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Abstract 

A study was performed to determine the minimum effective dose of human 

chorionic gonadotropin (hCG) needed to induce ovulation of follicles in cattle (Exp. 1).  

Another study determined the effects of replacing the first injection of GnRH (d -7) with 

hCG or saline in a Resynch-Ovsynch protocol [injection of GnRH 7 d before and 48 h 

after PGFB2α B before a resynchronized fixed-timed AI (TAI)] on pregnancy rates in cows 

diagnosed not pregnant and pregnancy survival in cows diagnosed pregnant (d 0; Exp. 2).  

A final study determined the ovulation potential of hCG compared with GnRH and saline 

(Exp. 3).  In Exp. 1, ovaries of Holstein cows were mapped by using transrectal 

ultrasonography 7 d before pregnancy diagnosis.  Cows were assigned to treatments of 

saline, 100 µg of GnRH, or 500, 1,000, 2,000, or 3,000 IU of hCG.  Ovarian structures 

were monitored 7 d later and proportion of cows and follicles that ovulated were 

recorded.  In Exp. 2, cows in 4 herds were assigned to treatments of 1,000 IU of hCG, 

100 µg of GnRH, or left as untreated controls 7 d before pregnancy diagnosis.  

Nonpregnant cows were given PGF B2α B(d 0), then inseminated 72 h later, concurrent with a 

GnRH injection. Pregnancy rates tended (P = 0.08) to be increased by GnRH (17.9%; n = 

703) compared with control (12.9%; n = 505), but not hCG (16.5%; n = 541).  Incidences 

of ovulation in nonpregnant cows (Exp. 3) were: hCG (51.6%; n = 126), GnRH (46.1%; n 

= 102), and control (28.1%; n = 96), whereas those in pregnant cows were: hCG (59.3%; 

n = 59), GnRH (24.5%; n = 49), and control (6.9%; n = 58).  We concluded that: 1) a 

minimum dose of 1,000 IU of hCG resulted in a greater ovulatory response than saline, 

GnRH, or 500 IU of hCG (Exp. 1); 2) initiating a Resynch-Ovsynch protocol 7 d before 

pregnancy diagnosis with saline reduced timed AI pregnancy rates (Exp. 2); and 3) 



incidence of new CL was greater after hCG than GnRH in pregnant cows, but not in 

nonpregnant cows (Exp. 3). 
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CHAPTER 1 - REVIEW OF LITERATURE 

INTRODUCTION 
Fertility of the high-producing dairy cow has declined significantly during the 

past half century (Lucy, 2001).  This reduction in reproductive efficiency has occurred 

during the same period in which researchers have learned more about reproductive 

biology than any other time in history.  This conundrum may be partially explained when 

we consider that the US dairy herd, as-well-as the dairy cow, is evolving.   

Dairy herds are becoming larger.  With the increase in size comes an increase in 

management challenges.  There is less time to devote to detection of estrus.  Estrus is 

displayed less frequently among cattle confined to concrete flooring compared with 

natural surfaces (Britt et al., 1986).  More is expected from the lactating dairy female 

today than ever before.  According to the USDA National Agricultural Statistics Service 

(http://www.nass.usda.gov), milk production per cow has increased 16% during the past 

10-year period.  Much of this increase in production can be attributed to genetic 

selection; the same selection that is responsible for increased inbreeding coefficients 

(Hansen, 2000).  Fertility is one of the traits most affected by this inbreeding suppression 

(Hansen, 2000).  The preceding items are just a few examples of the many changes 

within the dairy industry that have had a negative impact on fertility and proved to be 

formidable barriers for scientists working in this area.  Still, there is good news because 

much advancement has been made to offset the antagonistic effects of these factors on 

reproductive efficiency. 
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Moore and Thatcher (2006) pointed out that poor fertility is a function of 2 major 

factors: low pregnancy rates and high rates of pregnancy loss.  Each will be discussed in 

turn.   

Further dissection reveals that pregnancy rate is also a function of 2 separate 

factors: service risk and conception risk (Sterry et al., 2006).  That is, the probability that 

a female will become eligible for service multiplied by the chance that the service will 

result in pregnancy.  Historically, detection of estrus has been considered the most 

limiting factor in achieving a pregnancy (Barr, 1975).  

 Hormonal applications as a method to control the estrous cycle have long been a 

reality.  Most early systems still required at least some period of detected estrus, 

however, because fixed-time artificial insemination (TAI) failed to yield acceptable 

pregnancy rates.  Britt et al. (1981) recognized the need for protocols that synchronized 

not only estrus, but ovulation of follicles.  This need was met with the advent of the 

Ovsynch protocol (Pursley et al., 1995).  A recent survey by Caraviello et al. (2006) 

showed that hormonal synchronization of estrus or ovulation before TAI were being used 

in 87% of responding herds with Ovsynch being the most popular system.     

Although TAI allows producers to pre-determine the day that the cow herd will be 

presented for the first postpartum service, those that do not conceive must be presented 

for second service as quickly as possible to minimize days open.  When one considers 

that conception rates of high-producing dairy cows have been reported to be 40% or less 

(Pursley et al., 1997), the need exists for reliable resynchronization methods.   

Fricke (2002) proposed a resynchronization protocol in which cows receive an 

injection of GnRH on d 18 after AI regardless of pregnancy status.  All cows diagnosed 
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not-pregnant 7 d later via ultrasound complete the resynchronization of ovulation and 

TAI, whereas the program is discontinued in pregnant cows.  Therefore, open cows are 

presented for another service 28 d after initial AI.   This aggressive strategy completely 

eliminates the dependency on detection of estrus. 

Recently more emphasis has been placed on improving the second portion of the 

fertility equation: the risk of conception per AI.  Methods include: altering the timing of 

insemination after a synchronization regimen, administering presynchronization 

treatments that optimize ovulation incidence at AI, and searching for more efficacious 

hormones.  The most highly researched of these hormones is human chorionic 

gonadotropin (hCG).   

The glycoprotein hormone, hCG, is produced by the blastocyst soon after 

fertilization and maintains the corpus luteum (CL) of pregnancy in women.  Chorionic 

gonadotropin shares an identical α-subunit with TSH, FSH, and LH, whereas the β-

subunit is distinct and responsible for its biological specificity (Jameson and Hollenberg, 

1993).  Luteinizing hormone and hCG bind to the same receptors on the CL (Jameson 

and Hollenberg, 1993), and when administered to bovine females, hCG has been shown 

to prolong CL life (Wiltbank et al., 1961), ovulate follicles (Price and Webb, 1989; Diaz 

et al., 1998), and increase plasma progesterone concentrations (Rajamahendran and 

Sianangama, 1992; Santos et al., 2001).  Many of the mechanisms however, through 

which hCG affects ovarian physiology in the bovine are still poorly understood.   

According to Vasconcelos et al. (1999), 10 to 30% of Ovsynch-treated cows 

failed to synchronize ovulation in response to final GnRH.  As previously mentioned, 

presynchronization treatments have proven effective in increasing the number of females 
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that have a synchronized ovulation and thus become pregnant (Bello et al., 2006).  Most 

of these protocols however require the use of PGFB2α B,B Brestricting themselves to usage in 

females that are known to be not pregnant.  An effective method to increase the incidence 

of ovulation to the first GnRH injection of Resynch has not been developed.   

The other factor comprising reproductive efficiency is pregnancy loss.  Pregnancy 

loss can be classified as early embryonic death (≤ d 15 to 17), late embryonic death (d 17 

to approx. d 42), or fetal death (≥ d 50; Santos et al., 2004).  Much of the blame for 

pregnancy loss in high-producing dairy cows has been placed on reduced concentrations 

of progesterone in the blood.  According to Lucy et al. (1998), a link has been found 

between genetic selection for milk production and reduced serum concentrations of 

progesterone.  This may be an indirect effect caused by high DMI.  As intake increases so 

does metabolization of the steroid hormone as it passes through the liver.  Based on this 

assumption, researchers (Lopez-Gatius et al., 2004, Stevenson et al., 2007) have 

attempted to reduce pregnancy loss by administering exogenous progesterone at various 

stages post-insemination.  Others (Sterry et al., 2006, Bridges et al., 2000) have relied on 

induction of ancillary CL to increase endogenous concentrations of progesterone.   

Today’s TAI protocols consistently yield acceptable first-service pregnancy rates.  

