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CHAPTER 1
INTRODUCTION

Recent years have shown an increased interest in applying mathe-
matics to the social sciences, The power of mathematics has been demon-
strated in its application to many areas of natural science, especially
physics. If a mathematical model can be built for a given physical or
social phenomenon, the mathematical symbols ". . . can serve as a proxy
for experimental manipulation of the objects themselves, so that behavior
of an actual object may easily be predicted by the behavior of these
symbols alone. . . ," (Coleman, 5). The very idea of experimenting with
something so unpredictable as people demonstrates the value of an accurate
mathematical model to predict social phenomena. In addition to this
"prediction'' process, the mathematization of a set of axioms may reveal
hidden relations between variables.

The reason that mathematics is such a cumbersome tool for the
behavorial scientist may be considered on a global and local level. At
the global leve! the social scientist sees different rules governing
different societies. This inhibits the type of generality that is con-
ducive to mathemat{cs. For example, for the physicist, it is the same
gravity (in a mathematical sense) that pulls a ball to earth no matter
where on the globe it is dropped. Hence, Newton's law of gravitation has
an universal scops and the same situétion exists for many axioms in physics,
On the other hand, the sociologist's axioms may have a very narrow scope.
For example, Hoffmann (7) states that his heirarchy of eleven theorems

concerning the Pawnee marriage rules does not have ''wide application'.



That is, they apply only to one small portion of the world's population.

At the local level, the most obvious difficulty confronting the
mathematical sociologist is one of measurement. The physicist can measure
time, distance, mass and force with considerable precision, These measure-
ments also provide a ready check for the equations used to describe the
system. On the other hand, suppose the sociologist makes the observation
that '"the level of group friendliness will increase if the actual level of
interaction is higher than that ‘appropriate' to the existing level of

friendliness" (Simon, 9). Using Simon's notation, let:

I(t) = the intensity of interaction among members
F(t) = the level of friendliness among the members
b, 8 = positive constants

(1(t) and F(t) indicate that intensity and friendliness are functions of
time,) Then, Simon (9) translated this axiom into the differential

equation

(1.0) dr(t) _ [I(t) -pF(t)] ’

Tdt
The value of such an equation seems doubtful and among the reasons for this
is that fact that the sociologist has only a crude ''friendliometer" to
determine F(t), the level of friendliness at time t. The situation is
similiar for many sociological variables. However, this may not entirely
discount the usefulness of equations like (1.0). Indeed, one may still be
able to discover new relationships between F(t) and I(t) that are brought
to light through symbolic representation. Even if this fails, all is not
lost becuase the language of a proposition is more precise in symbolic
form than in a verbal representation. As Coleman (5) stated, 'wverbal

statements easily hide ambiguity, mathematical ones do not."



CHAPTER II
THE DETERMINISTIC MODEL

With this bi; of meta-social verbosity behind us we proceed with
the primary function of this paper: To demonstrate the progress that has
been made in mathematical sociclogy by expounding on several concrete
models applicable to social phenomena. The models to be considered fall
into two classes, the deterministic (explicit) model and the stochastic
(probabilistic) model. (For a comparison between the two procedures
being applied to model the spread of an epidemic in a population, see
Baily, 1.)

First, we consider the deterministic model. For each example,
we shall: (1) state the assumptions made about the given process to be
modeled in order to adequately ''close' the process and obtain a workable
model, (2) describe the process or phenomena to be modeled, (3) write the
equations involved in the model and solve them, and finally, (4) point out

the virtues and/or weaknesses of the given model.

Social Diffusion

Social diffusion lends itself well to the deterministic model. One
of the simplest social diffusion theories stated verbally is the following:
", . . the rate of propagation of the attribute (i.e., piece of information,
behavorial innovation, belief, style) is proportional to the number of
people who already have it'" (Coleman, 5). Coleman (5) models this verbal
prop&sition in the following manner: Let t = time, let x = the number of

people who have the attribute at time t, and let k = diffusion constant of
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proportionality. The assumptions made to build the model are of a mathe-
matical nature. It is assumed that x is a differentiable function of time.
Hence, it is implicity implied that the diffusion process is taking place
continuously through time. (This is because differentiability implies
continuity.) Specifically, Coleman's (5) mathematical translation was the
following:

(1.1) dx _
d_t'— kx .

