

SOS – AN ANDROID APPLICATION FOR EMERGENCIES

By

AKASH SURYAWANSHI

B.E., SHRI GOVINDRAM SEKSARIA INSTITUTE OF TECH & SCIENCE, INDIA, 2010

A REPORT

Submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2014

Approved by:

Major Professor
Dr. Daniel A. Andresen

Abstract

The aim of the project is to develop an Android application that lets its users to send

notifications in case of an emergency or a panic situation. The users can send multiple text

messages and emails on the press of a single button. The phone numbers, email ids and the

contents of the text and email messages can be set from within the application. The text

messages and emails sent, along with the content, also have the last known location of the user.

This is very helpful in tracking the whereabouts of the person. The user can also call 911 directly

from within the application, if the nature of the situation demands it.

Additionally the user of the application may allow the app to track their location. If this

option is selected, the application fetches the device’s location at about every 15 minutes and

stores it in a database. This information is very useful and can be used in a variety of ways. One

such use of the location data is from within the Android app where the user can view a map that

shows their location history over a period of time for a particular day.

iii

Table of Contents

List of Figures ... v

List of Tables ..vi

Acknowledgements .. vii

Chapter 1 - Introduction ... 1

1.1 Motivation ... 1

1.2 Project Description... 1

Chapter 2 - Background ... 3

2.1 Android ... 3

2.1.1 Android Architecture ... 3

2.2 Google Maps Android API v2 .. 5

2.3 PHP ... 6

2.4 MySQL ... 6

2.5 JSON ... 7

Chapter 3 - Requirement Analysis .. 8

3.1 Requirements Gathering ... 8

3.2 Requirement Specifications .. 9

3.2.1 Software Requirements .. 9

3.2.2 Hardware Requirements ..10

Chapter 4 - Architecture & Design ..11

4.1 System Architecture ..11

4.2 Design Diagrams...13

4.2.1 Use case diagrams ..13

Chapter 5 - Android Framework Components ..15

5.1 AndroidManifest.xml ..15

5.2 Activities ..18

5.3 Intents...19

Chapter 6 - Implementation...20

6.1 Graphical User Interface..20

6.1.1 Login ...20

iv

6.1.2 Register..21

6.1.3 Registered ..22

6.1.4 Reset password ...23

6.1.5 Main screen ..24

6.1.6 Personal Setting page ..25

6.1.7 Change password..26

6.1.8 Contacts setting ..27

6.1.9 Set SMS Contacts ...28

6.1.10 Set SMS Message ...29

6.1.11 Set Email contacts ..30

6.1.12 Set Email message ..31

6.1.13 Location records ...32

6.1.14 Date Picker...33

6.1.15 Time Picker ..34

6.1.16 Map ...35

Chapter 7 - Testing ...36

7.1 Unit Testing ..36

7.1.1 Login Screen test cases ...36

7.1.2 Register screen test cases ..37

7.1.3 Main screen test cases ...37

7.1.4 Personal settings screen test cases ...38

7.1.5 Contacts setting screen test cases...39

7.1.6 Location records screen test cases ...40

7.1.7 Map test cases ..41

7.2 Integration testing ...41

7.3 Performance testing...43

Chapter 8 - Future Work ...45

Chapter 9 - Conclusion ...46

Chapter 10 - Bibliography...47

v

List of Figures

Figure 2-1 Android Architecture[2] .. 3

Figure 4-1 System Architecture diagram..11

Figure 4-2 Use case diagram - 1 ..13

Figure 4-3 Use case diagram - 2 ..14

Figure 4-4 Use case diagram – 3 ...14

Figure 5-1 Activity lifecycle[5] ...18

Figure 6-1 Login Screen ...20

Figure 6-2 Register screen ..21

Figure 6-3 Registered screen ...22

Figure 6-4 Password reset screen...23

Figure 6-5 Main screen ...24

Figure 6-6 Personal setting screen ...25

Figure 6-7 Change password screen ..26

Figure 6-8 Contacts setting screen ...27

Figure 6-9 SMS contacts screen ..28

Figure 6-10 SMS message screen ...29

Figure 6-11 Email contacts screen ...30

Figure 6-12 Email message screen ..31

Figure 6-13 Location records screen ..32

Figure 6-14 Date picker screen..33

Figure 6-15 Time picker screen ...34

vi

List of Tables

Table 6-1 Lines of Code (LOC)...20

Table 7-1 Unit test cases - 1 ..37

Table 7-2 Unit test cases - 2 ..37

Table 7-3 Unit test cases - 3 ..38

Table 7-4 Unit test cases - 4 ..39

Table 7-5 Unit test cases - 5 ..40

Table 7-6 Unit test cases - 6 ..40

Table 7-7 Unit test cases - 7 ..41

Table 7-8 Integration test cases ...43

Table 7-9 Performance testing...44

vii

Acknowledgements

This project would not have been possible without the support and guidance of my Major

Professor Dr. Daniel A. Andresen. I would like to extend my sincere gratitude to him for trusting

in my abilities and providing me with an opportunity to work with him. He has been a source of

immense knowledge, encouragement and provoked me to think innovatively.

I would also like to express my special gratitude and thanks to Dr. Torben Amtoft and Dr.

Mitchell L. Neilsen for serving on my committee and for their kind assistance and constant

guidance.

Finally, I would like to thank my family and friends for their endless support and

motivation.

1

Chapter 1 - Introduction

SOS (which stands for Save Our Souls or Save Our Ships) has primarily been used as an

International Morse code distress signal. It is commonly used in navigation by Sailors when

under attack by Pirates or when they need help of some kind. But the signal is not limited to

navigation and is used in a more general sense whenever a notification has to be sent about a

situation that requires immediate attention.