The major areas that need improvement are the management of non pregnant cows after 

first service and prevention of pregnancy losses.  An ovulation resynchronization system 

that provides acceptable pregnancy results for second and greater service females while 

aiding in pregnancy maintenance would be ideal.  Such a system could greatly improve 

reproductive management within the dairy industry.   
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GONADOTROPIN-RELEASING HORMONE 

Mechanism of Action 

Gonadotropin-releasing hormone is a decapeptide that is released from both the 

tonic and surge centers of the hypothalamus.  The first reports on the action of GnRH 

revealed that the hormone stimulated the release of LH from the pituitary in small 

mammals (McCann et al., 1965; Schally et al., 1967).  Later studies (Amoss and 

Guillemin, 1969; Niswender, 1969; Reeves et al., 1971) revealed the same action in 

sheep.  Reeves et al. (1971) recognized the need to understand the mechanism whereby 

GnRH caused the release of the preovulatory surge of LH and saw the possible practical 

applications of GnRH in domestic animals.  Later, researchers (Kittok et al., 1973; 

Thompson et al., 1980; Milvae et al., 1984) observed that treating cattle with natural 

GnRH or with a GnRH analog (Milvae et al., 1984) during the luteal phase caused an 

increase in serum LH and progesterone. 

Ovulation Incidence 

Researchers also reported the induced ovulation of dominant follicles by GnRH 

with varying degrees of success.  Macmillan et al. (1985) reported no incidence of 

accessory CL in dairy cows treated on d 12 to 16 post-estrus with 5 µg of buserelin, a 

GnRH agonist.  Martin et al. (1990) also reported no ovulations in cows treated with 100 

µg of GnRH on d 2 and 8 post-estrus.  Another report (Thatcher et al., 1989), however, 

demonstrated that 67% of dairy cows treated from d 12 to 48 with 8 to 10 µg of buserelin 

every 3 d had an induced CL.  More recently, Bello et al. (2006) reported an 80% 

incidence of ovulation in dairy cows given GnRH 2 d after an injection of PGF B2α. B A 

single injection of GnRH once between 4 and 9 d after AI induced 60% of dairy cows to 



form at least 1 accessory CL (Stevenson et al., 2007).  Clearly, formation of an accessory 

CL post-GnRH is dependent on several physiological factors.   

Corpus Luteum Function 

A review of several studies indicates that “the LH release induced by an injection 

of GnRH is not a sufficient luteotropic stimulus to sustain elevated concentrations of 

progesterone in serum for more than a few hours” (Rettmer, 1991).  This is in agreement 

with a later study by Stevenson et al. (2007) in which dairy cows treated once with GnRH 

on d 4 to 9 post-AI showed no more increase in serum progesterone concentrations 

between day of treatment and 7 d later than did untreated controls.  Surprisingly, 

treatment with GnRH has been shown (Ford and Stormshak, 1978; Rodger and 

Stormshak, 1986; Lokhande et al., 1981) to reduce long-term concentrations of 

progesterone. 

HUMAN CHORIONIC GONADOTROPIN 

Mechanism of Action 

Human chorionic gonadotropin is produced by the trophoblast of the blastocyst 

and can be detected in the peripheral circulation as soon as d 8 to 10 of gestation.  The 

hormone maintains the CL of pregnancy and is used to detect early pregnancy (Jameson 

and Hollenberg, 1993).  Once hCG binds to the LH-CG receptor it directs the CL to 

produce different hormones including progesterone and estrogen.  Over time, the CL 

becomes less sensitive to hCG, but increasing concentrations of the hormone maintain its 

functional capacity until approximately 7 wk of pregnancy (Jameson and Hollenberg, 

1993). 
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This glycoprotein is composed of 2 polypeptide chains with carbohydrates 

attached to each.  These chains have been designated as alpha and beta subunits.  The 

alpha subunit is shared among the glycoprotein hormones LH, FSH, TSH, and CG but the 

beta unit differs for each.  This distinction of the beta subunit is responsible for the 

biological specificity among hormones.  For example, hCG bound to the LH receptor in 

luteal cells is internalized 50 times slower than LH (Niswender et al., 1985).  

The longer half-life of hCG compared with that of LH results from 4 sites of O-

linked glycosylation that largely accounts for the fact that hCG is more heavily 

glycosylated than LH.  The glycosylated extension probably serves an important function 

either for hormone biosynthesis or hormone function (Jameson and Hollenberg, 1993). 

Ovulation Incidence 

Much like GnRH, researchers have reported much variation in the ability of hCG 

to induce follicles to ovulate.  Wiltbank et al. (1961) reported that 18 of 27 (67%) beef 

heifers formed accessory CL when treated with 1,000 IU of hCG daily from 15 to 35 d 

post-estrus.  A later study (de los Santos-Valadez et al., 1982) reported only 29 of 114 

(25%) of heifers ovulated in response to 5,000 IU of hCG on d 15 post-estrus.  Similar 

results [51 of 193 (26%)] were found when dairy cows were treated with 3,300 IU on d 

15 post-estrus (McDermott et al., 1986).  Price and Webb (1989) observed a large 

variation in number of dairy heifers with accessory CL when they were treated with 

1,550 IU of hCG once from d 0 to 16 post-estrus.  Five-thousand IU yielded an ovulation 

incidence of 81% (Howard and Britt, 1990), whereas 10,000 IU induced 100% (Howard 

et al., 1990) of dairy heifers to ovulate when cattle in both groups were treated 10 d post-

estrus.  A later study (Stevenson et al., 2007) compared the ovulation potential of hCG 
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with that of GnRH and showed accessory CL formation in 77.5% and 60.0% of lactating 

dairy cows, respectively, on d 4 to 9 post-AI. 

Bovine follicles develop in a wave-like pattern during the estrous cycle with most 

cattle having 2 or 3 waves per cycle (Pierson and Ginther, 1984).  Under normal 

conditions the final wave of each cycle yields the follicle that will ovulate in response to 

the pre-ovulatory surge of LH, whereas the dominant follicles of the preceding wave or 

waves are destined to become atretic in the high progesterone milieu of diestrus.  An 

exogenous source of LH release or LH-like activity, however, can induce these follicles 

to ovulate when administered at certain stages of their development.  This explains the 

wide variation observed in ovulation incidence on different days of the estrous cycle.   

The dosage of hCG used in bovine experiments varies greatly.  There is no 

published dose titration report revealing the minimum effective dose of hCG needed to 

induce the formation of accessory CL in cattle.  From a practical perspective this 

information is needed to determine the cost that hCG would represent in an ovulation-

synchronization program.  This information also would prove useful from a scientific 

perspective as it would provide future researchers with an effective, consistent dose 

needed to conduct studies.   

Corpus Luteum Function 

Numerous researchers (Donaldson and Hansel, 1965; Hansel and Seifart, 1967; 

Moody and Hansel, 1971) have reported that hCG administration during the luteal phase 

of cattle increased the size and weight of the already existing CL as well as serum 

concentrations of progesterone.  A review of several studies revealed that progesterone 

concentrations increase by 24 h after treatment with hCG and remain elevated above 

 8
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controls until the onset of luteolysis (Rettmer, 1991).  This agrees with a later study 

(Rajamahendran and Sianangama, 1992) that also reported an increase in total CL 

diameter from 7 to 42 d post-AI in hCG-treated cows.  Progesterone concentrations also 

were significantly greater in cows treated with hCG on d 7 or 14 post-AI than in those 

treated on d 0 or those not treated.  Yet another study (Stevenson et al., 2007), more 

induced CL were observed and more total CL were detected in cows treated with either 

GnRH or hCG after insemination.  Increased concentrations of progesterone, however, 

were observed only in hCG-treated cows.  This may have occurred because total CL 

volume was increased only after hCG, suggesting a luteotropic effect of hCG. 

Researchers have reported varying responses of the CL in hCG-treated cattle to 

exogenous PGFB2α B.  Several authors [Bolt (1979), McDermott et al. (1986), and Shipley et 

al. (1988)] reported delayed luteolysis and fewer animals displaying estrus when 

receiving PGFB2α B after hCG treatment.  Shipley et al. (1988) also reported reduced fertility 

in cattle bred after treatment with 2,500 IU of hCG.  Bolt (1979) and McDermott et al. 

(1986) both showed that hCG-treated cows responded to PGFB2α B with a drastic decline in 

blood concentrations of progesterone by 24 h, but progesterone still remained > 1 ng/mL 

for several days.  Howard and Britt (1990) however, reported decreased serum 

progesterone concentrations in heifers that were given PGF B2α B 2 to 5 d after 5,000 IU of 

hCG were given on d 10.  In addition to lysing the original CL, PGF B2α B also lysed the 

accessory CL formed in response to the hCG treatment.  This is especially interesting 

when we consider that the hCG-induced CL was regressed before d 5 of its existence.   
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MANAGEMENT OF THE NON PREGNANT COW 
Management of non pregnant dairy cows has changed dramatically in the last 

half-century.  The classic a.m.-p.m. rule was first established by Trimberger (1948).  At 

approximately the same time, researchers (Christian and Casida, 1948; Willett, 1950; 

Ulberg et al., 1951; Hansel and Trimberger, 1952) began exploring the effects of 

progesterone on the ovaries and estrous cycles of cattle.  These studies laid the 

foundation for the first phase of estrus-synchronization research using progestational 

compounds beginning about 1960 (Hansel and Convey, 1983).  Although estrus occurred 

in a large percentage of these early study cattle, conception rates were not equal to that of 

controls (Britt et al., 1981).  The second phase of research combined progestational 

treatments with estrogen or gonadotropins in order to more strictly regulate the timing of 

estrus.  By and large, these programs also were not successful very (Hansel and Convey, 

1983).   