Solving equation (1,1) to the boundary conditions that x = 1 when
t = 0, we have
(1.2) x = ekt ,
Equation (1.2) may be used for predictive purposes. That is, knowing k,
one easily calculates x, the number of individuals who have the attribute
at time t. Of course, such a tidy solution has its drawbacks. First, one
may wonder how to find k. This must be done experimentally and could
easily be different for different attributes. It is also assumed that as
each member receives the attribute, he has a probability of passing it to
someone else. (The nature of this probability if discussed in CHAPTER III,)
A more subtle difficulty has also crept into equation (1.2). One observes

from equation (1.2) that

dx _ kt
-E-ke 70

provided k and t are positive (which is experimentally the case). Conse-
quently, (1.2) is an increasing function of time. That is, there is no
constraint on the size of the population which may receive the attribute.
This leads to a restatement of the original verbal proposition: ", , . the
rate of diffusion (or growth) is proportional to the number who already

have the attribute and to the number who have yet to receive it' (5).



In order to build the mathematical model for this modified dif-
fusion theory, we must define a new constant: Let N = size of population.
Provided with the same mathematical assumptions as in the previous example,
the model was as follows (5):

(Fu) & = x(N-x) .
Solving (1.3) by separation of variables and the method of partial

fractions to the boundary conditions that x = 1 when t = 0, we have

x-S

By partial fractions, this becomes

'—k( £k ) Sdt

S0

1 —

e (ln X - In(N-x})- t+C
hence

C = -1n{N-x)
Nk
so that
Nkt
(1.4) x = —Ne
N-1 + eth

Equation (1.4) can be used to predict the number of people who have
the attribute at time t provided N and k are known. However, again there
is an implicit assumption built into the verbal proposition that gave rise
to (1.4), This assumption asserts that as each member of the population

receives the attribute, he has a chance to pass it to someone else in the



population. Clearly, this is not always the cése. This leads us to
consider a third diffusion mode! that assumes a constant source of propa-
gation. More explicitly, we assume a limited population and that the
number of individuals receiving the attribute per unit of time is pro-
portional only to the number of individuals who have not yet received the
attribute (5). Coleman's (5) mathematical translation of this was as
follows:

(1.5) dx _
= k({N-x) .

Solving (1.4), prescribed to the boundary conditions that x = 0
when t = 0, we have
(1.6) x = N(1 - e KE) |
Equation (1.6) can also be used for predictive purposes provided k can be
experimentally determined and the assumptions of the model are not violated.
So far, we have discussed three distinct models of the diffusion
of a social attribute through a society. The last two models, that yield
equations (1.4) and (1.6), have been shown to give reasonably accurate

predictions when properly used (5).

Hummon's Model of Blau's Axioms Concerning Differentiation in Organizations

As a final example of the deterministic model, we turn to a recent
model that Hummon (8) constructed from Blau's (4) axioms concerning dif-
ferentiation in organizations. This example emphasizes the importance of
recognizing an implicit assumption in a given model. Hummon's (8) notation
will be used throughout this example. The verbal axioms that concern us
are Blau's (4),

V1.0 'Increasing size generates structural differentiation

in organizations along various dimensions at decelerating
rates."



V1.2 "The larger an organization is, the larger the average
size of its structural components."

Hummon's model of these two verbal propositions was as follows:
Let D = differentiation (By this we must mean the number of differentiated
classes or hierarchical levels ig an organization.) and let § = size of
the organization in number of members. The first assumption that Hummon
(8) made to build the model was that the differentiation D was a function
only of the size § of the organization. ". . . Blau (4) found that size
can be used as the main independent variable in a formal theory for dif-
ferentiation in organizations" (8). Symbolically:

D = f(s) .

Now Hummon assumed that D was a twice differentiable function of S. This
implied that the social differentiation process took place continuously
with respect to size. One recognizes that this only idealized the situ-
ation and provided no detremental effects. Hummon's mathematical trans-
fation of V1.0 was,

M1.0 (a) df(s) a5 p

(b) QE£<< 0

Continuing the model, let C = average size of a component of the organi-

zation. Then,
=5
f(s)

C =

(=)

Blau's V1.2 then translated into Hummon's mathematical statement
M1.2 dC
E>Dp

So far, the model has done nothing more than formalize Blau's

axioms; we have no predictive equation to compare with equations (1.4) and



(1.6). However, Hummon (8) claimed to have discovered a '"new'" (Blau, 3)
relationship between the average size of a component C and the size of the

organization S. The mathematical statement of Hummon's ''new' proposition

was
Mi.7 d%c oo, it df < =f
T 1 = h .
as2 T’ ds? 252

Hummon then proceeded with a valid mathematical argument that established
M1.7.
His argument was essentially this. By direct calculation

one finds that

d®c s d°f 2 df 25 df

— — — — —
-

ds2 = f24s2 f24s 3 ds

Multiplying both sides by Sf, we have

2 2 . 2 2
sf d%C __ S2 d%f _, sdf  , S2 (d_f> )
ds?2 ¢ ds? f ds £2 \ds /-
Put
2 2
:E._f andq::s_.d_t
£ dS £ dS
to get
2
sf 9C =202 . 2p +q.
-cgz P P q

By M1,0 and the obvious fact that Sf>0, we see that p3>0

and g > 0. So we have that if

2p2 - 2p + >0, then __2_>0.