 1.1 Motivation

As much as we would like to get rid of them, panic or emergency situations are

unavoidable and usually unexpected. The nature and consequences of these situations can vary

significantly and in worst cases also be life threatening. Therefore it would be really nice to have

some mechanism by which we can notify certain people about such circumstances and increase

the chances of receiving help as soon as possible.

The need for such a mechanism increases even more as in this era of technology,

platforms exist to support them. One such platform and a very common one in that is a

Smartphone. Almost everyone today carry a Smartphone with them as they become more and

more affordable and easily available. Also within the Smartphone market Android is the clear

leader in terms of market share. According to one report, 78.1 % of the total Smartphones sold in

2013 were the Smartphones that run on Android Operating System [1]. Hence developing an

Android application becomes an obvious choice.

 1.2 Project Description

SOS is an application that is meant to run on Android devices mainly smartphones but also

tablets that support Cellular Service. The main functions and features of the application are –

i. The user of the application has to login by entering a username and password the first

time he opens the app on his device. He then remains logged into the application until he

logs out explicitly.

ii. If the user does not have an account, he can register on the login screen.

iii. The user can also choose the password reset option in case he does not remember his

password. A new password is set for the user and a mail containing this new password is

sent to the registered email id.

2

iv. Once logged in, the user is directed to the main screen of the application. This is the

screen that would open up when the user opens the application. The user can press the

panic button to send text messages and emails to the contacts set up, he can also send an

‘I am OK’ message to these contacts by clicking on the OK button. The user can also call

911 directly from within the application by pressing the 911 button. In order to avoid

unnecessary and accidental press of these buttons, the user has the option to enable and

disable these buttons.

v. The user will also see his current location on the main screen. This way he would know

his exact location and refer to it in case he makes a call to 911. This location is also sent

as a part of the text and email messages.

vi. The user can set the contacts to send the text message and emails within the app. He can

either select the contact from the contact book or can enter one manually. He can also set

the text message and the email message that would be sent.

vii. The user can enable the option to start location tracking. If this option is selected, the

application fetches the location of the device (about every 15 minutes) and stores it in an

external database.

viii. If the permission to track the location was granted, the user can at a later point see the

various locations he had been to for a time interval on a particular day. He would be

presented with a map that display these locations. The user can see the address and the

time he was at that location by clicking on the marker for a location.

3

Chapter 2 - Background

 2.1 Android

Android is one of the most widely used Mobile Operating System today. It is a software

bunch comprising not only of the Operating System but also middleware and key applications.

Some of the most important features of an Android operating system is that it enables reuse and

replacement of components, it is optimized for mobile devices and tablets, it is based on the open

source Web kit engine and supports 2-D and 3-D graphics using OpenGL-ES standard.

 2.1.1 Android Architecture

The Android operating system is implemented as a stack of different layers of software. The

following image depicts these different layers:

Figure 2-1 Android Architecture [2]

4

Linux Kernel – This is the layer at the very bottom of the Android architecture. All other layers

run on top of the Linux kernel and rely on this kernel to interact with the hardware. This layer

contains all the essential hardware drivers which help to control and communicate with the

hardware. It provides the basic functionality like Process Management, Memory Management

and Device Management like Camera, Display, Flash etc.

Libraries – This is a set of common functions of the application framework that enables the

device to handle different types of data. Some of the most important set of libraries that are

included are – Web kit which is the browser engine to display HTML, OpenGL used to render 2-

D or 3-D graphics on to the screen, SQLite which is a useful repository for storing and sharing of

application data.

Android Runtime – The Android runtime mainly consist of the Dalvik Virtual Machine (DVM).

DVM is very much like the standard Java Virtual Machine (JVM) except that it is optimized for

mobile devices that have low processing power and low memory. DVM generates a .dex file

from the .class file at compile time and provides higher efficiency in low resources devices. Each

application has its own process and an instance of DVM. Android runtime also provides core

libraries that enable the Android developers to create applications using the Java language.

Application Framework- These are some standard class files that are available to the developer

for use. An application can directly interact with them and make use of them. The application

framework provides the most basic functionality of the phone like Location Manager, Content

Providers etc.

Applications – This is the topmost layer in the architecture and the layer where the application

that we develop fits in. This layer provides several pre-installed applications that are default for

certain things like Contacts Books, Browser etc.

5

 2.2 Google Maps Android API v2

Google provides a very nice, comprehensive API for developers working with Android

and who want to use google maps in their application. Using this API one can easily add maps to

their apps and the API automatically handles access to google maps server, data downloading,

map display and response to gestures. Additionally the API can be used to add the following on

to the maps:

i. Markers that are used to show specific position on the map.

ii. Line segments (Polylines)

iii. Enclosed segments (Polygons)

iv. Various images that are shown on the map (overlays) like zoom control, compass etc.