In the early 1970’s the luteolytic properties of PGFB2α B were demonstrated (Rowson 

et al., 1972).  This finding provided several options to synchronize estrus in cattle before 

AI.  Use of PGFB2α B to induce estrus by regression of the CL, is ineffective before d 5 of the 

estrous cycle.  One program calls for insemination of cattle as they come into 

spontaneous estrus during a 5-d period, after which those not inseminated are treated with 

PGFB2α B and inseminated at the resulting induced estrus (Hansel and Convey, 1983).  

Another protocol calls for 2 treatments of PGFB2α B 10 to 12 d apart with an insemination at 

detected estrus after the second injection (Britt et al., 1981).  Yet another method 

involves an injection of PGFB2α B after palpation of a functional CL (Stevenson, 2001).  This 

may be done at any time for first-service cows or at pregnancy diagnosis for those 
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already inseminated.  All methods yield acceptable pregnancy results when cattle are 

inseminated after a detected estrus.   

Accurate detection of estrus is a problem (Foote, 1975), and may even be the most 

limiting factor to producing a pregnancy (Barr, 1975) on many farms.  Because of this 

limitation, attempts were made to inseminate cattle at a fixed-time after PGFB2α Btreatments.  

Researchers observed reduced conception rates when cattle were inseminated once at 80 

h after a second injection of PGFB2α B (Fogwell et al., 1986).  Two timed inseminations (72 

and 96 h) after prostaglandin yielded conflicting results (Seguin et al., 1978; Plunkett et 

al., 1984).  Timing of PGBF2α Binjection relative to the stage of follicular development is 

responsible for this variation in response (Moore and Thatcher, 2006).  Britt et al. (1981) 

recognized the need for a protocol that would reduce this variation by synchronizing, not 

only estrus, but ovulation. 

Later work (Hansel and Beal, 1979; Roche et al., 1981) combined a progesterone 

releasing intra-vaginal device (PRID) with PGFB2α B treatments (Hansel and Convey, 1983).  

Administration of a PRID to Holstein heifers for 7 d, with PGFB2α B given on d 6 and one 

fixed-time AI at 84 h after PRID removal, yielded pregnancy rates (66%) similar to those 

in controls bred after a detected estrus (73%); (Smith et al., 1984). 

Early work with GnRH (Cumming et al., 1977; Fernandez-Limia et al., 1977) 

demonstrated the decapeptide’s ability to induce ovulation in cattle.  Turnover of the 

dominant follicle resulting from GnRH-induced LH release and subsequent ovulation led 

to recruitment of a new follicular wave, and thus, a new dominant follicle was present 7 d 

later (Moore and Thatcher, 2006).  This sequence of events served as the basis for the 

timed insemination program referred to as the Ovsynch protocol (Pursley et al. 1995, 
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1997).  Until that time, no protocol was available that would “consistently synchronize 

estrus with sufficient precision to permit high levels of success with fixed-time 

insemination” (Larson and Ball, 1992). 

A major advantage of Ovsynch is that it allows a producer to inseminate all cows 

on the first day following the voluntary waiting period (VWP) by beginning the 

synchronization program 10 d earlier.  This option can reduce days to first service, or at 

least, reduce variation in days to first AI.  In one study (Pursley et al., 1997), the median 

time to conception was reduced by 19 d for Ovsynch-treated cows compared with cows 

managed using typical reproductive strategies.  In that study, Ovsynch was re-initiated on 

d 32 post-insemination in cows diagnosed open at this time and second service was 

performed 10 d later.  The authors concluded that in such a scenario, early pregnancy 

diagnosis becomes more critical in order to re-submit cows for insemination as soon as 

their not-pregnant status is known. 

To further reduce days open Fricke (2002) proposed a more aggressive 

reproductive management strategy.  In this scenario the first GnRH injection of Ovsynch 

would be administered to all cows 7 d before pregnancy diagnosis despite their unknown 

pregnancy status.  Nonpregnant cows then receive PGFB2α Bon the day of pregnancy 

examination, whereas the program is discontinued in pregnant females thus reducing the 

days to subsequent service by 7.  One study (Moreira et al., 2000), reported increased 

embryonic loss for bST-treated cows receiving GnRH on d 20 after TAI.  Other 

researchers (Chebel et al., 2003; Fricke et al., 2003) however, did not confirm that 

observation.   
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Ovulation in response to the first GnRH injection of Ovsynch is the major 

determinant for successful synchronization (Bello et al., 2006).  Because of this 

limitation, several researchers (Moreira et al., 2001; Navanukraw et al., 2002; El-

Zarkouny et al., 2004; Bello et al., 2006) have developed presynchronization programs 

that precede Ovsynch and optimize ovulation.  Although these protocols have proved 

successful, unfortunately they can not be implemented in cattle of unknown pregnancy 

status because they require the use of PGFB2α B.  Waiting until pregnancy diagnosis often 

increases days to re-insemination.  Therefore, presynchronization protocols eliminate 

themselves from usage before applying resynchronization regimens.  A substance with 

greater ovulatory capacity than GnRH could potentially increase pregnancy rates in cattle 

synchronized with the Ovsynch protocol. 

Human chorionic gonadotropin has seen limited use in estrus- and ovulation-

synchronization protocols.  Schmitt et al. (1996) saw no increase in conception rates of 

dairy heifers when the second GnRH of Ovsynch was replaced with an injection of hCG 

(3,000 IU).  Another study (De Rensis et al., 1999) compared GnRH with hCG 6 or 9 d 

before PGFB2α B treatment in dairy cows.  Again, similar outcomes were observed in estrus 

synchronization and conception rates between GnRH- and hCG-treated cattle.  Suckled 

beef cows were used to examine the effects of replacing GnRH with hCG on pregnancy 

rates when using the CO-Synch protocol (Geary et al., 2001).  The authors observed that 

primiparous cows had greater pregnancy rates when treated with hCG than when they 

were treated with GnRH.  The opposite, however, was true for multiparous cows.   

The general consensus has been that hCG shows no major advantage over GnRH 

in estrus- or ovulation-synchronization protocols.  Effects of replacing the first GnRH 



injection in the Ovsynch protocol with hCG, while still using GnRH for the second 

treatment, have not been evaluated.   

PREVENTION OF PREGNANCY LOSS 
Much of the blame for low fertility in high-producing dairy cows can be placed on 

pregnancy loss.  According to Sartori et al. (2002) fertilization rates in lactating dairy 

cows averaged 76.2% (ranging from 55.3 to 87.8%) on d 6 post-breeding.  This is almost 

depressing when one considers that by d 27to 31 after AI, conception rates are usually 35 

to 45% in dairy cattle (Santos et al., 2004).   

Causes of pregnancy loss are varied.  They include, but are not limited to diet, 

body condition score, disease, milk yield, cycling status, heat stress, oocyte quality, 

insemination protocol, resynchronization method, CL maintenance, concentrations of 

progesterone, and the uterine environment (Santos et al., 2004).  A large portion of the 

research aimed at reducing pregnancy loss has focused on the latter 3 factors.  A 

resynchronization protocol that aids in CL maintenance and increases progesterone 

concentrations is desirable.  Researchers have attempted to accomplish this in 2 ways: 1) 

provide a supplemental, exogenous source of progesterone or 2) increase exogenous 

concentrations of progesterone by inducing formation of accessory CL or enhancing the 

endogenous function of the existing CL.   

Progesterone from the CL is essential to successful gestation (Inskeep, 2004).  

According to Inskeep (2004), progesterone concentrations have been implicated in 

embryonic deaths during the following periods: before d 6 post-mating, d 4 through 9 

post-mating, d 14 through 17 during the maternal recognition of pregnancy, and d 28 

through 42 while placentation and attachment are in progress.    
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Reduced concentrations of progesterone in the peripheral circulation in high-

producing dairy cows could be a function of reduced secretion from the CL, increased 

metabolization of the steroid, or both.  The available data are conflicting.  Feed intake 

influenced metabolism of progesterone in lactating dairy cows in some studies (Wiltbank 

et al., 2000; Rabiee et al., 2001c), but not in others (Rabiee et al., 2002a).  Increased feed 

intake decreased circulating progesterone concentrations in nonlactating intact (Rabiee et 

al., 2001b) or in ovariectomized cows with injected progesterone (Rabiee et al., 2001a) or 

exposed to a PRID (Rabiee et al., 2002b).  In a study by Sangsritavong et al. (2002), 

progesterone clearance persisted longer in cows given greater amounts of feed and was 

correlated (r = 0.92) with liver blood flow.  Gombe and Hansel (1973) observed that 

Holstein heifers fed low energy diets had lighter CL with reduced progesterone content 

than heifers fed normal energy diets. 

