
STUDY AND COMPARISON OF NEXT GENERATION SEQUENCE

ALGORITHMS AND TOOLS

by

HEATH LANDON YATES

B.S., University of Missouri - Kansas City, 2004

M.S., Kansas State University, 2011

A REPORT

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2014

Approved by:

Major Professor
Dr. Doina Caragea

Copyright

Heath Landon Yates

2014

Abstract

This study is a comparison and exploration of next generation sequencing algorithms and

tools. A simulation study was done to compare the performance of edgeR, DESeq, and

baySeq in detecting differential gene expression. The methods were compared in context of

a balanced pairwise design. The simulation results suggest that the methods are compa-

rable under the conditions simulated. The study also explored real data comprised of one

biological replicate between two treatments. Cufflinks and CummerRBund were used to

detect differential gene expression. The visualization results from the real data suggest no

differential expression is present.

Table of Contents

Table of Contents iv

List of Figures viii

Acknowledgements ix

Dedication x

1 Introduction 1

1.1 Introduction . 1

1.2 Next Generation Sequencing . 2

1.2.1 Motivation of the Term Next Generation Sequencing 2

1.2.2 NGS Sequencing . 3

1.2.3 Relevance of NGS . 4

1.3 Types of Experimental Designs . 4

1.3.1 Balanced Pairwise Design . 5

1.3.2 Multifactor Pairwise Design . 6

1.4 Report Outline . 7

2 Differential Analysis 8

2.1 Brief Introduction to Molecular Biology . 8

2.2 Biological Explanation of Differential Expression 11

2.2.1 Basic Biological Background . 11

2.2.2 Alternative Splicing . 13

iv

2.3 Next Generation Sequencing . 15

2.3.1 Microarray Technology . 15

2.3.2 Next Generation Sequencing . 16

2.3.3 RNA-seq Data . 17

2.3.4 RNA-seq Tools . 19

2.3.5 Compcoder . 20

2.3.6 Galaxy . 20

2.3.7 Cummerbund . 20

3 Bayseq 22

3.1 Bayseq Method . 22

3.1.1 A Brief Overview . 22

3.1.2 Descriptions of Bayseq Method . 23

3.2 Bayseq Usage in R . 24

4 EdgeR 26

4.1 EdgeR Method . 26

4.1.1 A Brief Overview . 26

4.1.2 Description of EdgeR Method . 26

4.2 EdgeR Usage In R . 27

5 DESeq 28

5.1 DESeq Method . 28

5.1.1 A Brief Overview . 28

5.1.2 Description of DESeq Method . 28

5.2 DESeq Usage In R . 29

v

6 Data Simulation 31

6.1 Methods for Data Generation . 31

6.1.1 Design of Data Simulation . 31

6.1.2 Counts as Negative Binomial Model 32

6.1.3 Estimation of µ̂gc(i) and φ̂gi . 33

6.2 Results . 33

7 Analysis of Red Flour Beetle Data 36

7.1 Red Beetle Data . 36

7.2 Galaxy Pipeline Flow Analysis . 36

7.2.1 Quality Control . 37

7.2.2 Aligning Reads Using Tophat and Cufflinks 39

7.3 CummeRbund Analysis for Differential Expression 39

8 Relevant Work 43

8.1 Review of Data Simulations and Comparisons of Methods 43

8.1.1 Soneson Study . 43

8.1.2 Robles Study . 43

8.1.3 Kvam Study . 44

8.2 Review of Relevant Work . 44

8.2.1 BaySeq . 44

8.2.2 EdgeR . 44

8.2.3 DESeq . 45

9 Future Work and Conclusion 46

9.1 Future Work . 46

9.2 Conclusion . 47

vi

Bibliography 48

Appendices 51

A Negative Binomial Distribution 51

B NGS Tools Usage in R 52

C Data Simulation Using CompcodeR 55

D CummeRbund Code 59

vii

List of Figures

1.1 Balanced Pairwise Design . 5

1.2 Multifactor Design . 6

2.1 DNA Structure . 10

2.2 Central Dogma of Biology . 11

2.3 RNA Splicing . 13

2.4 Alternative Splicing . 14

2.5 Splicing Modes . 15

6.1 Balanced Pairwise Design for Simulated Data 32

6.2 ROC Curve for Simulated Data . 34

6.3 AUC Boxplot for Simulated Data . 35

6.4 FDR for Simulated Data . 35

7.1 Red Beetle Flour Data . 36

7.2 Boxplot for Raw Starved Male Reads . 37

7.3 Boxplot for Raw Fed Male Reads . 38

7.4 Boxplot for Cleaned Starved Male Reads . 38

7.5 Boxplot for Cleaned Fed Starved Male Reads 39

7.6 NGS Analysis Pipeline . 40

7.7 Density Plot of Beetle Data . 40

7.8 Scatter Plot of Beetle Data . 41

7.9 Volcano Plot for Beetle Data . 42

viii

A.1 Negative Binomial Distribution . 51

ix

Acknowledgments

I would like to express my special appreciation and thanks to my advisor Dr. Doina

Caragea, you have been a tremendous mentor. Your advice on both my report and career

has been very valuable. I would like to thank my committee members Dr. David Gustafson

and Dr. Mitch Neilsen. I want to thank my committee for making my defense an enjoyable

moment, and for your useful comments and suggestions. I would especially like to thank

the researchers who helped me on this project. I thank Dr. Hardcaste at the University

of Cambridge for assisting me in understanding his data simulation. Special thanks are

extended to Dr. Charlotte Soneson at Lund University for providing assistance on comp-

codeR package. Special thanks are also extended to Ms. Jennifer Shelton for helping to

teach me about NGS RNA-seq pipelines. I also wish to thank the NSF for support during

my GK-12STEM fellowship.

A special thanks to my family. Special appreciation belongs to my wife, Chunfang who

spent every moment encouraging me, I couldn’t have done it without you. I am also grateful

to my son and daughter. Special thanks to my mother and sister for helping proofread my

report. I would also like to extend my thanks to all my friends who supported me during

the entire process.

x

Dedication

I dedicate this to my wife, son, and daughter.

xi

Chapter 1

Introduction

“I think the biggest innovations of the twenty-first century will be at the intersection of

biology and technology.” - Steve Jobs

1.1 Introduction

The discovery of deoxyribo-nucleic-acid(DNA) in 1953 has herald a new revolution in bi-

ology that has only accelerated in contemporary times. Advances in computer science has

ushered an era of unparalleled progress in not only computation but all areas of science.

Standing at the intersection of these two fields is a promising new technology known as

Next Generation Sequencing (NGS). This is important technology due to its promise to

dramatically accelerate biological and biomedical research by allowing scientists to analyze

genomes and transcriptomes more easily and cheaply [Shendure and Hanlee, 2008]. The

start of this revolutionary transformation began in 2004 with the publication of the com-

plete sequencing of of the Mycoplasma genitalium and Streptococcu pneumonia genomes in

Nature[Brown, 2013]. Since then, the pace has only accelerated as NGS experiments become

more widespread and popular. At the same time, many biologists, computer scientists, and

statisticians have developed new algorithms to help analyze the data that NGS experiments

1

produce such as baySeq, edgeR, and DESeq. The goal of this report is to explore differen-

tial expression algorithms baySeq, edgeR, and DESeq. We also examine tools found in the

Galaxy Project to aid in the analysis of actual RNA-seq data.

In this introduction, we provide a high level overview of the NGS technology. Next, we

discuss the history of the technology, how sequencing works, and the relevance of NGS as

an important tool in modern science. The author focused on pairwise experimental design

in comparing NGS differential expression algorithms in this report. Consequently, it is

important to discuss the basics of experimental design as well as discuss other designs in

order to put pairwise experiments in a proper framework. Finally, the author will provide

a brief overview of this report.

1.2 Next Generation Sequencing

1.2.1 Motivation of the Term Next Generation Sequencing

In order to discuss NGS, it is important to begin our discussion with its origins in DNA

sequencing. There was work on sequencing DNA since the early 1970’s, but it only became

more mainstream and popular after the the work of Frederick Sanger began in 1975 [Sanger

and Coulson, 1975]. The method was rudimentary at first, but eventually went on to become

the most popular sequencing technology for the next 25 years. In fact, Sanger sequencing

as it became to be known was instrumental on the Human Genome project [Brown, 2013].

Thus, we begin our discussion with Sanger sequencing. The method we are familiar with

was actually developed in 1977. We omit the technical details on how Sanger sequencing

works in producing output as it is not important for the purposes of this report. Rather,

it is important to consider the nature of the output and the abilities of the sequencing

technology. Sanger technology has the ability to produce 900 or more high quality bp per

read [Morozova and Marra, 2008]. Thus, it is an ideal technology in sequencing experiments

due to the length and the quality of the read. Unfortunately, the associated high cost of

2

this technology has made it prohibitive of typical experiments. Thus, new technologies

has developed and evolved to address this problem and are a part of the next generation

sequencing revolution.

1.2.2 NGS Sequencing

We now turn our attention to NGS sequencing. What follows will be a brief introduction

and overview. Please note more details of NGS are forthcoming in Chapter 2. The new

sequencers produce shorter bp per read than Sanger, but they can do it more cheaply and

in higher volume. We now briefly discuss the pipeline flow which produces RNA sequencing

data (RNA-seq) which is used in differential expression analysis. The pipeline we propose

is a general framework in which differential gene expression can be detected when there

is already a reference genome available. The framework follows this basic pattern; first, a

sequencing machine will generate raw sequence reads. Second, it is necessary to align these

raw reads to a genome for comparison. Third, the aligned data will then be analyzed by a

differential gene expression analysis algorithm or tool [Zvelebil and Baum, 2007].

Scientists often wish to study transcriptomes in cells. For instance, seeking to obtain infor-

mation regarding protein synthesis at the time they collect data from an organism. They

will use an NGS sequencer to obtain RNA-seq data which relies on the sequencing of mRNA

fragments [Brown, 2013]. Once the raw reads have been generated by a machine, it is nec-

essary to align these reads to a reference genome. Since the reads are RNA, then it follows

that this information will only align with the exons in the genome and not the introns

[Brown, 2013]. This is not a problem because in practice, this information is often of high

interest to a biologist. For example, suppose a scientist is studying tissues obtained from

a tumor. The transcribed mRNA can originate from genes formed by the transposition of

DNA between two chromosomes [Brown, 2013]. In this example, RNA-seq data is powerful

in this instance because these transpositions can be detected because one end of an RNA

read could map to a location on one chromosome and the other end of the RNA read could

3

map to another chromosome. Since RNA-seq analysis can be extremely tenuous, then this

is further motivation for the importance of NGS methods and tools.

