 

Laser-

Cutter 

Allowance 

(mm) 

Group 

I 

300 

410 

470 

0.024 1.0 6 

15 

12 

8 

3.6 0.2 0.5 

Group 

II 
410 

0.012 

0.024 

0.048 

1.0 

3 

6 

12 

12 3.6 0.2 0.5 

Group 

III 
410 0.024 

0.5 

1.0 

2.0 

3 

6 

12 

12 3.6 0.2 0.5 

 

a peak value and then gradually go down. This is because during preheating, the position of the 

laser beam is fixed. After that time the measurement spots start to move with the workpiece. 

Furthermore, the maximum temperature differences over the cutting zone are found to increase 

gradually as the workpiece moves. The reason is that the insulating materials are not ideally 

adiabatic. The simplified boundary conditions in the model actually neglect the heat transfer 

between the insulating materials and the vise, thus causing the predicted temperatures higher 

than the measured ones. As the temperatures go up, the heat transfer speed increases and as a 

result, the differences further increase. However, once the thermal system is in a quasi-steady 

state, the differences tend to maintain a constant value, but they are still in the range of error bars 

shown in Figures 3.9-3.13. In addition, it is noted that the maximum temperature difference over 

the cutting zone maintains nearly constant as the thermal system is in a quasi-steady state 

condition, which means that the thermal gradients inside the cutting zone no longer change with 

the workpiece moving. 

Figures 3.9-3.11 show the temperature histories with the laser power of 300, 410 and 470 

W, respectively. The cutting speed and feed are fixed. As expected, the higher the laser power, 

the more heat energy the workpiece absorbs, and the higher temperatures the workpiece has. The 
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laser power of 470 W has the highest MTP temperatures among all these three cases. The 

maximum differences over the cutting zone for the power of 300, 410 and 470 W are 100C, 

120C and 139C, respectively. That is, the thermal gradients inside the cutting zone have a 

small increase as the laser power goes up. 

  Figures 3.12, 3.10 and 3.13 show the temperature histories with feed of 0.012, 0.024 and 

0.048 mm/tooth/rev, respectively. The laser power and cutting speed are fixed. According to 

Equation (3.8), the feed variation is related to feed rate variation. Although the parameters in 

these three cases are the same except for the feed and feed rate, the peak temperatures are 

different. This is because the peak temperature does not usually occur at the preheating stage, 

instead it often happens at some time after the preheating stage. The value of the peak 

temperature depends on feed rate. A smaller feed rate can result in a higher value. It is noted that 

the maximum temperature differences over the cutting zone for these three cases are almost the 

same (120C). The feed variation does not alter the thermal gradients inside the cutting zone as 

feed varies. 

In Group III (Table 3.3), the parameters of laser power and feed are fixed, and cutting 

speed changes as 0.5, 1.0 and 2.0 m/s, respectively. Similar to the change of feed, cutting speed 

variation is also related to feed rate variation. Actually, both cutting speed and feed affect the 

temperatures via varying feed rate. However, once the feed rate is fixed, from the thermal 

aspects, they have little impact on temperatures because their contributions to heat generation are 

so small that it can be ignored. In fact, Groups II and III have almost the same thermal results, 

which are demonstrated via both experiments and simulations. 

In summary, Figures 3.9-3.13 show that the predicted temperature results are in good 

agreement with the measured ones. It is reasonable to declare that the model can successfully 

predict temperature distributions of the workpiece under different operating conditions. 

 3.6 Guidelines on Parameter Selection 

Three basic criteria are summarized for the smooth operation of laser-assisted milling: (1) the 

minimum temperatures over the cutting zone should exceed the material softening temperature in 

the milling process; (2) the thermal gradients over the cutting zone should be as small as 

possible; and (3) The temperatures of the workpiece should be lower than the decomposition 

temperature of silicon nitride so as to avoid possibly damaging the machined surface. To this end,  
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Figure 3.9  Temperature histories with Pl = 300 W  

(Vc = 1.0 m/s, f = 0.024 mm/tooth/rev, Vf = 6 mm/min, and tp = 15 s) 

 

 
 

Figure 3.10  Temperature histories with Pl = 410 W  

(Vc = 1.0 m/s, f = 0.024 mm/tooth/rev, Vf = 6 mm/min, and tp = 12 s) 
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Figure 3.11  Temperature histories with Pl = 470 W  

(Vc = 1.0 m/s, f = 0.024 mm/tooth/rev, Vf = 6 mm/min, and tp = 8 s) 

 

 
 

Figure 3.12  Temperature histories with f = 0.012 mm/tooth/rev  

(Pl = 410 W, Vc = 1.0 m/s, Vf = 3 mm/min, and tp = 12 s) 
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Figure 3.13  Temperature histories with f = 0.048 mm/tooth/rev  

 

the parameters in laser-assisted milling should be selected carefully.  

The forgoing analysis shows that the parameters of laser power and feed rate dominantly 

determine the temperature distribution of the workpiece. Feed and cutting speed can also play an 

important role via varying feed rate. However, once feed rate is fixed, feed and cutting speed 

themselves have little impact on workpiece temperature. Hence, to meet the three basic criteria, a 

high laser power is strongly recommended, but high laser power will increase the thermal 

gradients inside the cutting zone. Hence, a compromise should be made between them. Once 

laser power is determined, feed rate should be selected appropriately so as to keep the 

temperature change as small as possible. According to Equation (3.11), there are three ways to 

regulate feed rate: feed, spindle speed and tooth number.  

Compared with depth of cut, the feed is so small over the cutting zone that the 

temperature difference can be neglected in the feed direction (Figure 3.3). That is, from the 

thermal aspects, the feed can be increased appropriately so that the material removal rate (MRR) 

 can be improved. 

It is noted that the nose radius of the milling cutter can also affect the temperatures at the 

MTPs. As shown in Figure 3.3, the smaller the nose radius, the shorter the distance from the 

800

900

1000

1100

1200

1300

1400

0 10 20 30 40 50

T
em

p
er

a
tu

re
 (

°C
)

Time (s)

Measurement

Simulation

Simu_MTP

Simu_Max



68 

 

MTP to the laser spot, and thus the higher the temperatures at the MTPs. Thus the nose radius of 

the milling cutter is expected to be as small as possible.  

 3.7 Conclusions 

A transient three-dimensional heat transfer model for laser-assisted milling is developed 

and validated through comparing the predicted temperatures with the experimental ones. 

Simulation results show that heat generation associated with machining can be neglected. The 

predicted temperatures at the MTPs can be used to evaluate the operating temperatures under 

various operating conditions. Laser power is one critical parameter for successful laser-assisted 

milling operations. High laser power is strongly recommended. Both feed and cutting speed can 

affect the operating temperatures by varying feed rate. Once feed rate is fixed, they have little 

impact on the operating temperatures.  
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Chapter 3 - Creation of the Synthetic Material for Machining 

Simulation Using Distinct Element Method 

 

In order to simulate the dynamic process of laser-assisted machining (LAM) of silicon 

nitride ceramics, a synthetic material must be first created with the distinct element method (or 

discrete element method, DEM), whose macroproperties are calibrated with the corresponding 

physical properties of the real silicon nitride material. Thus, in this chapter, the creation of the 

synthetic material is focused. The numerical tests (compression, bending, and fracture toughness 

tests) used in the calibration process are introduced in detail. Furthermore, the requirements for 

the reasonable specimen dimensions for machining simulation are provided.  

 4.1 Introduction 

Advanced structural ceramics have high strength and hardness, outstanding wear 

resistance, good chemical stability, etc. Their thermal-mechanical dynamic behavior is well 

recognized as controlled by the microstructures (Rühle, 1985; Lee and Rainforth, 1994). In order 

to simulate the microstructures, various numerical models were developed for different purposes. 

Some models were used to study the microstructural development, thus improving the ceramic 

properties. For example, Monte Carlo method was applied to simulate sintering and grain growth 

formation (Matsubara, 1999; Wang et al., 2005). Probabilistic models, based on the closed 

random sets and tessellation, were used to describe the morphology of grains (Chermant and 

Coster, 2002). Some models were established to analyze the crack initiation and formation under 

loading. For example, Zavattieri et al. (2001) presented a dynamic finite element analysis (FEA) 

model to simulate microcracking at grain boundaries and subsequent large sliding opening and 

closing. Maiti and Geubelle (2004) developed a grain-based cohesive/volumetric FEA model to 

investigate dynamic propagation and branching of a mode I crack. Also, some models were 

developed with the distinct element method (or discrete element method, DEM) to study the 

                                                 
The contents of this Chapter are from my following journal paper: 

 Shen, Xinwei and Lei, Shuting (2009). Numerical modeling and simulation of laser-assisted machining of silicon 

nitride ceramics with distinct element method: part I, creation of the synthetic specimen for machining 

simulation. Journal of Manufacturing Science and Engineering, Transactions of the ASME, (under review). 
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deformations and damages of brittle materials under dynamic loading. 

As for the DEM, it was first introduced by Cundall for the analysis of rock-mechanics 

(Cundall, 1971). In recent years, besides rock (Hazzard et al., 2000; Potyondy and Cundall, 

2004), the method was also applied to model other materials such as concrete (Tavarez et al., 

2002; Shiu et al., 2008), silicon (Tan et al., 2008a), composite (Wittel et al., 2003) and ceramics 

(Kotrc and Uebel, 2005). Furthermore, it was extended to simulate the material removal of rock 

(Huang, 1999; Lei and Kaitkay, 2002; Ledgerwood, 2007), silicon (Tan et al., 2008a) and 

ceramics (Shen and Lei, 2005; Tan and et al., 2008b). 

Different from our previous work (Shen and Lei, 2005, Shen and Lei, 2009a), this paper 

gives a complete description of microstructural modeling of β-Si3N4 ceramic. Cluster breakage in 

machining is considered, the calibration guidelines for the numerical tests are provided and the 

material strengths are selected from a Weibull distribution instead of a normal distribution. The 

objective is to provide an effective approach to model a ceramic material at the microstructural 

(grain) level for studying the deformation and damage evolutions of the material under dynamic 

loading. Especially material removal in laser-assisted machining (LAM) is investigated in the 

companion paper (Shen et al., 2009). In the following sections, the relationship between the 

DEM and advanced ceramics is first elucidated. Then, microstructural modeling of silicon nitride 

is conducted covering the synthetic material creation and the microstructural analysis. Finally, 

the requirements are presented for the creation of a reasonable synthetic specimen for machining. 