To get started using the google maps Android API v2 one has to first obtain an API key specific

to your application by using the apps signing certificate from google’s API console. One should

also add Google play services SDK as a project on the local disk and add it as an external library

in the app.[3]

The next step is to add the google play services version to the apps Manifest file by including

<meta-data
 Android:name="com.google.Android.gms.version"
 Android:value="@integer/google_play_services_version"/>

Once an API key is obtained specific to the app add the following to Manifest file

<meta-data
 Android:name="com.google.Android.maps.v2.API_KEY"
 Android:value="Your_API_KEY"/>

One also needs to add the following permission in the Manifest file

<uses-permission Android:name="Android.permission.INTERNET" />
<uses-permission Android:name="Android.permission.ACCESS_FINE_LOCATION" />
<uses-permission Android:name="Android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission

Android:name="com.google.Android.providers.gsf.permission.READ_GSERVICES"/>

In order to add a google map you must add a fragment to your Activity using

<fragment xmlns:Android="http://schemas.Android.com/apk/res/Android"
 Android:id="@+id/map"
 Android:layout_width="match_parent"
 Android:layout_height="match_parent"
 Android:name="com.google.Android.gms.maps.MapFragment"/>

6

To get an instance of google map you should call the getMap() function on a MapFragment

object by

GoogleMap map = ((MapFragment)

getFragmentManager().findFragmentById(R.id.map)).getMap();

 You can then add markers to this map by calling the addMarker() method on the map

map.addMarker(new MarkerOptions()
 .title(address)
 .position(new LatLng(latitude, longitude))
 .snippet(time));

 2.3 PHP

PHP is one of the most popular server side scripting language. Php scripts can be embedded

into the HTML pages. The start and the end tags for a PHP script are <? Php and ?> respectively.

PHP pages can contain text, HTML, CSS, JavaScript and more. They have the .php extension

and are executed on the server.

PHP can be help you get the following things done –

i. Create dynamic web pages by generating data based on user requests.

ii. Collect and process data from forms submitted by the user.

iii. Work with files on the server

iv. Manipulate some database

v. Send and receive cookies etc.

Apart from the above reasons PHP can run on various platforms and is compatible with almost

all server in use. It is free and has a big support community.

 2.4 MySQL

It is one of the most widely used Relational database management system (RDBMS). It is

open source and available for free. It scales very well for large quantities of data, is fast, reliable

and easy to use. Like most other RDBMS it uses structured query language (SQL) for accessing

and manipulating data.

7

 2.5 JSON

JSON stands for JavaScript Object Notation. It is a light weight format for storing and

exchanging objects that contain name/value pairs, array and other objects. It is language

independent i.e. although it uses JavaScript syntax, it is still language and platform independent

and many different languages support JSON parsers and libraries. The two main advantages of

JSON over other ways of exchanging data like XML are –

i. JSON is usually smaller than the corresponding XML.

ii. JSON is easier to parse and faster.

For example –

{

 “products”:[

{“id”: 1,

“name”:”car”},

{ “id”:2,

“name”:”truck”}

]

}

The above JSON has two products (JSONArray) where each product is an Object (JSONObject)

with keys id and name and their corresponding values.

8

Chapter 3 - Requirement Analysis

 3.1 Requirements Gathering

Requirements gathering is one of the most important phase of a software development

life cycle. It is the phase that tells us what is the system supposed to do and drives the other

phases in the life cycle.

Requirement gathering for the SOS app started with brain storming and discussion with other

students as to what features are the most essential in a panic situation. This led to the most basic

and initial draft of requirements for the application. Requirements were also collected by looking

at other devices like personal locator beacons and satellite messengers that are commercially

available. A brief study of the functionality of the devices helped me to refine and narrow down

the requirements even further. One important thing to learn for these devices was the simplicity

of their design. This helped me to design an effective and simple UI design for my application.

The next step for requirements understanding was to look for existing solutions and similar

applications in the Android market. A careful study of these applications, adding other important

features and removing unnecessary features was done.

I met with my major professor Dr. Daniel A. Andresen regularly and he helped me to refine the

requirements and user interface even further to set a clear set of functional requirements for the

application.

The major functional requirements for the SOS app are –

i. The user of the application should be asked to log in only the first time he uses the

application on his device. The user must see the main page of the app (with the buttons

to send notifications) for every other time he opens the app.

ii. The user shall be able to send notifications with the tap of a single button. Separate

buttons should be available for sending panic messages, I am OK signal and making a

call to 911.

iii. An option must be provided to enable/disable these buttons to avoid pressing them by

accident.

iv. The user shall be able to see their current location.

9

v. The user shall be able to set the contacts to send text message and email from within the

application. The user must also be able to set the contents of the messages. Also the user

may select these contacts from the contact book or enter them manually.

vi. The user shall be able to start/stop location tracking. They must also be able to see their

location history from within the application.

Other non-functional requirements for the application are –

i. Providing a simple and elegant UI for the main screen. This is necessary as the user

would usually come on to this screen in case of a panic or emergency and hence each

button should be clearly visible and easily pressed.

ii. In case the option to track location is selected and there is no internet connectivity on the

device (both wireless and Cellular data), the application should be able to store the

locations offline and send them to be stored in the database once the internet

connectivity is up again.

iii. Providing a tab based view to display the different setting for the application and location

history for the user.

iv. Enabling swipe gestures for the tabbed view.

v. Displaying user friendly dialogs for picking the date, time, entering the contacts to send

text and email messages to and to enter the contents of the text and email messages.

 3.2 Requirement Specifications

 3.2.1 Software Requirements

These requirements are separated based on whether you are developing the app or running the

app on a device.

For development:

Operating System: Windows XP or higher/Mac OS X 15.8 or later/Linux

Platform: Android SDK Framework 10 or higher

Tools: Eclipse SDK 3.5, ADT plug-in for eclipse

Technologies used: Java, SQLite, Android, Google maps v2 API

Debugger: Android Dalvik Debug Monitor Service (DDMS)

Android Emulator: API level 14 or higher

10

For running on a device:

Operating System: Android 3.0 or higher

Cellular capabilities for SMS messages

 3.2.2 Hardware Requirements

For development:

Processor: Intel Pentium IV or higher

RAM:256MB

Space on disk: 250 MB (at the least)

For running on a device:

Device: Phone or tablet running Android 3.0 or higher

Disk space: 6 MB (at the least)

11

Chapter 4 - Architecture & Design

 4.1 System Architecture

Figure 4-1 System Architecture diagram

The different components in the architecture are –

i. User – This is the person who installs the application on his Android device. The user

provides various inputs like username, password, and contact numbers etc. and triggers

various events on the application.

ii. Front End – This is the part of the application that is visible to the user. A screen

presented to the user is usually an Activity, Fragment or a Dialog Box. They contain

various elements like text box or buttons to take inputs from and provide outputs to the

user.

iii. Logic – These are the java files that contain the logic of the application. They contain

various methods and classes that meet the functional requirements of the application.