1.2.3 Relevance of NGS

The relevance of NGS technology cannot be understated. In the decade since the human

genome has been sequenced, we are currently undergoing a revolution. Brown [2013] ar-

gues that when accumulated knowledge and new technologies reach sufficient maturity, then

scientific problems are often solved concurrently by many different scientists making simul-

taneous discoveries. In other words, it is argued that the first revolution in DNA sequencing

technology was ushered in by Sanger and Coulson [1975] and now we are undergoing a sim-

ilar revolution in NGS technologies. The technology has doubled output capabilities every

year since 2004. In Chapter 2, readers will learn more about the characteristics of NGS. Its

revolutionary characteristics can be described as high data throughput, short read lengths,

and less accuracy as compared to Sanger sequencing, at extremely low economic cost. The

ability to analyze this information and to develop new techniques as the technology evolves

will play an important role in both biology and computer science for years to come. Brown

[2013] also indicates that most laboratories do not have the computational infrastructure

and skills that are required to perform the analysis on the complex data sets that these

technologies produce. In short, we can safely claim that demand is high for these skills

while the supply is low. Thus, NGS technology is extremely relevant to current and future

endeavors of science.

1.3 Types of Experimental Designs

Experimental design is a critical component of modern science and thus deserves a brief

discussion in relation to NGS experiments. The basic motivation behind the proper design

of an experiment is to reduce variability across samples while enhancing measurement of the

4

effect one wishes to observe. In other words, one will often have a control group where all

the effects are well understood and then compare it to another sample which is experimental

group and the exact effect not known. Replication is used in both the control and treatment

groups in order to average over individual variation, thus enhancing measurements of the

effects we wish to detect.

In RNA-seq, regardless of the design, there are three levels of sampling behind a statistically

valid experimental design. First, the organism must be selected randomly from a larger pop-

ulation. In this way, the results of the study could then be inferred to the larger population

at large. Second, RNA sampling must occur when the scientist is isolating the RNA of

interest from the cell. Finally, it is important to note that only fragments of the RNA taken

from the second step are retained. We now discuss experimental design as related to NGS

by considering both pairwise balanced design and multifactor design.

1.3.1 Balanced Pairwise Design

In NGS experiments, scientists are often interested in detecting differential gene expression

between treatment groups in the form of a pairwise comparison. The basic idea is to

obtain genes from two organisms under two different conditions. We call the first condition

treatment 1 and the second condition treatment 2. Consider figure 1.1 below.

Treatment1 Treatment2
Gene n11 n21

Other Genes n21 n22

Figure 1.1: Balanced pairwise design to compare one gene across treatment 1 and treatment
2. The cell counts nij represent DGE count for Gene or Other Genes.

The cell count nij represents differential gene expression count for the gene (j = 1) or

other remaining genes (j = 2) for treatment i. The design can apply statistics to the

above contingency table to determine the probability that the classification of this gene

has affected the gene expression. In other words, we can determine if the treatment can

5

help explain whether the gene above is expressed or not. The design is considered balanced

because there is a balanced quantity of treatments and replications. It is pairwise because

there are two treatments under consideration. Thus, it is a balanced pairwise design. Given

the widespread application of this experimental design in NGS studies, we focused on this

experimental design in our data simulations.

1.3.2 Multifactor Pairwise Design

Multifactor design simply refers to more than two treatments under consideration. Hence, it

is possible to have three, four, five, or more treatments where gene counts are collected. As

before, we wish to observe the gene expression between treatments. We simply enumerate

our treatments as follows, the first condition treatment 1, second condition is treatment 2,

and so on. We extend our example given above to a three way experimental design. Please

see figure 1.2.

Treatment1 Treatment2 Treatment3
Gene n11 n21 n13

Other Genes n21 n22 n23

Figure 1.2: Balanced multifactor design to compare one gene across multiple treatments.
The cell count nij represents DGE count for Gene or Other Genes.

The idea is very similar to the pairwise design, the cell count nij represents differential

expression count for gene(j = 1) or other remaining genes (j = 1). However, the statis-

tics applied in this situation would be different than for the pairwise design because the

experiment is different. While the measurement goal is the same, how it is achieved will

rely on different statistics because the experimental design is different. Depending on the

design of the experiment, some methods might be more appropriate than others. There are

other kinds of experimental designs, but this project’s focus is limited to balanced pairwise

experimental design. This is because they are common in contemporary experiments and

data simulations.

6

1.4 Report Outline

The report advances the discussion on the biological foundation that motivates NGS studies

in Chapter 2. In Chapter 3, Chapter 4, and Chapter 5 methods are explored that analyze

RNA-seq count data. These are baySeq, edgeR, and DESeq. In Chapter 6, the report ex-

plores the pipeline for analyzing Red Flour Beetle data using Bowtie, Tophat, and Cufflinks.

cummeRbund is used to analyze and visualize the results. In chapter 7, we perform our

data simulation and compare baySeq, edgeR, and DESeq. Next, relevant work and areas of

potential future work is explored. Finally, we will discuss the conclusions of our report.

7

Chapter 2

Differential Analysis

In this chapter, we first introduce basic details of molecular biology. We place particular

emphasis on the central dogma of biology. Next, we will discuss the biological explanation

of differential gene expression. Third, we discuss NGS technology and how it relates to the

analysis of differential gene expression. During our discussion of NGS technology we place

particular emphasis on the available sequencing technologies and the contemporary abilities

of the technology. Specifically, we will discuss RNA-seq data and how it relates to counts

and normalized counts.

2.1 Brief Introduction to Molecular Biology

It is appropriate to discuss basic molecular biology before differential gene expression is

discussed. As the name indicates, molecular biology concerns itself with the molecular

details of life. We also point out that the term “molecular” is derived from the term

molecule, that is, a group of two or more atoms that are held together by chemical bonds.

As such, we narrow our focus on the molecular basis of biology and life known as genetics.

It is well known that life is comprised of Deoxyribonucleic acid (DNA). This is a molecule

that encodes all known instructions used in the development and functioning of all known

8

forms of life. Specifically, DNA is a nucleic acid made of monomers known as nucleotides.

By definition, a nucleotide has three components:

1. 5-carbon sugar

2. phosphate group

3. nitrogenous base

The nucleotides can be categorized into two groups known as Purines and Pyrimidines [Co-

hen, 2007]. Purines have a two ring structure while Pyrimidines have one ring. Specifically,

Adenine(A) and Guanine(T) as Purines, while Cytosine(C), Uracil(U), and Tymine(T) are

Pyrimidines. The chemical structure of DNA is comprised of pairings between A and T, and

pairings G and C which are held together by hydrogen bonds [Figure 2.1]. It is important

to note that the nucleotides on a strand are held together by a backbone of phosphate and

sugars. Consequently, the pattern that emerges is known as the double helix. The sequence

of nucleotides that comprise DNA encodes biological information. A single long sequence of

DNA is called a chromosome. On a chromosome it is common to refer to specific sequences

as genes. It is these specific genes which are responsible for information on how to build,

maintain, replicate cells. At the same time, they contain information that will be inherited

during reproduction. It is important to note in animal cells, otherwise known as eukaryotes,

that the DNA is contained in the nucleas of an organic cell. The entire collection of genetic

information stored in genes is referred to as the genome.

9

Figure 2.1: Chemical Structure of DNA by Madprime [2014].Creative Commons

Another important sequence of nucleotides necessary for maintaining life function is called

RNA. It is comprised of ribose instead of deoxyribose and the complementary base to

Thymine is Uracil. RNA is essential for acting as a catalyst for biological reactions, con-

trolling and regulating gene expression, and participating in cellular signals [Zvelebil and

Baum, 2007]. As such, it is now appropriate to briefly describe how genetic information

is transmitted on a molecular level and thus providing a conceptual framework in which

to interpret basic genetics. The central dogma of molecular biology arose shortly after the

discovery of DNA to explain how these molecules interact with each other to transmit in-

formation. The central dogma simply states that DNA is transcribed to mRNA, which in

turn makes protein [Cohen, 2007].

10

Figure 2.2: Central Dogma of Molecular Biochemistry with Enzymes by Horspool [2014].
Creative Commons.

It is important to note that RNA may be transferred back to DNA. However, it is more

uncommon. Now that a basic framework for discussing molecular biology has been estab-

lished, it is appropriate to discuss differential gene expression. Specifically, we state that

genes in a DNA sequence that are transcribed to mRNA which goes to the ribosome to

make a protein are considered expressed.

2.2 Biological Explanation of Differential Expression

2.2.1 Basic Biological Background

It is well understood that the genome is the same in all cells of an organism. This motivates

a fundamental question in biology. Given that the genome of every cell is the same, then

what makes cells different from each other? For example, red blood cells in humans are red

because they contain a protein called hemoglobin. The red blood cell is red because the

protein hemoglobin is bright red in color. Despite having the same genome, no other cells

in the human body besides red blood cells produce hemoglobin. In other words, the genes

in the red blood cell are differentially expressed to produce hemoglobin while other cells in

11

humans are not. There are three basic facts established by genomic research that provides

a basic framework to understand differential gene expression [Gilbert, 2000]. They are as

follows:

1. The DNA of all cells is identical.

2. Only a small portion of the genome in a cell is expressed.

3. The unused genes in a differentiated cell are are not destroyed or mutated. They are

dormant and retained for potential expression.

It is important to note that not only are genes expressed diversely in different cells, but

they can also be differentially expressed within the same cell under different conditions. For

example, genes could be differentially expressed for two male red flour beetles under two

treatments: one is starved and the other is fed.

It is known that a single gene can code for multiple proteins. Alternative splicing is one

process that can explain protein diversity (see next section for further details). Furthermore,

there are mRNA isoforms where there are several different forms of the same protein. The

human being has approximately 20,500 protein producing genes [Clamp et al., 2007]. How-

ever, from these genes it is estimated that humans can produced approximately 200,000 to

300,000 proteins. However, as discussed above it has been established that each cell in the

human body will only require a small portion of these genes to be expressed. In other words,

different cells in the human body will express different genes. We know that specific cells

in the human body produce specific proteins. For instance, the red blood cell makes globin,

eye cells make crystallins, liver cells produce albumin, and melanocytes create melanin, and

so on. Thus, it is of interest to study how genotype can influence phenotype. As such,

exploring differential gene expression is a major research focus in modern biology. It is

understood that the regulation of gene expression can occur in the following ways [Gilbert,

2000]:

1. Alternative Splicing

12

2. Selective RNA Processing

3. Selective messenger RNA translation

4. Differential Protein Modification

Therefore, it follows that differential gene expression can be accomplished by fairly di-

verse genetical processes and is critical to understanding modern biology.

