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INTRODUCTION

Confinement housing has emerged during the last two decades as a

very economical method of producing livestock. Confinement housing has

helped to overcome predation, monitor disease, moderate effects of

weather, and facilitate management. Sufficient ventilation is very

important in the management of a confined livestock production system.

The ventilation system plays an integral part in confinement housing, as

there is a greater need to properly remove excess heat, moisture, gases,

and particulates. Exhaust fans are used to dilute the air in most

mechanical ventilation systems. Recirculation of inside air is imprac-

tical for livestock systems due to high concentrations of pollutants and

particulates . This exchange of air is necessary throughout the year to

control air quality and humidity within the livestock facility, but

lower exhaust airflows are desired during colder weather to conserve

heat. These lower exhaust airflows are provided by relatively small

single-, multi, or variable -speed fans. The performance of these small

fans may be significantly affected when exhausting into a wind.

Decreased fan performance will affect livestock growth and productivity

due to insufficient ventilation.

A windbreak, a hood, an elbow, or a cone shaped wind diverter

located outside the fan outlet may be used to reduce these detrimental

wind effects. Two important factors must be considered when evaluating

the performance of a wind protection device:

1. Decreased fan performance due to added airflow resistance created



by the wind protection device.

2. Increased fan performance in oncoming winds due to the wind pro-

tection device

.

A need to thoroughly study the wind effects on ventilation fan per-

formance was identified, as livestock producers have become more aware

of detrimental effects of strong winds on the performance of their

mechanical ventilation systems. The evaluation and development of wind

protection devices is therefore important to the livestock industry.

The problems associated with wind effects on ventilation fans were del-

ineated as follows:

1. Wind is detrimental to the performance of ventilation fans, espe-

cially variable speed fans.

2. Kansas farmers need efficient ventilation fans.

3. Experimental data on wind protection devices is lacking.

4. The economic benefit of wind protection devices is uncertain.

Since research has not been published on wind protection, this research

was initiated to provide experimental data on the performance of a com-

mercially produced wind protector for fans.

A fan testing facility is required to properly evaluate the perfor-

mance of ventilation fans. Fan performance can be evaluated with a prop-

erly designed fan test facility in still ambient air and in various wind

velocities created by a wind tunnel. The first part of this thesis

describes the development of a fan testing facility. The second part is

an investigation of the effects of wind on fan performance, and the

evaluation and development of wind protection devices. The specific

research objectives were to:



1. Develop a fan testing facility in accordance with the Air Movement

Control Association Standard 210-85,

2. Evaluate the effect of a commercially available, cone shaped, wind

diverter on the performance of exhaust fans facing into a wind,

3. Evaluate the effects of various design parameters of the wind

diverter on fan performance, and

4. Improve the design of the wind diverter.



LITERATURE REVIEW

Ventilation Systems

There are two types of ventilation systems in common use today.

One is a negative pressure system and the other is a pressurized system.

Fans are used to exhaust air from a building in the negative pressure

system, creating a slight negative pressure inside the building. The

pressurized system uses fans to force air into the building, thus creat-

ing a slight positive pressure inside the building. Mitchell (1975)

reports that a negative pressure system is the primary system used in

livestock ventilation for the following reasons:

1. A negative pressure system provides for uniform air distribution

throughout the building and better mixing of cold incoming air

with warm inside air during cold weather than a pressurized sys-

tem.

2. A pressurized system limits the number and sizes of fans that can

be used while a negative pressure system does not.

3. Condensation within the wall sections is less likely to occur with

a negative pressure ventilation system.

The fan is the "heart" of a mechanical ventilation system (Shelton

and Bodman, 1983a). An understanding of basic fan design and operation

is therefore important in the selection and management of a mechanical

ventilation system. The most efficient use of energy by a fan and

satisfactory overall performance requires that all components of a ven-

tilation system are carefully designed, selected, installed and managed.

Livestock ventilation fans operate under severe environmental conditions

4



(Person et al. , 1979). Thus, It is essential that fans be selected

carefully, as most modern ventilation systems are designed to meet both

winter and summertime airflow requirements. Ventilation is needed dur-

ing the winter months to exhaust moisture, and prevent the accumulation

of odors and dust, without carrying away too much heat. The ventilation

system is used in the summer to remove the heat generated by the lives-

tock as well as the solar heat absorbed by the building (Mitchell,

1975). The Midwest Plan Service (1983) explained the importance of

proper ventilation in this way: "If air is not replaced in livestock

housing, the air composition changes, and the concentration of carbon

dioxide and other harmful gases increases to the danger level".

The fan's performance is often impeded by various sources of resis-

tance. The resistance to airflow occurs throughout the entire ventila-

tion system, including exterior air inlets, baffled inlet slots, build-

ing space, fan safety screens, fan housing, fan blades, louvered

shutters, and exterior weather hoods, with this system resistance typi-

cally amounting to about 25 Pa to 31 Pa (0.10 to .125 in wg) . Person et

al. (1979) examined the effect of dirt, louvers, and other attachments

on fan performance. It was found in this study that louvers had the

most substantial effect on fan performance, as louvers decreased total

fan efficiency and fan discharge. Results of tests also indicated that

the collection of dust, moisture, and other contaminants on various fan

components resulted in adverse environmental conditions and excessive

energy consumption. Thus, an efficient livestock ventilation system

must utilize proper types and sizes of fans and be well managed.



Fan*

Axial flow, or propeller fans are predominantly used in mechanical

ventilation of agricultural buildings. In an axial flow fan, air flows

through the fan parallel to the shaft on which the fan blades are

mounted. The propeller fan is a subclass of axial flow fans and con-

sists of two or more blades attached to a central hub, usually driven by

a motor. Propeller fans are limited to low pressure difference applica-

tions and function to move large quantities of air, rather than to gen-

erate significant total pressure differences. (Pratt et al. , 1983).

Osborne (1966) recommended that propeller fans not be used against

static pressures greater than 124 Pa (0.5 in of water). The usual field

of application is with small units of equipment and simple ventilation

systems requiring little or no duct work. Propeller fans are therefore

well suited for ventilation of agricultural buildings with static pres-

sures ranging from 12.4 to 31.0 Pascals. The design of propeller fans

is very important due to relatively poor pressure characteristics.

An important design consideration is blade tip clearance. A small,

uniform clearance is the most desirable (Pratt et al., 1983). Small tip

clearances prevent air from short-circuiting back around the propeller.

A small back pressure can significantly lower the air flow rate of pro-

peller fans

.

Air leaves the blades of a propeller fan in a circular discharge

pattern due to the twisting motion imparted by the blades. The propeller

fan functions in a way such that the leading edge of the fan blade picks

up the air, accelerates it and discharges it from the trailing edge with



a helical path advancing in an axial direction. As static pressure on

the fan increases, the fan's performance becomes unstable. Baumeister

(1935) noted that as static pressure increases, the centrifugal force

component of acceleration becomes more pronounced. This centrifugal

force effect is evidenced by the tendency of the air to slip out radi-

ally along the fan blades. The flow of air through a propeller fan is

axial in the higher capacity region, but as the capacity decreases, the

centrifugal effect, and consequent radial -flow component, becomes

larger. The effect of this increase in the centrifugal force element

causes the fan to experience an unstable region of operation, indicated

by a point of inflection in the fan characteristic. Eck (1973) provides

a detailed explanation of the processes involved in the creation of this

unstable region.

Careful design and selection of the propeller fan is imperative due

to its unique behavior. Fan efficiency and fan load are among the

important parameters. The importance of fan efficiency, the effect of

load on input power, and efforts to improve fan motor efficiency were

reported by Hoffmeister (1980). One measure of fan efficiency is the

volume of air moved per unit of energy input, commonly referred to as

the Ventilating Efficiency Ratio (VER) . VER ratings for fans range from

5 to 25, with most being in the 10 to 15 range (Shelton and Bodman,

1983b). Fan performance is dependent on fan slippage. All fans have

slippage and thus are not completely efficient in transferring energy to

air. Propeller fans are about 40 percent efficient. This slippage leads

to the necessity for experimentally determining fan characteristic

curves (Pratt et si. 1983).



Fan Testing

Fan performance tests are an experimental means of evaluating air-

flow performance, mechanical characteristics, sound levels, and vibra-

tion characteristics (Shahan, 1985). Each of these fan characteristics

are important, but airflow performance directly indicates the fan's main

function of moving air. The Air Movement and Control Association (AMCA)

serves as an authority on fan performance. AMCA is a non-profit trade

association made up of manufacturers of fans, louvers, dampers and

shutters. The purpose of the AMCA Certified Ratings Program is to

assure the buyer, specifier, and user that published ratings of air mov-

ing equipment are reliable and accurate (Cruse, 1976). Performance data

from an AMCA- certified fan were obtained with a fan test which conformed

to facilities and procedures approved by AMCA (Metzger et al., 1981).

According to Pratt et al. (1983), the AMCA Certified Ratings Program

provides the following features:

1. A published standard that defines procedures and conditions for

testing fans. This standard allows different manufacturers to

compare ratings of fans.

2. Continuing check tests of licensed products, challenge tests

brought by competing manufacturers, and periodic check tests of

AMCA-approved fan test facilities.

Following defined procedures and conditions does not in itself guarantee

reliable performance data. However, fan installation should be free

from significant flow separations and possess approximately axisymmetric

flow conditions through the installation. The best experimental pro-



cedures will not produce reliable performance data unless this condition

is fulfilled (Ruglen, 1973).

Fan Laws

Fan laws express the relationships among the performance variables

for any two fans that have similar flow conditions. Jorgenson (1983)

reported that the fan laws are a particular version of the more general

similarity laws that apply to all classes of turbomachinery . The fan

laws can be used to predict the performance of a fan, provided that the

performance at the corresponding points of rating for a homologous fan

are known. According to Pratt et al. (1983), fan laws can be used to

predict air flow rate (Q) , power (W) , and pressure difference (AP) as

functions of fan diameter (D) , air density (p) and rotational speed

(RPM) . The fan laws have their origin in classical fluid mechanics, and

are presented in several references (Jorgenson, 1983; AMCA, 1985; Furse,

1963; Pratt et al., 1983). In general, the three basic equations are as

follows

:

RPM D, ,

«2- VlPK^>

RPM
3

D p
H
2 " Vrpm7> <5j <^>

RPM D „
P
2 " P

1<RPmJ <dJ <^>



These equations can be used within the following limitations:

1. The fan laws are restricted to homologous fans.

2. The fan laws should only be used to go up in fan blade diameter.

3. The fan laws should not be used to extrapolate results if the

diameter ratio (D- / Dj) or speed ratio (RPM- / RPM.) is greater

than three, or if the product of the two is greater than three.

Furse (1963) reports that two fans are said to be geometrically similar

if they are similar in shape with their various dimensions related by a

constant of proportionality. Two fans are homologous when they are

geometrically similar and when the fluid flow velocity vector diagrams

within the fans are similar (corresponding vector magnitudes related by

a constant of proportionality). Jorgenson (1983) adds to this defini-

tion by stating that two or more homologous fans are said to be operat-

ing at corresponding points of rating if the positions of the operating

points, relative to shutoff and free delivery, are the same.

Wind Effects on Livestock Ventilation Systems and Fan Performance

The airflow rate for a confined livestock ventilation system must

be adjustable to accommodate changes in the wind velocity and direction

in addition to the fluctuations in the temperature and humidity of the

inside and outside air (Hinrichs and Wolfert, 1977). The wind velocity

determines the amount of pressure exerted against the building, with the

pressure being positive, negative or neutral. The wind velocity pres-

sure increases with the square of wind speed and is expressed by a modi-

fied version of the Bernoulli Equation:
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248.36 * ( 2034.54

where

H - velocity pressure (Pa)

V - mean velocity of flow (cm/s)

The relation of velocity pressures corresponding to several wind speeds

were calculated, Table 1.

TABLE 1. Relation of wind speed to velocity pressure

Wind Speed Velocity Pressure
(mps) (cm/s) (Pa)

2.2 223 3.0
4.4 447 12.0
6.7 671 27.1
8.9 894 47.9

11.2 1118 75.0
13.4 1341 108.0

Frost (1973) has shown that wind speeds can range from zero to max-

imum in less than one second, thus causing a reversal from positive to

negative pressure. Winds in the field are extremely turbulent near the

ground with continual and random changes in direction and speed both

horizontally and vertically. A wind assessment study by Johnson (1982)

has shown that in the central United States the maximum wind speeds near

ground level are normally experienced in the early afternoon and the

minimum wind speeds sometime after midnight, with the average wind speed

between 5.3 and 6.3 mps for a 10 m tower.

Hinrichs and Wolfert (1977) found that the wind is constantly

changing direction, with normal time intervals ranging from 2.5 to 6

minutes. They also found that the concept of "prevailing wind" is not

11



compatible with present day confinement housing for the following rea-

sons:

1. The wind is constantly changing directions so that a "prevailing

wind" is effective only part of the time, whereas ventilating per-

formance needs to be constant throughout the 24 hour day.

2. Field investigations of ventilating problems have determined that

the "prevailing wind" concept was actually responsible for some of

the poor performance of the systems studied.

In evaluating the performance of a fan within a ventilation system, the

positive or negative pressures produced by the fans are added to or sub-

tracted from the negative or positive pressures exerted by the wind.

"Thus, a shift in wind direction or fluctuation in wind velocity can

change, substantially, the pressure across a specific vent or fan "(Hin-

richs and Wolfert, 1977).

Much of the work already completed on the effect of wind on struc-

tures such as a livestock structure has been done in a wind tunnel.

Simiu and Scanlon (1986) examined wind loads and their effects on struc-

tures, including bluff-body aerodynamics, flow separation, and wakes.

Sachs (1972) also has performed extensive work on static and dynamic

wind effects on engineering structures. There are some apparent differ-

ences between wind tunnel results and actual field conditions. Frost

(1973) states "patterns of pressure distributions, although having a

general similarity, show some differences from wind tunnel data." It was

also reported that "extrapolation of wind tunnel data to extremely tur-

bulent and gusty real winds introduces unavoidable uncertainties in our

knowledge of flow around full scale buildings. Nevertheless, wind

12



tunnel tests continue to be the principle source of data and to provide

physical insight into the flow near structures."

Weibull Distribution of Wind Speed Frequency Curve

Wind speed fluctuates significantly, thus making it difficult to

accurately determine wind effects on structures and fan performance. A

frequency curve is often used to describe wind speed. Certain statisti-

cal distributions have been shown to fit the wind speed frequency curve

fairly well to data collected over an extended time period. Among these

statistical distributions is the Weibull distribution. The Weibull dis-

tribution is a special case of the Pearson type III or generalized gamma

distribution (Johnson, 1985). In general, the wind speed, ft, is distri-

buted as the Weibull distribution if its probability density function

is:

fOO - |(^)
k " 1

exp[-(^)
k

] (k > 0, n > 0, c >1)

The Weibull distribution is a two parameter distribution where c and k

are the scale and shape parameters, respectively. As k increases, the

Weibull density function narrows and peaks with the maximum shifting in

the direction of higher wind speeds. The Weibull usually fits the

observed data reasonably well for periods of several weeks to a year or

more. The Weibull distribution function F(/i) is:
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F(„) - 1 - exp [-(£)*]

The variance of the Weibull density function is:

a
2 -c 2

[r ( i + 2) - r»(i + hi - 4iL±_2ZSi . x
r'(i + 1A)

The probability of the wind speed, /j, being equal to or greater than /i

is:

a,k,
P(/i 2: u ) - /f(/i)o> - exp[-(-^)

K
]

The probability of the wind speed occurring within a 1 nps interval cen-

tered on the wind speed fi is

:

P(u -0.5<MC +0.5)-

V0.5

ia -0.5

«p[.(«-^V] - exp[-(^°^) k
]

For the central United States, Johnson (1982) has shown that the average

Weibull shape parameter, k, for 10 m high towers, was 2.10.
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DEVELOPMENT OF A VENTILATION FAN TESTING FACILITY

Introduction

Confinement housing for livestock requires either natural or

mechanical ventilation. In the case of mechanical ventilation, fans

provide the primary means of exhausting excess heat, moisture, gases,

and particulates. A properly designed ventilation system is a necessity

for the management of the system. An understanding of how the fan per-

forms is a major requirement to good design. Fans are less than 100%

efficient in transferring energy to air, due to fan slippage. Fan

characteristics are unique for each type of fan, thus leading to the

need for experimentally determining fan performance. The first part of

this study is the development of a fan testing facility for experimen-

tally- determining fan performance

.

A fan testing facility provides an experimental means of determin-

ing fan performance. Fan manufacturers do not know how well their fans

perform without having fan performance experimentally determined in a

laboratory facility. Results based only on the performance of the fan

blade are often reported.. The fan blade performance is not truly indi-

cative of how the total fan system will operate. The overall fan per-

formance is also dependent on fan housing and shape, fan blade tip

clearance, and motor specifications and performance.

This report describes the steps that were necessary to construct a

fan testing facility for use in testing axial flow fans used for exhaust

ventilation, ranging in size from 20.3 cm (8 in) to 61.0 cm (24 in) in

diameter. The design of the Kansas State University fan test chamber

15



followed the standards set forth In the AMCA Standard 210-85 of the Air

Movement and Control Association (AMCA, 1985). This standard establishes

uniform methods for laboratory testing of fans to determine their per-

formance in terms of flow rate, pressure, power, air density, speed of

rotation, and efficiency. The objective of this portion of the study was

to develop a fan testing facility which is:

1. In accordance with AMCA Standard 210-85,

2. Capable of becoming a certified fan testing laboratory, and

3. Convenient for use in wind tunnel studies.

Research Facilities and Procedure

Procedure

Fan TesC Chamber Standards.

An inlet chamber design was selected from the AMCA Standard 210-85

for Laboratory Methods of Testing Fans (AMCA, 1985), Figure 1.
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o

VARIABLE
SUPPLY
SYSTEM

PL.l PL.2
-I 0.5 M MIN.

-0.2MMIN.
"0.3 M MIN.

Figure 1. Inlet chamber setup - multiple nozzles In chamber.

The selection of an inlet chamber employing nozzles to measure fan air-

flow rate was based on the fact that this study involved only exhaust

fans. Burkhardt (1976) reported that multi-nozzle inlet chambers were

considered to simulate an installation of a fan exhausting air from a

duct system or building. AHCA standards require that certain specifica-

tions and dimensions be observed. The cross sectional area of the inlet

chamber must be at least five times the fan inlet area. The remaining

dimensions for a rectangular inlet chamber are then calculated on the

basis of an equivalent diameter, M:

M - \|4ab/*

where a - height (cm)

b - width (cm)
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Flow settling means must be installed within the inlet chamber to

provide proper airflow patterns. Settling means are any combinations of

screens or perforated plates that will insure uniform airflow patterns.

The air velocity profile throughout a cross section of the chamber must

be fairly uniform with a small variance between the velocities. In the

case where a measuring plane is located downstream of the settling

means, the settling means are provided to insure a substantially uniform

air flow ahead of the measuring plane. The maximum velocity at a dis-

tance of 0.1 M (approximately 18 cm) downstream of the screen, Figure 1,

shall not exceed the average velocity by more than 25% unless the max-

imum velocity is less than 2.03 mps (400 fpm) . when a measuring plane

is located upstream of the settling means, the settling means are pro-

vided to absorb the kinetic energy of the upstream jet and allow its

normal expansion as if in an unconfined space. The maximum reverse

velocity shall not exceed 10% of the calculated mean jet velocity. AMCA

suggests settling means consist of several screens of square mesh round

wire with open areas of 50% to 60%.

The flow rate is calculated from the pressure differential gen-

erated across a bank of nozzles. Nozzles are selected so that the aver-

age velocity at the nozzle discharge corresponding to the flow rate at

free delivery is at least 14.2 mps (2800 fpm). AMCA Standard 210-85

also specified that the centerline of each nozzle shall be at least 1.5

nozzle throat diameters from the chamber wall and the minimum distance

between centers of any two nozzles in simultaneous use shall be three

times the throat diameter of the larger nozzle.
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KSU Fan Test Chamber.

The KSU fan test chamber was built according to the standards

specified by AMCA along with additional project constraints. The larg-

est fan to be tested was Agri-Aide's 61.0 cm (24 in) axial flow fan with

2 2a fan inlet area of 5058 cm (784 in ). The cross sectional area of

the chamber must be greater than 5 X 5058 cm - 25290 cm (3920 in
2
). A

rectangular cross section was preferred. Nearly square dimensions were

desired to create a more uniform airflow throughout the cross section.

The inlet chamber was selected to have inside dimensions of width -

167.6 cm (66 in) and height - 152.4 cm (60 in) giving an overall cross

2sectional area of 25548 cm , which is greater than the required 25290

2 2 2cm (3960 in > 3920 in ). The equivalent diameter, M, for the KSU inlet

chamber was calculated as follows:

M - \|4ab/ir - \|4(152.4) (167.6) /* - 180.4 cm. (71.0 inches)

where a - height (cm)

b - width (cm)

The desire to conduct wind effects studies using a wind tunnel at

the USDA Wind Erosion Laboratory raised additional concerns. Other res-

trictions besides fan inlet area were considered in determining the size

of the inlet chamber. The length of the chamber could not exceed about

4.9 m (16 ft). This limitation on length was imposed by the physical

dimensions of the "dust room" at the USDA Wind Erosion Laboratory, where

the later study on wind protection devices would take place. Another
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factor to be considered was that it was desired to construct a chamber

with manageable dimensions in order to keep the cost down and facilitate

physical maneuvering of the chamber. Portability and the ability to

adjust the height of the fan test chamber were also considered to be

important for the testing at the wind tunnel. Adjustable jacks and

wheels were employed to aid in these measures.

The number of settling means was also a factor to be considered

prior to determining the overall chamber dimensions. It was decided

that there would be five settling screens or perforated plates in front

of the nozzle bank (closest to the supply fan) with the percent open

area to be 60% in the first screen, 55% in the second screen, 50% in the

third and fourth screens, and 45% in the fifth screen. The settling

means in front of the test fan would consist of three screens or per-

forated plates with the percent open area to be 60% in the first screen,

50% in the second screen, and 45% in the third screen.

The number and sizes of nozzles was also considered prior to deter-

mining the dimensions of the inlet chamber. The fan test chamber was to

be used to test fans over a range of airflows from to 3070 Lps (0 to

6500 cfm) and static pressures up to 620 Pa (2.5 in wg) . Nine nozzles

were selected on the basis of these criteria. In an effort to minimize

cash outlay, three aluminum nozzles and six fiberglass nozzles were

obtained from the inventory of the Agricultural Engineering Department

at Kansas State University and Osborne Industries, respectively. The

nozzles selected were four 2.07 cm (5.25 in) and two 2.31 cm (5.87 in)

diameter fiberglass nozzles, one 0.79 cm (2.0 in), one 1.18 cm (3.0 in),

and one 1.57 cm (4.0 in) diameter aluminum nozzles. Each of these
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nozzles were then positioned in accordance with AMCA Standard 210-85 as

symmetrically as possible, giving a total nozzle discharge area open for

2 2airflow of .1055 m (1.135 ft ). The remaining dimensions of the

chamber were then determined using the equivalent diameter, M, and by

AMCA specifications and project imposed constraints.

Cons true tion .

The Kansas State University fan test chamber was constructed with

plywood, using angle iron spaced every 6.30 cm (16 inches) to provide

rigidity. The interior of the chamber was painted to seal tiny holes and

cracks and to provide a professional appearance, and plexiglass windows

were installed for viewing the interior. An adjustable roof was also

added to simulate actual field conditions and aerodynamics. Details of

the construction and materials are given in Figures 2 and 3.
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Figure 2. Detail of KSU fan test chamber components

22



Ld
m
iz
<r
x
U
h-
c/5

u

<X
u.

V

Figure 3. KSU fan test chamber dimensions
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Instrumentation.

The chamber was instrumented upon completion of the chamber's con-

struction. A Buffalo Forge Belted Vent Set (Model 375B) centrifugal fan

was used as the supply system for the chamber. Since the output from

the centrifugal supply fan must cover a wide range of airflows for the

various testing conditions, there was a need for some means of control-

ling the amount of air supplied. Therefore, a set of variable inlet

vanes was purchased for the inlet of the supply fan. These variable

inlet vanes throttled and controlled the airflow by means of opening or

closing the vanes. An adjustable sliding gate was installed on the

chamber wall, over a slot beside the supply fan, to allow excess airflow

to escape. The gear motor used to operate the gate was slow enough to

provide a more precise control of the supply air, as the variable inlet

vanes were a rough control mechanism.

Three piezometer rings were installed around the cross -sectional

perimeter of the chamber in accordance with AMCA standards (AMCA, 1985).

The AMCA standard specifies the dimensions and construction of static

pressure taps, Figure 4. Figure 5 is a cross -sectional view of one of

the twelve static pressure taps constructed for the KSU fan test

chamber. Each of the static pressure taps were constructed of oak and

the pores in the wood sealed with a varnish.
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Surface Shall be Smooth and Free
from Irregularities Uithin 20 D
of Hole. Edge of Hole Shall be
Square and Free from Burrs.

D=. 10-. 15 cm. Preferred
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2 D Min.
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Figure 4. AMCA specifications for static pressure taps
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Figure 5. Static pressure taps employed in the KSU fan test chamber

Each piezometer ring consisted of four static pressure taps, one on each

side of the chamber, to obtain an average static pressure across the
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cross section of the chamber. The pressure differentials were measured

with a micromanometer on each piezometer ring. Power measurements of the

test fan motor were also very important, particularly for the Ventilat-

ing Efficiency Ratio (VER) . The VER is a ratio of what comes out of the

fan (airflow) compared to what goes into the fan (electricity). A digi-

tal volt-amp-watt meter (Clarke-Hess Model 256) was purchased for these

power measurements. An Ametek Model 1736 photoelectric tachometer was

employed for the measurement of fan rotational speed. The photoelectric

tachometer measured fan rotational speed using a reflected beam of

light. A 0-240 volt variac was used to supply a constant voltage to the

test fan.

Testing of Chamber Performance

.

The performance of the fan testing facility was evaluated following

full instrumentation of the inlet chamber. Many small leaks around

joints and through small cracks in the chamber walls were found using

smoke candles and soap bubbles and were sealed with silicone sealant.

Settling Means . Two main concerns surfaced upon arrival of the com-

pleted chamber to the Agricultural Engineering Department at KSU. The

first concern centered on the settling means, as the installed per-

forated plates consisted of large punched holes with large solid areas

between the holes , Figure 6

.
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Figure 6. Initial settling means - perforated plates

The performance of such plates was a particular concern downstream of

the nozzle discharge. Due to the relatively high air velocities at the

nozzle discharge, there was some question as to whether these perforated

plates would be able to provide a uniform air velocity profile across

the chamber cross section. Even though the maximum velocity anticipated

for this study was below the 2.03 mps velocity specified in AMCA Stan-

dard 210-85, AMCA recommended that the air velocity profile still be

tested (Bhatt, 1987). Velocity profiles taken across the chamber sub-

stantiated the failure of the plates to properly distribute the airflow.
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A wide discrepancy in the air velocities was observed across the

chamber, thus establishing that the perforated plates did not meet stan-

dards established by AMCA.