 4.2 DEM and Advanced Ceramics 

The DEM (Itasca, 2002) argues that cracks occur once a large enough compression force 

is applied to rock as shown in Figures 4.1a and 4.1b. The similar crack-inducing mechanism also 

occurs when a rock is replaced by bonded circular particles as shown in Figure 4.1c. Imagine that 

many more similar breakages would occur inside an assembly which contains thousands of such 

bonded circular particles. This situation to some extent describes the occurrence of crack 

formation and propagation in a material under loading. Hence, it is suggested that the DEM can 

be used to model a rock and handle the crack interaction, constitutive behavior, fracturing 

bodies, etc. The above crack-inducing mechanism can also be applied to other brittle materials. 

Commonly, the particles in the DEM are treated as rigid bodies that are capable of “overlapping” 

at contact points as an alternative to reflect individual deformation. The interaction between 
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particles is treated as a dynamic process in which the equilibrium state is reached whenever the 

internal forces balance. The movement of particles can also be used to reflect the deformations of 

the material. 

In contrast with continuum methods (e.g., FEA model), the DEM model can describe 

non-linear behavior and localization with accuracy and treat the material inhomogeneity as well. 

Moreover, it can handle the complex particle contact physical processes with coupled shear and 

bulk deformation effects. Hence, it has great advantages to model the microstructures of brittle 

materials such as advanced ceramics which are of great concern in this study. With inherent 

granular nature, advanced ceramics can be envisioned as an assembly with thousands of particles 

bonded together. Figure 4.2 illustrates the microstructure of a typical dense ceramic made from 

powders (Lee and Rainforth, 1994). It has a fine grain size with occasional pores and a grain 

boundary glassy phase. The grain boundary glassy phase arises from solidification of a liquid 

phase formed during densification. The grains account for the majority of the microstructure. In 

this study, a sintered reaction bonded silicon nitride (β-Si3N4) is used with 8wt% additives. 

 4.3 Microstructural Modeling of a Silicon Nitride Material 

In this section, a distinct-element code, PFC
2D

, is used to model the microstructure of a β-

Si3N4. The resulting material, so called synthetic material, is evaluated through the numerical 

tests so that its behavior is imparted to resemble that of the real silicon nitride.  

 4.3.1 Creation of Synthetic Silicon Nitride Material 

Table 4.1 lists the microparameters required to characterize a synthetic material with 

parallel bonds and clusters in the DEM. The material strengths are selected from a Weilbull 

distribution rather than normal distribution in our previous work. Table 4.2 provides the 

parameters that are used to control the material-creation procedure including geometric and 

physical parameters such as specimen dimension, particle size and so on. A synthetic specimen is 

illustrated in Figure 4.3 containing 7468 circular particles which are densely packed and parallel-

bonded.  

The creation of the synthetic material follows the material-creation procedure which can 

be summarized as four steps (Itasca, 2002):   (1) generating an initial compact assembly,   (2) 

installing specified isotropic stress, (3) reducing the number of “floating” particles, and (4)  
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Figure 4.1  Physical mechanism for axial cracking (Itasca, 2002)  (a) Wedge cracking (b) Staircase 

cracking (c) Idealization as bonded circular particles 

Figure 4.2  The microstructure of a typical dense ceramic (Lee and Rainforth, 1994) 
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                   Table 4.1  Microparameters that define the DEM material 

Parameter Value 

Particle density, ρ (kg/m3) 3200 

Particle-particle contact modulus, Ec (GPa) 

272 

Parallel-bond modulus, 
cE  (GPa) 

Particle stiffness ratio, kn/ks 

2.85 

Parallel-bond stiffness ratio, 
sn kk  

Particle friction coefficient, μ 0.4 

Particle damping coefficient, η 0.012 

Parallel-bond radius multiplier,   1.0 

Parallel-bond normal inter-cluster strength, mean, 
meanc,  (GPa) 2.1 

Parallel-bond shear inter-cluster strength, mean, 
meanc,  (GPa) 1.3 

Parallel-bond normal intra-cluster strength, mean, '

,meanc , (GPa)  10.5 

Parallel-bond shear intra-cluster strength, mean, '

,meanc  (GPa) 6.5 

 

finalizing the specimen. In Step (1), a rectangular specimen is generated consisting of arbitrarily-

place particles confined by four frictionless walls.   In Step (2), the radii of all the particles are 

changed uniformly to achieve a specified isotropic stress. The purpose is to reduce the magnitude 

of the locked-in forces developing after the subsequent bond-installation and specimen-

unloading. In Step (3), the “floating” particles, defined as having less than three contacts, are 

eliminated so that a denser network of bonds is obtained in the subsequent bond-installation step. 

In Step (4), the parallel-bonds are installed throughout the assembly between all particles that are 

in physical contact. All the particles are then assigned a friction coefficient. Note that packing 
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 Table 4.2  Parameters that control the material-creation procedure 

Parameter Value 

Specimen height, H (mm) 0.13 

Specimen length, L (mm) 0.26 

Specimen thickness, b (mm) 0.4 

Average particle radius, Rav (μm) 1.1 

Particle size ratio, Rmax /Rmin 1.2 

Cluster size, Nc 5 

Wall normal stiffness multiplier, βw 1.1 

Locked-in isotropic stress, ζo (MPa) -1 

Remaining floaters ratio, Nf /N 0 

Minimum number of contacts to be a non-floater, Nf 3 

  

arrangement of the particles has a minor effect on the behavior of the DEM model (Potyondy and 

Cundall, 1999).  

 4.3.2 Microstructural Modeling of β-Si3N4 

The microstructure of the β-Si3N4 can be characterized from the following aspects: 

Parallel Bonds    

As is known, silicon nitride ceramics are fabricated by alloying Si3N4 powder with sintering 

additives such as metal oxides and nitrides. At the sintering temperature, the additives combine 

with the SiO2 oxidation layer on the Si3N4 powder raw material to form a liquid which wets the 

Si3N4.    After cooling,   the liquid phase solidifies into intergranular glass phase at the grain 

boundaries (Hampshire, 1986; Falk et al., 2007). Figure 4.4 provides a clear image of the 

microstructure of the material used in this study. In this image, the physical adhesion among the 

rod-like grains is attained with the amorphous intergranular glass phase. This role is played by 
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parallel bonds (Figure 4.3b) in the microstructural modeling to join the clusters which mimic the 

grains. The voids between particles are imagined to fill with virtual intergranular glass phase. Jin 

et al. (2001) indicated that the intergranular glass phase occupies about 10% in the sample. Thus, 

the porosity of the assembly in this model is accordingly selected to be 10%. 

 

 

Figure 4.4  SEM image of a β-type silicon nitride ceramic 

 

A parallel bond in the DEM approximates the physical behavior of a finite-sized piece of 

cementing material deposited between two particles (Itasca, 2002). It can be viewed as a set of 

elastic springs uniformly distributed over a rectangular cross section lying on the contact plane 

and centered at the contact point (Figure 4.5). Force and moment can be transmitted between 

particles via parallel bonds.  

The force vector between particles can be resolved into normal and shear components 

with respect to the contact plane and expressed as 

s

i

n

ii FFF                       (4.1) 

where
n

iF and 
s

iF  denote the normal and shear component, respectively.  

Thus, the maximum tensile and shear stresses acting on the bond periphery can be  
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derived as  

R
I

M

A

F n




max             (4.2) 

A

F s

i
max               (4.3) 

Where  nF is the scalar value of
n

iF ; 

A is the area of the bond cross section with bRA 2 ;  

I is the moment of inertia of the bond cross section with
3)32( bRI  (b is the particle   

thickness and also specimen thickness); 

M is the elastic moment developing in the parallel bond; 

R is the bond radius and equals radius multiplier ( ) times the minimum radius of the 

two contacting particles.   

Clusters  

Clusters are groups of particles that are physically bonded together and thus form some 

different geometrical shapes. In this study, the particles in a single cluster are packed in a line so 

as to represent the individual real rod-like grain. Different clusters are painted by different colors  

Figure 4.5  Parallel-bond (Itasca, 2002)  

(a) Parallel-bond idealization (b) Forces carried in the bond material 
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in Figure 4.3c. The intra-cluster strengths (i.e., the strengths of all bonds between two particles 

within a single cluster) are specified to such high values that the bond-breakage event is allowed 

to first occur between clusters rather than within clusters. The reason is that for a silicon nitride 

material, the intergranular glass phase may experience the situations such as glass transition 

phenomena, crystallization and liquid phase as the temperature changes. As a result, it has a 

direct effect on strength, fracture toughness, creep rate or thermomechanical stability (Rouxel, 

2002). Also, the silicon nitride grains do not deform plastically due to very little dislocation 

movement (Petzow and Greil, 1988). This feature can be reflected in the synthetic material as 

well. In contrast with the inter-cluster strengths, the intra-cluster strengths are found to have very 

small effects on the macroproperties of the synthetic material. Note that the ratio between the 

intra- and inter-cluster strengths in this study is specified to 5 instead of a significant value (10
20

) 

in our previous work. The purpose is to allow clusters to be broken during cutting. Although the 

accurate value of the ratio has not been found in literature so far, one truth is that the grain 

strength is much larger than that of the intergranular glass phase even at high temperatures 

(Wiederhorn et al., 1994).  

In addition, the average grain size and the maximum grain aspect ratio are estimated to be 

2.2 μm and 5, respectively. Note that the more detailed grain information can be obtained 

through sterological analysis (Müecklich et al., 1999). Accordingly, their corresponding 

parameters in the DEM model, the average particle diameter and cluster size, are selected to be 

2.2 μm and 5, respectively. Cluster size is defined as the maximum particle number within a 

single cluster.  