Investigating y = 2p2 - 2p + 9?70, we find that y takes
its minimum when p = 1. Hence, we want
-1+q%0,

or q» %. This, by definition of q, says

The verbal translation of M1.7, according to Hummon (8) was the following:

V1.7 "In practical terms it states that with increasing
organizational size, the rate of increase in the
size of the average component itself increases.,"

It is clear that the mathematical statement of V1.7 is simply

2
9¢ 5 4.

d32

Specifically, Hummon (8} is assuming that

2
(1.7) a°f . -f(s)

ds? 252

always holds. So the pertinent question becomes: Do there exist functions
which could be utilized in this model such that the assumptions of M1.7
do not hold? That is, do there exist functions relating $ and D in such

a way that (1.7) does not hold?

Bltau's Counterexample
p

Blau (3) offered one such example. Namely suppose one considers
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organizational sizes of 100, 200, 400, and 800 employees (these are the
values for S), with 5, 10, 20, and 40 components (these are the values of
D) respectively. One identifies the function f, relating S and D to be
linear in this example. In fact, we can explicitly write the rule for

i S - —
( )

Then, for example, when S = 100, we have that f(S) = f(100) = 5. Now

assuming that f is twice differentiable, we find

df _ 1
E"E"ﬁ'709
satisfying M1.0 (a). However,
2
ﬂ:o and ﬁl(o
ds2 252

(for all $>0, which is obviously the case). Hence, we have that

df > =-f(s)
ds? 252

which is contrary to Hummon's assumption (1.7). The fact that

dZ

ds2

-

=0

suggests that one way which to reword V1.0 slightly to read: Increasing
size generates structural differentiation in organizations along various

dimensions at non-increasing rates. Then, making the corresponding change

in M1.0 (b), we have

o

%qu
IN
o
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Furthermore, if one writes Hummon's Ml.7 to agree with Blau's example,
(and a mode] should agree with the facts known about the system), we would

have the exact opposite:

2
9C¢ < o,

ds

N[

In conclusion, we observe that the mathematical statement of Vi.7

is:
2
9-—-;-20.
ds
Hummon (8) shows that
2 2
d°f -
'q"g"'ﬁ,if —--54':—-2 .
ds ds 25

Blau {4) offers a verbal counterexample which has been formalized to demon-
strate that the hypothesis (1.7) of MI.7 does not always hold. Hence, one

can not conclude that

i
ds?
is always the case. Therefore, Hummon's ''new' proposition is mathematically
valid, but it is not sociologically relevent.
In fact, as Blau (4) suggested, empirical evidence is in favor of

adapting another axiom to say the exact opposite is true; mathematically

2
d—%éo.
ds

Verbally this says: With increasing organizational size, the rate of
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increase in the size of the average component increases at a non-increasing
rate.

Technically, Blau's counterexample to Hummon's model is not mathe-
matically correct. Specifically, Blau's counterexample did not fit Hummon's
assumptions perfectly. We had to change 7 to Z in several instances to
make Blau's example work. It turns out that Blau's example is mathemati-
cally a "borderline" case. If one defines f(S) by

£(s) = s
no changes need be made in Hummon's hypothesis and we get a mathematically
sound counterexample to Hummon's '"new'' proposition.

As a final observation, we notice that the parameter C defined by
_ S
=5

is simply the average size of a given component in the organization,
Suppose a given organization has | executive director, 3 assistant directors,

and 10 workers under each assistant director. Then S = 34, D = 3 so that

Clearly, there are not, on the average, 11 1/3 directors, nor 11 1/3
assistant directors. The only component that C comes close to repre-
senting is the workérs. So, it seems that C is not an adequate parameter
to investigate. One might be led to believe that studying the behavior of
a parameter (such as C) which has an insignificant sociological interpre-
tation and even less mathematical meaning is little more than a mathe-

matical exercise.



CHAPTER III

THE STOCHASTIC MODEL

Definitions Concerning the Stochastic Process

The first thing that must be established is that 'the terms
'stochastic process' and 'random process' are synonyms and cover practi-
cally all the theories of probability from coin tossing to harmonic
analysis. In practice, the term 'stochastic process' is used mostly when
a time parameter is introduced" (Feller, 6). What follows is not an
attempt to characterize the stochastic process, but a dictionary of terms
that are used in the stochastic models that follow.