The velocities collected in the initial profile were point veloci-

ties and did not represent equal areas. Therefore, the resultant mean

for the profile was calculated by weighting the results according to the

area represented. The resultant means, variance between samples, and

number of violations for the initial air velocity profile and subsequent

profiles are summarized in Table 2, following discussion of all of the

velocity profiles collected, while Appendix A contains the test results

in tabular form.

Additional settling means constructed of fine, round wire, square

mesh, aluminum, window screening were added in an effort to correct the

problem and properly distribute the air flow. A thorough examination of

the flow nozzles was undertaken while the chamber was disassembled, due

to some question concerning their conformity to AMCA standards. The

investigation revealed that eight of the nine initial flow nozzles

failed to meet standards established by AMCA. A set of new nozzles

meeting AMCA Standards were obtained and installed in place of the ori-

ginal nozzles. An air velocity profile with the new nozzles and without

any additional screens (Run #1) was collected. This data again showed

that the air was not being dispersed across the chamber in a uniform

manner (high velocities directly in front of the nozzles and lower velo-

cities elsewhere), Table 2.

One set of additional screens was installed upstream and downstream

of the settling means closest to the supply fan, while one set
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downstream and three sets upstream of the settling means closest to the

test fan were Installed for Run #2. The analysis of this data indicated

a marked improvement as the air velocities were more evenly distributed,

but still indicated some high velocity points (especially at the

measuring plane downstream of the settling means closest to the test

fan). One additional profile test was conducted with all of the addi-

tional screens installed (four additional screens upstream of the set-

tling means closest to the test fan). These results (Run #3) were simi-

lar to Run #2, as there still existed some high velocity points, but it

was felt that this combination gave the "best" results, Table 2.

Velocity profiles were also collected at the measurement plane

downstream of the settling means closest to the supply fan and at the

measurement plane upstream of the settling means closest to the test

fan. The initial results obtained at these two measurement planes indi-

cated that the violations were few and small in magnitude. Therefore,

extensive velocity profiles were not collected at these two measurement

planes, as the velocity distributions were considered to be satisfac-

tory. Figure 7 illustrates the location of each sampling point and a

key to the notation employed to designate each collection point.
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Flgure 7. Location of sampling points for air velocity profiles

Key to Notation of Sampling Points:

tf - measuring plane downstream of settling means closest to test fan.

nd - measuring plane upstream of settling means closest to test fan.

nu - measuring plane downstream of settling means closest to supply fan.

le-4e - vertical location of sampling point from east side of chamber.

lw-4w - vertical location of sampling point from west side of chamber.

5.5-33.0 - horizontal location of sampling point from east and west.

30



The improvements made to the settling means were satisfactory, but

were considered to be only a temporary solution. New settling means,

constructed of a round wire square mesh screen, with varying percent

open area, were purchased, Figure 8.

[-S.St-*)

.302

18 ga.
51k Open Area

14 ga.
46k Open Area

16 ga

.

56k Open Area

*Note : All Dimensions in Centimeters

Figure 8. Details of round-wire square-mesh settling means

The initial settling means were removed and replaced with the new set-

tling means and the measurement of air velocity profiles were repeated.

The results indicated a large variance in air velocities across the

chamber, with the highest velocities occurring directly in front of the

open nozzles. Screen patches were attached to the settling means

directly in front of the nozzles and one full-size window screen was

reinstalled. The velocity profiles showed a marked improvement, but

31



still indicated a fairly large variance. Therefore, round screen

patches were attached to the screen directly in front of each nozzle and

additional full-size window screens were installed. These conditions

provided greater uniformity 'across the chamber, as the variance in the

air velocity profile and the number of points exceeding AMCA limits were

small. It was felt that these modifications and additions created an

environment that was suitable for obtaining accurate test results . One

velocity profile was also obtained at measuring plane "nu", downstream

of the settling means closest to the test fan. The results indicated a

few minor violations, so a rectangular screen patch was attached to the

screen directly in front of the supply fan, to distribute the incoming

air. Additional air velocity profiles were not collected at measuring

planes "nu" and "nd" , upstream of the settling means closest to the test

fan, due to time constraints.
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TABLE 2. Means and variance of air velocities at the three measurement
planes within the KSU fan test chamber.

Settling Means
tf

Measurement Plane

nd nu

Initial M
2

(7 n ^
2

a n f
2

a n

Perf. Plates
New Nozzles
6 Added Screens
8 Added Screens

.422

.422

.422

.422

.048

.013

.017

.014

13

6

8

8

.246

.240
.007
.006

.444

.392

.405

.378

.004

.005

.006

.006

2

4

3

5

New

Wire Mesh Only .480 .643 18 - - - .396 .010 7

1 Added Screen
& Downstream
Patches

.418 .038 17 - - - - - -

2 Added Screens
& Additional
Patches

.387 .006 8 - - - - - -

where

:

tf - measuring plane downstream of settling means closest to test fan

nd - measuring plane upstream of settling means closest to test fan

nu - measuring plane downstream of settling means closest to supply fan

fi - mean velocity when weighted by area

2
a - variance of point velocities

n - number of violations according to AMCA Standard 210

Flow Nozzles. The next concern to arise centered on the set of nozzles

in the chamber. The nozzles chosen were never properly examined in

accordance with AMCA standards. In order to calculate the airflow

through nozzles, as presented In AMCA Standard 210-85, the nozzles must
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conform to certain specifications, as illustrated in Figure 9.

L

1

. . 667D

Figure 9. AMCA nozzle specifications

All of the fiberglass nozzles and two of the aluminum nozzles failed to

meet the standards. Seven aluminum spun nozzles, designed in accordance

with AMCA standards, were purchased and repositioned to meet the spacing

requirements. The total nozzle discharge area open for airflow was now

adjusted to .105 m
2

(1.131 ft
2
), Figure 10.
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167.64

*flll Dimensions in Centimeters

Figure 10. Nozzle dimensions and locations

Nozzle Dimensions

Nozzle Number Throat Diameter (cm) Outside Diameter (cm) L/D Ratio
1 12.70 (5.0") 35.56 (14.0") .6
2 15.24 (6.0") 40.64 (16.0") .5
3 13.97 (5.5") 38.10 (15.0") .6

4 10.16 (4.0") 30.48 (12.0") .6
5 4.06 (1.6") 13.33 ( 5.25") .6

6 6.35 (2.5") 22.86 ( 9.0") .6

7 12.70 (5.0") 35.56 (14.0") .6

8 15.24 (6.0") 40.64 (16.0") .5

9 13.97 (5.5") 38.10 (15.0") .6

35



Data Acquisition System.

A Zenith Z150 personal computer (IBM compatible) was selected to be

the core of the data acquisition system. A personal computer and data

acquisition program were a necessity, as the calculation of fan airflow

was dependent on many inputs. These inputs included atmospheric condi-

tions, pressure measurements, and nozzle selection information. The

atmospheric conditions necessary included dry-bulb temperature, wet-bulb

temperature, and barometric pressure. The pressure measurements neces-

sary were the static pressure differential across the nozzle bank, which

lead to the calculation of airflow, and the static pressure differential

across the test fan, thus providing a reference to the test fan's point

of operation. Finally, the number and sizes of nozzles open for airflow

must also be known. The calculation of airflow was based upon the pres-

sure differential across the nozzles and was calculated through the use

of equations presented in AMCA Standard 210-85. These equations are

presented below.

Q - Q
5
- 1096YJaPA> S(CA

6
) [ref 9.3.2.8]

Y - l - (0.548 + 0.71/3
4
)(1 - a) [ref 9.3.2.3]

o - 1
5.187AP

P R(t
dQ

+ 459.7) [«f 9.3.2.1]
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Symbols Used

_2,A. , - Nozzle discharge cross sectional area (ft )

C. , - 1.6 in (4.1 cm) nozzle discharge coefficient (dimensionless)

C
2 5

~ 2.5 in (6.4 cm) nozzle discharge coefficient (dimensionless)

C, - 4 in (10.2 cm) nozzle discharge coefficient (dimensionless)

C_ - 5 in (12.7 cm) nozzle discharge coefficient (dimensionless)

C, . - 5.5 in (14.0 cm) nozzle discharge coefficient

(dimensionless)

C, - 6 in (15.2 cm) nozzle discharge coefficient (dimensionless)

2
D, - Nozzle discharge diameter (ft )
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I< »• Number of 1.6 In (4.1 cm) nozzles open for airflow

(dlmenslonless)

N
2 5

~ Number of 2.5 In (6.4 cm) nozzles open for airflow

(dlmenslonless)

N^ - Number of 4 in (10.2 cm) nozzles open for airflow

(dimensionless)

Nj - Number of 5 in (12.7 cm) nozzles open for airflow

(dimensionless)

N, , - Number of 5.5 in (14.0 cm) nozzles open for airflow

(dimensionless)

N, - Number of 6 in (15.2 cm) nozzles open for airflow

(dimensionless)

p, - corrected barometric pressure (in. Hg)

p - saturated vapor pressure at t (in. Hg)

p - partial vapor pressure (in. Hg)

Re
l 6 " Revn°lds Number for 1.6 in (4.1 cm) nozzle (dimensionless)

Re, , - Reynolds Number for 2.5 in (6.4 cm) nozzle (dimensionless)

Re^ - Reynolds Number for 4 in (10.2 cm) nozzle (dimensionless)

Re, - Reynolds Number for 5 in (12.7 cm) nozzle (dimensionless)

Reg - - Reynolds Number for 5.5 in (14.0 cm) nozzle (dimensionless)

Re, - Reynolds Number for 6 in (15.2 cm) nozzle (dimensionless)

QQ
- Fan flow rate (cfm)

Q, - Nozzle flow rate (cfm)
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t
d(

. - Atmospheric dry-bulb temperature (°F)

t « - Atmospheric wet -bulb temperature (*F)

Y - Nozzle expansion factor (dimensionless)

a - Static pressure ratio for nozzles (dimensionless)

AP - Static pressure differential across nozzles (in. wg)

3
p~ - Atmospheric air density (lbm/ft )

2(CA,) - Summation of nozzle coefficients times nozzle

2discharge cross sectional areas (ft )

Constants Used

/} - ratio of nozzle exit diameter (D,) to approach

duct diameter (D_). For chamber, f)
-

R - Gas constant (53.35 ft-lb/lbm-°R)

D, - Nozzle discharge diameter (ft)

- .133333 (1.6 in (4.1 cm) nozzle)

- .208333 (2.5 in (6.4 cm) nozzle)

- .333333 (4 in (10.2 cm) nozzle)

- .416667 (5 in (12.7 cm) nozzle)

- .458333 (5.5 in (14.0 cm) nozzle)

- .500000 (6 in (15.2 cm) nozzle)

2
A, - Nozzle discharge cross sectional area (ft )

- .013963 (1.6 in (4.1 cm) nozzle)

- .034088 (2.5 in (6.4 cm) nozzle)

- .087266 (4 in (10.2 cm) nozzle)

- .136354 (5 in (12.7 cm) nozzle)
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- .164988 (5.5 in (14.0 cm) nozzle)

- .196349 (6 In (15.2 cm) nozzle)

M
6
- Air viscosity (1.222xl0'

5
lbm/ft-s)
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Equation Limitations

1. The static pressure at the test fan must be always less than 4

inches w.g. (993 Pa). In this case, the chamber air density may

be considered equal to the atmospheric air density and the gases

can be assumed to be incompressible. [Ref 9.2.2]

2. The saturated vapor pressure equation employed is applicable over

the temperature range of 40 to 90" F (4.4 to 32.2" C)

.

3. The nozzle discharge coefficients equations are valid for Re >

12000.

These equations, along with the additional inputs required, were

used in a computer program to calculate the fan airflow. This program

employed English units of measurement, as all of the inputs were based

on the English system. The program was written in the C language to

allow for future automation of inputs via a Tekmar board data acquisi-

tion unit. The equations above calculate the flow rate based on test

conditions. In order to standardize the results, allowing for com-

parison at other test conditions and locale, the results were converted

to nominal results based on standard atmospheric conditions and nominal

fan rotational speed. The equations below illustrate the conversions

involved:

Qc-W-#><K*-> [ref 9.9.1]
pc

42



pc c

Z ,

P
tlc

+ 13 - 63Pbc . ,,..H.2 . .„„,,r- (
p., ; i3.63Pt,

)(f )(r> [»f 9.9.1]
c tl rb *c c

Z
c " Z7Z~ [ref 9.9.1]

. 6362H/Q
Z -

( 7 )(
P
tl

^ 13.63p
b

> [ref 9.8.2]

ta<l + V- ta(1+Jt>I-n5TT#J [ref 9.9.1]

P_

P
tl

13.63p
b

[ref 9.8.2]

ln(l + X )

X - e
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P
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Symbols Used

H - Fan power Input (hp)

K - Compressibility coefficient for air at test

conditions (dimensionless)

K - Compressibility coefficient for air for

nominal conditions (dimensionless)

N - Speed of fan rotation at test conditions (rpm)

N - Speed of fan rotation at nominal conditions (rpm)

p, - Corrected barometric pressure at test conditions

(in. Hg)

p, - Corrected barometric pressure for standard

atmospheric conditions (in Hg)

r sc

p - Fan total pressure (in. wg)

p - Fan total pressure for nominal conditions (in. wg)

p - - Total pressure at test fan inlet at test

conditions (in. wg)

pc
- - Total pressure at test fan inlet for nominal

conditions (in. wg)

p - Fan velocity pressure at test conditions (in. wg)

p — Fan velocity pressure for nominal conditions (in. wg)

Q - Fan flow rate converted to nominal conditions (cfm)
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Qq - Fan flow rate at test conditions (cfm)

X - Function used to determine K for air at test
P

conditions (dimensionless)

X - Function used to determine K for air atc pc

nominal conditions (dimensionless)

Z - Function used to determine K for air at test
P

conditions (dimensionless)

Z - Function used to determine K for air atc pc

nominal conditions (dimensionless)

p - Fan air density at test conditions (lbm/ft )

a

Pc
- Fan air density for nominal conditions (lbm/ft )

Constants Used

7 - Ratio of specific heats; for air - 1.400 (dimensionless)

Standard atmospheric conditions:

Pc
- Standard air density - .075 lbm/ft

3
(1.20 kg/m

3
)

t
dQ

- 68«F (20° C)

pbc
- 29.92 in Hg (101.3 Pa)
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Equation Limitations

1. Nominal conditions refers to nominal constant density and nominal

constant speed.

2. Nominal constant density must be within 10% of the actual density

and nominal constant speed within 5% of the actual speed.

The computer program thus proceeded to calculate the fan airflow rate,

and nominal fan airflow rate from the various atmospheric, pressure, and

motor power inputs, all entered via the standard input (keyboard). The

source code for the program is contained in Appendix B.

Results and Discussion

A minimum of eight points of operation were taken for each fan

tested in an effort to fully establish the fan's performance over the

range from shut off to free delivery. Initially, several tests were

performed on two fan models that had previously been tested in labora-

tories established in accordance with AMCA Standard 210-85. The results

obtained with the Kansas State University fan test chamber were slightly

below the published results, but within 5%. This indicated a slight

leakage within the chamber. These leaks were found to be through

joints, walls, and through the nozzle plugs. At this time, one of

Agri -Aide's flush mount series 40.6 cm (16 in) fans was shipped to the

AMCA laboratories to be performance tested. Meanwhile, the remainder of

Agri-Aide's flush mount series of axial fans were performance tested in

the Agricultural Engineering Department with the fan test chamber. The

results of tests for all fans were not part of the thesis requirements.
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Two full performance tests were made on each fan to show the repea-

tability of the laboratory chamber. Each performance test required

approximately one hour to complete, and one additional hour to prepare

the results in a presentable manner. A Zenith personal computer was

employed adjacent to the fan test chamber for calculation of the fan's

performance via the data acquisiton program. These results were then

passed over to a Microvax II computer within the Agricultural Engineer-

ing Department, where the fan's performance was displayed graphically

(fan static pressure in Pa versus fan airflow in Lps) and in tabular

form through the capabilities of the Microvax.

The Agri-Aide fan was tested on the KSU fan test chamber following

its performance test at the AMCA laboratories. These results compared

very favorably with the results obtained by AMCA, with only slight

discrepancies at free air delivery and near the shut off point. A com-

parison of the results obtained can be seen in Figure 11 and Tables 3-

5.

47



5
|
01
w _
E
u «

to

43

B- flMCfl Tost Results

O- KSU Fan Test - Run ttt

KSU Fan T»« - Run »2

100 no 300 400 300 600 700 800

FfiM AIRFLOW RATE <Lps>

Figure 11. Fan performance curves for the Agri-Aide FM-1619-1 fan from
results obtained at the AMCA laboratories versus results
obtained with the KSU fan test chamber.

TABLE 3. Fan performance results obtained at the AMCA laboratories for
the Agri-Aide FM-1619-1 fan.

FAN : Agri-Aide FM-1619-1 at 1725 RPM (nominal)
DATE: 10-9-87

TEST AIR

STATIC FAN
PRESS AIRFLOW
(Pa) (Lps)

STANDARD AIR

STATIC FAN
PRESS AIRFLOW
(Pa) (Lps)

MOTOR PERFORMANCE VER

FAN MOTOR MOTOR (Lps
SPEED CURRENT POWER per
(rpm) (amps) (watts) watt)

0.99 831.6 0.99 817.9 1754 1 1 142
10.18 763.6 10.18 751.8 1752 1 1 145
21.11 675.8 21.11 665.4 1752 1 1 145
28.31 591.8 28.56 582.4 1753 1 1 144
36.01 509.2 36.26 501.2 1754 1 1 142
42.47 426.2 42.47 419.1 1754 1 1 141
47.19 352.1 47.19 346.4 1753 1 1 143
74.51 261.0 75.00 257.7 1748 1 1 150

104.06 157.2 105.06 154.8 1747 1 1 150
139.58 0.0 141.07 0.0 1744 1 1 154
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TABLE 4. Fan performance results obtained with the KSU fan test chamber
in run #1 on the Agri-Aide FM-1619-1 fan.

FAN : Agri-Aide FM-1619-1 at 1725 RPM (nominal)
DATE: 10-28-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

STATIC FAN STATIC FAN FAN MOTOR MOTOR (Lps
PRESS AIRFLOW PRESS AIRFLOW SPEED CURRENT POWER per
(Pa) (Lps) (Pa) (Lps) (rpm) (amps) (watts) watt)

0.00 822.3 0.00 809.2 1753 0.81 140 5.9
12.37 744.4 12.22 733.1 1752 0.82 142 5.2
24.81 633.9 24.51 624.3 1752 0.81 142 4.5
31.02 577.6 30.62 568.6 1753 0.81 140 4.1
37.23 507.1 36.73 498.9 1753 0.80 137 3.7
49.67 336.2 49.00 330.8 1753 0.80 137 2.4
62.09 301.6 61.52 297.4 1749 0.82 143 2.1
74.51 258.4 73.91 255.0 1748 0.82 145 1.8
86.93 210.2 86.28 207.4 1748 0.82 145 1.4
99.34 175.5 98.75 173.2 1747 0.83 146 1.2
111.76 90.7 111.04 89.5 1748 0.82 144 0.6
121.94 48.5 121.16 47.8 1748 0.82 144 0.3
129.15 18.4 128.75 18.2 1746 0.83 146 0.1
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TABLE 5. Fan performance results obtained with the KSU fan test chamber
in run #2 on the Agri-Aide FM- 1619-1 fan.

FAN : Agri-Aide FM-1619-1 at 1725 RPM (nominal)
DATE: 10-29-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

STATIC FAN STATIC FAN FAN MOTOR MOTOR (Lps
PRESS AIRFLOW PRESS AIRFLOW SPEED CURRENT POWER per
(Pa) (Lps) (Pa) (Lps) (rpm) (amps) (watts) watt)

0.00 822.5 0.00 808.8 1754 0.80 139 5.9
12.37 745.8 12.27 734.2 1752 0.81 141 5.3
18.58 694.1 18.43 683.6 1752 0.81 141 4.9
24.81 632.3 24.59 622.5 1752 0.81 140 4.5
31.02 567.2 30.72 558.1 1753 0.81 138 4.1
37.23 498.4 36.83 490.1 1754 0.80 137 3.6
43.44 402.1 42.94 395.3 1755 0.80 136 3.0
49.67 330.8 49.17 325.5 1753 0.80 138 2.4
62.09 307.0 61.69 302.6 1750 0.82 142 2.2
74.51 251.1 74.21 247.7 1748 0.82 144 1.7
86.93 202.6 86.63 200.0 1748 0.83 146 1.4
99.34 168.0 99.17 165.9 1747 0.83 147 1.1

107 . 54 109.2 107.19 107.8 1748 0.82 144 0.8
120.21 47.0 119.91 46.4 1747 0.83 145 0.3
127 . 66 18.2 127.48 18.0 1747 0.83 146 0.1

There evidently was still some slight leakage through the chamber

causing these discrepancies. These leaks were very small, though, as

they only manifested themselves at the point of highest airflow and when

the test fan was operating under a relatively high static pressure dif-

ferential. Exhaust fans normally operate against a partial vacuum from

12.4 to 31.0 Pa (.05 to .125 in) water of static pressure, and over this

range, the KSU fan test chamber accurately repeated the AMCA labora-

tories results. Thus, since the majority of manufacturers published

results report the fan's performance over this range, the performance

tests on Osborne's fans were felt to be satisfactory. Nevertheless,
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additional steps were taken to provide better sealing of leaks , and the

Osborne 40.6 cm (16 in) fan was retested. The results of these tests

closed the discrepancies considerably, with differences between 1 and

2%. There was still some small leakage through the chamber walls,

though, as the results at free air delivery were still slightly lower

than AMCA's, Figure 12 and Table 6.
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Figure 12. Fan performance curves for the Agri-Aide FM-1619-1 fan com-
paring results obtained in the AMCA laboratories with run #3
obtained with the KSU fan test chamber.
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TABLE 6. Fan performance results obtained with the KSU fan test chamber
in run #3 on the Agri-Aide FM-1619-1 fan.

FAN : Agri-Aide FM-1619-1 at 1725 RPM (nominal)
DATE: 3-9-88

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

STATIC FAN STATIC FAN FAN MOTOR MOTOR (Lps
PRESS AIRFLOW PRESS AIRFLOW SPEED CURRENT POWER per
(Pa) (Lps) (Pa) (Lps) (rpm) (amps) (watts) watt)

0.00 818.7 0.00 804.9 1754 0.85 143 5.7
6.16 776.5 6.23 763.9 1754 0.85 144 5.4

12.37 734.4 12.57 722.8 1753 0.85 146 5.0
24.81 622.5 25.16 612.3 1754 0.85 144 4.3
31.02 555.9 31.42 546.6 1754 0.85 142 3.9
37.23 489.8 37.68 481.3 1755 0.85 140 3.5
43.44 392.4 43.98 385.7 1755 0.85 140 2.8
49.67 326.8 50.37 321.5 1753 0.85 143 2.3
55.88 318.8 56.75 313.9 1752 0.85 144 2.2
62.09 303.4 63.13 299.0 1751 0.85 146 2.1
74.51 258.0 75.90 254.4 1749 0.85 148 1.7
86.93 215.4 88.66 212.5 1748 0.86 149 1.4
99.34 178.4 101.38 176.0 1748 0.86 150 1.2

109.28 110.7 111.36 109.2 1749 0.86 148 0.7
122.94 47.4 125.45 46.8 1748 0.86 149 0.3
130.39 20.2 133.32 20.0 1747 0.87 152 0.1
136.60 0.0 139.93 0.0 1745 0.87 153 0.0

Summary and Conclusions

This study investigated the development of a fan testing facility.

The development of the KSU fan test chamber proved to be an arduous

task, as performance problems arose throughout the development and test-

ing. Improvements were implemented as the shortcomings became evident

and the chamber's performance improved with each new implementation.

The problems encountered during the development phase provided a great

learning experience and a greater understanding of all that is involved
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in accurately determining fan performance. With all of the additional

improvements, the results obtained with the KSU fan test chamber are

felt to be repeatable and accurate in comparison with an AMCA laboratory

performance test. This study, therefore, accomplished all of its ini-

tial objectives by developing a fan testing facility in accordance with

AMCA Standard 210-85 and which is capable of accurately repeating

results previously obtained in the AMCA laboratories.

The development and instrumentation of a fan testing facility

requires careful planning and preparation. It is important to determine

the intended use of the fan test facility and overdesign its construc-

tion. The proper choice of settling means to insure a uniform airflow

is essential, as is the correct selection of nozzles. The sealing of

the chamber proved to be an arduous task, due to the use of 1.27 cm (0.5

in) plywood, especially along joints. Constructing the chamber in sec-

tions, though, was essential to allow for access into the various com-

ponents of the chamber.

Despite its performance, there remain many possible improvements to

the KSU fan test chamber. Additional automation of the the fan test

chamber would be one possible improvement. Automation would aid in the

elimination of any human measurement errors and potentially lessen the

time required for testing a fan's performance. The use of pressure

transducers to measure the various static pressures would eliminate the

need to manually read these pressures, while automation of the fan speed

and power measurements could be attained through use of a data acquisi-

tion board. In addition, thermocouples could be employed to sense the

temperatures and a barocell pressure transducer could measure the
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barometric pressure. The use of various sport balls to plug the nozzles

proved to be adequate, but the search continues for more effective means

of sealing those nozzles which are not needed during testing. The

development a fan testing facility seems to be a never ending process,

as there always remain possible improvements.
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EFFECT OF CONE SHAPED WIND DIVERTERS ON VENTILATION FANS

Introduction

The performance of exhaust ventilation fans decreases when the fan

is forced to blow Into a wind. Strong winds may even cause a net reverse

flow through small, unprotected fans. Variable speed fans operated at

low speeds are particularly vulnerable. The proper management of lives-

tock ventilation systems should include solutions to this problem so

that livestock growth and productivity can be maintained.

Several types of wind protection devices have been implemented in

attempts to minimize the detrimental effects of the wind. There are

three principle types of wind protection devices, or techniques, with

two of the three being placed directly on the fan exhaust. A windbreak,

though, is located a reasonable distance from the fan exhaust, and con-

sists of a row of trees or shrubs, or a solid barrier. The other two

devices mount directly in front of the outlet of the fan. The main pur-

pose of each of these devices is to negate the effect of the wind

without increasing the load on the fan in a drastic manner.