It should be mentioned that although there are some differences between the 

microstructures of the synthetic and the real materials due to lack of some knowledge so far, the 

ultimate macroproperties of the synthetic material are ensured to have a good agreement with the 

corresponding properties of the real material. 

Failure Mechanism 

In a parallel bond, relative motion at the contact causes a force and a moment to act on 

the two bonded particles,   thus affecting the maximum normal and shear stresses at the particle 

bond periphery. If the maximum tensile stress exceeds the normal strength ( c max ) or the 

maximum shear stress exceeds the shear strength ( c max ), the parallel bond breaks and a 
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crack forms or propagates. Hence, two failure modes exist in material damage: parallel-bond 

normal failure and parallel-bond shear failure.  

Material Inhomogeneity 

Compared with normal distribution in strength, the Weilbull distribution is a more 

reasonable distribution for ceramics (Fok et al., 2001; Lu et al., 2002). Thus, the Weilbull 

distribution is applied to characterize the variations of the normal and shear strengths. In 

addition, the occasional pores among the grains in the real material can also affect the physical 

properties (Kawai and Yamakawa, 1997; Munz et al., 1986) such as flexural strength and 

fracture toughness. These pores can be mimicked by randomly deleting some particles in the 

DEM. Also, the surface/subsurface flaws of the workpieces induced by fabrication (Munakata 

and Senda, 1990) can be simulated by deleting the parallel bonds at the surface/subsurface of the 

specimen. 

 4.3.3 Calibration for the Synthetic Material 

Calibration Process 

Generally speaking, the synthetic material created in Section 4.3.1 does not resemble the 

real material, i.e., its macroproperties do not match the corresponding physical properties. 

Therefore, the correspondence between the synthetic and the real materials must be established 

through a calibration process. In the calibration process, the macroscopic responses of the 

synthetic material are compared directly with those of the real one. The first step is to perform 

numerical tests to evaluate the macroproperties of the current synthetic material. The second is to 

judge whether its macroproperties match the corresponding physical properties of the real 

material. If yes, the calibration process stops; otherwise it is necessary to create another synthetic 

material by adjusting the micropaprameters in Table 4.1 and then repeat the first step until a 

satisfactory material is reached. Usually several iterations are needed.  

Since the behavior of silicon nitride ceramics in machining is mainly determined by the 

mechanical properties such as Young’s modulus of elasticity, Poisson’s ratio, flexural strength 

and fracture toughness, the corresponding numerical tests must be performed. They are described 

in detail in the following sections. 
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 Numerical Compression Test (Biaxial Test) 

Numerical compression test is developed so as to estimate Young’s modulus of elasticity 

and Poisson’s ratio of the synthetic material. Since the compression strength is usually much 

greater than the flexural strength and plays less important role in machining, it is not focused on 

in this study. The test environment is schematically shown in Figure 4.6a.  

In the compression test, the four walls that confine the test specimen are used to load the 

specimen. The top and bottom walls act as loading platens, and the lateral walls are controlled by 

a servo-mechanism that maintains a specified confining stress. As the servo-mechanism is 

activated, the compression test begins, and thus confining and vertical stresses are applied to the 

specimen. The loading platens move towards one another at a uniform velocity Vp. The final 

velocity is achieved through adjusting the wall acceleration in a sequence of 10 stages over a 

total of 400 cycles. During the test, the deviatoric stress between the confining and vertical stress 

is monitored. Once the stress reaches some peak value, the specimen fails (Figure 4.6b) and the 

test is terminated as it drops to 0.8 times of the maximum (Figure 4.7). The parameters 

associated with the numerical compression test are presented in Table 4.3. The macroproperties 

of Young’s modulus of elasticity and Poisson’s ratio derived from the numerical compression 

test are listed in Table 4.4. 

Numerical Bending Test 

Numerical bending test is developed to estimate the flexural strength of the synthetic 

material. The ASTM standard (C1161-02c) is followed and the fixture span of configuration B is 

adopted. The four-point fixture test environment is schematized in Figure 4.8a. The wall in the 

fixture is used to mimic the loading member and the four particles act as the actual bearing 

cylinders. They are all frictionless. The two particles under the specimen are fixed in both the x 

and y directions, and the other two particles are fixed only in the x direction (ASTM, 2006a). The 

parameters associated with the numerical bending test are listed in Table 4.3.  

A small uniform velocity is first applied to the wall. If this velocity is imposed in a single 

step, the inertial force due to large acceleration may damage the specimen. Thus, the velocity is 

achieved by adjusting the wall acceleration in a sequence of 100 stages over a total of 2000 

cycles. As the wall moves downward, the load applied to the specimen gradually increases. The 

specimen fails as it reaches the peak force.  One of the load histories in calibration process is 



81 

 

Confining 

stress 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6  Schematic of the compression test (a) Test environment (b) Failed specimen 
 

 

   

Figure 4.7  Axial stress versus axial strain in a compression test 
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                        Table 4.3 Parameters in numerical tests 

Parameter 
Compression 

Test 

Bending 

Test 

Fracture 

Toughness Test 

Specimen length (L), mm 0.12 45 45 

Specimen height (H), mm 0.24 3.0 3.0 

Specimen thickness (b), mm 4.0 4.0 4.0 

Loading span (Lo/2), mm N/A 20 20 

Support span (Lo), mm N/A 40 40 

Bearing diameter (1.5H), mm N/A 4.5 4.5 

Average particle radius (Rav), μm 1.1 7.7 7.7 

Precrack length (a), mm N/A N/A 0.12, 0.15, 0.18 

Final velocity (Vp), m/s 0.05 0.01 0.01 

 

  

     Table 4.4   Property comparison between real silicon nitride and synthetic material (25 ºC) 

Property Real Material 
Synthetic 

Material 
Error 

Elastic modulus (GPa) 310 300 3.2% 

Poisson’s ratio 0.27 0.264 2.2% 

Flexural strength (MPa) 800 783 2.1% 

Fracture toughness (MPa • m1/2) 6.0 6.1 1.7% 

    Note:     

property data provided by Ceradyne Inc. 
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shown in Figure 4.9. Using the break load, the flexural strength (ζb) can be obtained through the 

following equation (ASTM, 2006a): 

24

3

bH

PLo
b                      (4.4) 

where  P is the break force, N, 

L0 is the support span, mm 

b is the specimen thickness, mm 

H is the specimen height, mm 

Figure 4.8b shows the fracture of the failed specimen in the bending test. The specimen 

breaks inside the loading span. The fracture pattern is similar to that of the actual test (Tan et al., 

2008b). The cracks first occur at the bottom face of the test specimen which has the maximum 

tensile stress and then gradually propagate upward to the top face which has the maximum 

compression stress. This demonstrates that the failure of silicon nitride ceramics usually takes 

place due to tension rather than compression. The macroproperty of flexural strength derived 

from the numerical bending test is listed in Table 4.4. 

Numerical Fracture Toughness Test 

Numerical fracture toughness test is developed to estimate the fracture toughness of the 

synthetic material. The four-point fixture test environment is shown in Figure 4.10a. The ASTM 

standard (C1421-01b) is followed and the precracked beam method is adopted (ASTM, 2006b).  

The only difference between the fracture toughness and bending tests is that the specimen 

in the fracture toughness test has a precrack. The precrack is achieved by deleting some selected 

parallel bonds between particles at the region of the precrack (Shen and Lei, 2006). The precrack 

length (a) should be between 0.35H and 0.6H. The parameters associated with the numerical 

fracture toughness test are presented in Table 4.3. One of the load histories in the calibration 

process is shown in Figure 4.11. The fracture toughness is calculated by the following equation 

(ASTM, 2006b; Srawley and Gross, 1976) for four-point flexure with 0.35 < a/H < 0.6: 
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where:  a is the precrack length, mm 

b is the specimen thickness, mm 
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Figure 4.9  Load versus deflection in a bending test 

Figure 4.8  Four-point fixture schematic of the bending test  
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H is the specimen height, mm 

P is the break force, N 

L0 is the support span, mm 

g is the function of the ratio a/H for four-point flexure, and  

)( Hagg   )(326.19887.1 Ha
 

 2

2

)(1

)}(1){()(35.1)(68.049.3

Ha
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. 

Figure 4.10b shows the failed specimen with fracture. The cracks propagate upward from 

the end of the precrack to the top face. The ratios of the crack length to the specimen height are 

chosen to be 0.4, 0.5 and 0.6, respectively, and the average fracture toughness is finally 

calculated. Note that if the real average particle radius is used, there will be so large a number of 

particles that the numerical test is too difficult to perform. However, the relationship between the 

average particle radius and the fracture toughness (Shen and Lei, 2006) suggests that an 

alternative larger average particle radius can be used. The relationship is expressed as: 

avIc RK  where KIc is fracture toughness and Rav is the average particle radius. The 

macroproperty of fracture toughness derived from the numerical fracture toughness test is 

presented in Table 4.4. 

Calibration Guidelines 

To some extent, the calibration process is a trial-and-error process, in that there has been 

no complete theory so far that can predict the macroscopic behavior of a synthetic material from 

microparameters and geometry. However, the process of material creation reveals that the 

macroproperties of the synthetic material are strongly associated with some microparameters in 

Table 4.1. Young’s modulus is mainly determined by particle-particle contact and parallel-bond 

moduli (Itasca, 2002); Poisson’s ratio is related to the particle and parallel-bond stiffness ratios 

(Itasca, 2002); Flexural strength depends on both inter- and intra-cluster normal and shear 

strengths (Shen and Lei, 2009b); Fracture toughness is strongly related to inter- and intra-cluster 

normal strengths as well as the particle radius (Potyondy and Cundall, 2004; Shen and Lei, 

2006). Note that the pores inside the workpiece and fabrication flaws at the surface/subsurface 

should also be considered in the calibration process. The calibration process can be guided by the  

following steps: 

 (1) To match the Young’s modulus,   inter- and intra-cluster strengths are first set to a 
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Figure 4.11  Load versus deflection in a fracture toughness test 

Figure 4.10  Four-point fixture schematic of fracture toughness test  
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large value and particle-particle contact and parallel-bond moduli are varied. Then, particle and 

parallel-bond stiffness ratios are varied so as to match the Poisson’s ratio. Usually it needs a few 

iterations to have a good agreement. In this step, the numerical biaxial test is needed. 