We begiﬁ by defining a probability space as an ordered triple
L, R, P). where (L is a non-empty set called the sample space and
elements w of () are called sample points.‘a? is a & -algebra of subsets
of {) and elements A of'?? are called events. P is a measure function de-
fined on ?q'satisfying: (1) p(LL) =1

(2) P(A) = 0 for each A

(3) If Ay, Ay, A3s « « . is any pair-wise
disjoint sequence of events, then

(5w = § vtan

= n=|
Definition: A random variable X is a measurabie, real valued

function defined on{) . (X: {1—> R, where R is the real number system.)
The stochastic models to be discussed involve a non-empty set T

called the parameter set, (For us, T will represent time, hence T = [0,00),)

Furthermore, we consider an experiment such that every t€ T constitutes

13
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a trial, and we are concerned only with some Binary circumstance. For
example, we might consider whether a friendship exists between any two
people in a given population, the answer being yes or no. The set iXes, Nq}
does not constitute the sample space, in fact, objects like iYeé} are not
even in the sample space. Our stochastic process will also involve counting

the number of Yeses that occur up to time t, Hence, we define a function

r« T IV U {p}
by r(t) = n if there are exactly n Yeses by time t. Hence, our sample

space consists of the function r in the set-theoretical sense. That is

Q = §, re) ] ety

Such a function r is easily constructed for an actual experiment by counting
the circumstances up to time t. The difficulty of too many circumstances
occuring in too short a time is alleviated in a later assumption. Notice
that fL could also be considered as the set of all non-decreasing, non-
negative, integer valued functions on T. That is, each point of £} is a
function (6). Without lose of generality we pick the only significant

such function.

Finally, we are concerned with assigning a probability to each
event A\67Q. That is, we assign a probability to the event that by time
t there have been n Yeses observed. (Write P(Xy = n).) Define (X; = n)
by

(X, =n) = {(t, n) | r(t) =n} .

Henceforth we assume H to be the power set of {L (Write €(€1 )}.). Thus,
we have (X, = n}e A for each t €T as desired.

Now we define the distribution function for each fixed but
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arbitrary ny € 1t U {0} by
~ fte,n) leetd = D, 1]

by

£ (t, n) = P(X, = n)) .

o

o

Notice that each f ﬁay be considered as a function on T.
Definition: Let X be a random variable with range xy, x2, X3, + «
. « Then the expected value of X {Write E(X).) is given by
oo
E(X) = 2 x;P(X = x;) .
iz
E(X) is sometimes called the mean value or average value of S, We say
E(X) is defined only when the indicated series converges absolutely, other-
wise a reindexing of the range of X may lead to a different value for E(X).
Definition: The probabilities of two events, say A and B, are
independent if P{A, B) (read the probability of A and B) is given by

P(A) * P(B).

The Poisson Process via Differential Equations

Equipped with these definitions, we proceed to construct our first
example of a stochastic process, namely the Poisson process. The Poisson
probability distribution was originally discovered as a special limiting
case of the Binomial or Bernoulli distribution (see Feller, 6 and Thomasian,
10). However, it has been discovered that the Poisson distribution can be
derived from a few mathematical assumptions which have a sociological inter-
pretation., Coleman (5) stated that the appropriateness of the Poisson
process for social phenomena lies in the assumptions on which the distri-

bution is based. More precisely, Coleman (5) stated three reasons for
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studying the Poisson process as derived from differential equations:

(1)

(2}
(3)

The Poisson process '"deals with numbers of elements' or
“"numbers of events'',

""The Poisson process occures continuously over time'.

", . . the Poisson process is appropriate to social
phenomena because it constitutes a rational model whose
assumptions can mirror our assumptions about actual
phenomena. Thus, it need not be simply an empirical
frequency because it fits the data'.

Since Coleman's development of the Poisson process is not mathe-

matically precise, so we follow the suggestions of Thomasian (10), Bishir

and Drewes (2), and Feller (6). The assumptions we need are the following:

(1)

(2)

(3)

(&)

The process has stationary increments. Intuitively,
this means the number of realizations (occurences,
favorable outcomes) in a given time interval depends
only on the length of the interval and not on its
location. Mathematically, if u, v, u', v' are elements
of the parameter set T, and u - v = u!' - v! then

Xy = Xy = X1 = Xyr

The process has independent increments., Intuitively,
this means the probabilities of a realization in two
disjoint time intervals is independent. Mathematically,
if a, t, u, v are elements of T, with s, t, u, v, then

Xt = Xg and Xy - Xy are independent events, that is
P (Xg - Xg), (X, - X)) = P(Xy - Xg) * P(xv - Xy

There exists a positive constant d such that for small h:

(a) The probability of no realization in (0, h] (an
interval in T) is approximately 1 - & h. Symboli-
cally, P(X, =0) T1 - 2n.

(b) The probability of exactly one realization in
(0, h]l is approximately Ah. Symbolically,
P(X, = 1) £ Ah. (We might interpret this as saying
that in small intervals the probability of a reali-
zation is proportional to the length of the interval.).