These files also contain code to communicate with other components in the application.

12

For example, a file called Map.java will make use of Google maps Android API v2 to

connect the Android app with Google Maps Engine to render map and markers of them.

iv. Services – This is the component of the application that is typically used to perform long

background tasks that do not have a user interface. For example – a service is used to

track the location of the device at every fixed interval of time.

v. Receivers – This is the component of the application that typically listens for some events

or responses from other services. For example – A receiver is used to fetch the location

co-ordinates from the location service and then add this location to the database for

future references.

vi. SQLite – Android platform provides libraries for SQLite database. A SQLite database is

a relational database that is local to an Android device. It requires no configuration and

is available to use for an app developer. For example – SQLite is used in the app to store

various information about a user, his last known location or in case there is no internet

connectivity SQLite database stores the location until the internet connection is back up

and the records are sent to the database.

vii. Location Manager – It is used to fetch the location of the Android device. The app uses

both the GPS provider and the network provider to find the location for the device. GPS

provides more accurate data about the location but usually takes sufficient time to start

up after the connection is relinquished. Network provider on the other hand are quicker

but the accuracy is lesser than GPS.

viii. Contacts Manager – A system service that provides the contact to use so that the user can

select a contact that is already present in the contact book. When the user clicks on the

number text box to enter a number it opens up the contact book application. If the user

selects a contact and if that contact has a number associated, it is send to the SOS

application and displayed in these text boxes.

ix. Connectivity status manager- This system service tells the SOS application about changes

in the connectivity status for the device. The application uses it to make sure that if there

is no active internet connection on the device at the time of sending the fetched location

to the database, it needs to store the location in the SQLite database. The application

should also listen to the connectivity manager to make sure that once the internet is up

13

again all the locations that are stored in the SQLite database are sent over to the database

on the server and then the SQLite database is cleared.

x. Google Maps Engine – SOS app uses google maps Android API v2 to work with maps.

When this API is used, calls are made to the google maps engine to fetch the map or

place various markers on it.

xi. PHP Scripts – The SOS app sends JSON objects to various PHP scripts using HTTP

POST methods. These scripts interact with the database on the server to give a response

to the app. For example- When the user logs into the application a JSON object is

created that contains the values that the user entered into the app. This JSON is sent to a

PHP script login.php on the server that queries the DB to validate the user. If the user

credentials are valid a success response is sent back to the SOS app.

xii. Database- This is the MySQL database on the server. It is used to permanently store the

data for the SOS app. It stores information of various user, location history etc.

 4.2 Design Diagrams

 4.2.1 Use case diagrams

A use case diagram is used to specify the functionality of the system from the point of view of a

user. Each use case describes a logical task that may be performed by a user. It mainly shows the

interaction between the system and the outside world.

1. Use case for location tracking and fetching location history

Figure 4-2 Use case diagram - 1

14

2. Use case for sending notifications

Figure 4-3 Use case diagram - 2

3. Use case for setting contacts

Figure 4-4 Use case diagram – 3

15

Chapter 5 - Android Framework Components

Android applications are written in Java. There are different integrated environments

(IDEs) that can be used to develop Android apps. SOS app is developed in eclipse using Android

software development kit (SDK). SDK tools create an Android package (.apk) that contain all the

necessary resources to install and run the app. Each app runs as a separate process in the

underlying Linux kernel and behaves like a separate user. Files within an app can be run only by

the specific user id assigned to the app. Each app also has its own instance of the Dalvik Virual

Machine (DVM). In order for the apps to share data with other apps like system services we have

to assign permissions to the app during install time. This is done by adding the required

permissions in the Manifest file.

 5.1 AndroidManifest.xml

The AndroidManifest.xml (Manifest) file provides important information to the Android

system to run the app. All the components have to be declared in the Manifest file for the

Android system to be able to instantiate them. The Manifest file also contains the various

permissions needed by the application, API libraries that the app is linked with like Google maps

Android API v2, other hardware and software features that the app uses and also the minimum

API Level supported by the app. The Manifest file for the SOS app is as below:

<?xml version="1.0" encoding="utf-8"?>
<Manifest xmlns:Android="http://schemas.Android.com/apk/res/Android"
 package="com.sos"
 Android:versionCode="1"
 Android:versionName="1.0">

 <uses-sdk Android:minSdkVersion="14"
 Android:targetSdkVersion="17"/>

 <application Android:label="@string/app_name"
 Android:allowBackup="true"
 Android:icon="@drawable/ic_launcher"
 Android:theme="@Android:style/Theme.Holo.Light.DarkActionBar">

 <Activity Android:name="Login"
 Android:label="@string/app_name">
 <Intent-filter>
 <action Android:name="Android.Intent.action.MAIN"/>
 <category Android:name="Android.Intent.category.LAUNCHER"/>
 </Intent-filter>
 </Activity>

16

 <Activity Android:name="Register"
 Android:label="@string/title_Activity_register"
 Android:parentActivityName="com.sos.Login">
 </Activity>

 <Activity Android:name="Registered"
 Android:label="@string/title_Activity_registered"
 Android:parentActivityName="com.sos.Login">
 </Activity>