The design and location of all wind protection devices must address

two main concerns. The first concern is the extra load placed on the

fan by the device during normal operation with no wind. Pratt et al.

(1983) explained that anything on the discharge side of the fan which

impedes the swirling motion acts to degrade the fan's performance. The

second concern is whether such wind protection actually improves the

performance of the fan when exhausting into a wind. There is a lack of

published research on this problem, thus creating a great need for
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experimentally examining the performance of wind protection devices.

Exhaust fans normally operate against a partial vacuum from 12.4 to 31.0

Pa (.05 to .125 in wg) of static pressure. When a fan is subjected to

this pressure, it is not uncommon for the airflow delivered by the fan

to decrease by 25* to 30%. Variable speed fans especially have poor

pressure ratings at low fan speeds and may not deliver enough air

against wind (MWPS, 1983). Wind protection devices have been employed

to combat the effects of wind, but the design of such equipment gen-

erally has not been based on research data. Experimental testing and

research has not been conducted to gather the necessary data to evaluate

the benefits/costs of the wind protection device. Because of the lack of

experimental and design data, this project was established with the fol-

lowing objectives:

1. To test the effect of a commercially available, cone shaped, wind

diverter on the performance of ventilation fans exhausting

directly into winds ranging from to 10 mps

,

2. To compare the effects of using a wind diverter, and using a hood,

on the performance of a fan exhausting into a wind,

3. To evaluate the effect of wind diverter position on fan perfor-

mance
,

4. To evaluate the effect of wind diverter angle on fan performance

and,

5. To improve the design of the cone shaped wind diverter.
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Research Facilities and Procedure

Existing Wind Diverter

The Osborne Wind Diverter is a 30° inverted fiberglass cone sup-

ported directly in front of the fan outlet by means of aluminum struts.

The performance of the wind diverter has not been evaluated, thus creat-

ing the need to experimentally test its performance. Two parameters of

the wind diverter were examined in this study. The first parameter

examined was the position of the wind diverter relative to the fan

outlet. The other parameter studied was wind diverter angle and its

effect on fan performance. Figure 13 illustrates the Osborne 30° wind

diverter, its attachment to the fan, and the determination of the param-

eter hereby denoted as area ratio. The area ratio was defined as the

ratio of circumferential area open for flow over the fan outlet area.

The equation used- to calculate the area ratio required only the radius

of the fan outlet and the perpendicular distance from the edge of the

fan outlet (along its horizontal centerline) to the wind diverter.

ratio . 1«M
irr

where r - radius of fan outlet (cm)

x - perpendicular distance from the fan

outlet to the wind diverter.
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Figure 13. Osborne 30° wind diverter

The problem with experimentally testing wind protection devices is

how to establish a controlled wind. The wind was simulated in this study

with a 15.24 m (50 ft) long wind tunnel at the USDA Wind Erosion Labora-

tory at Kansas State University. The wind tunnel was 152.4 cm (60 in)

wide and 198.1 cm (78 in) high, giving a cross sectional area of 3.0 m

2
(32.5 ft ). The wind tunnel was capable of generating wind velocities

from to 18 meters per second (mps) , but for this study the maximum

wind velocity used was 10 mps.

Test Setup

The KSU fan test chamber was transported to the USDA Wind Erosion

Laboratory from the Agricultural Engineering Department. The chamber

58



was then positioned at the exit of the wind tunnel in a 6.2 m long by

5.5 b wide "dust" room. The chamber was positioned so that the test fan

would exhaust into the wind tunnel and against the oncoming wind. The

wind tunnel walls and floor were extended 1.22 m (4 ft) to the front

wall of the inlet chamber, Figure 14. The extension of the tunnel's

walls and floor allowed the air to flow over the top of the chamber

through an area approximately equal to the cross sectional area of the

wind tunnel. A flow constriction would cause an excessive pressure

buildup. This "escape" area was at least equal to the wind tunnel cross

sectional area so that a constriction of airflow would be avoided.
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Figure 14. Setup of the KSU fan test chamber in the wind tunnel.
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Instrumentation and Control

The USDA Wind Erosion Laboratory was equipped with all of the

necessary equipment to monitor and control the wind tunnel. The wind was

generated by a Joy Axivane (Series 1000) fan, with a maximum speed of

1300 rpm, and powered by a 125 hp, 240 V, DC motor. The wind velocity

was adjusted from the instrumentation room with a Cutler-Hammer Control

Unit. A pitot tube was employed to sense the pressure inside the tunnel.

This pressure was converted to a voltage by means of a Datametrics

Transducer. This signal was then processed by an Ectron Differential DC

Amplifier (Model 687) and a Hewlett Packard 3497A Data

Acquisition/Control Unit for input into a Basic program, which converted

the signal to a wind velocity in mps . Barometric pressure and required

temperatures were also collected and entered into the wind velocity pro-

gram.

Development of Test Procedure

The effect of wind upon fan airflow with/without the presence of

wind diverters was to be investigated on three sizes of Osborne's flush

mount series of axial flow fans. The fan sizes selected were 20.3 cm (8

in) diameter, 30.5 cm (12 in) diameter, and 40.6 cm (16 in) diameter.

Initially, the fan's airflow with/without a wind diverter was to be

evaluated at wind velocities of 0, 2.5, 5, 7.5, 10, and 12.5 mps. The

fan tests were performed over the range from free air delivery to shut-

off static pressure at each of the six wind speeds. It was soon real-

ized, however, that full performance tests were very time-consuming and
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gave more information than was needed. Normal fan operation is at

building static pressures from 12.4 to 31.0 Pa (.05 to .125 in water).

Performance tests outside this range were not as important. Therefore,

it was determined that the fan tests would be performed at only one

building static pressure. A 31.0 Pa (.125 in wg) static pressure was

used for the 30.5 cm (12 in) fan operated at high speed, and the 40.6 cm

(16 in) fan. A 12.4 Pa (.05 in wg) static pressure was selected for the

20.3 cm (8 in) fan, and the 30.5 cm (12 in) fan operated at low speed.

It was also determined at this time that the wind velocities would be

to 10 mps, with an interval of 2 mps between each wind velocity. Each

fan test would consist of the fan airflow measurement at each of the six

wind speeds and with the static pressure inside the chamber (building)

held constant throughout. The static pressure inside the chamber was

considered to simulate a controlled environment and not the actual

static pressure felt by the fan. The actual fan static pressure was dif-

ficult to measure and included the wind velocity pressure. The tests

could proceed quickly using a constant building static pressure, allow-

ing additional time for testing the effect of wind diverter position.

The ratio of circumferential area open for flow to fan outlet area was

used for establishing the position of the wind diverter relative to the

fan outlet. For example, an area ratio of 1.0 indicated that the circum-

ferential area open for flow was equal to the fan outlet area.
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Wind Speed Frequency

It was felt that the naturally occurring frequency of wind speeds

should be considered in the evaluation of fan and wind diverter perfor-

mance. For example, a 4 mps wind is much more common than a 10 mps

wind. It was therefore desired to sum the weights of fan airflows at

each wind speed to obtain one "time weighted airflow" for each experi-

mental condition or treatment. Two main techniques are used to obtain

wind speed frequency. One technique uses actual field data to establish

a wind speed frequency curve and equation. This technique is best where

the data is available for the particular region being investigated. The

second technique employs a statistical distribution of Pearson Type III,

called the Weibull distribution, to describe the wind speed frequency.

This statistical distribution describes the wind speed frequency curve

on the basis of the scale and shape parameters. The scale parameter (c)

describes the approximate median wind speed. The shape parameter (k)

describes the relative shape of the frequency curve. A scale parameter

of 4.47 mps (10 mph) and a shape parameter of 2.0 were selected for this

particular application (agricultural ventilation systems, 3.1 to 6.1 m

(10 to 20 ft) high buildings). The Weibull distribution of the wind

speed frequency curve was obtained using these two parameters, Figure

15.
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WIND SPEED Cmps)
UEIBULL DISTRIBUTION

f<u) = k/c * <u/c)^k-l * expC-<u/c)y>l<3
c = t.47 m/s (10 mph) (scale parameter)
k = 2 (shape parameter)
u = uind speed Cmps)

Figure 15. Weibull distribution of wind speed frequency curve

This distribution was used to weight the results obtained at the one

static pressure and the six wind velocities from to 10 mps (0 to 22.4

mph) at intervals of 2.0 mps. The weighted airflow for an experimental

treatment at each wind velocity was obtained by multiplying the measured

fan airflow by the area under the Weibull distribution over an interval

of the wind velocity minus one mps to the wind velocity plus one mps.

The time weighted airflow was then obtained by summing the weighted air-

flows at each wind velocity. The overall performance of each experimen-

tal treatment could be compared on the basis of one weighted value using

this approach.
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Experimental Treatments

Experiment 1

.

The purpose of Experiment 1 was to test the performance of the

Osborne 30" Inverted cone wind diverter and observe the effect of wind

diverter position. For each of the three fan sizes, tests were per-

formed with/without a wind diverter and with the wind diverter at dif-

ferent positions. In addition, two variations of the Osborne 30° cone

were tested. Figure 16 illustrates the three types of 30° cone shaped

wind diverters tested in this phase. One variation was a wind diverter

without a flange. The other variation involved placing two wind divert-

ers back to back, essentially forming a double cone.

30a 30dc

Figure 16. 30" cone shaped wind diverters

Table 7 Illustrates the use of the Weibull distribution and weighted

airflows with a sample of data for the 40.6 cm fan.
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TABLE 7. Determination of weighted airflow for the Agri-Aide single
speed 40.6 cm fan with a 30° wind diverter at an area ratio of
3.0.

FAN : Agri-Aide FM-1624-1 at 1725 RPM (nominal)
DATE: 11-3-87

WIND STATIC FAN PROB. OF WEIGHTED
SPEED PRESSURE AIRFLOW WIND AIRFLOW
(mps) (Pa) (Lps) SPEED (Lps)
0.00 31.17 842.2 0.0489 41.2
2.00 31.24 832.6 0.3146 261.9
4.01 31.22 782.4 0.3520 275.4
6.00 31.00 488.4 0.2005 97.9
7.99 31.19 418.8 0.0689 28.8
9.99 31.37 275.3 0.0150 4.1

TWA-709 .

3

Experiment 2.

The purpose of Experiment 2 was to determine the effect of wind

diverter angle on fan airflow. Osborne Industries constructed four new

cone shaped wind diverters with angles of 0°, 15°, 45°, and 60°, Figure

17.
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Figure 17. 0°, 15°, 30°, 45°, and 60° wind diverters for the Agri-Aide
FM-1211-2 fan.

The effect of wind diverter angle was tested on the 30.5 cm (12 in)

diameter fan, operated at high speed (1725 rpm) and low speed (1140

rpm)
.

In addition, three wind diverter positions (area ratios) were

tested for each wind diverter angle and fan speed. The effect of wind

diverter angle and position could thus be evaluated. The relationship

between the fan airflow rate and the wind was also examined in a visual

manner. Visual display of the effects of wind on fan airflow was

achieved by using a set of string streamers attached to the wind

diverter. The streamers were photographed at each wind velocity during a

performance test. In addition, averaging of the results over the wind

diverter angles and positions tested was performed in an effort to sum-
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marize the overall results

.

Various statistical techniques were applied to the test results.

Statistics can be a powerful tool for modeling when the proper steps are

taken, and when the database is large enough. This study did not lend

itself well for statistical analysis for a variety of reasons. The

study embarked into an area with very little, if any, previous experi-

mentation, and thus, no initial database to build on. The purpose of

the testing was to gain an understanding of how the wind and wind

diverters affect fan airflow. Since a good portion of the study was

spent in trying to evaluate the effects of wind diverter angles and

positions, the testing was not completely randomized. In order to prop-

erly develop a statistical model, the variables involved and procedures

required should be understood prior to testing. Since no previous work

had been performed in this area of research, a proper understanding of

all of the variables and inputs was not available. One final limitation

on any statistical modeling was the fact that only one manufacturer's

fans were tested and only three sizes of fans tested. Any model

developed was very limited in scope and can best be considered only a

preliminary model.

The results obtained in the testing of wind diverter angles and

area ratios were used as the base data for the statistical model. The

model was developed for the two-speed 30.5 cm fan, with wind diverter

angle and area ratio serving as the independent variables and time

weighted airflow being the dependent variable. In addition, the results

obtained with the 30° wind diverter without a flange were not used in

the model, in order to maintain a degree of uniformity between the wind
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diverters. A regression model was felt to be the best choice of models

to use in fitting the data. The Statistical Analysis System (SAS, 1987)

was employed as an aid in developing a regression model. Various regres-

sion models were used in the development of a "best" model and included

linear, quadratic, and response surface models. The main factor used in

comparing the different models was the coefficient of determination, R
,

which measured the portion of the variation in the response that was

attributed to the model rather than to random error. The effect of each

parameter in the model was also evaluated by use of the F-ratio and the

probability of obtaining at least as great an F ratio given that the

parameter tested was equal to zero (at P < .05). If the significance

probability for a particular parameter was less than .05, that parameter

was considered significant in the model. Three regression models were

examined for both high and low speed operation of the two-speed, 30.5 cm

fan.

Results and Discussion

Experiment 1

20.3 cm Fan.

The effect of wind diverter position on the time weighted airflow

of the 20.3 cm (8 in) fan was evaluated for area ratios of 1.5 to 3.5,

Figure 18. The presence of a wind diverter improved the time weighted

airflow from 39 Lps for the exposed fan to between 62 and 65 Lps for the

protected fan, an increase of 57% to 65%, with the greatest airflow

occurring at a 2.5 area ratio. The effect of wind diverter position was
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relatively low, as indicated by small differences in time weighted air-

flow (4.7% difference between minimum and maximum).

a

Exposed Fan

-Wind Divert gt = 30

— Without Uind Diverter

1 10 130 C.OI CM 3.10 3.30

flREft RATIO

Figure 18. Time weighted airflow (Lps) versus area ratio for the
single -speed 20.3 cm fan.

The presence of a wind diverter enabled the fan to operate up to

the 8 mps wind velocity, while the exposed fan was only able to operate

up to a 6 mps wind velocity, Figure 19. The wind diverter improved fan

airflow at wind velocities above 2 mps, with a 300% increase at the 6

mps wind velocity. In windless conditions, there was a 6.8% difference

between the results collected at area ratios of 1.25 and 3.5, with the

larger area ratios yielding higher fan airflows. The effect of wind

diverter position changed as wind velocities increased. At a wind velo-

city of 10 mps, an area ratio of 3.5 caused a decrease of 53.4% in fan

airflow from the airflow attained at an area ratio of 1.25. Small area

ratios increased the load on the fan at wind velocities below 4 mps,

resulting in lower fan airflows. This phenomena was reversed at wind
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velocities above 6 mps, as the small area ratios created a chimney

effect. The chimney effect was created when the wind included the air-

flow from the exhaust fan, thereby accelerating its velocity and aiding

in its exhaust flow. The fan's airflow was easily entrained into the

wind at the small area ratios, while the larger area ratios caused the

fan to exhaust more directly into the wind.
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Figure 19. Fan airflow (Lps) versus wind velocity (mps) for the
single -speed 20.3 cm fan.

Single-Speed 30.5 cm Fan.

Tests performed on the single speed 30.5 cm (12 in) fan, with area

ratios ranging from 1.0 to 3.0, exhibited larger differences in fan air-

flow, Figures 20 and 21. These figures also exhibit one of the problems

encountered in the testing. The same wind diverter position resulted in

several different airflows at area ratios between 1.5 and 2.5. This
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scatter was due to the unstable region typical of axial flow fans, as

reported by Baumeister (1935) and Eck (1973). This unstable region was

very difficult to avoid, as the wind pressure caused the fan's static

pressure to cross through this region as wind velocity was increased

from to 10 mps. The only fan to avoid this unstable region was the

20.3 cm fan, as its initial static pressure in windless conditions was

already above the range of instability. The presence of this unstable

operating region made it difficult to determine the optimum wind

diverter position. It appears, however, that a 2.125 area ratio pro-

duced the best results with time weighted airflow increases of 23.4% to

32.5%, Figure 20. The position of the wind diverter appeared to have a

significant effect on fan airflow, as fan airflow generally improved as

the distance from the fan outlet increased up to 2.125 and gradually

decreased beyond 2.125. The presence of a wind diverter improved the

time weighted airflow from 194 Lps for the exposed fan to airflows

between 224 and 257 Lps for the protected fan, depending on the area

ratio.

The plot of fan airflow and wind velocity, Figure 21, showed the

effects of wind at various area ratios. In windless conditions, fan

airflow was 11% to 19% higher while exposed than while protected, but

immediately dropped from 280 to 231 Lps with only a 2 mps wind, and con-

tinued decreasing to 14 Lps as wind velocity increased to 9.4 mps (10

mps was not attainable) . The presence of a wind diverter enabled the

fan to operate up to the 10 mps wind, and improved fan airflow by 120%

to 158% at the 8 mps wind. The chimney effect was evident at the 4 mps

wind velocity, as fan airflow improved from 253 Lps at the 2 mps wind to
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263 Lps for area ratios of 2.0 to 3.0. The effect of wind diverter posi-

tion at various wind velocities was also exhibited in the plot of fan

airflow rate versus wind velocity, Figure 21. The fan's airflow was up

to 10% higher for larger area ratios at wind velocities up to 6 mps, but

37% lower in the 10 mps wind.
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Figure 20. Time weighted airflow (Lps) versus area ratio for the
single-speed 30.5 cm fan.
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Two-Speed 30.5 cm Fan.

High Speed. Effects of wind protection on the two-speed, 30.5 cm fan

operated at 1725 rpm are presented in Figures 22 and 23. This fan

delivered a larger capacity of air than the single-speed, 30.5 cm fan

(574 Lps as compared to 280 Lps in windless conditions) during operation

of the fan without a wind diverter. The unstable region was again evi-

dent at area ratios between 1.5 and 2.5. A large jump in the time

weighted airflow from 264 Lps to 337 Lps occurred at a ratio of 2.5, as

higher airflows were recorded within the unstable region. The effect of

wind diverter position was very important for the two-speed fan, as time

weighted airflow was greater than that without a wind diverter only for

area ratios above 2.5. The optimum position was 4.0, with the time
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weighted airflow improving from 316 Lps to between 346 and 350 Lps, an

increase of 10% to 11%.

The effect of wind diverter position was evident in the plot of fan

airflow against wind velocity, Figure 23. The effect of the unstable

operating region was especially evident at a ratio of 2.5 and at winds

below 2 mps. Two different results were obtained due to this region of

instability, with the difference amounting to 155 Lps (48% increase) in

windless conditions. The unstable region affects the fan airflow up to

the 4 mps wind, where the increase in static pressure has caused the

fan's airflow to cross completely through the region of instability. At

wind velocities below 4 mps, the fan's airflow was considerably higher

with area ratios above 2.5. The fan's airflow improved from 312 Lps to

519 Lps (67% increase) in windless conditions as the area ratio

increased from 2.0 to 4.0. The chimney effect was again evident at the

optimum position of 4.0, as fan airflow increased from 519 to 523 Lps at

the 4 mps wind, while the fan airflow for an area ratio of 2.0 dropped

to 305 Lps. In contrast!, area ratios above 2.5 provided the lowest air-

flows at wind velocities above 8 mps, with a 70% decrease in airflow

between results at ratios of 1.5 to 2.0 and results at a ratio of 5.5.

The presence of any wind diverter, though, enabled the fan to operate up

to the 10 mps wind, improved fan airflow for winds above 4 mps, and pro-

vided for up to a 130% increase in airflow over that of the exposed fan.

Two additional wind protection devices were tested on the two-speed

fan. The existing 30" wind diverter was modified by eliminating the

outer flange surrounding the wind diverter, while maintaining the same

outside diameter. The hypothesis for removing the flange was based on
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the theory that any directional change imposed on the air exiting the

fan will cause the fan to work harder. This hypothesis proved to be

well founded, as the fan's time weighted airflow with the wind diverter

without a flange was from 3 to 13 Lps higher (1% to 13% increase),

depending on the area ratio. This effect was greater at smaller area

ratios, with the increase being 13% at 2.5, and 1% at ratios of 4.0 and

5.5.

The other wind protection device tested was a hood placed over the

exhaust of the fan. The hood was a severe restriction on the fan, Figure

22. The effect of the hood decreased time weighted airflow by 81 Lps

(25% decrease) in comparison to the exposed fan, and by 115 Lps (33%

decrease) in comparison to the fan with the wind diverter at the optimum

position. The fan airflow attained with the hood was 270 Lps in wind-

less conditions, while a wind diverter at a ratio of 4.0 yielded an air-

flow of 519 Lps, a 92% improvement, Figure 23. The results attained

with the hood improved slightly (in relation to wind diverter results)

as wind velocities increased above 4 mps, but were always less than the

results at the 4.0 ratio.

76



£ ™
i-

540

a

D

8

Deposed Fan

a s
" o £D-Ulnd Dioerter - 30

O-Hlnd Diverter = 30a
— Osborne Hood
— Without Ulnd Diuerter

Osborne Hood

,

e.oo e.9a 3.00 3.30

AREA RATIO

t.OO 4 30 3.00 3.30

Figure 22, Time weighted airflow (Lps) versus area ratio for the two-
speed 30.5 cm fan operated at 1725 rpm.

* 2

* 4A

A

IB
z

2 ?
c

1 1
Q- Area Ratio - 1.50 X

i
O- Area Ratio 2.(10 t

5A-ftrea Ratio - 2.50
A- Area Ratio - 2 50 A
X-Area Ratio = 4.00

2-Area Ratio 5.50
Z- Osborne Hood t

- Without Uind

WIND VELOCITY <mps>

Figure 23. Fan airflow (Lps) versus wind velocity (mps) for the two-
speed 30.5 cm fan operated at 1725 rpm.

77



The two-speed 30.5 cm fan was tested under windless conditions with

a 30° wind diverter at an area ratio of 2.5 in order to document the

region of instability. Test points were collected around 31.0 Pa (.125

in wg) static pressure, Figure 24 and Table 8. The effect of this

unstable operating region is evident in Figures 23 and 24. Although the

test of instability was in windless conditions, this unstable region

affects fan airflow at either a 2 or 4 mps wind at an area ratio of 2.5.

Fan airflow dropped from 477 Lps (point A) to 278 Lps (point C) as wind

velocities increased from 2 to 4 mps, Figure 23. Static pressure across

the fan increases as the wind velocity increases, causing this drop in

airflow. The change in wind velocity from 2 to 4 mps raised the effec-

tive fan static pressure through the unstable region from point A to

point C, Figure 24. In contrast, at a 2 mps wind, the unstable region

also yielded a fan airflow of 307 Lps at the top end of the region of

instability, point B, Figures 23 and 24. Fan airflow decreased to 278

Lps for both point A and B with the increase in wind velocity from 2 to

4 mps. The 4 mps wind thus caused the fan to operate as if at a higher

static pressure (34.8 Pa), point C, Figure 24.
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TABLE 8. Fan performance test on the two-speed
the unstable operating region.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 1-6-87

30
. 5 cm fan documenting

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 24.81 514.5 23.27 500.2 24.5 1775 2.24 221 2.3
0.00 24.81 513.6 23.27 499.2 24.4 1775 2.26 223 2.3
0.00 31.05 316.7 28.96 307.1 15.0 1779 2.24 202 1.6
0.00 31.05 329.0 28.96 319.0 15.6 1779 2.24 202 1.6
0.00 31.02 380.6 28.98 369.4 18.1 1778 2.24 208 1.8
0.00 31.02 440.6 29.03 427.9 20.9 1776. 2.26 214 2.1
0.00 31.02 491.0 29.08 477.2 23.4 1775 2.26 221 2.2
0.00 37.25 287.4 34.80 278.8 13.6 1778 2.21 203 1.4
0.00 37.25 287.9 34.77 279.3 13.7 1778 2.24 206 1.4
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Low Speed. Test results from the two-speed, 30.5 cm fan, operated at

1140 rpm, with three types of wind protection devices are shown in Fig-

ures 25 and 26. Fan airflow improved with a wind diverter, but wind

diverter position had minor effects. The presence of a wind diverter

improved the time weighted airflows from 90 Lps for the exposed fan to

between 129 and 140 Lps, an increase of 43% to 55%, depending on the

area ratio. The greatest improvement occurred at a 1.375 ratio, where

the time weighted airflow was 140 Lps, a 55% increase over the exposed

fan's airflow. The effect of a flange on the wind diverter was not

apparent, as the results were almost identical. The presence of a hood

improved the time weighted airflow from 90 Lps for the exposed fan, to

117 Lps, an increase of 30%, which was still 23 Lps or 16% less, than

the airflow attained with a wind diverter at a 1.375 ratio.

Dl-Uind Diverter - 30
O-Uind Diverter 30a— Osborne Hood— Without Wind Divert*

Exposed Fan

1.90 i.es i.sa l.Ts coo e.ss B .M E7a 3 . 0a

AREA RATIO

Figure 25. Time weighted airflow (Lps) versus area ratio for the two-
speed 30.5 cm fan operated at 1140 rpm.
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The effect of wind on fan airflow was readily exhibited, Figure 26.

A one mps wind decreased the airflow of the exposed fan by 59%, from 364

to 151 Lps. The use of a wind diverter produced a more stable airflow

and allowed for operation up to about 7.5 mps wind velocity as compared

to only about 5.5 mps without a wind diverter. Area ratios greater than

1.5 allowed operation in winds up to only 6 mps though, while area

ratios below 1.5 enabled the fan to operate in up to a 8 mps wind.

D- Area Ratio 1.0
O-flrea Ratio "1.3
A-flrea Ratio - 2.00
Y-nrea Ratio - 2.30
X-Armm Ratio - 3.00
-Osborne Hood
-Uithout Uind Diver tor

WIND UELOCITY Cmps>

Figure 26. Fan airflow (Lps) versus wind velocity (mps) for the two-
speed 30.5 cm fan operated at low speed (1140 rpm)

.

40.6 cm Fan.

Wind diverter position exhibited the most apparent effect in tests

of the single-speed, 40.6 cm (16 in) fan, Figures 27 to 30. Time

weighted airflow steadily increased as the distance from the fan outlet

increased from 11.4 cm (4.5 in) to 50.8 cm (20 in), at which point the
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airflow leveled off. The highest airflow of 752 Lps , occurring at an

area ratio of 5.0, was 27% higher than the exposed fan airflow of 591

Lps. Three types of 30° wind diverters were employed with this fan. A

30° cone without an outer flange yielded 1% to 2% higher time weighted

airflows than the 30° cone with a flange, indicating the negative effect

of a flange. A double cone, formed by placing two wind diverters back

to back, had no apparent effect on fan airflow.
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Figure 27. Time weighted airflow (Lps) versus area ratio for the
single-speed 40.6 cm fan.