(2) To match the fracture toughness, first inter- and intra-cluster shear strength are set to a 

large value and inter- and intra-cluster normal strength are varied. In this step, the numerical 

fracture toughness test is needed.  

(3) To match the flexural strength, the inter- and intra-cluster shear strengths are varied. 

Inter-and intra-cluster normal strengths are fixed. In this step, the numerical bending test is 

needed.  

(4) To repeat Steps (2) and (3) by adjusting the inter- and intra-cluster normal and shear 

strengths until a good agreement is reached.  

 4.4 Specimen Dimensions for Material Removal 

The material-creation approach presented in this study provides an effective way to 

reveal the deformation, damage and crack behavior under loading. For example, the numerical 

bending and fracture toughness tests can be used to mimic the actual expensive tests. Another 

important application is to simulate the dynamic process of machining such as turning, milling, 

drilling, ploughing, planing and so on.  

In the companion paper, simulation of laser-assisted milling is conducted. The material 

removal, chips, surface/subsurface damages, and crack initiation, propagation and coalescence 

are discussed in detail. However, the specimen used in the machining simulation is usually a 

small part of the workpiece due to the limitation of the particle number (Figure 4.12). Hence, a 

reasonable specimen becomes the key issue to achieve successful simulation. There are three 

basic requirements as follows:  

(1) To ensure the macroproperties not to be changed 

The average particle size in the numerical bending or fracture toughness tests is usually 

different from that in material removal simulation. However, Shen and Lei (2006, 2009b) 

concluded that average particle size can influence both the flexural strength and fracture 

toughness of the specimen. Thus, the effect from the particle size cannot be neglected in the 

synthetic material creation.   In addition, Yang et al. (2006) found that as the ratio between the 

specimen length and the average particle radius  (L/Rav) is larger than 90, the Poisson’s ratio  
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appears to be independent of particle size, and when the ratio is larger than 130 the Young’s 

modulus varies little for different particle sizes.  

(2) To avoid the boundary effect 

Both the experiments and the simulations (Shen and Lei, 2005; Shen and Lei, 2009a) 

show that the material removal of silicon nitride ceramics is mainly realized by brittle fractures. 

Cracks first develop near the tool tip and then propagate forward to form the lateral cracks and 

downward to form median cracks. Hence, the ratios of specimen length to the average radius 

(L/Rav) and the specimen height to the average radius (H/Rav) should be large enough so as to 

avoid cracks reaching the left and bottom boundaries. 

(3) To have enough microevents for repeatability  

The ratios of cutting length to the average radius (S/Rav) and the uncut chip thickness to 

the average particle radius (t/Rav) should also be large enough so as to allow more particles to 

engage in material removal, thus capturing more microevents.  

Figure 4.12  Schematic of material removal configuration 
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 4.5 Conclusions 

The DEM is one effective approach to model the microstructures of brittle materials with 

granular nature. In the microstructural modeling of the β-Si3N4, clusters and parallel bond are 

used to mimic the real grain shapes and the intergranular glass phase between grains, 

respectively. For a successful creation of a synthetic material, the calibration process is definitely 

needed. The macroproperties of the synthetic material must match the corresponding physical 

properties of the real one, which is done through conducting numerical testing (compression, 

bending, and fracture toughness test) on the synthetic material. Several guidelines are given to 

assure an efficient calibration process. For a reasonable synthetic specimen prepared for material 

removal, its dimensions, uncut thickness and cutting length should be selected carefully, thus 

avoiding the boundary effect and obtaining more microevents. However, there is still some work 

to do in the next step, which should mainly focus on obtaining more information on the 

microstructure of the real material so as to improve the accuracy of the model. 
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Chapter 4 - Machining Modeling and Experimental Investigation of 

Laser-Assisted Machining of Silicon Nitride Ceramics 

 

In laser-assisted machining (LAM), laser heating causes the variations of the material 

properties. Therefore, temperature-dependent materials used for LAM will be created in this 

Chapter. Also, the three-dimensional (3D) milling with a curved cutting edge will be converted 

to the two-dimensional (2D) orthogonal cutting with a straight cutting edge, because this study 

uses a 2D distinct element code, PFC
2D

. The machining model is validated through comparing 

the predicted results with the experimental ones in terms of cutting forces, chip size, and depth of 

subsurface damage. In addition, the mechanisms of LAM are analyzed in detail from the aspects 

of material removal, chips, surface/subsurface damages, as well as crack initiation, propagation 

and coalescence. 

 5.1 Introduction 

Laser-assisted machining (LAM) of advanced structural ceramics has been studied for 

about two decades. König and Zaboklicki (1993) first used laser-assisted turning to machine 

silicon nitride ceramics, and demonstrated the feasibility of LAM for advanced ceramics. Rozzi 

et al. (1998) successfully used a numerical model to predict the temperature distribution of a 

ceramic workpiece in LAM and established a scientific basis from the thermal aspects. Lei et al. 

(2001), Rebro et al. (2004) and Pfefferkorn et al. (2005) successively conducted experimental 

assessment of LAM, and showed the ability to machine various ceramics. Tian and Shin (2006) 

studied complex feature machining of ceramics and thus extended the capability of LAM. In 

addition, some other types of operations of LAM were investigated as well, including 

Westkäemper (1995) and Marinescu (1998) on laser-assisted grinding of silicon nitride, Chang 

and Kuo (2007) on laser-assisted planing of Al2O3, Yang et al. (2007) and Tian et al. (2008) on 

laser-assisted milling (LAMill) of silicon nitride.  

                                                 
The contents of this Chapter are from my following journal paper: 

 Shen, Xinwei, Yang, Budong, and Lei, Shuting (2009). Numerical modeling and simulation of laser-assisted 

machining of silicon nitride ceramics with distinct element method: part II, simulation of the dynamic cutting 

process. Journal of Manufacturing Science and Engineering, Transactions of the ASME, (under review) 
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However, there is very little literature concerning the mechanisms of LAM of ceramics 

through numerical models. The reason is that machining of brittle materials exhibits very 

complicated characteristics such as crack formation and propagation, discontinuous chips and so 

on, which increases the difficulty of model development by using the continuum model (e.g. 

FEA model). But it should be noted that some FEA models still achieved various degrees of 

success in simulating brittle materials machining. 

Combining the theories of contact and fracture mechanics, Zhang and Cao (2000) 

developed a FEA model to simulate the material removal process of glass ceramics. The 

subsurface microcracks were assessed and the surface integrity was evaluated. Kumbera et al. 

(2001) and Ajjarapu et al. (2004) used two-dimensional FEA models to conduct orthogonal 

cutting of silicon nitride. The models considered power-law strain-hardening, thermal softening, 

rate sensitivity and adaptive remeshing technique; moreover, it was assumed that silicon nitride 

ceramics behave in a ductile fashion under high pressures and very small depth of cut. Liu and 

Zhang (2002) incorporated continuum damage mechanics (CDM) with finite element analysis to 

predict lateral damage induced by grinding. Recently, in order to simulate the chip formation in 

laser-assisted turning of silicon nitride ceramics, Tian and Shin (2007) presented a multiscale 

FEA model and used hexagonal cells to contain several silicon nitride grains. In addition, some 

analytical models were developed to predict machining flaw size (Marshall et al., 1983), chip 

thickness (Subramanian et al., 1997) and cutting forces (Liang and Devereux, 1993). Also, some 

molecular dynamics (MD) models were applied to investigate the material removal mechanism 

and surface generation process (Komanduri and Raff, 2001).  

Nevertheless, one weakness of FEA models is the lack of consideration of material 

microstructures at grain scale, which, as well recognized, dominate the thermal-mechanical 

dynamic behaviors of brittle materials (Rühle, 1985; Lee and Rainforth, 1994). The analytical 

models cannot describe the complicated machining process, and molecular dynamics (MD) 

models are usually used for ultraprecision and nanometric machining. Hence, effective modeling 

and simulation methods in brittle machining are strongly needed. Currently, the distinct element 

method (or discrete element method, DEM) seems to be a promising approach, which treats a 

material as an assembly with densely packed and arbitrarily sized circular particles bonded 

together. When the bonds break, cracks form or propagate. In contrast with continuum models 

(e.g. FEA model), the DEM can describe non-linear behavior and localization with accuracy and 
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treat the material inhomogeneity as well. Moreover, it can handle the complex particle contact  

physical processes with coupled shear and bulk deformation effects.  

The DEM was first introduced by Cundall for the analysis of rock-mechanics (Cundall, 

1971). In recent years, it has been applied to the material removal simulation. Huang (1999) used 

the DEM to conduct rock cutting and found that the transition of failure modes is related to the 

depth of cut. Kaitkay and Lei (2005) developed a DEM model to simulate rock cutting under 

different hydrostatic pressures and achieved a good agreement with the experiments. 

Ledgerwood (2007) also used DEM for rock cutting under different hydrostatic pressures and 

pointed out that rock drillability is more largely affected by inelastic properties than elastic ones. 

Lei and Yang (2005) applied the DEM to ceramic machining and indicated that both the median 

and lateral cracks are very similar to the cracks observed in the experiments. Later on, Shen and 

Lei (2005) extended it to LAM of ceramics and concluded that all the parameters, such as 

workpiece temperature, rake angle, depth of cut, damping coefficient and cluster size, affect the 

crack formation and surface/subsurface damages. Tan et al. (2008) used the DEM to investigate 

the crack length and depth in scratching of Al2O3 ceramics. They found that both the maximum 

surface crack length and subsurface crack depth increase as the scratching depth increases.  