2.2.2 Alternative Splicing

First, it is necessary to understand what we mean by splicing. By definition, an intron

is a sequence of RNA nucleotides that are removed during splicing. Conversely, exons are

the portions of RNA from a gene that remain after the introns have been removed. RNA

splicing is where we take pre-messenger RNA which is comprised of introns and exons, and

group the exons together. See Figure 2.3.

Figure 2.3: RNA Splicing by College [2013]. Creative Commons.

The most basic definition of alternative splicing is that one gene can code for multiple

proteins. This is accomplished by the pre-mRNA being spliced so that there are alternative

13

spliced mRNA strands that will code for protein isoforms. See Figure 2.4.

Figure 2.4: Alternative splicing resulting in protein isoforms by Agathman [2009b]. Cre-
ative Commons.

There are five basic modes of alternative splicing [Zvelebil and Baum, 2007]. First is exon

skipping where an exon may be spliced out but the transcript is preserved. Second is when

an alternative 3’ splice site is used, which changes the 5’ boundary in an exon downstream.

The third is an alternative 5’ splice junction, which changes the 3’ boundary in an exon

upstream. Fourth is mutually exclusive exons, given two exons one is retained in mRNA

after splicing. Fifth is intron retention which means that a sequence can be spliced as an

intron or it can be retained [Zvelebil and Baum, 2007]. See Figure 2.5.

14

Figure 2.5: Collection of Basic Alternative RNA splicing events by Agathman [2009a].
Creative Commons.

Thus, it follows that similar proteins can arise from alternative splicing. This is an important

observation since it explains how a genome can produce many more proteins than there are

genes.

2.3 Next Generation Sequencing

2.3.1 Microarray Technology

As mentioned earlier, the origins of DNA sequencing technology are from Sanger technolo-

gies. However, before we discuss NGS sequencers it is important to mention another popular

sequencing technology which was developed over ten years ago. It is important to discuss

microarray technology in order to put NGS in a proper context. The technology was devel-

oped from Southern blotting, which is when a given DNA fragment is attached to a substrate

and probed with a specific DNA sequence [Zvelebil and Baum, 2007]. Note that a substrate

is a molecule upon which an enzyme acts. The technology had its infancy in the late 1980s

and became widely available in the late 1990s. In microarray, grid of DNA segments of

known sequence is used to determine differential gene expression. Thus, complementary

DNA or RNA targets are introduced to the grids. Gene expression values can be obtained

from the microarray through the use of heat maps which can visualize the results of the

15

data analysis. The nature of this data is continuous and hence the statistical methods de-

veloped in the previous decade to interpret these experiments are all founded on this basic

assumption. Microarray is still very reliable and cheaper than NGS sequencers. Hence, it

is still used and popular. Microarrays, however, cover less genes than NGS. Nevertheless,

the normalization and interpretation of microarray data is well understood. Despite this,

NGS has distinct advantages in studying alternative splicing and conducting differential

gene expression analysis.

2.3.2 Next Generation Sequencing

The ability to read DNA sequences is necessary for investigating the scientific questions that

are motivated by the study of differential expression. Although Sanger sequencing technol-

ogy is widely available and commonly used in labs, it has drawbacks. Sanger sequencing

is disadvantaged in throughput, scalability, speed and resolution [Zhang et al., 2011]. The

development of Next Generation Sequencing (NGS) technology addressed many of these

drawbacks and as a result has replaced Sanger at the preferred sequencing technology. NGS

has many advantages over traditional methods. Namely, the ability to sequence at previous

unrealized speed and the ability to produce high sequencing [Zhang et al., 2011]. We limit

our current discussion in NGS technology to Illumina and 454. This does not imply that the

other technologies are not important. Rather, it is appropriate to concentrate our discussion

to the technologies most relevant to our data. In other words, we focus on the technologies

that could produce or replicate our red flour beetle data that we use later on in analysis.

Since the dawn of NGS in the last decade, private industry has taken the lead in the

development of new sequencing technology and techniques. These technologies as discussed

above allow for large-scale sequencing and this trend shows no signs of abating. The trend

in commercially available NGS platforms is competitive, increasing, and varied. The NGS

instruments produce different base lengths, error rates, and error profiles relative to each

other [Zhang et al., 2011]. These technologies can sequence both DNA and mRNA.

16

The Roche GS-FLX 454 Genome Sequencer is the oldest and first available NGS se-

quencer for commercial use. It can produce an average of 400bp with a maximum of 600bp.

Many note that is half of the Sanger sequencing capabilities. Since it can produce 600bp,

it also provides the longest short reads among all current NGS technologies [Zhang et al.,

2011]. It has an accuracy of approximately 99% and is well known to produce raw reads with

errors. The abilities of this technology make it a natural resource for de novo sequencing

and isoform studies.

The Illumina Genome Analyzer came after the Roche GS-FLX 454 Genome sequencer.

The Illumina Genome Analyzer produces approximately 200Gbp of short sequence reads

when run. It has an accuracy of approximately 99.5%. Illumina is currently the most

popular technology on the market and the most widely used. Many argue that is has

superior data quality and sufficient read length. The evidence of this is that the many

papers in NGS papers have described research which was dependent on Illumina [Zhang

et al., 2011].

2.3.3 RNA-seq Data

Sequencing

We explain, from a high overview, the basic sequencing process as described by Brown

[2013]. First, RNA is sequenced by converting it to complementary DNA (cDNA) with the

reverse transcriptase enzyme. The reverse transcriptase enzyme is defined as an enzyme

that generates cDNA from RNA. Since our focus is on differential gene expression, then

it follows that we are interested in directly sequencing the mRNA. In summary, we begin

with RNA samples and then fragment them. From these fragments, we perform reverse

transcription to obtain cDNA fragments. These fragments are then given to a sequencing

machine which will then output reads based the cDNA fragments provided to it.

However, it is important to note that other applications for RNA sequencing exist. For

example, RNA-seq data is an excellent resource to measure alternative splicing events that

17

can produce different mRNA strands which will eventually arise to make different protein

isoforms.

There are protocols that have been developed by every major sequencer company for

sequencing RNA [Brown, 2013]. Each have to contend with some biological realities in

the data. That is, ribosomal RNA (rRNA) and transfer (tRNA) are abundant in all RNA

obtained from organisms, approximately 75% of RNA molecules [Brown, 2013]. Thus, it

follows that such the presence of rRNA and tRNA sequences in RNA hamper the volume,

accuracy, and cost of RNA-seq data. As a result, sequencers use protocols to isolate mRNA

from rRNA and tRNA. This is accomplished either using a technique called poly(T) or

duplex-specific nuclease (DSN). Unfortunately, even in the presence of these methods some

of the rRNA and tRNA might remain. Consequently, these can be filtered out by comparing

the reads to a contaminant file of rRNA and tRNA sequences from organism we are studying

[Brown, 2013].

Counts for Measuring Gene Expression

Once the sequencing reads are obtained from the NGS sequencer, then it is necessary to

measure for gene expression. The first step is to align the reads to a reference genome, usually

with the assistance of sequence alignment software [Brown, 2013]. The most important

part to note here is that expression for each gene is measured by counting the number of

sequence reads that align to its coding region in the genome. This is usually accomplished

by aligning millions of short reads by using an algorithm such as Bowtie. It can take

considerable computational time to align the raw reads to the genome to produce this count

data. Once gene expression for each gene has been counted, then we are ready to analyze

the data statistically to determine whether or not differential gene expression counts vary

significantly across conditions or treatment.

18

Normalized Counts

It is important to note that baySeq, edgeR, and DESeq rely on raw counts for measuring

gene expression. However, some algorithms require the data to go through additional steps

before statistical analysis of differential gene expression. For example, Cufflinks is one of

these methods. Besides, normalization of count scores can aid in the reduction of variance

that could exist in count data which would otherwise reduce the effectiveness in measuring

change in gene expression between different conditions or treatments. Thus, we discuss

simple reads per kilobase per million (RPKM) normalization. It was developed by Caltech

and is the current RNA-seq normalization standard where the read count for each gene is

divided by the length of reference sequence for that gene. It then scales all read counts per

million reads in each lane of sequencing [Brown, 2013]. See below:

RPKM = 109·C
N ·L

C is the number of mappable reads, N is the total number of mappable reads in an experi-

ment, and L is the sume of the exons in base pairs. We may also describe it as:

RPKM =
Reads per transcript

million reads·transcript length

2.3.4 RNA-seq Tools

It is important to note that we are not comparing the merits of raw counts vs. normalized

counts. Rather, we discuss both here as different algorithms have different RNA-seq data re-

quirements to detect differential gene expression. Thus, regardless of whether the algorithm

requires raw or normalized counts, it follows that each algorithms goal is to measure the

data in such a fashion that it can measure differential gene expression in the data between

biological conditions in a statistically valid manner.

Here we discuss some of the primary tools which were used in this report. They are

compcodeR, Galaxy, and cummeRBund. Galaxy is available from the Galaxy Project

19

at usegalaxy.org. compcodeR and cummeRBund are both available for free from www.

bioconductor.org. Bioconductor is an open source software toolkit for bioinformatics. It

is often used in the analysis of NGS data to perform differential gene expression analysis

among many other applications. It is specifically designed for NGS high throughput data.

It is important to note that Bioconductor relies on the R statistical programming language.

2.3.5 Compcoder

compcodeR is a package in R written by Soneson and Delorenzi [2013]. It provides an inter-

face to several NGS methods for analyzing differential gene expression already implemented

in bioconductor for RNA-seq data. The package also has a framework and functions for

generating simulated data [Soneson and Delorenzi, 2013]. Most importantly, it has a great

interface and functions for comparing the results of data simulations.

2.3.6 Galaxy

Galaxy is a suite that is part of the Galaxy Project [Blankenberg et al., 2010], [Goecks et al.,

2010], [Giardine et al., 2005]. It is an open source platform that allows a user to process

raw RNA-seq data. It is comprised of many tools that allow the user to detect differential

gene expression in the data. In our report, we use an analysis flow in Galaxy that utilizes

Tophat and Cufflinks to produce files that can help us study differential gene expression.