Plots of fan airflow rate versus wind velocity exhibited the

effects of wind diverter position and wind diverter design modifica-

tions, Figures 28 to 30. The effect of wind diverter position was

readily apparent for wind velocities below 4 mps. In windless condi-

tions, the airflow increased by up to 41% as the area ratios increased,

Figure 29. The airflows remained 27% to 70% higher, up to a 6 mps wind,

for an area ratio of 5.0 in comparison to airflows attained at ratios of

82



1.125 and 1.5. The effect of position essentially disappeared at wind

velocities from 6 to 8 mps . At 10 mps , larger area ratios yielded 33%

to 38% lower airflows than the smaller area ratios, but still 76% to 80%

higher airflows than for the exposed fan. The graphs also illustrate

that the presence of a wind diverter was not beneficial until winds

exceeded 3 mps. The fan airflow decreased from 837 to 477 Lps, a 43%

decrease, at a 3.5 mps wind velocity for the fan operated without a wind

diverter. This large decrease in fan airflow was caused by the wind

pressure raising the effective fan static pressure above the region of

instability. The presence of a wind diverter at any position enhanced

fan airflow for winds above 3.5 mps and provided a more stable airflow.

Small area ratios (below 3.5) did decrease the airflow by up to 34% at

winds below 2 mps, but area ratios greater than 3.5 only decreased the

airflow by 7.7% to 8.2% in windless conditions, and by less than one

percent at the 2 mps wind.
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Figure 28. Fan airflow (Lps) versus wind velocity (mps) for the
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Figure 29. Fan airflow (Lps) versus wind velocity (mps) for the
single-speed 40.6 cm fan with the 30 degree wind diverter
without a flange.

84



IUUU

500
z
X r

W
300

Y

i
Y
A

*

?
a. ®
-i TOO ©

LU
600

<T
a
3
O

SO

too

-Area Rat io 1 50

•

<r 300 -Araa Patio a 2 00 1z A -Area Rat io 2 50 • I
a:

EDO Y - Araa Rat io 3 00 z
X -Ar»a Ratio = 3 50
* -Aria Rat io H 00

•100 z -Area Ratio 1 50
• -Without Wind Diuwter

WIND VELOCITY <mps)
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diverter.

The results gathered in Experiment 1 illustrated the importance of

wind diverter position in relation to fan airflow. In general, the

presence of a wind diverter did decrease the fan's airflow when the

oncoming wind velocity was below 2 mps, but improved the airflow for

winds above 4 mps. Based on the use of time weighted airflows, the wind

diverter was an aid to overall fan airflow. The position of the wind

diverter was also shown to be very important, especially for larger

fans. The overall fan airflow increased to a maximum as the wind

diverter was moved farther away from the fan outlet, and then leveled

off or decreased slightly as the distance was increased.

One problem encountered in the testing of all of the fan sizes

except the 20.3 cm fan was the unstable region of fan operation. Small

changes in pressure can cause large changes in fan airflow when a fan is
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operating in this region. In normal operation, this unstable region

should be avoided if at all possible. Wind heightens the problem as

added wind pressure causes the fan to operate at a higher actual static

pressure than indicated by the measured building static pressure. The

addition of a wind protection device also increased the load on the fan,

causing the fan to work harder and operate at a higher static pressure.

It was therefore impossible to avoid the region of instability during

tests involving wind, as the fan's airflow follows its designated fan

performance curve and inevitably crosses through the unstable region.

The test procedures in Experiment 2 considered the careful acquisition

of the test data so that results could be compared. Many test condi-

tions in Experiment 1 were repeated in an attempt to verify the results.

Some of the discrepancies were due to the unstable region of the fan.

The other discrepancies were possibly due to measurement errors, partic-

ularly in the static pressure measurement, as higher wind velocities

caused the pressure to fluctuate, making readings difficult.

Experiment 2

Experiment 1 showed an apparently significant effect of the wind

diverter and wind diverter position on fan airflow in an oncoming wind.

The second experiment examined the effect of wind diverter angle on the

airflow of the 30.5 cm fan operated at 1725 rpm and 1140 rpm. Three

wind diverter positions were examined for each of five wind diverter

angles and two fan speeds. Experiment 2 thus evaluated the effects of

wind diverter angle, position, and fan speed using a 5x3x2 factorial
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design.

High Speed Operation.

Wind Tunnel Tests. The effects of wind velocity on fan airflow for the

various wind diverter angles and positions are shown in Figures 31

through 34. At an area ratio of 1.75, the effect of wind diverter angle

was most apparent at winds below 2 mps, Figure 31. In windless condi-

tions, fan airflow attained with the 45° wind diverter was 22% higher

than with the 0° wind diverter, as airflow improved from 284 Lps to 346

Lps. The effect of wind diverter angle decreased as wind velocity

increased up to 10 mps, where there was no apparent effect. The pres-

ence of a wind diverter decreased the fan airflow at winds equal to or

below 2 mps, with a decrease of 40 to 50% in windless conditions. In

contrast, the wind diverter aided airflow for winds above 2 mps, with up

to a 115% improvement at a wind velocity of 8 mps. The exposed fan's

airflow dropped from 537 to 216 Lps (60% decrease) as wind velocity

increased from 2 to 4 mps. The use of a wind diverter created a more

stable operating condition allowing the fan to operate in up to a 10 mps

wind, while the exposed fan was only able to operate up to a 9.5 mps

wind.
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Figure 31. Effect of wind velocity on fan airflow rate (Lps) for high
speed operation of the two-speed 30.5 cm fan with six wind
diverter angles at an area ratio of 1.75

The effect of wind diverter angle was more apparent at an area

ratio of 2.5, especially for wind velocities at or below 2 mps, Figure

32. In windless conditions, a 45° or 60° wind diverter improved airflow

from 286 Lps (for the 0° wind diverter) to between 498 and 502 Lps, an

increase of 75%. The effect of the flange was also apparent, as the

presence of an outer flange impeded the airflow by 2%. The effect of

wind diverter angle again decreased at wind velocities of 4 mps and

higher. At a wind velocity of 10 mps, though, the effect of wind

diverter position was exhibited, as the 0° wind diverter yielded results

20% higher than the airflow attained with a 60° wind diverter. The

effect of area ratio was even more graphic at winds of 2 mps and below,

as the airflow attained with the 60° wind diverter was only 12% lower

than the exposed fan's airflow in windless conditions, and 8% lower at a
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2 mps wind. The use of a wind diverter again stabilized the airflow,

and improved the airflow from 100 Lps to 230 Lps, a 130% increase, at a

wind velocity of 8 mps.
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Figure 32. Effect of wind velocity on fan airflow rate (Lps) for high
speed operation of the two-speed 30.5 cm fan with six wind
diverter angles at an area ratio of 2.5

The effect of wind diverter angle was again diminished at an area

ratio of 4.0, Figure 33. At windless conditions, there was only a 4%

difference between airflows, with the 60° angle providing 532 Lps and

the 0" angle yielding 510 Lps. A small chimney effect was exhibited at

a wind velocity of 2 mps, as the airflows improved by 1%. The effect of

wind diverter position also became more pronounced at a ratio of 4.0.

The use of a wind diverter only decreased the fan airflow by 7% to 11%

as compared to the exposed fan's airflow at windless conditions, and by

1 to 4% at the 2 mps wind. In contrast, the use of a wind diverter

increased the airflow from 100 Lps to 160 to 185 Lps, a 60% to 85%
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increase, at a wind velocity of 8 mps. At a wind velocity of 10 mps

,

the 0° wind diverter now yielded results 30% higher than the airflow

attained with a 60° wind diverter.
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Figure 33. Effect of wind velocity on fan airflow rate (Lps) for high
speed operation of the two-speed 30.5 cm fan with six wind
diverter angles at an area ratio of 4.0

This same trend was apparent at an area ratio of 5.5, Figure 34.

In windless conditions, there was again a 4% difference between air-

flows, with the 60° angle providing 544 Lps and the 0° angle yielding

522 Lps. The airflow obtained with the 60° wind diverter angle did

improve from 544 to 546 Lps at a 2 mps wind, thus exceeding the exposed

fan's airflow of 537 Lps at that wind velocity. At an area ratio of

5.5, the effect of wind diverter position was readily apparent. The use

of a wind diverter decreased the fan airflow by only 5% to 8.5% in rela-

tion to the exposed fan's airflow at windless conditions, but only

improved the airflow at a wind of 8 mps from 100 Lps to between 130 and
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160 Lps (30% to 60% increase). The effect of wind diverter angle was

also evident at the 10 mps wind, as the airflow improved from 34 Lps for

the 60° wind diverter to 62 Lps for the 0° wind diverter, an improvement

of 82%.

i I

-Uind Diverter -
O-Uind Diverter - 13
A-Wind Diverter - 30
Y-Wind Diuerter = 30a
X-Uind Diverter 45

wind Diverter - 60
+ - Without Wind Diverter

WIND VELOCITY <mps>

Figure 34. Effect of wind velocity on fan airflow rate (Lps) for high
speed operation of the two-speed 30.5 cm fan with six wind
diverter angles at an area ratio of 5.5

The effect of wind diverter position was even more apparent when

the results presented in Figures 31 through 34 were examined together.

At wind velocities of 2 mps and below, the wind diverter position had an

apparently large effect on fan airflow. At an area ratio of 1.75, the

wind diverter restricted the airflow quite severely, with airflows rang-

ing from 284 to 346 Lps in windless conditions. Subsequent area ratios

resulted in less restriction, increasing the airflow to between 522 and

544 Lps at an area ratio of 5.5 in windless conditions. The opposite

effect was exhibited for wind velocities above 4 mps. The largest
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benefit for use of a wind diverter was exhibited at an area ratio of

1.75, where the airflow was 157 Lps at a wind velocity of 10 mps . Sub-

sequent area ratios yielded a decrease in airflows over the range of

winds from 4 to 10 mps, with an area ratio of 5 . 5 only yielding airflows

from 34 to 62 Lps at the 10 mps wind.

Effect of Wind on the Fan Performance Curve. The effects of wind on fan

airflow can also be seen when plotted against the fan's performance

curve under windless conditions. The fan airflows for the two-speed

30.5 cm fan (1725 rpm) without a wind diverter (at all possible static

pressures) and with the 30° wind diverter at various positions and at

constant building static pressure are presented in Figures 35 through

39. The results from the wind effects study were all collected at 31.0

Pa building static pressure, with the airflows obtained at each wind

velocity proceeding from right to left as the wind velocity increased.

The initial load placed on the fan by the wind diverter was most readily

evident at an area ratio of 1.75. This initial load caused the fan's

performance curve to shift horizontally to the left and down. The ini-

tial airflow was decreased from 573 to 328 Lps, a 43% decrease, at this

area ratio. Subsequent wind velocities caused the fan airflow to con-

tinue to decrease, with an airflow of only 154 Lps at a wind velocity of

10 mps. The vertical differences between the two performance curves

(windless conditions versus varying wind velocities) was due to the

pressure created by the wind, and is theoretically related to the square

of the wind velocity. This theoretical relationship appears to be veri-
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fied in Che graphs, as the distance between the two performance curves

appears to increase according to the square of the wind velocity as the

wind velocity increases from to 10 mps. The wind thus causes the fan

to operate against a larger static pressure than the average static

pressure inside the chamber (building)

.

The initial load placed on the fan by the wind diverter decreased

as the distance between the wind diverter and the fan outlet increased.

Wind velocities less than 2 mps resulted in the fan airflow approaching

the fan performance curve under windless conditions. At an area ratio

of 2.5, the fan airflow improved to 475 Lps in windless conditions, a

decrease of 17% from the fan performance curve obtained without a wind

diverter in windless conditions. The airflow in windless conditions

continued to improve as the area ratio increased, with 519 Lps being

attained at a ratio of 4.0 and 528 Lps at a ratio of 5.5. This 528 Lps

airflow was only an 8% decrease from the fan performance curve obtained

without a wind diverter and in windless conditions. The fan airflow

also increased steadily at the 2 mps wind as the area ratio increased.

At a wind velocity of 2 mps, the airflow was 296 Lps at a ratio of 1.75,

465 Lps at 2.5, 519 Lps at 4.0, and 523 Lps at 5.5. In contrast, the

airflow decreased steadily for winds of 4 mps and above as the area

ratio increased above 2.5. At an area ratio of 1.75, though, the wind

diverter was a large enough restriction that for wind velocities between

4 and 8 mps, the airflows were 2% to 4% lower than the airflows deter-

mined at a ratio of 2.5. At area ratios of 2.5 and larger, the fan air-

flows did steadily decrease as the area ratio increased, with the larg-

est subsequent decreases occurring at wind velocities of 8 mps and 10
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mps. For example, at a wind velocity of 10 mps, the airflow was 154 Lps

at a ratio of 1.75, 131 Lps at 2.5, 97 Lps at 4.0, and 48 Lps at 5.5.
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Figure 35. Fan airflow in windless conditions without a wind diverter
and with a wind diverter (area ratio - 1.75) in 6 wind
speeds at a constant building static pressure
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Figure 36. Fan airflow in windless conditions without a wind diverter
and with a wind diverter (area ratio - 2.5) in 6 wind speeds
at a constant building static pressure
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Figure 37. Fan airflow in windless conditions without a wind diverter
and with a wind diverter (area ratio - 4.0) in 6 wind speeds
at a constant building static pressure
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Figure 38. Fan airflow in windless conditions without a wind diverter
and with a wind diverter (area ratio - 5.5) in 6 wind speeds
at a constant building static pressure

The fan airflow without a wind diverter yielded a wide spread of

results, Figure 39. In windless conditions, the exposed fan's airflow

was 573 Lps, falling directly on the performance curve of the fan. At a

wind velocity of 2 mps , the airflow remained high at 537 Lps, but

dropped sharply to 216 Lps at the 4 mps wind. The airflow continued to

drop sharply as the wind velocity increased, with the fan only able to

produce 17 Lps at a wind velocity of 9.5 mps. The calculated wind velo-

city pressure was added to the 31.0 Pa building static pressure, Figure

39. The calculated fan static pressures were not equal to the fan

static pressures obtained in windless conditions. Possibilities for the

remaining differences include turbulence at the fan, increased wind

velocity as the wind "escapes" over the chamber, and difficulty in

measuring the "true" wind velocity at the fan, as the measurement of the
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wind velocity was at a distance of approximately 2.5 m (8 ft) upstrea

from the fan.
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Figure 39. Fan airflow in windless conditions without a wind diverter
and in 6 wind speeds at a constant building static pressure

Wind and Fan Airflow Interaction. A wind velocity of 4 mps was a criti-

cal wind for all of the testing conditions, as the wind pressure raised

the effective fan static pressure through the region of instability for

the fan. The fan operated below the unstable region for wind velocities

of and 2 mps, while it operated at the upper edge of the region for a

wind of 4 mps. The interaction between wind velocity and fan airflow

was visualized with streamers made of string and attached to the wind

diverter. The streamers were 7.6 cm (3 in) long and were attached at

2.5 cm (1.0 in) increments, along a length of string that ran from the

fan outlet to the edge of the diverter and over to the wind tunnel wall.
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The behavior of these streamers was photographed at each wind velocity

during the tests in an effort to visualize the processes taking place

during operation of the fan facing a wind. The pictures serve to show

the location of the diverter, its attachment to the fan (aluminum

struts) and the behavior of the streamers (wind tunnel wall as back-

ground) . The plywood background and poor lighting prohibited optimal

visualization, but the effect of increased wind velocity was identified.

The behavior of the streamers over the range of wind velocities from

to 10 mps for the 60° wind diverter at an area ratio of 5.5 are exhi-

bited in Figures 40 through 45. These figures and graphs illustrate the

relationships between wind velocity and diverter angle and position.
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Figure 40. Interaction between a raps wind and fan airflow with the
60" wind diverter

Figure 41. Interaction between a 2 mps wind and fan airflow with the
60" wind diverter
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Figure 42. Interaction between a 4 mps wind and fan airflow with the
60° wind diverter

Figure 43. Interaction between a 6 mps wind and fan airflow with the
60" wind diverter
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Figure 44. Interaction between a
60" wind diverter

8 mps wind and fan airflow with the

Figure 45. Interaction between a 10 mps wind and fan airflow with the
60° wind diverter
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Time Weighted Airflow. The combined effect of wind diverter angle and

position are presented in Figure 46. At an area ratio of 1.75, the time

weighted airflow was from 260 to 278 Lps, a decrease of 12 to 16% from

the 316 Lps obtained with the exposed fan. The effect of wind diverter

angle was most apparent at an area ratio of 2.5. The two 30°, 45°, and

60° wind diverters exhibited time weighted airflows ranging from 331 Lps

to 354 Lps, a 5% to 12% improvement over the exposed fan's 316 Lps. In

contrast, the 0° and 15° wind diverters only yielded 83% to 97% of the

time weighted airflows obtained without a wind diverter. An area ratio

of 4.0 yielded time weighted airflows of 339 to 355 Lps, an improvement

of 7% to 12% over the exposed fan's 316 Lps, with the 60° wind diverter

yielding the largest airflow. The time weighted airflows at an area

ratio of 5.5 were all higher than those obtained without a wind

diverter, but the improvement was decreased to only 6% to 11%. The

optimum wind diverter angle and position appeared to be a 60° angle at

an area ratio of either 2.5 or 4.0. An area ratio of 2.5 may be a

better choice than 4.0, though, due to the inconsequential difference

between the time weighted airflows, and the disadvantage of longer

brackets needed for a ratio of 4.0. Additional information is presented

in Appendix C, where the various test conditions and results are exhi-

bited in tabular form.
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Figure 46. Effect of area ratio and wind diverter angle on time
weighted airflow for high speed operation of the two -speed
30.5 cm fan

Low Speed Operation.

Wind Tunnel Tests. The effect of wind diverter angle and position on

fan airflow were not as apparent for the two-speed 30.5 cm fan operated

at 1140 rpm. Plots of fan airflow rate versus wind velocity for three

wind diverter positions are presented in Figures 47 through 49. At an

area ratio of 1.0, and in windless conditions, the use of a wind

diverter decreased the fan airflow from 364 Lps for the exposed fan, to

between 156 and 163 Lps, a decrease of 55% to 57%, depending on the wind

diverter angle, Figure 47. . The use of a wind diverter was beneficial

for wind velocities of one mps and beyond, as the exposed fan's airflow

dropped from 364 Lps to 151 Lps, a 58% decrease, at a wind of 1 mps.

The use of a wind diverter also provided a more stable airflow and
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enabled the fan to operate up to a wind of 8 nips, while the exposed fan

was only able to operate up to a 5 mps wind. At a wind velocity of 4

mps, the wind diverter increased the airflow by 52% to 57%, from 96 Lps

for the exposed fan to between 146 and 150 Lps for the 45° wind

diverter. The effect of wind diverter angle on fan airflow was rela-

tively small over the entire range of wind velocities. In windless con-

ditions, the airflow was improved by 4.5% with the use of a 45° wind

diverter over the 0° wind diverter, while at a 6 mps wind, the 45° wind

diverter improved the airflow by 6%. The relatively small distance

between the wind diverter and the fan outlet also prohibited the use of

the 60° wind diverter at this ratio, due to its length.

t

O-Mind Diverter *
O-Hind Diverter - 15
a -Mind Diverter = 30
Y-Uind Diverter - 30a
X-Hind Diverter 45
f-Ulthout Wind Diverter

l

f

UJND UELOCITY <mps)

Figure 47. Effect of wind velocity on fan airflow rate (Lps) for low
speed operation of the two-speed 30.5 cm fan with five wind
diverter angles at an area ratio of 1.0

At an area ratio of 2.0, the airflow in windless conditions

improved from 156 to 163 Lps for a ratio of 1.0 to between 163 and 176

104



Lps, which still was a 51% to 55% decrease in airflow as compared to the

exposed fan (364 Lps), Figure 48. The use of a wind diverter was again

beneficial for wind velocities of one mps and beyond, enabling the fan

to operate up to a wind velocity of 6 to 7 mps. The beneficial use of a

wind diverter at a wind velocity of 4 mps increased, as the airflow

improved to between 145 and 155 Lps, an increase of 51% to 61% over the

exposed fan's airflow (96 Lps). The effect of wind diverter position

was also evident, as the larger distance between the diverter and the

fan outlet resulted in the fan only being able to operate up to a 6 mps

wind.
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Figure 48. Effect of wind velocity on fan airflow rate (Lps) for low
speed operation of the two-speed 30.5 cm fan with six wind
diverter angles at an area ratio of 2.0

In windless conditions, the effect of wind diverter angle increased

at an area ratio of 3.0, Figure 49. The fan airflow improved over the

2.0 area ratio from 176 to 181 Lps for the 45° wind diverter while the
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airflow decreased from 163 to 160 Lps for the 0° wind diverter. The use

of a wind diverter also improved the benefit at a wind velocity of 4

mps, as the airflow increased to between 147 and 159 Lps, a 53% to 65%

increase over the exposed fan's airflow of 96 Lps. The effect of wind

diverter position was evident at the 6 mps wind. The fan airflow

decreased from between 105 and 113 Lps at a ratio of 2.0 to between 92

and 100 Lps for a ratio of 3.0. The relatively large distance between

the wind diverter and the fan outlet again prohibited the fan from

operating in winds above 6 mps
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Figure 49. Effect of wind velocity on fan airflow rate (Lps) for low
speed operation of the two-speed 30.5 cm fan with six wind
diverter angles at an area ratio of 3 .

Time Weighted Airflow. The effects of wind diverter angle and position

are presented in Figure 50. The presence of a wind diverter improved

the fan airflow from 90 Lps to between 127 and 138 Lps, an increase of
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41% to 53%, depending on area ratio and wind diverter angle. The

results also indicated that wind diverter position had very little

effect on time weighted airflows. The effect of wind diverter angle had

a relatively small effect on time weighted airflow. The 45° wind

diverter yielded the highest time weighted airflows at area ratios of

1.0 and 2.0, with airflows of 131 and 138 Lps, respectively. These

results were 6.3% and 7% higher, respectively, than the 0° wind diverter

at these two ratios. At an area ratio of 3.0, the 60° wind diverter

yielded an airflow of 136 Lps, which was 5.4% higher than the airflow

obtained with the 0° wind diverter, and 3.8% higher than the airflow

obtained with the 45° wind diverter. Based on the small differences

exhibited with wind diverter angle, and the length limitations of the

60° wind diverter, the 30° wind diverter without a flange, or the 45°

wind diverter appear to be the best choice. The effect of wind diverter

position was very small, but, based on the data collected, it appeared

that an area ratio of 2.0 yielded results that were 1% higher than area

ratios of 1.0 and 2.0.
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weighted airflow for low speed operation of the two-speed
30 . 5 cm fan

Overall Effects of Angle and Area Ratio.

In an effort to summarize the results obtained for all tests, the

time weighted airflows were averaged for each wind diverter angle and

area ratio, Figures 51 and 52.

The overall effect of wind diverter angle was apparently signifi-

cant for high speed operation, but less significant at low speed opera-

tion, Figure 51. At both fan speeds, the 60° wind diverter provided the

highest average time weighted airflow, with a more pronounced effect

exhibited with high speed operation. This effect amounted to an

increase in average time weighted airflow of 2.3%, 2.6%, 4.1%, 8.0%, and

13.0%, over wind diverter angles of 45°, 30° without a flange, 30°, 15°,

and 0°, respectively. For low speed operation, the 60° wind diverter
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improved the average time weighted airflow by 0.7%, 1.5%, 3.0%, 3.7%,

and 5.5%, over wind diverter angles of 45°, 30° without a flange, 30",

15° and 0°, respectively. The effect of the flange was also exhibited,

as the presence of an outer flange on the wind diverter decreased the

average time weighted airflow by 1.5% for both high and low speed opera-

tion. This difference may not appear to be significant, but over an

extended period of operation, and in a large livestock ventilation sys-

tem, these improvements may mean a significant savings in operating

costs.

The effect of wind diverter position on fan airflow is presented in

Figure 52. The effect of wind diverter position was apparently signifi-

cant for high speed operation, but relatively insignificant for low

speed, operation. The optimum area ratio for high speed operation was

4.0, with an average time weighted airflow of 346 Lps, which was 2%

higher than for a ratio of 5.5, and 29% higher than for a ratio of 1.75.

The optimum area ratio for low speed operation appeared to be 2.0, as

the average time weighted airflow of 135 Lps was 1.5% higher than for a

ratio of 1.0, and 3% higher than for a ratio of 3.0.
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The determination of an optimum wind diverter position for all fans

was very difficult. The determination of wind diverter position was

dependent on fan airflow. In general, the larger the fan, the greater

the airflow, and the greater the distance between the wind diverter and

the fan outlet. The position of the wind diverter should be located to

yield high fan airflow at low wind velocities, and maintain reasonable

fan airflow at higher wind velocities. The effect of wind diverter

position was not as apparent for smaller fans, or fans operated at low

speeds. It therefore appears best to locate the wind diverter for

medium to high speed operation for variable speed fans . The wind speed

frequency curve must also be considered, as it is site dependent. The

wind speed frequency curve, the fan's airflow, and the normal operating

conditions must all be considered in the location of the optimum posi-

tion for the wind diverter.

Statistical Models.

Various regression techniques were employed in an effort to develop

a model to fit the data collected. The lack of a large data base was a

slight hindrance in determining the "best" model, as a truly representa-

tive model requires a fairly large data base with replications. The

models determined are thus preliminary at best, as much research still

remains. Three regression models, of varying complexity, were developed

for the two -speed 30.5 cm fan operated at high speed. These models are

2presented below, with their respective R value and parameter estimates,

while Appendix D contains additional statistical results on the three

models

.
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Model 1: TWA -
Q

+ ^Angle +
2
*Ratio + *Ratio

2

Parameter
Coefficient: Estimate R- Squared

Q
119.9547

0-, 0.6347 0.8467
0. 97.4244

0\ -11.1584

Model 2: TWA -
Q

+ ^Angle +
2
*Ratio + £

3
*Ratio

2
+

4
*Angle*Ratio

Parameter
Coefficient Estimate R-Sauared

0°

B
1

B
2

a
2

"4

100.8647
1.6235

100.1497 0.8952
-10.5257
-0.2696

Model 3: TWA

\0
Q

+ /Sj+Angle + ,8
2
*Ratio + £3

*Angle
2

[ +
4
*Ratio

2
+ ^

5
*Angle*Ratio

Coefficient

7

Parameter
Estimate
101.7584

1.5473
99.9141
0.0015

-10.4869
-0.2727

R- Squared

0.8954
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The three models above exhibit that a regression model can be fit

fairly well to the data obtained, with R ranging from approximately .85

to .90. Since model 2 contains one less parameter than model 3 and

2yields approximately the same R , it would be chosen as the "best"

model. This model was not conclusive, though, as there was no repeti-

tion of data and the database was small.