Built on our previous work (Shen and Lei, 2005, Shen and Lei, 2009b), the purpose of 

this paper is to develop and validate a grain-scale DEM machining model for a silicon nitride 

ceramic. The model helps to reveal the machining mechanisms of LAM at different operating 

temperatures, especially in terms of material removal, chip formation, surface/subsurface 

damages, and crack initiation, propagation and coalescence. In the following sections, a 

temperature-dependent synthetic silicon nitride material is first created according to the approach 

presented in the companion paper (Shen and Lei, 2009a). Then, an equivalent orthogonal cutting 

configuration is established to relate simulation to the three-dimensional (3D) milling 

experiments. Next, the laser-assisted milling (LAMill) experiments are described. Finally, the 

model is validated with detailed comparison and discussions of the experimental results and 

model predictions.  

5.2 Temperature-Dependent Synthetic Material 

In this section, the two-dimensional (2D) distinct element code, PFC
2D

, is used to create 

three temperature-dependent synthetic specimens for laser-assisted milling. The material used in 
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this study is a sintered reaction bonded silicon nitride (β-Si3N4) with 8wt% additives (Ceradyne 

Inc.). Some properties are listed in Table 5.1 

 5.2.1 Temperatures over the Cutting Zone 

As is known, silicon nitride is a temperature-dependent material (Hampshire, 1991). 

Laser local heating can cause its thermophysical properties to change with temperature (Table 

5.1). Hence, the temperatures of the workpiece especially over the cutting zone must be known 

before simulation.  

In this study, the temperatures of the workpiece are obtained through a transient 3D 

thermal FEA model which was verified through a series of laser-assisted milling (LAMill) 

experiments in our previous work (Shen and Lei, 2009c). Figure 5.1 illustrates the temperature 

distribution under the following operating conditions: laser power (Pl) of 410 W, preheat time 

(tp) of 12 s, cutting speed (Vc) of 1.0 m/s, feed (f) of 0.024 mm/tooth/rev, feed rate (Vf) of 6 

mm/min and depth of cut (DOC) of 0.2 mm.  

 In Figure 3.6, the MN and MX symbols identify the locations of the minimum and 

maximum temperatures (the left face of the workpiece and the laser spot center), respectively. 

 

            Table 5.1   Properties of Si3N4 

Parameter 

Temperature (ºC) 

25 1080 1260 1350 

Density (kg/m3) 3200 

Flexural Strength (MPa) 800 750 540 420 

Elastic Modulus (GPa) 310 297 294 291 

Poisson Ratio 0.27 0.26 0.255 0.251 

Fracture Toughness (MPa • m1/2) 6.0 5.3* 6.6* 6.2* 

Specific Heat (J/kg • K) 680.4 1080 1135 1160 

Thermal Conductivity (W/m • K)  26 18 17 16 

Note:   * Obtained from interpolation from Mutoh et al. (1992) and property data from Ceradyne Inc. 
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The contour interval is uniform and defined as the difference between two adjacent contour lines. 

The region near the laser spot has higher temperatures (over 1000C) than the surroundings. The 

approaching portion of the laser spot continuously absorbs energy from heat conduction and as a 

result, temperatures increase quickly, while the newly uncovered region is gradually cooling 

down due to free convection and thermal radiation. The contour intervals in the x, y and z 

directions are not uniform and instead tend to increase from the laser spot to the surrounding 

portion. That is, along the x, y and z directions, the thermal gradients are becoming smaller. The 

temperature distribution reveals that the laser heat source has strong influence on the region 

around the laser spot and weak influence on the region beyond. Section A-A is made as shown in 

Figure 3.6, which passes through the cutting zone at the top face of the workpiece.  

 5.2.2 Synthetic Specimen for LAM 

Figures 5.1a,b,c show the configuration of laser-assisted milling, the cutting zone (uncut 

chip) and temperatures over the cutting zone from simulation (Shen and Lei, 2009c), 

respectively. The workpiece dimensions are 4.3x5.6y48z mm. If the specimen in simulation is 

selected to have the same size of the workpiece, a very large number of particles (roughly 

1.310
6
) are required, which, however, is computationally prohibitive in our current situation. 

Hence, a small one with dimensions of 0.56x0.4y0.13z mm is adopted. 

In addition, for convenience the temperatures over the specimen in simulation are 

simplified as well. Figure 3.6 shows that the temperatures in the x direction are not uniform. It is 

unlikely to use the specimen with the short length of 0.56 mm to reflect the temperature 

variations of the workpiece with the width of 4.3 mm. However, in considering the temperature 

differences in this direction are within 42C (Shen and Lei, 2009c), the average temperature is 

acceptable for the specimen. Similarly, the temperatures in the y direction are also selected as an 

average value because of the 2D distinct element code and the temperature differences within 

55C. In the z direction, as illustrated in Figure 5.1b, the feed (f) of 0.024 mm/rev/tooth is much 

smaller than both the workpiece width (Ww) of 4.3 mm (in the x direction) and the depth of cut 

(DOC) of 0.2 mm (in the y direction), so the temperature variations over the cutting zone in the z 

direction can be neglected. Furthermore, the temperature of the specimen in the z direction can 

also be regarded as uniform, since, in LAMill, the temperatures over the cutting zone are 

maintained almost the same in each cut. 
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Figure 5.1  Schematics of laser-assisted milling  

(a) Configuration (b) Cutting zone (uncut chip) (c) Temperatures over the cutting zone from 

simulation (Pl = 410 W, Vc = 1.0 m/s, f = 0.024 mm/tooth/rev, Vf = 6 mm/min, and tp = 12 s, Lc= 7.0 mm) 
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 5.2.3 Creation of Temperature-Dependent Synthetic Specimen 

The small specimen mentioned above can be created following the approach presented in 

the companion paper (Shen and Lei, 2009a). Through the numerical compression, bending and 

fracture toughness tests, the responses of the specimen are made to match the corresponding 

thermophysical properties at a certain temperature. This temperature-dependent synthetic 

specimen will be used in simulation of LAMill. In this study, the specimens at the temperatures 

of 1080°C, 1260°C and 1350°C are created containing 16,087 particles, respectively. As an 

example, some key parameters are provided in Table 5.2 and the ultimate microparameters for 

the case of 1350°C are listed in Table 5.3.  

            5.3 Equivalent Orthogonal Cutting 

In order to conduct simulations of the 3D milling process using the two-dimensional (2D) 

distinct element code, PFC
2D

, the curved cutting edge in the 3D milling (Figure 5.2a) should be 

converted into the straight cutting edge in orthogonal cutting (Figure 5.2b). Through the 

equations presented by Young et al. (1994) and Arsecularatne et al. (1995), the rake angle (α) 

and side cutting edge angle (Cs) of the cutter with an equivalent cutting edge are estimated. The 

equivalent uncut chip thickness (tu,e) and width of cut (b) are approximated using the following 

equations (Young et al., 1994): 

       )cos(, Seu Cft                         (5.1) 

)cos( SCDOCb                                       ``  (5.2) 

where  tu,e is equivalent uncut chip thickness, mm 

b is equivalent width of cut, mm 

f  is feed, mm 

Cs is side cutting edge angle, deg 

DOC is depth of cut, mm 

Note that the cutting edge only includes a part of the round nose ( )sin(1( sCrDOC  ) 

and does not extend to the straight side of the cutting edge.  

Since the cutter nose radius (r) of 0.787 mm used in this study is much larger than the 

depth of cut (DOC) of 0.2 mm, there is only one part of its nose contacting the workpiece in 

milling. Moreover, the cutter diameter (Dc) of 76.2 mm is considerably larger than the workpiece  
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              Table 5.2   Parameters that control the material-creation procedure 

Parameter Value 

Specimen height, H (mm) 0.13 

Specimen length, L (mm) 0.6 

Specimen thickness, b (mm) 0.4 

Average particle radius, Rav (μm) 1.1 

Particle size ratio, Rmax /Rmin 1.2 

Cluster size, Nc 5 

 

Table 5.3   Microparameters that define the DEM material (1350ºC) 

Parameter Value 

Particle density, ρ (kg/m3) 3200 

Particle-particle contact modulus, Ec (GPa) 

243 

Parallel-bond modulus, 
cE  (GPa) 

Particle stiffness ratio, kn/ks 

2.65 

Parallel-bond stiffness ratio, sn kk  

Particle friction coefficient, μ 0.4 

Parallel-bond normal inter-cluster strength, mean, 
meanc,  (GPa) 1 

Parallel-bond shear inter-cluster strength, mean, 
meanc,  (GPa) 0.55 

Parallel-bond normal intra-cluster strength, mean, '

,meanc , (GPa)  5 

Parallel-bond shear intra-cluster strength, mean, '

,meanc  (GPa) 2.75 
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 Figure  5.3  Orthogonal cutting in simulation    

Figure 5.2 Schematics of laser-assisted milling (a) Actual milling (b) Equivalent orthogonal cutting 
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width (Ww) of 4.3 mm. Thus, the cutting path on the workpiece can be approximated to be a 

straight line. The cross section of the uncut chip (called cutting zone in this study) in any y-z 

plane is shown as Figure 5.2a. Note that the cutter motion is in the x direction (out-of-plane). 

Thus, the orthogonal cutting in simulation can be schematized in Figure 5.3. 

 5.4 Experimental Setup of LAMill 

In order to validate the DEM model, LAMill experiments are conducted. The 

experimental setup is illustrated in Figure 2.1. The milling operation is carried out on a CNC 

machine (Haas Automation Inc.). A diode laser (Visotek Inc., DFL500) with a top hat power 

distribution is used to generate a high power laser beam, which is delivered through the optical 

fiber and strikes on the workpiece surface at the angle of about 70 deg. The air jet is employed to 

cool and prevent the optics from being overheated. An infrared pyrometer (Williamson Inc., 

Model 91-20-C-23D) with a range of 475-1750°C is used to concurrently measure the surface 

temperature of the workpiece. The dynamometer (Kistler Inc., Type 9257B) is fixed on the 

worktable and utilized with a charge amplifier (Kistler Inc., Type 5010) to measure the cutting 

forces in the global x, y, and z directions. Both the pyrometer and the laser optics are installed 

through holders on the spindle. The workpiece is clamped with a vise mounted on the 

dynamometer. Between the workpiece and vise, insulating materials are used to prevent heat 

loss. Both the measurement results from the pyrometer and the dynamometer are digitally 

recorded in a computer. 