These files are then given to cummeRbund for visual analysis of differential gene expression.

2.3.7 Cummerbund

cummeRbund is an R package designed to aid in the analysis Cufflinks RNA-seq output.

It was written by Computational Biology Group at MIT’s Computer Science and Artificial

Intelligence Laboratory and Rinn Lab at Harvard. The package can be found at compbio.

mit.edu/cummeRbund. It allows the user to visualize differential gene expression between

20

usegalaxy.org
www.bioconductor.org
www.bioconductor.org
compbio.mit.edu/cummeRbund
compbio.mit.edu/cummeRbund

genes. It helps the user navigate, with ease, the large and complicated data sets produced

by studies from data produced by Cufflinks.

21

Chapter 3

Bayseq

This chapter will discuss one of the most complicated algorithms that can be applied to

RNA-Seq output known as baySeq. First, baySeq is introduced with a brief overview.

Second, we will then discuss the technical definition of the model and important details of

how the algorithm functions. Third, we will demonstrate how to implement baySeq in R

with a simple example.

3.1 Bayseq Method

3.1.1 A Brief Overview

One of the more complicated, but popular tools employed on RNA-Seq data is known as

baySeq. It is claimed that one of the most distinct advantages of baySeq as compared to

other methods is to account for multiple factor experimental designs. baySeq uses Bayesian

methods to estimate posterior likelihoods of each set of models which can define differential

expression for each gene [Hardcastle and Kelly, 2010]. In other words, we can assume that

there are some prior distributions for genes in different groups such as differentially expressed

or non-differentially expressed. BaySeq will then evaluate the posterior probability of being

differentially expressed and rank the genes according to this probability.

22

3.1.2 Descriptions of Bayseq Method

First, baySeq estimates an empirical distribution for the parameters of the Negative Bino-

mial distribution. It accomplishes this by bootstrapping from the data: taking individual

counts and finding quasi-likelihood parameters for a Negative Binomial distribution [Hard-

castle and Kelly, 2010]. Hardcastle and Kelly [2010] suggest a sample size of 10,000 iterations

to estimate an empirical distribution of the parameters. Next, baySeq estimates posterior

likelihoods of differential expression. We explain more in detail below.

In our report, we focus on balanced pairwise comparison of two conditions A and B with

equal amount of replicates between the conditions. There are two models to potentially

explain our data as follows: M1 = {A1, A2, B1, B2} for non-differential expression and M2 =

{A1, A2}, {B1, B2}. Next, define the dataset as Dg = {(Yg1, Yg2, ...), (l1, l2, ...)} where Ygi

corresponds to counts of gene g such that i ∈ (l1, l2, ...) where li is library size [Hardcastle

and Kelly, 2010]. M is the user specified models that we wish baySeq to consider. We

define θM as a vector of parameters of model M . Thus, the posterior probability of the

model given the data for gene g is [Hardcastle and Kelly, 2010]

P (M |Dg) = P (Dg |M)P (M)

P (Dg)

We can calculate the marginal likelihood as follows:

P (Dg|M) =
∫
P (Dg|θm,M)P (θm|M)dθM

Hardcastle and Kelly [2010] define an empirical distribution on θm and estimates the marginal

likelihood numerically. The priors are estimated by iteration. Thus, we have a posterior

probability of the gene being differentially expressed conditional on the model for differential

expression.

23

3.2 Bayseq Usage in R

We now consider the implementation of baySeq in R according to [Hardcastle and Kelly,

2010]. The baySeq implementation in R assumes that the data provided will be a data matrix

which is comprised of counts where the rows correspond to genes and columns to samples.

We assume our experiment is a balanced pairwise design. We simulate data similar to the

negative binomial data generated in Hardcastle and Kelly [2010] paper. In our simulation

we estimate the mean parameter for the negative binomial distribution using the normal

distribution. We simulate two biological conditions. There are four biological replicates for

each condition. We simulated 10000 genes where 10% are differentially expressed. Please

see Appendix B for more details. The generated data matrix for our implementation in R

is seen below:

Since there are two conditions A and B with two biological replicates each, then the im-

plementation of baySeq in R will require us to define a group with this information. We

elaborate as follows:

libs = 8

groups = list(NDE = rep(1,libs), DE = rep(1:2, each = libs/2))

The above defines our group which is comprised of two models. The first is assuming
there is no differential expression between the conditions. The second assumes that there is
differential expression between conditions. The next step is to define a count data object,
this step is necessary before estimating priors and posterior probabilities. Hence, we have
the code as shown below:

CD = new(’countData’, data = y, replicates = rep(1:2, each = libs/2),

groups = groups)

library(CD) = getLibsizes(CD)

24

The last function written above estimates the library sizes for the countData object created
above. The next step consists of the empirical Bayes estimation process of baySeq. First, it
will be necessary to estimate the prior distribution on countData. By default, the function
will assume the negative binomial method. However, other methods are available. Second,
once our prior has been estimated, then it follows that we will estimate posterior likelihoods
for each gene conditional on each model. That is, assuming there is no differential expression
and assuming there is. We implement as follows:

CD = getPriors.NB(CD, samplesize = 10^5, estimation = ’QL’, cl = cl)

CD = getLikelihoods.NB(CD, pET = ’BIC’, cl = cl)

The final step is to display the results. It sorts the results with the likelihood. That is,
it allows us to see which genes rejected the null hypothesis where there is no differential
expression. Thus, we now have evidence showing what genes are differential expressed.
Please see below:

results = topCounts(CD, group = ’DE’, number = 10)

head(results)

We show the results below:

We have shown the top differentially expressed results. It has given the probability of the
genes, associated with rowID, of being differentially expressed. This concludes the use of
baySeq in R. It is important to note that the code to implement baySeq is incredible simple.
However, compared to the other tools, it takes the longest to run and is probably the most
complicated computationally.

25

Chapter 4

EdgeR

This chapter discusses the edgeR approach in detecting differential gene expression in data.
We first provide a brief overview and technical description of edgeR. Second, we then discuss
how to use edgeR in R and include an example of its implementation

4.1 EdgeR Method

4.1.1 A Brief Overview

The basic idea is that the count data is over-dispersed and modeled using a negative binomial
distribution. We limit our consideration of edgeR to a balanced pairwise experimental
design. For pairwise comparison, the authors used conditional maximum likelihood and
weighted conditional likelihood to estimate the negative binomial parameters. Thus, the
authors contend that an exact p-value can be obtained for determining differential expression
by performing an exact test similar to Fischer.

4.1.2 Description of EdgeR Method

The data is assumed to be organized as a matrix comprised of counts where rows correspond
to genes g and columns represent biological sample corresponding to i. These counts are
assumed to be distributed as a negative binomial as described by Robinson et al. [2010] as
follow:

Ygi ∼ NB(µgi, φg)

where the mean is denoted by µgi and φg is dispersion. Please note that li is the library
size represented by the total number of reads and µgi is the proportion of sequenced gene.
As described above, it follows that the read counts Ygi are nonnegative integers. This
distribution is used in order to model count data when overdispersion could be present
[Robinson et al., 2010]. It is important to note that Robinson et al. [2010] assume the
mean and the variance are related by φ such that σ2 = µ + φµ2. First, Robinson et al.

26

[2010] propose estimating φg by finding a common dispersion estimate of φ. Robinson
et al. [2010] use a weighted likelihood approach for shrinking gene-wise dispersion so that
it converges. Hence, in order to test for differential expression, an exact test analogous to
Fisher’s exact test is used. The difference is that instead of a hypergeometric distribution,
a negative binomial distribution is used. Therefore, the p-value is defined as the probability
of observing counts at or more extreme than we observed [Robinson et al., 2010].

4.2 EdgeR Usage In R

The following is an example on how to implement edgeR [Robinson et al., 2010]. We use the
same simulated data as described in Chapter 3. That is, we will consider a balanced pairwise
experimental design between four conditions with two replicates each. edgeR package in R
requires the user to provide it with the original data, not normalized. The count data will
be comprised of rows that correspond to genes and columns to samples. edgeR models
the count data as negative binomial. It estimates the mean for each gene and sample. It
also estimates the dispersion which is the same across all genes. Once these estimates are
obtained, an exact test is performed [Robinson et al., 2010]. See below:

d = DGEList(counts = y, group = c(1,1,2,2), lib.size = rep(1000,4))

de = exactTest(d, dispersion = 0.2)

topTags(de)

Thus, we obtain the following results.

Note, we have performed an exact test to determine if genes from condition A and B are
differentially expressed. The method topTags() sort by the highest ranked p-values for each
gene. Simply put, we expect a p-value for each pairwise comparison of a given gene. Thus,
the implementation of edgeR in R can be accomplished in a few lines.

27

Chapter 5

DESeq

The DESeq is a popular tool used to detect differential analysis in RNA-Seq output. It is
similar to edgeR, but estimates the variance differently. We first discuss the DESeq method
by providing an overview and some technical details. Finally, we will present a simple
example of DESeq usage in R.

5.1 DESeq Method

5.1.1 A Brief Overview

DESeq is a method used for detecting differentially expressed genes in data. It is known
to be similar to other tools such as edgeR. However, one of the unique distinctions of
DESeq is that it is not limited to RNA-Seq data but information obtained from high-
throughput experiments. The method is primarily known for estimating variance between
genes. Therefore, the variance is conditional on the gene and replicate.

5.1.2 Description of DESeq Method

The basic assumptions for the model is that data is distributed according to a negative
binomial distribution. Let the counts be assumed to represented by Ygi given gene g and
sample i. Let ρ denote the biological condition.

Ygi ∼ NB(µgi, σ
2
gi)

where mean µgi = liqgi such that li is library size and qgi is the gene and condition specific
expression rate. The variance is σ2

gi = µgi + l2i vρ(qgi) such that vρ is a smooth function per

gene condition. The expected read count is given by q̂gρ = 1
Np

∑
i:ρ(i)=ρ

Ygi

l̂i
where ρ indicates

the biological condition and i : ρ(i) = ρ represents the condition of sample i. Please note
Np is the total amount of replicates for condition ρ. The library size l̂i is estimated using
medians of the counts per gene and sample. We estimate variance as follows:

28

wgp = 1
lp−1

∑
i∈p

(
Ygi

l̂i
− q̂ip)2 and zgp = ˆqgp

Np

∑
i∈p

1

li

Thus, we obtain estimate of the vp equation as v̂p(q̂gi) = wp(q̂gi) − zgp. Similar to edgeR,
differential gene expression is also tested in analogous for Fischer’s exact test. Once again,
the hypergeometric distribution is replaced with negative binomial probability [Anders and
Huber, 2010].