Exogenous Progesterone 

Mann and Lamming (1999) observed increased conception rates in lactating dairy 

cows treated with supplemental progesterone before d 6 after AI.  Mann et al. (2006) 

supplemented dairy cows with progesterone from d 5 to 9 or d 12 to 16 post-breeding.  

Although both periods of supplementation resulted in marked increases in plasma 

progesterone, an increase in trophoblast length and uterine concentration of interferon-τ 

were observed only in the earlier treatment.  Researchers (Stevenson et al., 2007) 

observed mixed results when dairy cows were treated with another progesterone-

releasing intravaginal controlled internal drug release (CIDR) insert for 7 d, starting 4 to 

9 d after insemination.  Volume of luteal tissue was reduced by progesterone compared 

with controls.  Although the CIDR tended to increase conception rates in 2 herds, it also 



decreased conception rate in 1 herd.  Sterry et al. (2006) observed no effect on pregnancy 

rate when a CIDR was in place from d 5 to 12 post-AI.  Lopez-Gatius et al. (2004) 

demonstrated the benefit of supplemental progesterone during the early fetal period.  

Pregnancy diagnosis was performed between 36 and 42 d after AI.  Treated cows were 

then administered a PRID for 28 d.  Pregnancy loss was recorded in 12% of controls and 

5.3% of treated cows on d 90 of gestation.  Treated cows were 2.4 times less likely to 

miscarry (Lopez-Gatius et al., 2004). 

Increase in Endogenous Progesterone Production 

Both GnRH and hCG have been used to induce accessory CL after insemination 

and reduce pregnancy loss.  Sterry et al. (2006) observed that GnRH treatment 5 d after 

TAI increased conception rates for noncycling, but not for cycling cows.  Stevenson et al. 

(2007) observed that while GnRH and hCG both induced ovulation in more than 60% of 

cows when administered 4 to 9 d after AI, pregnancy survival was reduced slightly after 

GnRH compared with controls.  Treatment with hCG increased serum progesterone, but 

conception rates were increased only in some herds.  Other researchers have observed 

more consistent results with hCG.  Treatment with hCG on d 5 (Santos et al., 2001) or d 7 

(Rajamahendran and Sianangama, 1992) after breeding induces accessory CL, enhances 

plasma progesterone concentration, and improves conception rate of high-producing 

dairy cows, but not nulliparous heifers (Schmitt et al., 1996). 

CONCLUSIONS 
Poor fertility is a real and significant problem in high-producing US dairy cows.  

Reproductive management can improve fertility in 2 ways: 1) increase the fertilization 

rate/AI or 2) reduce pregnancy losses after fertilization.  An ovulation resynchronization 
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program that would accomplish both of these goals simultaneously while presenting non-

pregnant cows for subsequent service soon after pregnancy exam would dramatically 

improve reproductive management of the dairy herd.   
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CHAPTER 2 -  HUMAN CHORIONIC GONADOTROPIN 

AND GONADOTROPIN-RELEASING HORMONE 

INFLUENCE PREGNANCY SURVIVAL AND 

RESYNCHRONIZED OVULATION BEFORE TIMED 

ARTIFICIAL INSEMINATION IN HOLSTEIN CATTLE 

ABSTRACT 
Experiments have shown human chorionic gonadotropin (hCG) to be more 

effective than GnRH as a means to ovulate follicles.  Dosages used, however, have varied 

greatly among experiments. A study was performed to determine the minimum effective 

dose of hCG needed to induce ovulation of ovarian follicles in dairy females (Exp. 1).  

Another study determined the effects of replacing the first injection of GnRH (d -7) with 

hCG or saline in a Resynch-Ovsynch  protocol [injection of GnRH 7 d before and 48 h 

after PGFB2α B before a resynchronized fixed-timed AI (TAI)] on pregnancy rates in cows 

subsequently diagnosed not pregnant and pregnancy survival in cows subsequently 

diagnosed pregnant (d 0; Exp. 2).  A final study determined the ovulation potential of 

hCG compared with GnRH and saline (Exp. 3).  In Exp. 1, ovaries of Holstein cows were 

mapped by using transrectal ultrasonography 7 d before a biweekly pregnancy diagnosis.  

Cows were assigned randomly to treatments of saline, 100 µg of GnRH, or 500, 1,000, 

2,000, or 3,000 IU of hCG.  Ovarian structures were monitored again 7 d later and 

proportion of cows and proportion of follicles ≥ 8 mm in diameter that ovulated were 

recorded.  In Exp. 2, cows in 4 herds were assigned randomly based on lactation number, 

number of previous AI, and last test-day milk yield to treatments of 1,000 IU of hCG, 
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100 µg of GnRH, or left as untreated controls 7 d before pregnancy diagnosis.  Cows 

found not pregnant were given PGF B2α B(d 0), then inseminated 72 h later, concurrent with a 

GnRH injection (3 herds) or given GnRH 16 to 24 h before AI at 72 h (1 herd). 

Pregnancy rates tended (P = 0.08) to be increased by GnRH (17.9%; n = 703) compared 

with control (12.9%; n = 505), but not hCG.  Among pregnant cows treated, pregnancy 

survival 4 to 9 wk after initial pregnancy diagnosis differed among herds (P < 0.001), but 

a treatment × herd interaction (P = 0.004) also was detected.  In 1 herd, GnRH reduced 

pregnancy survival, whereas hCG seemed to increase survival compared with control.  

Only small differences were detected in the other 3 herds except for a slight negative 

effect of hCG compared with control in 1 herd.  Ovarian structures were monitored in 

herd 1 by using transrectal ultrasonography 0 and 7 d after treatment with hCG, GnRH, 

or saline (Exp. 3).  A tendency for a treatment x pregnancy status interaction (P = 0.07) 

was detected.  Incidences of ovulation in nonpregnant cows were: hCG (51.6%; n = 126), 

GnRH (46.1%; n = 102), and control (28.1%; n = 96), whereas those in pregnant cows 

were: hCG (59.3%; n = 59), GnRH (24.5%; n = 49), and conrol (6.9%; n = 58).  We 

concluded that: 1) a dose of at least 1,000 IU of hCG resulted in a greater ovulatory 

response than saline, GnRH, or 500 IU of hCG (Exp. 1); 2) initiating a Resynch-Ovsynch 

protocol 7 d before pregnancy diagnosis with saline compared with GnRH reduced timed 

AI pregnancy rates (Exp. 2); 3) in pregnant cows treated with GnRH, pregnancy survival 

was slightly reduced in 1 of 4 herds (Exp. 2); and 4) incidence of new CL was greater 

after hCG than GnRH in pregnant cows, but not in nonpregnant cows (Exp. 3). 

 

 



INTRODUCTION 
Ovulation synchronization protocols that facilitate fixed-time artificial 

insemination (TAI) have been a reality for several years.  Many producers utilize these 

programs with 77% of respondents to a recent survey resynchronizing repeat services 

(Caraviello et al., 2006).  Although these programs offer the opportunity to facilitate the 

use of TAI without detection of estrus, conception rates have historically been 

compromised.  According to Vasconcelos et al. (1999), 10 to 30% of Ovsynch-treated 

cows failed to have synchronized ovulation.  Although presynchronization treatments 

have proven effective in increasing the number of females with a synchronized ovulation 

(Bello et al., 2006), they are not suitable for use before resynchronization.   

Traditionally, most ovulation synchronization schemes use GnRH to control 

follicular development and induce ovulation of a dominant follicle.  Research has shown, 

however, that human chorionic gonadotropin (hCG) is more effective than GnRH at 

causing these follicles to ovulate (Stevenson et al., 2007).  A minimum effective dose of 

hCG to induce ovulation however has not been documented.  