Various regression models were developed from the data from tests

on the two-speed 30.5 cm fan operated at low speed. Unfortunately,

these models did not fit the data very well, as R was approximately .67

for all three models. There are a couple of possible reasons for this

poor fit. One reason for the poor fit could be that the tips of the 45°

and 60° wind diverters were cut off for the small area ratios. The

stub-nose resulted in lower airflows for those two wind diverters

instead of the anticipated higher values. This effect was even more mag-

nified in that the differences between results for wind diverter angle

and area ratio were not very significant. Thus, when these two factors

are combined, an accurate regression model was difficult to obtain. The

three models are presented below with their parameter estimates and

2respective R , while Appendix D contains the statistical results in

further detail.

Model 1: TWA -
Q
+ ^Angle +

2
*Ratio + £

3
*Ratio 2
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Parameter
Coefficient Estimate R-Sauared

1°

B
2

123.1374
0.1141 0.6634
8.7555
-2.4487

Model 2: TWA - B
Q
+ y9j*Angle +

2
*Ratio +

3
*Ratio

2
+ 8. *Angle*Ratio

Parameter
Coefficient Estimate R-Sauared

a
1

123.0397
0.1196
8.7743 0.6635
-2.4374
-0.0025

Model 3: TWA -
Q
+ ^Angle +

2
*Ratio + £

3
*Angle

2 +
4
*Ratio

2

Parameter
Coefficient Estimate R-Sauared

B°

B
3

122.4712
0.1638
9.0494 0.6722
-0.0009
-2.5075

In addition to fitting regression models to the data obtained dur-

ing testing of the effect of wind diverter angle and position ratio, a

model predicting the optimum wind diverter position ratio was attempted.

Since the results obtained from this study indicated that a 60" wind

diverter was the best choice of angles, a means of obtaining the optimum
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wind diverter position would be helpful. A prediction equation for this

purpose was not obtained, due to several limitations. The test results

did seem to indicate an optimum position for each fan tested, but there

was no single model that could be used to estimate the optimum position

for any size fan. The optimum wind diverter position did seem to be

function of fan output (Lps), but there was no single relation that

could be applied to all the fan sizes. Since only three sizes of fans

were tested, and from only one manufacturer, the database from which to

work was very small. The effect of wind speed also was a detriment, as

it affected each fan's operation differently, depending on the capacity

of the fan. In conclusion, much additional research and experimentation

remains before a model to predict optimum wind diverter position can be

properly developed.

Summary and Conclusions

A greater understanding of fan performance was gained in this

study. The study illustrated the effect of the wind and wind diverters

upon fan airflow. The use of the Weibull distribution to weight the

fan's airflows at each test wind speed enabled the results from each

tested parameter to be compared on the basis of one weighted airflow.

The comparison of time weighted airflows thus provided an evaluation of

the fan's performance, under particular test conditions, over an

extended period of time. The Weibull distribution used with these tests

included two parameters specific for the anticipated normal operating

conditions of ventilation fans in Kansas. These specific parameters must

be kept in mind when observing and applying the results presented in
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this study.

The presence of a wind diverter was very beneficial to fan perfor-

mance overall. For operation over an extended time period, the use of a

wind diverter was shown to improve fan airflow up to 65%. The presence

of wind diverters yielded significantly higher airflows (over 100%

improvement over fan airflow without a wind diverter in some cases) and

maintained positive fan airflow at higher wind velocities. The addition

of a wind diverter did create a load on the fan, but this load was only

evident at wind velocities below 2 mps, and was fairly insignificant

(only 2% to 3% reduction in some cases). The airflows attained with

wind diverters were 33% and 16% higher, for high and low speed opera-

tion, respectively, than the airflows attained with the Osborne hood.

Two parameters were investigated in the study on wind effects. The

effect of wind diverter position appeared significant, as the optimum

wind diverter position increased the fan's time weighted airflow by up

to 65% over the fan's airflow without a wind diverter. The optimum wind

diverter position was difficult to determine, and was directly related

to the fan diameter and rotational speed.

The effect of wind diverter angle was readily apparent. From the

test results, it was found that the 60° angle yielded the highest time

weighted airflow, while the flat plate yielded the lowest results. This

overall result indicated that a larger angle aided the fan in exhausting

its airflow, or in essence created less of a restriction upon the fan.

When the results were broken down further, it was discovered that the

60° cone angle improved the fan airflow by up to 75% in relation to

other cone angles, but diminished the airflow by up to 60% at a wind
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velocity of 10 mps. It was also found that the use of a 60° angle may

be somewhat restricted. This restriction is due to the overall length

of the 60° wind diverter, as its length necessitates that the area ratio

be fairly large. The ratio for the 30.5 cm (12 in) fan must be at least

2.5, and even at that position, the tip of the wind diverter must be cut

off. Therefore, for larger capacity fans, the 60° wind diverter was the

proper choice when the area ratio was at or above 2.5. For smaller

capacity fans, though, the 60° wind diverter would not be the best

choice, and either a 30° or 45° angle wind diverter should be con-

sidered. Based on the test results obtained, it would be recommended

that the wind diverters be constructed without a flange. The effect of

a flange on the outer edge of the wind diverter lowered the fan's

overall airflow by 1* to 3%.

This study effectively illustrated the effect of wind upon fan per-

formance and examined two different wind diverter parameters in some

detail. The results obtained are not conclusive, as additional research

is needed, but the results clearly indicate the detrimental effects of

wind and, consequentially, the need for a wind protection device. This

study concentrated particularly on the cone shaped wind diverter as a

wind protection device and clearly exhibited the benefits of using a

wind diverter and the effects of cone angle and diverter position.
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RECOMMENDATIONS FOR FUTURE RESEARCH

Prior to labeling the KSU fan test chamber as a viable fan testing

facility, verification of its performance must be obtained. This verifr

ication should entail a thorough evaluation of the instrumentation

employed, and whether it can be improved, and a re-evaluation of the air

velocity profiles to some deeper extent, along with a thorough examina-

tion for leaks. Further automation of the fan testing procedure by

means of a data acquisition system would be recommended. This automa-

tion may require various instrumentation changes including temperature

and barometric pressure acquisition, and pressure measurement. A switch

from a basically manually operated system to one that is more automati-

cally controlled should reduce the sources for error as well as lessen

the time required for testing.

A further study on the effect of various fan parameters and attach-

ments would be very beneficial. Efforts in this area would particularly

benefit manufacturers, as they are constantly searching for any means of

improving their fans' performance, and, thus, their fans' marketability.

Further study into the components of a fan may also prove beneficial by

providing a better understanding of the region of unstable performance

exhibited by axial flow fans.

Further research into the effect of wind upon fan performance is

also needed. The results obtained are fairly preliminary, and are

really an introductory study into understanding wind effects. This par-

ticular study was very specific and is not conclusive for other fans.

The effect of wind angle was not examined in this study, but will be
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examined in a subsequent study. Additional experimentation in a wind

tunnel is also needed in order to form a larger data base from which

operational theory of fan performance with/without wind protection dev-

ices may be developed. This study concentrated on the use of a cone

shaped wind diverter and virtually ignored alternative wind protection

devices. Thus, further research is needed on the performance of alter-

native wind protection devices, thus allowing for comparison between the

different devices and means of protection. The Weibull distribution was

also employed to simplify the analysis of the results. Thus, an exami-

nation of the applicability of the Weibull distribution to describe wind

speed frequency would be in order. Determination of fan performance

with/without some means of wind protection within a wind tunnel is not

truly indicative of field conditions and installations. Therefore,

field tests of fans exhausting into a wind would be of particular

interest, albeit difficult to obtain.

Finally, diligent preparation and design must be observed prior to

initiating any research. It is far more beneficial to spend extra time

in the design and preparation stage to insure that the proper steps in

development and evaluation are followed. Prior to initiating any

research, it is important to determine the projects goals, examine any

potential problems, and determine what variables are involved and how to

treat them so as to simplify the research and experimentation.
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APPENDIX A

Summary of Air Velocity Profiles

Air Velocity Profiles for the Initial Settling Means

The point velocities (mps) obtained in the air velocity profiles

are presented in Tables 9 through 11. Since the sampling points did not

represent equal areas within the chamber, the resultant mean was calcu-

lated based on the percentage of the total area that each area around

the point represented. Data points exceeding the resultant mean by more

than 25% (AMCA Standard 210, 1985) are indicated by an asterik (*)

.
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TABLE 9. Average point velocity (mps) at measuring plane downstream of
settling means closest to the test fan.

Probe Loc. Initial Run #1 Run #2 Run #3
tfle5 .

5

.25 .464 .451 .366
tflell.O .5 .609* .454 .412
tflel6.5 .6* .465 .431 .463
tfle22.0 .6* .349 .192 .249
tfle27.5 .3 .411 .463 .430

tfle/lw33.0 .3 .388 .388 .474
tf2e5.5 .25 .511 .513 .492
tf2ell.O .65* .636* .498 .442
tf2el6.5 .4 .390 .363 .333
tf2e22.0 .4 .199 .188 .289
tf2e27.5 .9* .372 .495 .430

tf2e/2w33.0 .55* .472 .525 .482
tf3e5.5 .2 .504 .406 .456
tf3ell.O 1.0* .731* .492 .486
tf3el6.5 .2 .380 .384 .494
tf3e22.0 .3 .175 .170 .174
tf3e27.5 .9* .607* .430 .460

tf3e/4e33.0 .3 .420 .438 .424
tf4e5.5 .25 .449 .359 .331
tf4ell.O .8* .456 .394 .346
tf4el6 .

5

.8* .430 .393 .389
tf4e22.0 .8* .229 .152 .146
tf4e27.5 .5 .367 .352 .363

tf4e/4w33.0 .35 .364 .388 .380
tflw5 .

5

.2 .445 .552* .582*
tflwll.O .2 .454 .299 .335
tflwl6 .

5

.2 .336 .313 .362
tflw22.0 .3 .319 .426 .503
tflw27.5 .25 .388 .511 .511
tf2w5.5 .35 .513 .593* .534*
tf2wll.O .3 .487 .451 .354
tf2wl6 .

5

.5 .464 .412 .391
tf2w22 . .5 .522 .663* .557*
tf2w27 .

5

.35 .458 .488 .486
tf3w5 .

5

.2 .547* .582* .554*
tf3wll.O .3 .343 .373 .381
tf3wl6 .

5

.55* .352 .194 .221
tf3w22.0 .55* .311 .652* .656*
tf3w27 .

5

.4 .569* .534* .574*
tf4w5 .

5

.4 .441 .532* .528*
tf4wll . .25 .406 .265 .348
tf4wl6 .

5

.7* .212 .256 .231
tf4w22 . .3 .306 .714* .726*
tf4w27 .

5

.4 .355 .371 .389
mean .422 .422 .422 .422

1 . 25*mean .528 .528 .528 .528
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TABLE 10. Average point velocity at measuring plane upstream of set-
tling means closest to the test fan

Probe Loc. Initial
ndle5 .

5

ndlell.O
ndlel6 .

5

ndle22.0
ndle27 .

5

ndle/lw33.0
nd2e5 .

5

nd2ell .

nd2el6.5
nd2e22.0
nd2e27 .

5

nd2e/2w33.0
nd3e5.5
nd3ell.O
nd3el6 .

5

nd3e22.0
nd3e27.5

nd3e/3w33.0
nd4e5.5
nd4ell.0
nd4el6 .

5

nd4e22 .

nd4e27 .

5

nd4e/4w33.0
ndlw5 .

5

ndlwll.O
ndlwl6 .

5

ndlw22.0
ndlw27 .

5

nd2w5 .

5

nd2wll.O
nd2wl6 .

5

nd2w22.0
nd2w27 .

5

nd3w5 .

5

nd3wll.O
nd3wl6 .

5

nd3w22 .

nd3w27 .

5

nd4w5 .

5

nd4wll.O
nd4wl6 .

5

nd4w22.0
nd4w27 .

5

Run #1
.45

.3

.2

.45

.3

.45

.3

.3

.25

.25

.25

.3

.25

.25

.25

.25

.389

.468

.183

.264

.257

.286

.183

.206

.197

.258

.270

.169

.152

.203

.244

.262

mean jet vel
. 10*mean jet vel

.5 .240

.3 .232
- .216
- .260
- .308

.2 .143

.2 .15

.4 .266

.3 .170

.3 .264

.3 .159

.3 .194

.25 .207

.2 .266

.15 .322

.2 .325

.3 .223

.25 .275

.25 .221

.15 .198

.3 .446

.15 .459

.2 .258

.3 .223

.2 .277
14.38 14.38
1.44 1.44
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TABLE 11. Average point velocity at measuring plane downstream of set-
tling means closest to the supply fan

Probe Loc.

nule5 .

5

Initial

.5

Run #1
.421

Run #2
.463

Run #3

.315
nulell . .45 .277 .276 .268
nulel6.5 .4 .447 .470 .464
nule22.0 .4 .282 .312 .276
nule27 .

5

.35 .377 .320 .266
nule/lw33.0 .5 .362 .374 .370

nu2e5 .

5

.6* .333 .429 .342
nu2ell.O .5 .318 .309 .397
nu2el6 .

5

.5 .435 .424 .415
nu2e22.0 .4 .314 .285 .287
nu2e27.5 .4 .427 .422 .436

nu2e/2w33 . .45 .344 .358 .321
nu3e5 .

5

.7* .354 .389 .381
nu3ell.O .5 .425 .388 .433
nu3el6 .

5

.45 .473 .486 .514*
nu3e22 . .35 .309 .292 .298
nu3e27.5 .4 .531* .481 .531*

nu3e/3w33.0 .4 .386 .353 .363
nu4e5 .

5

.45 .454 .418 .214
nu4ell.O .45 .338 .337 .357
nu4el6 .

5

.4 .252 .301 .286
nu4e22.0 .4 .348 .265 .283
nu4e27 .

5

.4 .434 .440 .439
nu4e/4w33 . .4 .391 .340 .356

nulw5 .

5

.4 .481 .538* .547*
nulwll . .4 .391 .444 .353
nulwl6 .

5

.4 .412 .455 .485*
nulw22 . .55 .370 .399 .336
nulw27 .

5

.55 .465 .503 .438
nu2w5 .

5

.45 .455 .444 .423
nu2wll . .4 .384 .408 .428
nu2wl6 .

5

.4 .427 .389 .389
nu2w22 . .4 .318 .359 .299
nu2w27.5 .45 .452 .445 .439
nu3w5 .

5

.45 .515* .510* .515*
nu3wll.O .4 .344 .373 .366
nu3wl6 .

5

.4 .494* .445 .455
nu3w22.0 .4 .315 .271 .283
nu3w27 .

5

.4 .359 .366 .358
nu4w5 .

5

.4 .448 .587* .443
nu4wll . .4 .347 .398 .367
nu4wl6.5 .45 .529* .450 .443
nu4w22.0 .5 .327 .289 .291
nu4w27 .

5

.45 .354 .453 .421
mean .444 .392 .405 378

1.25*mean .556 .490 .506 .473
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Summary of Air Velocity Profile for New Settling Means

The results from the air velocity profiles collected with the new

settling means and additional configurations are presented in Tables 12

and 13. The results within the tables are again point velocities and

the resultant mean is a weighted mean according to the area represented.

126



TABLE 13. Average point velocity at measuring plane downstream of new
settling means closest to test fan

Probe Location New Screens
tfle5 .

5

.407
tflell.O .825*
tflel6.5 2.280*
tfle22.0 .827*
tfle27.5 2.535*

tfle/lw33.0 .715*
tf2e5.5 .264
tf2ell.O .596
tf2el6.5 .810*
tf2e22.0 .844*
tf2e27.5 .631*

tf2e/2w33.0 .393
tf3e5.5 .466

+1 Add. Screen +2 Add Scr + Pate.

tf3ell.O
tf3el6.5
tf3e22.0
tf3e27.5

tf3e/4e33.0
tf4e5 .

5

tf4ell.0
tf4el6 .

5

tf4e22 .

tf4e27.5
tf4e/4w33.0

tflw5.5
tflwll .

tflwl6 .

5

tflw22 .

tflw27.5
tf2w5 .

5

tf2wll .

tf2wl6 .

5

tf2w22.0
tf2w27 .

5

tf3w5 .

5

tf3wll .

tf3wl6 .

5

tf3w22 .

tf3w27 .

5

tf4w5 .

5

tf4wll .

tf4wl6 .

5

tf4w22 .

tf4w27 .

5

.178

.268

.481

.286

.338

.665*

.378

.271

.281
2.442*
.859*
.343

.270

.410

.546
2.527*
.288
.245

.390

.550

.268

.350

.586

.635*

.604*

.557

.377
1.559*
3.447*
.959*

2.802*

.542*

.509

.600*

.696*

.428

.373

.264

.555*

.572*

.735*

.577*

.558*

.373

.299

.573*

.687*

.560*

.420

.158

.104

.400

.402

.110

.137

.197

.158

.191

.347

.140

.340

.379

.518

.503

.501

.451

.629*

.952*

.634*

.660*

.361

.517

.665*

.585*

.265
mean

1.25*mean
.480
.600

.424

.452

.426

.441

.407

.352

.405

.497*

.498*

.518*

.495*

.500*

.325

.354

.379

.439

.448

.316

.320

.248

.277

.367

.257

.272

.384

.256

.282

.310

.314

.408

.377

.431

.482

.512*

.431

.434

.465

.490*

.542*

.405

.376

.370

.309

.428
.418

.522
.387
.484
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TABLE 14. Average point velocity at measuring plane downstream of new
settling means closest to supply fan

Probe Location New Screens
nule5 .

5

.292
nulell.O .263
nulel6 .

5

.268
nule22 . .282
nule27 .

5

.279
nule/lw33 . .275

nu2e5 .

5

.377
nu2ell.O .317
nu2el6.5 .304
nu2e22 . .323
nu2e27.5 .323

nu2e/2w33.0 .306
nu3e5 .

5

.437
nu3ell . .381
nu3el6 .

5

.373
nu3e22.0 .381
nu3e27 .

5

.398
nu3e/3e33.0 .386
nu4e5 .

5

.481
nu4ell.O .459
nu4el6 .

5

.453
nu4e22 . .465
nu4e27 .

5

.486
nu4e/4w33.0 .477

nulw5 .

5

.304
nulwll.O .260
nulwl6 .

5

.261
nulw22 . .274
nulw27 . 5

'

.277
nu2w5 .

5

.427
nu2wll.O .395
nu2wl6 .

5

.387
nu2w22 . .374
nu2w27.5 .354
nu3w5 .

5

.533*
nu3wll.O .499*
nu3wl6 .

5

.481
nu3w22.0 .447
nu3w27 .

5

.431
nu4w5 .

5

.605*
nu4wll.O .588*
nu4wl6 .

5

.559*
nu4w22.0 .525*
nu4w27.5 .519*

avg .396
1 . 25*avg .495
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APPENDIX B

Data Acquisition Program for Fan Testing

The data acquisition program for the fan test chamber was written

in the C language for use on a Zenith Z150 personal computer. The main

program (fanperf2.c) included various functions which were called into

the main program.

#define LINT_ARGS

#include <stdio.h>
#include "fandef.h"

/* This program is used to write initial constant fan parameters */
/* to a headerfile. When a new fan is to be tested a new */
/* headerfile is needed. Once a headerfile is created, proceed */
/* to execution of the main program, fanperf.c. The main program */
/* is executed in the following format: */
/* fanperf2 -h headerfile -f outputfile */

main(argc,argv)
int argc;
char **argv;

(

lnt c
; /* used for getopt routine */

extern char *optarg;
extern int optind;
char *optstring - "f:?";
void usage(char **)

;

if (argc < 2)
usage (argv)

;

while ( ( c - getopt(argc,argv,optstring) ) !- EOF ) (

switch (c) (

case 'f '

:

if ( (outfile - fopen(optarg,"w")) — NULL) (

fprintf(stderr, "cannot open file %s\n"

,

optarg)

;

exit(l);
)

break;
case ">.'

:
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default:
usage (argv)

;

break

;

)

)

/* sets up headerfile with constant information */
/* for each particular fan */

printf ("Enter the date of the test (mm-dd-yy) \n");
scanf ("%d-%d-%d" ,&month,&day,&year)

;

fflush(stdin);
printf ("Enter the name of test operator (first and last names)\n")
scanf("%s%s",firstname, las tname)

;

fflush(stdin);
printf("Enter the fan manufacturer \n");
scanf("%s" .manufacturer)

;

fflush(stdin);
printf("Enter the fan model number \n");
scanf("%s" .modelno)

;

fflush(stdin);

fprintf(outfile,"%2.2d-%2.2d-%2.2d %10s %10s %s %s Agr Eng-KSU\n"

,

month, day, year, firstname, lastname, manufacturer, modelno)

;

printf ("Enter the fan blade diameter in inches \n")-
scanf ("%lf " , &fanbladediam)

;

fflush(stdin);
printf ("Enter the fan motor hp in decimal form \n");
scanf ("%lf",&notorhp)

;

fflush(stdin)

;

printf("Enter the nominal speed (rpm) of the fan \n");
scanf("%lf" ,&nominalfanspeed)

;

fflush(stdin)

;

printf ("Enter the rated capacity (cfm) of the fan");
printf (" at 1/8 inch static pressure \n");
scanf("%d" ,&ratedcfmfan)

;

fflush(stdin)

;

printf ("Enter the fan's rated voltage \n");
scanf ("%d",&ratedvolts);
fflush(stdin);
printf("Enter the fan motor efficiency in decimal form \n")-
scanf("%lf",&motoreff);
fflush(stdin)

;

fprintf(outfile, "%lf\n%lf\n%lf\n%d\n%d\n%lf\n"

,

fanbladediam , motorhp , nominalfanspeed

,

ratedcfmfan.ratedvolts.motoreff)

;

void
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usage(argv)
char **argv

;

(

fprintf (stderr, "usage:
exit (1);

%s -f outfile\n",argv[0])

;

#define LINT_ARGS

#include <stdio.h>
#include <math.h>
#include <string.h>
#include "fandef.h"

/* This is the main program for execution and calculation
/* of fan air performance parameters. Before using, a
/* headerfile must be created via header_w. The same
/* headerfile can be used while that particular fan is
/* being tested. Execution of the program follows the
/* following format : fanperf -h headerfile -f outfile
/* where the headerfile is the header_w file that contains the
/* desired fans specifications and the outfile is the filename
/* where the output is written to */

main(argc,argv)
int argc;
char **argv;

(

*/
*/

V
V

*/

*/

V

int c;

extern char
extern int
char
void

*optarg;
optind;

*optstring - "h:f:7"
usage (char **)

;

char Hne[LINESIZE]

;

char dfile_strO[LINES!ZE]
char dfile_str2[LINESIZE]
char hfile_s tr [ LINES IZE ]

;

char date[LINESIZE];
char namefirst[LINESIZE]

;

char namelast[LINESIZE]

;

char manuf [ LINES IZE]

;

char modno[LINESIZEJ

;

/* used for getopt routine */

dfile_strl[LINESIZE]
;

double exp_fac[20];
double sumcarea[20]

;

double chamairdens [ 20 ]

;

double nozflowrate[20]

;

double fanflowrate[20]

;

/* expansion factor */
/* sum of coeff of disc x noz area*/
/* chamber air density */

/* nozzle flow rate */
/* fan flow rate */
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if (argc < 2)

usage(argv)

;

while ( ( c - getopt(argc,argv,optstring) ) !- EOF ) (

switch (c) (

case 'f ' :

strncpy(dfile_strO,optarg,LINESIZE);
strncpy(dflle_strl,optarg,LINESIZE)

;

stmcpy(dfile_str2,optarg,LINESIZE)

;

strncat(dfile_strO, "
.
pwr",4)

;

strncat(dfile_strl, ".air", 4)

;

strncat(dfile_str2,

"

.psy",4)
;

if ( (dfile_pwr-fopen(dfile_strO,"a"))—NULL) (

fprintf(stderr, "cannot open file %s\n",
dfile_strO)

;

exit(l);

)

if ( (dfile_air-fopen(dfile_strl,"a"))—NULL) (

fprintf (stderr, "cannot open file %s\n"

,

dfile_strl)

;

exit(l);

)

if ( (dfile_psy-fopen(dfile_str2,"a"))—NULL) (

fprintf (stderr, "cannot open file %s\n"

,

dfile_str2)

;

exit(l);

)

break;
case 'h'

:

strncpy(hfile_str,optarg,LINESIZE)

;

if ((headerfile - fopen(optarg, "r") ) — NULL) {

fprintf (stderr, "cannot open file %s\n",
optarg)

;

exit(l);

)

break

;

case '?':

default:
usage (argv)

;

break;

)

1

/* read in information previously entered in the header file */

fgets (line, LINESIZE, headerfile);
fscanf(headerfile,"%lf%lf%lf%d%d%lf",

&fanbladediam,&motorhp,&nominalfanspeed,
&ratedcfmfan,&ratedvolts,&motoreff)

;
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)

sscanf(line,"%s%s%s%s%s", date,namefirst,namelast,manuf ,modno)

;

getdataQ; /* get info on test */
airdensQ;
exp_factor()

;

coefdisch()
;

nozzleflowQ
;

fanflow()
;

fanpressQ ',

fanpwr()

;

datafile(hfile_str,namefirst,namelast)

;

screenout(nanefirst,namelast,nianuf , modno)

;

void
usage (argv)
char **argv;
(

fprintf(stderr, "usage: %s -h headerfile -f outfile\n" ,argv[0] )

•

exit (1);

)

*******************************************-i,it.t,i,i! -

i:
.ki:irtirirtc*ir*ir** :ieiriritilitir

/* This function accesses the needed inputs from the user */

#define LINT_ARGS

#include <stdio.h>
#include <math.h>
#include "fanperf.h"

double
getdata()
(

double pe
, pp

;

int i. j. k. pt, n, runno, nozzlechanges;

sumbp - 0;
sumdbtemp - 0;
sumwbtemp - 0;
sumatmo - 0;

j - 0;
k - 0;

printf ("Enter the date of the test (mm-dd-yy) \n");
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scanf("%d-%d-%d", &mm,&dd,&yy)

;

fflush(stdin)

;

printf ("Enter the wind diverter angle \n");
scanf("%lf", &angle);
fflush(stdin);
printf ("Enter the wind diverter location (ratio) \n");
scanf("%lf", {.ratio);
fflush(stdin);

do {

pt - k + 1;

printf("\n\n");
printf ("Test point number %d\n"

, pt)

;

printf (" \n»)
;

if(k — 0){
printf("Enter the average wind velocity in m/s \n");
scanf("%lf", &windvel)