(c) The probability of more than one realization in {0, h]
is negligible. Symbolically, P(X, = 2) ¥ o.

The range of X; for each t in T is the non-negative integers.
We might say that the process has counting function reali-
zations,
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A more formal mathematical formulation of (3) above is vital to
our development of the Poisson process. First, we consider (3a). We may
define a function oy: T—2R in such a way that

oy(h) = P(x, = 0) - (1 - Ah).
Hence, we may rewrite (3a) as
(3a') P(X, =0) =1 - 2h + oy(h) .

In addition, we want

1im _C1(h)

h=>0 h
Consequently, as the interval becomes smaller, the approximation in (3a)
becomes better. An analagous procedure may be applied to (3b) and (3c),
using functions oz(h) and 03(h). Then, because we are interested only in
the Tlimiting case as h—>0 in the future, we may drop the subscripts

(for h—0) and write,

"

(3) (a1) P(X, =0) =1 Ah + o(h)

(b') P(X, =1) = Ah +o(h)
(c') P(% 2 2) = o(h)
where
lim aih) =0 .,
h=0 h

To derive the probability distribution for a process obeying these as-

sumptions, we write

(2.0) xt_'_h = Xt 2 (xt.l,h - Xt)
n
(2.1) (g = m) =) [¥e = ko Xppp = X, = n - K]

for n and k, non-negative integers, and n 2 k. Equation (2.0) has the
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obvious interpretation, Equation (2.1) says fhat if there are n reali-
zations by time t + h then in time t there were 1 or 2 or 3 or . . . 0orn
realizations. While the remaining (n - k) realizations come in the interval
(t, t + h] . Now, we define a family of functions f. : T— [o,1] by

f(t) = P(Xg = n)
where P(Xt = n) denotes the probability that there are exactly n reali-
zations by time t. Now, using assumptions 1 and 2, and equations (2.1) and

(2.2), we calculate

folt +h) = P(X 4y = 0) = P[ (X = 0), X 4 p - X = 0)] by (2.1)

= p [(xt =0), X, = 0] by (1)
= P(X_ = 0) - P(X, =0) = fy(t) - fy(h) . by (2)
Similiarly, filt + h) = falt) fi(h) + £,(t) fa(h) ,

and Fz(t + h) = fo(t) . fz(h) + fi(t) » fi(h) + fz(t) + folh).
In general

oo
(2.2) folt +h) =S5 f (t) f, _ (h) .
=0

Using assumption (3) with equation (2.2), we find for n = 0,

folt + h) = F (t) fo(h)

fot) [1 - h+(0) h)

n

folt) - Ah fo(t) + Fy(t) olh)

folt) - Aah fy(t) + o(h) ,

for h sufficiently close to 0.

For n = 1



"

filt + h) = folt) Fi(h) + £,(t) fy(b)

fole)[An +om] + £te) [1 - An+o(n)]

fo(t)lh + fl(t)(l - ah) +o(h) .

In general, for n - k2 2, i - k(h) = o(h). Hence, for n Z 1

(2.3) flt +h) = an(f _ (t) + (1 - An)f (t) + olh).

Now, we can show that fn(t) is differentiable on the parameter set T. For

n = 0, we have

fo(t + h) - fp(t)

lim
h=>0 h
= 13m  folt) - h folt) + olh) - folt)
h=->0 h
- 1im - h fo(t) + o(h)
h—=>0 h
= 'zfo(t) L]

For n Z 1, we have

tim  fnlt + h) - fn(t)
h=20 h

tim AR Dfn o 1 ()] + 00 - AR)Fa(t) + olh) - fnlt)
h»0 h

Af o (e) - af (¢) .

Hence fn(t) is differentiable on T for n 2 0. (The somewhat special treat-

ment of f3(t) could be avoided by defining f,(t) = 0 for n< 0.)
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In any case, writing f'n(t), for the indicated derivitive, we now

have a countable set of differential equations,

(2.4) fro(e) = -Afy(e)

and

(2.5) fro(t) = -AF (&) +%F _ (¢)
forn21.

A

To solve (2.4), we have fo(t) = e tC for some constant C. Since

Xo = 0, for fg(0) = 1, we have
(2.6) Fo(t) = e At |

Now suppose

(2.7) fn(O) =0 forn=Zi,
Using operator notation for (2.5), we have

(2.8) (0 +A)F (t) = AfF ().
For n = 1

fooo (1) = fi(t)

So (2.8) becomes

(2.9) (0 +A)F (t) = Ae” At

The integrating factor for (2.9) is etAt, Using this, (2.9) becomes
(2.10) o[ A% (+]]= A

Therefore, using the boundary conditions of (2.7), we have

(2.11) fle) = At e it



We continue to show, by induction on n, that

n -4t
(2.12) fn(t) = (At) e

n!