5.2 DESeq Usage In R

The following is an implementation of DESeq in R as developed by Anders and Huber [2010].
As in edgeR, DESeq assumes that the data is structured as a data matrix where the rows
correspond to genes and columns are the samples. The values in the matrix are assumed
to be raw counts. The authors caution that the data should not be normalized before
implementing DESeq. The same data matrix as described in Chapter 3 and Chapter 4 is
simulated here. That is, a pairwise experimental design with two biological conditions with
two replicates each. There are 1000 genes simulated where 10% are differentially expressed.
It is now necessary to define the biological conditions of the data and create a counts data
set. This is a necessary step in order to estimate the dispersion in the data and conduct an
exact test. See the code below:

condition = c("trt1","trt1","trt2","trt2")

cds = newCountDataSet(y,condition)

Thus, we are now ready to estimate size factors. It estimates the size factor by finding the
median. Thus, we have the following:

cds = estimateSizeFactors(cds)

sizeFactors(cds)

We now estimate the dispersion estimates for the count data with the command given below.
For each condition, DESeq will compute an dispersion value. After this, fits by regression
a dispersion and mean relationship. DESeq chooses for each gene the dispersion parameter
which will be used in tests [Anders and Huber, 2010]. See below:

cds = estimateDispersions(cds)

We are now ready to proceed with testing for differential gene expression. In order to
accomplish this, we only need to invoke a test as described below:

res = nbinomTest(cds, ’trt1’, ’trt2’)

resSig = res[res$padj < 0.1,]

head(resSig[order(resSig$pval),])

29

The output produced from this is another data matrix which contains both a p-value and
an adjusted p-value. We sort by the most significant adjusted p-value.

This concludes our example. It can be seen by the above, how DESeq can provide in a few
lines a complete test for differential gene expression given raw RNA-seq data.

30

Chapter 6

Data Simulation

We now turn our focus towards the simulation of the data which was used to compare edgeR,
DESeq, and baySeq. First, we will discuss the approach used for data simulation, that is,
the design of the data simulation and how the counts were modeled and parameters were
estimated. Second, we will discuss the results produced by the edgeR, DESeq, and baySeq
on the simulated data. Finally, we will summarize the results and discuss what general
conclusions may be inferred regarding a comparison between the methods. It is important
to note that we are no longer considering the data simulation used in Chapters 3, 4, and 5.

6.1 Methods for Data Generation

Our goal is to duplicate the approach for simulating data outlined by Soneson and Delorenzi
[2013]. In turn, it is important to note that the work of Soneson and Delorenzi [2013] is
based also on Robles et al. [2012]. The simulation was accomplished by using the package
compcodeR in R found at bcf.isb-sib.ch//data//compcodeR. Let us now discuss how
the the data was simulated.

6.1.1 Design of Data Simulation

The experiment is based on balanced pairwise experimental design. That is, the data is
comprised of replicates which are evenly divided between two conditions S1 and S2. In our
implementation, this means |S1| = |S2| indicating that each condition has a balanced sample
size. For each condition i ∈ {1, 2}, we represent samples in Si such that Si = {si1, ..., siT}
where T is the size of replicates. Let G denote the set of genes such that G = {g1, ..., gN},
where N = 12, 500. Of these genes, 10% were selected to be differentially expressed. The
first sample set can be considered a control, while the second sample set can be considered
some sort of unusual phenotype [Soneson and Delorenzi, 2013]. Soneson and Delorenzi [2013]
denote Gup

DE ⊆ G as set of differentially expressed genes between S1 and S2 where genes are
upregulated in S2. Conversely, Gdown

DE ⊆ G denotes the set of differentially expressed genes
in S2 that were downregulated. In our experiment, both S1 and S2 have replicate size

31

bcf.isb-sib.ch//data//compcodeR

5. Furthermore, based on results demonstrated by Robles et al. we replicated the data
simulation 12 times, as this replicate size is optimum in reducing false discovery rates and
conversely having a demonstrably higher true discovery rate compared to smaller replicate
sizes. In summary, this means we have a data set which is comprised of 12,500 genes and 5
replicates for each condition. There are 1, 250 differentially expressed genes. In general, we
can visualize the data generated as follows:


a11 a12 a13 a14
a21 a22 a23 a24
...
an1 an2 an3 an4


Figure 6.1: Balanced pairwise design with two conditions with two biological replicates
where aij represents count for gene i and sample j

6.1.2 Counts as Negative Binomial Model

First,we consider how the gene counts can be modeled. Note that Ygi represents a negative
binomial random variable count for gene g and replicate i. Specifically, we assume that it
is distributed as described below:

Ygi ∼ NB(µgi, µgi(1 + µgiφgi))

where the mean is µgi and the variance is µgi(1 + µgiφgi). The parameter φgi is called the
overdispersion parameter. The mean is estimated by,

µgi = E[Ygi] =
µ̂gc(i)∑

g∈G

µ̂gc(i)
Mi

Soneson and Delorenzi [2013] define Mi as the sequencing depth where Mi = 107Ui for
Ui ∼ U [0.7, 1.4] and c(i) ∈ {S1, S1}. That is, c(i) represents either the control condition S1

or the abnormal condition S2. We defined φgi = φg for all samples. A discussion of how µ̂gc(i)
and φgi were estimated is provided in the next section. Finally, we define µ̂gS2 = γ

vg
g µ̂gS1

given γg = 1.5 + e1 where,

vg =


1 if g ∈ Gup

DE

−1 if g ∈ Gdown
DE

0 otherwise

This means if the gene is differentially expressed and upregulated, it will increase the count
value for µ̂gS2 > µ̂gS1 . Conversely, if the gene is differentially expressed but downregulated
then µ̂gS2 < µ̂gS1 . If there is no differential expression, then it follows that λgS2 = λgS1 .

32

6.1.3 Estimation of µ̂gc(i) and φ̂gi

The parameters µ̂gc(i) and φ̂gi are estimated by the R package compcodeR. The authors
Soneson and Delorenzi [2013] estimate µ and φ parameters for simulated data by using real
RNA-seq data. They obtained this real RNA-seq data from two sources. The first dataset
is from tweeDEseqCountData by Prickrell et al.. The second dataset is from from Frazee
et al. at http://bowtie-bio.sourceforge.net/recount/.
The Prickrell et al. [2010] dataset consists of RNA-seq from 69 Nigerian individuals who
are not related. In the second dataset by Frazee et al. [2012], Soneson and Delorenzi only
used the Cheung data which consists of 41 Caucasian individuals of European ancestry.
The following approach was conducted by Soneson and Delorenzi [2013] on both datasets
to estimate the µ and φ parameters from real data. First, filtering was performed on the
data by removing all samples for which the library size was smaller than 2 million reads.
Also, they filtered out genes whose average count across all given replicates was less than
1. Second, the reads for each sample were resampled so that all library sizes were equal
to the smallest library size[Soneson and Delorenzi, 2013]. Third, for each gene, maximum
likelihood estimates of µ̂ and φ are obtained for N iid variable from a Negative Binomial
distribution given the y1, · · · , yN counts in the datasets [Robles et al., 2012]

L(µ, φ|y1, · · · , yN) =
N∑
i=1

ln(Pr(Yi = yi|µ, φ)

=
N∑
i=1

ln(Γ(yi +
1

φ
))−N ln(Γ(

1

φ
))−

N∑
i=1

ln(Γ(yi + 1)) +
N∑
i=1

yi ln(
µφ

1 + µφ
)− N

φ
ln(1 + µφ)

Solving for the equation above, one can obtain the MLE of µg as follows, as the average
count for a given gene across all samples

µ̂g =
1

N

N∑
i=1

Ygi

Similarly, we can find the MLE of φg by solving for φ by maximizing the equation given
above for the counts y1, · · · , yN . Soneson and Delorenzi obtained the estimates of µg and
φg from Prickrell et al. [2010] and Frazee et al. [2012] data sets. The authors combined
the estimates of µg and φg from both of these data sets into set of parameters. They then
sampled pairs of (µg, φg) from the dataset to obtain estimates for the simulation.

6.2 Results

We compared three methods for differential expression analysis on simulated RNA-seq data.
All three methods considered will accept raw count data for analysis. The methods were
compared solely on simulated data. This is meaningful since we understand how the data
was precisely modeled. As described above, the data was simulated from counts using the
Negative Binomial distribution where the mean and dispersion were estimated from real

33

http://bowtie-bio.sourceforge.net/recount/

data. We performed the data simulation for 12 replications. Our focus in this study was
to examine how the three methods could detect true differentially expressed genes over
non-differentially expressed genes. Hence, we produced a Receiver Operating Characteristic
(ROC) curve and a boxplot of AUC values to summarize the AUC values across all data set
replicates included in our comparison. Finally, we examined a false discovery curve to depict
the number of false positives encountered while stepping through a list of genes ranked by
their p-values which represent their statistical significance [Soneson and Delorenzi, 2013].
The ROC curve is a comparison of the percentage of true positives (TPR) out of total
positives vs the percentage of false positives (FPR) out of the actual total negative at given
different thresholds. In other words, it is ideal to have a high TPR vs a low FPR. We
compare edgeR, DESeq, and baySeq in Figure 6.1.

Figure 6.2: Comparing edgeR, DESeq, and baySeq when 625 ∈ Gup
DE and 625 ∈ Gup

DE

showing comparable ROC curves.

We can see that both edgeR and DESeq outperform baySeq slightly here. However, they
are fairly comparable as the AUC values in the boxplots will reveal in Figure 6.2.
The x-axis labeled AUC represents the AUC values observed in Figure 6.1. edgeR slightly
outperforms DESeq and baySeq. This can be seen because edgeR value is higher than
both DESeq and baySeq. DESeq and baySeq performed almost equivalently under these
experimental conditions. Next, we looked at the highest ranked p-values and observed the
false discovery rate (FDR) as can be seen in Figure 6.3.
All methods compared FDR increased with the number of genes selected. DESeq has the
highest FDR rate regardless of the number of genes selected. EdgeR performed in the
middle, while baySeq has the lowest number of false discoveries. These results are consistent
with other results reported in the literature [Soneson and Delorenzi, 2013]. We will discuss
relevant work in the next chapter.