;

wind[k] - windvel;
fflush(stdin)

;

printf ("Enter the ambient wet bulb temperature (F) \n")
;

scanf("%lf", &wbtemp)

;

tempwb[k] - wbtemp;
fflush(stdin)

;

printf ("Enter the ambient dry bulb temperature (F) \n");
scanf("%lf", Wbtemp);
tempdb[k] - dbtemp;
fflush(stdin)

;

printf("Enter the corrected barometric pressure (in He) \n")-
scanf("*lf", &bp);
bptemp - bp;
bpgrav - bptemp;
barometricpressure[k] - bpgrav;
fflush(stdin)

;

pe - .000296 * wbtemp * wbtemp - .0159 * wbtemp + 0.41;
pp - pe - bpgrav * ((dbtemp - wbtemp)/2700)

;

atairdens[k] - (70.73 * (bpgrav - .378*pp))/(R*(dbtemp + TK));

if(k !- 0)(
printf ("Has the wind speed, temperatures,");
printf (" or barometric pressure changed?\n")

;

printf("Enter if no, 1 if yes <cr>\n");
scanf("%d", {.psychanges);
fflush(stdin);
if (psychanges — 0)

{

wind[k] - wind[k - 1]

;

tempwb[k] - tempwb[k 1]

j

tempdbfk] - tempdbfk - 1]

;

barometricpressurefk] - barometricpressure[k - 1];
atairdens[k] - atairdens[k -11;

)

if(psychanges — 1)

(
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printf( "Enter the average wind velocity in m/s \n")-
scanf("%lf", Swindvel);
wind[k] - windvel;
fflush(stdin)

;

prlntf( "Enter the ambient wet bulb temperature (F)\n n
);

scanf("%lf", &wbtemp)

;

tempwb[k] - wbtemp;
fflush(stdin)

;

printf("Enter the ambient dry bulb temperature (F)\n");
scanf("%lf", &dbtemp);
tempdb[k] - dbtemp;
fflush(stdin)

;

printf("Enter the corrected barometric pressure")-
printf(" (in Hg) \n");
scanf("%lf", &bp);
bptemp — bp;
bpgrav - bptemp;
barometricpressure[k] - bpgrav;
fflush(stdin)

;

pe - .000296 * wbtemp * wbtemp - .0159 * wbtemp + 0.41;
pp - pe - bpgrav * ((dbtemp - wbtemp)/2700)

;

atairdens[k] - (70.73 * (bpgrav - .378 * pp))
/(R * (dbtemp + TK));

)

)

printf ("Enter the pressure drop across the nozzles (in. wg)\n")-
scanf("%lf", SdeltaP);
deltapressure[k] - deltaP;
fflush(stdin)

;

printf ("Enter the static pressure at plane 8(test fan) [in wel\n"V
scanf("%lf", &Ps8);

6

Pstatic8[k] - Ps8;
fflush(stdin);
printf("Enter the fan speed measured (rpm)\n");
scanf("%lf", &fanrpm);
fanspeed[k] - fanrpm;
fflush(stdin)

;

printf ("Enter the power input to the fan motor (watts) \n")

;

scanf("%lf", &watt)

;

watts [k] - watt;
fflush(stdin);
printf("Enter the fan voltage measured\n" )

;

scanf("%lf", &volt);
volts[k] - volt;
fflush(stdin)

;

printf("Enter the fan current measured (amps)\n")

;

scanf("%lf", &amp);
amps[k] - amp;
fflush(stdin)

;

i - 0:
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n - 0;
lf(k !- 0){

printf("Did you change the nozzle selection?\n")

;

printf ("Enter if no, 1 if yes <cr>\n");
scanf("%d", {.nozzlechanges);
fflush(stdin)

;

if(nozzlechanges — 0)

(

do{

number[i][j] -number[i][j - 1];
nozdiam[i][j] - nozdiamfi] [j - 1]

;

nozzlearea[i][j] - nozzlearea[i] [j - 1]

;

LoverD[i][j] -LoverD[i][j - 1]

;

i++;

n++;
)while(diamno[nJ !- 0)

;

)

)

if(k — || nozzlechanges — 1)(
printf ("Enter the corresponding nozzle numbers open");
printf(" during the test, one at a time <cr>.\n");
printf ("When all of the open nozzles have been entered,");
printf (" enter a <cr>\n")

;

do (

scanf("%lf", &diam)

;

diamno[n] — diam;
if(diam — 1)(

number[i]
[ j ] - 1;

nozdiam[i][j] - 5.0;
ddiam - 5.0;

)

if(diam — 2)(
number[i][j] - 2;
nozdiam[ij[j] - 6.0;
ddiam - 6.0;
)

if (diam — 3)(
number[i][j] - 3;

nozdiam[i][j] - 5.5;
ddiam - 5.5;

)

if (diam — 4)(
number[i] [j ] - 4;
nozdiam[i] [j ] -4.0;
ddiam - 4.0;
}

if (diam — 5)(
number[i|

[ j ] - 5;
nozdiam[i][j] - 1.6;
ddiam - 1.6;

)

if (diam — 6){
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number[i][j] - 6;
nozdiam[i][j] - 2.5;
ddiam - 2.5;

)

if(diam — 7) (

number[i]
[ j ] - 7;

nozdiam[I][j] - 5.0;
ddiam - 5.0;

)

if(diam — 8)(
nuniber[i]

[ j ] - 8;
nozdiam[i] [j] - 6.0;
ddiam - 6.0;

)

if(diam — 9){
number [i]

[ j ] - 9;
nozdiam(I] [j] - 5.5;
ddiam - 5.5;
)

nozzlearea[i] [j] - PI * ddiam * ddiam / (4 * 144)-
if(nozdiam[i][j] 1-6.0) (

LoverD[i][j] - 0.6;
}

if(nozdiam[i] [j] — 6.0) {

LoverD[i][j] - 0.5;
)

n++;
)while(diam !- 0);
if(diam — 0) {

ddiam - 0;
LoverD[i](j] - 0;

)

}

printf("\n");
printf("Are the data all entered correctly?\n") •

printf("\n");
printf("Test Point Number - %d\n"

, pt)

;

printf("wind velocity - %f m/s\n", wind[k]);
printf("wet bulb temp - %f F\n" , tempwb[k]);
printf("dry bulb temp - %f F\n" , tempdb[k]);
printf( "corrected barometric pressure - %f in. Hg\n" , bp)

;

printf( "pressure drop across the nozzles - %f in. wg\n"

,

deltapressure[k])

;

printf("static pressure at plane 8 (test fan) - %f in we\n"
Pstatic8[k]);

'

printf("fan speed measured - %f rpm\n" , fanspeed[k] )

;

printf("power input to the fan motor - %f watts\n" , watts[k]);
printf("fan voltage measured - %f volts\n", volts[k]);
printf("fan current measured - %f amps\n" , amps[k]);
printf ("nozzle numbers entered - ");
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i - 0;

do {

numb - number[ i] [j ]

;

printf("%d", numb);
i++;

}while(i < 9);
printf ("\n\n");
printf ("Enter if the data are correct, or 1 if they are");
printf(" incorrect <cr>\n");
scanf("%d", &datachanges)

;

fflush(stdin)

;

if(datachanges — 0)(
sumwbtemp - sumwbtemp + tempwb[k];
sumdbtemp - sumdbtemp + tempdbfkj;
sufflbp - sumbp + barometricpressure[k]

;

sumatmo - sumatmo + atairdens[k]
;

k++;
printf ("\n");
printf ("Do you wish to collect another data point?");
printf (" Enter 1 if yes, if no <cr>\n");
scanf("%d", &runno)

;

fflush(stdin)
;

if(runno — 1){
testpoints - k + 1;

)

if(runno — 0){
testpoints - k;

}

}

if (datachanges — 1)
testpoints - k + 1;

)while(k < testpoints);
wetbulbtemp - sumwbtemp/testpoints;
drybulbtemp - sumdbtemp/testpoints

;

avgbaropress - sumbp/testpoints;
atmoairdens - sumatmo/testpoints;
return;

)

#define LINT ARGS

#include <stdio.h>
#include <math.h>
#include "fanperf.h"

double
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airdens()

(

/* This function calculates the chamber air density
/* in lbm/cu ft, from the static pressure (in wg) at
/* the nozzle inlet, the barometric pressure (in Hg)

,

/* and the atmospheric air density */

int k;

k - 0;

do(

chamairdens[k]-atairdens[k]

;

k++;
)while(k < testpoints);
return:

*/
*/
*/

************ **********************************************

#define LINT_ARGS

#include <stdio.h>
#include <math.h>
#include "fanperf.h"

double
exp_factor()
(

double alpha;
int k:

/* expansion factor */

/* alpha ratio */

/* This function calculates the alpha ratio and expansion */
/* factor necessary for determining the Reynolds number and */
/* the coefficients of discharge for the nozzles */

k - 0;

do{

alpha - 1 - ((5.187 * deltapressure[k] )/((chamairdens[k] * R)
* (tempdb[k] + TK)));

exp_fac[k] - 1 - (0.548 * (1 - alpha));
k++;

)while(k < testpoints);
return;
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double
coefdischO
(

/* This function calculates the Reynolds number and */
/* coefficients of discharge for each nozzle open and */
/* sums the products of the coefficients times the */
/* area of the nozzle for each of the nozzles open */

double coeffA; /* initial coeff of discharge for nozzle*/
double coeffB; /* final coeff of discharge for nozzle */
double Re; /* Reynolds number */
double sumcoeffarea; /* sum of noz coeff of disc x noz areas */
int i, flag, j , k;

coeffA - 0.95; /* initial assignment for coeff of dis. */
flag - 0;

j - 0;

k - 0;

do (

i - 0;

sumcoeffarea — 0;
do (

do (

if (flag !-0)

coeffA - coeffB;
Re -124568. 1033*coeffA*nozdiam[i] [j ]*exp_fac[k]
* sqrt(deltapressure[k] * chamairdens[k] )

;

if(nozdiam[i][j] !- 0) (

if(LoverD[i][j] — 0.6){
coeffB - .9986-(7.006/sqrt(Re))

+ 134.6/Re;
}

if(LoverD[i][j] — 0.5)(
coeffB - .9986-(6.688/sqrt(Re))

+. 131.5/Re;
)

. )

flag - 1;

) while(fabs(coeffA - coeffB) >- 0.0001);
coeff[i][j] - coeffA;
flag - 0;

sumcoeffarea-sumcoeffarea+nozzlearea[i]
[j ]*coeff [i] [j ]

;

sumcarea[k] - sumcoeffarea;
i++;

) while(nozdiam[i] [j] !- 0);

k++;
)while(k < testpoints)

;

return;
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)

double
nozzleflow()
{

/* This function calculates the nozzle flow rate in cfm */

int k;

k - 0;

do (

nozflowrate[k] - 1096 * exp_fac[k] *
sqrt(deltapressure[k]/chamairdens[k]) * sumcarea[k]

;

k++;
)while(k < testpoints);

)

double
fanflowQ
{

/* This function calculates the fan flow rate in cfm */

double volflowrate_fan; /* air flow rate at plane 8 (cfm) */
double airvel_fan; /* air velocity at plane 8 (fpm) */
double d81; /* initial air density at fan */
double massflowrate_noz

;

/* mass flow rate at nozzles */
double sumPtot8;
int flag, k;

sumPtot8 - 0;
k - 0;
do (

massflowrate_noz - nozflowrate[k] * chamairdens[k]

;

d81 - chamairdens[k]

;

flag - 0;
do {

if(flag !- 0)
d81 - fanairdens[k]

;

volflowrate_fan - massflowratenoz / d81;
airvel_fan - volflowrate_fan / AREACHAM;
Pvel8 - (airvel_fan / 1096)*(airvel fan / 1096) * d81-
Ptot8[k] - Pstatic8[k] + Pvel8;
fanairdens[k] - atairdens[k] *
((Ptot8[k] + 13.63 * barometricpressure[k])
/(13.63 * barometricpressure(k)))

;

flag - 1;

) while(fabs(d81 -fanairdens[k] ) >- 0.0001);
fanflowrate[k] - nozflowrate[k]*(chamairdens[k]/fanairdens[k] )

sumPtot8 - sumPtot8 + Ptot8[kJ;
k++:
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)while(k < testpoints)

;

nom_Ptot8 - sumPtot8/testpoints

;

)

double
fanpressQ
{

/* This function calculates the fan velocity pressure, */
/* the fan total pressure, and the fan static pressure */

double fanarea; /* area at the fan outlet (sq ft) */
double fandens_out; /* air density at fan outlet (lbm/cu ft) */
int k;

k - 0;

do {

fanarea - (PI * fanbladediam * fanbladediam)/(4 * 144)

;

fandens_out — atmoairdens

;

Pvel[k) - (fanflowrate[k] * fanairdens [k] )/(1096 * fanarea)
* (fanflowrate[k] * fanairdens [k] )/(1096 * fanarea)
* (1 / fandens_out)

;

Ptot[k] - Pvel[k] - Ptot8[k];
Pstat[k] - Ptot[k] - Pvel[k];
k++;

)while(k < testpoints);
return;

)

double
fanpwr()

I

/* This function calculates the fan power Input (H) , the */
/* fan power output (Ho), the fan total efficiency, and the */
/* fan static efficiency. */
/* This function also calculates the weighted airflows for
/* the various wind velocities tested, by use of the */
/* Weibull distribution. */

double x, z;

double kp; /* compressibility coefficient */
int k;

k - 0;

sum_Qweighted - 0;
do (

powerinput[k] - (watts [k] * motoreff)/745.7;
x - Ptot[k] / (Ptot8[kj + 13.63 * barometricpressure[k] )

z - (.400/1.400) * (((6362 * powerinput[k] )/fanflowrate[k]

)

/(Ptot8[k] + 13.63 * barometricpressure[k]))

•

kp - (log(l + x)/x) * (z/log(l + z));
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if(Ptot[k] <- 12)
kp - 1.0;

poweroutput[k] - (fanflowrate[k] * Ptot[k] * kp)/6362;
eff_tot[k] - poweroutput[k] / powerlnput[k]

;

eff_stat[k] - eff_tot[k] * (Pstat[k] / Ptot[k]);
Z - (nom_Ptot8 + 13.63 * baropress)

/(Ptot8[k] + 13.63 * barometricpressure[k])
* (fanairdens[k]/nom_fanalrdens) * (fanspeed[k]
/nominalfanspeed) * (fanspeed[k]/nominalfanspeed)

;

z_nom - z/Z;
Y - log(l + x) * (log(l + z_nom)/log(l + z));
x_nom - exp(Y) - 1;
Knom - (z/z_nom) * (x_nom/x)

;

If (0.99 <- K_nom && K_nom <- 1.01)
K_nom - 1.0;

Ptot_nominal[k] - Ptot[k] * (nominalfanspeed/fanspeed[k]

)

* (nominalfanspeed/fanspeed[k])
* (nom_fanairdens/fanairdens[k]) * K_nom;

nom_fanflowrate[k] - fanflowrate[k] * (nominalfanspeed
/fanspeedjk]) * K_nom;

Pvel_nominal[k] - Pvel[k] * (nominalfanspeed/fanspeed[k]

)

* (nominalfanspeed/fanspeed[k])
* (nom_fanalrdens/fanairdens[k])

;

Pstat_nominal[k] - Ptot_nominal[k] - Pvel_nominal[k]
;

nom_powerlnput[k] - powerinput[k]*(nominalfanspeed/fanspeed[k]

)

*(nomlnalfanspeed/fanspeed[k]

)

*(nominalfanspeed/fanspeed[k]

)

*(nom_fanairdens/fanairdens[k]) * K_nom;
nom_eff_stat[k] -eff_tot[k]*(Pstat nominal [k]/Ptot nominal[k])-
if(wind[k] — 0.0) (

~ "
-

Qweighted[k] - nom_fanflowrate[k] * 0.04893075;

if(1.8 <- wind[k] && wind(k] <- 2.2) ( ,
Qweighted[k] - nom_fanflowrate[k] * 0.31456746

if(3.8 <- wind[k] && wind[k] <- 4.2) (

Qweighted[k] - nom_fanflowrate[k] * 0.35201649
)

if(5.8 <- wind[k] && wind[k] <- 6.2) {

Qweighted[k] - nom_fanflowrate[k] * 0.20054106

if (7. 8 <- wind[k] && wind[k] <- 8.2) (

Qweighted[k] - nom_fanflowrate[k] * 0.06889818
)

if(9.8 <- wind[k] && wind[k] <- 10.20) {

Qweighted[k] - nom_fanflowrate[k] * 0.01504606

if(7.3 <- wind[k] 6& wind[k] <- 7.7) {

Qweighted[k] - nom_fanflowrate[k] * 0.04556083
)

if (9. 3 <- wind(k] && wind[k] <- 9.7) {
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Qweighted[k] - nom_fanflowrate[k] * 0.01067426;
)

sumQweighted - sum_Qweighted + Qweighted[k]

;

k++;
)while(k < testpoints);
tot_Qweighted - sum_Qweighted;
return;

******************

/* This function writes the calculated outputs to the */
/* various output files, denoted by outfilename and */
/* one of three extensions: .air, .pwr, and .psy */

#define LINT_ARGS

#include <stdio.h>
#include <math.h>
#include "fanperf.h"

void
datafile(hfile_str,namefirst,namelast)
(

double Q_per_w; /* VER - cfm per watt */
int i, j , k;

j - 0;

k - 0;

do {

Q_per_w - fanflowrate[k)/watts[k]

;

/write headerfile name, date of test and operator name to outfile.air*/

fprintf(dfile_air, "%s %2.2d-%2.2d-%2.2d", hfile_str,mm,dd,yy)

;

fprintf (dfile_air, " %s%s " ,namefirst,namelast)

;

fprintf(dfile_air, "AGE-KSU ");

/* write nozzle numbers open for flow to outfile.air */
i-0;
do {

numb - number [i] [j ]

;

fprintf (dfile_air, "%d", numb);
i++;

}while(i < 9);
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/* write pressure and flow rate values to outflle.air */
fprintf(dflle_air," %2.4f %2.4f %2.4f %2.4f %2.4f %4.4f %4.4f",

deltapressure[k] ,Pstatic8[k] ,Ptot[k]

,

Pvel[k] ,Pstat[k] ,nozflowrate[k] ,fanflowrate[k) )

;

• fprintf(dfile_air," %2.4f %2.4f %2.4f %4.4f %2.2f", Ptot_nominal[k)
,

Pvel_nominal[k] ,Pstat_nominal[k] ,nom_fanflowrate[k] ,wind[k] )

;

fprlntf(dflle_air," %2.2f %2.2f %4.4f %4.4£\n", angle, ratio,
Qweighted[k] , tot_Qweighted)

;

/write headerfile name, date of test and operator name to outfile.psy*/
fprintf(dfile_psy, "%s %2.2d-%2.2d-%2.2d" , hfile_str,mm,dd,yy)

;

fprintf(dfile_psy, " %s%s " ,namefirst,namelast)

;

fprintf(dfile_psy, "AGE-KSU");

/* write wet bulb and dry bulb temperatures to outfile.psy */
fprintf(dfile_psy," %3.2f %3.2f %3.2f %3.2f",

tempwb[k] .wetbulbtemp, tempdb[k] .drybulbtemp)

;

/* write barometric pressure and air densities to outfile.psy */
fprintf(dfile_psy," %3.2f %3.2f %2.4f %2.4f %2.4f %2.4f\n",

barometricpressure[k] ,baropress,atairdens[k] , atmoairdens

,

chamairdens [k] , fanairdens [k] ) ;

/*write headerfile name, date of test and operator name to outfile.pwr*/
fprintf(dfile_pwr, "%s %2.2d-%2.2d-%2.2d" , hfile_str,mm,dd,yy)

;

fprintf(dfile_pwr, " %s%s " ,namefirst,namelast)

;

fprintf(dfile_pwr, "AGE-KSU");

/* write power relations and fan speed to outfile.pwr */
fprintf(dfile_pwr," %3.4f %2.4f %3.4f",

volts[k] ,amps[k] ,watts[k]) ; *

/*write fan speed, power relations, and efficiency to outfile.pwr*/
fprintf(dfile_pwr," %4.4f %2.4f %2.4f %1.4f %1.4f %1.4f %3.4f\n",

fanspeed[k] ,powerinput[k] ,poweroutput[k] ,eff_tot[k]

,

eff_stat[k] ,nom_eff_stat[k] ,Q_per_w)

;

k++;
)while(k < testpoints);
)
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***************************************************************

#define LINT_ARGS

#include <stdio.h>
#include <math.h>
#include "fanperf.h"

void
screenout (naraefirs t , name las t , manuf , modno

)

(

double Q_per_w;
int 1, j, k, r, s, t;

/* This function Is responsible for sending the output to the screen */

printf ( "\n\n\n\n\n\n\n\n\n\n" )

;

printf ("Test Facility and Location: AGRICULTURAL ENGINEERING DEPT , KSU\n" )

;

printf ("Date of test: %d-%d-%d \n" , mm, dd, yy)

;

printf ("Name of test operator: %s %s \n", namefirst, namelast)

;

printf( "Fan Model Information: \n")

;

printf (" Fan Manufacturer: %s \n" , manuf);
printf (" Fan Model No.: %s \n", modno);
printf (" Fan Blade Diameter: %f inches \n", fanbladediam)

;

printf (" Fan Motor Horsepower: %f hp \n" , motorhp)

;

printf (" Nominal Speed of the Fan: %f rpm \n" , nominalfanspeed)

;

printf (" Rated Capacity of the Fan': %d cfm \n" , ratedcfmfan)

;

printf(" Fan's Rated Voltage: %d volts \n" , ratedvolts)

;

printf(" Fan's Motor Efficiency: %f \n" , motoreff )

;

printf("\n");
printf ("Hit x and then return to continue \n");
do (

)

while(getchar() !- 'x');
printf ("\n\n\n\n")

;

printf ("PSYCHROMETRIC PROPERTIES: \n");
printf (" \n");
printf ("test\twetbulb\tdrybulb\t baro.\tatmo\tcham\tfan \n")

;

printf (" no.\t temp\t temp\t press\tdens\tdens\tdens \n");
printf ("\t (F)\t (F)\t(in Hg)\t ( lbm / cu. ft )\n")

;

printf ("
\n

n
);

r - 0;

k - 0;
do (

r - k + 1;

printf("%2.2d\t", r)

;

printf (" %3 . 2f\t%3 . 2f\t%3 . 2f\t%2 . 4f\t%2 . 4f\t%2 . 4f\n"
,

tempwb[k] ,tempdb[k] ,barometricpressure[k] .atairdens [k]

,

chamairdensfk] , fanairdens[k] )

;

k++;
)while(k < testpoints);
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printf ( "avg\t%3 . 2f\t%3 . 2f\t%3 . 2f\t%2 . 4f\n"

,

wetbulbtemp , drybulbtemp , avgbaropress , atmoa irdens )

;

printf("\n");
printf("Hit x and then return to continue \n")

;

do {

)

while(getchar() I" 'x');
printf("\n\n\n\n\n\n\n")

;

printf("AIRFLOW MEASUREMENTS \n");
printf (

"

\n" )

;

printf ("test\tNozzles\t\tdeltaP\tPstatic\n")

;

printf (" no.\t open\t\tnozzles\tplane8\n")

;

printf ("\t\t\t(in wg)\t(in wg)\n");
printf (•

\n »)
;

k - 0;

J - 0;

do (

1 — 0;
s - k + 1;

printf ("%2.2d\t", s);
do (

numb - number[i] [j ] ;

printf ("%d", numb);
i++;

) while(i < 9);
printf ( "\t%2 . 4f\t%2 . 4f\n"

,

deltapressure[k] ,Pstatic8[k] )

;

k++;
)while(k < testpoints);
printf ("\n")

;

printf ("Hit x and then return to continue \n");
do {

while(getchar() !- 'x');
printf ("\n\n\n\n\n\n\n\n\n\n")

;

printf ("test\t Ptot\t Pstat\t Pvel\tNozzle\t\t Fan\n");
printf (" no.\t fan\t fan\t fan\tAirflow\t\tAirflow\n")

;

printf ("\t(in wg)\t(in wg)\t(in wg)\t (cfm)\t\t (cfm)\n")

;

printf ("
ynn)

k - 0;

do (

s - k + 1;

printf ("%2.2d\t", s);
printf ("%2.4f\t%2.4f\t%2.4f\t%4.4f\t%4.4f\n",

Ptot[k] .PstatlkJ.Pvellk] ,nozflowrate[k] , fanflowrate[k] )

;

k++;
)while(k < testpoints);
printf("\n");
printf("Hit x and then return to continue \n");
do (
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)

while(getchar() !- 'x');
printf ("\n\n\n\n")

;

printf( "RESULTS CONVERTED TO NOMINAL CONSTANT VALUES #\n");
printf (" \n");
printf ("test\t Ptot\tPstat\t Pvel\t Fan\t\t Wind\tWeight\n")

;

printf (" no.\t fan\t fan\t fan\tAirflow\t\tVeloc\tAirflow\n")
;

printf ("\t(in wg)\t(in wg)\t(in wg)\t (cfm)\t\t (m/s)\t (cfm)\n">;
printf (" \n");
k - 0;

do (

s - k + 1;

printf ( "%2 . 2d\t%2 . 4f\t%2 . 4f\t%2 . 4f\t%4 . 4f\t%2 . 2f\t%4 . 4f\n"

,

s,Ptot_nominal[k] ,Pstat_nominal[k] , Pvel_nominal[k]
,

nom_fanflowrate[k] ,wind[k] ,Qweighted[k] )

;

k++;
)while(k < testpoints);
printf ("Sum of weighted airflows (cfm) - %4.4f\n", tot_Qweighted)

;

printf ("\n");
printf ("# Nominal Constant Density and Nominal Constant Speed\n")

;

printf("\n")

;

printf ("Hit x and then return to continue \n");
do {

)

while(getchar() !- 'x');
printf ( "\n\n\n\n\n\n\n" )

;

printf ("FAN EFFICIENCY \n");
printf (" \n");
printf ("test\t fan\t fan\t watts\t fan\n");
printf (" no.\tvolts\tcurrent\t\t speed\n");
printf ("\t\t(amps)\t\t (rpm)\n");
printf (" \n");
k - 0;

do (

t - k + 1;

printf ( "%2 . 2d\t%3 . 3f\t%2 . 4f\t%3 . 3f\t%4 . 4f\n" , t , volts [k]

,

amps[k] , watts [k] ,fanspeed[k] )

;

k++;
)while(k < testpoints);
printf("\n");
printf("Hit x and then return to continue \n");
do (