In addition, dozens of our experiments demonstrated that there is severe tool wear in 

LAMill of silicon nitride with commercial carbide inserts; therefore, a house-made milling cutter 

is made which has a single tooth with a solid PCBN insert (SNM322, J&M diamond Tool, Inc). 

The insert is clamped on a tool holder (Kennametal, Model CSRNR083 NA4), and the tool 

holder is fixed in a steel shaft. The purpose of this special design is to simplify the machining 

process and thus facilitate analysis, because it always assures that only one tooth contacts the 

workpiece in the cutting operation. The parameters of the nose cutter used in this study include: 

rake angle (α) of -5 deg, clearance angle (βc) of 5 deg, inclination angle (i) of 0 deg, side cutting 

edge angle (Cs) of 15 deg,   chamfer angle (θc) of 20 deg and chamfer width (Wc) of 0.1 mm.  
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 5.5 Model Validation 

The operating conditions of LAMill experiments are shown in Table 5.4. The feed rate 

(Vf), feed (f), cutting speed (Vc) and depth of cut (DOC) are fixed. The cutting temperature (Tc) is 

the only variable with values of 1080°C (Pl = 300 W, tp = 15), 1260°C (Pl = 410 W, tp = 12 s) 

and 1350°C (Pl = 470 W, tp = 8 s). The equivalent uncut chip thickness (t), width of cut (b) and 

rake angle (αe) are taken to be 0.012 mm, 0.4 mm and -4.84 deg, respectively. 

 

        Table 5.4 Operating conditions of laser-assisted milling of Si3N4 

Temperature 

(°C) 

Feed 

(mm/tooth/rev) 

Feed rate 

(mm/min) 

Cutting Speed 

(m/s) 

Depth of Cut 

(mm) 

1080 

1260 

1350 

0.024 6 1.0 0.3 

 

Figure 5.4 shows the configuration of the equivalent orthogonal cutting. In order to better 

display the relationship between the specimen, the cutter, the cracks and the chips, the first cut of 

the machining process is shown. Due to the specialty of the first cut (cut on fresh material), the 

following cuts are focused on in the analysis of cutting forces, chips and the depth of subsurface 

damage (d). Note that the ideal rigid cutter (without wear flat) is modeled with a standard wall 

consisting of five line segments.  

The mechanisms of the dynamic machining process can be evaluated from the following 

aspects: 

Material Removal  

Once the cutter touches the workpiece, the cutting force dominates the material deformation 

and removal, which can be described through simulation. As the cutter contacts the particle 

assembly, the resulting force and moment rise quickly. They are transmitted by the parallel 

bonds to the surrounding particles. As a result, the normal and shear stresses acting within the 

bond material increase immediately. When the stress exceeds the corresponding bond strength, 

the parallel bonds begin to break and the cutting forces decrease quickly. As shown in Figure 

5.5, the compressive forces are found inside the specimen. The maximum compressive force 
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Figure 5.5  Contact-force distribution from simulation (Note: the thickness represents the magnitude) 

(Tc = 1350°C, DOC = 0.2 mm, Vc = 1 m/s, f = 0.024 mm/rev/tooth) 

Figure 5.4  Configuration of the orthogonal cutting 
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occurs at the region near the tool tip, usually called primary crushing region. Thus, cracks first 

develop around the tool tip and then run forward to form the lateral cracks and propagate 

downward to form median cracks. With the cutter moving, the contact forces redistribute. The 

localized bond breakage also induces global stress redistribution. The continuous bond breakage 

near the tool tip and coalescence of cracks eventually cause some particles to escape from the 

assembly, thus forming the chips. With the cutter moving forward, these chips accumulate and 

pile up along the cutter face and are carried away by the cutter. Meanwhile, a damage layer with 

some loosely attached particles is left on the scratched surface, which can be observed in the 

freshly machined surfaces of the workpiece. 

It should be mentioned that with the cutter contacting the workpiece in LAMill, the 

deformation induced by the creep also occurs inside the silicon nitride material. High 

temperature due to laser local heating leads to the amorphous intergranular glass phase to 

redistribute via viscous flow process. After the viscous flow process exhausts, the new 

deformation process, cavity formation at the multigrain junctions or solution-precipitation, takes 

over, which depends on whether the creep is in tension or in compression (Chadwick et al., 1993; 

Wiederhorn, 1999). However, in the process dominated by machining, the deformation from the 

creep is neglected in this study. 

Cutting Forces 

The history of the cutting forces in Figure 5.6 clearly shows the highly dynamic nature of 

the cutting process from the “microscopic” aspect within the cutting length of 0.3 mm, which is 

too difficult to capture in the actual machining because all the events happen in only 0.3 ms. 

From this “microscopic” process, it can be seen that, along with the crack formation, propagation 

and coalescence, the cutting forces (main and thrust forces) show fluctuations. It can be imagined 

that the force exerted by the cutter initially turns into elastic energy at the cutting zone, and as 

the load exceeds the fracture strength of the material, this energy is then released to a large extent 

as kinetic energy of the ejected chips. The built-up and sudden release of the cutting energy is 

manifested through the steep variations of the cutting forces. Also, it can be seen that crack 

formation and propagation is strongly related to the cutting forces. A long crack usually has a 

corresponding couple of peak forces (main and thrust forces). It is suggested that cutting force 

can roughly reflect the variations of the surface/subsurface cracks. This can partly explain why 
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Figure 5.6  Histories of the cutting forces from simulation 

(Tc = 1350°C, DOC = 0.2 mm, Vc = 1 m/s, f = 0.024 mm/rev/tooth) 
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small cutting force is commonly desired in machining. Certainly, cutting force is the most 

important parameter in evaluating the cutting dynamic process. 

Consequently, in this study the average cutting forces are chosen for a quantitative 

comparison between experiments and predictions. To compute the cutting forces with different 

depths of cut from experiments, the cutting forces Fz and Fy, are first converted to the main force 

(Fc) and thrust force (Ft) and then the average main and thrust forces are obtained, respectively.  

Figure 5.7 shows a comparison of the cutting forces at the temperatures of 1080°C, 

1260°C and 1350°C. As expected, both the predicted and the experimental forces decrease as the 

cutting temperature increases. However, it is found that the cutting forces at 1260°C has a 

sudden increase following the trend from 1080°C to 1350°C, although the temperature difference 

between 1080°C and 1260°C is still larger than that between 1260°C and 1350°C. This can be 

explained by the fact that, 1260°C falls within the temperature range of brittle-to-ductile 

transition (1200-1275°C). Mutoh et al. (1992) revealed that as the temperature rises to the 

softening point of the glass phase (about 1200°C), the intergranular glass phase becomes 

adequately soft and the brittle-to-ductile transition of fracture occurs. The resistance to brittle 

fracture causes a rapid increase of the fracture toughness and, thus slowing down the decrease of 

the cutting force. Thus, it is strongly recommended to avoid the brittle-to-ductile transition in 

LAMill.  

From Figure 5.7, it can also be found that the predicted results consistently underestimate 

about 10%-17% of the cutting forces in the experiments. Besides the various possible reasons 

such as the 2D nature of the model, the simplified temperature distribution for the specimen and 

the material removal induced by laser heating, it is believed that tool wear and exit edge chipping 

are the main reasons which are not considered in the current simulations. To this end, the initial 

cutting length (Lc) of 2 mm in the experiments is considered in the comparison of the cutting 

forces in this study. 

Figure 5.8 clearly shows that the tool wear decreases largely when the cutting 

temperature rises.  

It can be observed from Figure 5.9 that exit edge chipping varies with the cutting 

temperature. Edge chipping is a sudden macroscale or microscale edge damage and arises from 

the sudden release of the energy built in the machining process. Exit edge chipping occurs when 

the cutter is leaving the workpiece. Yang et al. (2009b) concluded that edge chipping can affect 
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 the cutting force. A more edge chipping causes a large cutting force, because of the extra portion 

 of the material being removed besides the portion at the cutting zone.  

In addition, Figure 5.7 also shows that with the cutting temperature increasing, the ratio 

between the predicted and the experimental forces increases. This is mostly attributed to the 

decrease of both tool wear and exit edge chipping with temperature.  

 

 

 

 

 

 

 

 

Figure 5.8  Tool wear under different cutting temperatures (Lc = 10 mm)  

(a) 1080°C (b) 1260°C (c) 1350°C (DOC = 0.2 mm, Vc = 1 m/s, f = 0.024 mm/rev/tooth) 

 

Chips 

Figure 5.10 shows the discontinuous chips collected from laboratory experiments at the 

cutting temperature of 1350°C. They can be roughly divided into three sizes in chip length: small 

(<25 μm), medium (25-50 μm) and large (50-70 μm), which are indicated with the arrows by 

numbers 1, 2 and 3 in Figure 5.10b. They approximately account for 70%, 20% and 10% of the 

total chips, respectively. Note that with the cutting temperature increasing, both the chip size and 

the percentage of the large size tend to increase. One large chip is enlarged as in Figure 5.10c. 

The chip thickness is in the out-of-plane direction and the chip length in the arrow-indicated 

direction, since both the width and the length of the chip shown in Figure 5.10c are larger than 

the maximum uncut chip thickness (i.e., feed) of 0.024 mm. Moreover, the structural analysis 

indicates that the arrow-indicated direction is the cutting direction. 

In the simulation, various chip sizes are also found as shown in Figure 5.11. A chip 

consists of a few particles which have the same color and closely contact each other. The circled 

chip in Figure 5.11, as an example, has chip length of 37 μm and the average thickness of about 

6 μm. It can be obviously seen that the thickness falls within the range of the uncut chip 

(a) 

×

 25 
(b) 

×

 25 

×

 25 
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Figure 5.9  Exit edge chipping at different cutting temperatures (a) 1080°C (b) 1260°C (c) 

1350°C (DOC = 0.2 mm, Vc = 1 m/s, f = 0.024 mm/rev/tooth) 
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Figure 5.11  Chips in simulation (Tc = 1350°C) 

Various Chips 

Figure 5.10  Chips in LAMill experiments (Tc = 1350°C) 

(a) Chips in optical image (b) Chip sizes in SEM (c) Enlarged chip in SEM 
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thickness and thus the chip belongs to the medium size. Note that due to running the short cutting 

length, it is unlikely to capture all the sizes of the chips shown in Figure 5.10 through simulation. 