 <Activity Android:name="Main"
 Android:label="@string/title_Activity_main">
 </Activity>

 <Activity Android:name="Settings"
 Android:label="@string/title_Activity_settings"
 Android:windowSoftInputMode="adjustPan|stateHidden"
 Android:parentActivityName="com.sos.Main">
 </Activity>

 <Activity Android:name="PasswordReset"
 Android:label="@string/title_Activity_passwordreset"
 Android:parentActivityName="com.sos.Login">
 </Activity>

 <Activity Android:name="ChangePassword"
 Android:label="@string/title_Activity_passwordchange"
 Android:parentActivityName="com.sos.Settings">
 </Activity>

 <Activity Android:name="Map"
 Android:label="@string/title_Activity_map"
 Android:parentActivityName="com.sos.Settings">
 </Activity>

 <!-- Register the different receivers -->

 <receiver
 Android:name="com.sos.library.ConnectionStatusChange"
 Android:label="ConnectionStatusChange" >
 <Intent-filter>
 <action Android:name="Android.net.conn.CONNECTIVITY_CHANGE" />
 <action Android:name="Android.net.wifi.WIFI_STATE_CHANGED"/>
 </Intent-filter>
 </receiver>
 <receiver Android:name="com.sos.library.LocationReceiver" />
 <receiver Android:name="com.sos.library.LocationReceiverForDB" />
 <receiver Android:name="com.sos.library.LocationPollerDB" />
 <receiver Android:name="com.sos.library.LocationPoller" />

 <!-- List the service in the app here -->
 <service Android:name="com.sos.library.LocationPollerService" />
 <service Android:name="com.sos.library.LocationPollerServiceDB" />

17

 <meta-data
 Android:name="com.google.Android.gms.version"
 Android:value="@integer/google_play_services_version"/>

 <meta-data
 Android:name="com.google.Android.maps.v2.API_KEY"
 Android:value="AIzaSyDL8_XwvIfSu6KrcgkKaBf2Kg1omGIpwm8"/>

 </application>

 <!-- Give the required permissions to the app here-->

 <uses-permission Android:name="Android.permission.INTERNET" />
 <uses-permission Android:name="Android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission Android:name="Android.permission.READ_CONTACTS"/>
 <uses-permission Android:name="Android.permission.SEND_SMS"/>
 <uses-permission Android:name="Android.permission.CALL_PHONE"/>
 <uses-permission Android:name="Android.permission.READ_PHONE_STATE"/>
 <uses-permission Android:name="Android.permission.ACCESS_FINE_LOCATION"/>
 <uses-permission Android:name="Android.permission.WAKE_LOCK" />
 <uses-permission Android:name="Android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission Android:name="Android.permission.WRITE_EXTERNAL_STORAGE" />
 <uses-permission
Android:name="com.google.Android.providers.gsf.permission.READ_GSERVICES"/>
 <uses-feature
 Android:glEsVersion="0x00020000"
 Android:required="true"/>

</Manifest>

The minimum SDK version required for the app is 14 which corresponds with Android

4.0 (Ice cream sandwich). The reason for this is that the user interface of the application uses

fragmentation and google maps which are better supported in Ice cream sandwich and above.

The Manifest file also declares the various activities like Login, Register, Registered, Main,

Settings, Reset password, Change password and Map that are used in the SOS app. Other

components declared in the Manifest file are the services and the receivers used in the SOS app.

The Manifest file also declares the Intent filters for some receivers and activities. Like the

“Android.Intent.action.MAIN” and “Android.Intent.category.LAUNCHER” filters specify an

Activity to be the main Activity that starts up when the app icon is clicked. Various permissions

like Internet, read contacts, send SMS, call phone, Wake lock, Write external storage are

provided in this Manifest file.

18

 5.2 Activities

An Activity is the component of an Android app that is presented to the user and

responsible for interacting with them [4]. The Activity may cover the entire screen of the device

or may only cover a part of the screen displaying on top of another Activity. An Android app is

a collection of loosely coupled activities along with other resources where one Activity can call

another Activity at any point usually using Intents. When an Activity starts another Activity the

previous Activity is pushed on to a back stack. The back stack is a Last in – First out (LIFO)

structure maintained by the Android system for every app. When the user starts a new Activity it

is pushed on the top of the stack and displayed to the user, when the user is done with the

Activity and presses the back button, this Activity is popped from the stack and the user sees the

previous Activity. An Activity implements a number of callback methods that are invoked by

different events during the lifecycle of an Activity. The following diagram shows the various

callback methods for an Activity:

Figure 5-1 Activity lifecycle[5]

19

 5.3 Intents

Intents are objects that are used to exchange messages between different app

components[6]. They are typically used for the following purposes:

i. To start an Activity by calling the startActivity() method, if the calling Activity expects a

result from the Activity being called the Activity should be started with

startActivityForResult() method.

ii. To start a service by calling the startService() method. Services are typically used to

perform long background tasks that do not require a front end.

iii. To deliver a broadcast message to various components within the same or different app

that have the corresponding Intent filter declared.

An Intent can be of two types:

i. Explicit – These are Intents that specify the name of the app component to call. Such

Intents are typically used to call components within your app. The Android system finds

the component with the specified name and immediately starts it passing it any

additional information that may have been provided in the Intent.

For example –

Intent i = new Intent(context, Map.class);
i.putExtra("key", json_string);
startActivity(i);

The above Intent is for the Map Activity in the app. It also contains extra data with key

“key” and value “json_string”. When the startActivity() method is called , the Map

Activity is started along with the extra information.

ii. Implicit – These Intents do not specify the name of a component but rather contain an

action that they would like to be performed. The Android system then finds a component

that can perform the specified action from other apps by matching the action against the

Intent Filter for the components.