)

while(getchar() !- 'x');
printf ("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");
printf ("test\tpower\tpower\t fan\t fan\tnom fan\t cfm\n");
printf (" no.\tinput\toutput\ttotal\tstat\t stat\t per\n");
printf("\t(hp)\t (hp)\t eff\t eff\t eff\t watt\n");
printf (" \n");
k - 0;

do {
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t - k + 1;

Q_per_w - fanflowrate[k]/watts[k]

;

printf("%2.2d\t%2.4f\t%2.4f\t%1.4f\t%1.4f\t%1.4f\t%3.4f\n"
t,powerinput[k] ,poweroutput[k] ,eff_tot[k] ,eff_stat[k]

,

nom_eff_stat[k] ,Q_per_w)

;

k++;
)while(k < testpoints);

)

*******************************************

/* Constants used in the program

# ifndef FANCONST_H
#define FANCONST_H

#define LINESIZE 132

#define R 53.35
#define TK 459.7
#define PI 3.1416
#define AREACHAM 27.5
#deflne baropress 29.92
#define nom fanalrdens 075

/* gas constant (ft-lb/lbm-R) */
/* conversion from F to R */
/* value for pi */
/* cross -sect area of chamber */
/* baro press at stand air cond */
/* air density at stand air cond */

# endif /* FANC0NST_H */

************* ************

/*This function defines the various inputs and variables employed*/

# ifndef FANDEF_H
#define FANDEF_H

#include "fanconst.h"

/* pressure measurements */
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double deltaP,
deltapressure[20]

,

Psnoz

,

nozstatpressure[20]

,

Ps8,

Pstatic8[20],
Pvel8,
Ptot8[20],
Ptot[20],
Pvel[20],
Pstat[20],
nom_Ptot8

,

Ptot_nominal[20]

,

Pvel_nominal[20]
,

Pstat_nominal[20]

;

/press change across nozzles(in. wg)*/
/* array to store deltaP readings */
/static press at nozzles (in. wg) */
/* array to store Psnoz readings */
/*stat pressure at plane 8 (in. wg)*/
/* array to store Ps8 readings */
/*vel pressure at plane 8 (in. wg)*/
/total press at plane 8 (in. wg)*/
/* fan total pressure (in. wg) */
/* fan velocity pressure (in. wg) */
/* fan static pressure (in. wg) */
/nominal total pressure at plane 8*/
/* nominal fan total pressure */
/* nominal fan velocity pressure */
/* nominal fan static pressure */

/* psychrometric measurements */

double wetbulbtemp,
wbtemp

,

tempwb[20]

,

sumwbtemp,
drybulbtemp,
dbtemp

,

tempdb[20]

,

sumdbtemp

,

sumbp,
bp,
bptemp

,

bpgrav,
barometricpressure [ 20

]

avgbaropress

,

sumatmo

,

atairdens[20]

,

atmoairdens

,

chamairdens [ 20]

,

fanairdens(20]

,

windvel,
wind [20];

/*avg wet bulb temperature (F)*/
/*wet bulb temp reading*/
/*array to store wet bulb temps*/
/summation of wet bulb temps*/
/*avg dry bulb temp (F) */
/*dry bulb temp reading */
/array to store dry bulb temps*/
/summation of dry bulb temps /
/summation of baro pressures */
/uncorrected baro press reading*/
/baro press corrected for tempV
/*baro press corrected for grav*/

, /*array for corrected baro pres*/
/avg barometric pressure /
/summation of atmo air densities*/
/array for atmo air densities */
/*atmo air density (lbm/cu ft) */
/chamber air density (lbm/cu ft)*/
/*fan air density (lbm/cu ft) */
/average wind velocity (m/s) /
/array for avg wind velocities*/

/* fan and fan motor measurements */

double watts [20]

,

watt,
motoreff

,

motorhp

,

powerfactor[20]

,

Pf,
fanspeed[20]

,

nominal fanspeed

,

fanrpm,

/* array for the power input */
/* power input (watts) */
/* eff of fan motor (decimal) */
/* fan motor horsepower *// array to store powerfactor*/
/* measured power factor */
/* array for fan speed (rpm) */
/* nom speed of the fan (rpm) */
/* fan speed reading /
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fanbladediara,
volts [20]

,

volt,
amps[20]

,

amp,

powerlnput[20]

,

poweroutput[20]

,

eff_tot[20],
eff_stat[20]

,

nom_powerinput [ 20

]

nom_eff_stat[20]

;

/* fan blade
/* array for
/* fan motor
/* array for
/* fan motor
/* fan power
/* fan power
/* fan total
/* fan static
/* nom power
/* nom static

diameter (inches) */
fan motor voltage */
voltage reading */
fan motor amperage */
amperage reading */
input (hp) */
output (hp) */
efficiency */
efficiency */
input to fan motor */
efficiency */

/* airflow measurements */

double nozflowrate[20]

,

fanflowrate [ 20 ]

,

nozdiam[10] [20],
diamno [ 20 ]

,

ddiam,
diam,
LoverD[10][20],
nozzlearea[10] [20]

,

exp_fac[20]

,

sumcarea[20]

,

coeff[10][20],
nom_fanflowrate [ 20 ]

,

Z,

z_nom

,

Y,

x__nom,

K_nom

,

angle

,

ratio,
Qweighted[20]

,

sum_Qweighted,
tot_Qweighted;

/airflow rate at the nozzles(cfm)*/
/airflow rate at the fan (cfm)*/
/*array to store nozzle diameters*/
/*array to store nozzle numbers*/
/nozzle diameters (inches)*/
/*nozzle # corresponding to noz open*/
/*length/diameter ratio for nozzles*/
/*array for nozzle areas*/
/*array for expansion factors*/
/*coeff * nozzlearea array*/
/*array for nozzle coeff of disch*/
/nominal fan airflow rate*/
/*z/zc*/
/nominal zc*/

/nominal xc*/
/nominal compressibility ratio*/
/*wind diverter angle*/
/*wind diverter position ratio*/
/*array for weighted airflows*/
/*sum of weighted airflows*/
/*total weighted airflow*/

int month, /*month the fan headerfile created*/
day, /*day the fan headerfile created*/
year, /*year the fan headerfile created*/
n™. /*month the fan test was performed*/
dd, /*day the fan test was performed*/
yy. /*year the fan test was performed*/
ratedcfmfan, /*fan flow rate at 1/8" sp(cfm)V
ratedvolts, /*rated voltage of the fan motor*/
testpoints, /*number of test points collected*/
psychanges, /*indicator of psych changes*/
datachanges, /*indicator of data input changes*/
number [10] [20] ,

/*array to store the nozzle number*/
numb; /*nozzle diameter number*/
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char firstname[10] , lastname[10]
, /*operator name*/

manufacturer [ 10 ] , modelno[10]
; /*fan manu & model no*/

double exp_factor(), /* functions */
airdensQ

,

coeffdisch()

,

nozzleflowO
i

fanflow(),
fanpress()

,

fanpwr()

,

getdata()

;

FILE *outfile, *headerflle;
FILE *dflle_pwr, *dfile_alr, *dfile_psy;

# endlf /* FANDEF_H */

***********

/*This function defines the various inputs and variables globally*/

# ifndef FANPERF_H
#define FANPERF_H

#include "fanconst.h"

/* pressure measurements */

extern double deltaP, /*press drop across noz(in. wg)*/
deltapressure[20J

,

/*array for deltaP readings*/
Psnoz, /*static press at noz(in. wg)*/
nozstatpressure[20]

,

/*array for Psnoz readings*/
Ps8

. /*stat press at plane 8 (in. wg)*/
Pstatic8[20]

,

/*array to store Ps8 readings*/
PvelS, /*vel press at plane 8 (in. wg)*/
Ptot8[20], /*tot press at plane 8(in. wg)*/
Ptot[20], /*fan total pressure (in. wg)*/
Pvel[20]

,

/*fan vel pressure (in. wg)*/
Pstat[20], /*fan static pressure (in. wg)*/
nom_Ptot8, /*nom tot pressure at plane 8*/
Ptot_nominal[20]

, /*nom fan total pressure*/
Pvel_nominal[20]

,

/*nom fan velocity pressure*/
Pstat_nominal[20]

;

/*nom fan static pressure*/
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/* psychrometric measurements */

extern double wetbulbtemp,
wbtemp

,

tempwb[20]

,

sumvbtemp,
drybulbtemp,
dbtemp,
tempdb [ 20 ]

,

sumdbtemp

,

sumbp,
bp.
bptemp,
bpgrav

,

barometricpressure[20]

,

avgbaropress

,

sumacmo

,

atairdens[20]

,

atmoairdens

,

chamairdens[20]

,

fanairdens[20]

,

windvel,
wind[20];

/avg wet bulb temp (F)*/
/*wet bulb temp reading*/
/array for wet bulb temps*/
/*sum of wet bulb temps*/
/*avg dry bulb temp (F)*/
/*dry bulb temp reading*/
/*array for dry bulb temps*/
/*sum of dry bulb temps*/
/*sum of baro pressures*/
/uncorrected baro press*/
/*bp corrected for temp*/
/*bp corrected for gravity*/
/*array for corrected bp*/
/*avg barometric pressure*/
/*sum of atmo air densities*/
/*array for atmo air dens*/
/*atmo air dens(lbm/cu ft)*/
/chamber air dens ( lbm/cu ft)*/
/*fan air density (lbm/cu ft)*/
/*avg wind velocity (m/s)*/
/*array for avg wind vel*/

/* fan and fan motor measurements */

extern double watts [20],
watt,
motoreff

,

motorhp,
powerfactor[20]

,

Pf,
fanspeed[20]

,

nominalfanspeed,
fanrpm

,

fanbladediam,
volts [20]

,

volt,
amps [ 20 ] ,

amp,
powerinput[20]

,

poweroutput[20]

,

eff_tot[20],
eff_stat[20]

,

nom_powerinput [ 20

]

nom_eff_stat[20]

;

/*array for the power input*/
/power input (watts)*/
/eff of fan motor (decimal)V
/*fan motor horsepower*/
/*array to store powerfactor*/
/*measured power factor*/
/*array for fan speed (rpm)*/
/*nom speed of the fan (rpm)*/
/*fan speed reading*/
/*fan blade dia (inches)*/
/*array for fan motor volts*/
/*fan motor voltage reading*/
/*array for fan motor amps*/
/*fan motor amperage*/
/*fan power input (hp)*/
/*fan power output (hp)*/
/*fan total efficiency*/
/*fan static efficiency*/
/*nom power input to fan motor*/
/*nom static efficiency*/

/* airflow measurements */

extern double nozflowrate[20]

.

fanflowrate[20]

.

/airflow rate at noz(cfm)*/
/airflow rate at fan (cfm)*/
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nozdiam[10] [20]

,

diamno[20]

,

ddiam,
diam,

LoverD[10][20],
nozzlearea[10] [20]

,

exp_fac[20]

,

sumcarea[20]

,

coeff[10][20],
nom_fanflowrate [ 20 ]

Z,

z_nom,
Y,

x_nom

,

K_nom

,

angle

,

ratio,
Qweighted[20]

,

sum_Qweighted,
totjjweighted;

/*array for nozzle dla*/
/*array for nozzle #'s*/
/nozzle diameters (inches)*/
/*noz # corresp to noz open*/
/*length/dia ratio for noz*/
/array for nozzle areas*/
/array for exp factors*/
/*coeff * nozzlearea array*/
/array for noz coef of dis*/
/nominal fan airflow rate*/
/*z/zc*/
/nominal zc*/

/nominal xc*/
/*nom compressibility ratio*/
/*wind diverter angle*/
/wind div position ratio*/
/array -weighted airflows*/
/sum of weighted airflows*/
/total weighted airflow*/

extern int month,
day,

year,

dd,

yy.
ratedcfmfan,
ratedvolts,
testpoints,
psychanges

,

datachanges

,

number [10] [20]
numb;

/*month the fan headerfile created*/
/*day the fan headerfile created*/
/year the fan headerfile created*/
/*month the fan test was performed*/
/*day the fan test was performed*/
/*year the fan test was performed*/
/*fan flow rate at 1/8" sp(cfm)*/
/*rated voltage of the fan motor*/
/number of test points collected*/
/indicator of psych changes*/
/indicator of data input changes*/
/array for the nozzle number*/
/*nozzle diameter number*/

extern char firstname[10] , lastname[10]

,

manufacturer [ 10 ] , modelno[10]

;

/operator name*/
/*manu & model no*/

extern double exp_factor()

,

airdens()

,

coeffdischQ,
nozzleflow()

,

fanflowQ
,

fanpressQ

,

fanpwr()

,

getdataQ

;

/* functions */

extern FILE
extern FILE

*outfile, *headerfile;
*dfile_pwr, *dfile_air, *dfile_psy;
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# endlf /* FAKPERF_H */

***************************** A lm,i*****************************

# makefile for header_w.c

GETOPT-c

:

header_w.exe: $*.c fandef.h
cc $*.c S(GETOPT)
rm $*.obj

header_r.exe: $*.c fandef.h
cc $*.c $(GETOPT)
rm $*.obj

# The following statements compile the various components
# of the main program (fanperf2.c) and make it executable.

FAN_0BJ-getdata2 . obj airdens.obj airflow. obj
datfile2.obj scrnout2.obj

getdata2 . obj : $*.c fanperf.h fanconst.h
cc -c $*.c

airdens.obj: $*.c fanperf.h fanconst.h
cc -c $*.c

airflow. obj: $*.c fanperf.h fanconst.h
cc -c $*.c

datfile2.obj
: $*.c fanperf.h fanconst.h

cc -c $*.c

scrnout2 . obj : $*.c fanperf.h fanconst.h
cc -c $*.c

fanperf2.exe: $*.c fandef.h fanconst.h $(FAN OBJ)
cc -F4fff $*.c $(GETOPT) $(FAN_OBJ)
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APPENDIX C

Tabular Results of Study Investigating Wind Dlverter Position and Angle

TABLE 15. Two-speed 30.5 cm fan (high speed) with a 0" wind dlverter at
an area ratio of 1.75 in to 10 mps straight on wind.

FAN : Agri-Aide FK-1211-2 at 1725 RPM (nominal)
DATE: 11-12-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.05 292.5 29.68 283.7 13.9 1779 2.22 197 1.5
1.98 31.05 286.9 29.73 278.3 87.5 1779 2.22 198 1.4
4.01 31.05 270.6 29.83 262.5 92.4 1778 2.22 199 1.4
6.01 31.05 253.2 29.80 245.8 49.3 1777 2.22 203 1.2
8.00 31.05 209.9 29.80 203.9 14.0 1776 2.23 208 1.0

10.00 31.05 161.8 29.80 157.2 2.4 1775 2.23 211 0.8

TIME WEIGHTED AIRFLOW - 259.5

TABLE 16. Twc>-speed 30.5 cii fan (hii'h soeec1) with a 15° ijlnd rti

at an area ratio of 1.75 in to 10 mps straight on wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-12-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.05 299.7 29.68 290.6 14.2 1779 2.22 196 1.5
1.98 31.05 292.2 29.75 283.4 89.1 1779 2.22 197 1.5
3.98 31.05 272.2 29.78 264.0 92.9 1778 2.22 198 1.4
5.98 31.05 240.3 29.80 233.3 46.8 1777 2.22 203 1.2
8.00 31.05 214.6 29.83 208.4 14.4 1776 2.23 208 1.0
9.99 31.05 163.7 29.83 159.1 2.4 1776 2.23 212 0.8

TIME WEIGHTED AIRFLOW - 259.8

156



TABLE 17. Test of two-speed 30.5 cm fan (high speed) with a 30° wind
diverter at an area ratio of 1.75 in to 10 mps straight on
wind

.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-12-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.05 339.0 29.70 328.6 16.1 1779 2.21 193 1.8
1.99 31.05 305.8 29.78 296.4 93.2 1780 2.21 194 1.6
4.02 31.05 274.9 29.78 266.5 93.8 1779 2.21 197 1.4
6.03 31.05 238.6 29.83 231.6 46.5 1777 2.22 201 1.2
8.00 31.05 222.1 29.83 215.6 14.9 1777 2.22 206 1.1

10.00 31.05 158.4 29.85 153.9 2.3 1775 2.22 212 0.7

TABLE 18. Test of two-speed 30.5 cm fan (high speed) with a 30° wind
diverter without a flange at an area ratio of 1.75 in to 10
mps straight on wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-12-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.05 357.2 29.75 346.4 16.9 1779 2.21 195 1.8
2.02 31.05 327.3 29.75 317.3 99.8 1780 2.21 193 1.7
3.99 31.05 278.8 29.78 270.4 95.2 1778 2.21 197 1.4
6.02 31.05 243.9 29.78 236.7 47.5 1778 2.21 200 1.2
7.98 31.05 227.0 29.80 220.4 15.2 1777 2.22 205 1.1
9.97 31.05 156.6 29.88 152.2 2.3 1775 2.23 215 0.7
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TABLE 19. Test of two-speed 30.5 cm fan (high speed) with a 45° wind
diverter at an area ratio of 1.75 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-12-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.05 354.5 29.60 343.7 16.8 1780 2.22 195 1.8
2.00 31.05 317.8 29.58 308.0 96.9 1780 2.22 194 1.6
3.99 31.05 290.0 29.75 281.2 99.0 1779 2.22 197 1.5
6.01 31.05 246.0 29.75 238.7 47.9 1778 2.22 202 1.2
8.00 31.05 229.3 29.78 222.7 15.3 1777 2.23 207 1.1

10.01 31.05 165.8 29.80 161.1 2.4 1775 2.24 214 0.8

TIME WEIGHTED AIRFLOW - 278.3

TABLE 20. Test of two-speed 30.5 cm fan (high speed) without a wind
diverter in to 10 mps straight on wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-12-87

TES1 • AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.02 590.4 29.85 573.7 28.1 1775 2.23 214 2.8
2.03 31.02 552.4 29.90 536.8 168.8 1775 2.24 214 2.6
4.03 31.05 222.1 29.90 215.7 75.9 1776 2.22 211 1.1
6.00 31.05 183.8 29.95 178.7 35.8 1774 2.24 219 0.8
7.99 31.05 103.1 30.03 100.4 6.9 1771 2.26 233 0.4
9.49 31.05 18.0 30.10 17.6 0.2 1769 2.27 244 0.1

TIME WEIGHTED AIRFLOW - 315.8
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TABLE 21. Test of two- speed 30.5 cm fan (high speed) with a 0° wind
diverter at an area ratio of 2.5 in to 10 mps straight on
wind

.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-19-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.05 295.4 29.36 286.5 14.0 1778 2.22 200 1.5
2.00 31.05 289.3 29.43 280.7 88.3 1778 2.23 200 1.4
4.01 31.05 276.9 29.43 268.8 94.6 1777 2.22 199 1.4
6.00 31.05 241.1 29.41 234.1 46.9 1777 2.23 206 1.2
8.00 31.05 225.3 29.43 218.8 15.1 1776 2.23 211 1.1

10.00 31.05 147.0 29.48 143.0 2.2 1774 2.24 221 0.7

TIME WEIGHTED AIRFLOW - 261.1

TABLE 22. Test of two-speed 30.5 cm fan (high speed) with a 15° wind
diverter at an area ratio of 2.5 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-20-87

TEST AIR 'STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.02 426.6 29.31 414.2 20.3 1777 2.23 208 2.1
1.98 31.02 415.7 29.33 403.5 126.9 1777 2.23 207 2.0
3.99 31.05 275.2 29.31 267.0 94.0 1778 2.22 201 1.4
5.97 31.05 244.7 29.33 237.6 47.6 1777 2.22 205 1.2
8.01 31.05 226.4 29.31 219.9 15.1 1776 2.23 210 1.1

10.00 31.05 144.6 29.41 140.7 2.1 1774 2.24 223 0.6

TIME WEIGHTED AIRFLOW - 306.1
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TABLE 23. Test of two-speed 30.5 cm fan (high speed) with a 30° wind
diverter at an area ratio of 2.5 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-20-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.02 489.2 29.28 475.4 23.3 1775 2.24 217 2.3
1.97 31.02 479.1 29.38 465.6 146.5 1775 2.24 216 2.2
3.99 31.05 279.4 29.26 271.0 95.4 1778 2.23 200 1.4
5.97 31.05 247.9 29.28 240.6 48.3 1777 2.23 205 1.2
8.00 31.05 231.2 29.28 224.6 15.5 1776 2.23 212 1.1
9.99 31.05 134.7 29.36 131.0 2.0 1773 2.25 227 0.6

TIME WEIGHTED AIRFLOW - 330.8

TABLE 24. Test of two-speed 30.5 cm fan (high speed) with a 30° wind
diverter witout a flange at an area ratio of 2.5 in to 10
mps straight on wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-20-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.02 498.7 29.38 484.7 23.7 1775 2.24 216 2.3
2.01 31.02 495.0 29.43 481.2 151.4 1775 2.24 216 2.3
4.03 31.05 282.2 29.33 273.7 96.4 1778 2.22 199 1.4
5.99 31.05 249.8 29.36 242.5 48.6 1777 2.22 204 1.2
8.00 31.05 228.3 29.36 221.8 15.3 1776 2.23 212 1.1

10.00 31.05 124.7 29.46 121.4 1.8 1773 2.25 226 0.6

TIME WEIGHTED AIRFLOW - 337.2
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TABLE 25. Test of two-speed 30.5 cm fan (high speed) with a 45° wind
diverter at an area ratio of 2.5 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-19-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.02 516.2 29.48 501.6 24.5 1775 2.25 218 2.4
1.97 31.02 507.9 29.53 493.6 155.3 1775 2.25 217 2.3
4.03 31.05 291.1 29.41 282.3 99.4 1779 2.23 198 1.5
5.99 31.05 249.9 29.43 242.6 48.6 1777 2.23 205 1.2
8.01 31.05 238.4 29.46 231.5 16.0 1776 2.23 210 1.1

10.01 31.05 129.6 29.53 126.1 1.9 1773 2.25 227 0.6

TIME WEIGHTED AIRFLOW - 345.7

TABLE 26. Test of two-speed 30.5 cm fan (high speed) with a 60° wind
diverter at an area ratio of 2.5 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-20-87

TES1 ' AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.02 512.9 29.26 498.4 24.4 1775 2.24 216 2.4
1.98 31.02 511.2 29.38 496.8 156.3 1775 2.24 215 2.4
3.99 31.05 306.2 29.21 296.8 104.5 1780 2.22 195 1.6
5.99 31.05 261.5 29.23 253.7 50.9 1778 2.22 201 1.3
7.98 31.05 238.3 29.26 231.4 15.9 1777 2.23 207 1.2

10.01 31.05 122.6 29.41 119.3 1.8 1773 2.25 225 0.5

TIME WEIGHTED AIRFLOW - 353.8
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TABLE 27. Test of two-speed 30.5 cm fan (high speed) with a 0° wind
diverter at an area ratio of 4.0 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: .11-16-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.02 525.0 30.05 510.0 25.0 1776 2.23 215 2.4
2.02 31.02 528.9 30.13 513.9 161.7 1775 2.23 213 2.5
4.01 31.05 271.8 30.00 263.6 92.8 1779 2.22 201 1.4
5.99 31.05 241.7 30.05 234.6 47.1 1777 2.22 206 1.2
8.00 31.05 194.1 30.10 188.6 13.0 1775 2.24 216 0.9

10.02 31.05 104.9 30.15 102.1 1.5 1773 2.26 228 0.5

TIME WEIGHTED AIRFLOW - 341.0

TABLE 28. Test of two-speed 30.5 cm fan (high speed) with a 15° wind
diverter at an area ratio of 4.0 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-16-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.02 527.0 30.00 512.0 25.1 1776 2.25 216 2.4
1.98 31.02 528.5 30.05 513.4 161.5 1776 2.24 214 2.5
4.01 31.05 268.7 29.98 260.6 91.7 1778 2.22 200 1.3
6.01 31.05 239.9 29.98 232.9 46.7 1777 2.23 208 1.2
7.99 31.05 193.6 30.03 188.1 13.0 1775 2.24 216 0.9

10.03 31.05 100.9 30.15 98.2 1.5 1773 2.26 228 0.4

TIME WEIGHTED AIRFLOW - 339.4
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TABLE 29. Test of two-speed 30.5 cm fan (high speed) with a 30° wind
diverter at an area ratio of 4.0 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-16-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.02 533.6 30.15 518.6 25.4 1775 2.23 214 2.5
2.00 31.02 535.6 30.20 520.5 163.7 1775 2.23 214 2.5
4.02 31.05 278.3 30.13 270.0 95.1 1778 2.22 199 1.4
5.99 31.05 242.8 30.13 235.8 47.3 1776 2.23 206 1.2
8.02 31.05 194.6 30.15 189.1 13.0 1775 2.24 216 0.9

10.00 31.05 100.1 30.23 97.4 1.5 1772 2.26 230 0.4

TIME WEIGHTED AIRFLOW - 345.9

TABLE 30. Test of two-speed 30.5 cm fan (high speed) with a 30° wind
diverter witout a flange at an area ratio of 4.0 in to 10
mps straight on wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-16-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.02 536.6 30.13 521.3 25.5 1776 2.25 216 2.5
1.98 31.02 539.7 30.20 524.3 164.9 1776 2.24 215 2.5
4.01 31.05 284.1 30.05 275.6 97.0 1779 2.22 199 1.4
6.00 31.05 243.8 30.08 236.7 47.5 1777 2.23 207 1.2
7.99 31.05 198.2 30.10 192.6 13.3 1775 2.24 217 0.9

10.00 31.05 100.8 30.18 98.1 1.5 1772 2.25 230 0.4

TIME WEIGHTED AIRFLOW - 349.7

163



TABLE 31. Test of two-speed 30.5 cm fan (high speed) with a 45° wind
diverter at an area ratio of 4.0 in to 10 mps straight on
wind

.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-16-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.02 539.7 30.15 524.4 25.7 1775 2.24 216 2.5
1.98 31.02 538.0 30.25 522.7 164.4 1775 2.24 216 2.5
4.01 31.05 281.1 30.08 272.6 96.0 1779 2.22 200 1.4
6.00 31.05 245.9 30.10 238.7 47.9 1777 2.23 206 1.2
8.00 31.05 188.9 30.15 183.6 12.7 1775 2.24 218 0.9

10.00 31.05 86.4 30.23 84.1 1.3 1772 2.26 234 0.4

TIME WEIGHTED AIRFLOW - 347.8

TABLE 32. Test of two-speed 30.5 cm fan (high speed) with a 60° wind
diverter at an area ratio of 4.0 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-16-87

TES1 ' AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.02 547.5 30.18 532.2 26.0 1775 2.25 215 2.5
1.98 31.02 547.8 30.18 532.3 167.5 1775 2.25 215 2.5
4.00 31.05 296.3 30.03 287.3 101.1 1779 2.22 196 1.5
6.00 31.05 243.2 30.08 236.2 47.4 1777 2.23 208 1.2
8.00 31.05 167.5 30.20 162.9 11.2 1774 2.24 220 0.8
9.98 31.05 78.3 30.28 76.3 1.1 1771 2.26 235 0.3

TIME WEIGHTED AIRFLOW - 354.4
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TABLE 33. Test of two-speed 30.5 cm fan (high speed) with a 0° wind
diverter at an area ratio of 5.5 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-18-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.02 537.8 29.41 522.7 25.6 1775 2.24 218 2.5
1.98 31.02 532.1 29.48 517.1 162.7 1775 2.23 217 2.5
4.01 31.05 259.2 29.38 251.5 88.5 1778 2.23 206 1.3
5.99 31.05 233.5 29.41 226.8 45.5 1776 2.24 216 1.1
8.00 31.05 163.4 29.51 159.0 11.0 1773 2.25 225 0.7

10.00 31.05 63.8 29.60 62.2 0.9 1770 2.26 239 0.3

TIME WEIGHTED AIRFLOW - 334.2

TABLE 34. Test of two-speed 30.5 cm fan (high speed) with a 15° wind
diverter at an area ratio of 5.5 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-18-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.02 541.4 29.41 526.0 25.7 1775 2.24 218 2.5
1.98 31.02 534.0 29.46 518.9 163.2 1775 2.25 217 2.5
3.97 31.05 260,0 29.38 252.3 88.8 1777 2.22 206 1.3
5.99 31.05 232.8 29.41 226.2 45.4 1775 2.24 216 1.1
8.00 31.05 152.8 29.51 148.7 10.2 1772 2.26 229 0.7

10.02 31.05 47.1 29.55 45.9 0.7 1769 2.28 244 0.2

TIME WEIGHTED AIRFLOW - 334.1
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TABLE 35. Test of two-speed 30.5 cm fan (high speed) with a 30° wind
diverter at an area ratio of 5.5 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-18-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.02 542.4 29.46 527.4 25.8 1774 2.25 217 2 5
2.01 31.02 537.8 29.48 522.8 164.4 1775 2.24 217 7 5

4.03 31.05 265.2 29.41 257.5 90.6 1777 2.23 205 1 1

5.98 31.05 235.2 29.43 228.6 45.8 1775 2.24 214 1 1

8.00 31.05 154.1 29.51 150.0 10.3 1773 2.25 227 n 7
10.00 31.05 49.7 29.63 48.5 0.7 1769 2.28 243 0.2

TIME WEIGHTED AIRFLOW - 337.8

TABLE 36. Test of two-speed 30.5 cm fan (high speed) with a 30° wind
diverter without a flange at an area ratio of 5.5 In to 10
mps straight on wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-18-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.02 543.5 29.41 528.4 25.9 1775 2.24 217 2.5
2.00 31.02 539.1 29.46 524.1 164.9 1774 2.24 216 2.5
4.01 31.05 270.2 29.38 262.2 92.3 1777 2.21 203 1.3
5.97 31.05 238.6 29.43 231.8 46.5 1776 2.24 213 1.1
8.00 31.05 157.3 29.53 153.1 10.5 1772 2.25 226 0.7

10.00 31.05 50.6 29.60 49.3 0.7 1769 2.27 243 0.2

TIME WEIGHTED AIRFLOW - 340.8
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TABLE 37. Test of two-speed 30.5 cm fan (high speed) with a 45° wind
diverter at an area ratio of 5.5 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-18-87

TES1 ' AIR STANDARD AIR MOTOFI PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.02 548.2 29.43 532.9 26.1 1775 2.24 216 2.5
1.99 31.02 .546 .