34

Figure 6.3: Comparing edgeR, DESeq, and baySeq when 625 ∈ Gup
DE and 625 ∈ Gup

DE

showing edgeR has highest AUC value over others.

Figure 6.4: Comparing FDR given number of selected genes for edgeR, DESeq, and bayseq
when 625 ∈ Gup

DE and 625 ∈ Gup
DE.

35

Chapter 7

Analysis of Red Flour Beetle Data

7.1 Red Beetle Data

The data analyzed was collected from the red four beetle, also known by its scientific name
as Tribolium castaneum. There were two treatments considered respectively: starved male
and fed male. They were separated from pupae and not mated. Each beetle was individually
placed in a tube. The beetles were starved 24 hours before a treatment.

Data
Treatment # of Seq. Reads
Male Starved 9,878K
Male Fed 5,571K

Figure 7.1: Red flour beetle raw data with starved male and fed male

It is of biological interest that the male beetle produces a pheromone, when fed, which
attracts female beetles. mRNA was collected from the abdomen of the red flour beetle and
sequenced by Illumina. The experiment was interested in measuring potential differential
gene expression between the fed and starved male beetle [Park, 2013].

7.2 Galaxy Pipeline Flow Analysis

Since the data had no biological replicates, we could not apply baySeq, edgeR, or DESeq to
the data. Instead, we used Galaxy to analyze the data, which can be applied to data with
no biological replicates [Goecks et al., 2010], [Blankenberg et al., 2010], [Giardine et al.,
2005]. The analysis flow of Galaxy is a series of steps where raw reads are converted into
data where differential gene expression analysis can then be conducted. First, raw reads
are examined for basic quality control; quality was assessed with the use of box plots. If
necessary, data is trimmed and cleaned. Second, the processed reads will be aligned to the

36

red beetle genome. Galaxy uses Tophat to help align the reads to our reference genome.
After this, we use Cufflinks to assemble the transcripts and test for differential analysis.

7.2.1 Quality Control

The first necessary step in the analysis was to compute basic quality statistics. That is,
create summary statistics with a boxplot that has a base pair quality score for each set of
reads. For each read, we have three scores: quartile range, median score, and outliers. The
quartile range will indicate where 50% of the data scores are distributed. The median score
will report where half of the scores are above or below without being susceptible to outliers.
The outlier scores indicate unusual score values for the read position. We now examine the
boxplot of raw read scores starved male and fed male. See Figure 7.1 and Figure 7.2.

Figure 7.2: Box plot of raw reads for starved male. Median and quantile score decline
observed.

In Figure 7.2 the median scores are consistently above a score of thirty for most of the data.
However, the median and quantile scores decline toward the end. There are also outliers
present for every base pair read. In Figure 7.3 the median scores are stable for most of the
base pair reads, but decline below 30 range at the end. The quantile range continues to
expand. Thus, it is necessary to trim these files to improve median and quantile ranges.
We do this by using the sliding window trimmer. This simply takes the observations and
calculates the mean score. If the observation causes a score to go below an acceptable mean
score, then it is discarded. See the cleaned box plots in Figure 7.3 and Figure 7.4.The
median scores are all above 30 for all bp read scores in Figure 7.4. The quantile ranges have
also been reduced indicating an improvement in the ranges of the data. Thus, it appears
that cleaning the data was successful. In Figure 7.5 the data has been cleaned for fed male
as well. It can be seen that the boxplot median scores and quantile ranges have improved.
That is, the scores are consistently above 30 and the quantile ranges have been reduced.
Thus, it follows that the data has been cleaned and improved.

37

Figure 7.3: Box plot of raw reads for fed male. Median and quantile score decline observed.

Figure 7.4: Box plot of processed reads for starved male. Improved median and quantile
scores.

38

Figure 7.5: Box plot of processed reads for fed male. Improved median and quantile scores.

7.2.2 Aligning Reads Using Tophat and Cufflinks

Tophat accepts the RNA-seq data as input. This algorithm and program aligns the input to
a reference genome in order to identify exon splice junctions [Trapnell et al., 2012]. Cufflinks
is the next tool in the analysis flow and requires output from Tophat [Roberts et al., 2005].
It is a powerful tool which allows the analyst to assemble transcripts and test for differential
gene expression. It is arguable one of the most well known. Hence, it is instrumental in
allowing us to assess differential gene expression in our data. The analysis pipeline was
implemented as shown in Figure 7.6. Cuffdiff analysis can find significant changes in the
transcript expression, splicing, and the promoter use [Brown, 2013]. That is, alternative
splicing transcription start sites.

7.3 CummeRbund Analysis for Differential Expression

We wish to determine from the results above what differential gene expression, if any, has
been detected in the data. First, we count the genes that have statistically significant p-
value. Second, we visualize the data and the genes. In order to visualize difference we use
cummeRbund compbio.mit.edu\cummeRbund to generate various plots. We consider three
plots consecutively: density plot, scatter plot, and the volcano plot. See Appendix D for
further details.

First, we wished to visualize the data as a distribution in Figure 7.7. The density plot
can be thought of as a smoothed representation of a histogram to examine the distributions
of FPMK values across gene samples. Figure 7.7 density plot shows that the distribution of
FPMK scores across gene samples is extremely similar. The shape for starved male and fed
male are similar. Therefore, this is an indication that their distributions are very similar
and visually confirms our observation that there are not many differentially expressed genes
between the two biological conditions.

39

compbio.mit.edu\cummeRbund

Figure 7.6: DE analysis flow by Trapnell et al. [2014]. Reprinted with Permission.

0.00

0.25

0.50

0.75

1.00

−2.5 0.0 2.5
log10(fpkm)

de
ns

ity

condition

starved_male

fed_male

genes

Figure 7.7: CummeRbund density plot of genes comparing starved vs. fed male showing
similar distribution.

40

10

1000

10 1000
starved_male

fe
d_

m
al

e

genes

Figure 7.8: Scatter plot comparing starved male vs. fed male showing general similarities.

The next graph we consider is a scatter plot in Figure 7.8. It compares the FPKM
values from the starved male and fed male gene samples. The majority of scores follow a
linear pattern across the gene samples. Hence, it follows that the graph above shows general
similarities between starved male and fed male given FPKM scores and some outliers. If
there was differential expression present between starved male and fed male, then we would
expect to see a series of dots following a parallel line above or below the diagonal line. No
such pattern is observed.

The last plot to be considered is a volcano plot in Figure 7.9. The volcano plot is
designed to show changes between large datasets comprised largely of replicate data. The
plot compares fold-change in scores on the x-axis vs. an negative logarithmic scaled p-
values. Consequently, values found towards the top of the plot that are both on the far left
or right represent values of interest. This is because they represent large scale fold changes
as p-values with more statistical significance. The results from the above plot indicate
no differentially expressed genes. There are some values above that have large scale fold
changes, but none have statistically significant p-values. Consequently, the conclusion is this
plot shows little change between the starved male and fed male. This is consistent with the
other plots observed. Given the results presented, we can only come to the simple conclusion
that there is no evidence for differential gene expression between the starved male and the
fed male.

41

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

● ●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0

1

2

3

4

−20 −10 0 10 20
log2(fold change)

−
lo

g 1
0(

p
va

lu
e)

significant
● no

genes: fed_male/starved_male

Figure 7.9: Volcano plot comparing starved male vs. fed male showing

42

Chapter 8

Relevant Work

8.1 Review of Data Simulations and Comparisons of

Methods

We will review three relevant studies which all analyzed NGS RNA-seq data and compared
baySeq, edgeR, and DESeq methods. These papers all conducted data simulations which
probed the relative merits of these algorithms. We will briefly discuss each paper below.

8.1.1 Soneson Study

The study by Soneson and Delorenzi [2013] is important to this report. Soneson and De-
lorenzi [2013] wrote the compcodeR package and conducted their own data simulation which
compared many tools including baySeq, edgeR, and DESeq methods. The authors conducted
a data simulation which varied the sample sizes and replicates. They also simulated distri-
butions such as Poisson and Negative Binomial. For data modeled as Negative Binomial,
edgeR, baySeq, and DESeq were comparable. They only considered a balanced pairwise ex-
perimental design. Soneson and Delorenzi [2013] concluded that small sample sizes, such as
2 replicates, which are common in RNA-seq experiments are still a problem for the methods
we have considered. They recommended, based on their data simulations with replicates 2,
5, and 10 that experiments be conducted with larger replicates so that the algorithms have
lower FDR. [Soneson and Delorenzi, 2013].

8.1.2 Robles Study

The study by Robles et al. [2012] focused on generating simulated NGS RNA-seq data
from Negative Binomial distribution. Robles et al. [2012] compared DESeq and edgeR and
studied different experimental designs that focused on biological replicates and sequencing
depth. They made an interesting observation that reduction of sequencing depth by 15%
could still avoid negative effects on FDR and TPR [Robles et al., 2012]. In other words,

43

Robles et al. [2012] suggested that biological replicates are more influential in experimental
design than sequencing depth.

8.1.3 Kvam Study

The authors Kvam et al. [2012] conducted a sophisticated statistical data simulation com-
paring edgeR, DESeq, and baySeq. The authors compared the methods given under different
distributions. The first was that the counts were generated from a Negative Binomial dis-
tribution. The second was that the data was generated from a Poisson distribution. The
authors explored FDR rates and concluded that none of the methods were controlled well
under the conditions examined [Kvam et al., 2012]. Furthermore, the authors concluded
that the methods baySeq, edgeR, and DESeq were comparable. Kvam et al. [2012] claimed
that baySeq performed well in detecting highly expressed genes. That is, when a gene is
upregulated and downregulated across biological conditions.

8.2 Review of Relevant Work

We summarize the results of the analyses done by Robles et al. [2012], Soneson and Delorenzi
[2013], and Kvam et al. [2012] as described above. The consensus is that edgeR, baySeq,
and DESeq were fairly comparable to each other. Thus, the choice in choosing one method
over the other should be motivated by experimental design and other factors to ease the
analysis for the scientist.

8.2.1 BaySeq

The strengths of baySeq is that it is excellent in detecting differential expression when
genes are regulated in different directions [Kvam et al., 2012]. There is consensus that it
performs well with large replication and low outliers in controlling for FDR [Soneson and
Delorenzi, 2013]. There are, however, some acute and distinct weaknesses. It is the most
complicated and untenable algorithm to understand. Thus, it comes as no surprise that it
is computationally slow. It has a lower TPR and FDR for around two replicates then would
be observed for replicates around 5 or 10 [Soneson and Delorenzi, 2013] .