20

Chapter 6 - Implementation

The SOS app is a collection of Activities and Fragments that are presented to the user.

These Activities and Fragment have associate XML files (Layouts) declared in the layout folder

which determine the graphical interface for these components. The SOS app also contains other

Service and Broadcast Receivers along with the declarations and necessary permissions in the

Manifest file in the root directory of the project. The total lines for the app are 5846 which

includes Java and XML files. Additionally there are 262 lines of PHP code to enable the app to

interact with the server. The breakdown for the lines of code is as follows

Language LOC

Java 5002

PHP 262

XML 844

Table 6-1 Lines of Code (LOC)

 6.1 Graphical User Interface

 6.1.1 Login

Figure 6-1 Login Screen

21

The user should log in to SOS app using the above interface. If the user is registered, he

should enter the email id and password to log in. The user can also click on the Register button to

register for the SOS app. The user may also click on Forgot password if he does not remember

his password and wants to reset it.

 6.1.2 Register

Figure 6-2 Register screen

If the user is not already registered, he can register for an account on the SOS app using

the above interface. The user should provide a first name, last name, Email id, and a desired

username and should create a password. If the email id is already registered with the SOS app a

notification is shown to the user and he is not registered

22

 6.1.3 Registered

Figure 6-3 Registered screen

Once the user has successfully registered he sees the above screen as a confirmation. The

screen shows the various details the user registered with.

23

 6.1.4 Reset password

Figure 6-4 Password reset screen

In case the user has forgotten his password, he can reset it by clicking on the forgot

password button on the Login screen. He is then send to reset password page as above. The user

can provide his email id and click on the reset button. A recovery email containing a temporary

password is sent to the user on his email id.

24

 6.1.5 Main screen

Figure 6-5 Main screen

This is the main screen of the application. Once the user has logged in successfully, every

time he opens the SOS app, this is the first screen presented to him. The screen contains a slider

switch to enable/disable the buttons. The user can send panic text message and email by clicking

on the panic button. He can also send “I am OK” notifications using the OK button. Also the user

may click on the 911 button to call 911 directly from within the app. The user also sees his

current location at the bottom of this screen.

25

 6.1.6 Personal Setting page

Figure 6-6 Personal setting screen

The user can click on the settings icon on the action bar to open the tabbed interface for

settings. On the personal setting he can enter his phone number, start location tracking by

clicking on the check box for location logging. The user can also change his password and logout

by clicking on the respective buttons.

26

 6.1.7 Change password

Figure 6-7 Change password screen

The user can change his password from the above screen. An email notification is sent on

the registered email id regarding the change of password.

27

 6.1.8 Contacts setting

Figure 6-8 Contacts setting screen

The user can set various contacts to send the text message and the emails to from the

above screen. He can also set the message that must be sent in these text and email messages

separately.

28

 6.1.9 Set SMS Contacts

Figure 6-9 SMS contacts screen

The user can set two contacts to will receive the SMS using the above dialog box. The

user can either enter a name and a corresponding number or he can click on the number text box

to open the contacts app. On the contacts app he can click on a particular contact to add that

contact as the name and his primary phone number as the number to send the SMS to.

29

 6.1.10 Set SMS Message

Figure 6-10 SMS message screen

The user is presented with the above dialog box to enter the message that he would like to

send as a part of the SMS messages sent in case the panic button is pressed.

30

 6.1.11 Set Email contacts

Figure 6-11 Email contacts screen

The user can set three contacts that receive the emails when he presses the panic button.

He can either enter the name and the email id of the contacts or he can click on the email text

box to show the contacts list. When the user clicks on a particular contact in the list there name

and the primary email id is set in the dialog box.

31

 6.1.12 Set Email message

Figure 6-12 Email message screen

The user is presented with the above dialog box to enter the message that he would like to

send as a part of the emails sent in case the panic button is pressed.

32

 6.1.13 Location records

Figure 6-13 Location records screen

The user can see his location history by setting various fields in the above screen. He

must provide a date, a start time and an end time to view his location history. The To time has to

be greater than the From time.

33

 6.1.14 Date Picker

Figure 6-14 Date picker screen

The user is presented with the above date picker fragment to select a date for which he

wishes to analyze the location history data.

34

 6.1.15 Time Picker

Figure 6-15 Time picker screen

The user is presented with the above time picker fragment to select a time from which he

wishes to analyze the location history data.

35

 6.1.16 Map

The user’s location history will be displayed on a map as above. His current location will

also be displayed by a blue dot on the map. The user can click on any of the markers to display

the address and the time at which he was at that particular location

36

Chapter 7 - Testing

Software testing in an essential phase in the development life cycle of an application.

Testing ensures that the developed system meets its functional and non-functional requirements.

Two important terms in software testing are Verification and Validation. Verification is the

process of evaluating work-products like requirement specs, design specs and test cases etc. of

different development phases to make sure that they meet the requirements for that phase. It

ensures that the system is built in the right way. Whereas Validation is the process of evaluating

the software at the end of the development phase to make sure that it meets the business

requirements. It is used to make sure that the product fulfills its intended use and that the end

product is built right. In this chapter we mainly validate the SOS app to make sure it meets the

requirements set initially.

One of the most important tools to test and debug an Android app is the Dalvik debug

monitor server (DDMS) that is part of the Android framework. DDMS helps you to debug your

code as it prints errors, warning and other information from your code. It also provide stack

traces for exceptions on the Logcat output.

Various other testing strategies have been adopted to make sure the correctness of the

SOS app. They are discussed in this chapter.