 We hypothesized that replacing the first injection of GnRH in a Resynch-

Ovsynch protocol with hCG would induce more follicles to ovulate subsequently 

improving synchronization and pregnancy rate at TAI.  In addition, we hypothesized that 

the greater number of ancillary CL would increase progesterone concentrations in 

pregnant cows, thus reducing the incidence of pregnancy loss.  Our overall objective was 

to develop an ovulation resynchronization protocol that increases the risk of conception, 

reduces the risk of pregnancy loss, and allows for TAI in dairy cattle. 
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MATERIALS AND METHODS 

Herd Management 

Experiments 1 and 3 were conducted at the Kansas State University Dairy 

Teaching and Research Center, Manhattan.  Experiment 2 was conducted at Kansas State 

University as well as at 3 commercial northeast Kansas locations.  All research at Kansas 

State University was conducted from October 2005 until October 2006.  Research at the 3 

commercial locations was performed between March and November 2006.  Cows were 

housed in covered freestalls bedded with sand at all locations.  All pens were covered and 

water was applied by sprinklers during summer months.  Fans over freestalls, feed lines, 

or both were also in place at the 3 commercial locations.  All cows were fed twice or 

thrice daily a TMR that met or exceeded National Research Council (NRC, 2001) 

requirements for lactating cows.  Diets consisted primarily of chopped alfalfa hay, wet 

corn gluten meal, corn silage, whole cottonseed, soybean meal, and corn grain, plus a 

vitamin-mineral premix.  Cows had ad libitum access to fresh water.  Table 1 summarizes 

other herd management information.   

Experimental Approach 

Experimental approach is presented in Figure 1.  Seven d before pregnancy 

diagnosis, dairy cows, along with a few nulliparous dairy heifers (herd 1 only), were 

assigned randomly to treatments of hCG, GnRH, or saline.  Treatments were assigned 

based on lactation number, number of previous AI, and last test-day milk yield (cows 

only).  Pregnancy was diagnosed 1 wk later (d 0).  
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Experiment 1 

Ovaries of Holstein cows and heifers in herd 1 were examined by transrectal 

ultrasonography (5.0 MHz linear-array transducer, Aloka 500V; Corometrics Medical 

Systems, Inc., Wallingford, CT) and structures were mapped, sized, and recorded.  Cattle 

received a treatment of saline, GnRH (100 µg; 2 mL of Fertagyl, Intervet Inc., Millsboro, 

NJ), or either of 4 doses (500, 1,000, 2,000, or 3,000 IU) of hCG (0.5, 1, 2, or 3 mL of 

Chorulon, Intervet Inc.).  Cows were then re-examined 1 wk later and those follicles that 

were induced to ovulate were noted. 

All variables (ovulation incidence, number of females having at least 1 follicle ≥ 8 

mm in diameter, number of follicles ≥ 8 mm, follicles ≥ 8 mm that ovulated and 

pregnancy rate) were analyzed by using ANOVA (procedure GLM; SAS Inst. Inc., Cary, 

NC) in a model that included treatment (n = 6), stage (d 22 to 28 or d 29 to 35 post-AI) at 

treatment injection, and the interaction of treatment × stage.  A priori contrast was 

constructed to test all hCG doses ≥ 1,000 IU vs. other treatments.   

 Experiment 2  

One wk before pregnancy diagnosis, dairy cows at 4 Kansas locations were 

assigned to receive 100 µg of GnRH (Fertagyl, Intervet Inc.), 1,000 IU of hCG 

(Chorulon, Intervet Inc.), or left as untreated controls based on lactation number, number 

of previous AI, and last test-day milk weight.  Cows were diagnosed for pregnancy by 

transrectal ultrasonography on d 30 to 43 (herd 1) or by transrectal palpation on d 37 to 

45 (herds 2 to 4) post-insemination.  The same veterinary practitioner diagnosed 

pregnancy in herds 2, 3, and 4.  When cows (n = 1,235) were diagnosed pregnant, the 

resynchronization protocol was discontinued and pregnancy status was reassessed 4 to 9 
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wk later in herds 2, 3, and 4 and 9 wk later in herd 1 to determine pregnancy survival.  

Cows diagnosed not pregnant (n = 1,748) were given PGFB2α Bat diagnosis and received one 

TAI 72 h later.  Cows at 3 locations were administered 100 µg of GnRH (Fertagyl, 

Intervet Inc.) at the time of AI, whereas cows in herd 1 were given GnRH 16 to 24 h 

before TAI.  Following TAI, all cows not detected in estrus and inseminated were again 

diagnosed for pregnancy 30 to 45 d later.  Some nonpregnant cows in the 3 commercial 

dairies were inseminated early based on activity, standing estrus, and chalk rubs.  These 

cows were eliminated from the results and were not included in analyses. 

Palpation pregnancy rate was calculated as the number of pregnant cows at each 

diagnosis divided by the number of cows presented for pregnancy diagnosis.  Pregnancy 

rate was calculated as the number of pregnant cows at each diagnosis divided by the 

number of cows previously inseminated and treated.  Pregnancy survival between the 

first and second pregnancy diagnosis (4 to 9 wk later) also was determined.  Pregnancy 

rates and pregnancy survival were analyzed by using ANOVA (procedure GLM; SAS 

Inst. Inc.).  The model for pregnancy survival consisted of treatment (n = 3), lactation 

number (1, 2, or ≥3), herd (n = 4), interaction of treatment × lactation number, interaction 

of treatment × herd, season of treatment nested within herd, and most recent test-day milk 

weight (covariable).  A priori contrasts were constructed for each treatment vs. control.  

The model for pregnancy rate also included sire and technician, each nested within herd. 

Experiment 3 

At 1 location (herd 1), transrectal ultrasonography was conducted at the initiation 

of the resynchronization protocol before treatment.  Ovarian structures were mapped and 

follicles were sized.  Follicular diameter was determined by averaging the largest cross-
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sectional width and height measured by ultrasound electronic calipers.  Structures were 

monitored again 7 d later and new corpora lutea (CL) which were not present or visible at 

the first ultrasound exam were noted.  New CL corresponding to large follicles at the first 

ultrasound were assumed to have ovulated in response to saline, 100 µg of GnRH, or 

1,000 IU of hCG.   

Blood samples were collected from a coccygeal blood vessel at the time of each 

ultrasonography exam.  Samples were stored on ice until transported to the laboratory for 

centrifugation 24 h later.  The serum portion was retained, frozen, and serum 

concentrations of progesterone were later quantified by RIA (Skaggs et al., 1986).  Intra- 

and interassay coefficients of variation for 11 assays were 8.9 and 9.5%, respectively, for 

a pooled sample that averaged 3.85 ± 0.1 ng/mL. 

Incidence of ovulation was analyzed by using ANOVA (procedure GLM; SAS 

Inst. Inc.) with a model consisting of treatment (n = 3), lactation number (1, 2, or ≥3), 

pregnancy status, stage of follicular development (d 22 to 28 or d 29 to 35 post-AI), 

follicle class (≤10, 11-12, 13-14, or >14 mm), number of CL before treatment (0, 1, or    

≥2), number of follicles ≥ 8 mm at treatment (0, 1, 2, or 3), breeding cluster (n = 28), 

interaction of treatment × lactation, treatment × pregnancy, treatment × stage, and 

treatment × beginning number of CL.  A priori contrasts were constructed for the 

combined treatments vs. control and GnRH vs. hCG.  Incidence of ovulation based on 

probable days of the cycle at treatment also was analyzed using ANOVA (procedure 

GLM; SAS Inst. Inc.) with a model similar to that above.  This reduced model condensed 

stage to 2 groups, each consisting of 3 d (d 23 to 25 and d 31 to 33 post-AI at treatment 
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injection) in which the majority of cows had a follicle with a high probability of 

ovulating. 

Concentrations of progesterone from 7 d after treatment also were analyzed by 

using ANOVA (procedure GLM; SAS Inst. Inc.).  The model was similar to the one used 

to analyze incidence of ovulation, but did not include follicle class, beginning number of 

CL, or number of follicles ≥ 8mm.  The model included however, the ending number of 

CL (original + induced CL) and the interaction of treatment × ending number of CL, plus 

the concentration of progesterone at pregnancy diagnosis as a covariable adjustment.  A 

priori contrasts were constructed for both treatments vs. control and GnRH vs. hCG. 

RESULTS 

Experiment 1 

Results of this experiment are summarized in Table 2.  More than 95% of the 

females had at least 1 follicle ≥ 8 mm in diameter.  Average number of follicles at least 8 

mm or more in diameter per female ranged from 1.4 ± 0.2 to 1.9 ± 0.2 in each group of 

females before treatment.  Ovulatory responses (shown as the percentage of cows with a 

new CL in Table 2) per female treated with saline, GnRH, and 500 IU of hCG were 

exceeded (P < 0.05) by the larger doses (1,000 IU or greater) of hCG. When the 

combined hCG doses ≥ 1,000 IU were compared with only controls, the P value was 

0.06.  When ovulatory response was calculated based on the total numbers of follicles, 

percentage responses were similar to those on a per-female basis.  Compared with , 

control, GnRH, and 500 IU of hCG, the greater doses of hCG produced more (P < 0.05) 

ovulations. A tendency (P = 0.12) occurred for more follicles to ovulate after at least 

1,000 IU of hCG than after saline alone.  