However, both the simulations and the experiments demonstrate that the material removal of 

silicon nitride ceramics in LAMill is mainly realized by brittle fractures. 

Surface/Subsurface Damages 

Figure 5.12 illustrates the damage of a machined surface detected from laser confocal 

scan microscopy (LCSM). The operating conditions of the machined workpiece are: the depth of 

cut (DOC) of 0.2 mm and the cutting temperature of around 1200°C which is close to 1260°C in 

the simulation. The enlarged image in Figure 5.12 clearly shows that the subsurface damages are 

not uniformly distributed at the subsurface, which can also be seen in the simulation (Figure 

5.13b). Figure 5.12 also shows that the measured depths of subsurface damage are generally less 

than 30 μm. In the simulation (Figure 5.13b), the maximum depth of subsurface damage (d) is 

about 27 μm. However, it should be mentioned that the value from the simulation does not fully 

represent the depth of subsurface damage in the machined workpiece. This is because the uncut 

chip thickness (t’) near the machined surface (Figure 5.2a) is smaller than the equivalent uncut 

chip thickness (t) used in the simulation (Figure 5.2b), which suggests that the actual depths of  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12  Subsurface damages detected from LCSM  (a) Horizontal plane scan image (1 mm × 0.2 mm)   

(b) Vertical cross-sectional scan image (1 mm × 0.04 mm)   (c) Enlarged image (0.2 mm × 0.04 mm) 
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Figure 5.13  Surface/subsurface damages 

(Tc = 1260°C, DOC = 0.2 mm, Vc = 1 m/s, f = 0.024 mm/rev/tooth) 
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subsurface damage in the workpiece should be smaller than those predicted from the simulation 

(Figure 5.13b). In considering the small temperature difference between the detected workpiece 

and the specimen, the maximum depth of subsurface damage predicted are reasonable. Although 

currently the accurate relationship between the actual and the predicted maximum depths of 

subsurface damage cannot be given, it is true that its variations in actual machining can be 

reflected by those in the simulation as the operating conditions change. 

Figure 5.14 shows a comparison of the maximum depth of subsurface damages (d) at the 

cutting temperature of 1080°C, 1260°C and 1350°C. It can be seen that, as expected, with the 

cutting temperature increasing, the maximum depth of subsurface damage decreases. That is, a 

large cutting temperature can cause a small subsurface damage for the machined workpiece. 

Beware that the 2D nature of the simulation compounds the severity of dynamic 

behaviors mentioned above (e.g., high peak forces, long cracks). Actually, the shape of a particle 

in a PFC
2D

 model is a cylinder rather than a sphere, i.e., there are no variations in the third 

dimension and thus no allowance of additional grains with different orientations, which is 

obviously not the case in a real material. Therefore, it appears fair to say that the 2D specimen 

models the material in a simplified way that it also looses some fine features during the cutting 

simulation (resulting in more rugged behavior). But despite its 2D nature, the cutting simulation 

vividly depicts the brittle behavior of the material removal process of silicon nitride ceramic in 

LAMill. 

 5.6 Conclusions 

The distinct element method (DEM) is an effective approach to simulating laser-assisted 

machining (LAM) of silicon nitride ceramics. The creation of a temperature-dependent specimen 

experimental results with model predictions. The machining mechanism governing LAM is 

analyzed from the aspects of material removal, cutting forces, chips, and surface/subsurface 

damages. Various sizes of the discontinuous chips from the simulations and the experiments 

demonstrate that the fundamental mechanism of material removal in LAMill is mainly realized 

by brittle fractures.  High cutting temperature can decrease the cutting force, tool wear, exit edge 

chipping and surface/subsurface damages. Moreover, the temperature range of brittle-to-ductile 

transition is recommended to be avoided in LAMill. However, there is still some work to be done 

next, such as extending the 2D model to 3D, improving the computing efficiency, etc. 
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Appendix B - Finite Element Discretization Solution: Newton-

Raphson Procedure in ANSYS 

Overview 

The finite element discretization process yields a set of simultaneous equations: 

where: 

[K]{U}= {Fa}          (B.1) 

[K] = coefficient matrix 

{U} = vector of unknown DOF (degree of freedom) values  

{Fa} = vector of applied loads 

If the coefficient matrix [K] is itself a function of the unknown DOF values (or their 

derivatives) then Equation B.2 is a nonlinear equation. The Newton-Raphson method is an 

iterative process of solving the nonlinear equations and can be written as (Bathe(2)): 

    
                

           (B.2) 

                          (B.3) 

where: 

   
  = Jacobian matrix (tangent matrix) 

  = subscript representing the current equilibrium iteration 

   
    = vector of restoring loads corresponding to the element internal loads 

Both    
   and    

    are evaluated based on the values given by     .The right-hand 

side of Equation B.3 is the residual or out-of-balance load vector; i.e., the amount the system 

is out of equilibrium. A single solution iteration is depicted graphically in F igure B.1 for a 

one DOF model. 

In a structural analysis,    
   is the tangent stiffness matrix,      is the displacement 

vector and    
    is the restoring force vector calculated from the element stresses. In a 

thermal analysis,    
   is the conductivity matrix,      is the temperature vector and    

    is 

the resisting load vector calculated from the element heat flows. In an electromagnetic 

analysis,    
   is the Dirichlet matrix,      is the magnetic potential vector, and    

    is the 

resisting load vector calculated from element magnetic fluxes. In a transient analysis,    
   is  
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Figure B.1: Ne wton-Raphson solution - one  ite ration 

 

the effective coefficient matrix and    
    is the effective applied load vector which 

includes the inertia and damping effects. As seen in the following figures, more than one 

Newton-Raphson iteration is needed to obtain a converged solution. The general algorithm 

proceeds as follows: 

1. Assume     .      is usually the converged solution from the previous time step.   

    On the first time step,      = {0}. 

2. Compute the updated tangent matrix    
   and the restoring load    

     

    from configuration     . 

3 .  Ca lcu la te        f rom Equat ion  B. 3. 

4. Add       to      in order to obtain the next approximat ion        (Equation  

    B.4). 

5. Repeat steps 2 to 4 unt il convergence is obta ined.  

 

Figure B.2 shows the solution of the next iteration (i+1) of the example from Figure 

B.1. The subsequent iterations would proceed in a similar manner.  
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Figure B.2: Newton-Raphson solution - next iteration 

 

The solution obtained at the end of the iteration process would correspond to load level 

    . The final converged solution would be in equilibrium, such that the restoring load vector 

   
    (computed from the current stress state, heat flows, etc.) would equal the applied load 

vector      (or at least to within some tolerance). None of the intermediate solutions would be 

in equilibrium. 

If the analysis included path-dependent nonlinearities (such as plasticity), then the 

solution process requires that some intermediate steps be in equilibrium in order to 

correctly follow the load path. This is accomplished effectively by specifying a step-by-step 

incremental analysis; i.e., the final load vector     is reached by applying the load in 

increments and performing the Newton-Raphson iterations at each step: 

     
           

        
           (B.4) 

where 

     
   = tangent matrix for time step n, iteration i 

   
   = total applied force vector at time step n 

     
    = restoring force vector for time step n, iteration i 
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This process is the incremental Newton-Raphson procedure and is shown in 

Figure B.3. The Newton-Raphson procedure guarantees convergence if and only if the 

solution at any iteration      is “near” the exact solution.Therefore, even without a path-

dependent nonlinearity, the incremental approach (i.e., applying the loads in increments) 

is sometimes required in order to obtain a solution corresponding to the final load level.  

 

 

Figure B.3: Incre me ntal ne wton-raphson procedure 

 

When the stiffness matrix is updated every iteration (as indicated in B.3 and 

B.5) the process is termed a full Newton-Raphson solution procedure (NROPT,FULL or 

NROPT,UNSYM). Alternatively, the stiffness matrix could be updated less frequently 

using the modified Newton-Raphson procedure (NROPT,MODI). Specifically, for static 

or transient analyses, it would be updated only during the first or second iteration of each 

substep, respectively. Use of the initial-stiffness procedure (NROPT,INIT) prevents any 

updating of the stiffness matrix, as shown in Figure B.4. If a multistatus element is in 

the model, however, it would be updated at iteration in which it changes status, 

irrespective of the NewtonRaphson option. The modified and initial-stiffness Newton-

Raphson procedures converge more slowly than the full Newton-Raphson procedure, 
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but they require fewer matrix reformulations and inversions. A few elements form an 

approximate tangent matrix so that the convergence characteristics are somewhat 

different. 

 

Figure B.4: Initial-s tiffness ne wton-raphson 

 

Convergence 

The iteration process described in the previous section continues until convergence 

is achieved.  The maximum number of allowed equilibrium iterations (input on NEQIT 

command) are performed in order to obtain convergence. 

Convergence is assumed when 

                (out-of-balance convergence)     (B.5) 

and/or 

                               (DOF increment convergence)     (B.6) 

where {R} is the residual vector: 

                       (B.7) 



131 

 

which is the right-hand side of the Newton-Raphson Equation B.3.       is the DOF 

increment vector,  R and  U are tolerances (TOLER on the CNVTOL command) and Rref and 

Uref are reference values (VALUE on the CNVTOL command). ||*|| is a vector norm; that is, a 

scalar measure of the magnitude of the vector (defined below).  

Convergence, therefore, is obtained when size of the residual (disequilibrium) is less 

than a tolerance times a reference value and/or when the size of the DOF increment is less 

than a tolerance times a reference value. The default is to use out-of-balance convergence 

checking only. The default tolerance are .001 (for both  U and  R). 

There are three available norms (NORM on the CNVTOL command) to choose from: 

1. Infinite                     

2. L1 norm              

3. L2 norm            
  

   
 

For DOF increment convergence, substitute  u for R in the above equations. The 

infinite norm is simply the maximum value in the vector (maximum residual or maximum 

DOF increment), the L1 norm is the sum of the absolute value of the terms, and the L2 norm 

is the square root of the sum of the squares (SRSS) value of the terms, also called the 

Euclidean norm. The default is to use the L2 norm. 