 7.1 Unit Testing

Unit testing is a strategy in software testing where individual components in a software

are tested for correctness. In the SOS apps, these components are the Activities that are presented

to the user as screens on the Android device, Fragments, Services and Receivers. Below is a list

of test cases run on the SOS app, the test cases are categorized based on the target Activity:

 7.1.1 Login Screen test cases

S.No Test Case Pre-Condition Post-Condition Result

1. On clicking the Login

button

Email and password fields

are empty

Show a notification to

enter email and

password

Pass

2. On clicking the Login Email and password fields Show a notification Pass

37

button contain data. Either the

email or password is

incorrect

about incorrect data

and the user shall not

get logged in

Table 7-1 Unit test cases - 1

 7.1.2 Register screen test cases

S.No Test case Pre-condition Post-condition Result

1. On clicking the register

button

One or more fields in the

form is empty

A notification to enter

all fields should be

shown

Pass

2. On clicking the register

button

All the fields are entered

but the email is already

registered with the SOS

app

A notification that says

email id is already

registered should be

shown

Pass

3. On clicking the register

button

All the fields are entered

but the username is

already registered with the

SOS app

A notification that says

username is already

registered should be

shown

Pass

Table 7-2 Unit test cases - 2

 7.1.3 Main screen test cases

S.No Test case Pre-condition Post-condition Result

1. On clicking either the

panic, OK or the 911

button

Switch button is disabled No notifications should

be send

Pass

2. On clicking the panic

button

Switch button is enabled,

SMS contacts or email

contacts are not set

No messages must be

send. A notification to

the user should be

shown to add contacts

Pass

3. On clicking the panic SMS contacts and email Message should be Pass

38

button contacts are set from the

contacts setting screen,

Switch is enabled

sent. A notification

after sending the

message should be

shown

4. On clicking the OK

button

SMS contacts and email

contacts are set from the

contacts setting screen,

Switch is enabled

No messages must be

send. A notification to

the user should be

shown to add contacts

Pass

5. On clicking the OK

button

SMS contacts and email

contacts are set from the

contacts setting screen,

Switch is enabled

Message should be

sent. A notification

after sending the

message should be

shown

Pass

6. On clicking the 911

button

Switch is enabled A call should be

initiated to 911

Pass

7. On ending the call

with 911

User must have clicked

911 button from the main

page of SOS page

User should be sent

back to the main page

of SOS app

Pass

8. Current location

update

User must be on the main

page

Address of the current

location is shown at the

bottom of the page

Pass

Table 7-3 Unit test cases - 3

 7.1.4 Personal settings screen test cases

S.No Test case Pre-condition Post-condition Result

1. Welcome message User must be logged in A welcome message

with users first name

and last name must be

shown

Pass

2. Phone number empty None Phone number must be

displayed as empty

Pass

39

3. Phone number

displayed

User must have entered a

phone number previously

The same phone number

should be displayed in

the corresponding text

box

Pass

4. Location tracking

unchecked

None Location tracking

checkbox should not be

checked

Pass

5. Location tracking

checked

User must have started the

location tracking

previously

Location tracking

checkbox is checked

Pass

Table 7-4 Unit test cases - 4

 7.1.5 Contacts setting screen test cases

S.No Test case Pre-condition Post-condition Result

1. On clicking Set SMS

contacts

None A dialog box to enter

the name and number of

two contacts should be

shown. Previously

entered contacts must be

retained

Pass

2. On clicking Set SMS

message

None A dialog box to enter

the message should be

shown. Previously

entered message should

be retained

Pass

3. On clicking Set Email

contacts

None A dialog box to enter

the name and email of

three contacts should be

shown. Previously

Pass

40

entered contacts must be

retained

4. On clicking Set Email

message

None A dialog box to enter

the message should be

shown. Previously

entered message should

be retained

Pass

Table 7-5 Unit test cases - 5

 7.1.6 Location records screen test cases

S.No Test case Pre-condition Post-condition Result

1. On clicking the Pick a

date text box

None A date picker dialog

must appear with

current date selected by

default

Pass

2. On clicking the From

text box

None A time picker dialog

must appear with

current time selected by

default

Pass

3. On clicking the To

text box

None A time picker dialog

must appear with

current time selected by

default

Pass

4. On clicking the select

button when

Some field is not entered A notification to enter

all fields must be shown

Pass

5. On clicking the select

buttons

All fields are entered, To

time is earlier than From

time

A notification to enter a

To time that is greater

than the From time

should be shown.

Pass

Table 7-6 Unit test cases - 6

41

 7.1.7 Map test cases

S.No Test case Pre-condition Post-condition Result

1. Map center User must have clicked on

select button with valid

entries on the location

history screen

If there are location

records for that time,

the map should be

centered at the first

location

Pass

2. On clicking current

location control

None User must be able to

see his current location

on the map represented

by a blue dot

Pass

3. On clicking a marker

for a location

None User must be able to

see the address and the

time he was at that

location, for that

particular location

Pass

Table 7-7 Unit test cases - 7

 7.2 Integration testing

Integration testing is a strategy in software testing where different modules are combined

and test to make sure they work together correctly. It is done when the components are unit test

and the main objective is to test the interfaces between different components. Following are the

integration test cases for the SOS app:

S.No Test case Pre-condition Post-condition Result

1. On clicking the Login

button on login screen

Email and password

fields contain data and

both the fields are valid

User must get logged in

and redirected to the

main screen of the app

Pass

2. On clicking the Register

button on login screen

None User must be redirected

to the Register page

Pass

3. On clicking the Reset None User must be redirected Pass

42

password button on login

screen

to the Reset password

page

4. On clicking the register

button on the register

screen

All fields are entered,

email and username are

not already registered

with the SOS app

User should be

registered and directed

to the Registered page

Pass

5. On clicking the back to

login screen on the

registered screen

User has registered. User must be redirected

to the Login screen

Pass

6. On clicking the setting

icon on the action bar on

the main screen

None User must be sent to

the setting page with

personal settings

displayed

Pass

6. Location updates User must have checked

the location tracking

checkbox

Location tracking

service must start and

remain started as long

as the check box is

checked. A notification

should be shown to the

user about the start of

location tracking

Pass

7. On clicking the change

password button on

personal setting screen

None User must be sent to

the change password

screen

Pass

8. On clicking the logout

Button on personal

setting screen

None User must be logged

out and sent to the

login screen

Pass

5. On clicking the number

text box on contacts

setting screen

User must have clicked

on Set SMS contact

Contact book app

should be opened. User

must be able to click on

a contact and add his

Pass

43

name and primary

phone number in the

app. If the contact does

not have a number only

the name must be

entered and number

must display empty

6. On clicking the email

text box on contacts

setting screen

User must have clicked

on Set Email contact

Contact book app

should be opened. User

must be able to click on

a contact and add his

name and primary

email id in the app. If

the contact does not

have an email id only

the name must be

entered and email must

display empty

Pass

6. On clicking the select

button on location history

screen

All fields on the location

history page contain

valid data

User must be directed

to a screen that

contains a map

Pass

Table 7-8 Integration test cases

 7.3 Performance testing

Performance testing is a type of non-functional testing performed to determine how fast

the system can perform under certain workload. In the SOS app performance testing is done to

make sure that there are no significant lags in the user interface while using the application due

to background tasks etc. Android SDK provide a graphical tool called Traceview [7] to profile

the performance of the application.

44

The performance was tested on an android device “Moto G” running Android Kitkat

(4.4.2). The response times (worst case times in 10 runs) for different screens in the SOS app are

as below:

Screen Response time (ms)

Main screen (when logging in first time) 2904

Personal Setting screen 1046

Contacts Setting screen 736

Set SMS Contact dialog 437

Set SMS Message 410

Set Email Contact dialog 471

Set Email Message 419

Location history screen 549

Date picker dialog 438

Time picker dialog 453

Map (when 25 locations to be displayed) 3108

Table 7-9 Performance testing

 In addition to the above screens the time taken to submit the text messages (to the service

provider) and emails (to the PHP script for delivery) was measured to be 1594ms. The actual

time of delivery to the physical device of the recipient is a factor not in control of the SOS app

rather it is determined by the Carrier Service or the Internet Service Provider.

45

Chapter 8 - Future Work

The current work on the SOS app has a lot of essential features that would be used in case

of an emergency situation like sending text messages , emails and making calls to 911 from

within the app on tap of a single button. An app for such a purpose has a lot of scope for

enhancement. In the future the app may include features like –

i. A home screen widget that can be used as a triggering point to send panic notifications. A

user would then not have to open the app to send these panic notifications.

ii. Initiating a call to a number set from within the application when the user presses the

panic button.

iii. The app can also listen to incoming messages from the set contacts. If these message

have a pre-defined text like “UPDATE LOCATION” the app can reply with a text

message containing the current location or for some other text like “AUDIO” in which

case the app can record a short audio and send it as an email to the person. This is very

helpful as you may have already pressed the panic button and may be in some trouble

where you cannot reply. This way the person can track you constantly and also

understand something about the nature of the emergency from the audio clip.

iv. Setting up a password to stop the application.

46

Chapter 9 - Conclusion

SOS is an essential app to have on a Smartphone. It is a personal security app that lets

you send notifications to certain people via text messages and emails in case of emergencies. It

also gives you the ability to call 911 on the tap of a single button. The app also keeps a track of

your current location so that you always known the address of where you are. This can be very

helpful if you would need to make a call to 911. The text messages and email sent also have this

location information.

The app can also track your location periodically and store it permanently enabling you to

see your location history. You can for any particular day see the various locations that you had

been to using the app.

SOS app was my first attempt at an Android application. It gave me very good exposure

to the Android platform and mobile development in general. The app enabled me in

understanding the basic of Android development and learning about SQLite databases, Google

Maps API for Android and performance testing the app.

47

Chapter 10 - Bibliography

1. IDC. [Online] May 25, 2014. http://www.idc.com/getdoc.jsp?containerId=prUS24676414.

2. Vogel, Lars. Android System Architecture. [Online] May 27, 2014.
http://www.vogella.com/tutorials/Android/article.html.

3. Developers, Google. Google Maps Android API V2. [Online] April 15, 2014.
https://developers.google.com/maps/documentation/Android/.

4. Developers, Android. Activity. [Online] March 18, 2014.
http://developer.Android.com/training/basics/Activity-lifecycle/starting.html.

5. Sutcliffe, Geoff. Activity Life Cycle. [Online] May 29, 2014.
http://www.cs.miami.edu/~geoff/Courses/CSC300-13S/Content/ActivityLifeCycle.html.

6. Developers, Android. Intents. [Online] March 20, 2014.
http://developer.Android.com/guide/components/Intents-filters.html.

7. Developers,Android. Traceview tool. [Online] May 29, 2014.
http://developer.Android.com/tools/debugging/debugging-tracing.html.

8. Developers,Android Services. [Online] April 7, 2014.
http://developer.Android.com/guide/components/services.html.

9. Developers,Android Broadcast Receivers. [Online] April 12, 2014.
http://developer.Android.com/reference/Android/content/BroadcastReceiver.html.

10. Developers,Android Android basics. [Online] March 10, 2014.
http://developer.Android.com/training/index.html.