We have shown (2.12) true for n = 1, Suppose (2.12) is true for n =

then (2.12) becomes
(An)k e At

(2.13) - flt) = =
By (2.5), we have
(2.”-!) 'F‘k + l(t) - - Afk + ](t) + fk(t) .

By the induction hypothesis, (2.14) becomes

k - At
e s 1= Rfk + l(t)'+ ALps) = ’
k!
or in operator notation
K(Rtf - At
(2.15) (D +A)F (t) = s .
k +1 ki
Using e* At as an integrating factor, (2.15) becomes
(2.16) o[t At | (1] =AD"
. e k +] ——T'“ .

Again, using the boundary conditions of (2.7), (2.16) yields

k k - R
Fl 4 jleY = BRE Ll
* ki k + 1
=(1t)k+le-1t
(k + 1)1
establishing (2.12).
So we have
n - At
(2.17) f (t) = P(Xt —E (At) e forn=0,1,2, . . .,
n!

which is the familiar Poisson distribution.

k,
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Writing

»
ot

.S @

n=o nt

’

we find that for any fixed time t

[+ (. =]
T opx =0y = 3 LRc)
n=o n=o

n - At
e

ni

e'Zt %i Lﬂllzﬂ

n=¢o ni

as expected of a probability distribution. Another observation, from
equation (2.6), is that

fo(t) = P(Xt =0) =e .
So as t increases the probability of no realization decreases.

Another well known factor concerning the Poisson distribution is

deduced by calculating its expected value. The expected value E(Xt) is

given by
oD
E(X,) = 2 n P(X, = n)
n=o
B E r(lt)n e-at
N=o ni

-At < (?(t)n-]
ety 2 LAY

n=t  (n - 1)

A t.

So, for t = 1, the expected value E(Xt) is just'l . That is, the expected

number of occurences in an unit time interval (second, minute, hour) is
A . The parameter A is sometimes called the transition intensity of the

process.
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An assumption governing the Poisson process was that the proba-
bility of an occurence during the interval [t, t + h) was independent of
the number of occurences during [0, t). The next model to be discussed

drops this assumption.

The Pure Birth Process {(Feller, 6)

The pure birfh process postulates that when n realizations (birrths)
occur during EO, t), the probability of a realization during [t, t + h) is
approximately A \h. More specifically, the single parameter A, of the
Poisson process, is replaced by a sequence ‘AO’ a 1? 22, . « o where 4 ;
is the transition rate (transition intensity) for the system when there are
i members in the population. (We still assume QA ; 7 0 for each non-nega-
tive integer i.} When dealing with the pure birth process, instead of
saying that n realizations occur during the interval tO, t), we say that
the system is in state E, by time t. One can talk about the probability
of being in state E, by time t (Write P (t).). The only realization to be
observed in a pure birth process are the changes E,—YE_ (no change) and
E—E L (a birth).

Formally, the only difference in the assumptions of the pure birth

process as compared to the Poisson process is that (3b')} and {3c') become

a ol # o(h)

(3) (') . P(X, , =n+1)

(c'1) P(Kt+h?.n+l) o(h)

Here o(h) has the same role as in the development of the Poisson process.
If Pn(t) replaces fn(t), the only change in equation (2.3) is that A s

replaced by the appropriate A 5+ So we have

(2.18) Polt + h) = Pl{t)(1 -Ach)
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and
(2.19) Polt + h) = Po(t)(1 = Agh) .
Since the A : have no effect on the difference quotients on page 19, we

1

have that Pn(t) is differentiable and hence, continuous on the parameter

set T, So we get the equations

(2.20) Pl () = -ROPDt
and .

(2.21) P (e) = -A P (£) +RA P, _ (t), for n21,

n -

(Equations (2.20) and (2.21) are a special case of so-called Kolmogorov
equations.)

As an example of the pure birth process, we consider a population
whose constituents can give birth to new members but cannot die. Assume
also that during any short time interval of length h each member has the
probability A h + o(h) to create a new member, (where A is the rate of
increase of the population). Assuming no interaction among the members
and that at time t the population has size n (in state E,), the proba-
bility of an increase during (t, t + H] is n{Ah + o(h) as h—=>0., Hence,
the probability P_(t), that the population has n members at time t satisfies
the differential equations of (2,20) and (2.21), where A n = nA . oOur

problem now involves solving the differential equations
(2.22) Pro(t) = -ndP (t) «+ (n - 1NAP (1),

n=1(0, 1,2, ...). Assuming the system is in state Ei at time t = 0
we have the boundary conditions that