Experiment 2 

Herd palpation pregnancy rates ranged from 33.5 to 39.6% in the 4 herds (Table 

3).  Herd 4 had greater palpation pregnancy rates than herds 2 (P = 0.04) and 3 (P = 

0.003).  Pregnancy survival 4 to 9 wk after initial pregnancy diagnosis by treatment based 

on postpartum insemination number is illustrated in Table 4 for 1,236 cows.  Overall, no 

difference in pregnancy survival was detected between cows treated with hCG (93.6%; n 

= 420) 7 d before pregnancy diagnosis and those left as untreated controls (95.3%; n = 

403).  Pregnancy survival, however, tended (P = 0.06) to be reduced in those cows 

treated with GnRH (93.0%; n = 413) compared with controls.  Herd (P = 0.004) and 

season (P < 0.05) affected pregnancy survival.  Herd tended to have or had an effect on 

pregnancy survival at the first (P = 0.10), second (P < 0.01), and third (P = 0.002) 

inseminations post-AI.  Herds 1, 2, 3, and 4 had survival rates of 85.1, 99.6, 91.2, and 

94.2%, respectively.  Neither lactation number nor last test-day milk weight had an effect 

on pregnancy survival.  Lactation number, however, tended (P = 0.11) to affect 

pregnancy survival for cows that conceived at their first postpartum insemination, with 

older cows having less survival (89%) than first-lactation cows (95%).    

A treatment × herd interaction (P = 0.004) is illustrated in Figure 2.  In herd 1, 

cows treated with hCG exhibited the greatest pregnancy survival; whereas survival was 

compromised in cows treated with GnRH compared with controls.  Herd 3, however, 

exhibited reduced survival in females treated with hCG compared with those treated with 

GnRH and those left as untreated controls.  Herds 2 and 4 responded similarly to 

treatment with survival rates being comparable across all treatments. 

Resynchronized pregnancy rate by treatment based on postpartum insemination 

number is illustrated in Table 5 for a total of 1,749 inseminations in 4 herds.  Overall, no 
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significant difference (P = 0.17) in pregnancy rate was detected between cows treated 

with hCG (16.5%; n = 541) and those treated with GnRH (17.9%; n = 703) or left as 

untreated controls (12.9%; n = 505) 7 d before pregnancy diagnosis.  Pregnancy rate for 

GnRH- treated cows, however, tended (P = 0.08) to be greater than that of controls.  

Treatment, herd, lactation, nor treatment × lactation interaction had any effect on the risk 

of pregnancy.  In contrast, for each 10 kg increase in last test-day milk weight, pregnancy 

rate decreased (P < 0.05) by 2.2 ± 1%.  Sire nested within herd (P = 0.007) and season 

nested within herd (P = 0.018) had an effect on pregnancy rate, whereas technician nested 

within herd did not (P = 0.79).   

Figure 3 illustrates a treatment × herd interaction (P < 0.05) on pregnancy rate.  

Herds 1 and 4 responded similarly to treatment as did herds 2 and 3.  Cows treated with 

hCG and those treated with GnRH had the greatest pregnancy rates numerically in 2 

herds each.  Untreated controls seemed to have reduced pregnancy rates in 1 herd, but 

fertility was comparable with either GnRH or hCG in the other 3 herds.  

Experiment 3 

Ovaries of 490 cows were monitored for ovulation 7 d after treatment (pregnancy 

diagnosis) with hCG, GnRH, or saline.  Treatment affected (P < 0.001) incidence of 

ovulation with 52.4% (n = 185), 39.1% (n = 151), and 20.1% (n = 154) of hCG, GnRH, 

and control cows ovulating, respectively.  Treatment with hCG did not result in more (P 

= 0.20) cows ovulating than treatment with GnRH.  Treatment with hCG or GnRH 

resulted in more (P < 0.001) cows ovulating than treatment with saline.  Percentage of 

cows having at least 1 new CL by 7 d after treatment is summarized in Figure 4.  Among 

nonpregnant cows, no difference was detected between hCG and GnRH treatments in the 
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appearance of new CL.  Treatment with hCG (P = 0.07) tended to produce more 

accessory CL in pregnant cows as indicated by a treatment × pregnancy status interaction 

(Figure 4). 

Number of CL already present at the time of treatment affected (P < 0.001) the 

incidence of ovulation.  Cows with no CL present (n = 98) ovulated 62.2% of the time, 

whereas cows with 1 (n = 261) and ≥ 2 (n =112) CL ovulated 36.0 and 24.1% of the time, 

respectively.  A tendency (P = 0.08) for a treatment × beginning number of CL 

interaction also was detected (Figure 5).  Interestingly, GnRH produced a greater 

incidence of ovulation when no spontaneous CL was present at the time of treatment.   

Neither lactation number, pregnancy status, nor treatment × lactation number 

influenced incidence of ovulation.  Diameter of the follicles present at the time of 

treatment had no significant effect on the incidence of ovulation.  Also not significant 

was the putative follicular wave as described for each cow at treatment based on days 

since timed AI (Table 6).  

Control cows ovulated fewer (P < 0.05) follicles than those cows treated with 

GnRH or hCG during the first follicular wave (d 23 to 25; Table 7).  Proportion of cows 

that ovulated more than 1 follicle in response to treatment was 24.6% (n = 69) when 

treatments occurred at d 29 to 35 compared with 16.5% (n = 121) at d 22 to 28.  Average 

CL per cow was greater (P < 0.05) for the latter treatment period (1.3 ± 0.08 vs. 1.1 ± 

0.06) for cows that ovulated.   

Blood samples were collected from 486 cows at the time of treatment 7 d before 

pregnancy diagnosis and again at pregnancy diagnosis (d 0).  Table 8 summarizes blood 

serum concentrations of progesterone 7 d after treatment, based on treatment, pregnancy 
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status, and number of CL.  Concentrations of progesterone 7 d after treatment were 

adjusted for concentrations of progesterone before treatment.  Treatment had no effect on 

concentrations of progesterone.  As expected, pregnant cows (n = 166) had greater (P < 

0.001) concentrations of progesterone than nonpregnant cows (n = 320).  Also not 

surprising is the observation that concentrations of progesterone increased as the number 

of CL present at collection of the second blood sample increased from 0 to ≥ 2 CL.  Stage 

post-AI (n = 2) did not affect concentrations of progesterone for cows in which 

treatments were initiated at d 22 to 28 or d 29 to 35. 

DISCUSSION 

Experiment 1 

Many researchers (Wiltbank et al., 1961; de los Santos-Valadez et al., 1982; 

McDermott et al., 1986; Price and Webb, 1989; Howard and Britt, 1990; Howard et al., 

1990; Stevenson et al., 2007) have used hCG to induce ovulation in dairy and beef cattle.  

Our study, however, was first to determine the minimum effective dose needed to induce 

ovulation in cattle.  A distinct increase in number of females that ovulated and percentage 

of total follicles that ovulated is evident in those cows treated with ≥ 1,000 IU of hCG.  

No advantage, however, was detected for the larger doses (2,000 or 3,000 IU) of hCG. 

Some ovulations in each treatment were spontaneous due to the stage of cycle at 

treatment and some CL were immature at the time of first observation and were not 

visible until the second examination occurred 7 days later.  These occurrences are 

accounted for by detected ovulations after saline treatment and provide some evidence as 

to what percentages of ovulations were actually induced by treatment with GnRH or 



hCG.  From Exp. 1, we concluded that a dose of 1,000 IU of hCG exceeded the ovulatory 

induction of saline, GnRH, and the smallest dose of hCG (500 IU) in these dairy females. 

Experiment 2 

Pregnancy survival tended to be reduced in cows treated 7 d before pregnancy 

diagnosis with GnRH compared with untreated controls.  This reduction is similar to 

another report in which pregnancy survival was reduced when third or greater lactation 

cows were treated with GnRH, but at 4 to 9 d after insemination (Stevenson et al., 2007).  

Because treatment with GnRH did not increase concentrations of progesterone over 

controls, no change in pregnancy survival should be expected.  The mechanism behind a 

possible increase in pregnancy mortality, however, is unknown.  Careful interpretation of 

this reduction in pregnancy survival by GnRH should be noted because it was clearly 

evident only in 1 herd, although in 2 of the remaining herds, pregnancy survival was 

reduced by 0 to 3.5% units (Figure 2).  Pregnancy survival in hCG treated cows did not 

differ statistically from GnRH treated cows or controls.  This is surprising because the 

results from Exp. 3 revealed that more accessory CL were formed after hCG in pregnant 

cows than after GnRH or saline.  Perhaps accessory CL formation was too late (d 23 to 

38) to benefit pregnancy survival.  As a result of differences in genetics and management 

practices among herds, a herd effect on pregnancy survival is not surprising.  Cavestany 

et al. (1985) demonstrated the effects of heat stress on fertility in Holstein cattle.  