2

29.48 530.8 167.0 1775 2.23 216 2.5
4.02 31.05 267.5 29.41 259.6 91.4 1777 2.23 206 1.3
6.00 31.05 227.4 29.46 221.0 44.3 1775 2.24 215 1.1
7.99 31.05 144.4 29.53 140.5 9.7 1772 2.24 227 0.6

10.00 31.05 44.7 29.60 43.6 0.7 1769 2.27 245 0.2

TIME WEIGHTED AIRFLOW - 339.1

TABLE 38. Test of two-speed 30.5 cm fan (high speed) with a 60° wind
diverter at an area ratio of 5.5 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1725 RPM (nominal)
DATE: 11-18-87

TES1 ' AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 31.02 559.9 29.41 544.1 26.6 1775 2.24 218 2.6
1.97 31.02 562.3 29.48 546.4 171.9 1775 2.23 216 2.6
3.97 31.05 283.3 29.43 274.9 96.8 1778 2.22 204 1.4
5.97 31.05 220.3 29.46 214.1 42.9 1775 2.24 217 1.0
8.01 31.05 138.1 29.53 134.4 9.3 1772 2.25 231 0.6
9.99 31.05 34.7 29.65 33.9 0.5 1768 2.28 246 0.1

TIME WEIGHTED AIRFLOW - 348.0
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TABLE 39. Test of two-speed 30.5 cm fan (low speed) with a 0" wind
diverter at an area ratio of 1.0 in to 10 mps straight on
wind

.

FAN : Agri-Aide FM-1211-2 at 1140 RPM (nominal)
DATE: 11-20-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 12.42 161.5 11.55 155.7 7.6 1182 1.33 114 1.4
1.97 12.42 153.2 11.60 147.7 46.5 1183 1.33 114 1.3
3.99 12.42 151.3 11.62 145.9 51.4 1182 1.33 116 1.3
5.98 12.42 104.6 11.62 100.9 20.2 1181 1.34 117 0.9
7.97 12.42 16.5 11.60 15.9 1.1 1182 1.33 116 0.1

TIME WEIGHTED AIRFLOW - 126.8

TABLE 40. Test of two-speed 30.5 cm fan (low speed) with a 15° wind
diverter at an area ratio of 1.0 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1140 RPM (nominal)
DATE: 11-20-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 12.42 175.2 11.60 168.9 8.3 1182 1.33 113 1.6
2.01 12.42 169.5 11.62 163.5 51.4 1182 1.33 114 1.5
3.98 12.42 155.2 11.62 149.8 52.7 1182 1.33 115 1.3
6.00 12.42 107.5 11.62 103.7 20.8 1181 1.34 117 0.9
8.00 12.42 18.7 11.62 18.0 1.2 1181 1.33 116 0.2

TIME WEIGHTED AIRFLOW - 134.4
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TABLE 41. Test of two-speed 30.5 cm fan (low speed) with a 30° wind
diverter at an area ratio of 1.0 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1140 RPM (nominal)
DATE: 11-20-87

STi

TES1 ' AIR

STi

STANDARD AIR MOTOR PERFORMANCE VER

WIND VTIC FAN VTIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 12 .42 176.3 11.,57 169.9 8.3 1183 1.33 113 1.6
2.01 12 .42 170.1 11 62 163.9 51.6 1183 1.33 113 1.5
4.00 12 42 155.6 11 62 150.0 52.8 1182 1.33 115 1.4
5.98 12 .42 111.3 11. 62 107.4 21.5 1181 1.33 116 1.0
8.00 12 .42 19.0 11. 62 18.4 1.3 1182 1.33 116 0.2

TIME WEIGHTED AIRFLOW - 135.5

TABLE 42. Test of two-speed 30.5 cm fan (low speed) with a 30° wind
diverter without a flange at an area ratio of 1.0 in to 10
mps straight on wind.

FAN : Agri-Aide FM-1211-2 at 1140 RPM (nominal)
DATE: 11-20-87

STi

TEST ' AIR

STi

STANDARD AIR MOTOR PERFORMANCE VER

WIND MIC FAN VTIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 12 .42 174.6 11.,55 168.0 8.2 1185 1.35 111 1.6
1.99 12 .42 169.2 11 .57 163.0 51.3 1184 1.35 112 1.5
3.97 12 .42 155.9 11 60 150.2 52.9 1183 1.34 111 1.4
5.97 12 .42 116.0 11..60 111.9 22.4 1182 1.34 115 1.0
8.00 12 .42 10.3 11 62 10.0 0.7 1181 1.33 117 0.1

TIME WEIGHTED AIRFLOW - 135.5
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TABLE 43. Test of two-speed 30.5 cm fan (low speed) with a 45° wind
diverter at an area ratio of 1.0 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1140 RPM (nominal)
DATE: 11-20-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 12.42 168.9 11.57 162.7 8.0 1183 1.34 113 1.5
2.02 12.42 164.8 11.60 158.8 49.9 1183 1.33 113 1.5
3.98 12.42 149.2 11.60 143.9 50.7 1182 1.33 114 1.3
5.96 12.42 110.9 11.62 107.0 21.5 1182 1.33 115 1.0
7.97 12.42 19.1 11.62 18.4 1.3 1182 1.34 115 0.2

TIME WEIGHTED AIRFLOW - 131.4

TABLE 44. Test of two-speed 30.5 cm fan (low speed) without a wind
diverter in to 10 mps straight on wind.

FAN : Agri-Aide FM-1211-2 at 1140 RPM (nominal)
DATE: 10-16-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 12.39 377.4 11.67 364.3 4.5 1181 1.33 117 3.2
1.07 12.42 156.7 11.72 151.3 14.3 1181 1.33 116 1.4
2.06 12.42 148.0 11.70 142.8 23.2 1182 1.33 116 1.3
3.02 12.42 132.5 11.77 128.1 24.4 1180 1.34 119 1.1
4.09 12.42 99.0 11.77 95.8 17.2 1179 1.34 122 0.8
5.00 12.42 48.7 11.82 47.1 6.7 1178 1.34 124 0.4

TIME WEIGHTED AIRFLOW - 90.3
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TABLE 45. Test of two-speed 30.5 cm fan (low speed) with a 0° wind
diverter at an area ratio of 2.0 in to 10 mps straight on
wind.

FAN : Agri-Aide FM- 1211-2 at 1140 RPM (nominal)
DATE: 11-19-87

TES1 ' AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND
SPEED
(mps)

STATIC
PRESS
(Pa)

FAN
AIRFLOW
(Lps)

STATIC FAN
PRESS AIRFLOW
(Pa) (Lps)

WEIGHTED
AIRFLOW
(Lps)

FAN
SPEED
(rpm)

MOTOR MOTOR
CURRENT POWER
(amps) (watts)

(Lps
per
watt)

0.00
2.02
4.00
6.03

12.42
12.42
12.42
12.42

169.4
162.0
150.6
108.8

11.60 163.3
11.62 156.1
11.62 145.2
11.62 104.9

8.0
49.1
51.1
21.0

1183
1183
1183
1182

1.33 112
1.33 112
1.33 115
1.33 116

1.5
1.4
1.3
0.9

- 129.2

TABLE 46. Test of two-speed 30.5 cm fan (low speed) with a 15° wind
diverter at an area ratio of 2.0 in to 10 mps straight on
wind

.

FAN : Agri-Aide FM-1211-2 at 1140 RPM (nominal)
DATE: 11-19-87

TESI ' AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND
SPEED
(mps)

STATIC
PRESS
(Pa)

FAN
AIRFLOW
(Lps)

STATIC FAN
PRESS AIRFLOW
(Pa) (Lps)

WEIGHTED
AIRFLOW
(Lps)

FAN MOTOR MOTOR
SPEED CURRENT POWER
(rpm) (amps) (watts)

(Lps
per
watt)

0.00
1.97
3.99
5.98

12.42
12.42
12.42
12.42

171.8-

166.4
155.4
113.7

11.57 165.6
11.62 160.3
11.62 149.8
11.62 109.7

8.1
50.4
52.7
22.0

1183 1.33 112
1183 1.33 112
1183 1.33 114
1182 1.33 116

1.5
1.5

1.4
1.0

TIME WEIGHTED AIRFLOW - 133.2
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TABLE 47. Test of two-speed 30.5 cm fan (low speed) with a 30° wind
diverter at an area ratio of 2.0 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1140 RPM (nominal)
DATE: 11-19-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND
SPEED
(mps)

STATIC FAN
PRESS AIRFLOW
(Pa) (Lps)

STATIC FAN
PRESS AIRFLOW
(Pa) (Lps)

WEIGHTED
AIRFLOW
(Lps)

FAN MOTOR MOTOR
SPEED CURRENT POWER
(rpm) (amps) (watts)

(Lps
per
watt)

0.00
2.01
4.00
6.01

12.42 173.4
12.42 166.4
12.42 157.0
12.42 113.6

11.57 167.1
11.60 160.3
11.62 151.4
11.62 109.6

8.2
50.4
53.3
22.0

1183 1.33 113
1183 1.33 113
1182 1.33 115
1182 1.33 116

1.5
1.5
1.4
1.0

TIME WEIGHTED AIRFLOW - 133.9

TABLE 48. Test of two-speed 30.5 cm fan (low speed) with a 30° wind
diverter without a flange at an area ratio of 2.0 in to 10
mps straight on wind.

FAN : Agri-Aide FM-1211-2 at 1140 RPM (nominal)
DATE: 11-19-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 12.42
2.00 12.42
4.00 12.42
5.98 12.42

177.2
169.2
159.5
115.7

11.57
11.65
11.62
11.62

170.7
163.1
153.7
111.6

8.4
51.3
54.1
22.4

1183
1183
1182
1182

1.33
1.33
1.33
1.34

112 1.6
112 1.5
114 1.4
116 1.0

TIME WEIGHTED AIRFLOW - 136.2
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TABLE 49. Test of two-speed 30.5 cm fan (low speed) with a 45° wind
dlverter at an area ratio of 2.0 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1140 RPM (nominal)
DATE: 11-19-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND
SPEED
(mps)

STATIC FAN
PRESS AIRFLOW
(Pa) (Lps)

STATIC
PRESS
(Pa)

FAN WEIGHTED
AIRFLOW AIRFLOW
(Lps) (Lps)

FAN MOTOR MOTOR
SPEED CURRENT POWER
(rpm) (amps) (watts)

(Lps
per
watt)

0.00
2.00
3.96
5.96

12.42 183.0
12.42 172.0
12.42 161.1
12.42 117.4

11.57
11.62
11.62
11.65

176.2
165.6
155.3
113.3

8.6
52.1
54.7
22.7

1184 1.33 113
1184 1.33 112
1183 1.33 114
1182 1.33 116

1.6
1.5

1.4
1.0

TIME WEIGHTED AIRFLOW - 138.1

TABLE 50. Test of two-speed 30.5 cm fan (low speed) with a 60° wind
diverter at an area ratio of 2.0 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1140 RPM (nominal)
DATE: 11-19-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND
SPEED
(mps)

STATIC FAN
PRESS AIRFLOW
(Pa) (Lps)

STATIC FAN
PRESS AIRFLOW
(Pa) (Lps)

WEIGHTED
AIRFLOW
(Lps)

FAN MOTOR MOTOR
SPEED CURRENT POWER
(rpm) (amps) (watts)

(Lps
per
watt)

0.00
1.98
4.00
6.01

12.42 179.2
12.42 171.5
12.42 163.1
12.42 109.5

11.57 172.6
11.62 165.2
11.62 157.2
11.62 105.6

8.4
52.0
55.3
21.2

1184 1.33 111
1184 1.33 111
1183 1.33 114
1182 1.33 116

1.6

1.5
1.4
0.9

TIME WEIGHTED AIRFLOW - 136.9
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TABLE 51. Test of two-speed 30.5 cm fan (low speed) with a 0° wind
diverter at an area ratio of 3.0 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1140 RPM (nominal)
DATE: 11-17-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND STATIC FAN STATIC FAN WEIGHTED FAN MOTOR MOTOR (Lps
SPEED PRESS AIRFLOW PRESS AIRFLOW AIRFLOW SPEED CURRENT POWER per
(mps) (Pa) (Lps) (Pa) (Lps) (Lps) (rpm) (amps) (watts) watt)

0.00 12.42
2.01 12.42
4.00 12.42
6.00 12.42

166.6
161.8
152.8
103.8

11.77
11.82
11.82
11.85

160.6
155.9
147.3
100.3

7.9
49.0
51.8
20.1

1183
1183
1183
1180

1.33
1.33
1.33
1.33

113 1.5
113 1.4
115 1.3
119 0.9

TIME WEIGHTED AIRFLOW - 128.8

TABLE 52. Test of two -speed 30.5 cm fan (low speed) with a 15° wind
diverter at an area ratio of 3.0 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1140 RPM (nominal)
DATE: 11-17-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND
SPEED
(mps)

STATIC FAN
PRESS AIRFLOW
(Pa) (Lps)

STATIC FAN
PRESS AIRFLOW
(Pa) (Lps)

WEIGHTED
AIRFLOW
(Lps)

FAN
SPEED
(rpm)

MOTOR MOTOR
CURRENT POWER
(amps) (watts)

(Lps
per
watt)

0.00
1.98
4.00
5.98

12.42 167.9
12.42 163.2
12.42 153.8
12.42 101.3

11.77 161.8
11.82 157.3
11.82 148.3
11.85 97.8

7.9
49.5
52.2
19.6

1183
1183
1182
1180

1.33 113
1.33 113
1.33 115
1.34 119

1.5
1.4
1.3

0.9

TIME WEIGHTED AIRFLOW - 129.2
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TABLE 53. Test of two-speed 30.5 cm fan (low speed) with a 30° wind
diverter at an area ratio of 3.0 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1140 RPM (nominal)
DATE: 11-17-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND
SPEED
(mps)

STATIC FAN
PRESS AIRFLOW
(Pa) (Lps)

STATIC
PRESS
(Pa)

FAN WEIGHTED
AIRFLOW AIRFLOW
(Lps) (Lps)

FAN MOTOR MOTOR
SPEED CURRENT POWER
(rpm) (amps) (watts)

(Lps
per
watt)

0.00
2.00
4.00
6.00

12.42 167.7
12.42 163.4
12.42 155.6
12.42 97.8

11.77
11.80
11.80
11.82

161.6
157.5
150.0
94.5

7.9
49.5
52.8
19.0

1183 1.33 113
1183 1.33 113
1183 1.33 115
1180 1.34 119

1.5
1.4
1.4
0.8

TIME WEIGHTED AIRFLOW - 129.2

TABLE 54. Test of two -speed 30.5 cm fan (low speed) with a 30° wind
diverter without a flange at an area ratio of 3.0 in to 10
mps straight on wind.

FAN : Agri-Aide FM-1211-2 at 1140 RPM (nominal)
DATE: 11-17-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND
SPEED
(mps)

STATIC FAN
PRESS AIRFLOW
(Pa) (Lps)

STATIC FAN
PRESS AIRFLOW
(Pa) (Lps)

WEIGHTED
AIRFLOW
(Lps)

FAN MOTOR MOTOR
SPEED CURRENT POWER
(rpm) (amps) (watts)

(Lps
per
watt)

0.00
2.00
4.00
5.99

12.42 172.3
12.42 166.2
12.42 161.6
12.42 100.2

11.77 166.0
11.80 160.2
11.82 155.8
11.87 96.8

8.1
50.4
54.9
19.4

1183 1.34 113
1183 1.33 113
1182 1.33 115
1180 1.33 120

1.5
1.5

1.4
0.8

TIME WEIGHTED AIRFLOW - 132.8
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TABLE 55. Test of two-speed 30.5 cm fan (low speed) with a 45° wind
diverter at an area ratio of 3.0 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1140 RPM (nominal)
DATE: 11-17-87

TEST AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND
SPEED
(mps)

STATIC FAN
PRESS AIRFLOW
(Pa) (Lps)

STATIC FAN
PRESS AIRFLOW
(Pa) (Lps)

WEIGHTED
AIRFLOW
(Lps)

FAN MOTOR MOTOR
SPEED CURRENT POWER
(rpm) (amps) (watts)

(Lps
per
watt)

0.00
1.98
4.00
5.98

12.42 175.2
12.42 167.9
12.42 157.7
12.42 94.7

11.77 168.8
11.82 161.8
11.85 152.1
11.87 91.4

8.3
50.9
53.5
18.3

1183 1.33 112
1183 1.33 113
1182 1.33 115
1180 1.33 120

1.6
1.5
1.4

0.8

TIME WEIGHTED AIRFLOW - 131.0

TABLE 56. Test of two-speed 30.5 cm fan (low speed) with a 60° wind
diverter at an area ratio of 3.0 in to 10 mps straight on
wind.

FAN : Agri-Aide FM-1211-2 at 1140 RPM (nominal)
DATE: 11-17-87

TES1 ! AIR STANDARD AIR MOTOR PERFORMANCE VER

WIND
SPEED
(mps)

STATIC
PRESS
(Pa)

FAN
AIRFLOW
(Lps)

STATIC
PRESS
(Pa)

FAN
AIRFLOW
(Lps)

WEIGHTED
AIRFLOW
(Lps)

FAN MOTOR
SPEED CURRENT
(rpm) (amps)

MOTOR
POWER
(watts)

(Lps
per
watt)

0.00
2.03
4.01
6.00

12.42
12.42
12.42
12.42

187.7
172.9
165.1
95.1

11.80
11.82
11.82
11.87

180.7
166.5
159.1
91.8

8.8
52.4
56.0
18.4

1184 1.34
1184 1.34
1183 1.34
1180 1.34

112
112

114
120

1.7
1.5
1.4
0.8

TIME WEIGHTED AIRFLOW - 135.6
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APPENDIX D

Tabular Results of the Statistical Modeling

The following tables present the full statistical results obtained

through use of various regression models to fit the data obtained on the

two -speed 30.5 cm fan, operated at high speed, during testing with five

wind diverter angles at four area ratios.

Model 1: TWA -
Q

+ £x
*Angle +

2
*Ratio +

3
*Ratio

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value
Model 3 19250.146 6416.715 27.614
Error 15 3485.580 232.372

C Total 18 22735.726

Prob > F R- Square
0.0001 0.8467

Parameter Estimates

Coefficient

*°

B
l

DF
1

1

1

1

Parameter Standard
Estimate
119.955

0.635
97.424
-11.158

Error
29.039
0.171
17.888
2.410
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Model 2: TWA - 3
Q
+ ^

1
*Angle +

2
*Ratio +

3
*Ratio

2
+ £4*Angle*Ratio

Analysis of Variance
Sum of Mean

Source DF Sauares Square F Value Prob > F
Model 4 20352.383 5088.096 29.888 0.0001
Error 14 2383.343 170.239

C Total 18 22735.726

Parameter Estimates
Parameter Standard

Coefficient PJE Estimate F.rrnr

0°

B
1

a
2

1 100.865 25.963
1 1.623 0.415
1 100.150 15.349
1 -10.526 2.078
1 -0.270 0.106

R- Square
0.8952

Model 3: TWA -
PQ

+ 0j*Angle +
2
*Ratio +

3
*Angle

2

-,_2+
4
*Ratio + (8.*Angle*Ratio

Analysis of Variance
Sum of Mean

Source D£ Sauares Square F Value
Model 5 20358.069 4071.614 22.262
Error 13 2377.657 182.897

C Total 18 22735.726

Prob > F
0.0001

R-Square
0.8954

Parameter Estimates
Parameter Standard

Coefficient fiF Estimate Error

"o
1 101.758 27.384

s 1 1.547 0.610

5
^4

1 99.914 15.965
0.001 0.008
1 -10.487 2.165
1 -0.273 0.111
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The following tables are statistical results for low speed operation of

the two-speed 30.5 cm fan with five wind diverter angles and at three

area ratios.

Model 1: TWA - fiQ
+ ^Angle +

2
*Ratio + /9

3
*Ratio

2

Analysis of Variance
Sum of Mean

Source DF Sauares Sauare F Value Prob > F
Model 3 104.483 34.828 6.570 0.0099
Error 10 53.012 5.301

C Total 13 157.495

Parameter Estimates
Parameter Standard

Coefficient DF Estimate Error

s
2

h

1 123.137 4.752
1 0.114 0.031
1 8.756 5.288
1 -2.449 1.292

R- Sauare
0.6634

Model 2: TWA -
Q
+ 0j*Angle +

2
*Ratio +

3
*Ratio

2
+ /94

*Angle*Ratio

Source
Model
Error

C Total

DF
4

9

13

Sum of
Squares
104.503
52.992

157.495

Analysis of Variance
Mean
Square
26.126
5.888

F Value
4.437

Prob > F
0.0296

R- Square
0.6635
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Parameter Estimates
Parameter Standard

Coeffic lent DF Estimate Error

h 123.040 5.284

$
k

0.120 0.100
8.774 5.582
-2.437 1.376

« -0.002 0.043

Model 3: TWA
Q

+ 0j*Angle +
2
*Ratio +

3
*Angle

2
+

4
*Ratio

2

Analysis of Variance
Sum of Mean

Source DF Squares Sauare F Value Prob > F R- Square
Model 4 105.865 26.466 4.614 0.0266 0.6722
Error 9 51.630 5.737

C Total 13 157.495

Parameter Estimates
Parameter S tandard

Coefficient DF Estimate Error

5°

B
l

B
2

B
Z

1 122.471 5.126
1 0.164 0.106
1 9.049 5.533
1 -0.001 0.002
1 -2.507 1.350
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ABSTRACT

A laboratory facility to test exhaust fans with capacities up to

3070 Lps (6500 cfm) was designed and constructed in the first phase of

this study. The fan test chamber performs according to the standards of

the Air Movement and Control Association. It reproduced the results of

a fan tested by AMCA to within 1 to 2%. Development efforts to attain

this performance involved the replacement of inadequate nozzles and set-

tling screens and the location and sealing of air leaks in the plywood,

the test fan housing, and the flow nozzle plugs.

The effect of wind on the performance of 20.3 to 40.6 cm (8 to 16

in) diameter ventilation fans and potential benefits of a fan-mounted

wind protection device were evaluated during the second phase of the

project. The wind protection device evaluated was a commercial cone

shaped wind diverter constructed of fiberglass with a 30° cone angle.

The effect of cone angle, diverter position and alternative configura-

tions were also evaluated. A 15.2 m (50 ft) long, 2 m (6.5 ft) high,

and 1.5 m (5 ft) wide wind tunnel was used to simulate to 10 mps winds

in 2 mps intervals for each test. Fan airflow was weighted according to

the probability of occurrence for each wind velocity, as described by

the Weibull distribution. Although the wind diverter hindered fan air-

flow by 5 to 55% in windless conditions, the weighted airflow was

improved by up to 65% with an optimally designed unit. A 60° cone angle

improved the fan airflow by 2 to 10% over fan airflow using the 30° cone

angle. The optimum distance of the wind diverter from the fan housing

was influenced by fan diameter and rotational speed. The overall



benefit of fan-mounted wind protection devices was greater at low fan

speeds and for small fans. Design parameters of the wind diverter were

more important with large fan diameters and high fan speeds. Further

work is needed, particularly for variable speed fans which are espe-

cially vulnerable at low speeds.