Pi(O) = 1 and Pn(O) =0 for n #i.
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Since members of the population cannot die, Pj(t) =0 for each t € T if

j<i. So, we are concerned only for n 2 i. For n = i, (2.22) becomes
Pro(t) = -i A p,(t)

which easily yields

(2.23) pile) = et AE

We now prove by induction that for n 21,
(2.24) P (t) =(n : D ity At

We see that (2.23) satisfies (2.24), so assume that (2.24) holds for

n=4i,i+1,i+2, ., .m. This gives

(2.25) P (t) =(: : 1.) et LAt -
We must show that

_ m -idt ~Atm+ 1 -1
(2.26) Pm+l(t) —<m+l _De (1 - e ) ¢

By equation {2,22)

P! (t) = -(m+ DA P (t) +mdP (t)
m+ 1 m+ 1 m
m - 1 . .
= -(m + t)apmg;i) rmd \ i>e""’“(1 Je Aty -

using (2.25). Employing the operator notation, this becomes

[D+(m+l)2]Pm+](t) =mﬂC:::>e'i%t(l -e'?‘t)m'i "

(m+ NAt

for which e is an integrating factor. Hence

D[e(m : I)atpm + l(t)—J } m;\c: : :)e-iat“ - e-at)m B ie(m + el



e(l't‘l+ T)“tp (t)

1]

m+ 1

-1 2 .
mﬁ(m i)Se(m - 1)’At(l - e_?'t)m " e At dt

m -

-1 s
mﬂ(m _ i) Seat(eat - 0™ e,

Noticing that the integral on the right hand side is of the form

Sundu
where u = (e At _ 1), we have

-] ?.t_ m+ 1 -1
mzm@-i}e mi)1-i e-lm + AT

m(m - 1)!

TmEl i -m)im - i) m 41 -

Pm+l

n+1-i

1') (eat - I)

o-fn + })'l\te-’&t(n & % a i)e?\t(n +1=1)

_ m idt ~Atm + 1 -
S lm s e ® (1 -e )

which is exactly (2,26), establishing (2.24).
Now, we investigate the behavior of the iPn(t)} n defined by
(2.24). One has only to look at (2.24) to see that Pt)Z 0Vt €T,

However, is it true that
[~ 2]

(2.27) > P (t)

n=o

1]
—

for each t € T? In general, the best can say is that

[+ »]
(2.28) }: P (t) £,
n=oQ

The following theorem (Feller, 6) clarifies the situation. In fact, it

applies to the more general equation (2,21).

'“?‘C: - Dge-iat“ _ e Aeymei (e DAL
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Theorem: In order that (2.27) holds, it is necessary and suf-

ficient that the series

1
(2.29) Z .

diverge.
Proof: Put

(2.30) Sk(t) = Po(t) t e s o + Pk(t).
Then using (2.21), (2.30) gives
(2.31) Sk‘(t) = -'AkPkt .

Hence, for k 2 i (and using the fact that Pi(G) = 1 and Pn(O) = 0 for

n# i), we have
+

t
A So'vgk(t) = 35000 = 5,(6) - 5,(0)

n

sk(t) -1.

So that %
(2.32) 1 - s (¢) =ﬂk §Pk(T) dr .

Since all Pk(t) Z 0 for each t € T and 3 k'7 0 for each k, we have that

1 - Si(t) Z0
establishing the fact that

o0
Ser()s T .
n=o"

Noticing that S, (t) is monotone increasing with k, we have that the right
hand side of (2.31) is monotone decreasing with k. Then since the right
hand side is also bounded below by zero we have for each t in T, that the

limit as k=Yoo exists. Write
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t .
1i SP dT =
im Hk ) k’r

k-5

and clearly, for each k we have

2, | dT Z2 M
(2.33) C A SPk’T (t)
SO, t . t
S‘sn('l’)d"r = jl (PO(T) + P ("r) + ... P (T)
[ o
+
_foPolT) ﬂ,PI(T)
5 Ao 1,

A (t),

dv

Sak (T

k

|
2l (t) — 4 ...+ —
(ﬂ ﬂ + + ak)

Now, Sn(t) €1, so that "

Uspmiar ¢ e

o

Hence, if (2.29) diverges, it must be that AL(t) =

(2.32) tells us that Sk(t)-—'?l.
Now suppose (2.29) converges, write

oc

(2.34) S .Al“= Lo,

hz=O

and that Sk{t)%l as k=>r®@ , Then

So, as k=r®© |

. _
g'sk('r)d'r . gp('r)+p('r)+. R (T) d
v}
|
= gPO(T)dT + 40 o+ SPk(T)dT
[+ [~}
) l-Sg(T')+... 1 - 5(T)
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Using our assumption that

l'i_r_n’m Sk(t) =1

and (2.35), together with the Lebesgue dominated convergence theorem, we

find N
in (s (T)T £ 1im S 2
Tim S {7 ] 2
k-:;auok l:-?cnn::"n
or &
i < 14 %’ L
I;T.-,@ Sk{T)dT £ kln;oh“?tn
()
$O £
§are< .
o
or

t £ L for any fixed but arbitrary t, which cannot be. So if (2.27)
holds (2.29) must diverge,
To parallel our work with the Poisson distribution, it remains to

find the expected value E(X) for (2.24). We have

E(X) = 2_nP_(t)
ns

o
(=) n -1 a a ;
-3 - n -
:32-_1'1 n-ie1t(l-e t) .
=0
Claim:
oo n -1 . .
(2.36) z n(n o e"ﬂt(l LR T g g, BE
o