Because the experiment encompassed all seasons, the seasonal effect on pregnancy 

survival also is to be expected. 

Pregnancy rate tended (P = 0.08) to be greater in cows initiating the 

resynchronization protocol with GnRH than in untreated controls.  The logical 
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explanation for this is simply that more follicles ovulated in response to GnRH, and thus, 

more cows had a synchronized follicle at the time of AI.  By this logic, however, 

pregnancy rate in hCG treated cows also should be greater than that of controls because 

more follicles were induced to ovulate after hCG than in controls.  Howard and Britt 

(1990) discovered that an hCG-induced CL behaves differently than a spontaneously 

induced CL when they observed that the former was induced by PGFB2α B to regress before 

d 5 of its existence.  Fricke et al. (1993) also observed that hCG-induced CL differed in 

size and color from spontaneously formed CL and produced less progesterone when 

cultured in vitro in the presence of LH.  It is a reasonable assumption that physiological 

differences in hCG-induced CL could hinder pregnancy rates at a later insemination. 

As with pregnancy survival, a treatment × herd interaction was detected for 

pregnancy rate.  Because the pregnancy diagnosis schedule of herd 1 differed from that of 

the other 3 herds, one might expect the first herd to respond differently to treatment than 

the others.  This, however, is not the case because pregnancy rates in herds 1 and 4 were 

similar and those of herds 2 and 3 were similar (Figure 3). 

We conclude that there is no distinct advantage to hCG over GnRH, or vice versa, 

in pregnancy survival or pregnancy rate in this resynchronization protocol.  Cows in 3 of 

4 herds exhibited increased pregnancy rates when Resynch-Ovsynch was initiated with 

hCG.  Economically, a 100 µg dose of GnRH is similar in cost to 1,000 IU of hCG.  We 

conclude, however, that from a dairy producer viewpoint the evidence does not merit a 

change from GnRH to hCG.  Even though untreated controls exhibited the numerically 

greatest incidence of pregnancy survival, it is not a feasible option to initiate the 

Resynch-Ovsynch protocol with saline because pregnancy rates in those females 



subsequently diagnosed not pregnant and resubmitted for insemination were reduced by 

more than 38% compared with GnRH.  

Experiment 3 

The treatment × pregnancy status interaction was a result of many more accessory 

CL formed in pregnant cows treated with hCG than with GnRH.  This is probably a 

function of hCG’s increased half-life compared with GnRH-induced LH release in 

response to hCG’s 4 sites of O-linked glycosylation (Jameson and Hollenberg, 1993).  

For example, hCG bound to the LH receptor in luteal cells is internalized 50 times slower 

than LH (Niswender et al., 1985).  This allows hCG to be more potent when inducing 

ovulation.  A portion of the new CL detected in nonpregnant control cattle is probably a 

result of extended estrous cycles (> 22 d).  Spontaneous CL in these cattle would have 

been undetectable at the time of first ultrasound diagnosis.  Some of these CL also were 

detected because cycles in cows were not synchronized at the initial AI and ovulated 

spontaneously between scans.  Seven percent of pregnant cows left as untreated controls 

ovulated between ultrasound examinations.  It is not known what percentage of cows 

ovulate spontaneously after pregnancy is initiated.  A portion of this 7% likely resulted 

from technician error.                                          

A novel finding of this study was that in cows with no spontaneous CL present at 

the time of treatment, GnRH induced more follicles to ovulate than hCG.  A similar 

number of ovulations were observed between hCG treated cows and controls when no CL 

were present at the time of treatment.  When 1 or more CL were already present, 

however, hCG induced more ovulations than GnRH or saline.  When all treatments are 

pooled, the incidence of ovulation decreased as the beginning number of CL increased. 
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Table 6 provides an in depth look at the incidence of ovulation based on days 

since AI at treatment.  Days 23 to 25 and 31 to 33 were considered to be the probable first 

and second follicular waves since the first eligible estrus after AI in nonpregnant cows.  

Interestingly, follicular wave dynamics also can be observed in pregnant cows as well.  In 

first-wave cattle, the incidence of ovulation was reduced in control cows compared with 

cows receiving treatment.  Once again, reasons for ovulation in these cows are varied and 

include: lengthened estrous cycles, previously unsynchronized cycle at AI, and technician 

error.  When only cattle that fall into the expected wave categories are considered, or in 

all days since previous AI, incidence of ovulation is greater for GnRH and hCG than for 

controls.   

Somewhat surprising is the fact that treatment had no effect on concentrations of        

progesterone 7 d after treatment.  Several authors (Fricke et al., 1993; Schmitt et al., 

1996; Santos et al., 2001; Stevenson et al., 2007) have reported that treatment with hCG 

increases progesterone in 2 ways.  First is the induction of accessory CL and second by 

an increase in number of progesterone-secreting luteal cells in existing CL.  We observed 

a numerically greater number of induced ovulations in hCG treated cattle.  Although 

luteal volume was not measured in this study, it is a plausible assumption that CL size 

increased after treatment with hCG as reported elsewhere (Stevenson et al., 2007).  

Reasons why serum concentrations of progesterone were not increased in hCG-treated 

cattle are unexplained. 

In summary, doses of hCG of 1,000 IU and greater produced more ovulations 

than saline, GnRH, or 500 IU of hCG (Exp. 1).  No difference was detected in pregnancy 

survival among cows treated 7 d before pregnancy diagnosis with hCG and those left as 

 44



untreated controls.  Cows treated with GnRH, however, tended to have reduced 

pregnancy survival compared with controls.  Herd had an effect on survival and a 

treatment × herd interaction occurred (Exp. 2).  Pregnancy rate for GnRH treated cows 

tended to be greater than controls.  For every 10-kg increase in test-day milk weight, a 

2.2% decrease in pregnancy rate was detected.  A treatment × herd interaction occurred 

as herds 1 and 4 and herds 2 and 3 responded similarly to treatments (Exp. 2).  Treatment 

7 d before pregnancy diagnosis with hCG or GnRH resulted in a similar number of 

induced ovulations.  Both treatments induced more accessory CL than treatment with 

saline.  Among pregnant cows treated, however, hCG tended to produce more ovulations 

than GnRH or saline.  Treatment had no effect on concentrations of progesterone (Exp. 

3). 
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Table 1. Herd characteristics  

 
 

Herd 

Pregnancy 
diagnosis 
frequency 

Range of days 
at pregnancy 

diagnosis 

Method of 
pregnancy 
diagnosis 

Daily 
milking 

frequency 
1 Biweekly 30 to 43 Ultrasonography 2× 
2 Weekly 38 to 44 Palpation 3× 
3 Weekly 37 to 43 Palpation 3× 
4 Weekly 39 to 45 Palpation 3× 
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Table 2. Ovulatory response 7 d after saline, GnRH, and hCG (Exp. 1)P

1
P
 

  Dose of hCG, IU 
Item Control GnRH 500 1,000 2,000 3,000 

Dairy femalesP

2
P, no. 18 18 18 18 17 16 

 Pretreatment 
Females having at least 1 
   follicle ≥ 8 mm, no. 

 
15 

 
18 

 
17 

 
17 

 
16 

 
15 

Follicles ≥ 8 mm per female P

3
P, no. 1.4 1.9 1.7 1.6 1.8 1.8 

 Post-treatment  
Females having a new corpus 
    luteum, % 

44.4 44.4 44.4 66.7P

a
P
 64.7P

a
P
 68.8P

a
P
 

Follicles ≥ 8 mm that ovulated, % 
 

27.6 (29)P

4
P
 31.4 (35) 

 
 

28.1 (32) 
 

40.5P

b 
P(37) 

 
 

43.8P

b 
P(32) 

 
 

48.4P

b 
P(31) 

 

P

a
PCombined doses of hCG (≥ 1,000 IU) differed (P < 0.05) from combination of saline, GnRH, and 500 IU of hCG (χ P

2
P = 4.68). 

P

b
PCombined doses of hCG (≥ 1,000 IU) differed (P < 0.05) from combination of saline, GnRH, and 500 IU of hCG (χ P

2
P = 5.18). 

P

1
PTreatment injections were administered 7 d before pregnancy diagnosis (d 30 to 43 since last AI). 

P

2
PIncluded a few nulliparous heifers. 

P

3
PStandard errors ranged from 0.21 to 0.23. 

P

4
PNo. of follicles per group. 



 
 

 

 

 

 

 

 

 

 

Table 3. Herd palpation pregnancy rates (Exp. 2) 
Herd Palpation pregnancy rate1

 ---- % (no.) ---- 
1 35.3 (434) 
2 35.3 (881) 
3 33.5 (932) 
4 39.6 a  (1,264) 

a Herd 4 differed from herds 2 (P = 0.04) and 3 (P = 
0.003). 