8.2.2 EdgeR

The strength of edgeR is generally higher TPR rate compared to other methods. It is also
robust in dealing with low sample sizes and performs well with outliers in this situation
as well. As for weaknesses, it has medium computation time requirements [Soneson and
Delorenzi, 2013]. A weakness is that the FDR is larger when data contains outliers [Soneson
and Delorenzi, 2013].

44

8.2.3 DESeq

The strengths of DESeq is that it can be a conservative estimation algorithm [Soneson and
Delorenzi, 2013]. It is also a fairly quick algorithm in comparison to the others, but time
efficiency degrades proportional to the size of data. Given a large sample size, it has a larger
FDR rate than would be observed for smaller sample size [Soneson and Delorenzi, 2013]. In
this sense it has similar behavior to baySeq. The FDR rate can increase when replicate size
is below 5.

45

Chapter 9

Future Work and Conclusion

9.1 Future Work

It is now appropriate to discuss the framework for future work. First, it is important to note
that we limited ourselves to pairwise balanced experimental design in order to duplicate and
simulate work prevalent in the field. However, methods such as baySeq support experimen-
tal designs that are multifactor. Furthermore, other methods are extending their abilities
to account for more complicated designs. Hence, it is worth exploring more complicated
experiments in simulation to see if the methods still remain comparable.

The data simulation in this report utilized the compcodeR package simulate raw data
counts. The compcodeR package is easy to use, versatile, and is a powerful tool. Never-
theless, it is of future interest to explore simulations using the R statistical programming
language directly. Also, it is important to explore not only Poisson and Negative Binomial
generated data but more hierarchical data in an effort to simulate realistic data better. As
NGS RNA-seq technology and data continues to evolve, this is a distinct area of future
potential in future research.

An interesting consensus from this study and those explored is that FDR can be ad-
dressed by using a large number of biological replicates. That is, something around 5 or
more replicates. However, as we discussed above, small samples often lead to methods hav-
ing elevated FDR. It is almost certain the NGS technology will continue to develop, become
cheaper, and more common. However, it is unknown if this will impact the ease and cost of
having biological replicates. Thus, an area of high interest is to explore how methods might
be extended to account for controlling FDR better given lower and more realistic sample
numbers. For example, between 2 to 3 replicates.

Finally, as the field continues to develop at a fast pace, it is necessary to expand the
scope of this study to new methods that are being proposed and published.

46

9.2 Conclusion

In this report, we evaluated and compared three NGS methods: edgeR, DESeq, and baySeq
for differential gene expression. We simulated data given there are 12,500 genes, where
1,250 genes are differentially expressed, and 5 replicates for two biological conditions. In
our simulation, we did not observe any superior method. edgeR and DESeq are based
on similar techniques and showed similar ROC, AUC, and FDR rates. baySeq relies on
Empirical Bayes methods and had comparable AUC values to edgeR and DESeq. It did
have a lower FDR rate compared to edgeR and DESeq. These results are similar to the
study conducted by Soneson and Delorenzi [2013].

No differential gene expression was detected in the red flour beetle data. Since the data
had no biological replicates, it was necessary to use Cufflinks to analyze the data. The
data had two biological conditions: starved male and fed male. We conducted the analysis
using the Galaxy project pipeline. We normalized the counts and cleaned the data. The
report visualized the results with cummeRbund which revealed that there was no evidence
of differential gene expression being present in the data. As a result, we recommend the
experiment be conducted again in the future with biological replicates and starving the male
for a longer period of time in hopes of observing changes.

This report has raised interesting questions that should be investigated in future work.
It is important that simulated data be used to compare new and existing NGS methods.
FDR in NGS studies and experiments should be investigated further for replicates less than
3. Furthermore, more complicated experimental designs should be explored as biological
experiments continue to evolve and become more sophisticated. This report has been suc-
cessful in replicating results observed in literature [Soneson and Delorenzi, 2013], [Robles
et al., 2012], [Kvam et al., 2012].

47

Bibliography

Agathman. Collection of basic alternative rna splicing events. Retrieved from http://en.

wikipedia.org/wiki/File:Alt_splicing_bestiary2.jpg, 2009a.

Agathman. Splicing overview. Retrieved from http://en.wikipedia.org/wiki/File:

Splicing_overview.jpg, 2009b.

S. Anders and W. Huber. Differential expression analysis for sequence count data. Genome
Biology, 11:R106, 2010.

D. Blankenberg, G. Von Kuster, N. Coraor, G. Ananda, R. Lazarus, M. Mangan,
A. Nekrutenko, and J. Taylor. Galaxy: a web-based genome analysis tool for experi-
mentalists. Current Protocols in Molecular Biology, pages 19.10.1–21, 2010.

S. Brown. Next-Generation DNA-Sequencing Informatics, volume 1st Edition. New York:
Cold Spring Harbor Laboratory Press, 2013.

M. Clamp, B. Fry, M. Kamal, X. Xie, X. Cuff, J. Lin, M. Kellis, K. Lindblad-Toh, and
E. Lander. Distringuishing protein-coding and noncoding genes in the human genome.
Proceedings of the National Academy of Sciences, 104(49):19428–19433, 2007.

W. W. Cohen. A Computer Scientist’s Guide to Cell Biology, volume 1st Edition. New
York: Springer Science, 2007.

OpenStax College. Rna splicing overview. Retrieved from http://en.wikipedia.org/

wiki/File:0326_Splicing.jpg, 2013.

A. C. Frazee, B. Langmead, and J. T. Leek. Recount:a multi-experiment resource of analysis-
ready rna-seq gene count datasets. BMC bioinformatics, 12(1):449, 2012.

B. Giardine, C. Riemer, RC. Hardison, R. Burhans, L. Elnitski, P. Shah, Y. Zhang, and
J. Taylor. Galaxy: a platform for interactive large-scale genome analysis. Genome Re-
search, 15(10):1451–5, 2005.

S. F. Gilbert. Development Biology, volume 7th Edition. Sunderland: Sinauer Associates,
2000.

J. Goecks, J. Nekrutenko, A. Taylor, and Galaxy Team. Galaxy: a comprehensive approach
for supporting accessible, reproducible, and transparent computational research in the life
sciences. Genome Biology, 11(8):R86, 2010.

T. J. Hardcastle and K. Kelly. bayseq: Empirical bayesian methods for identifying differen-
tial expression in sequence count data. BMC bioinformatics, 11(1):422, 2010.

48

http://en.wikipedia.org/wiki/File:Alt_splicing_bestiary2.jpg
http://en.wikipedia.org/wiki/File:Alt_splicing_bestiary2.jpg
http://en.wikipedia.org/wiki/File:Splicing_overview.jpg
http://en.wikipedia.org/wiki/File:Splicing_overview.jpg
http://en.wikipedia.org/wiki/File:0326_Splicing.jpg
http://en.wikipedia.org/wiki/File:0326_Splicing.jpg

D. Horspool. Central dogma of molecular biochemistry with enzymes. Re-
trieved from http://en.wikipedia.org/wiki/File:Central_Dogma_of_Molecular_

Biochemistry_with_Enzymes.jpg, 2014.

V. M. Kvam, P. Liu, and Y. Si. A comparison of statistical methods for detecting differ-
entially expressed genes from rna-seq data. American journal of botany, 99(2):248–256,
2012.

Madprime. Chemical structure of dna. Retrieved from http://en.wikipedia.org/wiki/

File:DNA_chemical_structure.svg, 2014.

O. Morozova and M. A. Marra. Applications of next-generation sequencing technologies in
functional genomics. Genomics, 92(5):255–264, 2008.

Y. Park. Red flour beetle data, 2013. Unpublished Data.

J. K. Prickrell, J. C. Marioni, A. A. Pai, J. F. Degner, B. E. Engelhardt, E. Nikadori, and
J. K. Pritchard. Understanding mechanisms underlying human gene expression variation
with rna sequencing. Nature, 464(7289):768–772, 2010.

A. Roberts, H. Pimentel, C. Trapnell, and L. Pachter. Identification of novel transcripts in
annotated genomes using rna-seq. Bioinformatics, 27(17):2325–2329, 2005.

M. D. Robinson, D. J. McCarthy, and G. K. Smyth. edger: a bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics, 26:139–
140, 2010.

J. A. Robles, S. E. Qureshi, S. J. Stephen, S. R. Wilson, C. J. Burden, and J. M. Tay-
lor. Efficient experimental design and analysis strategies for the detection of differential
expression using rna-sequencing. BMC bioinformatics, 13(1):484, 2012.

F. Sanger and A. Coulson. A rapid method for determining sequences in dna by primed
synthesis with dna polymerase. Nature, 94(3):441–448, 1975.

Schlurcher. Negative binomial. Retrieved from https://commons.wikimedia.org/wiki/

File:Negativ_Binomial_Distribution.PNG, 2009.

J. Shendure and J. Hanlee. Next-generation dna sequencing. Nature, 26(10):1135–1145,
2008.

C. Soneson and M. Delorenzi. A comparison of methods for differential expression analysis
of rna-seq data. BMC bioinformatics, 14(1):91, 2013.

C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D. Kelly, H. Pimentel, S. Salzberg,
J. Rinn, and L. Pachter. Differential gene and transcript expression analysis of rna-seq
experiments with tophat and cufflinks. Nature Protocols, 7:562–578, 2012.

49

http://en.wikipedia.org/wiki/File:Central_Dogma_of_Molecular_Biochemistry_with_Enzymes.jpg
http://en.wikipedia.org/wiki/File:Central_Dogma_of_Molecular_Biochemistry_with_Enzymes.jpg
http://en.wikipedia.org/wiki/File:DNA_chemical_structure.svg
http://en.wikipedia.org/wiki/File:DNA_chemical_structure.svg
https://commons.wikimedia.org/wiki/File:Negativ_Binomial_Distribution.PNG
https://commons.wikimedia.org/wiki/File:Negativ_Binomial_Distribution.PNG

C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D. Kelly, H. Pimentel, S. Salzberg,
J. Rinn, and L. Pachter. Cufflinks. Retrieved from http://cufflinks.cbcb.umd.edu/,
2014. Used with permission. All Rights Reserved.

J. Zhang, R. Chiodini, A. Badr, and G. Zhang. The impact of next-generation sequencing
on genomics. Journal of Genetics and Genomics, 38:95–109, 2011.