Proof: Put x = e s then 0<x &1,

= n-1 _' .
z" n - i (l-x)n'lzix"(“"l)

Hence



So

oo

(n - 1): -i =i+ )
Z i(i -nir;z -3t 0-x"" " =x .

N=o
oo
n n -3 _ 1
2(1-)“‘*) el

Hence

n=t1
is equivalent to {2.36).

Now consider the series expansion for D<€x <1.

]
(2.37) T =Z x"
N=o
Di fferentiating (2.37) once gives
] a0
-1

(2.38) Hommm—— = nx" .

(1 - x)? Z

Differentiating (2.38) gives

S I TE: n(n - 1)x" ~ z

{1 - x)3 n=7

or ,
1 _ nin - 1)x
(i-X)B n=2 2
In general
@
1 _zn(n-l)...(n-i)xn'1
(1-x)' " ! n=( il

establishing (2.36).



CHAPTER IV
CONCLUSIONS

To conclude our remarks on the application of differential equations
to sociology, we make the following observations. Concerning the diffusion
models, we noticed that the first two examples implicitly assumed that as
each member of the population received a given attribute, he had some
chance (probability) of giving the attribute to someone else. However, the
exact role that this probability played was not explicitly formulated in
the deterministic model. 1In spite of this, it was possible to derive
equations which could be utilized to predict the number of people who have
the attribute at a given time.

Hummon's model of Blau's theory of differentiation in organizations
introduced two observations. First, when building a model for a given
social phenomenon, one must remain aware of the sociological interpretation
of the mathematical assumptions. Hummon's mathematical assumption (1.7)
led him to an invalid conclusion concerning the behavior of the average
size of a component of an organization, namely Hummon's V1.7. Secondly,
we observed that one parameter, namely C = % » that Hummon investigated
is of doubtful socialogical or mathematical (statistical) significance.

The stochastic models presented display several points worth dis-
cussing. For example, equation (2,.36) stated that the expected value

(average value) for the pure birth process is given by

E(X) = ie At

where the system is in state i at time t = 0, Assuming the system is in
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state E, at time t = 0, we observe that the expected value of the pure

1

birth process is exactly what equation (1.2) predicted from a deterministic
model. (Here one would consider a "birth'" as receiving the given attri-
bute.) A relevent question arising from this analogy is this: Given a
deterministic model is there always such a corresponding stochastic model
or is this purely coincidental? Certainly equation (1.2) was easier to
obtain than (2.24) so such a correspondence could provide a deterministic
approximation for a complicated stochastic model.

The process of formulating a given set of assumptions concerning
a social phenomenon into precise mathematical statements and then uzing
these statements to derive a probability function for the phenomenon seems
to be a natural and instructive approach to mathematical sociology.
Usually, the sociologist collects data concerning some phenomenon and then
proceeds, by means of statistical analysis, to discover the distribution
(Poisson, exponential, binomial, and so forth) that fits the data and then
uses this distribution for predictive purposes. The methods discussed in
this report for establishing the probability function may give the same
distribution, but in addition, give mathematical formulations of the
sociological structure underlying the given phenomenon. For example, if
the sociologist observes that the transition intensity governing a given
social phenomenon is not constant, he would know the Poisson distribution
did not apply. However, suppose the transition intensity was some function
of the size of the population, so that if n is the size of the population
some A & is the proper transition intensity. We discussed this situation
for ﬂn = na s but what 'i'FR - is some other function of n, say Rn = nzl-o-
nd +C. Equipped with the theorem on page 27, the sociologist may be able

to '"tailor make'" a distribution to fit the observed facts concerning the



phenomenon. Then, in addition to having a predictive model, he has
additional abstractions governing the system under observation that are,
by the usual procedure, cemouflaged in a labyrinth of numbers and calcu-

lations that only a computer can assimulate.
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The purpose of this report was to inQestigate the application of
mathematics, especially differential equations, to the social sciences.
Several examples of deterministic and stochastic models, applicable to
saciology were discu§sed. In each example the assumptions made to close
the system under study were enumerated and the mathematical implications
of these assumptions were discussed. Solutions to pertinent mathematical

equations were given in detail.