1Number of cows diagnosed pregnant divided by the 
number of cows presented for weekly or biweekly 
pregnancy diagnosis. 
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Table 4. Pregnancy survival 4 to 9 wk after initial pregnancy diagnosis 
by treatment in response to postpartum insemination number (Exp. 2) 

 Postpartum insemination number  
Treatment P

1
P
 1 2 ≥ 3 Total 

 ---------- % (no.) ---------- 

hCG 91.1 (158) 93.5 (78) 95.7 (184) 93.6 (420) 

GnRH 90.8 (152) 94.2 (69) 94.3 (192) 93.0P

a
P (413) 

Control 94.6 (147) 98.4 (63) 94.8 (193) 95.3 (403) 

Total 92.1 (457) 95.2 (210) 94.9 (569)  
P

a
PTended (P = 0.06) to differ from control. 

P

1
PCows were treated once 7 d before pregnancy diagnosis (d 23 to 

38) with hCG, GnRH, or served as untreated controls. 
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P

a
PTended (P = 0.08) to differ from control. 

P

1
PCows were treated once with hCG, GnRH, or served as untreated controls 7 d 

before pregnancy diagnosis. 
 

 

 

Table 5. Resynchronized pregnancy rate by treatment in response to postpartum 
insemination number (Exp. 2) 

 Postpartum insemination number  
Treatment P

1
P
 2  3  4  ≥5  Total  

 ---------- % (no.) ---------- 

hCG 14.9 (161) 19.5 (118) 8.9 (79) 19.1 (183) 16.5 (541) 

GnRH 19.2 (198) 19.6 (143) 15.7 (115) 17.0 (247) 17.9 P

a
P (703) 

Control 11.8 (144) 13.7 (102) 12.4 (89) 13.5 (170) 12.9 (505) 

Total 15.7 (503) 17.9 (363) 12.7 (283) 16.7 (600)  



Table 6. Incidence of ovulation in response to GnRH or hCG based on days since AI and 
pregnancy status at the time of treatment (Exp. 3)1

Nonpregnant2 Pregnant2Days 
since 
timed AI 

 
Control 

 
GnRH 

 
hCG 

 
Control 

 
GnRH 

 
hCG 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
Total
 
Wave 13 

Wave 24

50.0 (2) 
50.0 (4) 
25.0 (24) 
50.0 (12) 
0.0 (1) 
0.0 (2) 
66.7 (3) 

… 
100 (2) 
33.3 (3) 
13.5 (37) 
0.0 (2) 

... 
50.0 (4) 
28.1 (96) 

 
35.0 (40) 
14.3 (42) 

0.0 (1) 
100 (2) 

50.0 (24) 
53.9 (13) 
66.7 (3) 
0.0 (1) 
50.0 (2) 
66.7 (6) 
0.0 (1) 
50.0 (2) 
35.1 (37) 
60.0 (5) 
50.0 (4) 
0.0 (1) 

46.1 (102) 
 

53.9 (39) 
38.6 (44) 

66.7(3) 
60.0 (5) 
51.4 (37) 
65.0 (20) 
33.3 (3) 
25.0 (4) 
66.7 (3) 
0.0 (3) 

100.0 (1) 
80.0 (5) 
45.7 (35) 
50.0 (4) 
0.0 (2) 

100.0 (1) 
51.6 (126) 

 
56.5 (62) 
44.0 (44) 

… 
0.0 (3) 
4.8 (21) 
20.0 (5) 
0.0 (5) 
0.0 (1) 
0.0 (3) 
50.0 (2) 
0.0 (1) 
0.0 (1) 
0.0 (11) 
0.0 (2) 
0.0 (1) 
50.0 (2) 
6.9 (58) 

 
6.9 (29) 
0.0 (14) 

… 
100.0 (2) 
46.2 (13) 
16.7 (6) 
0.0 (4) 
0.0 (1) 

… 
… 
… 

0.0 (4) 
17.7 (17) 
0.0 (2) 

… 
… 

24.5 (49) 
 

42.9 (21) 
13.0 (23) 

… 
100.0 (1) 
60.9 (23) 
66.7 (6) 
80.0 (10) 
50.0 (2) 

… 
100.0 (1) 
0.0 (1) 
50.0 (2) 
55.6 (9) 
0.0 (2) 
0.0 (1) 
0.0 (1) 

59.3 (59) 
 

63.3 (30) 
46.2 (13) 

Nonpregn
ant vs. 
pregnant 

 
 42.9* 

(324) 

 
30.7 
(166) 

*Differed (P = 0.05) from pregnant cows. 
1Cows were treated once with hCG, GnRH, or served as untreated controls 7 d before 

pregnancy diagnosis. 
2Includes cows with no follicles at first ultrasound examination.
3Wave 1 = Putative first dominant follicle since first eligible estrus (d 23 to 25) in 

nonpregnant cows. 
4Wave 2 = Putative second dominant follicle since first eligible estrus (d 31 to 33) in 

nonpregnant cows. 
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Table 7. Incidence of ovulation in response to treatment based on putative wave since 
first eligible estrus at treatment (Exp. 3) 
 Treatment2  
Wave1 Control GnRH hCG Total 
 1 23.2 (69) 50.0 (60) 58.7 (92) 45.2 x (221) 
 2 10.7 (56) 29.9 (67) 49.1 (57) 30.0 y (180) 
Total 17.6a (125) 39.4b (127) 55.0c (149)  

  a,b,c Treatment means having different superscript letters differ (P < 0.05). 
  x,y Wave means having different superscript letters differ (P < 0.05). 
1Wave 1 = Putative first dominant follicle since estrus (d 23 to 25) in nonpregnant 

cows. 
  Wave 2 = Putative second dominant follicle since estrus (d 31 to 33) in 

nonpregnant cows. 
2Cows were treated once with hCG, GnRH, or served as untreated controls 7 d 

before pregnancy diagnosis. 
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 a,b,c Means having different superscript letters within item differ (P < 
0.001). 

1Adjusted for concentrations of progesterone at the time of 
treatment. 

2Cows were treated once with hCG, GnRH, or served as untreated 
controls 7 d before pregnancy diagnosis. 

Table 8. Blood serum concentrations of progesterone 7 d after 
treatment based on pregnancy status and number of CL at time of 
treatment (Exp. 3)1 
Item  Mean ± SE (no.) 
Treatment2  -----ng/mL----- 
     Control  4.8 ± 0.3 (154) 
      GnRH  5.3 ± 0.4 (151) 
     hCG  5.3 ± 0.3 (181) 
Pregnancy status   
     No  4.2 ± 0.2 a  (320)  
     Yes  6.1 ± 0.3 b  (166)  
Corpora lutea, no.   
     0  3.3 ± 0.4 a  (68)  
     1  5.4 ± 0.2 b  (234) 
     ≥2  6.6 ± 0.2 c  (184) 
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d +3d −7 d +2d 0

AI hCG, GnRH, or Control

Pregnancy Diagnosis: 
Open Cows given 

PGF2α Herd 1 
Only -
GnRH

GnRH 
+ TAI

Scan + Bleed Scan + Bleed Bleed

Herd 1 Only

 
Figure 1. Experimental design 
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Figure 2. Pregnancy survival in lactating dairy cows treated with hCG (grey bars), GnRH 

(solid bars), or untreated control (cross-hatched bars).  Cows were treated 7 d before 

initial pregnancy diagnosis (Exp. 2). Pregnancy survival was determined 4 to 9 wk after 

initial pregnancy diagnosis.  A treatment × herd interaction (P = 0.004) was detected. 
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Figure 3 . Pregnancy rate in lactating dairy cattle treated with hCG (grey bars), GnRH 

(solid bars), or untreated control (cross-hatched bars) 7 d before not-pregnant diagnosis 

(Exp. 2).  A treatment × herd interaction (P < 0.05) was detected. 
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%

89 100 120 57 48 146 148 17757

 
Figure 4.  Percentage of cows having at least 1 new corpus luteum by 7 d after 

treatment with hCG (grey bars), GnRH (solid bars), or untreated control (cross-hatched 

bars) (Exp. 3).  A tendency (P = 0.07) for a treatment × pregnancy status interaction 

was detected. 
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Figure 5.  Incidence of ovulation in cows having 0, 1, or ≥ 2 corpora lutea (CL) that 

ovulated in response to treatment with hCG (grey bars), GnRH (solid bars), or untreated 

control  (cross-hatched bars).  A tendency (P = 0.08) was detected for a treatment × 

beginning number of CL interaction (Exp. 3). 
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