The default out-of-balance reference value Rref is ||{Fa}||. For DOFs with imposed 

displacement constraints, {Fnr} at those DOFs are used in the computation of Rref. For structural 

DOFs, if ||{Fa}|| falls below 1 .0, then Rref uses 1 .0 as its value. This occurs most often in rigid 

body motion (e.g., stress-free rotation) analyses. For thermal DOFs, if ||{Fa}|| falls below 1 

.0E-6, then Rref uses 1 .0E-6 as its value. For all other DOFs, Rref uses 0.0.The default reference 

value Uref is ||{u}||. 

Predictor 

The solution used for the start of each time step n {Un,0} is usually equal to the current 

DOF solution {Un-1}.The tangent matrix [Kn,0] and restoring load {Fn,0} are based on this 

configuration. The predictor option (PRED command) extrapolates the DOF solution using the 

previous history in order to take a better guess at the next solution.  

In static analyses, the prediction is based on the displacement increments 

accumulated over the previous time step, factored by the time-step size: 
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                                                                                                    (B.8) 

where 

      = displacement increment accumulated over the previous time step 

n = current time step 

             
     
           (B.9) 

and   is defined as: 

                
   

     
           (B.10) 

where: 

    = current t ime-s tep s ize  

      = previous time-step size 

  is not allowed to be greater than 5. 

In transient analyses, the prediction is based on the current velocities and accelerations 

using the Newmark formulas for structural DOFs: 

                                            
     (B.11) 

Where:       ,        ,         = current displacements, velocities and accelerations  

                 = current time-step size 

            = Newmark parameter (input on TINTP command) 

For thermal, magnetic and other first order systems, the prediction is based on the 

trapezoidal formula: 

                                                 (B.12) 

where:        = current temperatures (or magnetic potentials)  

        = current rates of these quantities 

  = trapezoidal time integration parameter (input on TINTP command) 

The subsequent equilibrium iterations provide DOF increments { u} with respect 

to the predicted DOF value {Un,0}, hence this is a predictor-corrector algorithm. 

Adaptive Descent 

Adaptive descent (Adptky on the N ROPT command) is a technique which switches 

to a “stiffer” matrix if convergence difficulties are encountered, and switches back to the 

full tangent as the solution convergences, resulting in the desired rapid convergence rate. 
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The matrix used in the Newton-Raphson equation (Equation B.3) is defined as the 

sum of two matrices: 

   
                          (B.13) 

where: 

     = secant (or most stable) matrix 

      tangent matrix 

  = descent parameter 

The program adaptively adjusts the descent parameter ( ) during the equilibrium 

iterations as follows: 

1. Start each substep us ing the tangent matr ix (  = 0).  

2. Monitor the change in the residual ||{R}||2 over the equilibr ium iterations :  

      If it increases (indicating possible divergence): 

      • remove the current solution if   < 1, reset   to 1 and redo the iteration 

        using the secant matrix 

      • if a lready a t   = 1, cont inue itera t ing  

                 If it decreases (indicating converging solution):  

      • If   = 1 (secant matrix) and the residual has decreased for three iterations in  

         a row (or 2 if   was increased to 1 during the equilibrium iteration process by  

         (a.) above), then reduce   by a factor of 1/4 (set it to 0.25) and continue 

         iterating.  

      • If the   < 1, decrease it again by a factor of 1/4 and continue iterating. Once   

         is below 0.0156, set it to 0.0 (use the tangent matrix).  

3. If a negative pivot message is encountered (indicating an ill-condit ioned 

    matrix) : 

   • If   < 1, remove the current solution, reset   = 1 and redo the iteration using 

      the secant matrix.  

   • If   = 1, bisect the time step if automatic time stepping is active, otherwise  

      terminate the execution.  

The nonlinearities which make use of adaptive descent (that is, they form a secant matrix 

if   > 0) include: plasticity, contact, stress stiffness with large strain, nonlinear magnetics using 

the scalar potential formulation, the concrete element SOLID65 with KEYOPT(7) = 1, and the 
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membrane shell element SHELL41 with KEYOPT(1) = 2. Adaptive descent is used by 

default in these cases unless the line search or arc-length options are on. It is only available 

with full Newton-Raphson, where the matrix is updated every iteration. Full Newton -

Raphson is also the default for plasticity, contact and large strain nonlinearities.  

Line Search 

The line search option (accessed with LNSRCH command) attempts to improve a 

Newton-Raphson solution { Ui} by scaling the solution vector by a scalar value termed 

the line search parameter. 

Consider Equation B.4 again: 

                                                           (B.14) 

In some solution situations, the use of the full       leads to solution instabilit ies. 

Hence, if the line search option is used, Equation B.5 is modified to be: 

                                       (B.15) 

where: 

s = line search parameter, 0.05 < s < 1.0 

s is automatically determined by minimizing the energy of the system, which reduces to 

finding the zero of the nonlinear equation: 

                      
                            (B.16) 

where: 

   = gradient of the potential energy with respect to s  

An iterative solution scheme based on regula falsi is used to solve Equation B.7. 

Iterations are continued until either: 

1. gs is less than 0.5 go, where go is the value of Equation B.7 at s = 0.0 (that is,  

using { Fn } for {Fnr(s{ U})}). 

2.  gs is not changing significantly between iterations. 

3.  Six iterat ions have been performed.  

If g0 > 0.0, no iterations are performed and s is set to 1.0. s is not allowed below 0.05.  

The scaled solution { Ui} is used to update the current DOF values {Ui+1} in 

Equation B.4 and the next equilibrium iteration is performed.  
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Arc-Length Method 

The arc-length method (accessed with ARCLEN,ON) is suitable for nonlinear static 

equilibrium solutions of unstable problems. Applications of the arc-length method involve the 

tracing of a complex path in the load-displacement response into the buckling/post buckling 

regimes. The arc-length method uses the explicit spherical iterations to maintain the 

orthogonality between the arc-length radius and orthogonal directions. It is assumed that 

all load magnitudes are controlled by a single scalar parameter (i.e., the total load factor).  

Unsmooth or discontinuous load-displacement response in the cases often seen in contact 

analyses and elastic-perfectly plastic analyses cannot be traced effectively by the arc -length 

solution method. Mathematically, the arc-length method can be viewed as the trace of a 

single equilibrium curve in a space spanned by the nodal displacement variables and the 

total load factor. Therefore, all options of the Newton-Raphson method are still the basic 

method for the arc-length solution. As the displacement vectors and the scalar load factor are 

treated as unknowns, the arc-length method itself is an automatic load step method (AUTOTS, 

ON is not needed). For problems with sharp turns in the load-displacement curve or path 

dependent materials, it is necessary to limit the arc-length radius (arc-length load step size) 

using the initial arc-length radius (using the NSUBST command). During the solution, the 

arc-length method will vary the arc-length radius at each arc-length substep according to 

the degree of nonlinearities that is involved. 

The range of variation of the arc-length radius is limited by the maximum and 

minimum multipliers (MAXARC and MINARC on the ARCLEN command).  

In the arc-length procedure, nonlinear Equation B.3 is recast associated with the 

total load factor  : 

                 
                

           (B.17) 

where   is normally with in the range -1.0 ~ l ~ 1 .0. Writing the proportional loading 

factor   in an incremental form yields at substep n and iteration i (see Figure B.5) 

                 
                        

      
             (B.18) 

where: 

   = incremental load factor (as shown in Figure B.5) 
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Figure B.5: Arc-le ngth approach with full Ne wton-Raphson 

 

The incremental displacement       can be written into two parts following 

Equation B.19: 

                         
 
      

  
         (B.19) 

where: 

    
 
  = displacement due to a unit load factor 

    
  
  = displacement increment from the conventional Newton-Raphson method 

These are defined by: 

                  
 
     

  
  

                 (B.20) 

                  
  
      

  
  

            (B.21) 

In each arc-length iteration, it is necessary to use Equation B.21 and Equation B.22 

to solve for     
 
  and     

  
 .  The incremental load factor    in Equation B.20 is  
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determined by the arc-length equation which can be written as, for instance, at iteration i 

(see F igure B.5): 

               
    

                       (B.22) 

where: 

  = scaling factor (with units of displacement) used to ensure the correct scale in the 

equations 

      = sum of all the displacement increments       of this iteration  

The arc-length radius ℓ i is forced, during the iterations, to be identical to the radius 

iteration ℓ1 at the first iteration, i.e. 

                                   (B.23) 

While the arc-length radius ℓ1 at iteration 1 of a substep is determined by using the 

init ial arc-length radius (defined by the NSUBST command), the limit range (defined by the 

ARCLEN command) and some logic of the automatic time (load) step method. 

Equation B.20 together with Equation B.23 unique ly determines the so lut ion  

vector ( U i,    )T .  However, there are many ways to solve for    approximately. The 

explic it spherical iteration method is used to ensure orthogonality. In this method, the 

required residual r i (a scalar) for explicit iteration on a sphere is first calculated.  Then the 

arc-length load increment factor is determined by formula:  

                 
             

  
 

              
 
 
 
         (B.24) 

The method works well even in the situation where the vicinity of the critical point 

has sharp solution changes. Fina lly, the solution vectors are updated according to (see 

Figure B.5): 

                                            (B.25) 

and 

                                    (B.26) 

where: 

n = current substep number 

Values of  n and    are available in POST26 (SOLU command) corresponding to 

labels ALLF and ALDLF, respective ly.  The normalized arc-length radius labe l ARCL 

(SOLU) corresponds to value      
 ,  where   

  is the in it ia l arc-length radius defined (by 



138 

 

the NSUBST command) through Equation B.23 (an arc-length radius at the first iteration of 

the first substep).  

In the case where the applied loads are greater or smaller than the maximum or 

minimum critical loads, arc- length will continue the iterations in cycles because | | does 

not approach unity. It is recommended to terminate the arc-length iterations (using the 

ARCTRM or NCNV commands).  