M. Zvelebil and J. Baum. Understanding Bioinformatics, volume 1st Edition. London; New
York: Garland Science, 2007.

50

http://cufflinks.cbcb.umd.edu/

Appendix A

Negative Binomial Distribution

Figure A.1: Distribution of Negative Binomial with µ = 10, φ = 0.8(red), φ = 0.2(blue),
and φ = 0.5(green). Creative Commons Schlurcher [2009].

The negative binomial is a discrete probability distribution which has two parameters, the
mean and the dispersion. We model counts in RNA-seq experiments as Y as follows:

Y ∼ NB(µ, φ)

The distribution is useful in situations where RNA-seq has biological replicates where the
dispersion expands quicker than the mean [Anders and Huber, 2010]. The negative binomial
estimates the expected mean as φµ

1−φ and expected dispersion as φµ
(1−φ)2 .

51

Appendix B

NGS Tools Usage in R

We simulated data to demonstrate the usage of baySeq, edgeR, and DESeq tools in R as
shown below. The approach was based on the data simulation as outlined by Hardcastle and
Kelly [2010]. The notable difference is the means are estimated much simpler. We assume
a balanced pairwise design with two biological conditions with 2 replicates each. The first
10% of genes are simulated to are assumed to be differentially expressed with mean 5 for the
first condition and mean 25 for the second. The dispersion is not assumed to be consistent
and distributed from a gamma distribution. For the non-differentially expressed genes, we
assumed a mean of 10 and an overall dispersion of 0.5. The R code is provided below:

#Define the seed

set.seed(2003)

#Define the simulation parameters

n = 10000

samples = 8

percentDE = 0.10

count1 = rnorm(n, mean = 5, sd = 1)

count2 = rnorm(n, mean = 25, sd = 1)

count3 = rnorm(n, mean = 10, sd = 1)

dispersions = rgamma(n, shape = 0.85, scale = 0.5)

y = matrix(0, nrow = n, ncol = samples)

for(i in 1:(percentDE*n))

{

for(j in 1:(samples/2))

{

52

y[i,j] = rnbinom(1, size = 1/dispersions[i], mu = count1[i])

}

for(j in ((samples/2) + 1): samples)

{

y[i,j] = rnbinom(1, size = 1/dispersions[i], mu = count2[i])

}

}

for(i in ((percentDE * n) + 1): n)

{

y[i,] = rnbinom(1, size = dispersions[i], mu = count3[i])

}

We now turn out attention to the tools baySeq, edgeR, and DESeq usage in R with the
simulated data above. See the code below:

#baySeq usage in R

#library size

libs <- 4

#define the groups, first for NGE and second for DE, assume balanced size

groups <- list(NDE = rep(1,libs), DE = rep(1:2, each = libs/2))

#Create a count data object of counts with associated group

CD = new("countData", data = y,

replicates = rep(1:2, each = libs /2), groups = groups)

libsizes(CD) = getLibsizes(CD)

cl = NULL

#Estimate priors and likielihood given a particular model

CD = getPriors.NB(CD, samplesize = 10^5, estimation = "QL", cl = cl)

CD = getLikelihoods.NB(CD, pET = ’BIC’, cl = cl)

#Report the highest probabilties of differential expression given "DE" model

results = topCounts(CD, group = "DE", number = 10)

head(results)

53

#edgeR usage in R

d <- DGEList(counts = y, group = c(1,1,2,2), lib.size = rep(n, samples))

de <- exactTest(d, dispersion = 0.2)

topTags(de)

#DESeq usage in R

#Conditions of the data

condition <- c("trt1", "trt1", "trt2", "trt2")

#Counts

cds <- newCountDataSet(y, condition)

cds

#Normalization

cds <- estimateSizeFactors(cds)

sizeFactors(cds)

#Variance Estimation

cds <- estimateDispersions(cds)

#Estimate differential expression (currently produces an error)

res <- nbinomTest(cds, "trt1", "trt2")

head(res)

54

Appendix C

Data Simulation Using CompcodeR

The following code in R was used to conduct the data simulation as described in Chapter 8
of the report. See below:

library(compcodeR)

n=12

i=1

for(i in 1:n)

{

printStatement<-paste("dat",i,sep="")

printStatement

dir = "~/Dropbox/Programming/masters/

dataSim/dataSimNoDispersion/simDataSets/"

dataSet <- "dataSimulation"

dataSetRSD<-paste(dir,"dat",i,".rds",sep="")

generateSyntheticData(dataset = dataSet, n.var=12500,

samples.per.cond=5,

n.diffexp=1250,

repl.id = i,

seqdepth = 1e+07,

fraction.upregulated=0.5,

between.group.diffdisp=FALSE,

filter.threshold.total =1,

filter.threshold.mediancpm = 0,

fraction.non.overdispersed = 0,

output.file = dataSetRSD)

55

}

for(i in 1:n)

{

#The input data set is the files from above produced

by generateSyntheticData method

dataSetInput <-paste(dir,"dat",i,".rds",sep="")

#We define the results of our analysis in the following folder

outputDir = "~/Dropbox/Programming/masters/dataSim/

dataSimNoDispersion/simDataDEResults/"

#1. edgeR analysis

runDiffExp(data.file = dataSetInput,

result.extent = "edgeR.exact",

Rmdfunction = "edgeR.exact.createRmd",

output.directory = outputDir,

norm.method = "TMM",

trend.method = "movingave",

disp.type = "tagwise")

#We now save the results to be used in comparing our results,

#deREsults stands for differential express results

deResults <- c(paste(outputDir,"dat",i,"_edgeR.exact.rds",sep=""))

#2. DESeq analysis

runDiffExp(data.file=dataSetInput,

result.extent = "DESeq.nbinom",

Rmdfunction = "DESeq.nbinom.createRmd",

output.directory = outputDir,

sharing.mode = "fit-only",

disp.method = "pooled",

fit.type = "local")

deResults <- c(deResults,

paste(outputDir,"dat",i,"_DESeq.nbinom.rds",sep=""))

#3. baySeq Analysis

runDiffExp(data.file=dataSetInput,

result.extent = "baySeq",

56

Rmdfunction = "baySeq.createRmd",

output.directory = outputDir,

norm.method = "quantile",

distr.choic = "NB",

equaldisp = TRUE,

sample.size = 1e5,

estimation = "QL",

pET = "BIC")

#4. Save the output from the analysis in the following

deResults <- c(deResults,

paste(outputDir,"dat",i,"_baySeq.rds",sep=""))

deResults

}

##

#Compare results #

##

#Build a data frame with input files,

#these are the outputs from the results above

file.table <- data.frame (input.files = deResults,

stringsAsFactors = FALSE)

#Define a list of parameteres for the comparison study.

parameters <- list (inc.nbr.samples = NULL,

incl.replicates = NULL,

incl.dataset = dataSet,

incl.de.methods = NULL,

fdr.threshold = 0.05,

tpr.threshold = 0.05,

typeI.threshold = 0.05,

ma.threshold = 0.05,

fdc.maxvar = 1500,

overlap.threshold = 0.05,

fracsign.threshold = 0.05,

comparisons = c("auc", "fdcurvesone", "rocone"))

outputDirectory <- "~/Dropbox/Programming/masters/

dataSim/dataSimNoDispersion/simDataResults/"

runComparison(file.table = file.table,

parameters = parameters,

57

output.directory = outputDirectory)

58

Appendix D

CummeRbund Code

The following code given below was used for the visual analysis of gene data produced by
cufflinks for the red flour beetle data. See below:

#Load the library

library("cummeRbund")

#Set the working directory

setwd("/home/hlyates/Dropbox/Programming/masters/cuffdiff/RScripts")

#getwd()

#Step 2: Create a cuffSet object using readCufflinks().

#The files are in tutorial and established as working directory

#cuffData <- readCufflinks("data")

cuffData = readCufflinks(dir = "data", dbFile = "cuffData.db",

geneFPKM = "genes.fpkm_tracking", geneDiff = "gene_exp.diff")

#Count the significant genes in cummerBund

sigGeneIds <- getSig(cuffData, alpha = 0.05, level = "genes")

length(sigGeneIds)

#Step 3: Plot the density map and export as a PDF file

den <- csDensity(genes(cuffData))

#Now export the plot as a pdf

pdf("myDen.pdf")

plot(den)

dev.off()

59

#compare expression of each gene in two conditions with scatter plot

sca <- csScatter(genes(cuffData), "starved_male", "fed_male")

pdf("mySca.pdf")

plot(sca)

dev.off()

#Step 4: Find the significantly differentially expressed genes

#between starved male and fed female, assign to "sigGene"

sigGene <- csVolcano(genes(cuffData), "starved_male", "fed_male")

pdf("sigGene.pdf")

plot(sigGene)

dev.off()

60

	Abstract
	Table of Contents
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Introduction
	Next Generation Sequencing
	Motivation of the Term Next Generation Sequencing
	NGS Sequencing
	Relevance of NGS

	Types of Experimental Designs
	Balanced Pairwise Design
	Multifactor Pairwise Design

	Report Outline

	Differential Analysis
	Brief Introduction to Molecular Biology
	Biological Explanation of Differential Expression
	Basic Biological Background
	Alternative Splicing

	Next Generation Sequencing
	Microarray Technology
	Next Generation Sequencing
	RNA-seq Data
	RNA-seq Tools
	Compcoder
	Galaxy
	Cummerbund

	Bayseq
	Bayseq Method
	A Brief Overview
	Descriptions of Bayseq Method

	Bayseq Usage in R

	EdgeR
	EdgeR Method
	A Brief Overview
	Description of EdgeR Method

	EdgeR Usage In R

	DESeq
	DESeq Method
	A Brief Overview
	Description of DESeq Method

	DESeq Usage In R

	Data Simulation
	Methods for Data Generation
	Design of Data Simulation
	Counts as Negative Binomial Model
	Estimation of gc(i) and gi

	Results

	Analysis of Red Flour Beetle Data
	Red Beetle Data
	Galaxy Pipeline Flow Analysis
	Quality Control
	Aligning Reads Using Tophat and Cufflinks

	CummeRbund Analysis for Differential Expression

	Relevant Work
	Review of Data Simulations and Comparisons of Methods
	Soneson Study
	Robles Study
	Kvam Study

	Review of Relevant Work
	BaySeq
	EdgeR
	DESeq

	Future Work and Conclusion
	Future Work
	Conclusion

	Bibliography
	Appendices
	Negative Binomial Distribution
	NGS Tools Usage in R
	Data Simulation Using CompcodeR
	CummeRbund Code

